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ABSTRACT

New Techniques for the Design and Implementation of Efficient Full-Search Algorithms

for Block-Matching Motion Estimation

Chun Yang, Ph.D.
Concordia University, 2007

The block-matching motion estimation (BME) is one of the most commonly used
techniques for digital video compression in low to moderate bit rate environments. The
full search for block-matching motion estimation, as compared to a partial search,
provides a higher motion estimation accuracy, yet its computational cost is generally
high. Hence, developing new techniques for an efficient implementation of full-search
algorithms is of practical significance for the BME.

In this thesis, a new full search algorithm is proposed, wherein the mean squared
error (MSE) is used as the matching criterion to provide a higher motion estimation
accuracy for the BME than that by any algorithm based on the most commonly-used
mean absolute difference. It is shown that the computation of the MSE in the Haar
wavelet domain results in a computational complekity that is much lower than or of the
same order as that of the best-performing full search algorithms available in the literature.

A new approach has been developed for the multi-reference-frame block-matching

motion estimation, wherein a full search is performed in the spatial domain of the multi-

iii



reference-frame memory, and an early termination is imposed in the temporal domain
using a novel strategy. It is shown that the computational complexity of the proposed full
search method is significantly lower than that of any existing full search technique, and
yet has a motion estimation accuracy which is about the same as that of the latter.

A new pseudo-spiral-scan data input scheme has been proposed, which can be used
in any existing hardware architecture for the implementation of the successive-
elimination-based block-matching motion estimation. This scheme results in significant
power savings compared to the conventional raster-scan data input scheme. Several
designs to implement the successive elimination algorithm have been given, some of

which are shown to provide additional power savings.
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Chapter 1

Introduction

1.1 General

A diverse range of video services and products are becoming increasingly popular and
available, and these include video telephony and conferencing, digital broadcasting,
multimedia authoring and editing, multimedia content playback etc., which play an
important role in the various industries such as telecommunications, entertainment,
consumer electronics and information technology [1-4]. The remarkable progress in
the video services and products poses an ever-growing demand for storage and band-
width [5], which calls for more effective digital video compression. For this reason,
digital video compression has not only been a major focus of research activity for the
past few decades, but also continues to attract a great deal of research efforts to sup-
port the on-going evolution of the video services, products and their standardization.

A digital video sequence consists of individual frames appearing at regular time
intervals. In general, the spatial and temporal redundancies existing in a digital video
sequence can be reduced by the use of intra-frame and inter-frame video compres-

sion [6-8]. The intra-frame approach exploits the spatial redundancies by employing



the still-image compression techniques [9-13] on a frame-by-frame basis, whereas the
inter-frame approach [14,15] exploits both the temporal and spatial redundancies by
considering more than one frame at a time. The latter approach can offer a higher
compression efficiency than the former one can, and is predominantly used in low to
moderate bit rate environments [16-24].

A practical inter-frame video compression system adopted by many video com-

pression standards carries out the following operations [16,17,19-22].
1. Frame segmentation: A target video frame is partitioned into multiple blocks.

2. Block-matching motion estimation: For each of the target blocks, a matching
block is identified in a reference frame. This block is used as the prediction for
the target block. The displacement between the target block and its prediction

is referred to as the motion vector of the block in question.

3. Transformation of the prediction error: The prediction error, which is the dif-
ference between the target block and its prediction, is transformed using a 2-D

transformation such as the the 2-D discrete cosine transform.

4. Encoding: The motion vectors and the prediction errors are entropy-encoded

for transmission or storage.
At the receiver end, the following operations restore the video frame.

1. Decoding: The motion vectors and prediction errors are decoded from the data

stream.

2. Restoration of the prediction error: The prediction error is restored by the 2-D

inverse transform.



3. Motion compensation: The predicted block is retrieved from the reference frame
using the motion vector. The target block is then restored by adding the pre-

diction error to the block prediction.

In the above operations, the block-matching motion estimation [25-28] is the most
crucial step in video compression, which is achieved by reducing the temporal re-
dundancy of a video sequence, and has received a lot of research attention. In the

following, an overview of the block-matching motion estimation is presented.

1.2 An Overview of the Block-Matching
Motion Estimation

The block-matching motion estimation (BME) [29] is a process of searching, within
a reference frame, for a block that best matches the given block in the current frame.
Every BME technique endeavours to achieve a high motion estimation accuracy along
with a low computational cost. However, these two goals cannot be simultaneously
reached, since a higher motion estimation accuracy is usually achieved at the expense
of an increased computational cost, and a reduced computational cost often results
in a lower motion estimation accuracy. The various BME techniques have, therefore,
placed different emphases on these two goals, and they differ from one another in their
search algorithms, matching criteria and the size of the block employed. The search
algorithm is the main factor that determines both the motion estimation accuracy
and the computational cost of a BME process.

Numerous search algorithms have been proposed since the introduction of the
BME. A majority of them [30-43] substantially reduce the computational cost of

the BME by conducting a partial search within a search window of the candidate
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blocks. In general, the partial search is conducted within the central part of the
search window, based on the assumption that most of the motion vectors are center-
biased [33]. In the case of minor motions, it can provide acceptable motion estimation
accuracy, but as the motion intensity increases, the accuracy deteriorates, since the
searches are more likely to be trapped in some local minima [44]. In such a case, the
motion estimation accuracy of the BME is sacrificed by the partial search algorithms
in exchange for a lower computational cost.

In another group of search algorithms [45-57], the motion estimation accuracy of
the BME takes precedence, and a full search over all the candidate blocks is carried out
to ensure the most accurate motion estimation. At the same time, the computational
complexity of the full search is reduced by simplifying the criterion used for the
evaluation of the block matching. With the recent developments in fast full-search
algorithms, especially the successive elimination algorithms [46,47, 58], the amount
of computational complexity of the full search can be reduced to the same order of
magnitude as that resulting from a partial search. This has made the full search
an attractive alternative to the partial search in software implementations of the
BME, and hence, developing new full search algorithms with a reduced computational
complexity is of considerable interest.

For a hardware implementation of the BME [59-62], it is thg full search, rather
than the partial one, that is predominantly used [62], because the pipelining technique
[63,64] can be used to achieve a processing speed that is not likely to be surpassed
by any implementation using a partial search. Although the pipelining technique
provides a high processing speed, it does not reduce the computational cost in terms
of the power consumption, an issue that has become more relevant in recent years due
to the increased applications of portable devices. It is, therefore, of a practical value

to develop power-saving techniques for full-search hardware implementations [65].
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1.3 Scope and Organization of the Thesis

As discussed in the previous section, the full search method for block-matching mo-
tion estimation is suitable for both software and hardware implementations. Reducing
the computational cost is essential for both types of implementations. In the case of
software implementations, the challenge is to reduce the computational complexity
of the search algorithms, whereas in the case of hardware implementations, the chal-
lenge is to reduce the power consumption associated with the full search. Motivated
by these challenges, this thesis focuses on developing new techniques for the design
and implementation of efficient full-search algorithms for the block-matching motion
estimation. The thesis is organized as follows.

In Chapter 2, some fundamental concepts of the block-matching motion estimation
are highlighted, and the full-search-based software and hardware implementations for
the BME are reviewed in order to provide the background material necessary for the
work undertaken in this thesis.

A new full-search algorithm for block-matching motion estimation is developed in
Chapter 3. The algorithm uses the mean squared error (MSE) as the matching crite-
rion, which has the advantage of providing a higher motion estimation accuracy for the
block-matching motion estimation than that provided by the commonly-used mean
absolute difference (MAD). The proposed algorithm is based on the Haar wavelet
transform, and computes the MSE in the wavelet domain to eliminate the impos-
sible motion vector candidates, taking advantage of the coefficient sorting feature
provided by the Haar wavelet transform. The computational complexity required by
the proposed algorithm is compared with that of some of the bench-mark algorithms.

In Chapter 4, a new approach to the multi-reference-frame block-matching motion

estimation (MFBME) is presented, in which the fast full search is conducted in the



spatial domain, and the computational complexity in the temporal domain is reduced
by using a full search with an early termination. Statistical experiments are first
conducted to show that scanning the multi-frame memory with an early termination
is a feasible way to reduce the temporal search complexity of the MFBME. An early
termination method that keeps track of the block-matching error, reference frame by
reference frame, and terminates the temporal search using a block-matching-error-
dependent strategy is then proposed. The results based on extensive simulations show
that the proposed method can significantly reduce the computational complexity of
the MFBME with no or very little loss in the motion estimation accuracy for the
MFBME.

In Chapter 5, a new data input scheme is proposed for a successive-elimination-
based hardware implementation of the BME for the purpose of reducing the power
consumption. Several designs to implement a successive elimination algorithm are
developed based on a newly introduced block segmentation scheme. The reduction in
the power consumption is studied using a power simulator. It is shown that using the
proposed data input scheme provides significant savings in the power consumption
compared to that using the conventional data input scheme.

Chapter 6 concludes the thesis by highlighting the contributions of this research

and by suggesting some of the issues arising from this research that can be further

investigated.



Chapter 2

Block-Matching Motion Estimation

Using Full Search

2.1 Introduction

Block-matching motion estimation (BME) is an effective technique to reduce the
temporal redundancy of digital video sequences, and has been adopted by a number
of international digital video standards such as MPEG-1 [16], MPEG-2 [17], MPEG-4
[19] and ITU-T recommendations H.261 [20], H.263 [21] and H.264 [22]. The problem
of block-matching motion estimation can be posed as follows [29)].

Given a current block C of size N; x N, in a target frame, and a set of reference
blocks of the same size, denoted as R,,v € S, in another frame, where v represents
a displacement vector between the reference block and C, and § is a set of vectors, a
matching block of C' is to be identified among this set of reference blocks such that
a specified matching criterion is satisfied. The corresponding displacement vector is

referred to as the motion vector of the current block C [44].
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The matching of the blocks can be evaluated using various metrics, the mean
square error (MSE) and the mean absolute difference (MAD) being the two most
commonly used ones [44].

The MSE between C and a reference block R, is given by

N1 N2
MSE(C,R) = >3 (Clij) - Rl ) (2.1)

The motion vector for C is taken to be the value of v which minimizes the MSE, that

is,
v =arg min MSE(C, R,) (2.2)

and Ry is used as a prediction of C.
The MAD between a given block C and a reference block R, is given by
1 A& -
MAD(C, Ry)) = ——= > > |C(i, 5) = Ry (i, 5)| (2:3)
Nl X N2 i=1 j=1

The motion vector for C is taken to be the value of v which minimizes the MAD,

that is,
7 =arg min MAD(C,R,) (2.4)

and Ry is used as a prediction of C.

A variant of the MAD is the sum of the absolute differences (SAD), which is

related to the MAD by
SAD(C,RU) = Nl X N2 X MAD(C, Ru)

and is used in situations where the division by N; x N, is not desirable. The metric

MAD/SAD is the one which is used in the case of a VLSI implementation of the
8



BME, but it is well-known that the performance of this metric deteriorates as the
search area becomes larger due to the presence of multiple local minima [44].

The accuracy of the motion estimation can be evaluated by the peak signal-to-
noise ratio (PSNR) [44] between the target frame and the motion-predicted frame
formed by the various block predictions resulting from the motion estimation process.
The PSNR is given by

2552 x Ny x Ny x N

PSNR =101
B0 Y S CG, ) - Raliy )P

(2.5)

for frames containing Ny blocks of Ny x Nj pixels represented by an 8-bit luminance
intensity. A comparison between (2.5) and (2.1) indicates that the minimization of

the MSE also maximizes the PSNR.

2.2 Full Search Algorithms

The computational complexity incurred by the minimization process given in (2.2)
or (2.4) is so high that an exact software implementation of (2.2) or (2.4) is pro-
hibitive. However, there are several full search algorithms [45-48, 52-55] that can
significantly reduce the computational complexity of the full search by utilizing cer-
tain lower bounds of the MAD/MSE to eliminate the impossible candidate motion
vectors. These lower bounds require much less computations than the MAD/MSE
does, thus resulting in a reduced computational complexity. We now give an overview

of these elimination-based full search algorithms.



Successive Elimination Algorithms

The earliest successive elimination algorithm (SEA) [45] is based on a lower bound of
the MAD, the computation of which is simpler than that of the MAD itself. Given
the current block C and a reference block R,, both of size N x N, this lower bound

is given by [45]

L(C,R,)

il

1 N N N N
ﬁ‘ Z Y. Cl,mg) = D D Ru(na,ny)|

ni1=1ny=1 ni=1ny=1

< MAD(C,R,) (2.6)

The value of Zf,:l Zﬁ,:l C(n,ny) is fixed for any two reference blocks, whether they
overlap or not, whereas in E,’:’lzl Eﬁ:l R,(n1,n,), certain terms are shared if the
reference blocks overlap. Therefore, L,(C, R,) requires less operations than the MAD
does. For each given candidate motion vector, if this lower bound is greater than the
current minimum MAD, the given candidate motion vector is eliminated; otherwise,
the MAD is computed. Since, in this way, the majority of the candidate motion
vectors are eliminated, the computation of their corresponding MAD is avoided, thus
reducing the overall computational complexity.

The multi-level successive elimination algorithm (MSEA) [46] extends the SEA
to a multi-level framework, with one lower bound for each level. The process of the
MSEA is illustrated by a flow chart in Fig. 2.1, where these lower bounds are checked
sequentially. If a lower bound is greater than the current minimum MAD, the current
candidate motion vector is eliminated; otherwise, the next lower bound is checked.

As a more general definition than the one in (2.6), the lower bound of the MAD

at level | may be given as follows [46]. Let C and R, be divided into sub-blocks of

size 21 x 271, with | = 1,2,...,n, and 2" = N. Also, let the sum of each of the
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Given the current block Cand
the refemece block Av, where v

is a candicate MV
/=0 The look-up tabes
v T1: sum of pixels of 16x%16 sub-region
T2: sum of pixels of 8x8 sub-region
iI=f+1 T3: sum of pixels of 4x4 sub-region
T4: sum of pixels of 2x2 sub-region

Calculate the ith-level lower .._I

bound of MAD based on Ti.
If /=5, calculate MAD.

LOW%’V bound Eliminate the
< cument minimurm
MAD candidate MY

Current minimum MAD is update to be the curent MAD.
Cument best-matching MV is updated o be v,

o —
Exit

Figure 2.1: Flow chart illustrating the process of the multi-level successive elimination

algorithm given in [46].
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sub-blocks of C and R, be stored in matrices SC; and SRy, respectively. The [-th

lower bound is then given by

1 N/2l—l N/2l‘1
LI(C,RQ,) = ﬁ Z Z ISC[(TLI,TLQ) - SR[(TL],TLQ)I (27)

n1=1 no=1

The lower bounds given in (2.7) satisfy
L(CR) < LGR) < . < L(CR) < MAD(G,R,)  (28)

In (2.7), SC; is fixed for any given R,, and any two overlapping R,’s may have
overlapping elements in SR;. To avoid duplicate calculations for these overlapping
elements, the sum of each of the 2= x 2/~! sub-regions of a given reference frame is
calculated once for all, and stored in several look-up tables.

The generalization of the inequality from (2.6) of the SEA to (2.8) of the MSEA
shows that a set of lower bounds with finer granularity may increase the number of
eliminations. This motivated the development of another algorithm called the fine
granularity successive elimination (FGSE) algorithm proposed in [47], which extends

the inequality of (2.8) to

L(C,R,) < Ly(C,R,) < L3(C,R,) < ... <L3(C,Ry)

(A

< L.(C,R,) <L.C,R,)< .. <LZ7'C,R,)

< MAD(C,R,) (2.9)

with a computational complexity lower than that of the MSEA.

Partial Distortion Elimination

The metric used for block matching, whether it be the MAD or the MSE, is the

sum of N X N non-negative terms, where N x N is the block size. The sum of
12



any sub-set of these terms is sometimes referred to as the partial distortion in the
literature [48-51,55]. Since the partial distortion not only has a smaller value than
the metric of block matching, but also requires less amount of computation, it can
be checked prior to the computation of the metric of block matching. If it is greater
than the current minimum MAD/MSE, the corresponding candidate motion vector
is eliminated and the computation of the metric of block matching is avoided. As
illustrated in Fig. 2.2, this process usually starts from the partial distortion that
contains only one square term of the difference block and updates it by adding one
more term at a time. The partial distortion is continuously compared with the current
minimum MAD/MSE until the former becomes greater than the latter, or all the

terms are exhausted.

Computational Complexity

Compared to an exact execution of the minimization process defined in (2.2) or (2.4),
the speed-up provided by the various partial-distortion-based full search algorithms
in the literature is in the range of 4 to 12 [48], and that provided by the successive-
elimination-based algorithms is in the range of 2 to 46 [46,47], as compared to about
40 by the three-step partial search [32] for various test sequences and a search window
of £15 . This indicates that the full search, especially that based on the successive
elimination, has a potential for providing a speed-up comparable to that of the partial
search. If the computational complexity of the full search can be further reduced, its
superior motion estimation accuracy for the BME along with its low computational

complexity should make it an attractive alternative to the partial search.
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Given the curent block Cand a reference block Av,
where v is a candidate MV

1
Obifain the difference block 4 = C- Ay,
which contains elements Ay, Bpr
|
The partial sum, denoted as £S, is iniialized 1o be 0.
|
=40
o

=i+ 7

PS= PS5+ ay |

False

PS < curent
minimum SAD

Eliminate the
candidate MY

Elerments of A
are exhausted

Update curent minimum SAD 1o be the value of £S.
Update the curent best-matching MV 10 be v.

ook
Exit

Figure 2.2: Flow chart illustrating the partial distortion elimination algorithm
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2.3 Implementation of the Block-Matching Motion
Estimation

The full search algorithms, such as those mentioned in the previous section, pro-
vide algorithmic-level speed-up in the software implementation of the BME. Further
speed-up could be achieved at the implementation level by taking advantage of the
parallelism provided by the current computer processors [58,66-71].

For hardware implementation of the BME, the regularity of the data flow has given
rise to several architectures based on parallel processing and pipelining [64, 72-75].
A 2-D full search systolic array (FSSA) [64], such as the one shown in Fig. 2.3,
significantly reduces the processing time of a full search by employing the pipelining
technique. As shown in this figure, the architecture contains an array of absolute
difference units, the results of which are column-wise accumulated, and then added
to compute the SAD. Within a rectangular search window, the reference blocks along
the same row are input to the FSSA sequentially, so that the pixels shared by the
overlapping reference blocks need not be input repeatedly, resulting in a processing
throughput of one candidate motion vector per clock cycle.

Although the use of the pipelining technique provides a high processing speed,
it does not reduce the power consumption associated with a full search. In [65],
the SEA [45] is applied to the 2-D FSSA for the purpose of reducing the power

consumption.
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Figure 2.3: A 2-D full search systolic array given in [64]
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2.4 Summary

In this chapter, two major categories of full search algorithms, namely, the elimination-
based and the partial-distortion-based full search, are reviewed to provide their rele-
vance to the work contained in the later-chapters-of this thesis. The computational
complexity of these algorithms has been analysed, indicating that the full search,
especially that based on the successive elimination, has a potential for providing a
speed-up comparable to that of the partial search. Both the software and hardware

implementations for the BME has also been discussed.
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Chapter 3

Fast Full-Search Block-Matching

Motion Estimation using 2-D

Haar Wavelet Transform

3.1 Introduction

As mentioned in Chapter 2, most of the fast full-search block-matching motion es-
timation (BME) methods reduce the computational complexity by eliminating the
impossible motion vector (MV) candidates. The various elimination methods are

based on one of the following two major techniques.

o The successive elimination algorithm (SEA) [45] and multiple-level SEA (MSEA) [46]:
These algorithms are based on generating a non-descending series of lower
bounds for the measure of matching. If a lower bound is found to be greater
than the current minimum, the corresponding MV candidate is eliminated with-

out the need for an exhaustive calculation of the measure of matching. In [47],
18



the lower bound series is extended to finer granularity.

o The partial distortion elimination (PDE): The measure of block matching con-
sists of only non-negative terms. These terms as well as the sum of their combi-
‘nations can be used as the lower bounds for the elimination of a number of MV
candidates. The complexity of this type of elimination is directly related as to
how many terms are used before the elimination can be made. It is desirable
that the terms with the greater contribution to the measure of matching are

used first, so that the elimination can occur earlier [48].

The mean squared error (MSE) and mean absolute difference (MAD) are the
most commonly used criteria for block matching. Minimizing the MSE leads to the
maximization of peak-signal-to-noise ratio (PSNR) [44], which is used to evaluate
the goodness of block-matching motion estimation. However, the calculation of the
MSE requires a large number of multiplications, resulting in a high computational
complexity. On the other hand, the MAD is preferred in most of the BME methods
in view of its simplicity, in spite of the fact that the resulting PSNRs are suboptimal.

In this chapter [76], we present an elimination-based full search BME algorithm
that uses the MSE as the block matching criterion and carries out the PDE in the
Haar wavelet domain (HaarPDE). The wavelet domain provides the coefficient sorting
that is desirable for the PDE and leads to a multi-level structure similar to that in
the MSEA. The Haar wavelet is used, since it requires only basic operations, such
as addition, subtraction and shift. It will be shown that in addition to a small fixed
overhead, the number of multiplications required is drastically reduced, making the
computational complexity of the HaarPDE significantly lower than that of the PDE

algorithms operating in the spatial domain and lower than or comparable with that
19



of the MSEA.

This chapter is organized as follows. Section 3.2 gives a brief review of the MSE-
based full search algorithms. In Section 3.3, we present the proposed algorithm for
partial distortion elimination using the Haar wavelet transform. In Section 3.4, a
fast scheme for implementing the Haar wavelet transform in the proposed algorithm
is discussed and its overhead cost analysis performed. Section 3.5 presents the sim-
ulation results with regard to the overall computational complexity of the proposed
algorithm and compares it with those of other full-search BME methods. It also con-
tains a study of the rate-distortion optimization of the various algorithms. Finally,

certain conclusions are drawn in Section 3.6.

3.2 Full-Search Block-Matching Motion Estimation
Using the Mean Squared Error

The block matching criteria using the MSE and the MAD are given in (2.1) and (2.3)
in Chapter 2. The use of the MSE is expected to result in higher PSNRs than that
using the MAD. For example, a comparison of the PSNR achieved by the full search
using the MSE and that using the MAD is given in Table 3.1 for seven sequences.
These results are obtained by using a block size of 16 x 16 and a search range of +15
pixels; details of the seven sequences used are given in Table 3.2. As expected, the
MSE-based full search provides a higher PSNR for all of the test sequences.

The computational complexity of the MSE can be reduced by simplifying the
calculation of the squared error terms in (2.1). The authors of [77] have proposed

an algorithm that decomposes the squared error terms into three parts: squares of

20



Table 3.1: Comparison of the average PSNRs provided by the MSE-based and MAD-
-based full search algorithms for the seven sequences

Sequence PSNR in dB | PSNR in dB | Avg. diff. | Max. diff. for
using MSE | using MAD | per frame | a single frame
Foreman 32.01 31.82 0.19 1.27
Mother&Daughter 41.05 41.02 0.03 0.62
Car Phone 31.64 31.51 0.13 0.47
Container 43.15 43.09 0.06 1.64
Football 23.06 22.87 0.19 0.36
Flower Garden 23.87 23.79 0.08 0.26
Coast Guard 30.61 30.48 0.13 0.58

Table 3.2: Details of the seven sequences used in the simulations

Sequence “ Frames | Type | Resolution
Foreman 2-400 QCIF | 176x144
Mother&Daughter || 2-400 QCIF | 176x144
Car Phone 2-380 QCIF | 176x144
Container 2-300 QCIF | 176x144
Football 2-125 SIF 352x240
Flower Garden 2-115 SIF 352x240
Coast Guard 2-300 CIF 352x288
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the elements of the reference block, squares of the elements of the current block and
cross terms between the elements of the two blocks. The reduction in the compu-
tational complexity results from using fast 2-D FIR filtering for the cross terms and
the fact that the squared terms of the adjacent reference blocks share overlapped ele-
ments. The speedup achieved in [77] is not as significant as in the elimination-based
algorithms, since the MSE corresponding to each of the MV candidates has to be
calculated.

The computational complexity can also be reduced by eliminating the impossible
MYV candidates. An elimination-based algorithm has been proposed in [53] that uses
three different lower bounds for the MSE. These are the so-called sum of squared
vertical projections, sum of squared horizontal projections and sum of squared massive
projection [53]. If any of these three bounds is found to be greater than the current
minimum MSE, the corresponding MV candidate is eliminated. The authors in [52]
provide another elimination-based algorithm, wherein the lowest bound is identical
to that derived from the massive projection in [53]. The algorithm finds tighter
bounds by splitting a given block into sub-regions. The authors in [52] also derive
an equation involving the MSE and its lower bounds, so that the PDE can be used
in the calculation of the MSE. The concept used in [52] is analogous to that in the
MSEA [46] in that it generates tighter lower bounds by dividing the blocks into sub-
regions. However, due to complexity considerations, only one level of sub-regions has
been used in [52].

In the following, we show that a more general framework than those in [53] and [52]
can be established through the Haar wavelet transform. The number of levels can

be extended to more than two without a significant increase in the computational
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complexity. At the same time, it is shown that the MSE can be expressed in the
wavelet domain in terms of sorted coefficients, so that the impossible MVs can be

eliminated earlier than is done in the normal PDE process.

3.3 Calculation of the Mean Squared Error in the
Wavelet Domain

Let M be a matrix of size K x K, where K = 2", n being an integer. Let DWT(M)
denote the one-scale 2-D discrete wavelet transform [78] of M, and SS; the sum of
the squared value of each of the components in M.

For the current block C and a reference block R, the MSE is equal to
1
MSE(C,R) = WSSA

where A = C'— R. If we take the 2-D discrete wavelet transform (DWT) of the
difference block using any of the orthonormal wavelets, the orthonormality ensures
that 5S4 is unchanged in the wavelet domain [79]. Therefore, the MSE can be

calculated as

1 1
MSE(C,R) = WSSA = ']WSSDWT(A)

In the wavelet domain, the coefficients are naturally sorted, since most of the larger-
magnitude coeflicients are concentrated in the lower-frequency sub-regions. Perform-
ing the PDE in the wavelet domain and giving a higher priority to the coefficients
in the lower-frequency sub-regions can therefore speed up the elimination of the im-

possible MV candidates. We use the Haar wavelet to perform the PDE, since it

23



Reference

block R

- Parial
Curent DWT | i distorion
block C elimination

Figure 3.1: Block diagram illustrating the partial distortion elimination using the
Haar wavelet '

requires only basic operations, such as addition, subtraction and shift. Fig. 3.1 is an
illustration of such a PDE scheme.
For a typical 16x16 difference block A, a four-scale Haar wavelet hierarchy is as

shown in Fig. 3.2 [79], where
holm) = {1,1) (31)
hy(m) = {1,-1}
The output at each decimation block satisfies a relation of the form
Yo(m) = z(2m)+z(2m+1) (3.2)
or
yp(m) = z(2m)—z(2m +1) (3.3)
The wavelet representation of the difference block A can be expressed as

Al, V1, H1l, D1, each of size 1x1,
V2, H2, D2, each of size 2 x 2,
V3, H3, D3, each of size 4 x4, and

V4, H4, D4, each of size 8 x 8

It is noted that A4, A3, A2 and A; are the lower-frequency approximations of the
24
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input A, A4, A3 and A,, respectively, and are likely to contain a majority of the
larger-magnitude coefficients.

Using the following sum-of-square relations

L ss, (3.4)

MSE(C,R) = 3

where

SSy = SS44+5Sys+ SSps+ SSps
SSaqy = SSp3+ SSyz+ SSys+ SSps
SSaz3 = SSus+ SSya+ SSke+ SSps

S84 = SS4+S5Sv1+S55g1 +5Sp1
the expression MSE(C, R) can be calculated as

1
MSE(C, R) = m[(SSAl) + (SSVl + SSH + SSDl) + (SSVz + SSyo + SSDz) +

(SSV3 + SSys + SSD;;) + (SSv4 + SSh4 + SSD4)] (3.5)

In (3.5), the contribution of the coefficients to MSE(C, R) is expected to decrease
progressively as we move from the term in the first parenthesis to those in the fifth,
since, as mentioned earlier, most of the larger-magnitude coefficients are concentrated
in the lower-frequency sub-regions. Therefore, in the proposed HaarPDE, we sort the
MSE terms in (3.5) according to the following order: the term in the first parenthesis,
namely, S$S41, then the terms in the second parenthesis, the terms in the third and
in the fourth, and finally those in the fifth. The partial distortion is initialized to be
the first sorted term, SS4;, which is compared with the current minimum MSE. If
the partial distortion is greater than the current minimum MSE, the corresponding

MYV candidate is eliminated; otherwise, one of the terms in the second parenthesis is
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added to the current partial distortion to update it. This procedure terminates either
upon the elimination of the MV candidate or after all the terms in all the parentheses
are exhausted. In the latter case, the resulting partial distortion is equivalent to
the MSE associated with the MV candidate being examined. If the value of this
MSE is greater than the current minimum MSE, the corresponding MV candidate
is eliminated; otherwise, the value of this MSE becomes the current minimum MSE

value.

3.3.1 Relation between the Proposed HaarPDE and Some

Existing Algorithms

It is interesting to note that in Fig. 3.2, the outputs Ay, A,, A3, A4 have a one-to-one
correspondence with the the matrix hierarchy on which the MSEA [46] is based. For
example, 16 times A; equals the top-level matrix of MSEA, eight times A, equals the
second-level matrix of MSEA, and so on.

The lowest bound used in [52], or the sum of the squared massive projection in [53],
is equivalent to 5S54;1. The other lower bounds that could be obtained by using 4, 16
or 64 sub-regions in [52] correspond to SS42, SS43 and SS 44, respectively.

It is to be noted that two of the lower bounds in [53], namely, the sum of squared
vertical projections and the sum of squared horizontal projections, are the same as
those obtained from the top level of the 1-D version of the proposed HaarPDE, the

Haar transform along the rows and columns, respectively.
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3.3.2 Efficiency of the Proposed HaarPDE in Terms of Mul-
tiplications

The computational complexity of the MSE-based full search is mainly due to the
requirement for multiplications. This section considers the efficiency of the proposed
HaarPDE in terms of the number of multiplications required. The sequences used in
the simulation are those listed in Table 3.2. To investigate the performance of the
algorithms with different image sizes, more than two thousand frames are employed
with QCIF, CIF and SIF formats. The sequences chosen are with different motion
intensities ranging from minor (e.g., Mother&Daughter) to large motion (e.g., Fore-
man), and from mainly translational (e.g., Container, Garden) to complicated motion
(e.g., Football, Car Phone, Coast Guard). The block size chosen is 16 x 16, the search
range is £15 pixels, and the full search within the search range is conducted along a
spiral path {48] starting from the center of the search window.

The choice of the initial minimum MSE is crucial to the performance of the
full search. Since there exists a high correlation among the MVs of the adjacent
blocks [80], we determine the initial minimum MSE by comparing the MSE of the
three most likely MV candidates. A simple procedure to obtain this initial minimum
MSE is given below. Let the current block be the p,th block column-wise and the
pzth block row-wise. The MSE associated with the zero MV, the MV of the block at
(py, Pz — 1) and the MV of the block at (p, — 1, p.) are compared. The smallest MSE
is then used as the initial minimum MSE.

After obtaining the initial minimum MSE, the MV candidates in the search win-
dow are checked by the proposed HaarPDE algorithm following the spiral path. For

each MV candidate, the Haar wavelet transform is performed over the difference
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block. As described earlier, the wavelet coefficients are sorted and the partial sums
updated on a term-by-term basis, until a decision can be made as to whether or not
the MV candidate should be eliminated.

In order to compare these results, two MSE-based full search methods, namely,
the full search with no early elimination of any MV (FS) and the spatial-domain
PDE [48] are simulated. Table 3.3 gives the average number of squaring operations
for each MV candidate. The speedup of the HaarPDE is approximately from 3 to
6 and from 27 to 107 as compared to those of the spatial-domain PDE and the FS,
respectively. To further demonstrate the superiority of the HaarPDE over the spatial-
domain PDE, we obtain for each given MV candidate, N Sg, the number of operations
of squaring needed to compute the MSE before the candidate is eliminated by each
of these two methods. A larger NSg indicates more squaring operations are needed.
Fig. 3.3 shows the histogram of the percentage numbers of MV candidates that are
eliminated as a function of NSg for the sequence Foreman, wherein the percentage
number is calculated with respect to the total number of all the MV candidates to
be considered, namely, Ws x Ng x (Ng — 1), Wg = (31 x 31) being the size of the
search window, Np = (9 x 11) the number of blocks per frame and Nr the number of
frames in the sequence. The histograms for the rest of the test sequences are shown
in Fig. 3.4- 3.9, respectively. These figures clearly show that the largest elimination of
the MV candidates occurs just after the first squaring operation; except for sequence
Mother & Daughter, the number of such eliminations is much higher in the case of
the HaarPDE than that in the case of the spatial-domain PDE.

Table 3.4 gives the breakdown on the percentage of the number of eliminated

MYV candidates at different levels of the Haar wavelet hierarchy for various sequences.

29



Table 3.3: Average number of squaring operations required for each MV candidate

Foreman | Mother& Car | Container | Football | Flower | Coast
Daughter | Phone Garden | Guard
FS 256
Spatial-domain PDE 22.5 20.0 22.9 11.8 47.0 28.9 26.5
Proposed HaarPDE 3.6 6.1 4.6 2.0 9.5 6.6 4.7

It is seen that most of the elimination occurs at the first two levels, and the total
number of squaring operations required for these two levels is only four. This is the
reason as to why the average numbers of squaring operations are in single digits for
the various sequences in the proposed scheme, while the corresponding numbers are
approximately 3 to 6 times in the case of the spatial-domain PDE and about 27 to

107 times for the case of the FS.
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Figure 3.3: Histogram showing the percentage number of MV candidates eliminated
Vs. NSg for the HaarPDE and the Spatial-domain PDE with sequence Foreman.
Values are shown only for the first 30 of the 256 squaring operations of the MSE.

Intuitively speaking, the number of the terms in the MSE that need to be com-
puted is related to the gradient distribution of the MSE surface of the entire search

window. The flatter the surface, the larger the number of terms to be computed in

order to eliminate an impossible MV candidate. From this perspective, minor mo-
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Figure 3.4: Histogram showing the percentage number of MV candidates eliminated
Vs. NS for the HaarPDE and the Spatial-domain PDE with sequence Mother &
Daughter. Values are shown only for the first 30 of the 256 squaring operations of the
MSE.
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Figure 3.5: Histogram showing the percentage number of MV candidates eliminated
Vs. NSg for the HaarPDE and the Spatial-domain PDE with sequence Car Phone.
Values are shown only for the first 30 of the 256 squaring operations of the MSE.
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Figure 3.6: Histogram showing the percentage number of MV candidates eliminated
Vs. NSg for the HaarPDE and the Spatial-domain PDE with sequence Container.
Values are shown only for the first 30 of the 256 squaring operations of the MSE.
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Figure 3.7: Histogram showing the percentage number of MV candidates eliminated
Vs. NSg for the HaarPDE and the Spatial-domain PDE with sequence Football.
Values are shown only for the first 30 of the 256 squaring operations of the MSE.
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Figure 3.8: Histogram showing the percentage number of MV candidates eliminated
Vs. NSg for the HaarPDE and the Spatial-domain PDE with sequence Flower Gar-
den. Values are shown only for the first 30 of the 256 squaring operations of the
MSE.
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Figure 3.9: Histogram showing the percentage number of MV candidates eliminated
Vs. NSg for the HaarPDE and the Spatial-domain PDE with sequence Coast Guard.
Values are shown only for the first 30 of the 256 squaring operations of the MSE.
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Table 3.4: Percentage of the number of eliminated MV candidates at each level of the
Haar wavelet hierarchy

Foreman | Mother& Car | Container | Football | Flower | Coast

Daughter | Phone Garden | Guard
Total eliminations 99.7 99.8 99.7 99.7 99.8 99.8 99.8
Eliminations@level 1 74.4 84.4 76.5 88.7 37.9 49.3 49.9
Eliminations@level 2 20.0 10.1 16.7 7.8 27.8 27.6 23.7
Eliminations@level 3 4.0 1.8 3.6 2.2 20.5 15.7 18.6
Eliminations@level 4 1.2 1.0 1.7 0.9 11.3 5.3 7.4
Eliminations@level 5 0.1 2.5 1.2 0.1 2.3 1.9 0.2

tions, uncovered areas and higher spatial resolutions would not contribute much to
the efliciency of the elimination process. The results of the HaarPDE for the sequences
Motheré&Daughter, Football and Garden confirm this observation, as Motheré&Daughter
is characterized by minor motions, Football contains a large amount of uncovered ar-

eas, and Football and Garden have higher resolutions.

3.4 Implementation of the Haar Wavelet Trans-
form in the Proposed Motion Estimation Scheme
and Overhead Cost Analysis

For a block of size N x N, N = 2", the number of different types of operations to be
performed for a four-scale Haar DWT illustrated in Fig. 3.2 is given in Table 3.5. It is
seen from this table that the overhead cost required to compute each MV candidate
is itself of the O(N?), which is not acceptable. However, there exist algorithms, such
as the one in [46), that essentially reduce the computation of the Haar DWT to the

use of a few look-up tables that are shared by all the blocks in a given frame.
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Given the current block C' and the reference block R, the Haar DWT of the
difference block A can be implemented as DWT(A) = DWT(R — C) = DWT(R) —
DWT(C). For different MV candidates, DWT(C) is fixed, and DWT(R) is obtained
through the fast scheme described in the following sub-section. For this purpose, the

block diagram of Fig. 3.1 is modified and shown in Fig. 3.10.

Table 3.5: Operations required at each level of the four-scale Haar DWT for each MV
candidate

H Addition/Subtraction l Shift I Memory access

4th level 2N? N2 4N?
3rd level iN? iIN? N2
2nd level %Nz %Nz ;}—Nz
1st level 3—12N2 2 N2 %Nz
Total B N2 B N? 8 N2
Reference
frame | Table
genetration HaarPDE
DWT coefhicients for
Look-up reference blodk R
tables
Current block C Partial
—m DWT distorion
elimination

Figure 3.10: Modified block diagram illustrating the partial distortion elimination
using the Haar wavelet

3.4.1 Computation of the Haar DWT of the Reference Block

As indicated by (3.2) and (3.3), the one-, two-, three- and four-scale Haar DWT for

any given reference block can be calculated by obtaining the weighted sum of the
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respective 2x2, 4x4, 8x8 and 16x 16 sub-blocks, with the weights determined using
(3.2) and (3.3). Some overlapped reference blocks might share some of these weighted
sums for their respective Haar DWT. Therefore, we obtain, once for all, the weighted
sum of each of the 2x2, 4x4, 8x8 and 16x16 regions within the reference frame and
store it in a look-up table. From this set of look-up tables, the Haar DWT coefficients
for any given reference block can then be retrieved.

As shown in Fig. 3.11, this process is implemented by a series of filtering opera-
tions using the filters for which the impulse-response coefficients are as specified in
Table 3.6. In this implementation, the weighted sum of each of the 2x2 regions in
the reference frame is first obtained by filtering the reference frame and then stored
in T4, Tva, Tgs and Tpy. Next, the weighted sums of the various 4x4 regions are
calculated based on Ty4 that contains the 2x2 weighted sums, and stored in T3,
Tvs, Tus and Tps. Similarly, the weighted sums of the various 8x8 and 16x16 re-
gions are obtained and stored in Ty, Ty2, Th2 and Tpy and T4y, Ty, Tyy and Ty,
respectively. The thirteen look-up tables constructed by the above process are Ty,

Tv1, T, Tpr, Tva, The, Tp2, Tvs, Ths, T3, Tva, Taa and Tpy.

Table 3.6: Impulse response coefficients of the filters used to construct the look-up
tables

G4 {1’1 } Gay {1"1}

g3e | {1,0,1} g3y | {1,0,-1}

92, | {1,0,0,0,1} g2 | {1,0,0,0,-1}

91, | {1,0,0,0,0,0,0,0,1} a1y | {1,0,0,0,0,0,0,0,-1}

The retrieval of the Haar DWT coefficients for a given reference block R from
the look-up tables is explained below. Let us first consider retrieving the one-scale

Haar DWT coefficients from Ty,. As mentioned earlier, Ty, contains the weighted
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Figure 3.11: Block diagram for constructing the look-up tables for the Haar DWT
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sum of each of the 2x2 regions in the reference frame. To be more specific, there
exists a one-to-one correspondence between the entry at position (y, z) in Ty4 and
the weighted sum of the 2x2 region whose top-left corner is located at (y, z) in the
reference frame. For the reference block R, the top-left corners of its 2x2 sub-blocks
form a rectangular grid with a grid separation of two pixels both along the rows
and the columns. Due to this one-to-one correspondence, the entries corresponding
to DWT(R) in Ty, also have the same rectangular grid pattern, as illustrated in
Fig. 3.12. Therefore, the Haar DWT coefficients for R can be retrieved by scanning
the entries of Ty, starting from (r,,7;), the position of the top-level corner of R in
the reference frame, and moving rightward and then downward using a step size of
two. The two-, three- and four-scale Haar DWT coefficients can be retrieved by using
a similar procedure. Table 3.7 gives the look-up tables to be used, the matrix size for

the Haar DWT output and the starting position and step size for each scan.

Look-up table TA4 The reference frame
) oo e @ o™
(%, y+2)
seee (o ¥+2)
® 0 0o
o & & O
A reference block

Figure 3.12: One-to-one correspondence between the top-left corners of the 2x2 sub-
blocks of a reference block and the entries in the look-up table T44
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Table 3.7: Retrieval of the Haar DWT coefficients from the look-up tables, where
(ry,rz) is the position for the top-left corner of a given reference block in the reference
frame.

Level H Look-up tables used ] Size of DWT output I Starting position l Step size
4th level Tva, Tya, Tyy 8x8 (Ty,"‘,;) 2
3rd level || Tva, Tus, T3 4x4 (ry,7z) 4
2nd level || Tvo, T2, Tho 2x2 (ry,7z) 8
1st level | Ta1, Tvi, Tr1, Ton 1x1 (ry,7z) -

3.4.2 Overhead Cost Analysis

The overhead cost for the HaarPDE is due to the need for calculating the Haar
DWT for the current block and its candidate reference blocks. The Haar DWT for
the current block is carried out only once for each block and the total number of
operations required is as shown in Table 3.5. With respect to the construction of the
look-up tables, the operations required are addition/subtraction, shift and memory
access. The number of additions/subtractions used by any of the filters in Fig. 3.11
is no greater the number of pixels that a frame contains. For a four-scale Haar DWT,

there are 6 x 4 filters, and the total number of additions/subtractions is estimated as

Nadd/sub = 6x4xWxL

= 24X W, x Ly x N?

where W, L, W,, Ly and N? are the width, the length, the number of blocks along the
row, the number of blocks along the column, and the block size of a frame, respectively.
This is equivalent to 24N? additions/subtractions per block. It is observed from

Fig. 3.11 that the total number of shift operations needed is

Nehisp = 4x4xW XL

= 16 x Wy x L x N?
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which is equivalent to 16 N2 shifts per block. The memory access includes the memory-
read operations at the input and memory-write operations at the output of each
filter in Fig. 3.11. Normally, each addition/subtraction requires two memory-read
operations, one for each operand. However, a data reuse ratio of about 1:4 should be
taken into account, since each pair of the g, and g filters share the same input, and
two consecutive additions/subtractions in a filter share one of their operands. At the
output of any of the filters, each output value requires one memory-write operation.

Therefore, the total number of memory accesses is estimated as

Noem = %x6x4><W><L+6x4xW><L

= 36 x W x L x N?

which is equivalent to 36 N2 memory accesses per block.

Thus, for the specific case of N = 16 and a search range of -15 to +15, where
15~16=N, the per-MV-candidate cost for calculating the Haar DWT for the current
block is about $2N2/4N? = B additions/subtractions, £2N2/4N? = B5 shifts and
8 N2/4N? = & memory accesses, while that for constructing the look-up tables is
about 24N2/4N? = 6 additions/subtractions, 16 N2/4N? = 4 shifts and 36 N?/4N?
= 9 memory accesses. The number of operations required per MV candidate to carry

out the Haar DWT for the current block and to construct the look-up tables is given

in Table 3.8.

Table 3.8: Number of operations required per MV candidate to carry out the Haar
DWT for the current block and to construct the look-up tables

Add/Sub | Compare | Multiply Accumulate { Shift | Memory access

Current block % - - %55 %
Reference block 6 - - 4 9
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3.5 Computational Complexity of the Proposed

HaarPDE

Block-matching motion estimation is carried out for the seven test sequences listed
in Table 3.2 using the proposed HaarPDE, the two MSE-based full search methods,
namely, the FS and the spatial-domain PDE, and four MAD-based full search meth-
ods, namely, the FS, the spatial-domain PDE , the MSEA and the finer granularity
successive elimination (FGSE) algorithm. The spatial-domain PDE, the MSEA and
the FGSE are chosen for the comparison, since they are known in the literature to
have the best performance amongst all the full-search algorithms. The block size
chosen is 16 x 16, and the search range is +15 pixels. All the methods except for the
FS use the spiral search pattern, and use the same strategy to determine the initial
minimum MSE or MAD as described in Section 3.3.2. The validity of the simula-
tion is verified based on whether each of the algorithms results in an identical PSNR
when given an identical target video frame as the input. It has been verified that
the above-mentioned simulation is valid based on this validation criterion. Table 3.9
gives the average number of operations required for each MV candidate to perform
the PDE in the Haar wavelet domain. That required to perform the spatial-domain
methods, namely, the MSEA, the FGSE, the MAD-based PDE and the MSE-based
PDE, are given in Table 3.10, Table 3.11, Table 3.12 and Table 3.13, respectively.
The average number of operations required by the different methods considered in
this chapter are listed in Table 3.14. The computational complexity for each of the
methods is also given in Table 3.14, where a weight of two units is assigned to a

memory access operation and a weight of one unit is assigned to each of the other
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Table 3.9: Average number of operations required for each MV candidate to carry
out the partial distortion elimination in the Haar wavelet domain

Addition/ | Compare | Multiply | Shift | Memory access
Subtraction accumulate
Foreman 28.3 3.6 3.6 4.3 17.6
Mother&Daughter 43.3 6.1 6.1 43 22.5
Car Phone 34.3 4.6 4.6 4.3 19.6
Container 18.7 2.0 2.0 4.3 14.4
Football 63.7 9.5 9.5 43 29.4
Garden 46.3 6.6 6.6 4.3 23.6
Coast Guard 34.9 4.7 4.7 4.3 19.8
Average 38.5 5.3 5.3 4.3 21.0

Table 3.10: Average number of basic operations required for each candidate motion
vector to carry out the MSEA

Addition/ | Comparison | Absolute | Memory access
Subtraction
Foreman 45.5 1.3 5.6 16.2
Mother&Daughter 82.4 1.2 10.2 254
Car Phone 59.9 1.3 7.4 19.8
Container 28.3 1.1 34 11.8
Football 152.9 1.9 19.1 43.2
Flower Garden 98.0 1.6 12.2 29.4
Coast Guard 93.9 1.7 11.7 28.4
Average 80.1 14 99 24.8

operations. For software implementations, these weights reflect the number of clock
cycles normally required for the corresponding basic operations [81]. It is seen from
Table 3.14 that the computational complexity of the HaarPDE is 19% lower than
that of the FGSE, 32% lower than that of the MSEA, and significantly lower than
the rest of the methods.

While the above computational complexity analysis is concerned about the number
of eliminations, the CPU time needed for the entire motion estimation phase reflects

the actual gain each method can provide. For this purpose, we implement each of
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Table 3.11: Average number of basic operations required for each candidate motion
vector to carry out the FGSE

Addition/ | Comparison | Absolute | Memory access
Subtraction
Foreman 40.2 1.8 4.2 16.1
Mother&Daughter 64.8 24 6.8 22.6
Car Phone 49.7 21 5.2 18.8
Container 25.0 14 26 114
Football 115.3 3.8 12.2 404
Flower Garden 75.7 2.8 8.0 27.5
Coast Guard 69.1 2.6 7.3 26.5
Average 62.8 24 6.6 23.3

Table 3.12: Average number of basic operations required for each candidate motion
vector to carry out the MAD-based PDE in the spatial domain

Addition/ | Comparison | Absolute | Memory access
Subtraction
Foreman 91.6 46.3 46.3 92.6
Mother&Daughter 724 36.7 36.7 734
Car Phone 87.4 44.2 44.2 88.4
Container 53.6 27.3 27.3 54.6
Football 165.4 83.2 83.2 166.4
Flower Garden 119.2 60.1 60.1 120.2
Coast Guard 121.2 61.1 61.1 122.2
Average 101.6 51.3 51.3 102.6

Table 3.13: Average number of basic operations required for each candidate motion
vector to carry out the MSE-based PDE in the spatial domain

Addition/ | Comparison | Multiplication- | Memory
Subtraction Accumulation access
Foreman 22.5 22.5 22.5 45.0
Mother&Daughter 20.0 20.0 20.0 40.0
Car Phone 22.9 22.9 22.9 45.8
Container 11.8 11.8 11.8 23.6
Football 47.0 47.0 47.0 94.0
Flower Garden 28.9 28.9 28.9 57.8
Coast Guard 26.5 26.5 26.5 53.0
Average 26.6 25.6 25.6 51.2
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Table 3.14: Average number of operations required and the total computational com-

plexity for each MV candidate using various full-search methods

Add/Sub | Absolute | Compare | Multiply | Shift | Memory Total
accumulate access complexity

Methods using MAD as the matching criterion
FS 511 256 1 - - 512 1792
PDE 101.6 51.3 51.3 - - 102.6 408.6
MSEA 80.1 9.9 1.4 - - 24.8 141.0
FGSE 62.8 6.6 24 - - 23.3 118.4
Methods using MSE as the matching criterion
FS 256 - 1 256 - 512 1537
PDE 25.6 - 25.6 25.6 - 51.2 179.2
HaarPDE 38.5 - 53 5.3 4.3 21.0 95.4

the methods using C on a general-purpose work station and obtain the CPU time
needed to encode each of the sequences. The CPU time required by each of the
methods, shown as a percentage with respect to the time needed by the MAD-based
FS, is given in Table 3.15. It is seen from this table that after taking into account
the computational overhead, the performance of the HaarPDE in terms of the CPU
time is slightly better than or comparable to that of the MSEA and FGSE, and
significantly better than that of the other methods.

The block-matching motion estimation is also carried out as a rate-distortion
optimization (RDO) [82] in terms of D(mv) + Amotion R(mv), where D(mwv) is the
block-matching error using the MSE or the MAD, A\,.ti0n is a constant, and R(mv) is
the number of bits required to represent the motion vector in question. A,.oti0n iS Set to
150 when using the MSE, and 15 when using the MAD [82]. The Huffman codebook
of H.263 [21] is used to determine R(muv). Table 3.16 gives the average number of
operations required for each MV candidate to perform the PDE in the Haar wavelet

domain. That required to perform the spatial-domain methods, namely, the MSEA,
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Table 3.15: CPU time required to encode each sequence by various full-search meth-
ods, shown as a percentage with respect to the time needed by the MAD-based FS.

Foreman | Mother& | Car | Container | Football | Flower | Coast | Average
Daughter | Phone Garden | Guard

Methods using MAD as the matching criterion

FS 100% 100% 100% 100% 100% 100% | 100% 100%
PDE 19.4% 15.8% 18.6% 12.2% 33.4% 24.6% | 25.0% | 21.3%
MSEA 4.3% 6.3% 5.1% 3.3% 9.7% 7.0% 6.6% 6.0%
FGSE 4.5% 6.2% 5.2% 3.4% 9.5% 6.8% 6.4% 6.0%
Methods using MSE as the matching criterion

FS 70.0% 69.9% 70.1% 69.9% 69.4% 69.6% | 69.8% | 69.8%
PDE 7.6% 7.0% 7.7% 4.8% 14.1% 9.3% 8.6% 8.4%
HaarPDE 4.4% 5.0% 4.7% 41% 5.9% 5.2% 4.8% 4.9%

the FGSE, the MAD-based PDE and the MSE-based PDE, are given in Table 3.17,
Table 3.18, Table 3.19 and Table 3.20, respectively. The computational complexities
for the various methods are listed in Table 3.21, and the CPU time required, as
a percentage with respect to the time needed by the MAD-based FS, are given in
Table 3.22.

As seen from Tables 3.14 and 3.21, the computational complexities of the various
fast full-search methods get reduced because of the use of the rate-distortion opti-
mization, and this reduction ranges from 15% to 33%. However, the computational
complexity of the HaarPDE still remains the lowest amongst the various full-search
methods. Also, it is observed from Tables 3.15 and 3.22 that the CPU run-times of
the HaarPDE, the MSEA and the FGSE have slightly increased due to the overhead
added by the implementation of the RDO; but, the performance of the HaarPDE in
terms of the CPU time is still better than or comparable to that of the MSEA and

the FGSE, and significantly better than that of the other methods.
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Table 3.16: Average number of operations required for each MV candidate to carry
out the partial distortion elimination in the Haar wavelet domain based on the rate-
distortion optimization

Addition/ | Compare | Multiply | Shift | Memory access
Subtraction accumulate
Foreman 23.5 2.8 2.8 43 16.0
Mother&Daughter 16.9 1.7 1.7 4.3 13.8
Car Phone 24.7 3.0 3.0 4.3 16.4
Container 17.5 1.8 1.8 4.3 14.0
Football 60.7 9.0 9.0 43 28.4
Garden 439 6.2 6.2 4.3 22.8
Coast Guard 32.5 4.3 4.3 4.3 19.0
Average 314 4.1 41 4.3 18.6

Table 3.17: Average number of basic operations required for each candidate motion
vector to carry out the MSEA based on the rate-distortion optimization

Addition/ | Comparison | Absolute | Memory access
Subtraction
Foreman 29.7 1.2 3.6 12.2
Mother&Daughter 20.1 1.1 24 9.8
Car Phone 33.7 11 4.1 13.2
Container 17.8 1.0 2.1 9.2
Football 124.2 1.7 15.5 36.0
Flower Garden 75.7 1.5 9.4 23.8
Coast Guard 69.2 1.6 8.6 22.2
Average 52.9 1.3 6.5 18.0

Table 3.18: Average number of basic operations required for each candidate motion
vector to carry out the FGSE based on the rate-distortion optimization

Addition/ | Comparison | Absolute | Memory access
Subtraction
Foreman 29.7 1.5 3.1 12.8
Mother&Daughter 20.5 1.3 21 10.0
Car Phone 31.7 1.6 33 13.5
Container 19.4 1.2 20 9.5
Football 96.4 3.3 10.2 34.2
Flower Garden 60.6 2.3 6.4 23.0
Coast Guard 54.8 2.2 5.8 214
Average 44.7 19 47 17.8
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Table 3.19: Average number of basic operations required for each candidate motion
vector to carry out the MAD-based PDE in the spatial domain based on the rate-
distortion optimization

Addition/ | Comparison | Absolute | Memory access
Subtraction
Foreman 66.6 33.3 33.3 66.6
Mother&Daughter 19.8 9.9 9.9 19.8
Car Phone 54.8 27.4 274 54.8
Container 8.0 4.0 4.0 8.0
Football 149.2 74.6 74.6 149.2
Flower Garden 98.4 49.2 49.2 98.4
Coast Guard 100.8 50.4 50.4 100.8
Average 71.1 35.5 35.5 71.1

Table 3.20: Average number of basic operations required for each candidate motion
vector to carry out the MSE-based PDE in the spatial domain based on the rate-
distortion optimization

Addition/ | Comparison | Multiplication- | Memory

Subtraction Accumulation access
Foreman 15.1 15.1 15.1 30.2
Mother&Daughter 3.1 3.1 3.1 6.2
Car Phone 13.5 13.5 13.5 27.0
Container 1.8 1.8 1.8 3.6
Football 43.7 43.7 43.7 87.4
Flower Garden 22.8 22.8 22.8 45.6
Coast Guard 19.8 19.8 19.8 39.6
Average 171 17.1 17.1 34.2
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Table 3.21: Average number of operations required and the total computational com-
plexity for each MV candidate using various full-search methods for the rate-distortion
optimization.

Add/Sub | Absolute | Compare | Multiply | Shift | Memory Total
accumulate access complexity

Methods using MAD as the matching criterion
FS 511 256 1 - - 512 1792
PDE 71.1 35.5 35.5 - - 71.1 284.3
MSEA 52.9 6.5 1.3 - - 18.0 96.7
FGSE 4.7 4.7 1.9 - - 17.8 86.9
Methods using MSE as the matching criterion
FS 256 - 1 256 - 512 1537
PDE 171 - 17.1 17.1 - 34.2 119.7
HaarPDE 314 - 4.1 4.1 4.3 18.6 81.1

Table 3.22: CPU time required to encode each sequence by various full-search methods

using rate-distortion optimization, shown as a percentage with respect to the time
needed by the MAD-based FS.

Foreman | Mother& | Car | Container { Football | Flower | Coast | Average
Daughter | Phone Garden | Guard

Methods using MAD as the matching criterion

FS 100% 100% 100% 100% 100% 100% | 100% 100%
PDE 17.1% 6.8% 14.5% 4.4% 34.8% 23.7% | 24.3% | 17.9%
MSEA 5.0% 4.4% 5.3% 4.4% 10.2% 7.5% 7.0% 6.3%
FGSE 5.0% 4.6% 5.3% 4.4% 9.8% 7.1% 6.7% 6.1%
Methods using MSE as the matching criterion

FS 70.0% 69.9% 70.1% 69.9% 69.4% 69.6% | 69.8% | 69.8%
PDE 7.5% 3.5% 6.9% 3.2% 16.5% 9.8% 8.8% 8.0%
HaarPDE 5.3% 5.0% 5.5% 5.2% 6.9% 6.0% 5.7% 5.7%

438



3.6 Summary

In this chapter, we have presented a fast full-search block-matching motion estimation
algorithm that performs partial distortion elimination in the Haar wavelet domain.
The proposed algorithm uses the MSE to measure the block-matching error and can
provide a higher motion estimation accuracy for the BME than any of the full search
algorithms that use the MAD as the matching criterion. Since the value of the MSE is
unchanged in the Haar wavelet domain, wherein the larger-magnitude coefficients are
expected to be concentrated in the lower-frequency sub-regions, the partial distortion
elimination conducted in the Haar wavelet domain starting with the coefficients in the
lower-frequency sub-regions has resulted in an earlier elimination of the impossible
motion vector candidates than is the case with any existing MSE-based spatial-domain
method.

Extensive simulations, including those of the rate-distortion optimization, have
been conducted to compare the overall computational complexity as well as the CPU
time needed for the motion estimation of the proposed algorithm with that of the
various fast full search methods. The results show that the proposed algorithm results
in a complexity that is significantly lower than that of the MSE-based and MAD-based
spatial-domain partial distortion elimination algorithms and lower than or comparable
to that of the multi-level successive elimination algorithm (MSEA) and the finer
granularity successive elimination (FGSE) algorithm. The CPU time needed in the
case of the proposed algorithm is lower than that needed for the MSEA and FGSE,

and significantly lower than that needed for the other methods.
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Chapter 4

Temporal Search Complexity
Reduction in Multi-frame

Block-Matching Motion Estimation

4.1 Introduction

Multi-frame block-matching motion estimation (MFBME) is capable of yielding a
higher motion prediction accuracy than single-frame block-matching motion estima-
tion (SFBME) [83]. Multi-frame block-matching motion estimation using up to five
frames has become a feature of the H.264 to improve the coding performance [22].
However, the increased accuracy is achieved at the expense of a tremendous increase
in the computational complexity. A great deal of effort has, therefore, been devoted
to the development of faster and simpler algorithms for MFBME [84-87].
Essentially, MFBME is a 3-D search within a multi-frame memory for the best
block matching. In addition to an exhaustive spatial and temporal search, partial
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search in the spatial or temporal domain may be used to reduce the computational
complexity. In the approach of Duanmu et al [86], full search is conducted in the
temporal domain while only a partial search is done in the spatial domain. In [85]
and [87], a partial search is conducted in both the spatial and temporal domains. Since
in both of these approaches, only a partial search is conducted in the spatial domain,
and as we will show later, most of the block matching is found in the first reference
frame of the multi-frame memory, there exists the possibility that, for certain frames,
the search accuracy of these approaches may be worse than that of the single-frame
full search of SFBME, and hence, better accuracy is not always guaranteed. In view
of this, as well as the fact that there exist in the spatial domain fast full search
algorithms that can significantly reduce the computational complexity of the full
search, such as the multi-level successive elimination algorithm (MSEA) [46] and the
finer granularity successive elimination (FGSE) algorithm [47] mentioned in Chapter 2
and the HaarPDE algorithm proposed in the previous chapter, we now focus our
attention to an approach of the MFBME, where full search is conducted in the spatial
domain, and the computational complexity in the temporal domain is reduced by
using a full search with early termination.

The chapter [88] is organized as follows. Section 4.2 contains an investigation
on the statistical characteristics of the temporal motion vectors, and a study as to
the frame number beyond which the inclusion of additional reference frames con-
tributes little to the reduction in the block-matching error. Based on this study, an
early-termination method is proposed in Section 4.3 for the purpose of reducing the
temporal complexity of MFBME. In this method, the block-matching motion esti-

mation is carried out using the mean-absolute-difference-based optimization as well
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as the rate-distortion-based optimization, and the resulting performance is evaluated
and compared to that of the 3-D full search in Section 4.4. Finally, certain conclusions

are drawn in Section 4.5.

4.2 Statistical Investigation on Temporal Motion
Vectors and Block-Matching Errors

It is a widely-used assumption in the case of the MFBME that the best block match
is most likely to be found in the first few frames of the multi-frame memory. That it
is indeed so is demonstrated by the following two statistical experiments. The first
experiment examines the distribution of the temporal motion vectors (MV_t) along
the temporal dimension of a multi-frame memory. The second one examines the
reduction of the block-matching errors along the temporal dimension of the multi-
frame memory. For these experiments, -the size of the search window is chosen to
be -15 to +15, the maximum memory depth as 100 frames, and the mean absolute
differences (MAD) as the measure for the block-matching error. Seven test video
sequences are used, details of which are given in Table 4.1. These sequences cover

different frame resolutions and motion possibilities.

4.2.1 Distribution of the Temporal Motion Vectors

To observe the statistical distribution of the MV _t, a full search is carried out within
the 100-frame memory for all the sequences. Table 4.2 gives the number in percentage
of the temporal motion vectors occurring in a reference frame as a function of the

reference frame number for all the sequences. It is seen from this table that the largest
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number of MV_t occur in the first reference frame itself, and the majority of the MV_t

occurrence is in the first few reference frames, beyond which it drops drastically.

Table 4.1: Video sequences used in the simulations

Sequence Frames | Format | Resolution | Motion intensity/Content
Foreman 201-300 | QCIF 176x144 | mixed/foreground human,
camera panning
Mother&Daughter | 201-300 | QCIF 176x144 | minor/foreground human,
stationary background

Car Phone 201-300 | QCIF 176x144 | mixed/foreground human,
background partially moving
Container 201-300 | QCIF 176x144 | small/object translations
Football 101-125 | SIF 352x240 | medium/human in sports
Flower Garden 101-115 SIF 352x240 | medium/camera panning
Coast Guard 101-125 CIF 352x288 | medium/object translations

Table 4.2: Normalized MV _t occurrence as a function of the reference frame number

Sequence Reference frame number

1 2 3 4 5 6-10 | 11-20 | 21-50 | 51-100
Foreman 54.2% | 9.2% | 41% | 2.7% | 2.2% | 4.6% | 3.9% | 9.6% | 9.5%
Mother&Daughter | 56.8% | 5.8% | 2.2% | 2.3% | 1.9% | 6.1% | 6.0% | 8.8% | 10.1%
Car Phone 40.0% | 14.8% | 89% | 56% | 4.7% | 7.8% | 7.6% | 5.8% | 4.8%
Container 84.6% | 3.0% | 18% | 11% | 09% | 6.3% | 1.3% | 1.0% | 0.0%
Football 63.0% | 8.0% |6.1% | 4.2% | 3.2% | 6.6% | 3.5% | 4.2% | 1.2%
Flower Garden 56.3% | 6.1% | 24% | 5.7% | 11.9% { 12.0% | 3.3% | 0.7% | 1.6%
Coast Guard 62.3% | 92% | 4.4% | 4.2% | 4.3% | 100% | 3.4% | 1.6% | 0.6%

4.2.2 Reduction in the Block-Matching Error

Given the current block C in any frame of the sequence and the j-th block R;() in the
search window of the i-th reference frame, let M AD(C, R;(7)) be the mean absolute

difference between C and R;(i). Then,

MAD(i) = min MAD(C, R,()) (4.1)
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is the MAD between C and its matching block in the search window of the i-th

reference frame. Also,

BMADo()) = |, min A MADo(k) (4.2)

is the MAD between C and its matching block found within the search windows of
all the reference frames 1,2, ..., 1.

In order to study the contribution of each reference frame to the reduction in
the block-matching error, we increase the memory depth by one frame at a time,
and calculate the reduction in the MAD due to the additional reference frame. The
maximum reduction that could be obtained is when the memory comprises all the
100 reference frames, and in such a case, the average reduction in the block-matching

error is
P = %Z (BMAD¢(100) — BMAD(1)) (4.3)
C

where 3 indicates that the summation is over all the blocks in the sequence, the
total number of such blocks being N. Then, the percentage reduction obtained by
increasing the memory depth from (i-1) frames to ¢ frames is

100 Y (BMADo(i — 1) — BMADc(3))
Iji — c

N (4.4)

for i = 2,3, ..., 100. Table 4.3 gives the values of P; resulting from successive incre-
ments in the memory depth for the various sequences. It is seen from this table that
the bulk of the reduction is due to the first few reference frames, beyond which the

reduction drops drastically.
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Table 4.3: Normalized reduction in the MAD resulting from successive increments in
the memory depth

Sequence P P Py Py éo P; ?(1) P; g? P, ;(1)0 P,
Foreman 30.2% | 13.6% | 8.9% | 62% | 11.1% | 10.0% | 11.9% 8.1%
Mother&Daughter | 37.7% | 11.2% | 7.9% | 6.0% | 16.2% | 7.0% | 9.8% 4.2%
Car Phone 39.5% | 16.3% | 8.4% 6.2% 11.0% 7.2% 51% 6.3%
Container 29.0% | 17.3% | 5.9% | 1.6% | 45.0% | 0.7% 0.5% 0.0%
Football 38.3% | 19.4% | 11.6% | 4.9% | 11.6% | 56% | 6.5% 2.1%
Flower Garden 125% | 5.3% | 23.5% | 32.2% | 20.0% 3.4% 1.6% 1.5%
Coast Guard 41.8% | 12.0% | 13.7% | 9.6% 17.0% 3.2% 2.7% 0.0%

4.2.3 Observations from the Two Experiments

We characterize the rapid drop in the occurrence of the MV _t, as seen in Section 4.2.1,
by making the following observation. Using a threshold occurrence of 2%, the refer-
ence frame number at which the occurrence drops below the threshold for the first
time (T,¢s) is given in Table 4.4 for each of the seven test sequences. Table 4.4 also
gives the total number of the MV_t occurrences in the first T;..; reference frames, the
total MAD reduction when the memory has T reference frames, the average MAD
for the 1st reference frame and the maximum reduction in the average MAD, pg,.
This table shows that for the seven test sequences considered, (1) the occurrences
of the MV_t drops below 2% within the first 3-9 reference frames, (2) except for the
sequence Container, these first few reference frames account for the majority of the
occurrences of the MV_t and the total MAD reduction compared to that using the
previous 100 reference frames, and (3) for sequences such as Mother & Daughter and
Container for which the average MAD for the first reference and p,, are small, the
amount of reduction in the MAD obtained in the first T;.; reference frames is irrel-
evant, since the block-matching within the first reference frame is already accurate

enough. These observations support our earlier remark regarding the widely-used
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Table 4.4: Cumulative occurrence of the MV_t and cumulative MAD reduction at the
reference frame T

Sequences MV_t Total Avg. MAD for | Max. avg.

Trey occurrences | % reduction 1st reference reduction

in {1, Trey] in MAD frame in MAD
Yo' B | £ MADC() | pa
Foreman 6th frame 74% 63% 3.76 0.58
Mother&Daughter | 5th frame 69% 63% 1.25 0.077
Container 3rd frame 89% 46% 0.89 0.038
Car Phone 6th frame 76% 73% 4.34 0.84
Football 6th frame 85% 76% 9.45 0.78
Flower Garden 8th frame 92% 90% 10.65 1.20
Coast Guard 9th frame 94% 93% 5.36 0.69

assumption that, in the case of the MFBME, the best block match is likely to be
found in the first few frames of the multi-frame memory.

The occurrence of the majority of the MV_t and the large MAD reduction in
the first T,¢s reference frames is a reflection of the high correlation between the
current frame and the reference frames in its close neighborhood. This correlation
decreases beyond T;.r, and might be due to motion occlusions, uncovered areas,
camera panning, content changes and so on. Although block matching may still be
possible for these cases beyond Ty, it is of little practical significance. Therefore,
searching beyond T,.; in the temporal dimension is not necessary in the statistical
sense, and a frame-by-frame scan that starts from the first reference frame with an
early termination could be a method to capture the majority of the MV_t and to
obtain a large MAD reduction. An early termination method is discussed in the next

section.

56



4.3 Early Termination in the Temporal Dimension
of the Multi-Frame Memory

In order to implement an early termination for the search in the temporal domain, we
turn to the block matching error rather than 7.y, since the former can be tracked on
a reference frame by reference frame basis. Table 4.5 shows the percentage number of
blocks of C for which M AD¢(1), as defined in (4.1), lies in various intervals for each
of the test sequences under consideration. It is seen that the first 12 intervals shown
in the table account for more than 60% of the blocks for each of the sequences, i.e.,
MADc(1) < 12 for these blocks. For the sequences that contain only minor motions
or stationary backgrounds, such as Mother & Daughter and Container, the value of

MADc(1) is less than two for the majority of the blocks.

Table 4.5: Percentage number of blocks of C' for which MAD¢(1) lies in various
intervals

MADc(1) | Foreman | Mother& | Car | Container | Football | Flower | Coast
Daughter | Phone Garden | Guard
[0,1) 13 64 13 85 0 5 0
[1,2) 23 21 25 8 5 9 5
(2,3) 18 8 17 5 11 3 18
[3.4) 13 4 12 2 10 3 18
[4,5) 9 2 8 0 9 4 15
[5,6) 6 1 6 0 7 5 12
[6,7) 5 0 4 0 6 6 9
[7,8) 3 0 3 0 6 6 7
[8,9) 2 0 2 0 5 5 5
[9,10) 2 0 2 0 5 6 3
[10,11) 2 0 2 0 5 5 3
(11,12) 2 0 1 0 4 6 1
{12, 255] 2 0 6 0 27 37 4

Let us now look at MADc(i) as a function of the reference frame number i,
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Figure 4.1: Variation of MADc(i) as a function of the reference frame number i,
when (a) C is block (7,9) of the 257th frame of Foreman, containing occlusion, (b)
C is block (3,3) of the 270th frame of Foreman, containing uncovered area, (c) C is
block (9,11) of the 285th frame of Foreman, containing camera panning, and (d) C
is block (2,8) of the 115th frame of Football, containing uncovered area.
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1 < i < 100, for a given C. For this purpose, the value of MADc(i) for each of
the blocks in a given test sequence is obtained. For the purpose of illustration,
plots showing the variation of MAD¢(i) as a function of i for four blocks in the
sequences Foreman and Football are shown in Fig. 4.1. These blocks are chosen so
as to include motion discontinuities such as occlusion, uncovered area and camera
panning. It is seen from these figures that, in the presence of motion discontinuities,
there is a sudden change in the value of M AD¢(i), indicating a drastic reduction in
the temporal correlation between C and its matching block. In view of the motion
discontinuities, any search beyond such an abrupt change in M AD¢(¢) would only
lead to a numerically better matching instead of one based on content. Therefore, the
sharp increase in M AD¢ (%) can be used as an indication to terminate the temporal
search, and techniques such as thresholding can be employed for this purpose.

To avoid the need for determining the thresholds, which might be sequence-
dependent, a simpler method that does not need thresholds is proposed and is de-
scribed by the flow chart of Fig. 4.2(a). The method keeps track of M AD¢(7) reference
frame by reference frame and looks for the local minimum. The process continues if
a smaller M ADc(z) is found, otherwise the termination control is triggered.

Since early termination may incur some inaccuracy in the resulting motion vectors
compared to those obtained by a full search, the termination control is applied only
to two groups of blocks, leaving the rest still to be processed through a full search.
These two groups are those that fall into the interval [0,c) or [8, 255] with a <255
and 8 >0. An extremely small MADc(3) indicates that relative to the reference
block, the current block contains minor or stationary motions, and a search beyond

the current reference frame will not significantly reduce the block matching error,
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Figure 4.2: Flow chart illustrating the proposed early termination method for a given
current block C' when (a) the full search in the spatial domain is not expedited by

any fast method, and (b) an SE-based algorithm is used as the fast full search method
in the spatial domain.
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since the current one is already small enough. On the other hand, a very large
M ADc(7) indicates that a content discontinuity such as scene change, occlusion or
uncovered area might exist, and a further search could only result in a numerically
better matching rather than one based on content. Therefore, for these two groups
of blocks, the search could be terminated, once a local minimum of MAD¢(3) is
identified. Since these two groups of blocks with a=1 and (=12 account for up
to 85% of the total blocks (see Table 4.5), the termination is expected to result in
significant savings in the search complexity. The actual performance of the proposed
early termination method will be presented in the next section.

When an SE-based algorithm is used as the fast full search method in the spatial
domain, some extra considerations should be given, since it is possible that M AD¢(7)
is not available for certain blocks C and certain reference frames .

Given the current block C and the j-th block R;(i) in the search window of
the i-th reference frame, an SE-based algorithm gives a series of lower bounds of
MAD(C, R;(%)), denoted as Ly(C, R;()), L2(C, Rj(%)), .., La(C, R;(1)), respectively,

with
Li(C, R;(3)) < L2(C, R;(3)) < ... < La(C, R;(3)) £ MAD(C, R;(3))

Ly(C, R;(7)) is obtained first. If it is greater than the current minimum MAD between
C and the reference blocks that have been checked so far in reference frame ¢, R;(7) is
eliminated as a match for C; otherwise, Ly(C, R;(i)) is obtained and the comparison
is repeated. This process continues until either R;(%) is eliminated or M AD(C, R;(%))
is computed.

If each of R;(2) is eliminated by the SE-based algorithm, then M AD(C, R;(t))

is not computed, and hence, MAD¢(i) will not be available. In such a case, let
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R;(i) be eliminated by Li(C, R;(%)), then Li(C, R;()) is the largest lower bound of

MAD(C, R;(i)) obtained by the SE-based algorithm, and we have

Li(C,R;(1)) < MAD(C,R;(i)) and

min Ly(C, R;(i)) < min MAD(C, Ry(i)) = MADc(i)
J J

Therefore, n\li’}n Li(C, R;(1)) is a lower bound of MAD¢(i). Using it as an approxima-
tion of MADc(3), the flow chart in Fig. 4.2(a) is modified and shown in Fig. 4.2(b).

Since it is the lower bound of M AD¢(i) that is used in the termination control, it
is possible that the termination does not happen immediately on finding the first local
minimum of MADc(i). In other words, the termination can be delayed until after
more local minima of MAD¢(i) are found, leading to search results that are more

accurate or at least the same as those obtained based on the flow chart of Fig. 4.2(a).

4.4 Simulation Results

We implement the early termination method proposed in Section 4.3 employing the
four-level MSEA and FGSE, respectively, as the search method in the spatial domain.
The block-matching motion estimation is carried out using a MAD-based optimization
as well as a rate-distortion optimization (RDO) [82]. In the case of the latter, the
optimization is in terms of D(mv)+Anotion R(mv), where D(mv) is the block-matching
error using the MAD, Apotion is a constant, and R(mwv) is the number of bits required
to represent the motion vector in question. Amotion iS set to 15 [82], and the Huffman
codebook of H.263 [21] is used to determine R(muv). The spatial full search follows a
spiral path starting from the center of the search window. The test sequences used

are the ones listed in Table 4.1, the size of the search window being from -15 to +15
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pixels and the memory depth being 1, 5, 10 or 15 frames.

The validity of the simulation is verified based on two criteria: (1) for each early
termination scheme, whether the use of the MSEA and the FGSE result in an identical
PSNR when given an identical target video frame as the input; (2) for each early
termination scheme, when the functionality of early termination is disabled, whether
an identical PSNR with that resulting from the FS is obtained.

Two schemes for the early termination are simulated. The first one, denoted by
ET-I, corresponds to the case of early termination of the search when MAD¢(i) €
[0,1). The second one, denoted by ET-II, corresponds to the case when MAD¢(i) €
[0,1) U [12,255]. Based on the two above-mentioned validation criteria, it has been
verified that the simulation is valid. The performances of the proposed early termi-
nation method using ET-I and ET-II are compared with that of the 3-D full search
(F'S), which employs the same search method (the MSEA or the FGSE) in the spatial
domain as that used in the proposed early termination method. For this purpose, we

obtain the following three sets of results for the proposed method and the FS.

e Peak signal-to-noise ratio [44]: The difference between the PSNR for each of
the two schemes of the proposed method and that of the FS is computed and
presented in Table 4.6 and 4.9 for the case of the MAD-based optimization and

in Table 4.12 and 4.15 for the case of the RDO.

o Computational complexity in terms of the number of equivalent MAD calcula-
tions: The computation of the MAD involves N2 subtractions, N% —1 additions
and N? absolute operations for a block of size N x N [44]. The number of
equivalent MAD calculations required by the proposed method and the FS are

as shown in Table 4.7 and 4.10 for the case of the MAD-based optimization and
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in Table 4.13 and 4.16 for the case of the RDO.

o Temporal motion vectors: The percentage of temporal motion vectors correctly
estimated by the proposed early termination method are as shown in Table 4.8
and 4.11 for the case of the MAD-based optimization and in Table 4.14 and

4.17 for the case of the RDO.

It is seen from Tables 4.6, 4.9, 4.12 and 4.15 that ET-I hardly incurs any loss in
the PSNR for any of the test sequences. In terms of the search complexity shown in
Tables 4.7, 4.10, 4.13 and 4.16, the amount of savings achieved by ET-I is motion-
dependent, ranging from 0% for the Football and Coast Guard sequences, where none
of the blocks has a value of MADc(i) in [0, 1) (see Table 4.5), to more than 33% for
the Mother & Daughter and Container sequences, where the majority of the blocks
have a value of MAD¢(3) in [0, 1).

As shown in Tables 4.7, 4.10, 4.13 and 4.16, the search complexity for the sequence
Mother & Daughter is significantly reduced by more than 33% in the case of ET-I.
Also, more than 38% of the savings in the search complexity can be achieved for
the sequence Container, which contains only minor motions, by using the scheme
ET-1. Therefore, it is seen from the simulation results that compared to the 3-D
full search, ET-I can effectively reduce the search complexity for areas that contain
minor motions or stationary backgrounds, while incurring only negligible losses in the
motion estimation accuracy for the MFBME.

Compared to ET-I, ET-II achieves greater savings in the search complexity at
the expense of a loss in the PSNR, both the savings and the loss being related to
the number of blocks whose M AD¢(i) values fall in the interval [12, 255]. A larger

number of blocks falling in this interval may result in a greater saving in the search
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Table 4.6: Average difference in the PSNR between the proposed method and the
FS, both of which using the MSEA in the spatial domain

Mem. Foreman | Mother& Car Container { Football | Flower | Coast
depth Daughter | Phone Garden | Guard

PSNR of FS 30.86 41.64 28.80 41.86 22.68 22.93 29.56
in dB

1 PSNR diff.
between 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ET-1 and FS

PSNR diff.
between 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ET-II and FS

PSNR of FS 31.72 41.94 29.74 42.12 23.07 23.46 30.42
in dB

5 PSNR diff.
between -0.02 -0.02 -0.02 -0.00 -0.00 -0.00 -0.00
ET-I and FS

PSNR diff.
between -0.11 -0.02 -0.11 -0.00 -0.10 -0.34 -0.16
ET-II and FS

PSNR of FS 31.88 42.03 29.96 42.32 23.13 23.57 30.62
in dB

10 PSNR diff.

between -0.01 -0.02 -0.03 -0.01 -0.00 -0.00 -0.00
ET-I and FS

PSNR diff.

between -0.14 -0.02 -0.24 -0.01 -0.14 -0.40 -0.22
ET-1I and FS

PSNR of FS 31.98 42.05 30.08 42.32 23.16 23.59 30.64
in dB

15 PSNR diff.

between -0.02 -0.03 -0.02 -0.01 -0.00 -0.00 -0.00
ET-I and FS

PSNR diff.
between -0.17 -0.03 -0.29 -0.01 -0.16 -0.41 -0.22
ET-1I and FS
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Table 4.7: Computational complexity in terms of the number of equivalent MAD
calculations for the proposed method and the FS, both of which using the MSEA
in the spatial domain.

Memory | Scheme | Foreman | Mother& Car | Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard

FS 19 31 24 12 42 49 38

1 ET-1 19 31 24 12 42 49 38
(0%) (0%) (0%) (0%) (0%) (0%) | (0%)

ET-11 19 31 24 12 42 49 38

(0%) (0%) (0%) (0%) (0%) (0%) [ (0%)

FS 57 140 75 48 153 209 161

5 ET-1 51 82 70 30 153 198 161
(-9%) (-42%) (-7%) (-38%) (-0%) (-5%) | (-0%)

ET-1I 49 82 62 29 119 142 158
(-14%) (-42%) | (-17%) (-39%) (-22%) | (-32%) | (-2%)

FS 90 269 119 86 262 358 285

10 ET-1 77 93 107 40 262 327 285
(-15%) (-65%) | (-10%) (-53%) (-0%) (-9%) | (-0%)

ET-11 71 93 88 37 173 194 279
(-22%) (-65%) | (-27%) (-57%) (-33%) | (-45%) | (-2%)

FS 121 395 156 120 356 485 390

15 ET-1 100 104 138 49 356 439 390
(-17%) (-73%) | (-11%) (-60%) (-0%) (-9%) | (-0%)

ET-1I 90 104 110 45 220 237 380
(-25%) (-73%) | (-29%) (-62%) (-38%) | (-51%) | (-2%)

Note: The quantities in the parenthesis indicate the difference in percentage of the computa-
tional complexities of the FS and ET-I (or FS and ET-II).
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Table 4.8: Percentage of the temporal motion vectors correctly estimated by the pro-
posed early termination method using the MSEA in the spatial domain, as compared
to those of the FS

Memory | Scheme | Foreman | Mother& Car | Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard
1 ET-I 100% 100% 100% 100% 100% 100% 100%
ET-11 100% 100% 100% 100% 100% 100% 100%
5 ET-1 98% 85% 97% 95% 100% 98% 100%
ET-1I 97% 85% 95% 95% 97% 84% 99%
10 ET-I 97% 76% 96% 93% 100% 97% 100%
ET-11 96% 76% 94% 93% 96% 81% 98%
15 ET-1 96% 74% 95% 92% 100% 97% 100%
ET-11 95% 74% 93% 92% 95% 81% 98%

complexity and a bigger loss in the PSNR at the same time. For example, Garden
is the sequence with the highest percentage of blocks in [12,255] (see Table 4.5). As
shown in the case of a five-frame memory in Table 4.7, ET-II achieves an additional
saving of 27% in the search complexity for this sequence compared to ET-I, but suffers
from a loss of 0.34 dB in the PSNR. It can be expected that if the lower bound of
this interval increases, both the savings in the search complexity and the loss in the
accuracy of the motion estimation will decrease.

Tables 4.8, 4.11, 4.14 and 4.17 show, for each of the sequences, the accuracy of
the temporal motion vectors estimated using the two schemes. It is seen from these
tables that an accuracy in excess of 90% is achieved by either of the schemes for all
the sequences, except for the sequences Flower Garden (in the case of ET-II) and
Mother & Daughter (in the case of MAD-based optimization). A relatively lower
accuracy for the sequence Flower Garden in the case of ET-II is due to the fact that
for a large number of the blocks, the M AD¢(i) values are within the range [12, 255],

and these blocks are targeted by the scheme ET-II for early termination. In such a
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Table 4.9: Average difference in the PSNR between the proposed method and the
FS, both of which using the FGSE in the spatial domain.

Mem. Foreman | Mother& Car Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard

PSNR of FS 30.86 41.64 28.80 41.86 22.68 22.93 29.56
in dB

1 PSNR diff.
between 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ET-I and FS

PSNR diff.
between 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ET-II and FS

PSNR of FS 31.72 41.94 29.74 42.12 23.07 23.46 30.42
in dB

5 PSNR diff.

between -0.02 -0.02 -0.02 -0.00 -0.00 -0.01 -0.00
ET-I and FS

PSNR diff.
between -0.11 -0.02 -0.11 -0.00 -0.11 -0.34 -0.16
ET-1I and FS

PSNR of FS 31.88 42.03 29.96 42.32 23.13 23.57 30.62
in dB

10 PSNR diff.
between -0.02 -0.02 -0.03 -0.01 -0.00 -0.00 -0.00
ET-1 and FS

PSNR diff.
between -0.14 -0.02 -0.24 -0.01 -0.14 -0.40 -0.22
ET-1I and FS

PSNR of FS 31.98 42.05 30.08 42.32 23.16 23.59 30.64
in dB

15 PSNR diff.
between -0.02 -0.03 -0.02 -0.01 -0.00 -0.00 -0.00
ET-I and FS

PSNR diff.
between -0.17 -0.03 -0.29 -0.01 -0.16 -0.41 -0.22
ET-II and FS
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Table 4.10: Computational complexity in terms of the number of equivalent MAD
calculations for the proposed method and the FS, both of which using the FGSE in
the spatial domain.

Memory | Scheme | Foreman | Mother& Car Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard

FS 19 27 22 13 36 39 31

1 ET-I 19 27 22 13 36 39 31
(0%) (0%) (0%) (0%) (0%) (0%) | (0%)

ET-1I 19 27 22 13 36 39 31

(0%) (0%) (0%) (0%) (0%) (0%) (0%)

FS 55 114 69 47 128 165 126

5 ET-1 51 70 65 28 128 156 126
(-7%) (-39%) (-6%) (-40%) (-0%) (-5%) | (-0%)

ET-1I 49 70 59 28 101 114 124
(-11%) (-39%) | (-14%) (-40%) (-21%) | (-31%) | (-2%)

FS 90 215 108 83 221 276 224

10 ET-I 79 82 100 36 221 256 224
(-12%) (-62%) (-7%) (-57%) (-0%) -7%) | (-0%)

ET-11 74 82 86 36 150 160 220
(-18%) (-62%) | (-20%) (-57%) (-32%) | (-42%) | (-2%)

FS 123 313 148 110 303 376 310

15 ET-1 104 95 132 45 303 357 310
(-15%) (-70%) | (-11%) (-59%) (-0%) (-5%) | (-0%)

ET-II 96 95 111 43 209 197 304
(-22%) (-70%) | (-25%) (-61%) (-31%) | (-48%) | (-2%)

Note: The quantities in the parenthesis indicate the difference in percentage of the computa-
tional complexities of the FS and ET-I (or FS and ET-II).
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Table 4.11: Percentage of the temporal motion vectors correctly estimated by the pro-
posed early termination method using the FGSE in the spatial domain, as compared

to those of the FS.

Memory | Scheme | Foreman | Mother& Car | Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard
1 ET-1 100% 100% 100% 100% 100% 100% 100%
ET-II 100% 100% 100% 100% 100% 100% 100%
5 ET-1 98% 85% 97% 95% 100% 98% 100%
ET-II 97% 85% 95% 95% 97% 84% 99%
10 ET-1 97% 76% 96% 93% 100% 97% 100%
ET-II 96% 76% 94% 93% 96% 81% 98%
15 ET-1 96% 74% 95% 92% 100% 97% 100%
ET-11 95% 74% 93% 92% 95% 81% 98%

case, the computational complexity is reduced at the expense of a loss in the search
accuracy. The sequence Mother & Daughter, as mentioned earlier in Section 4.2.3,
contains only minor motions and a stationary background, and hence, the block-
matching error obtained using only the first reference frame is already small enough,
and the lower accuracy of the estimated temporal motion vectors shown in Table 4.8

and Table 4.11 has no effect on the accuracy of the motion estimation itself.

4.5 Summary

In this chapter, we have investigated, in the case of the multi-frame block-matching
motion estimation, the statistical characteristics of the temporal motion vector as
well as the reduction in the block-matching error due to an increased memory depth.
Our findings confirm the widely-used assumption that the best block matching most
likely occurs in the first few reference frames of the memory.

In view of this, we have developed a method for an early termination of the

temporal search for block matching, and it is based on keeping track of the block-
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Table 4.12: Average difference in the PSNR between the proposed method and the
FS using the MSEA in the spatial domain and the rate-distortion optimization

Mem. Foreman | Mother& Car Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard

PSNR of FS 30.81 41.64 28.72 41.86 22.67 22.91 29.56
in dB

1 PSNR dift.

between 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ET-I and FS

PSNR diff.

between 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ET-II and FS

PSNR of FS 31.61 41.86 29.64 42.08 23.04 23.45 30.39
in dB

] PSNR diff.
between -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
ET-I and FS

PSNR diff.
between -0.08 -0.00 -0.10 -0.00 -0.09 -0.35 -0.15
ET-1I and FS

PSNR of FS 31.74 41.91 29.83 42.20 23.09 23.57 30.57
in dB

10 PSNR diff.

between -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
ET-I and FS

PSNR diff.

between -0.11 -0.00 -0.19 -0.00 -0.13 -0.42 -0.21
ET-II and FS

PSNR of FS 31.82 41.92 29.93 42.20 23.11 23.59 30.59
in dB

15 PSNR diff.

between -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
ET-1 and FS

PSNR diff.

between -0.13 -0.00 -0.24 -0.00 -0.14 -0.43 -0.21
ET-II and FS
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Table 4.13: Computational complexity in terms of the number of equivalent MAD
calculations of the proposed method and that of the FS using using the MSEA in
the spatial domain and the rate-distortion optimization.

Memory | Scheme | Foreman | Motheré& Car | Container | Football ; Flower | Coast
depth Daughter | Phone Garden | Guard

FS 19 13 25 12 41 44 36

1 ET-1 19 13 25 12 41 44 36
(0%) (0%) (0%) (0%) (0%) (0%) | (0%)

ET-11 19 13 25 12 41 44 36

(0%) (0%) (0%) (0%) (0%) (0%) (0%)

FS 68 55 87 55 152 181 144

5 ET-1 64 37 83 30 152 179 144
(-6%) (-33%) (-5%) (-45%) (-0%) (-1%) | (-0%)

ET-1I 61 37 74 30 116 123 141
(-10%) (-33%) | (-14%) (-45%) (-24%) | (-33%) | (-2%)

FS 121 103 151 103 266 313 253

10 ET-1 111 56 139 41 266 310 252
(-8%) (-45%) (-8%) (-60%) (-0%) -1%) | (-0%)

ET-II 104 56 118 39 175 171 245
(-14%) (-45%) | (-22%) (-62%) (-34%) | (-45%) | (-3%)

FS 173 150 210 152 369 435 348

15 ET-I 157 75 190 50 368 429 347
(-9%) (-50%) | (-10%) (-67%) (-0%) (-1%) | (-0%)

ET-II 144 75 158 48 230 217 336
(-17%) (-50%) | (-25%) (-68%) (-38%) | (-50%) | (-4%)

Note: The quantities in the parenthesis indicate the difference in percentage of the computa-
tional complexities of the FS and ET-I (or FS and ET-II).
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Table 4.14: Percentage of the temporal motion vectors correctly estimated by the
proposed early termination method using using the MSEA in the spatial domain
and the rate-distortion optimization, as compared to those of the FS using the rate-
distortion optimization.

Memory | Scheme | Foreman | Mother& | Car | Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard
1 ET-1 100% 100% 100% 100% 100% 100% 100%
ET-11 100% 100% 100% 100% 100% 100% 100%
5 ET-1 100% 100% 100% 100% 100% 100% 100%
ET-II 99% 100% 98% 100% 97% 87% 99%
10 ET-I 100% 100% 100% 100% 100% 100% 100%
ET-11 99% 100% 97% 100% 97% 85% 98%
15 ET-I 100% 100% 100% 100% 100% 100% | 100%
ET-11 99% 100% 97% 100% 96% 85% 98%

matching error between any given block and its matching block on a reference frame
by reference frame basis, and terminating the temporal search using a strategy that
classifies a current block based on the mean absolute difference between the current
block and its matching block in each reference frame. Using the strategy, two schemes,
ET-1 and ET-II, have been developed for the early termination, based on whether
the mean absolute difference lies in the interval [0, ) with a <255 or in the interval
[0,) U [8,255] with o <255 and B > 0. For each of these two schemes, the block-
matching motion estimation has been carried out using the mean-absolute-difference-
based optimization as well as the rate-distortion optimization, which shows that ET-I
with a=1 incurrs no degradation in the motion estimation accuracy for the MFBME,
and therefore, can be considered a lossless scheme. Also, the savings in the search
complexity is motion-dependent, and significant savings can be obtained for areas that
contain minor or stationary motions. ET-II with a=1 and =12 provides additional
savings in the search complexity compared to that obtained by ET-I, at the expense

of some small loss in the accuracy of the motion estimation. The lower bound of the
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Table 4.15: Average difference in the PSNR between the proposed method and the
FS using the FGSE in the spatial domain and the rate-distortion optimization

Mem. Foreman | Mother& Car | Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard

PSNR of FS 30.81 41.64 28.72 41.86 22.67 22.91 29.56
in dB

1 PSNR diff.

between 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ET-I and FS

PSNR diff.
between 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ET-II and FS

PSNR of FS 31.61 41.86 29.64 42.08 23.04 23.45 30.39
in dB

5 PSNR diff.

between -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
ET-1 and FS

PSNR diff.

between -0.08 -0.00 -0.10 -0.00 -0.09 -0.35 -0.15
ET-II and FS

PSNR of FS 31.74 4191 29.83 42.20 23.09 23.57 30.57
in dB

10 PSNR diff.

between -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
ET-I and FS

PSNR diff.

between -0.11 -0.00 -0.19 -0.00 -0.13 -0.42 -0.21
ET-II and FS

PSNR of FS 31.82 41.92 29.93 42.20 23.11 23.59 30.59
in dB

15 PSNR diff.

between -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
ET-I and FS

PSNR diff.
between -0.13 -0.00 -0.24 -0.00 -0.14 -0.43 -0.21
ET-II and FS

74



Table 4.16: Computational complexity in terms of the number of equivalent MAD

calculations of the proposed method and that of the FS using using the FGSE in

the spatial domain and the rate-distortion optimization.

Memory | Scheme | Foreman | Mother& Car | Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard
FS 17 13 20 13 31 31 26
1 ET-1 17 13 20 13 31 31 26
(0%) (0%) (0%) (0%) (0%) (0%) | (0%)
ET-1I 17 13 20 13 31 31 26
(0%) (0%) (0%) (0%) (0%) (0%) (0%)
FS 62 52 73 52 114 128 106
5 ET-I 59 35 70 28 114 127 106
(-5%) (-33%) (-5%) (-45%) (-0%) (-0%) | (-0%)
ET-11 56 35 63 27 89 89 103
(-10%) (-33%) | (-13%) (-47%) (-22%) | (-31%) | (-2%)
FS 113 99 130 99 204 229 190
10 ET-1 104 53 119 37 204 226 190
(-8%) (-46%) (-8%) (-62%) (-0%) (-1%) | (-0%)
ET-1 98 53 105 36 140 132 185
(-13%) (-46%) | (-19%) (-63%) (-31%) | (-42%) | (-3%)
FS 164 146 185 146 288 322 268
15 ET-1 148 72 165 45 288 318 267
(-10%) (-51%) | (-11%) (-69%) (-0%) (-1%) | (-0%)
ET-II 139 72 143 44 189 170 258
(-15%) (-51%) | (-22%) (-70%) (-35%) | (-47%) | (-4%)

Note: The quantities in the parenthesis indicate the difference in percentage of the computa-
tional complexities of the FS and ET-I (or FS and ET-II).
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Table 4.17: Percentage of the temporal motion vectors correctly estimated by the
proposed early termination method using using the FGSE in the spatial domain
and the rate-distortion optimization, as compared to those of the FS using the rate-
distortion optimization.

Memory | Scheme | Foreman | Mother& Car | Container | Football | Flower | Coast
depth Daughter | Phone Garden | Guard
1 ET-I 100% 100% 100% 100% 100% 100% 100%
ET-11 100% 100% 100% 100% 100% 100% 100%
5 ET-I 100% 100% 100% 100% 100% 100% 100%
ET-1I 99% 100% 98% 100% 97% 87% 99%
10 ET-I 100% 100% 100% 100% 100% 100% 100%
ET-1I 99% 100% 97% 100% 97% 85% 98%
15 ET-1 100% 100% 100% 100% 100% 100% 100%
ET-1I 99% 100% 97% 100% 96% 85% 98%

interval [8, 255] affects the performance of scheme ET-II; the larger the value of 8,
the lower the savings in the search complexity and the smaller the loss in the accuracy
of the motion estimation.

With the spatial full search complexity significantly reduced by the fast full search
algorithm such as the MSEA and the FGSE, and the temporal search complexity
reduced by the early termination method proposed in this chapter, the approach of
combining the two would lead to a low-complexity high-accuracy implementation for

multi-frame block-matching motion estimation.
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Chapter 5

Low-Power

Successive-Elimination-Assisted
Full-Search Architecture for

Block-Matching Motion Estimation

5.1 Introduction

As mentioned in Chapter 2, the regularity of the data flow of the block-matching mo-
tion estimation (BME) has led to a two-dimensional full-search systolic array (FSSA)
architecture for VLSI implementation of the BME [64]. In spite of the excellent real-
time performance of the 2-D FSSA, it is a full-search implementation of the BME
without making use of any existing algorithm-level simplification [45], [46], [48]. In a
scheme proposed in [65], the computational complexity and the power consumption

of the 2-D FSSA are reduced through the application of the successive elimination
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algorithm (SEA) [45]. In such an SEA-assisted 2-D FSSA system, the SEA module
calculates a lower bound of the block-matching error for each motion vector candi-
date, and eliminates the candidate if the lower bound is greater than the current
minimum block-matching error. In view of this, the corresponding operations in the
2-D FSSA module are disabled, leading to a significant reduction in the switching
activities, and hence, a reduction in the power consumption inside the 2-D FSSA.
The performance of the SEA in terms of the number of eliminated motion vector
candidates is sensitive to the scanning pattern adopted within the search window [48].
Since in most cases, the optimum motion vector is found in the central part of the
search window, an outward spiral scan starting from the center of the search window,
as shown in Fig. 5.1, eliminates a larger number of motion vector candidates than
a raster scan does. In this chapter, we propose a pseudo-spiral scan to replace the

conventional raster scan for the purpose of increasing the number of eliminated motion

vector candidates.

—
— —
.L:’,

Search window Search window

@ ()
Figure 5.1: Two search patterns, (a) the spiral scan and (b) the raster scan, within
the search window
In an effort to further reduce the power consumption of the system, several designs
different from that proposed in [65] for the implementation of the SEA module are
also considered, and the consequent reductions in the overall power consumption of
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the SEA-assisted 2-D FSSA system are investigated using a power simulator.

This chapter [89] is organized as follows. In Section 5.2, a pseudo-spiral scan-
ning scheme to be used in the search window is proposed. In Section 5.3, several
designs to implement the successive elimination algorithm are developed based on a
segmentation scheme of horizontally-stacked sub-blocks. In Section 5.4, the power
consumption of the SEA-assisted 2-D FSSA system, resulting from the proposed
pseudo-spiral scanning scheme and the various implementations of the SEA module,
are evaluated using a power simulator that monitors the switching activities inside

the system. Finally, certain conclusions are drawn in Section 5.5.

5.2 The Pseudo-Spiral Scan

Given the current block of size N x N pixels and a search range of +p pixels in both
dimensions, we define the following two terms in order to facilitate the development

of the proposed pseudo-spiral scan.

o Search window: A set of reference blocks each of size (N + 2p) x (N + 2p) from

which a matching block is to be identified for the current block.
o block-row: The set of reference blocks along a given row in a search window.

The pixels in a search window are input into the 2-D FSSA of [64] or [65] on a
block-row by block-row basis, starting from the first block-row, as shown in Fig. 5.2(a).
Scanning the search window in such a raster pattern is the key to the input data reuse
that contributes to the real-time performance of the 2-D FSSA. On the other hand,
for elimination-based full search algorithms, it is known that a spiral scan starting

from the center of the search window can eliminate more impossible motion vector
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candidates than the raster scan does [48]. Based on these two considerations, we
propose the pseudo-spiral scan that contains two raster sub-scans, one starting from
the (p+1)-th block-row and moving towards the bottom of the search window, and
the other starting from the p-th block-row and moving towards the top of the search
window, as shown in Fig. 5.2(b). Since both the sub-scans start from a block-row in
the center of the search window, the pseudo-spiral scan is expected to hit the matching
block sooner than the conventional raster scan does, resulting in more motion vector

candidates being eliminated, thus resulting in larger savings in power.

Search window Search window
Block rowr #1 ]
2nd
Block row .;? — sub-scan
Block row #p+1) -
'Y} -I st
sub-scan
@ Block row #2p+1) b

Figure 5.2: Two scanning patterns inside the search window: (a) the raster scan and
(b) the pseudo-spiral scan

To evaluate the effectiveness of the pseudo-spiral scan in terms of the number of
eliminated motion vector candidates, we conduct a software simulation of the SEA
using the pseudo-spiral scan as well as the conventional raster scan. The number of
consecutively-eliminated motion vector candidates resulting from each of the scans is
obtained, as it is this kind of eliminations that results in a reduction of the switching
activities, and hence, in a reduction of the power consumption. Seven test sequences
are used in the simulation, and the details are given in Table 5.1. The number

of frames used is more than one thousand, with QCIF, CIF and SIF formats to
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represent the different frame resolutions. The sequences chosen cover different motion
possibilities ranging from minor (e.g., Mother&Daughter) to more intensive motions
(e.g., Foreman), and from mainly translational (e.g., Container, Flower Garden) to

more complicated motions (e.g., Football, Car Phone, Coast Guard).

Table 5.1: Details of the seven sequences used in the simulation

Sequence Frames | Format I Resolution
Foreman 1-400 QCIF 176x144
Mother&Daughter || 1-400 QCIF | 176x144
Car Phone 1-382 QCIF 176x144
Container 1-300 QCIF 176x144
Football 1-125 SIF 352x240
Flower Garden 1-115 SIF 352x240
Coast Guard 1-150 CIF 352x288

For each of the sequences, the percentage of motion vector candidates that are
consecutively eliminated is shown in Table 5.2. It is seen from this table that the
pseudo-spiral scan increases the consecutive eliminations by a significant percentage
for each of the sequences considered, the lowest percentage being 14%. This indicates
that, with the implementation of the pseudo-spiral scan, a further reduction in the

power consumption of an SEA-assisted 2-D FSSA architecture is possible.

Table 5.2: Percentage of motion vector candidates that are consecutively eliminated
by the SEA using the pseudo-spiral scan or the raster scan

Foreman | Mother& Car | Container | Football | Flower | Coast
Daughter | Phone Garden | Guard
SEA using 74.2% 81.4% | 76.5% 88.1% 44.1% 55.3% | 53.6%
pseudo-spiral scan
SEA using 54.2% 58.0% 56.0% 51.3% 29.6% 34.4% | 30.8%
raster scan
Difference 20.0% 23.4% 20.5% 36.8% 14.5% 20.9% | 22.8%
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For the pseudo-spiral scan, the starting block-row for the first and second raster
sub-scans, namely, the (p+1)-th and p-th block-rows, have an overlap of N-1 lines
of pixels that have to be re-buffered at the beginning of the second raster sub-scan.
Compared to the case of a conventional raster scan, re-buffering these N-1 lines of
pixels requires not only additional processing time for the system, but also an extra
power consumption to shift these lines into the data input buffer. To avoid these, a
twin data input buffer is added to the system, as shown in Fig. 5.3, where one of them
is the working buffer, and the other a stand-by. During the input of the (p+1)-th
block-row in the first raster sub-scan, when the working buffer is filled up, the data
in the buffer are copied into the stand-by buffer. When the first raster sub-scan is
finished, the stand-by buffer becomes the working buffer, and the N-1 lines of the
duplicated data in this buffer are input to the system as the N-1 lines of the p-th
block-row. As such, this buffering scheme does not require extra processing time or

shift-registering power for the duplication of the N-1 lines of the p-th block-row.

5.3 Implementation of the Successive Elimination

Given the current block C' and one of its reference blocks R, both of size N X N, the
block matching is most commonly performed using as a measure the sum of absolute
difference (SAD) given by
N N
SADcr = ;J};l |C(&,5) — R, )l (5.1)
The SEA algorithms obtain one or more lower bounds of the SAD with calculations
which are simpler than that for the SAD itself. If the lower bound is greater than the

minimum SAD obtained so far, calculation of the current SAD¢ g is not necessary.
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Figure 5.3: A twin data input buffer is used by the second raster sub-scan of the
pseudo-spiral scan.
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The essence of the SEA is to divide both the current block and the reference block
into M sub-blocks, {Ci,Cs,...,Cyu} and {Ri, Rs, ..., R;}, respectively, so that the

triangle inequality could be utilized to obtain a lower bound for the SAD in the form

LB = 31 Y (Riid) - Culi, )| < SADo (5.2)

k=1 i j
It is noted that the sum of any combination of the terms in (5.2) is also a lower bound
of the SAD.

The SEA algorithm given in [45] is a special case of the above in which a single
sub-block of size N x N is used. The resulting lower bound of the SAD is given
as | YN, YRG5 - T YN, C(i,5)|, where the computational complexity of

N, 51 R(3,5) can be reduced by reusing the terms common to two overlapping
reference blocks. The scheme proposed in [65] is another example of the SEA, which
utilizes N-1 sub-blocks of size 1xN, as shown in Fig. 5.4(a); the corresponding lower
bound is given by

LB, = ¥

N-1
k=1

1 N 1 N
1222 Ri(i5) — 32D Cil(i, ) (5.3)

1 1 11
The applications of the SEA can be recursive in that the sub-blocks can be further
divided to generate tighter lower bounds of the SAD, the multi-level SEA (MSEA) [46]

being one such example.

5.3.1 Implementing the Successive Elimination Algorithm

Along with the block-row by block-row scanning pattern used in the 2-D FSSA, a
segmentation scheme that contains vertically-stacked N-I identical rectangular sub-
blocks of size 1 x N, as shown in Fig.5.4(a), has been used for the implementation

of the SEA in [65]. The corresponding lower bound for SAD¢c R is given by (5.3),
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as mentioned earlier. An alternate segmentation scheme that we could have used for
the implementation of the SEA is shown in Fig.5.4(b), which contains horizontally-
stacked M identical rectangular sub-blocks of size (N — 1) x L, where M x L = N.

It can be shown that in this case the lower bound of SAD¢p is given by

M N-1L N-1 L

k=1 1 1 11
Any segmentation scheme, other than the horizontally- or vertically-stacked sub-
blocks, used in the implementation of the SEA would severely hamper the ability to
reuse the input data of the SEA module, resulting in a significant increase in the

power consumption.

Mmj..] 2j1

(a) (bl

Figure 5.4: A block containing (a) vertically-stacked sub-blocks and (b) horizontally-
stacked sub-blocks

Implementation based on vertically-stacked sub-blocks

The SEA module in [65] makes use of the first N-1 rows of the reference block to
obtain a lower bound of the SAD given by (5.3), so that the decision as to whether
a motion vector candidate can be eliminated is made prior to the computation of
the SAD, which begins with the inputting of the last row of the reference block to
the system. This design requires N-1 row accumulators and an absolute difference

summation unit, as shown in Fig. 5.5.
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Figure 5.5: SEA design based on N-1 sub-blocks of sub-size 1xN. Each pair of inputs
corresponds to a couple of pixel values, N registers apart, taken from one of the lines
of the input data buffer.

Implementation based on horizontally-stacked sub-blocks

The SEA based on horizontally-stacked sub-blocks requires a different implementa-
tion. Our design uses a y-accumulator to calculate the column-wise sums of the
contents of a block-row. An illustration of the y-accumulator is shown in box A of
Fig. 5.6 for the case of the SEA using one sub-block of size (N — 1) x N, and in
box D for the case of the SEA using four sub-blocks, each of size (N — 1) x iZ—. The
column-wise sums are stored in the column-sum buffer that consists of N+2p shift
registers corresponding to the block-row length. When processing the next block-row,
the column-wise sums are updated by adding the corresponding contents of the last
line of the new block-row and subtracting the first line of the previous block-row. As
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Figure 5.6: SEA based on (a) one single sub-block of size (N — 1) x N and (b) four
horizontally-stacked sub-blocks, each of size (N — 1) x %.
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in the case of the vertically-stacked sub-blocks, the y-accumulator only accumulates
the first N-1 lines of a block-row so that the elimination signal can be generated prior
to the SAD calculation in the 2-D FSSA for each of the motion vector candidates.

The column-wise sums are then added up by the x-accumulator to obtain the sum
of the contents of a sub-block, as shown in box B of Fig. 5.6 for the case of the SEA
using one sub-block of size (N — 1) x N, or in box E of Fig. 5.6 for the case of the
SEA using four sub-blocks, each of size (N — 1) x %. There is a delay of % units (M
being the number of sub-blocks) between the two inputs to the x-accumulator, and
this delay corresponds to the width of a sub-block. Finally, as shown in boxes C' and
F of Fig. 5.6, a one-dimensional absolute difference array generates the lower bound
of the SAD that is to be compared with the current minimum SAD.

In view of the fact that a twin input data buffer is used to store the contents of N-1
lines of the (p+1)-th block-row for the case of the pseudo-spiral scan, as described in
Section 5.2, a twin column-sum buffer, as shown in Fig. 5.7, must be used to store the
column-wise sums resulting from these N-1 lines of data. These sums will be reused

as the column-wise sums for the p-th block-row at the beginning of the second raster

sub-scan.

5.3.2 Two Levels of Successive Elimination

As mentioned earlier, dividing a block into sub-blocks is expected to result in more
eliminated motion vector candidates, and hence, in increased power savings in the 2-D
FSSA module. On the other hand, the implementation of the SEA with an increased
number of sub-blocks increases the complexity of the circuitry and hence, results in

a higher power consumption in the SEA module. This may neutralize the savings
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achieved in the 2-D FSSA module. Thus, it is desirable to use an SEA with as many
sub-blocks as possible, while at the same time keeping the power consumption low.
For this purpose, we consider a two-level SEA as shown in Fig. 5.8. The lower level
SEA has a number of sub-blocks, whereas the upper-level one uses the whole block of
size (N —1) x N. The disable signal dis0 generated by the upper level is not only used
to disable the operations within the 2-D FSSA, but also those within the lower-level
SEA. As such, the work load of the lower-level SEA can be reduced. An example of
a two-level SEA based on horizontally-stacked sub-blocks is shown in Fig. 5.9, where
the lower-level SEA is based on four sub-blocks of size (N — 1) x %’—. Each level of the
SEA has its own x-accumulator as well as its own absolute difference unit, but they

share the same y-accumulator and column-sum buffer.
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Figure 5.8: 2-D FSSA assisted by a two-level SEA
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5.4 Simulation of Power Consumption

For the evaluation of the power consumption of the SEA-assisted 2-D FSSA systems,
we focus on the power consumption resulting from the switching activities in the
system [90]. A simulator using Matlab is designed to simulate the functionalities
of the 2-D FSSA and SEA, and monitor the bit-level switching activities in both
modules. These two modules comprise the following operations: absolute difference,
addition/subtraction, shift and comparison. As to the circuit-level components cor-
responding to these operations, we note that the operation of comparison can be
implemented using a subtracter, and the absolute difference can be implemented as
shown in Fig. 5.10, where the critical path contains a subtracter, a bit-wise inverter
and an adder. The required circuit-level components are summarized in Table 5.3,
where both the shift register and the inverter have one output, while the adder and
subtracter have two outputs, one being the sum, and the other being the carry. The
simulator counts the number of switching at the output of each of these components.
The validity of the simulator is verified based on whether the resulting block-matching
error is identical with that obtained from a direct matrix calculation when given an
identical pair of the current block and reference block. It has been verified that the
simulator is valid based on this criterion.

In order to evaluate the power consumption of the system, we define a unit of
power consumption, denoted by P, to be that required for switching one bit of the
sum output in an adder/subtracter. Based on the complexity of the circuitry of the
various components [90], the power consumption for switching one bit of the output
in each of the other components is estimated as Py, multiplied by a weighting factor.
A weight of 0.25 units is assigned to the output of a one-bit inverter, a weight of one
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unit to each bit of the carry output of the adder/subtracter, and a weight of one
unit to the output of a one-bit shift register, as shown in Table 5.3. The total power

consumption of the system for processing one frame is then estimated as

P = Sadd—-sum X Padd—sum + Sadd—carry X Padd-—carry + (55)

Sshift X Pshift + Sinv X ]Dinv

where

Sadd—sum aNd Sedd—carry denote, respectively, the numbers of switchings observed
by the simulator at the two outputs of the adders during the processing of one

frame,

Sshist and Sin, denote, respectively, the numbers of switchings observed by the
simulator at the outputs of the shift registers and inverters during the processing

of one frame,

Podd—sum 8nd Pogq—corry denote, respectively, the power consumptions for switch-

ing one bit at the two outputs of the adder, and

Pgpi5: and Py, denote, respectively, the power consumptions for switching one

bit at the outputs of the shift registers and inverters.
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The test frames used by the simulator are taken from the video sequences listed
in Table 5.1 at a step size of 20 or 30 frames. The block size used is 16 x 16, and the
search range is :15. Ten schemes of the SEA-assisted 2-D FSSA are considered. The
details of the schemes in terms of the number of SEA levels, type of data scan in the
search window, and the number and type of sub-blocks used are given in Table 5.4,

where the scheme RAS_V16 corresponds to the one proposed in [65].

Table 5.3: Power consumption for switching one bit of the output of each compo-
nent is estimated as P,,,, multiplied by a weighting factor, where P;,,, is the power
consumption for switching one bit of the sum output in a full adder.

Adder/Subtracter | Shift Register | Inverter
Psum Pcarry Pshift Pirw
Psum 1X Poymn 1% Pyum 0.25X Pyym

The power consumption for processing each test frame is estimated using (5.6) for
each of the schemes. Table 5.5 presents the frame-by-frame results for the sequence
Foreman, where the power consumption for the conventional 2-D FSSA is recorded
as a multiple of 10%P,,,,, and the power consumptions of the other schemes are
shown as percentage savings compared to that of the 2-D FSSA. The average power
consumption per frame for each of the sequences is shown in Table 5.6.

It is seen from these two tables that, in terms of the percentage power savings, the
eight one-level SEA schemes form two distinct groups: one using raster scan and the
other using pseudo-spiral scan. From Table 5.5, it is seen that for each test frame,
the smallest saving of the latter group is higher than the largest saving of the former
group by an amount ranging from 5.1% - 18.7%. Similarly from Table 5.6, it is seen
that in terms of the average savings per frame, the smallest saving of the latter group

is higher than the largest saving of the former group by an amount ranging from 5.4%
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Table 5.4: Configuration of the various simulated SEA schemes

2-D RAS | RAS | RAS | RAS Sp SpP | SP Sp SP2 | SP2

FSSA || -vie | H1 { _H4 | H16 || V16 | H1 | _H4 | -Hi6 || [H4 | _Hi6
Scan type:
raster (RAS) or RAS RAS | RAS | RAS | RAS sp SP | SP ) sp Sp
pseudo-spiral(SP)
No. of SEA levels - 1 1 1 1 1 1 1 1 2 2
Sub-block type:
vertically- (V) or - v - H H A% - H H H H
horizontally- (H)
stacked
No. of sub-blocks - 16 1 4 16 16 1 4 16 4 16

Note: For SP2 schemes, the number of sub-blocks refers to the number at the lower level
of the SEA.

- 30.4%. This clearly shows that the use of the pseudo-spiral scan significantly reduces
the power consumption of the SEA-assisted 2-D FSSA compared to that using the
raster scan.

Within the group using the pseudo-spiral scan, SP2_H16, the two-level SEA
scheme using the maximum number of horizontally-stacked sub-blocks provides the
largest savings; on the other hand, SP_H1, the one-level SEA scheme with a single
sub-block, has the smallest savings except for the case of the sequence Container.
The difference in the savings among the rest of the schemes is not significant.

Within the group using the raster scan, RAS_H1 , the one-level SEA scheme with
a single sub-block is, in general, outperformed by the rest of the three schemes, the
difference in the savings among the latter three schemes being not significant.

Based on the simulation results, a comparison of the power consumption of all the

schemes is shown in Fig. 5.11(a) for the sequences in QCIF format and Fig. 5.11(b)

for those in CIF or SIF format.
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Table 5.5: Power consumption per frame, expressed as a multiple of 10° P, required
to process certain frames of the Foreman sequence using the conventional 2-D FSSA,
and the percentage savings obtained by using various schemes compared to that of

the 2-D FSSA.

Fr. || Power Savings in power consumption
of 2-D RAS RAS RAS RAS sp SP Sp sp SP2 SpP2
FSSA _Vié _H1 _H4 .H16 _Vie _H1 _H4 _H16 _H4 _H16
20 367 43.3% | 39.3% | 47.9% | 45.3% || 63.1% | 57.8% | 67.7% | 65.1% | 69.4% | 70.4%
40 370 44.4% | 41.4% | 49.1% | 46.3% 66.4% | 63.1% | 71.3% | 68.3% 73.1% | 74.2%
60 367 46.1% | 45.2% | 51.0% | 47.9% || 68.0% | 68.7% | 73.6% | 69.9% || 75.5% | 76.3%
80 368 45.8% | 42.9% | 50.9% | 48.0% 60.6% | 56.0% | 65.2% | 62.8% 66.7% | 67.9%
100 361 46.9% | 45.3% | 52.2% | 49.4% || 66.6% | 64.7% | 72.3% | 69.1% || 74.1% | 75.0%
120 367 45.2% | 43.4% { 50.5% | 47.4% || 65.6% | 62.6% | 71.0% | 67.9% | 72.7% | 73.6%
140 361 44.4% | 41.0% | 49.2% | 46.6% || 63.4% | 59.2% | 68.3% | 65.6% || 70.0% | 71.1%
160 372 45.9% | 42.8% | 50.6% | 47.9% || 65.6% | 62.3% | 70.4% | 67.6% || 72.2% | 73.4%
180 358 43.5% | 39.9% | 48.4% | 45.7% || 63.0% | 57.6% | 67.8% | 65.2% | 69.3% | 70.5%
200 359 45.5% | 42.9% | 50.1% | 47.3% || 65.3% | 61.2% | 69.9% | 67.1% || 72.0% | 73.2%
220 356 46.1% | 44.1% | 51.2% | 48.2% || 67.2% | 65.1% | 72.7% | 69.3% || 74.6% | 75.5%
240 372 44.3% | 411% | 49.1% | 46.4% 62.2% | 57.1% | 66.8% | 64.3% 68.2% | 69.4%
260 357 41.8% | 39.9% | 47.7% | 44.8% 62.2% | 58.5% | 68.1% | 65.2% 68.9% | 69.8%
280 360 38.1% | 31.7% | 40.6% | 38.7% || 58.6% | 49.4% | 60.8% | 59.3% || 63.1% | 64.9%
300 326 34.5% | 30.6% | 35.6% | 34.8% 56.9% | 49.8% | 58.3% | 57.3% 62.1% | 64.4%
320 395 43.4% | 33.3% | 43.7% | 43.6% || 64.1% | 52.2% | 64.7% | 64.3% || 66.3% | 69.3%
340 403 41.9% | 29.1% | 41.7% | 42.9% || 65.7% | 48.7% | 65.2% | 66.7% || 65.5% | 70.2%
360 408 46.0% | 37.1% | 48.5% | 47.2% || 71.3% | 63.2% | 75.3% | 72.5% || 75.8% | 77.0%
380 406 45.6% | 38.5% | 47.4% | 45.7% || 71.5% | 66.1% | 74.9% | 71.5% || 76.7% | 77.5%
399 406 45.3% | 36.7% | 46.4% | 45.5% || 71.2% | 63.6% | 74.0% | 71.3% || 75.7% | 77.0%
Avg. 372 43.9% | 39.3% | 47.6% | 45.5% || 64.9% | 59.3% | 68.9% | 66.5% || 70.6% | 72.0%

5.5 Summary

In this chapter, we have introduced a pseudo-spiral scan and used it in an existing
architecture that combines the successive elimination algorithm with the conventional
2-D full search systolic array for the purpose of increasing the number of motion vector
candidates that are eliminated. We have developed several schemes for the successive
elimination algorithm that are based on horizontally-stacked sub-blocks introduced
in this chapter. A simulator monitoring the circuit-level switching activities has been
designed to estimate the power consumption of the various schemes using either the

raster scan or the pseudo-spiral scan. The simulation results have shown that using
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Table 5.6: Average power consumption per frame, expressed as a multiple of
108 P,,,,, required to process certain frames of the test sequences using the conven-
tional 2-D FSSA, and the percentage savings obtained by using various schemes
compared to that of the 2-D FSSA.

Power Savings in power consumption

of 2-D RAS RAS RAS RAS spP Sp SP sp sp2 SpP2

FSSA Vié H1 _H4 _Hi6 V16 _H1 _H4 _H16 _H4 _H16
For 372 43.9% | 39.3% | 47.6% | 45.5% || 64.9% | 59.3% | 68.9% | 66.5% 70.6% | 72.0%
Mot 353 44.5% | 43.1% | 48.8% | 45.9% 66.7% | 66.3% | 71.5% | 68.1% 73.4% | 74.2%
Car 346 44.9% | 41.5% | 49.0% | 46.5% || 64.8% | 62.0% | 69.7% | 66.3% || 71.6% | 72.2%
Con 329 33.3% | 36.8% | 38.1% | 34.9% || 68.5% | 71.9% | 73.8% | 70.1% 75.8% | 76.6%
Foo 1516 27.4% | 17.6% | 26.1% | 26.7% 48.6% | 32.8% | 45.2% | 47.9% 45.7% | 50.7%
Gar 1567 27.1% | 18.5% | 26.3% | 26.4% 58.3% | 39.2% | 54.3% | 57.7% 54.9% | 61.2%
Coa 1669 15.1% | 14.4% | 18.4% | 15.6% 42.0% | 38.5% | 44.1% | 42.5% 44.8% | 45.7%

Note: The sequence Foreman is sampled every 20 frames and the rest every 30 frames.

a pseudo-spiral scan can provide significant power savings compared to that using a
raster scan. Among the various schemes considered for the implementation of the
successive elimination algorithm, the one using two levels and the maximum number
of horizontally-stacked sub-blocks has been shown to provide the maximum amount

of power savings.

97



SP2_H16

SP2_H4 RAS_Y16
SP_Y16 RAS_H16
SP_H16 BRAS_H4
SP_HY gp RAS_1 2-D FSSA
| | .
0% 30% 40% 60% 100%
@)
SP2_H16
3P2_H4 RAS_Y16
SP_Y16
RAS_H16
SP_H16 RAS H4
SP_H4 -
| SP_1 RAS_1 2-D FSSA
| | N
0% 50%  60% 30% 100%
{s))

Figure 5.11: Comparison of the power consumptions of the ten SEA schemes: (a) for
the QCIF sequences; (b) for the SIF and CIF sequences.
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Chapter 6

Conclusion

6.1 Concluding Remarks

The block-matching motion estimation is an effective and most commonly used tech-
nique to reduce the temporal redundancy in digital video sequences. The elimination-
based full search algorithms, as one category of block-matching motion estimation al-
gorithms, have the advantage of providing a higher motion estimation accuracy than
that by any partial search algorithm; the computational complexity of the former is
generally of the same order as that of the latter. This has made the elimination-based
full search a good competitor of the partial search in the BME. Motivated by this,
several new techniques using the elimination-based full search have been developed
in this thesis for software and hardware implementations of the BME.

A new full search algorithm for the BME that employs the mean squared error
(MSE) as the matching criterion, and provides a motion estimation accuracy higher
than that provided by any search algorithm which uses the mean absolute difference

(MAD), has been developed. The MSE is calculated in the Haar wavelet domain
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so that the larger terms of the MSE are given a higher priority for the purpose of
elimination of the impossible motion vector candidates. It has been shown that this
elimination strategy has led to a computational complexity, which is significantly
lower than that of the existing partial distortion elimination algorithms, and lower
than or comparable to that of the successive elimination algorithms.

For the multi-reference-frame block-matching motion estimation, we have investi-
gated the statistical characteristics of the temporal motion vectors and the reduction
of block-matching error resulting from an increase of the memory depth. Our find-
ings confirmed the validity of the commonly-made assumption that the best block
matching most likely occurs in the first few frames of the memory. Based on these
findings, a new approach to the multi-reference-frame block-matching motion esti-
mation has been investigated, wherein a full search is performed over the first few
reference frames of the multi-reference-frame memory to provide a motion estima-
tion accuracy that is higher than what can be achieved by any approach that uses
a partial search. The computational complexity of the multi-reference-frame block-
matching motion estimation has been significantly reduced by an early termination
method proposed in the thesis, which keeps track of the block-matching error on a
reference-frame-by-reference-frame basis and terminates the temporal search when
further search is deemed unnecessary. It has been shown that this early termination
method incurs no or a little loss in the motion estimation accuracy.

A new pseudo-spiral data input scheme, which can be used in any existing hard-
ware architecture for the implementation of the successive-elimination-based block-
matching motion estimation, has been proposed. Compared to the conventional raster

data input scheme used in such an architecture, the proposed data input scheme has
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been shown to provide significant power savings. Several designs, which are based
on a new block segmentation scheme, have been given to implement the successive
elimination algorithm. Some of these designs have been shown to provide additional

savings in the power consumption of the system.

6.2 Scope for Future Investigation

The MSE-based fast full search algorithm proposed in Chapter 3 uses a four-level
Haar wavelet transform, in which the lower-frequency region is decomposed into four
sub-regions A, V, H and D at each level. Since it is in the sub-region A that the larger
coeflicients are expected to be concentrated, any other scheme that gives rise to the
sub-region A and preserves the value of the MSE can also be considered for the purpose
of developing alternate full search algorithms. An optimal scheme would be the one
that requires the least number of look-up tables and has the lowest computational
complexity.

For the multi-reference-frame block-matching motion estimation, it has been ob-
served in this study that there is a high probability that the motion vector of a given
block are identical to that of one or more of its neighboring blocks. Making use of this
correlation might further reduce the computational complexity of the multi-reference-
frame block-matching mot@on estimation. The investigation could be carried out in a
broader framework, wherein blocks of variable size are used, as in the case of H.264.

In the study for reducing the power consumption of the 2-D full search systolic
array, further investigation could be carried out concerning the development of various
implementations of the successive elimination algorithms and new algorithms that can

be applied to the 2-D full search systolic array instead of the successive elimination
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algorithms. For example, the partial distortion elimination may be applied to the
2-D full search systolic array by adding additional comparison units at the output of
certain absolute-difference-accumulation units. It is obviously not economical to add
a comparison unit to each of the absolute-difference-accumulation units; hence, an
interesting investigation would be to determine the optimal number and location of
these comparison units.

Apart from the efforts to optimize the full search at the algorithmic level, an
interesting study would be the processor-level optimization of the various fast full
search algorithms, given the many features that the current computer processors can

offer, such as the pipelined data processing units and the instruction-level pipelining.
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