USING TEXT CLASSIFICATION TO AUTOMATE
AMBIGUITY DETECTION IN SRS DOCUMENTS

H M ISHRAR HUSSAIN

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE &

SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

AUGUST 2007

© H M ISHRAR HUSSAIN, 2007



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34442-2
Our file  Notre référence
ISBN: 978-0-494-34442-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

Using text classification to automate ambiguity detection in SRS documents

H M Ishrar Hussain

Software Requirements Specification (SRS) is one of the most important artifacts produced
during the software development lifecycle. In practice, requirements specifications are
initially written in natural language, which allows them to be corrupted with different forms
of ambiguity that eventually may contribute to critical failure in the subsequent phases of the
system’s development, if they are not detected at the time of requirements validation. The
objective of this work is to study possible automation of detecting ambiguity in SRS
documents by means of a text classification system. The work is a part of a larger project
aimed at applying Natural Language Processing (NLP) techniques to assess the quality of

SRS documents.

In the absence of a standard annotated corpus, we collected SRS samples and carried out
corpus annotation process to build corpora of our own, one at the sentence-level and the other
at the discourse-level. The annotators were trained with an annotation guideline, which was
written based on the quality model that we had developed. The process showed substantial
level of inter-annotator agreement indicating the possibility of automating the task by a tool
that can accurately emulate the human annotation process. The resultant corpus was then

used for training and testing our text classification system.

We set the scope of this thesis to detect ambiguity at the level of surface understanding
only, since the indicators of its possible existence in text can be realistically extracted by the
currently available NLP tools. We developed two different decision-tree-based text
classification systems that worked at the sentence-level and the discourse-level, and
conducted a series of experiments training and testing the classifier with different sets of
features. Finally, merging the two classifiers together yielded optimum results with an
accuracy of 86.67% in detecting ambiguity at the level of surface understanding. To our

knowledge, none of the previous work in the field of Requirements Engineering (RE) has

1l



tested the applicability or performance of using a text classification system to automate the
detection of textual ambiguities. Our work, thus, provided significant evidence on the
prospect and feasibility of using a text classifier to automate ambiguity detection in SRS

documents.

Keywords

Software Requirements Specification, Text Classification, Natural Language Processing.

iv



Acknowledgements

I pay my sincere gratitude to all the people who made this thesis possible. Much of my
appreciations go to my supervisors, Dr. Olga Ormandjieva and Dr. Leila Kosseim, for their
continuous guidance and support. Also, their efforts in the corpus annotation work for this

thesis is invaluable.

Many thanks to the members of TROMlab and CLaC laboratory for their time-to-time
suggestions, and to Shadi Moradi Seresht, for her valuable efforts in the corpus annotation. I

am indebted to them all.

Finally, on a personal note, I would like to convey my thanks to my parents, and my wife for

their inspirations and encouragements to complete this task.



Contents

List of Figures vessesssnnsnnansnsnsnesnesneses xi
List of TableS.....cccoecererrensnrssresrrssnssassanssssssssssssassanssessnns xiv
1 Introduction 1
1.1 INrOQUCHION.......oviiiiiiititctetecte ettt sbe e ens 1
1.2 What 1S SRS ... e e 3
1.3 Quality Of SRS ... bbb ens 3
1.3.1 IEEE Standard 830-1998 ..........ccooiiiiiiincesenree e 4

1.3.2 MEYET’S SEVEI SINS ....ouvreieririiriiniiriireiereteeesessrsessessessesessessessessessessesssssesseneenes 4

1.4 Ambiguity in SRS ..ottt e 5
1.5 Ambiguity in terms of Reading Comprehension ...........c.ocovvevvreeveeverneeeeriineinennnnnn 6
1.5.1 Ambiguity in Surface Understanding ..............cceovvervvrreereenrenrinivereceeeseeeseeneones 7

1.5.2 Ambiguity in Conceptual Understanding ..............ccccevvrvveivneneneeeeeneeeeeee e, 7

1.6 GO0als OF the TRESIS.....cc.ccuiiriririircerceree e re 8
1.7 Overview Of the TRESIS ......c.covvveveirereiincine e 10

2 Objectives and Research Methodology 11
2.1 INETOQUCHION....c.coviiiiriiririeteeecrtct st resre st ae e e sesa s e e b ene e esennerens 11
22 ODBJECHIVES .ottt et ettt et a st a s e st e saesa et et sanenseasensensenses 11
2.3 Research Hypothesis........coiiiivireniriiiniiiieseese et 12
2.4 Research Methodology ........c.vccuiviiririiniiicceccceee et 13
241 INCEPLION ...cviiiiiiiicic ettt st n e e neneses 15



242 POt STUAY .ot e anes 16

2.4.3  Corpus ANNOLAtION......ccccceerrrereiierereerieeeeererererreeareesreesanneesereessnreesnneesnessnsaesssnes 16
2.4.4 Feature extraction and SElECHION ........c..ceceeeeercriirrrcire e 17
2.4.5 The Sentence Classifier ..........cccverirrrininierercnneienererecereeeee e 17
2.4.6 The Discourse Classifier.........ccccvviiiiinimiininiiniicecen e enesceesnesresseennens 18
2.5 Tools Used in the TReSiS......ccccvvirvririniiininieniiniiiereeesee e seesre e s sane s 18
2.5.1  DHCHOMNATY ..ottt st st se e esaesnenne e 18
2.5.2  SYNtaCtiC PAISEr .....cccoviiriiieeeeirirren e 19
2.6 Text ClassifICatiON .....cc.vvviriiririierrereesii ettt sraesreenesbnsreens 19
2.6.1 Case: Text Classification in Detecting Subjectivity ........c..ccovvvnrivrerinieniernrenne,s 20
2.7 Performance Measurement Metrics: Kappa........cocoocvevvienivnincininninninienieneneseenenees 20
2.8 CONCIUSION ..ottt sre s sne 22
3 Literature Survey 23
3.1 INIrOQUCHION.......cviiiiiitcetceteteee ettt sttt s 23
3.2 Manual Detection PrOCESS..........cecvvrevevreeeeererienniirieenmnenieseneneeresteeeressensseneseeseenes 23
33 Restricting Natural Language ..........cccceevevrerrenerernninenesiessesesesesesesesessessesees 25
34 Using NLP Tools on Unrestricted Language..........ccccoeoevvvereiivneeninnnnnneeneneens 26
341 QUARS. .. e e s b s en 27
342 ARM ittt r et bbb e 28
343 NEWSPEAK. ..ottt ettt 29
344 CHICE..c.eiieeeeiee ettt et e b et sae b r et ereenes 29
35 CONCIUSION ...iviiiiiiiiiircccrcie et re s st sbeesabessbeesbsesabesnbeesbassneennsenanens 30
4 Corpus Annotation 31
4.1 INrOQUCTION.......cviiiiitieict ettt a e ennes 31
42 The ANNOTALOTS........oieecieieieiieiieeee e e as 32

vii



TG T U 4 TS 0713 4o 1o OO R 33

4.3.1 Discourse-level COPUS........cccviriierrierierieeneenre e eeeresee e ssreeseesreeenes 33
4.3.2  Sentence-level COrPUS ....coviriiiiiriiiiiecreneeseetete e see e sressesnesnesnesrs e 34
44 DiSCOUISE ANNOLALION. ......cvveveeeeeeeieirinreireicereetenrirese e reenesnesnesaessnesnesneensesresnnes 34
44,1 Training and ANNOLAtION.........cccovcrecrirriiiiniiiiiire e 34
4.4.2 Results and ANalysiS........ccouvererririireerinnierereinieresreseesee s e eene e 39
4.5 Sentence ANNOLAION ...c..cverrerrereeeeee e s 46
4.5.1 For Surface Understanding Only ..........c.ccorvrvermnirneninnininiere e 46
4.5.2 Informal Task of ANNOtAtION ........cocevevreviereriiirineice e 47
4.5.3  RESUILS.c.eicteriiiiiiiierereseere et en e sse e s ee sttt e s e s esreeenenneennens 48
4.6 CONCIUSION ..ottt ettt sr et cae et ebe et et eer et sre e 48
5 Sentence-level ClasSifiCation .........ccvevensensensensensnisnssissnssnsissnssissnssnessssisssssessssssssessessessssses 50
5.1 MEthOAOLOZY ....oveveeniiiiciiie sttt e b e senestessaeaessesaaensas 50
5.2 PrEPIOCESSING ....ceovveiirreriiiiiirieteienreeest ettt se et s saeetessesanenees 52
53 List Of FEAtUIeS .....cocoiuiiiiiiiiiee e 52
5.4 Feature Extraction at the Sentence-level............ocoovinininininnceceee 53
55 Choice of Machine Learning Algorithm..........cccccevvvvveeviveennieninneneseeseeeeseeeeenens 58
5.6  Experiment and RESUIS .........cccccovriiiiiiiniiiiinenenenitetereeeereess e seen 58
5.7 CONCIUSION ...ttt st n e s 60
6 Discourse-level Classification 61
6.1 MEthOAOLOZY .....eveeeieiriiiirii ettt st sre s sees e sae s esaesnen 61
6.2 Using Discourse Features..........cooocvvivviiiiiricinieee s ssee e sve e e essenessenes 63
6.2.1  Pre-PrOCESSING.......eivieiuirtiiiiitietecienit ettt et s st s snesre e 63
6.2.2  Our Initial List 0f FEAtUres........cccccevvvrieiriniiniiniiieieneeineenie e ssessessessessnens 65
6.2.3 Sentence Parsing and Feature EXtraction...........ccccevcvneerinivenienvenieninenesieenesnnens 66

viii



6.2.4 Training data file..........coeeeiiinrecncnn s 67

6.2.5 Choice of Classification Algorithm..........ccocevevivinvinnniniii, 69
6.2.6 Experiments and Results...........cccccooiiiniiiiiiiniiniccn 69
6.2.7  ANALYSIS ..ovviieiiieeieee ettt et e st r et e bt san e san e 77

6.3 Using the Sentence Classifier ...........cocevvevierninieneneeieccc 79
6.3.1  PIEPIOCESSING.....couiieiiiriiiiieieiieniceienre ettt s b s sr s srne s 79

6.3.2 Ambiguous Sentences as a Discourse Feature.............cocceveeviniininieninnnncncns 80
6.3.3 Building the Discourse-level Classifier ..., 82
6.3.4 Experiment and Results ...........ccooeveiviininiiniiiien, 84

6.4 Performance Evaluation Compared to Human .............cccccoveevveeninniienneeniennennnees 85
6.4.1 Discourse Classifier That Used Discourse Features..........co.eeveeenenccrnennnennenn 85
6.4.2 Discourse Classifier That Used Sentence Classifier..........c.ccccvvviviinicnccnienniens 87

6.5 Compared To Existing Tools or Approaches.........c.cccoovvvviinniniininnnne, 89
6.6 CONCIUSION ...ttt ettt n e sba e s n e ennaee 91

7 Design and Implementation........oveecnernsssnsancsnnes 92
7.1 Domain Model ......cocooiiiiiiiiiii e e 92
7.2 The PrOtOtYPe .....coveiiiiiiictccrec e 93

8 DUSCUSSION ..uceveiineienrniirnssansenssnssenssessucssessassnnsseesasssssssessassssssossassasssassnssans 94
8.1 INEOAUCLION. ....vevveueeceiieiieiiceet et e en e 94
8.2 Significance of Our Work ..o 94
8.3 List Of LIMITAtIONS......c.coiiriirireeeecrcrieree e ene s 96
8.4 L0703 10] 113 (o)« K TS TRPPN 97

9 Conclusion and Future Work .99
Bibliography 101
Appendix I 108

ix



Appendix 11

Appendix IIT




List of Figures

1

10

11

12

13

14

15

16

17

NLP-driven Quality Assessment in Requirements Engineering (shaded region

shows the scope of this thesis) ........cvvveriririievircrere s 2
Quality Model for Software Requirements Specification..........ccocceeveevererieeriinceenenennnns 8
Summary of Research Methodology .......c.ccevvirieviininniciiiiiiiicciccccn 14
Concept of QuARS as proposed by Fabbrini ef al [2001].......cccoovivevinininininien, 28
COorpus ANNOLALION.....cc.eeviiriiriiiiiiieetccitcre et 32
Efforts of All the Annotators (in hOUTS)..........ccoovvviiieiiniinicecece e 39

Distribution of the discourse-level corpus based on the scores of surface

UNAETSTANAINEG ..ecvviviiiiieeeeterene et eses e s e st e rreseesseseeessesasassessnessesssessesssssrnesnens 41

Distribution of the discourse-level corpus based on the scores of conceptual

UNAETSLANGING ......veeeererieiiieiere e eres b stessaeesrreesbessrresanesssesssessseesseesnes 42
Pair-wise inter-annotator agreement with gold-standard...........cccceovervvninincnnincnnn, 44
Multiple Annotators’ AGIEEMENL...........cccueverrirrererirereirieeesreserereesesreeeesresnessessesanens 46
Distribution of Sentence-level Corpus after Sentence Annotation took place............... 48
Automatic Feature Validation and Dynamic Generation of Ambiguous Keywords.....51
Steps of Sentence-level Classification..........cocovvevverieieviiniiceeeeece e 51

Training data file (in ARFF format) saved by the sentence-level Feature Extractor....57

Decision Tree generated by C4.5 algorithm for Sentence Classification...................... 59
Discourse-level Classification using Discourse FEatures............ccocevvevvnienvinscenrnnnennnn. 62
Discourse-level Classification using the Sentence Classifier.........c.ccocevvvviinienviiniennnnns 62

X1



18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Distribution of the Corpus after preprocessing tasks mentioned in section 6.2.1.......... 65

Training data file (in ARFF format) saved by the discourse-level Feature Extractor

MENONEd 1N SECTION 0.2.3 ...iiiiiieirieeeeeeeeeeetteeee e ettt eeeesteetstassseesseressassseesssrrrennes 68

Decision Tree of C4.5 using 4 major manually combined features (wrong directional

branches resulted from noise are shown in circle) ........ccoovveveiiiniiciieiinnniinneene, 74

Decision Tree of C4.5 using 4 major linear regression features (one wrong directional

branch resulted from noise is shown in Circle).......ccvvvvveriririeniininienieneneneneneenns 76
An example of a passage from OUr COTPUS........c.ccoeeiviiiininicieenenneeceee e 77
Distribution of the Corpus after preprocessing tasks mentioned in section 6.3.1.......... 80

Number of Ambiguous Sentences detected by the Sentences Classifier in the
instances of the Discourse-level Corpus (Instances are sorted by Anootator3’s

scores during annNOtAtioN) .......c.ccoveriiiieiiircenierneterereee e eeesre et s sr e s 81

Training data file (in ARFF format) saved by the discourse-level Feature Extractor

MENtONEd 1N SECION 6.3.2...uvveiiiiiieiiirieeeeererirereeeeeernrreessessssssssnrraesssssssssrreeresssss 82

Decision tree generated by C4.5 learning algorithm [Quinlan, 1993] after training with

the feature-values mentioned In SECHION 6.3.2 .....oooiiirviiiiiiiirereee e ceresrrrrrree e 83

Performance evaluation of discourse-level classifier that uses discourse features
compared to human annotators in terms of their level of agreement with the

gold-standard, which were decided by the median of the annotators' scores......... 86

Performance evaluation of discourse-level classifier that uses the sentence classifier

compared to human annotators in terms of their level of agreement with the

gold-standard, which were decided by the scores of Annotator3........................... 88
Domain Model of OUr SYSIEIM .......cccoveririirinier e se e eneens 92
ReqSAC: The prototype of our SYStEM..........cecveueeieiririenienieriesre et 93
A snapshot of the main window of REQSAC.........ccooeiiieriirn e 127
A snapshot of ReqSAC showing the File menu..........cccceevveeveeneeneniieeeceereeeceeesrenns 128
A snapshot of ReqSAC showing the Edit menu...........cccceevvvvveeceeniiccienceeseeceeeee e 128

X1i



34 A snapshot of ReqSAC checking the ambiguity of a text with "Explanation On"

35 A snapshot of the Sentence Classification Tree viewer window of ReqSAC .......

36 A snapshot of the Discourse Classification Tree viewer window in ReqSAC......

Xiii

......



List of Tables

10

11

12

13

14

15

16

17

18

Meyer’s “The seven sins of the specifier” [Meyer, 1985].........cccvvvvnivniininnninnis 4
Interpretation of the values of Kappa index [Landis & Koch, 1977] .......c.cccocvvinnninne. 21
Checklist for Ambiguity detection [Kamsties et al, 2001] ......c.ccccovvvvvinnininininnnnn, 24
Quality Indicators of NL Requirements Specification [Gnesi et al., 2005].................. 27
Example of the annotators’ SCOres On ONe Passage.........cocevvivrriiiiiniviieninniineesnesiens 40

Example of the annotators’ scores on the same passage with their median and the

GOld Standard.............covvveverenirinin e s 41
Contingency table to compute the Kappa index ........c.ccocoevenvivvinciniinininicciciniinns 43
Likelihood Ratio of the keywords of POS Category DT........cccoiniininiicicnnininns 55
Ranking of Features at the Sentence level..........ccoooeiinnnc 56
Results of using C4.5 algorithm to classify sentences...........ccccoovvviinnininininininnes 59
A hypothetical example of the preprocessing task ...........cocecvvioirivniininiinininenne, 63
Improvements in Kappa after reduction in COrpus Size .........oevvvvvevvvvirinniiiiiiinnnens 64

Absolute values of correlation between “each of the values of the initial feature list
and the median of all the annotators’ Surface Understanding scores” pairs for all

INSEANCES ...eiuvreierenieererieeieeniresereeseesseesenessseesnessrnraneseesaseesrresrnsernessnressnessaesssesnneenn 67
Results of using C4.5 algorithm on initial 15 features .........cocvvvevirieninininccenennne 70
Results of using C4.5 algorithm on initial 15 features + (Uniques /word) as a feature71
12 of the initial features manually combined into four major features............c..ccovenuee. 73
Results of using C4.5 algorithm trained with 4 major features ...........cccccoeevivvenennes 73

Twelve of the initial features combined by linear regression into four major features 75

Xiv



19

20

21

22

Results of using C4.5 algorithm trained with 4 major features ............ccccooviivnicnnnnne. 76

Feature Values of Example in Figure 22 ........ccoooviiiiniiiniiiiiiceinenns 78
Results of using the new discourse-level classifier, presented in section 6.3.3............ 84
Comparison of our classifier with the systems/approaches used in with studies ......... 90

XV



Chapter 1

Introduction

1.1 Introduction

One of the integral phases of the software development lifecycle is Requirements
Engineering (RE), where it is imperative to understand the software in whole before actually
building it. The task can be cumbersome, since requirements are recorded from the
stakeholders (especially clients and users), who have inadequate know-how to specify them
unambiguously, often leading to an erroneous analysis. Failure in this phase can disrupt the
work of any subsequent phase, causing a huge escalation in the overall cost of the software’s
development. A study by The Standish Group [1995] shows that the United States spend
“$250 billion each year on IT application development of approximately 175,000 projects,
and 31.1% of those getting cancelled before they ever get completed.” The study then reveals
“incomplete requirements and specifications” as one of the primary reasons of their failure,
and suggests “clear” requirements statement as one of the key factors of successful software
development. We can, therefore, deduce that (semi-) automated detection of unclear or
“ambiguous” requirements statements can serve a great deal in performing faster and more
accurate Requirements Analysis, and thus, minimizing the overall costs of software

development.

Our research aims to detect the presence of possible ambiguity in software requirements
specification (SRS) documents during the requirements elicitation phase. Our approach relies
on the usage of a text classifier that emulates human reading comprehension considering a
number of quality characteristics to differentiate between ambiguous and unambiguous

requirements. The work is a part of a larger project aimed at applying Natural Language

1



Processing (NLP) techniques to the RE process (see Figure 1). The objective of NLP

assessment in the context of that project can be expressed in terms of three main goals:

Gl. Automatic NLP-driven quality assessment of the textual requirements in the

requirements gathering and elicitation phase.

G2. Automatic NLP-driven quality assessment of the textual requirements in the analysis and

specification phase, where conceptual static and dynamic models are developed from the

textual requirements.

G3. Graphical visualization and animation of the conceptual models extracted from the

requirements text for the user’s validation and feedback.

Write
SRS

NLP: Static

Analysis

Visualization of
Requirements
Through
Flash Animation

sl

_Path.of.

Execution’ [*

NLP: Dynamic |,

Analysis

I

Figure 1: NLP-driven Quality Assessment in Requirements Engineering

(shaded region shows the scope of this thesis)

This thesis is concerned with the challenges inherent in understanding the initial textual

requirements (as stated in G1 above) using NLP and, specifically, text classification

2



technique. The objective is to identify the textual ambiguities in the requirements elicitation
phase before the conceptual modeling of the requirements begins. In this chapter, we will

briefly introduce the concepts related to our work.

1.2 Whatis SRS

Software requirement specification (SRS) documents are the medium used to communicate
user’s requirements to technical people responsible for developing the software. Leffingwell

and Widrig [2003] defined a software requirement in their book as follows:
- A software capability needed by the user to solve a problem to achieve an objective

- A software capability that must be met or possessed by a system or system component

to satisfy a contract, standard, specification, or other formally imposed documentation.

This indicates that the task of writing requirements as a two-way process, where both the
users (and/or clients) and the technical people (analysts, developers, managers and others) are
involved. Thus, the common practice is to write the SRS document without any formalization,
i.e. in plain natural language (NL), so that it can be easily conveyable between the two parties.
An SRS document specifies features of a software that enriches the understanding of the
developers on the particular software, and also acts as the primary contract for the potential
users to verify if the software meets their need. This imposes additional emphasis on its text

to be clear and accurate.

1.3 Quality of SRS

An SRS document is carefully written in natural language with the goal of maintaining some
good quality characteristics. In this section, we discuss the quality characteristics put forth by

IEEE, and also the problems faced by a requirements specifier in maintaining these qualities.



1.3.1 IEEE Standard 830-1998

This standard describes the practices recommended by IEEE [1998] to write an SRS
document, and also defines the quality characteristics of a “good” SRS document. They are:
(1) Correct, (2) Unambiguous, (3) Complete, (4) Consistent, (5) Ranked for importance, (6)
Verifiable, (7) Modifiable and (8) Traceable. Here, the definition of “Unambiguous” set by
the standard corresponds to an SRS document, where each of its statements has only one
interpretation. The IEEE standard further mentions that the inherent ambiguous nature of the
natural language can make the text of an SRS document fail to comply with the aforesaid rule

making it ambiguous, and thus, degrading the overall quality of the document.

1.3.2 Meyer’s Seven Sins

Bertrand Meyer [1985], in his paper, showed areas of SRS document, where a specifier is
more prone to make mistakes. His study presented a thorough description of such mistakes
by classifying them into seven distinct categories or “seven sins”, as he preferred to call them.

All these sins deteriorate the quality of an SRS document. Meyer defined them as below:

Noise The presence in the text of an element that does
not carry information relevant to any feature of
the problem.

Silence The existence of a feature of the problem that is
not covered by any element of the text.

Over- The presence in the text of an element that

specification corresponds to a feature of the problem but to
features of a possible solution.

Contradiction The presence in the text of two or more elements
that define a feature of the system in an
incompatible way.

Ambiguity The presence in the text of an element that makes
it possible to interpret a feature of the problem in
at least two different ways.

Forward The presence in the text of an element that uses
Reference features of the problem not defined until later in
the text.
Wishful The presence in the text of an element that
Thinking defines a feature of a problem in such a way that

a candidate solution cannot realistically be
validated with respect to this feature.

Table 1: Meyer’s “The seven sins of the specifier” [Meyer, 1985]

4



In Table 1, we also find Meyer defining the problem of “Ambiguity” similarly to the IEEE
Standard [IEEE, 1998]. We can, therefore, extend the notion in light of the IEEE standard by
mentioning that the ambiguous characteristic of the natural language is responsible for this

problem.

However, in this thesis, we, inspired by more recent work in this area, use to the word
“Ambiguity” within a larger context (see the next section), and all “the seven sins”, including

what Meyer defined as Ambiguity, become subsets of what we define here as Ambiguity.

1.4 Ambiguity in SRS

Ambiguity in SRS document can exist in various forms within the NL texts of a Software

Requirements Specification (SRS) document. Consider the following two examples:

(1) Most commonly, the orders are matched in price/time priority: The order with the

better price has a higher priority than an order with a worse price. [Layda, 2000]

(2) Design a program that allows a network operator to plan changes in every parameter
of every cell in the network. These planned changes should be verified for consistency
and correctness and then applied to the network in the least disturbing way. [Kriens,
1996]

In example (1), it is impossible to interpret exactly how much price is “better” or “worse”,
since there can be many subjective interpretations of better or worse prices. In addition, the
text also does not explain how much change the “priority” is to experience with the increase
or decrease of price. Thus, example (1) is ambiguous since we cannot find the exact meaning

of its text, in other words, we can come up with more than one interpretation.

On the other hand, in example (2), the text does not specify how to verify the changes of the
cells for consistency or correctness. So, we find example (2) to be ambiguous as well, since

the feature it describes cannot be realistically implemented in a formal design model, let



alone executable code, due to lack of information. In Table 1, Meyer defined such a

phenomenon as “Silence”.

Note that, like the “Silence” shown in example (2), all the “sins” of Table 1, can make the
text ambiguous in such a way that it cannot be realized into any design model of formal
specification. Such ambiguity usually exists within a passage, comprised of more than one
sentences or paragraphs. Thus, one sentence alone may not be enough to instigate such
ambiguity. On the other hand, the kind of ambiguity introduced in example (1) is limited to
the scope of a single sentence, affected by linguistic elements that generate ambiguity, such

as the words “better”, “higher” or “worse”, as shown in the example.
b

In this thesis, we define ambiguity as the difference between the depiction of an informal
textual description of the problem (requirement) and the description of the solution for the
informal domain where the intents lie. We affirm that lowering the level of ambiguity in the
textual requirements document will lead to a better quality conceptual description (model) of
the solution, and also reduce the amount of time required for requirements analysis and

specification.

1.5 Ambiguity in terms of Reading Comprehension

In our work, we use the term ambiguity in its general sense — the characteristics of the
language used in an SRS document that make its content difficult to interpret or to realize
into a design model of formal specification (e.g. the Domain model, the Use Case model,
System Sequence Diagrams etc.). This leads us to focus on human reading comprehension of
SRS documents, which is also the foremost task in the common practice of requirements

analysis.

Comprehension of the requirements text describing a problem and its domain can typically be
divided into two broad levels: the literal meaning (or surface understanding) and the
interpretation (or conceptual understanding). Reading at the surface level, means
understanding the facts stated in the document. It allows us to answer common questions
involving who, what, when and where. The second reading level involves the interpretation

of the document: understanding what is meant or implied rather than what is stated. This

6



involves making logical links between facts or events, drawing inferences and trying to
represent the content more formally. Stakeholders of all kinds involved in the use and
development of a system should be able to understand an SRS at both the surface and the

conceptual levels.

The following sections map the concepts of reading comprehension with the definitions of

different kinds of ambiguity introduced earlier in section 1.3 and 1.4.

1.5.1 Ambiguity in Surface Understanding

In the context of our work, we use the term “Surface understanding” to denote how easy or
how difficult it is to understand the facts stated in the document, without judging its design or
implementation concerns in terms of any software engineering concept. Thus, increasing
difficulty in this level of understanding represents possible failure to identify the exact
interpretation of the text, which partly supports for what Mayer’s [1985] work and the IEEE
Standard [IEEE, 1998] defined as “Ambiguity”.

Our previous example (1) in section 1.4, demonstrates ambiguity at the level of surface
understanding. Several surface factors can be involved at this level; e.g. length of the

sentences, ambiguous adjectives and adverbs, passive verbs, etc.

1.5.2 Ambiguity in Conceptual Understanding

On the other hand, we use the term “Conceptual understanding” to denote how much a
developer or a requirements engineer would gain in designing or implementing a system by
simply reading/examining its problem texts carefully, i.e. without applying any formalism
procedure of requirements engineering. This level of understanding involves deeper factors
as introduced by the “seven sins” (Noise, Silence, Over-specification, Contradiction,
Ambiguity, Forward Reference and Wishful Thinking) described by Meyer [1985] (see Table
1 for definitions). Our previous example (2) in section 1.4, shows ambiguity at the conceptual

understanding level, as it suffers from Silence.



1.6 Goals of the Thesis

The research described in this thesis is concerned with the challenges inherent in
understanding the initial textual requirements (see G1, section 1.1) using the text
classification. As stated in section 1.1, our target is to identify the textual ambiguities in the
requirements elicitation phase before the conceptual modeling of the requirements begins.
We consider that the root cause of errors being introduced into the requirements (and the
consequent reduction in quality) is ambiguity in the text (also see our definition of ambiguity

in section 1.4).

Goal 1. To develop a quality model for requirements quality assessment derived from the
existing guidelines in the literature for writing SRS documentation (such as [Fabbrini et al.,

2001; Kamsties et al., 2001; Gnesi et al., 2005, Meyer, 1985; Wilson, 1997; Wilson et al.,
1996]) and from the experts’ experiences.

Our quality model targeting the automatic assessment of textual requirements in terms of

their ambiguity is shown in Figure 2.

Quality Characteristics of [ %

Requirements Text

[ ]

Conceptual Understanding Surface Understanding
Factors Factors
-——— —’ ‘ - ~ o mEmEEEEEEE= -’ I "' ___________ ~

; N | | \
- \

: Noise Silence t ! Sentence-level Discourse-level :

| : : Features Features )

! Lo . 1 1 :

— 1 Ambiguous Syntactic . Words per

! Over Contradiction| | 1 Keyv?ords FZatures B senten‘t):: l

: Specification I : :
i

| ] " " : t
! Ambiguous Ambiguous Word Passive .

I - ] L Unique Words |

Ambigui Forward 1 —

: quity Reforonce : : Adjectives Adverbs Frequency Verbs (hapax-legomena) :

1 i |

| - : 1 | Ambiguous Ambiguous Parentheses Fragment F;r\eq:_e ncy of t

| Wishful ;| | Deteminers Modals 1 mbiguous |

\ Thinking ; | Sentences |

\ - _7 \ /I

‘ndicators of Difficuity in Conceptual N e e e — e
s ?Jndle::utatrrdli:g onceptua Indicators of Difficulty in Surface Understanding

Figure 2: Quality Model for Software Requirements Specification

As mentioned in section 1.5, our model analyzes the quality of the requirements text from
two different points of view, namely surface (literal) understanding and conceptual (modeling)

understanding. The model presents a hierarchical decomposition of software requirements



text quality into measurable characteristics that can be collected directly from the natural

language text.

The quality characteristics influencing conceptual understanding are all the ‘seven sins’ that
Meyer [1985] mentioned (see Table 1 for details), while the characteristics influencing

surface understanding are mostly lexical and syntactic features. This leads to our next goal:

Goal 2. To investigate if it is difficult to detect ambiguity manually in terms of both surface

and conceptual understanding using these quality characteristics.

Our premise was that, if humans agree statistically on the quality of requirements texts, then
the quality model truly measures what it is supposed to measure; namely, the quality of the
textual description of the requirements. By contrast, if the human annotators cannot
statistically agree on a classification, then the automation would be difficult to achieve and it
would not be possible to evaluate the results of the automatic classification. The results are
sufficient for us to believe that an automatic system can be built to emulate the decision-
making process of the human annotators and to automatically classify requirements

documents.

Goal 3. To build a text classification system that could classify SRS text as “ambiguous” or

“unambiguous”, in terms of surface understanding, and to evaluate its performance.

Although our ultimate target was to build a classifier that can classify a discourse in terms of
its ambiguity, we focused on building a similar classifier at the sentence level first to assess
the achievability of automating the task of ambiguity detection at the more limited scope of
the sentence. We have determined the discriminating power of the surface understanding
indicators, and have developed a classifier to actually flag ambiguous and unambiguous

discourse at the surface level.

To our knowledge, this is the first attempt in the literature to apply a text classifier to
software requirements quality assessment. We believe that, with proper training, such a text
classification system will prove to be of immense benefit in detecting ambiguities in a

software requirements text.



1.7 Overview of the Thesis

In next chapter, we present our objectives in detail and discuss our hypothesis and the
research methodology. In chapter 3, we review most of the important related work published
in the literature. Chapter 4 presents our work on corpus annotation and its results. Chapter 5
and 6 give detailed description of the development of the classifier, along with different
experiments on it and a comprehensive analysis of their results. Chapter 7 contains a brief
overview on implementation details of our system. In chapter 8, we present a critical
discussion on the significance and limitations of our work. And, finally, chapter 9 contains

our concluding remarks and discussion of our future work.

10



Chapter 2

Objectives and Research Methodology

2.1 Introduction

We have already explained the goals of this thesis briefly in section 1.6 of the previous
chapter. In this chapter, we will elaborate on these goals setting a strictly defined set of
objectives. We will then explain our research hypothesis and our research methodology in
details. The chapter will then present a brief overview of the tools and technique used in our

thesis.

2.2 Objectives

As discussed in chapter 1, the primary goal of this thesis was to identify the textual
ambiguities in the requirements elicitation phase before the conceptual modeling of the
requirements begins, and to study a possible automation of detecting ambiguity in SRS
documents in terms of reading comprehension. We set the following objectives to achieve

our goal:
A. Evaluation of human performance

Our initial objective focused on the evaluation of human performance in detecting
ambiguity. To our knowledge, no one has attempted a formal evaluation of their
results and a comparison to human evaluations. For this purpose, four human

annotators were asked to annotate passages and sentences from 25 randomly chosen

11



SRS documents, each from a different domain, based on their ambiguities. Their
performance was measured on the degree of their agreement with each other. Our
study (explained in chapter 4 in details) evaluated the feasibility of such a task by
analyzing how difficult it really is to perform and how the automatic tools developed

can compare to human performance.
B. Applicability of Text Classification

Our next goal was to study the applicability of using text classification techniques in
detecting ambiguity in SRS documents. Our study on the currently available tools in
the field reveals that all of the ‘features’ (or clues) that the annotators look for in the
text to annotate a passage of an SRS document as “ambiguous” in terms of surface
understanding can be realistically extracted by available tools of in the field of
Natural Language Processing. Conversely, the features influencing ambiguity in
conceptual understanding of the SRS documents required domain knowledge and
deeper semantic analysis, for which the available tools are inefficient. We, therefore,
focused our objective to develop the system for detecting ambiguity at the level of

surface understanding only.
C. Performance evaluation of the system

Our final objective was to build the classification system that detects ambiguity at the
level of surface understanding, and evaluate its performance by comparing its results

with the ones of human annotation.

2.3 Research Hypothesis

We understand that none of the previous work has tested the applicability or performance of
using a text classification system to automate the detection of textual ambiguities in SRS
documents. Thus, our research hypothesis was that a text classification system, trained with
and tested against human annotated samples, can best emulate the human decisions taken

while detecting ambiguity in the SRS documents.

12



To test our hypothesis, we systematically built two sets of annotated corpora — one
composed of 165 annotated samples of passages, and the other with 1211 annotated samples
of sentences, all from 25 randomly chosen SRS documents of different domains. The corpus
was then used for both training and testing a text classification system that we later

developed. Our methodology is explained in details in the following section.

2.4 Research Methodology

Our overall research methodology can be explained in the following phases:
(1) Inception
(2) Pilot Study
(3) Corpus Annotation
(4) Features Selection and Extraction
(5) The Sentence Classifier (development, training and testing)

(6) The Discourse Classifier (development, training and testing)

Figure 3 shows the summary diagram of our research methodology. The following sections

explain our research methodology:

13



Our quality model to measdre the )
quality SRS documents in terms of
reading comprehension.

Tndicating the availabiiity of NLP

haracteristics of text that 1
degrades the quality of an
4 SRS document. ;

T

Inception:

Understanding the problem Ston the use "

of quality measurement of 7| [ooks Lo detect ambiguity at the
SRS documents, and studying Assessment of current

the feasibillty of the solutions sclutions. Tdentification of using text.

classification system as a possible |
solution and that it has not been
attempted yet in this regard.

proposed in recent work. o oy
Study on the prospects of
using text classification
tools for the solution.

ndlu' comfort in using Standard interpretation of
scores instead of binary annotators’ scores to convert
dedslons during annotation. them into binary decisions

Pilot Study:
Two rounds of annotation with
subsequent revisions, analysis
and training of human annotators | | : A detailed annotation guideline,
to annotate 20 passages as n,\::;mnﬂ;mfge be| explaining what to look for in the
"Ambiguous” & “Unambiguous”. ; documented for reference SRS text to annotate it as

- e “Ambiguous” or “Unambiguous"

Passages annotated as

Dlsoourse—level Annotated Corpus ),

Corpus Annotation: Ambiguous & Unambiguous in [
Manual annotation of 165 e e 1L

passages and 1211 sentences Sentences annotated as Sentence—level Annotated Corpus
classifying them into ambiguous } Ambiguous & Unambiguous in

and unambiguous sets, in te ooy B

ul iguous , In terms ; -

ignificant levels of agveemem

of surface apd conceptual | among annotators while annoting

understnading. passages as Ambiguous & Analysis of how difficult it really s to detect

: In terms of Surface ambiguity manually and how the automatic tools
nd Conceptual Understanding : developed can compare to human

Feature Extraction &
Selection:

Developing two Feature Extractor
tools to extract feature values

from SRS texts at sentence-level | 8 Features vectors or each :
and at discourse-level separately f the Ambiguous and y Sentence-level Training Data File F

using Stanford Parser. i nam'uous Sennces y:

I Features v for e
of the Ambiguous and
Unamb guous Pa es

Fle Yt

Discourse-level Training Data

Sentence Classifier
Development & Training:
Developing a classifier that can
classify SRS sentences into p
ambiguous and unambiguous sets | €
leamning from the training data file.

A decision tree based classifier,
which classifies a sentence into
"Ambiguous” or “Unambiguous”
based on the values of its

features.

training module that can
4 dynamically generate a
decision tree according to
R the sentence-level training §

%l data file.

Sentence Classifier
Testing:
Experimenting by training the
classifier with different sentence-
level features, and testing its
performance compared to that of |
human annotation

{The results affirm that the
approach of using a classifier is
applicable in the practical fields for
detecting ambiguous sentences in
SRS documents.

with a decision tree of
1 desirable characteristics.

Discourse Classifier
Development & Training:
Developing a classifier that can
classify SRS passages into
ambiguous and unambiguous sets |
learning from the training data ﬁleJ'

A decision tree based classifier,
which classifies a passage into
“Ambiguous” or “Unambiguous”
based on the values of its

features.

training module that cal
dynamically generate a
decision tree according to g
the discourse-level training
data file.

Discourse Classifier
Testing:

Experimenting by training the
classifier with different discourse-
level features, and testing its
performance compared to that of
human annotation :

(The results affirm that the 3
approach of using a text classifier
is applicable in the practical fields
for detecting ambiguous passages |
in SRS documents. A prototype is
built to demonstrate the use.

The classifier showing high§

accuracy in performance P
with the count of
ambiguous sentences as a B
feature. i

Figure 3: Summary of Research Methodology

14




2.4.1 Inception

Our target in this initial phase was to understand the problem of quality measurement of SRS
documents, and to study the feasibility of the solutions proposed in the recent work in the
related field. We went through the documentation of studies that have addressed the problem
of detecting ambiguities in natural language requirements specification. We discussed these
publications in details in chapter 3. We then considered our experts’ opinion in choosing the
attributes of the NL text having influence in the quality of SRS documents. As described in
chapter 1, our idea was to derive a quality model first for requirements quality assessment
from the existing guidelines in the literature for writing SRS documentation (such as
[Fabbrini et al., 2001; Kamsties et al., 2001; Gnesi et al., 2005; Meyer, 1985; Wilson, 1997,
Wilson et al., 1996]) and from the experts’ experiences. The model [Ormandjieva et al. 2007]
consisted of characteristics of natural language text that degrades the quality of an SRS

document. Figure 2 in section 1.6 shows the model.

Our study identified the potential of using specific NLP tools as resources in detecting the
presence of those quality characteristics that can have an influence on the surface
understanding of an SRS document. For conceptual understanding of an SRS document,
however, the study showed the inadequacy of NLP resources at present to detect the presence
of Meyer’s ‘seven sins’ in the text. The process of automating the detection of Meyer’s seven
sins requires some extent of domain knowledge and deeper semantic analysis, and currently
available NLP tools are inefficient for the task. This pointed out the fact that automating the
process of detecting ambiguity at the level of conceptual understanding straight from the SRS
text remains still out of our reach. So, our proposed idea is to make the process semi-
automated, where the system will first try to formalize an SRS document by generating
formal specifications and visualization of the specification through animations. All these fall
outside the scope of this thesis (see the shaded region in Figure 1). Thus, we concentrate on
building the text classification system to detect ambiguity at the level of surface
understanding only. Conceptual understanding was still considered separately while
performing corpus annotation (see chapter 4), to understand human’s performance in

detecting ambiguities at both the levels of surface and conceptual understanding.

15



Our study in this phase also revealed that, to this date, no research has attempted to use a text
classification technique in detecting ambiguity of SRS documents. This emphasizes the

importance of our research results in the RE field.

2.4.2 Pilot Study

Before conducting the actual annotation process, we carried out two rounds of annotation
with subsequent revisions, analysis and training of human annotators to annotate each of the
20 passages from our corpus as “Ambiguous” or “Unambiguous”. This not only familiarized
our annotators with the annotation process, but their experiences also prompted us to devise a
scoring technique (described in section 4.4.1.3, in details). It also revealed the need to state
an annotation guideline, which defined a lenient set of rules for the annotators to understand

and perform the process of annotation.

2.4.3 Corpus Annotation

We asked the annotators to annotate two different corpora: one holding 165 passages and the
other 1211 sentences, all from 25 randomly chosen SRS documents, each from a different
domain. The annotation process was conducted to classify these passages and sentences into
two categories: ambiguous and unambiguous, in terms of surface and conceptual
understanding. The annotated passages were used for creating the discourse-level corpus,
while the annotated sentences were used for creating the sentence-level corpus. There have
also been significant levels of agreement among the annotators while annotating passages as
ambiguous and unambiguous in terms of both surface and conceptual understanding. This
affirms the possibility of automating the task of detecting ambiguity with the availability of
practical tools that emulate the human annotation process. The data also helped us analyze
how difficult it actually is to detect ambiguity manually, and how the automatic tools
developed can compare to human performance. See chapter 4 for the results and analysis in

details.

16



In addition, the analysis in this phase indicated a positive correlation between the surface and
conceptual understanding of the text, and a negative correlation between the understanding
and the time required to analyze a text. The above confirmed our premise that lowering the
level of surface ambiguity would lead to a better conceptual understanding of the

requirements and reduce the time needed for requirements analysis.

2.4.4 Feature extraction and selection

We developed two distinct feature extractor tools to extract feature values from SRS text.
The features influence ambiguity at sentence level and discourse level respectively. We
embedded Stanford’s syntactic parser [Klein & Manning, 2003] to detect the presence of the
quality characteristics influencing surface understanding (see Figure 2) in the text. Our
feature extracted tools output feature vectors for each passage and sentence in our discourse
level corpus and sentence-level corpus respectively. These features vectors were eventually
used for building the discourse-level training data file and sentence level training data file.

Section 5.4, 6.2.3 and 6.3.2 explain the entire process in details.

2.4.5 The Sentence Classifier

We then developed the sentence classifier using C4.5 decision tree learning algorithm
[Quinlan, 1993]. The classifier has a training module, which can be trained using the
sentence level training data and can dynamically generate a decision tree based on the data.
This decision tree based classifier automatically classifies a sentence into ambiguous or
unambiguous in terms of surface understanding. Chapter 5 explains the process of developing

and training the classifier in details.

We experimented with the sentence classifier by training the classifier with different
combinations of sentence level features and testing its performance, as compared to that of
human annotation. The results showed high accuracy in performance, enough for the

classifier to be applicable in the practical fields (see section 5.6 for details).

17



2.4.6 The Discourse Classifier

We then finally developed the discourse classifier, again using the C4.5 decision tree learning
algorithm [Quinlan, 1993]. The classifier can classify a passage into ambiguous or
unambiguous in terms of surface understanding. Chapter 6 explains the development and

training process of the classifier in details.

We then experimented with the discourse classifier by training it with different discourse
level features, and testing its performance against that of human annotation. The results
showed high accuracy in performance affirming that the approach of using a text classifier is
applicable in practical fields for detecting ambiguous passages in SRS documents. Sections

6.2.6, 6.3.4 and 6.4 present the above mentioned results and their detailed analysis.

2.5 Tools Used in the Thesis

Significant advancement in Natural Language Processing (NLP) technologies recently
yielded many tools that are now being used in the attempts to detect ambiguity in SRS
documents automatically and/or semi-automatically (see section 3.4, for a detailed survey on
the currently studied tools). Our system also uses some of these tools in effort to detect
ambiguity at the level of surface understanding. In this section, we will present a brief

overview of these tools.

2.5.1 Dictionary

The term “Dictionary” in NLP denotes a repository of words, which are usually to be
searched repeatedly for particular applications. The words can be indexed. A dictionary is
either manually or automatically generated. Some recent work (e.g. [Fabbrini et al., 2001;
Fantechi et al., 1994; Wilson et al., 1996]) use manually generated dictionary of ambiguous
keywords to search for and. thus, detect ambiguity (chapter 3 discusses these studies). On the
other hand, our system automatically generates a dictionary of ambiguous keywords using a

heuristic (explained in chapter 5) and uses the dictionary later on in the detection process.

18



2.5.2 Syntactic Parser

A syntactic parser is another NLP tool that is being widely used in processing requirements
specification documents, often in detecting ambiguities [Fabbrini et al., 2001; Gnesi et al.,
2005; Osborme & MacNish, 1996]. In NLP, a parser refers to a tool that is able to chunk a
group of words into different types of phrases, each with one grammatical role or function in
a sentence. It, thus, relates a word of a sentence to all other words, usually by means of a tree
structure, called the syntax tree. Some parsers can also output a directed acyclic graph that
graphically shows the dependency relationship of words in a sentence. With this information
acquired from a parser, the task of identifying words with ambiguous role in a sentence (at
the level of surface understanding) becomes relatively doable. Our system uses the Stanford
Parser [Klein & Manning, 2003] for the task of extracting ambiguous features (clues) from
SRS documents. The parser has a built-in POS tagger and a morphological stemmer which

are explained below:

A Parts-of-speech (POS) tagger is a tool used to find the parts-of-speech category of a word
in the context of a sentence. Our system uses a variant of the most popular transformational
POS-tagger, called the Brill tagger, developed by Eric Brill [1992], that comes with the

Stanford Parser’s distribution.

A stemmer, on the other hand, is a tool that removes the inflections (suffixes and prefixes)
from words to reduce them to their stem. Our system uses the Stanford Parser’s
morphological stemmer that removes the inflections to the point where it retains the original
POS category of the word. For example, “books” and “goes” are reduced to “book” and “go”,
but “badly” is not reduced to “bad” and remains unchanged, since it would then have

changed its POS category in the sentence.

2.6 Text Classification

Text classification is a technique to classify text contents or documents into two or more

categories based on different characteristics. It is being used for email classification and spam

19



detection [Kolcz & Alspector, 2001], clustering and organizing of documents [Larsen &
Aone, 1999], in Information Extraction [Spertus, 1997] and Retrieval [Zhang & Varadarajan,
2006, Kleinberg, 1999] etc. A text classifier generally uses an implementation of a machine
learning algorithm. In a supervised training method, values of discriminating features of the
classes, which the classifier categorizes into, are collected from a large number of pre-
classified documents. Then, with the aid of the machine learning algorithm, the classifier is
‘trained’ based on the feature values of the documents, which belong to all the different
classes. Thus, when a new unclassified document is supplied to the classifier, it is able to

classify the document into a class based on its feature values.

Although text classification technique has never been used in detecting ambiguity of SRS

documents, we present here a case that uses text classification in a similar problem.

2.6.1 Case: Text Classification in Detecting Subjectivity

Wiebe et al. [2004] presented a comprehensive solution in detecting subjectivity of the
natural language. They used features like frequencies of “Unique words” (words that appear
only once in a discourse), “Adjectives”, “Verbs” etc., and annotated sentences as either
“subjective” or “objective”. Then, they trained an implementation of the basic k-nearest
neighbor algorithm [Dasarathy, 1991] using a cross-validation technique. On their tests, their

system was able to classify 93% of the subjective sentences correctly.

2.7 Performance Measurement Metrics: Kappa

In this thesis, we evaluated performance mostly in terms of the degree of agreement between
annotators, which is measured in Kappa. Cohen in 1960 introduced the Kappa index as a

measure of agreement between raters, or “annotators” in our case. The Kappa index is

denoted by K, and refers to the following ratio:

_ P(4)-P(E)
1- P(E)

20



Here, P(A) is the proportion of total times that the annotators are observed to agree, and P(E)

is the proportion of the total times that the annotators are expected to agree.

Kappa has many desirable properties. For example, k¥ = 1 denotes complete agreement, and K
> (0 means the observed agreement among the annotators is higher than the expected chances
of agreement. And, K < 0 indicates that there is no agreement among the annotators beyond

the chances of agreement among them.

There exist two versions of Kappa formulas to handle the situations of different number of
annotators. One commonly used version deals with two annotators only (computes pair-wise
agreement), while the other is used in the cases where the number of annotators is more than
two. We will discuss both of these formulas in details for measuring the strength of

agreement among the scores of our annotators in sections 4.4.2.2 and 4.4.2.3.

The interpretation of different values of Kappa indices differ with applications in different
fields of study [Carletta, 1996; Kraemer et al., 2004; Krenn et al., 2004]. One most
commonly used interpretation (put forth by Landis and Koch [1977]) is shown in Table 2:

Kappa # Value E;I;e:ggh of agreement beyond
<0.00 Poor

0.01-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost perfect

Table 2: Interpretation of the values of Kappa index [Landis & Koch, 1977]

21



2.8 Conclusion

Among all the tools and technique used today in the related fields, we find the above to best
suit our approach. Detailed explanation on their usage in our work will be presented in the
later chapters. The next chapter presents a brief overview on some of the most noted work in

the field of requirements ambiguity detection.

22



Chapter 3

Literature Survey

3.1 Introduction

Different researches have addressed the problem of detecting ambiguities in natural language
requirements specification. These studies typically use a small number of approaches, which
are, although often similar in types of tools they use — radically different in the way they
tried to detect ambiguities in SRS documents. In this chapter, we will review a few

noteworthy studies by categorizing them according to their approaches.

3.2 Manual Detection Process

Manual detection is the most popular approach to detect and resolve the ambiguities of NL
requirements specification. One of the early leading studies in this field was conducted by
Bertrand Meyer [1985], showing the areas of a natural language requirements specification,
where the specifier is more prone to make mistakes (see Table 1 in section 1.3.2). Meyer
stressed on the point that natural language requirements specification are inherently
ambiguous, and for resolving these ambiguities, use of formal specifications are absolutely
necessary. However, for detecting such ambiguities, he explains the process of manually
going though each word, phrase and sentence of the NL requirements specification text of his

case study, and checking if they reflect any of the seven sins of the specifier.

23



Another study worth mentioning here is the one done by Kamsties et al [2001], who
introduced five classes of different ambiguity problems of NL requirements specifications —
each well-defined with practical examples, and used as items of a checklist for validating a
requirements document. They are: Lexical Ambiguity, Systematic Ambiguity, Referential
Ambiguity, Discourse Ambiguity and Domain Ambiguity. Table 3 describes these items

briefly:

Item Description

Lexical Ambiguity, Does a word in a requirement have several possibly related meanings? Be aware that lexi-

Polysemy cal ambiguity arises in particular from the actual usage of a word in an RE context.

Systematic Polysemy A systematic polysemy applies to a class of words: (1) The object—class ambiguity arises
when a word in a requirement can refer either to a class of objects or to just a particular
object of the same class. (2) The process—product ambiguity arises when a word can refer
either to a process or to a product of the process. (3) The volatile—persistent ambiguiry
arises when a word refers to either a volatile or a persistent property of an object.

Referential Ambiguity Can a phrase in a requirement refer to more than one object in other requirements? Check
pronouns (it), definite noun phrases (the roads), and ellipses (... If not, ...).

Discourse Ambiguity Does a requirement have several interpretations in relation to other requirements? This
ambiguity arises when (1) words such as first, before, between, after, and last are used
and can refer to several elements and when (2) adjectives, verbs, or noun phrases refer to
more than one condition described before.

Domain Ambiguity Is the requirement ambiguous with respect to what is known about the application, sys-
tem, or development domain?

Table 3: Checklist for Ambiguity detection [Kamsties et al, 2001]

By describing the steps for ambiguity detection using this checklist, they argued in favor of
manual inspection and stated that current NLP tools are not apt for proper disambiguation of
NL requirements; rather, they are misleading. Their works also demonstrated dependence on
formal specifications, e.g. UML models, especially for detecting domain ambiguities. Their
suggested heuristics for detecting ambiguities involve attempting to develop UML models,
and finding the points of contradiction and lack of information in the requirements
specification. They recommended this process to be carried out by manual manipulation only.
Their study concludes with the statement “one cannot expect to find all ambiguities in a
requirements document with realistic resources” — even with such complete human

involvement [Kamsties et al, 2001].

24



Manual detection is typically the most accurate approach; however, it is also the most
expensive. Again, use of formalization is not well-understood by non-technical users as well.
We also find Letier et al [2005] proposing the use of formal specifications to validate

requirements.

3.3 Restricting Natural Language

Many other studies attempt to reduce the problems associated with unrestricted NL by
limiting the scope of the language. Some use a new NL-like sublanguage, as in [Cyre, 1995;
Lu et al., 1995], which is not truly NL. There are also others, who propose to restrict the
grammar to consider only a subset of NL while writing a requirements specification [Denger
et al, 2003; Fantechi et al., 1994; Rolland & Proix, 1992; Tjong et al. 2006]. Using a
restricted language does simplify the task of detecting ambiguities, but imposes severe

constraints on the requirements specifier’s expression.

We will first look into the details of the study carried out by Heinrich ez al [1999], where
they proposed the use of a restricted language, called “Flexible Structured Coding Language
(FSCL)”, thoroughly defined by a fixed set of grammatical rules. The advantage about FSCL
is that it has an unrestricted vocabulary, and it claims to be unambiguous enough to be
translated into programming code automatically. Though the paper never defined the process
of translation, the grammar it used has the potential to be unambiguous because of its

strictness.

Fantechi et al [1994] suggested the use of a set of grammatical rules for aiding the translation
from NL requirements specification to the formulae of “action-based temporal logic”, called
ACTL. They also have a domain-specific dictionary that helps the translation process. The
grammar they defined can only deal with the possible structures of those NL sentences,
which describes an expression of ACTL. This makes their grammar very limited for parsing a
real requirements specification document. The ambiguities they could detect in their case
study using this process were due to lack of information in the time and the quantification of

an expression only.

25



A study conducted by Rolland and Proix [1992] was to translate natural language
requirements specification to a form of semantic net, allowing a broad logical representation
in conceptual schema. This required the use of a thoroughly defined dictionary that groups all
kinds of verbs in six major categories: Agentive, Instrumental, Dative, Factitive, Locative
and Objective. Each such category led to define a fixed set of grammar rules for parsing NL
requirements statements into case notations. Their rules, thus, restrict the grammar of natural
language used in specification. After translation, their system then follows a “paraphrasing
process”, using Chomsky’s [1965] transformational grammar, to translate the conceptual
schema of case notations back to NL-based statements. This allows the requirements elicitor
to compare the natural language requirements specification given as input to the system, and
with the one received as output from the system, and detect ambiguities. The work
thoroughly relies on a fixed set of grammar rules and, although, claims to work with SRS
written in NL, the case study they presented worked with an example SRS that contained
sentences of a strictly simple structure, targeted to be caught by their fixed set of rules.

3.4 Using NLP Tools on Unrestricted Language

NLP techniques have advanced at tremendous speed during the past few years. And, for over
a decade now, researchers in the fields of both NLP and software engineering, have been
trying to merge NLP techniques with the tasks of requirements engineering. We know that
requirements elicitation and validation is one of the key-phases of software’s lifecycle that
often takes considerably long time to finish with manual manipulation of information. A real-
life requirements document can be lengthy and contain numerous words, phrases and
sentences, where each of them becomes a candidate for possible ambiguities of different
kinds. All these reasons made way for NLP techniques to come into the picture for tackling
this problem. Researchers have introduced NLP in many different ways to detect ambiguity
in requirements specification. The next sections present a brief survey on some of the most

important research work in this area.

26



3.4.1 QuARS

Fabbrini et al [2001] and Gnesi et al [2005] addressed the issue by trying to measure the

quality of a problem description, written in unrestricted NL. They initially made a survey on

the contemporary studies revealing a number of defects that can exist in an NL requirements

specification and listed those defects as “indicators” of poor-quality requirements

specification. These are shown in Table 4 (extracted from [Gnesi et al., 2005]):

Characteristic

Indicators

Vagueness

The occurrence of Vagueness-revealing wordings (as for example: clear,
easy, strong, good, bad, useful, significant, adequate, recent, ...) is
considered a vagueness Indicator

Subjectivity

The occurrence of Subjectivity-revealing wordings (as for example: similar,
similarly, having in mind, take into account, as [adjective] as possible, ...)
is considered a subjectivity Indicator

Optionality

The occurrence of Optionality-revealing words (as for example: possibly,
eventually, if case, if possible, if appropriate, if needed, ...) is considered a
optionality Indicator

Implicity

The occurrence of:

- Subject or complements expressed by means of: Demonstrative adjective
(this, these, that, those) or Pronouns (it, they...)or

- Terms having the determiner expressed by a demonstrative adjective (this,
these, that, those) or implicit adjective (as for example previous, next,
following, last...) or preposition (as for example above, below...)

Is considered an implicity Indicator

Weakness

The occurrence of Weak verbs is considered a weakness Indicator

Under-
specification

The occurrence of words needing to be instantiated (for example: flow
instead of data flow, control flow, .. , access instead of write access, remote
access, authorized access, .. , testing instead of functional testing,
structural testing, unit testing, .., etc. ) is considered an under-specification
Indicator.

Multiplicity

The occurrence of sentences having multiple subject or verb is considered a
multiplicity Indicator

Table 4: Quality Indicators of NL Requirements Specification [Gnesi et al., 2005]

Their studies proposed the use of their tool, called “QuARS: Quality Analyzer for

Requirements Specification”, for detecting sentences exhibiting different kinds of ambiguity

in a problem description. Their tool first performs a lexical analysis over a problem

27




description using a POS tagger. It also syntactically parses the sentences using the MINIPAR
parser [Lin, 1998], and finally, it combines both results for detecting the indicators of poor-
quality requirement specification. It also contains an interface, called “View”, for the
requirements engineer to view the requirements statements by “clusters” having all the
requirements regarding a specific function or property together. At every stage of processing,
their tool requires the use of a different “modifiable” dictionary, which is specially created
and modified for a particular stage of processing and for a specific problem domain by the
requirements engineer. Their idea is thoroughly dependant on using a set of such special
dictionaries, whose relevance and practical usage is uncertain. They developed their tool as a
prototype for their idea, and it is said to produce a quality metrics of NL requirements
specification. Again, their quality metrics are not well-defined to classify a problem

description as ambiguous.

fw

Syntax Parser

J

Parsed.le

T Log
- Indicator related
Graphics ‘ dictionaries

Figure 4: Concept of QuARS as proposed by Fabbrini et al [2001]

1

Domain
dictionaries

342 ARM

An automated tool for measuring the quality statistics of NL requirements documents, called

“ARM: Automated Requirements Measurement”, was developed by Software Assurance

28



Technology Center (SATC) of NASA. Its developers, [Wilson, 1996] and [Wilson et al.,
1997], presented nine categories of quality indicators for requirements specification in detail.
They are: Imperatives, Continuances, Directives, Options, Weak Phrases, Size,
Specification Depth, Readability and Text Structure. The first five of these categories are
based on frequencies of specific words occurring in ambiguity raising contexts. The
remaining four are related to the organization of the entire requirements specification
document. The results, derived from using the ARM tool, appeared to be more effective than
others at detecting the level of ambiguity, but they ignored the use of sophisticated NLP
methods, e.g. morphological analysis and syntactic analysis, which could have pointed out

more ambiguity issues.

3.4.3 Newspeak

Osborne and MacNish [1996] used a parser to derive all possible parse trees of each
sentences in a requirements specification document. Their system, called “Newspeak”, then
tries to detect ambiguity, if more than one parse tree exists for a particular sentence. Thus,
their work only focuses on detecting ambiguous syntactic structure of sentences, completely

ignoring the existence of different keywords that inherently induce ambiguity.

3.4.4 Circe

The work of Ambriola and Gervasi [1997] attempts to validate NL Specification with the aid
of the user after deriving a conceptual model automatically from the requirements
specification by their tool called Circe. Although their tool being funded by IBM is now
available as a plug-in for Eclipse and is used in practical fields, it still does not consider the
existence of ambiguities at the level of surface understanding, which can corrupt their

conceptual model, making the errors tough for a user to detect from the model later on.

29



3.5 Conclusion

Our literature survey revealed that previous work in the area has attempted to flag ambiguous
texts using various methods. However, evaluation of these (semi-) automatic methods are
typically anecdotal or small-scale. To our knowledge, none has attempted to formally
evaluate their results and compare them to human evaluations. Our study is an effort to
evaluate the feasibility of such a task by analyzing how hard the task really is and how the
automatic tools developed can compare to human performance. Our work on corpus
annotation provides a benchmark for such an evaluation and an upper bound on what we can

expect automatic tools to achieve.

Moreover, none of the current systems have attempted to use text classification techniques
for detecting ambiguity in SRS documents. But, many studies have been conducted in other
fields, e.g. Information Extraction [Spertus, 1997], Information Retrieval [Zhang &
Varadarajan, 2006], Question Answering [Wiebe et al., 2003], Text Classification [Wiebe et
al., 2004] etc. that detects the subjective elements in language using text classification or data
mining techniques. We, therefore, believe that with proper training, a text classification
system can prove to be of immense benefit in a similar problem, i.e. to detect ambiguity in

software requirements specification.

After we have explained the process of developing our text classification system that detects
ambiguity in SRS documents, we will compare the performance of all the tools mentioned in
this chapter against that of our system in terms of various topics (see Table 22 of section 6.5).
The next chapter explains the manual process of building our annotated corpus and the

evaluation of human performance in terms of inter-annotator agreement.

30



Chapter 4

Corpus Annotation

4.1 Introduction

To build our classifier we needed an annotated corpus for the purpose of training and testing.
Since there exists no standard corpus on SRS documents that we could use for our task, we

had to build our own sets of annotated corpora.

Our idea was to select a number of human annotators, provide them with a detailed guideline
of annotation, and ask them to annotate segments of NL requirements specifications as

“Ambiguous” or “Unambiguous”. The resulting data would be used as our corpora.

We randomly chose 25 problem descriptions from ACM’s OOPSLA DesignFest® online
source (http://designfest.acm.org/) for the task of building our corpora. Our work initially
focused on Discourse Annotation, which means that the annotators were asked to annotate a
discourse or a passage, in our case, (see section 4.3.1, for the definition of passage used in
this thesis) from a problem description as “Ambiguous” or “Unambiguous” in terms of
Surface and Conceptual Understanding separately. The annotations revealed the complexities
of detecting ambiguity at the level of Conceptual Understanding without the means of
conceptual modeling, which eventually made us put the work out of the scope of this project.
Thus, the task of discourse annotation at the level of Surface Understanding formed our
Discourse-level Corpus, where we had two sets of “Ambiguous” and “Unambiguous”

passages.

31



One of our annotators performed Sentence Annotation prior to her task of discourse-level
annotation. She annotated 1211 sentences, all from our 25 problem descriptions, as
“Ambiguous” or “Unambiguous” in terms of Surface Understanding. Her work was later on
reviewed and refined by two annotators following our Annotation Guideline. The result was
used to compose our Sentence-level Corpus, containing sets of both “Ambiguous” and

“Unambiguous” sentences.

8 Ambiguous
Passages

Unambiguous
Passages

Problem
Descriptions

®

Online
Source

Annotators

Ambiguous
Sentences

Y

Unambiguous
Sentences

Figure 5: Corpus Annotation

Figure 5 illustrates the steps of our corpus annotation process. The following sections explain

the process in details.

4.2 The Annotators

We had four persons working on the texts as annotators (Annotatorl, Annotator2, Annotator3
and Annotator4) — all with software engineering backgrounds, but from different fields of

computer science. There were two professors — Dr. Kosseim and Dr. Ormandjieva, and two

32



graduate students, Mr. Hussain and Ms. Seresht, all from the Computer Science and Software
Engineering department of Concordia University.

Among our annotators, Dr. Ormandjieva (Annotator3), being a professor in Software
Requirements Specification, was the only expert we could avail that held profound
experience in Requirements Analysis. The others had working experience in the fields of

software engineering and were familiar with the concepts of Requirements Analysis.

4.3 The Corpora

We collected 25 problem descriptions related to software requirements specification through
a random selection process from OOPSLA DesignFest®, an online source (url:
http://designfest.acm.org/). Annotating an entire problem description of several pages, would
be difficult and not particularly informative if we later wish to identify specific features for
an automatic classification task. We therefore chose to split up our collection of problem
descriptions into smaller segments that derived two different sets of corpora: the Discourse-

level Corpus and the Sentence-level Corpus. They are explained in the following sections:

4.3.1 Discourse-level Corpus

For our Discourse-level Corpus, we extracted 165 passages from our collection of 25
problem descriptions, where each passage contained 140 words on average. Our definition of

a Passage in this thesis was as follows:

Passage: A passage is the smallest but stand-alone section of a problem description. It
typically consists of one or more paragraphs under a section heading. Such a unit is selected

so that the complete description of the concepts that it introduces remains within its scope.

While extracting the passages, we intended for them to be trimmed down to a smallest unit of
discourse that were understandable without additional context. We, thus, introduced the

following minimal modifications:

1. Any section headings associated with the selected passage was removed.

33



2. Images and Tables within the passage were replaced with the tags "(IMAGE)" and

"(TABLE)" respectively, to eliminate noise.

4.3.2 Sentence-level Corpus

Our sentence-level corpus consisted of 1211 sentences, all extracted from our collection of 25

€6 9 (e
?

problem descriptions. The sentence boundaries (“.”, and

“'3’
H

) were manually detected for

the process of extraction. Each of the extracted sentences contained 19 words on average.

4.4 Discourse Annotation

4.4.1 Training and Annotation

4.4.1.1 Pilot Study

We conducted a pilot study before starting our actual annotation phase to check if our
annotators correctly understood the task. The study was carried out on 20 samples, which

were randomly selected from the 165 passages of the discourse-level corpus.

We asked our annotators to classify the samples into one of the two classes: “Ambiguous”
and “Unambiguous” and do this for both Surface and Conceptual Understanding separately.
However, no specific guidelines were initially given to them, apart from an informal

definition of surface versus conceptual understanding (as presented in sections 1.4 and 1.5).

After evaluating their results, we found significant disagreements among the annotators in the
classifications. By interviewing the annotators, we realized that an intuitive definition of
surface and conceptual understanding was not enough. Everyone seemed to have their own
views on what was ambiguous and what was not. Some annotators were more lenient, while
others were strict. This indicated the need of a singular annotation guideline that is

thoroughly defined with examples, and that all the annotators should follow.

Interviewing annotators also revealed their discomfort in annotating a discourse with a binary
decision, e.g. “Ambiguous” or “Unambiguous”, for a particular level of understanding. They
all unanimously agreed that they would be more comfortable in grading the passages on a

scale of zero to ten for both Surface and Conceptual Understanding separately. Their grades

34



would later be translated into “Ambiguous” or “Unambiguous” by setting a threshold on the

SCOrI¢Es.

Thus, the pilot study led us to conclude that the task of annotation should be done based on a
strictly defined annotation guideline, and should also provide the convenience for the
annotators to make fuzzy decisions in classifying the passages with different levels of

understanding.

4.4.1.2 Annotation Guidelines

In light of the pilot studies, we, therefore, developed more specific guidelines and clearer
examples of what were to be considered ambiguous in terms of surface and conceptual
understanding separately. The annotators were to score all passages of our corpus (the higher
their scores for a passage, the less ambiguous it would be), and the annotation guidelines
indicated what to look for in a passage, but, did not give any strict instructions on what score
to be selected, to allow the annotators to have their freedom in scoring. We developed these
guidelines based on our quality model [Ormandjieva et al., 2007] considering previous work
in the field, such as [Fabbrini et al., 2001; Kamsties et al., 2001; Gnesi et al., 2005; Meyer,
1985; Wilson, 1997; Wilson et al., 1996]. The guidelines are as follows:

A. Scoring Guidelines for Surface Understanding

1. Long sentences are bad:

Following the study of [Wilson, 1997], we identify long sentences as a negative
quality of SRS documents. Thus, while grading the level of surface understanding of
a passage, if the density of long sentences were found to be higher than acceptable
limit (which may be set differently by different annotators according to their
preferences), we gave a considerably lower score, increasing the chance of a passage

to be annotated as “Ambiguous” in terms of Surface Understanding.

The characteristics of long sentences are described as follows:

35



o One sentence containing more than 256' characters (including white-space

character), or more than two lines of text can be considered a long sentence.

o One sentence with more than two main (principle) verbs can be considered a
long sentence. An example of such a long sentence (with the main verbs

underlined) is as follows:

We would like you to pay most of your attention to the fact that there
are so many different cells in the network that need to be managed in

a common way, but are still of very different types. [Kriens, 1996]

o One sentence containing more than three commas (or semi-colons) can be

considered a long sentence. An example of such long sentence is as follows:

The system assigns the call to a collector based on a user-defined
algorithm based on the stage of delinquency the borrower is in, the
workgroup to which a collector belongs, the specific collector that
placed the last call, the result of the last call, and the relative

availability of collectors to service calls. [Best, 1995]

o One sentence containing a main verb (i.e. a clause) inside brackets is considered
a long sentence. An example of such a long sentence (with the main verbs

underlined) is as follows:

The Rumbling Range National Forest (RRNF) buys two new arrays
of sensors (Sensor arrays are so named because they are collocated
and allow the central site to glean more information than just the

sum of that from each individual sensor). [Heliotis et al., 2003]

2. Too many adjectives and adverbs are bad:

A passage containing too many adjectives, e.g. clear, well, easy, efficient, adequate,
strong, weak, good, bad, high, low, fast, slow etc., and adverbs could be given a lower

score to annotate it as “Ambiguous” in surface understanding. Work of Fabbrini et a/

! The number of characters was chosen arbitrarily

36



[2001], Gnesi et al [2005] and Wilson et al [1996] also uses adjectives and adverbs as
negative quality characteristic of SRS documents. Thus, if the density of adjectives
and/or adverbs is higher than the acceptable limit (set by an annotator according to

his/her preference), the annotator should reduce his/her passage score.

3. Too many verbs in passive voice are bad:

Similarly to [Gnesi et al., 2005] and [Wilson 1997], we consider that Verbs in passive
voice is a negative quality characteristic of SRS documents. A passage containing too
many sentences in passive voice should be given a lower score for it to be annotated
as “Ambiguous” in terms of surface understanding. An example of such sentence is

as follows:

Most commonly, the orders are matched in price/time priority.

[Layda, 2000]

— Here, it is unknown who or what matches the order.

4. Directives are Good:

2 AN 13

If a directive word or phrase was found in a passage, e.g. “for example”, “note:”,
“e.g.”, “such as”, “(IMAGE)”, “(TABLE)” etc., it should regarded as a positive
quality characteristic of an SRS document. Thus, the annotators may decide to
increase his/her scores for that passage relieving the chance for it to be annotated as

“Ambiguous” in terms of Surface Understanding because of a higher score.

B. Scoring Guidelines for Conceptual Understanding

Meyer’s “Seven Sins” are bad:

Using Meyer’s [1985] definitions of the “Seven Sins of Specifier”, described in
section 1.3.2, Annotators were to search for the “seven sins” in the passages (Noise,
Silence, Ambiguity, Over-specification, Contradiction, Forward Reference and
Wishful Thinking). While grading the level of Conceptual Understanding of a passage,

an annotator should lower his/her score upon finding the mistakes, like “Noise”,

37



b

“Silence”, “Ambiguity”, “Over-specification”, “Contradiction”, “Forward Reference’

and “Wishful Thinking” (see section 1.3.2, for details).

4.4.1.3 The Standard Interpretation of Scores

We allowed our annotators to score the passages on a grading scale of (from zero to ten).
This method was undertaken to address the issue of the annotators’ discomfort in annotating
a passage with a binary decisions: “Ambiguous” or “Unambiguous”. The numerical scores
were to be converted into a binary decision later. To allow for a better classification, we

limited the annotators by giving them a standard interpretation of the scale:
- An Ambiguous passage should be given a score in the range [0,5).
- A passage that could be either way should be given a score exactly equal to 5.

- An Unambiguous passage should be given a score in the range (5,10].

Annotators were allowed to add their own interpretations of these scores — for example,

scores ==7.5 and <10 could mean “very clear” , meaning the description in the text was

1

almost perfect, or score =0 and <3 could mean “very ambiguous” . These numbers and

2 N 13

interpretations for “very clear”, “not so clear” etc. were based an annotator’s own choice, and
for their own comfort in scoring. Thus, each annotator was allowed to have their own
interpretation as long as the standard interpretation of “Ambiguous” and “Unambiguous”

were respected.

4.4.1.4 Task of Annotation

The annotators took the 165 passages of our discourse-level corpus and independently ranked

them with scores from 0 to 10, considering surface and conceptual understanding separately.

38



The annotators gave about 5.549 hours of effort on average in scoring the passages for both
surface and conceptual understanding. The total times each annotator spent performing these

annotations are presented in Figure 6:

Efforts of All The Annotators

(in hours)

Iilil

Annotator1  Annotator2  Annotator3  Annotator4 Awerage

Hours
O =2 N W H OO N ©

Annotators

Figure 6: Efforts of All the Annotators (in hours)

On average, it took 2.018 minutes to annotate each passage. Considering that each passage
has, on average, 140 words, we could say that the annotators read at a speed of 69 wpm
(words per minute). It shows that the task of detecting ambiguity was a difficult one,
considering the average reading speed of a “normal reader”, which is around 240 wpm [Just
& Carpenter, 1987].

4.4.2 Results and Analysis

4.4.2.1 The Gold Standard

For each instance (passage) of our discourse-level corpus, we translated its scores given by
the annotators’ to binary annotations by first taking the median of its scores, and then,

translating the numeric value of the median as follows:

39



= If the median is less than 5 (five),

= The gold standard of the passage is interpreted as “Ambiguous”.

o If the median is exactly equal to 5 (five),

= The gold standard of the passage is interpreted as “Either way”.

= If the median is greater than 5 (five),

» The gold standard of the passage is interpreted as “Unambiguous”.

According to the Median Voter Model [Congleton, 2004], the gold standard, evaluated in this

way, reflects the decision of the majority. Let us consider the following passage for an

example:

Case Management is a business function common to government health benefit

programs, and insurance and financial organizations. The problem you are here to

solve today is to develop an object oriented framework for use in developing

specific case management systems to support case workers in these industries.

These systems must provide access to all necessary information for case workers to

process work or respond to customer service needs. They may also provide

workflow and business rules processing to support case workers. As the main

incoming channel for cases is frequently the telephone, the system must have sub-

second response times and be intuitive to use. [Layda, 2000]

The annotators’ actual scores for this passage are shown in Table 5.

Annotatort Annotatdrz | Annotator3. | Annotatord
Score for Surface Understanding 8 4 6 8
Score for Conceptual Understanding 2 2 5 3

Table 5: Example of the annotators’ scores on one passage

As we calculate the median of the scores and translate its value according to the aforesaid

rule, we get the gold-standards shown in Table 6.

40



Annotator! | Annotator2 | Annotator3 | Annotatord | Median 'Sts:c::r d
Surface .
Understanding 8 4 6 8 7 Unambiguous
Conceptual .
Understanding 2 2 5 3 2.5 Ambiguous

Table 6: Example of the annotators’ scores on the same passage with their median and the Gold Standard

Thus, for Surface understanding, the resultant distribution of our discourse-level corpus is

shown in Figure 7.

Surface Understanding Scores
(Number of Instances = 165)

Unambiguous
& Ambiguous
O Median Score = 5

14
8%

Figure 7: Distribution of the discourse-level corpus based on the scores of surface understanding

Figure 7 shows that of 165 passages from our discourse-level corpus, 148 (90%) were
annotated as ‘“Unambiguous” in terms of surface understanding. 14 (8%) of them were

“Ambiguous” and 3 (2%) of them were the ones with median score 5 (i.e. they can go either

way).

Again, for conceptual understanding, the distribution of the corpus is shown in Figure 8.

41



Conceptual Understanding Scores
(Number of Instances = 165)

' . : Unambiguous
- \k\\\\\\\\\\‘* O M:d:: osu:ore =5

1%

28
17%

Figure 8: Distribution of the discourse-level corpus based on the scores of conceptual understanding

Figure 8 shows that 135 (82%) of 165 passages were annotated as “Unambiguous” in terms
of Conceptual Understanding. 28 (17%) of them were “Ambiguous” and 2 (1%) of them

were the ones with median score 5.

4.4.2.2 Pair-wise Agreement with Gold Standard

The first type of agreement measure that we computed is pair-wise agreement with the gold-
standard. For each annotator, we computed Cohen’s [1960] Kappa index (see section 2.7 for
details on Kappa) with the gold standard. To calculate this Kappa we used six measures (four

of them are listed in Table 7) as follows:

= Py, the proportion of times both the annotator and the gold-standard marked a passage

as “Unambiguous”.

= P,;: the proportion of times both the annotator and the gold-standard marked a passage

as “Ambiguous”.

» P,;: the proportion of times the annotator marked a passage as ‘“Ambiguous”, but the

gold standard marked it as “Unambiguous”.

42



e Pyy: the proportion of times the annotator marked a passage as “Unambiguous”, but the

gold standard marked it as “Ambiguous”.
> P(A4): the proportion of times the annotator agrees with the gold-standard, computed as
P(4) = Py + Py

» P(E): the proportion of times the annotator is expected to agree with the gold standard

by chance. If we do not assume random distribution, then

P(E) = (P11 + P21) x (P11 + P12)) + (P22 + Pa1) x (P22 + P12))

Gold-standard
Unambiguous Ambiguous
Unambiguous Pu Py
Annotator
Ambiguous Py Pxn

Table 7: Contingency table to compute the Kappa index

The Kappa index for the i* annotator was then computed as specified in [Cohen, 1960]:

o - PA)-P(E)
" 1-P(E)

We calculated Kappa for each of the annotators and for each level of understanding

separately. For each level of understanding, we also computed the average Kappa as follows:

1 n
o =L 3k
avg i
n i

— where n is the total number of annotators.

43



The resulting values of Kappa indices are shown in Figure 9.

Pair-wise Agreement with The Gold Standard
(values of Kappa indices)

2525

i e
SUERA SRRnIa

o
i3S
2
&
2

AR XA NN 4
T (it R e ..Jg.,,.;’z.%,,dga.s.uv. AR
5 CRL A R AR AL ¢
s 3 i L s os
Ry ¢ | s ] R
i sieieony % 2eiiaddetdavabien] P DSHIRE)

iedeieu Bl

8 I Q ® 8 T 8 5 3 T
£ 2 £ 2 £ 2 £ 2 £ 2
3 8 3 8 = 8 = 8 3 8
»n c «n c n c n c 0 c
Q Q Q Q o]
&) Q (&) o o
Annotator1 Annotator2 Annotator3 Annotator4 Average Pairwise
Kappa

Figure 9: Pair-wise inter-annotator agreement with gold-standard

Figure 9 shows the results of this analysis, revealing how strongly each annotator agrees with
the gold-standard, which is the decision of the majority of the annotators (according to the
Median Voter Model [Congleton, 2004]). Therefore, here, the average of the pair-wise Kappa,
simply denotes the strength of the gold-standard itself. According to the interpretation of
Kappa values given by Landis and Koch [1977] (see Table 2 of section 2.7), on average the
annotators agreed with the gold-standard at a “Substantial” level for both Surface and
Conceptual Understanding. Only Annotators2 and Annotators4, however, have Kappa values

at “Moderate” level of agreement.

4.4.2.3 Multiple Annotator Agreement

Multiple-annotator agreement was also used to find the value for a modified Kappa index,

which is introduced in [Fliess, 1971] to find a combined Kappa value for a variable number

44



of annotators. The formulas here can deal with different number of annotators (greater than

two) annotating different samples for a particular level of understanding.
If the total number of samples is equal to n, the number of annotations for the i sample is m; ,
and the number of “Unambiguous” annotations for the i/ sample is x; , then we calculate the

mean number of annotations per sample, 7 , as follows:

n
_um
m= i=1

n

— and the overall proportion of “Unambiguous” annotations, as follows:

n

_ =l

p=—=
nm

Therefore, the combined Kappa according to Fleiss [1971] is as follows:

ix,.(m,. - X;)

i=1 m,;

]

n(m-1).p(-p)

Ko =1

The results of our annotations in terms of the combined Kappa measure are presented in

Figure 10.

45



Multiple Annotators' Agreement
(values of Kappa indices)

Surface Conceptual

Figure 10: Multiple Annotators’ Agreement

Figure 10 shows the multiple annotators’ agreement, depicting how strongly the annotators
altogether agreed to their decisions. While pair-wise agreement with the gold-standard
showed “Substantial” level of agreement of the annotators with the gold-standard, here,
however, the combined Kappa falls short, and is marginally “Moderate”, according to Landis
and Koch [1977], which, nevertheless, makes all the results good enough for automating the

task of classifying a discourse in terms of ambiguity.

This concluded our work of building the discourse-level corpus.

4.5 Sentence Annotation

4.5.1 For Surface Understanding Only

Our primary intention was to detect ambiguity in SRS documents, and thus, at the discourse
level. So, we started off our annotation work at the discourse-level first. But, examining the

Annotation Guideline (described in section 4.4.1.2) for discourse annotation, we found that

46



all the characteristic, which were instructed to be looked for by the guideline for detecting
ambiguity at surface understanding, had their scope of influence limited to the sentence they
belong. On the other hand, according to the guideline, the characteristics that influence
conceptual understanding, i.e. Meyer’s [1985] “Seven Sins”, can only exist within the context

of a discourse.

We, therefore, considered sentence annotation to have an annotated sentence-level corpus for
the purpose of building a sentence classifier that can classify sentences based on ambiguity in
surface understanding. This could eventually aid the ambiguity detection process at
discourse-level for surface understanding. Related work of [Fabbrini et al., 2001; Kamsties et

al., 2001; Wilson, 1997] also attempts to detect ambiguity in SRS, but at the sentence level.

4.5.2 Informal Task of Annotation

Due to limitation of time and resources, we could only have one annotator for our task of
sentence annotation (see chapter 8 for details about the limitations of this project).
Annotator3, being a professor of Software Requirements Specification and the only expert in
Requirements Analysis, performed the task of Sentence Annotation, based on the same
Annotation Guidelines, that was defined to annotate passages in terms of Surface
Understanding (see section 4.4.1.2). Using for the same characteristics of ambiguity in
context of a sentence, instead of a passage, we found the following phenomena that made a

sentence ambiguous in most cases:

» Long sentence: A long sentence can be identified by many commas or semi-

colons, several main verbs or clauses in a sentence, the use of parenthesis etc.
= Adjectives and adverbs in a sentence.
= Verbs in passive form.

Thus, our annotator, Annotator3, annotated the 1211 sentences. The sentences contained 19
words on an average. Her annotations were later reviewed and refined by both Annotator!
and Annotator3, on repeated sessions to improve the quality of the annotation of the

Sentence-level corpus.

47



4.5.3 Results

The resultant distribution of the sentence-level corpus is shown in Figure 11:

Sentence Level Annotation
Size of Ambiguous and Unambiguous Data

975,81%

B Ambiguous

B Unambiguous

236, 19%

Figure 11: Distribution of Sentence-level Corpus after Sentence Annotation took place

There were in total 1211 sentences, 975 (81%) of them are “Unambiguous”, and 236 (19%) of
them are “Ambiguous”. Ambiguous sentences contain 21 words on an average, whereas

Unambiguous sentences contain 18.56 words on:an average.

This concluded our task of building the sentence-level corpus.

4.6 Conclusion

Our work on discourse-level annotation establishes the fact that automation of detecting
ambiguity is plausible at the level of both surface and conceptual understanding. Now, we
know that there exists a lack of NLP tools efficient enough to perform deeper semantic
analysis required for detecting ambiguity at the level of conceptual understanding. Our
experiments on discourse annotation data, therefore, were not really directed to show the
feasibility of using a classifier. Rather, the level of the annotators’ agreement ascertains an
important notion that the eventual extraction of right discriminating features from the text

will lead to a successful classification of ambiguity in both surface and conceptual

48



understanding. But, this would require more improvement in NLP tools in terms of accuracy
at the semantic level, especially for the case of detecting ambiguity in conceptual

understanding.

Our work on sentence annotation, although, followed an informal process of ad-hoc corpus
annotation, provided the necessary corpus for training and testing our sentence classifier. The
sentence classifier, explained in the next chapter, was used later on in building the discourse

classifier, and proved to be an important addition to our work.

49



Chapter 5

Sentence-level Classification

5.1 Methodology

Our objective here was to build a text classification system that could classify sentences as
“Ambiguous” or “Unambiguous” in terms of surface understanding. Although our ultimate
target was to build a classifier that can classify a discourse in terms of its ambiguity, we
focused on building a similar classifier at the sentence-level to assess the achievability of
automating the task of ambiguity detection at the more limited scope of the sentence. We
used our sentence-level corpus (described in section 4.5 of the previous chapter) for training
and testing our classifier. Each instance of this corpus was a sentence, which had been pre-
annotated as “Ambiguous” or “Unambiguous” by Annotator3 (reviewed and refined by

Annotatorl and Annotator3).

We used the Stanford Parser [Klein & Manning, 2003] (equipped with Brill’s POS tagger
[Brill, 1992] and a morphological stemmer) to extract a list of syntactic features from each of
the training instances (sentences) of the sentence-level corpus. We identified these features as
candidates that might have some influence in inducing ambiguity to a sentence in terms of
surface understanding. The features valid for detecting ambiguity were then automatically
selected based on their ranks in Likelihood Ratios (which will be explained in section 5.4) in
the sentence-level corpus. We also used the corpus to generate lists of ambiguous keywords
dynamically, by comparing the Likelihood Ratios of the keywords of particular POS

categories (see section 5.4 for more details). The process of development will be explained in

50



details in section 5.4, where we present our Features Extractor tool. Figure 12 illustrates the

workflow of the process.

<Word,POS> pair &

P . All syntactic features L SR ] SRR
gmblguous 1| i OfS t List of List of
§  Sentences mDiguous Sentences | Ambiguous ||  Valid

B - ; <Word,POS> pair & | Keywords || Features i
€ Unambiguous All syntactic features
Comummmsmmosmmsnes) & Unambiguous Sentencesf] |

Figure 12: Automatic Feature Validation and Dynamic Generation of Ambiguous Keywords

Our sentence-level Feature Extractor tool extracts features required for detecting ambiguity
in a sentence. It counts the frequency of occurrences of valid features and ambiguous
keywords only in each of the sentences of our corpus and stores them in the training data file.
The training data file also holds the corresponding annotation of each sentence assigned by
Annotator3. Our sentence classifier was trained using this file. Thus, the classifier then can
detect ambiguity by classifying the unclassified sentences into two categories: “Ambiguous”

and “Unambiguous” sentences. Figure 13 illustrates the steps of the classification.

[Sentence-level

Ambiguous g
Sentences :

POS Tagger Frequency Counter of Training Data
o + Ambiguous Keywords File
Unambiguous Syntax Parser & Valid Features
Sentences 4

Figure 13: Steps of Sentence-level Classification

The following sections explain the process of sentence-level classification in details, and

discuss its evaluation through an experiment.

51



5.2 Preprocessing

We first divided our sentence-level corpus into two separate sets: (1) Ambiguous Sentences
(CorpusA), containing all the sentences that were annotated as “Ambiguous” in terms of
surface understanding, and (2) Unambiguous Sentences (CorpusU), containing the rest of the

sentences which are annotated as “Unambiguous”.

As we have seen earlier in section 4.5.3, there were in total 1211 sentences in our corpus, 975
(81%) of them were annotated as “Unambiguous”, while 236 (19%) of them as “Ambiguous”.
Therefore, the sizes of CorpusU and CorpusA are 975 and 236, respectively.

We used CorpusU and CorpusA as they were for feature extraction. But, to train our
classification algorithm, we needed our corpus to be of nearly equal size. So, during the
creation of the training data file, we reduced the size of CorpusU, by taking only the first 236

sentences from it; thus, making its size equal to CorpusA.

5.3 List of Features

We tried to choose a list of lexical and syntactic features, which were extractable by the a
syntactic parser, e.g. Stanford Parser [Klein & Manning, 2003] and might have an influence
in making a sentence ambiguous in terms of Surface Understanding. The features are as
follows:

1. Number of Words in a sentence

2. Number of Adjectives* in a sentence

3. Number of Adverbs* in a sentence

4. Number of Passive Verbs* in a sentence

5. Number of Parentheses* in a sentence

6. Total Number of Tokens* inside (or, between) all pairs of parentheses in a

sentence

52



9.

10.

Total Number of all forms of Verbs* inside (or, between) all pairs of parentheses

in a sentence
Number of Punctuations* in a sentence
Number of Conjunctions*® in a sentence

If a sentence is a Fragment* (incomplete sentence)

The frequency of the features above, marked with asterisk (*), are normalized (i.e.

arithmetically divided) by the total number of words in a passage.

From this list, features 1, 2, 3, 4 and 10 are also used by [Fabbrini et al., 2001; Kamsties
et al., 2001; Gnesi et al., 2005; Wilson, 1997]; and, the ambiguity characteristics of features 1,

2, 3,4, 6, 7 and 10 are also mentioned in our annotation guideline, described in section

44.1.2.

S.4

Feature Extraction at the Sentence-level

We developed a sentence-level Feature Extractor tool written in Java to extract the values of

the features likely to make a sentence “Ambiguous” or “Unambiguous” in terms of surface

understanding. This program performed 4 different tasks, which are described below:

1. Frequency Generation of Parser Features:

The Feature Extractor tool extracts sentences from both CorpusA and CorpusU, and
feeds them one-by-one to the Stanford Parser [Klein & Manning, 2003] for POS
tagging and syntax parsing. The values of the features mentioned in section 5.3 are
then counted for each sentence of the two corpora. In addition, the Feature Extractor
tool also counts the total of number of occurrences of each of the feature (e.g.

Adverbs or Fragments) in CorpusA and CorpusU separately.

Counting the frequency of most of the features is straight forward, as the

Stanford Parser provides the POS categories of words and verb forms (“active” or

53



“passive”) with almost perfect accuracy (86.36% accuracy, as documented by the
study, [Klein & Manning, 2003]). It works as a bottom-up parser and chunks a
complete sentence as “S” at the root of its parse tree, but whenever it encounters a
fragment, it tags the root as “FRAG”, “NP” or “SBAR” etc., that is anything other
than “S”. Thus, our feature extractor tool counts the number of times it finds the root
of the generated parse tree different than “S”, for example, as the total number of

Fragments.

2. Dynamic Generation of Ambiguous Keywords:

We also made the feature extractor tool to dynamically generate a dictionary of
ambiguous keywords from the training set. The words were all morphologically
stemmed' by the stemmer that comes with Stanford Parser. Instead of counting only
word-tokens, the keyword generator component counts (word-token, POS tag) pair,
since the same word can be used in an unambiguous manner, attaining different POS
tag [Wiebe et al., 2004]. Then the frequency of (word-token, POS tag) pairs are
counted, and the ratio of their frequencies in Corpus4 and in both Corpus4 and
CorpusU together are measured in a sorted hash-table, deriving their ranking of
ambiguity automatically. For each keyword, we called this ratio its “Likelihood

Ratio” (LR), denoting its strength of discrimination.

Before implementing the keywords generator component with the feature
extractor program, We observed its outputs, and found that the there were many
words (especially nouns) that simply by chance appeared more times in the CorpusA
than in CorpusU. Thus, we also found ambiguous words in different POS categories
had different weights in terms of LR. For example, ambiguous Adverbs tend have
higher LR than ambiguous adjectives. Thus, it was clear that we couldn’t rank all the
keywords together based on their Likelihood Ratios.

We, therefore, coded the keywords generator component to consider only the
words in the POS categories that generate ambiguities. These categories are: (1) JJ

(Adjectives: words in this category include high, low, small, good,... etc.), (2) RB

! The morphological stemmer comes built-in with the Stanford parser [4]. It stems with the prior knowledge
of the morphology of a word, and stems only to the point at which it retains its original POS class.

54



(Adverbs: words in this category include highly, well, enough, strongly,.... etc.), (3)
MD (Modals: words in this category include can, may, might,.... etc. revealing
optionality as ambiguity), and (4) DT (Determiners: words in this category include all,
some, any.... etc. revealing ambiguous quantification). Then the keyword generator
ranks the LR of the keywords for each of these POS categories separately. The user
is then able to set a cut-off threshold' for each of the POS categories. The program
then generates the list of those ambiguous keywords that have higher LR than the
threshold. Consider Table 8 for example.

Keyword POS LR
All DT 0.718
Any DT 0.685
These DT 0.658
Some DT 0.575
Cut-off threshold = 0.5
Another  |DT. | 0386
This ‘ DT ' 0.362
A DT 0.356

Table 8: Likelihood Ratio of the keywords of POS Category DT

In Table 8, only the first four keywords are saved in the list called bad_DT, since
their LR is higher than the cut-off threshold.

Thus, the keyword generator adds four additional features to the feature list:
bad JJ, bad RB, bad MD and bad DT, counting the number of times the enlisted

ambiguous adjectives, adverbs, modals and determinants appear respectively.

3. Ranking all the features based on LR:

The feature extractor program not only extracts features, but also measures their

ranking based on their Likelihood Ratios (LR), derived by the following formula:

! The threshold set for each of the four POS categories by the user is a real-valued number ranging from 0
to 1, where 0 accepts all words in a POS category, and 1 accept only those words that appeared in CorpusA
but never in CorpusU.

55



Frequency of X in CorpusA
(Frequency of X in CorpusA + Frequency of X in CorpusU)

LR of Feature X =

The baseline LR is counted simply by the following formula:

Number of Words in CorpusA
(Number of Words in CorpusA + Number of Words in CorpusU)

Baseline LR =

Thus, a feature is kept as valid, iff its LR, derived by the above formula, is higher
than the baseline LR, indicating the feature as a discriminating one. This idea was
borrowed from the study of Wiebe et al [2004]. The LR ranking, denoting the

strength of discrimination, of the features is shown in Table 9.

Feature “Description ; Type . LR
bad_RB Ambiguous Adverbs 0.66316
bad_MD Ambiguous Modals Ambiguous 0.63636
bad_JJ Ambiguous Adjectives Keywords 051714
bad DT Ambiguous Determinants 0.47619
vbCount_in_p Verbs in Parentheses 0.38709
tokenCount_in_p Tokens in Parentheses 0.36958
paranthCount Number of Parentheses Syntactic 0.32174
fragment Number of Fragments Features 0.27869
advCount Number of Adverbs 0.25373
passCount Number of Passives 0.22026
adjCount Number of Adjectives 0.21914

Table 9: Ranking of Features at the Sentence level

4. Extraction of Values of the Valid Features Only:

The Feature Extractor tool, thus, extracts the values of the valid features only, for
each of the sentences in CorpusA and CorpusU, and saves their values in an specially
formatted file, called the training data file. Since we used the open source machine
learning workbench called Weka [Witten & Frank, 2005] to build our sentence
classifier, we needed the training file to be formatted according to Weka’s

requirements, in Attribute-Relation File Format (ARFF).

56



Segments from the ARFF training data file is shown in Figure 14. The header
section of the file contains the @ATTRIBUTE declarations for each of the valid
features (listed in Table 9) along with the data types of their values. There is also an
additional @ATTRIBUTE declaration called “class”, which can take any of the two
nominal values: “Ambiguous” or “Unambiguous”, denoting Annotator3’s annotation
of a particular sentence in our corpus. Each line under the @DATA declaration holds
the features-values for a particular sentence in order of attribute declarations and ends
with the corresponding annotation of the sentence, ie. “Ambiguous” or

“Unambiguous”.

@RELATION sentence_corpus

@ATTRIBUTE bad_DT REAL
@ATTRIBUTE bad_RB REAL
@ATTRIBUTE bad_MD REAL
@ATTRIBUTE bad_JJ REAL
@ATTRIBUTE vb_in_ p REAL
@ATTRIBUTE tokn_in_p REAL
@ATTRIBUTE parentheses REAL
@ATTRIBUTE fragment {TRUE, FALSE}
@ATTRIBUTE adverbs REAL
@ATTRIBUTE passives REAL
@ATTRIBUTE adjectives REAL
@ATTRIBUTE class {Ambiguous,Unambiguous)

@DATA
$ ---from CorpusA
i,1,0,0,0,0,0,FALSE,2,0,1, Ambiguous

0,1,0,2,0,0,0,FALSE, 1,0, 2, Ambiguous
0,0,0,1,0,0,0,TRUE,0,0,2,Aambiguous

$ ---from CorpusU
0,0,0,0,0,0,0,FALSE, 0,0,1, Unambiguous
0,0,0,0,0,0,0,FALSE, 0,0, 0, Unambiguous
0,0,0,1,0,0,0,FALSE, 0,0,1, Unambiguous

Figure 14: Training data file (in ARFF format) saved by the
sentence-level Feature Extractor

All the sentences from CorpusA were processed first by our Feature Extractor tool.

So, the first 236 lines under the @DATA declaration represented the feature-values

57



of all the 236 sentences of CorpusA, and therefore, had the “class” value
“Ambiguous”. Then, our Feature Extractor tool processed only the first 236
sentences of CorpusU. Thus, the following 236 lines of the training data file
represented the only first 236 sentences of Corpus, and therefore, had the class value
“Unambiguous”. In this way, the training data file ensures equal distribution of data

for “Ambiguous” and “Unambiguous” sentences, which is ideal for training.

5.5 Choice of Machine Learning Algorithm

We chose C4.5 decision tree learning algorithm [Quinlan, 1993] for the classification task.
The two main reasons for this choice were: (1) decision trees could allow backtracking from
a leaf to derive the cause of a particular classification, and C4.5 (revision 8), with its post-
pruning feature, was the best open source decision tree learning algorithm we could avail. (2)
The size of the corpus was not large enough for neural network algorithms to be trained on

and attain better results.

For our next experiment, we used the machine learning workbench, called Weka [Witten &
Frank, 2005] that provided a Java-based implementation of C4.5 (revision 8) algorithm,

along with the necessary framework for training and evaluating our classifier.

5.6 Experiment and Results

In the experiment, our objective was to test the effect of using the valid features listed in
Table 9 on the accuracy of a decision tree-based sentence classifier. For the experiment, we
used the concatenation of CorpusA (reduced in size, as mentioned in section 5.2) and

CorpusU, and considered all the 11 features listed in Table 9.

A batch program, called “ishrarExperimentB.bat”, supplied with the distribution package, is
used to run the experiment and display the result on-screen. The program uses the previously
saved feature values of the 11 features, and trains the java implementation of C4.5 (revision 8)

algorithm. The decision tree generated by the algorithm is shown in Figure 15.

58



<)

fragment pareitheses
/\ /\
=TRUE = FALSE <0 >0
Ambiguous ‘m,smm] g e Ambigious (532271 .0)|
«=0 /\ >0 <=0 »0
/ /
" bed_OT Ambiguous @mml Unembiguous (4:920.82) Ambiguous (13.85:3.0)
«<0 /\ >0
\
Unambiguous (116,61/21.61) adjociives:
<=1 /\ »1
/
Unambigious nmm] Ambiguous. (5.93)

Figure 15: Decision Tree generated by C4.5 algorithm for Sentence Classification

The results of using C4.5 Algorithm to classify the sentences, using the values of 11 features

are indicated in Table 10.

| Corectly | Incorrectly -
Scheme | Classified | Classified |  Comment
Training + Tree is of
Testing on 436 (92.37%) | 18(7.63%) | 0.8475 | desirable
Concatenation of | same set characteristics,
CorpusA & not sparse, and
CorpusU B | also not flat.
(Size = PR | | Noneofthe
236 +236=472) | validation' | 418(88.56%) o | branches are
(10Folds) | = wrongly directed.
R (see Figure 15)

Table 10: Results of using C4.5 algorithm to classify sentences

!' N folds cross-validation technique first divides the corpus into N parts, and then uses one part for testing
and the rest of the (N-1) parts for training the classifier. The process loops for N times, testing the classifier
with each of the N parts of the corpus, and using the remaining (N-1) parts each time for training. [Witten
& Frank, 2005]

59



Table 10 shows optimum result for our sentence classifier, where the accuracy was 92.37%,
when both training and testing was done on the same corpus. We consider the results of 10-
fold-cross-validation as the lower bound, as suggested by [Witten & Frank, 2005]. We found
that the lower bound accuracy of the classifier was also very high (88.56%). The careful
annotation work at the sentence-level and usage of precise features have also achieved a very
high degree of agreement with the human annotations (Kappa index 0.8475, when both
training and testing were done on the same corpus, and 0.7712, when 10-fold-cross-

validation was performed).

We also found that the classification tree generated by the C4.5 algorithm was of exact
desirable characteristics, where not all of the 11 features were selected by the algorithm.
Rather, only the ones that are enough to discriminate the sentences were chosen. The
resultant tree after training is shown in Figure 15. It should be noted that this tree was
dynamically generated. Therefore, with the introduction of new training data, the classifier is

able to generate new decision trees.

5.7 Conclusion

Our results with this initial experiment affirm that the task of detecting ambiguity in terms of
Surface Understanding is indeed doable by means of currently available NLP tools and text
classification techniques. The accuracy of our sentence classifier establishes its applicability
in practical fields, where ambiguity is detected at the sentence level. But, since our primary
concern was to detect ambiguity at the discourse level, we continued with our work of
building a more powerful classifier that could best emulate the decisions of our human
annotators by classifying a discourse based on its ambiguity at the level of surface

understanding.

60



Chapter 6

Discourse-level Classification

6.1 Methodology

We again employed a text classification technique for detection of ambiguity in surface
understanding, but this time, at the discourse-level. We used our discourse-level annotated
corpus for this purpose. Each instance of this corpus is a passage of a problem description
(see section 4.3.1, for our definition of passage in this thesis). Thus, the scope of discourse

that we took into consideration for ambiguity detection was limited to one passage only.

Discourse-level classification was performed in the following two distinct ways, so that

they can be compared afterwards in terms of efficiency:

(a) Using Discourse Features

(b) Using The Sentence Classifier

To perform discourse-level classification using discourse features, we first tried to identify a
list of extractable lexical and syntactic features in a discourse that can make it ambiguous in
terms of surface understanding. Our Feature Extractor tool, using the Stanford Parser [Klein
& Manning, 2003], then extracted the values of all those features in each of the instances
(passages) in our corpora, and trained our classifier with the feature values and the

corresponding annotation of the instances. Figure 16 illustrates the steps of the classification.

61



Discourse-level
/| Training Data
File

I 4

Unambiguous
Passages

Figure 16: Discourse-level Classification using Discourse Features

We also intended to build another discourse-level classifier using our sentence classifier.
Figure 17 illustrates the process. Here, the sentence classifier is used to count the number of
ambiguous sentences of in each of the instances (passages) in our corpora, and classify an
instance based on the density of ambiguous sentences (along with two other discourse
features, which were, although, ignored later by our classification algorithm on the basis of

our training data file) and the corresponding annotation of the instance.

Ambiguous

Sentences \ [Sentence-level

7| Training Data
File

Unambiguous ‘
Sentences

Ambiguous
Passages

| Unambiguous Il
§ Passages M

Discourse-level [ty
Training Data |~
File

Figure 17: Discourse-level Classification using the Sentence Classifier

62



The following sections explain our two ways of performing discourse-level classification in

details, and discuss the experiments and results with comparisons of efficiency.

6.2 Using Discourse Features

6.2.1 Pre-processing

As discussed in chapter 4, human annotators previously annotated 165 instances of passages
from 25 problem descriptions of our discourse-level corpus by giving scores in the range of 0
to 10. But two issues persisted with the annotations: 1) the gold-standards of some instances,
although measured by the decision of the majority of the annotators, had a considerable
number of annotators disagreeing with it; 2) If the decision threshold on the score is set to 5
(as stated in the standard interpretation of the scores given to the annotators — see section
44.1.3 for details), the size of the corpus becomes unequally divided into two sets:
Ambiguous (6%) and Unambiguous (94%), which is unfavorable for training any machine
learning algorithm. To deal with these issues, the following two preprocessing tasks are

undertaken:

1. Reduction of the size of the corpus:

If the gold-standard of an instance agreed with the annotations of at least two
annotators more than the number of annotators disagreeing to it, only then the sample
was included in the new corpus for detecting ambiguity. Table 11 presents this idea
with a hypothetical example, where instance 1 would be kept, but both instance 2 and

3 would be excluded from the corpus following the aforesaid rule.

Gold
Annotator 1 | Annotator2 | Annotator3 | Annotator4 | Standard Keep /
(median) | gxclude

Anno-
Score tation

Anno-
tation

Anno-
tation

Anno-
tation

Anno-

tation Score

Score Score Score

U | 85 U | 10 | U 4 | A 8.2 Y K

Table 11: A hypothetical example of the preprocessing task

63



Here, instance 2 can easily be spotted having a weak gold-standard decision with
equal number of annotators annotating the instance as ‘“Ambiguous” and
“Unambiguous”, and the rule rightly excludes the instance. According the rule,
instance 3 also gets excluded, because two annotators annotated the instance as
“Unambiguous”, which is only one more than the number of annotator (only one)
annotated as “Ambiguous”, thus, making the gold-standard decision comparatively
weaker than the decision of instance 1. Thus, we excluded 17 such weak instances
from our corpus using the rule, reducing its size to 165. Table 12 shows the

improvements in the kappa index resulting from the reduction of the size of the

corpus.
o Iite AnnotatorAgreement
~ [AveragePairwise | Muitiple Annotators’
Agreementwith | mbined
- Gold-standard - | Agreement Measure
| (in Kappa) _(in Kappa)
Old Corpus 165 0.6661 0.4492
New Corpus 148 0.737 0.5441

Table 12: Improvements in Kappa after reduction in corpus size

2. Raising the decision threshold of the Gold-Standard:

Instead of using a decision threshold of 5, we used 8.5, meaning that if an instance
has the median of the annotators’ scores greater than 8.5, the instance is labeled as
“Unambiguous”, and otherwise, it is labeled as “Ambiguous”. This divided the
corpus in two sets which are nearly equal in size. The resultant new distribution of the

corpus is shown in Figure 18.

64



New Distribution of The Corpus
(Size = 148)

71, 48%

0 Ambiguous

@ Unambiguous

Figure 18: Distribution of the Corpus after preprocessing
tasks mentioned in section 6.2.1

6.2.2 Our Initial List of Features

We have discussed some of the characteristics of natural language text in section 3.4 that are
presented in different studies as potential clues revealing ambiguity, and are extractable by a
syntactic parser (equipped with a POS-tagger). The annotation guideline that we prepared in
consultation with the experts (see section 4.4.1.2) also points out some characteristics of texts
that reveal ambiguity and are also extractable by the aforesaid parser (e.g. frequency of

Passive Verbs).

With this end in view, we first tried to identify a list of extractable lexical and syntactic
features in a passage that can make it ambiguous. Higher frequency of each of these features
in an instance of a passage in our corpora apparently has the potential to induce ambiguity in
that passage in terms of surface understanding. These features are listed below:

1. Number of Words per sentences in a passage

2. Number of Adjective* in a passage

3. Number of Adverbs* in a passage

4. Number of Passive Verbs* in a passage

5. Number of Parentheses* in a passage

6. Total number of Tokens* inside (or, between) all pairs of parentheses in a passage

65



7. Total number of all forms of Verbs* inside (or, between) all pairs of parentheses in

a passage

8. Number of Punctuations* in a passage

9. Number of Conjunctions* in a passage

10. Number of Adverbs modifying Verbs* in a passage

11. Number of Adverbs modifying Adjectives™* in a passage

12, Number of Cardinalities (quantifying numbers)* in a passage
13. Number of Degrees* in a passage

14. Number of Tables* in a passage

15. Number of Images™ in a passage

The frequency of features above, marked with asterisk (*), are normalized (i.e. arithmetically

divided) by the total number of words in a passage.

From this list, features 1, 2, 3 and 4 are also used by [Fabbrini et al., 2001; Gnesi et al.,
2005; Wilson, 1997]; and, the ambiguity characteristics of features 1, 2, 3, 4, 6, 7, 14, 15 are

also mentioned in our annotation guideline, described in section 4.4.1.2.

6.2.3 Sentence Parsing and Feature Extraction

We developed a Feature Extractor program to extract the values of all the 15 features
previously mentioned. The program first detects sentence boundaries to extract one sentence
at a time, so that it can feed the sentences one-by-one to Stanford Parser [Klein & Manning,
2003] for POS tagging and syntax parsing. The values of the features are then counted for

each instance of passages from our discourse-level corpus.

Table 13 shows the 15 features ranked according to the absolute values of correlation
between their individual values that we extracted and the medians of the annotators’ surface

understanding scores for all instances:

66



| Feats i Sposte
words /sentence [W] 0.2814
adverbs (modifying adjectives) /word [AA] 0.2715
adverbs /word [AD] 0.2141
adjectives/word [AJ] 0.1497
tokens (in parentheses) /word [TP] 0.1372
passives/word [PS] 0.1372
adverbs (modifying verbs) /word [AV] 0.1328
punctuations/word [P] 0.1205
degrees /word [D] 0.1165
verbs (in parentheses) /word [VP] 0.112
images /word [1] 0.0737
parentheses /word [Pr] 0.0463
cardinals /word 0.0406
tables /word [T] 0.0257
conjunctions /word [C] 0.0235

Table 13: Absolute values of correlation between “each of the values of the initial
feature list and the median of all the annotators’ Surface Understanding scores”
pairs for all instances

Thus, Table 13 shows that the number of words/sentences is a very important feature, but

surprisingly, the number of conjunctions is not.

6.2.4 Training data file

The Feature Extractor program stores the values of all the features for all instances in an
specially formatted file, called the training data file. Here, again, since we used the open
source machine learning workbench called, Weka [Witten & Frank, 2005] to build the

classifier, we needed the training file to be formatted according to Weka’s requirements, in

67



Attribute-Relation File Format (ARFF). A segment of the ARFF training data file is shown
in the following figure:

@RELATION discourse_corpus_1l

@ATTRIBUTE words_per_sentences REAL
@ATTRIBUTE adverbs REAL

@ATTRIBUTE adv_mod_adj REAL
@ATTRIBUTE adv_mod_vb REAL
@ATTRIBUTE adjectives REAL
@ATTRIBUTE conjunctions REAL
@ATTRIBUTE degrees REAL

@GATTRIBUTE cardinalities REAL
@ATTRIBUTE passives REAL

@ATTRIBUTE punctuations REAL
@ATTRIBUTE tokens_in_paranth REAL
@ATTRIBUTE verbs_in_paranth REAL
@ATTRIBUTE parantheses REAL
@ATTRIBUTE tables REAL

@ATTRIBUTE 1images REAL

@ATTRIBUTE class {Ambiguous,Unambiguous}
@DATA

16,0.0625,0,0.0625,0.09375,0.0625,0,0,0,0.0625,0,0,0,
0, 0, Unambiguous
16.666666,0.02,0,0.02,0.1,0.04,0,0.04,0.02,0.06,0.02,J
0,0.02,0,0,Unambiguous
8.75,0.057142857,0,0.057142857,0.14285715,0.08571429,J
0,0,0,0.028571429,0,0,0,0,0, Ambiguous
9.571428,0,0,0,0.05970149,0,0,0,0,0.014925373,0,0,0, 0.
, 0, Unambiguous
32,0.015625,0,0,0.0625,0.015625,0,0,0.015625,0.03125,4
0.046875,0,0.015625,0, 0, Ambiguous

Figure 19: Training data file (in ARFF format) saved by the discourse-level Feature
Extractor mentioned in section 6.2.3

Thus, the output of the Feature Extractor program is an ARFF training file, which is an
ASCII text file describing the instances of our corpus with corresponding feature values and
their annotations. In Figure 19, we see that the header section of the training data file contains
the metadata of our corpus, holding names of all the 15 features as @ATTRIBUTE
declarations of real-valued features, and also the classification outputs as an additional
@ATTRIBUTE declaration, called ‘“class”, with the nominal values “Ambiguous” and

“Unambiguous”. The @DATA section holds in each line the comma-separated-values (CSV)

68



of all the 15 features in order of declaration, where each line corresponds to one instance in
our corpus. And, at the end of each line, the nominal value of “ambiguous” or Unambiguous”

denotes the corresponding annotation of the instance.

6.2.5 Choice of Classification Algorithm

We again chose C4.5 decision tree learning algorithm [Quinlan, 1993] for the classification
task. The reasons for this choice were same as mentioned in section 5.5 from the previous

chapter.

We used the Java-based implementation of C4.5 (revision 8) algorithm available with Weka
[Witten & Frank, 2005] for the experiments described next.

6.2.6 Experiments and Results

We carried out the following experiments using the feature values for each instances
extracted by the feature extractor, and both the old and newly preprocessed discourse-level

corpora mentioned above.

6.2.6.1 Experiment Al

In this initial experiment, we intended to test the effect of reducing the corpus size on the
accuracy of a decision tree-based classifier. Both the old discourse-level corpus (of size 165)
and the newly reduced discourse-level corpus (of size 148) after preprocessing were used in
this experiment. The experiment considered all the 15 features that were mentioned in Table
13. The batch program, “ishrarExperimentAl.bat’, was used to run the experiment and
display the result on-screen. The program uses the previously saved feature values and trains
the java implementation of C4.5 (revision 8) algorithm. It then tests the classifier once using
the same corpus, which it is trained on, and the other time, using 10-fold-cross-validation
technique. Their results, before and after the reduction of corpus set (a total of 15 initial

features were used) are shown in Table 14.

69



, ; Corréctly‘ Incorrect]ykv e S T
Scheme | Classifed | Classified | Kappa | Nororcorife
Instances ln'stances :
Training + '
i Tree is very sparse,
0ld Corpus Set Testingonsame | 132 (80%) 33 (20%) 0.5971 same features
(Size = 165) g?;psl:fa?itdaﬁ n ; « considered on
(10 Folds) O | 94(s697%) | 71(43.03%) | 01416 | different nodes
Training + k '
New Corpus | Testing onsame | 138 (93.24%) | 10 (6.76%) 0.8648 l";f S': es‘;en"‘e’m’e
(Siz(;S ?t1 48) g?g:?v:%aﬁon ~ fepature’s considered
] (WFOids;* , 78 (52.7%) 70(47.3%) |  0.0566 | on many nodes

Table 14: Results of using C4.5 algorithm on initial 15 features

The results in Table 14 show that reducing the size of the corpus significantly improves the
accuracy (percentage of correctly classified instances increased from 80% to 93.24%, when
training and testing is performed on the same corpus set). The Kappa index, measuring the
degree of agreements between the human annotations and automatic classification also

increased, when the same corpus set was used on training and testing.

But, having too many fine-grained features (15 features) supplied to the classification
algorithm over-fits the data by generating a very sparse tree, and thus, attains a poor result
with a 10-fold-cross-validation scheme. This issue led to the refinement of the list of features
in the following experiments. We can assume that the results, when using the same training
set as the testing set, represents the upper-bound of the classifier’s accuracy, whereas, results

of 10-fold-cross-validation can serve as the lower-bound.

Therefore, we continued using only the new preprocessed discourse-level annotations for the

rest of the experiments.

70




6.2.6.2 Experiment A2

In this experiment, we intended to test the effect on the accuracy of the same classifier of
introducing a new feature, along with the 15 initial features used in Experiment Al. For this,
our feature extractor program is updated to calculate the frequency of Uniques, which are the
number of words that appear once in a discourse, for each passage. The frequency is then
normalized by the number of total words in the passage. We used this normalized frequency
as our new feature, called Uniques/ word. This feature alone attained a correlation of 0.3088
with the surface understanding scores of human annotators, which is the highest among
compared to that of all other features. This feature was also used to detect ambiguity in
requirements by the study of Wasson et al [2005].

For the experiment, we used the pre-processed discourse-level corpus (of size 148), and
considered 16 features now, i.e. all the 15 features that were mentioned in Table 13, plus the
new feature Uniques/ word. The batch program, “ishrarExperimentA2.bat”, supplied with
the distribution package, was used again to run the experiment and display the result on-
screen. Like before, the program uses the previously saved feature values and trains the java
implementation of C4.5 (revision 8) algorithm. It then tests the classifier once using the same
corpus, which it is trained on, and the other time, using 10-fold-cross-validation technique.

The results (a total of 16 features were used) are shown in Table 15.

...l Correctly " ‘| Incorrectly ol
Training +
New Corpora laer?]ﬂenge(:n 142 (95.95%) 6 (4.05%) 0.9188 I;ea?sreew;;‘n:avrg;y
(ffé) Cross-validation | . B I R features considered
(10 Folds) 1 88(59.46%)' | '160(405’54%’);" 01914 on different nodes

Table 15: Results of using C4.5 algorithm on initial 15 features + (Uniques /word) as a feature

The results in Table 15 shows that introducing (Uniques /word) as a feature significantly
improves the accuracy (percentage of correctly classified instances increased from 93.24% to

95.95%), when training and testing is performed on the same corpus set). The Kappa index,

71



measuring the degree of agreements between the human annotations and automatic
classification also increased, when the same corpus set was used for both training and testing.
In this experiment, we find that the statistics for cross-validation also improved as Kappa
value increased from 0.0566 to 0.1914.

But again, having too many fine grained features (16 features this time) over-fitted the data
by generating a very sparse tree, and thus, attains a poor result with a 10-fold-cross-validation
scheme. This issue led to further refinement in the list of features in the following

experiments.

Therefore, we decided to include Uniques /word as a valid feature in the previous list of

features.

6.2.6.3 Experiment A3

Here, we wanted to test the effect on the classifier’s accuracy of reducing its number of
features by first manually combining them into four major feature-groups, and then using
them for training the classifier. For this, different combinations (functions) of the initial
features were generated by adding them with manually set weights to group them up into
different major features. These features were then ranked according to their individual
correlation with the median of the annotators’ scores. The first four major features that
achieved the highest correlation with the median of the annotators’ scores, were selected.

They are shown in Table 16.

Correlation with Function Correlation with
Raw Feature S.U.Score - | Combined As (manually defined) S.U. Score
v (absolutevalug) | | \manualyceined) | peplute value)
uniques /word [U] 0.3088 | Uniques |U 0.3088
words /sentence [W] 0.2814 I
tokens (in parentheses)
fword [TP] 0.1372 Length (\éV/gO) +TP+C+ 0.328
conjunctions /word [C] 0.0235 (Px2)
punctuations/word [P] 0.1205

72




adverbs /word [AD] 0.2141
adverbs (modifying 0.2715
adjectives) /word [AA] ) | AD+(AAX10) +
adverbs (modifying 0.1328 Modifiers | (AVx3) + AJ + 0.321
verbs) /word [AV] ' (Dx5)
adjectives/word [AJ] 0.1497
degrees /word [D] 0.1165
passives/word [PS] 01372 | (.. ‘
: Ambiguous | oo ypyo) 0.1766
verbs (in parentheses) 0.112 -« Verbs
/word [VP] ) L

Table 16: 12 of the initial features manually combined into four major features

For the experiment, we used the same pre-processed discourse-level corpus (of size 148), and
only 4 major manually combined features. The batch program, “ishrarExperimentA3.bat”,
was used to run the experiment and display the result on-screen. Like before, the program
uses the previously saved feature values of the four features, and trains the java
implementation of C4.5 (revision 8) algorithm. It then tests the classifier once using the same
corpus, which it is trained on, and the other time, using 10-fold-cross-validation technique.

Their results are shown in Table 17.

Correctly Incorrectly
Scheme Classified Classified Kappa Comment
Instances Instances ‘ :
Training + '
Testing on 106 (71.62%) | 42(28.38%) | 0.4284 | lreeisvery flatand
New Corpora | same set simple with only 4
Set ; — ,, — nodes, but few wrong
(148) ey ; o Tty dlrte:]ctl?ns shov; r:mse
Cross-validation | oc o smorv oo | aiem | inthe training data
(10Folds) | - 85 (57.43%) 63(4257%) A 0143 | (see Figure 20)

Table 17: Results of using C4.5 algorithm trained with 4 major features

73




The results in Table 17 shows that the classifier loses accuracy when the number of features
is reduced to four, by combining them with weights set manually. But we also find that the
accuracy of the classifier in the 10-fold-cross-validation results, although was reduced, but
not significantly. This points out the fact that the tree was not sparse and was not over-fitted

to the data.

But a new issue arose at this point. If we visualize the resulting tree after training with
the preprocessed corpus set, we find two branches were wrongly directed. For example, if the
value of the combined feature, called “modifier” increases, the classification outcome should
tend to be “Ambiguous” (as it is inversely proportional to annotators’ scores by definition).
But C4.5 algorithm generates a decision-tree (as shown in Figure 20) that assumes the
“modifier” feature to be directly proportional to the annotators’ scores, because of the
existence of many modifiers in the training data that never contribute to ambiguity at the
level of surface understanding. Thus, it generates a wrong directional branch, setting the rule
“if the value of the modifier feature is higher than 0.169231 than an instance is to be
classified as Unambiguous”. The same problem was found for the feature called,
“Ambiguous Verbs (a_verbs)”.

N

«= 0.648182 »0.648182

<= .J08086

«=0.104478 »0.104478

Ambiguous B.02.0)

Figure 20: Decision Tree of C4.5 using 4 major manually combined features (wrong directional branches
resulted from noise are shown in circle)

74



This issue points to the fact that discourse-level annotation data, along with the values of the

features themselves represented “noisy” data.

6.2.6.4 Experiment A4

Here, we intended to test the effect on the classifier’s accuracy of first reducing the number
of features by combining them into four major feature-groups automatically with linear
regression, and then using them for training the classifier. For this, the fine-grained features
that were related by definition were first manually grouped into four categories. Then the
least median squared linear regression method [Rousseeuw & Leroy, 1987] was used to find
the combinations (functions) of the fine-grained features, where the weights were set
automatically, so that they attain a high correlation with annotators’ scores in surface

understanding. The resulting four features are shown in Table 18.

] Comelationwith | Combined | . Function | Comelation with
=] (absolutevalue) | " | - regression) | (absolute value) -
uniques /word [U] 0.3088 Uniques U 0.3088
words /sentence [W] 0.2814
tokens (in parentheses)

0.1372 (0.0311xW) +
/word [TP] (1.7807xC) +
parentheses /word [PR] 0.0463 Length | (0.1619xP) + 0.3286
(3.0231xTP) -
conjunctions /word [C] 0.0235 , (10.7588xPR)
punctuations/word [P] 0.1205
adverbs /word [AD] 0.2141
adverbs (modifying ' : i
adjectives) /word [AA] 0.2715 % 4:;2%7162)(:&)1
adverbs (modifying verbs) 0.1328 | Modifiers | (6.31xAV) + 0.3158
/word [AV] (1.3115xA) +
adjectives/word [AJ] 0.1497 e (8.9913xD)
degrees /word [D] 0.1165 o
passives/word [PS] 0.1372 Passwes | PS 0.1372

Table 18: Twelve of the initial features combined by linear regression into four major features

75



For the experiment, we used the same pre-processed discourse-level corpus (of size 148), and
4 major features mentioned above. A batch program, called “ishrarExperimentA4.bat”,
supplied with the distribution package, is used to run the experiment and display the result
on-screen. Like before, the program uses the previously saved feature values of the four
features, and trains the java implementation of C4.5 (revision 8) algorithm. It then tests the
classifier once using the same corpus, which it is trained on, and the other time, using 10-

fold-cross-validation technique. Their results are shown in Table 19.

| Comectly | Incomecty | [
Scheme | Classified | Classified | Kappa |  Comment
| Instances | Instances | = . [ - o
Training + Tree is very flat and
Testing on same | 106 (71.62%) | 42(28.38%) | 0.4364 siﬂ(\jple \git? only 4
set nodes, but one
New Cz?‘rt%c;ra Set / « wrongly directed
Cross-validation ~ : o) -{ branch show noise in
(wFo";s;" 88(5946%) | 60(40.54%) | 0807 | the traning data
' : I | (see Figure 21)

Table 19: Results of using C4.5 algorithm trained with 4 major features

The results in Table 19 show that the classifier’s accuracy slightly improved in this case. But
if we examine the tree generated by the C4.5 algorithm (as shown in Figure 21), we again

find one wrongly directed branch representing noise in the data.

«=0.7161 >0.7181

«=0.010417

/

»0.010417 «= 0123077 »0.123077

Amsiguous (3200

<= 0.0788 »0.0788

Unsmbiguous (1204 0] Ambiguous (55.029.0)

Figure 21: Decision Tree of C4.5 using 4 major linear regression features (one wrong directional branch
resulted from noise is shown in circle)

76




6.2.7 Analysis

The previous experiments have shown that the accuracy of the discourse-level classifier using
discourse features is not high enough for it to be realistically applied in practical fields to

detect ambiguity.

To investigate the reasons of having noise in our data, we can first consider an example

of passage from our corpus, given Figure 22.

A cell in a cellular telephone network handles all the calls of mobile
phones in the area it covers. To do this, it transmits identifying
information on a beacon radio frequency and handles the "traffic" on
other frequencies. When a network is initially built, the area that is
covered by each cell is very large. When the number of subscribers
increases, capacity is added by splitting cells. This results in more
and smaller cells, offering more total capacity. This technique makes
cellular networks highly scalable. In busy areas like cities, cell
diameters are measured in metres, in rural areas the diameters can be
up to 64 km. The only limit is the interference of cells that reuse the
same frequency. Networks that use digital signals instead of analog
between the cell and the mobile phone have an advantage because the
interference levels can be considerable higher at the same quality.

(IMAGE)

One of the most complicated aspects of a cellular network is the
planning of the frequencies. This is almost a black art and is usually
handled by special planning programs. These programs contain prediction
algorithms that take into account the terrain that the cell covers.

Figure 22: An example of a passage from our corpus

The median of our annotators’ scores for this particular passage is 7. Thus, after the pre-
processing mentioned in section 6.2.1, the annotation for this instance is selected as

“Ambiguous” (since, the median score less than 8.5).

Now, our Feature Extractor program extracted the following feature values for this

instance:

77




words adverbs adjectives :;kr::‘:‘l;:‘s:e passives
I/sentence | /word /word s fword Iword
16.4167 0.0355 0.0964 0 0.0304

Table 20: Feature Values of Example in Figure 22

Now, we have seen from Table 13 that “words/sentence” attains the highest rank of all
features (which is, although, later on superseded by the feature: “Uniges /word” — see
experiment A.2 of section 6.2.6), indicating it to be the most discriminating feature of that list.
We also find that 62 instances have the value of words/sentence less than 19.5 and they are
all annotated as “Unambiguous”, while 35 instances have the value of words/sentence higher
than 19.5, and they are all annotated as “Ambiguous”. But, there exist 51 other instances, like
the one shown in Figure 22 earlier, which contradict this rule and are annotated as

“Ambiguous” and “Unambiguous” considering other features.

For example, in Table 20, the instance has the value of words/sentence = 16.4167, which is
less than 19.5 mark, yet, the annotation of the instance in our corpus is “Ambiguous”.
Although it has one sentence containing 35 words and another containing 30 words (see

Figure 22), on average these chances of ambiguity get ignored.

This is the primary problem of using our list of generalized syntactic and lexical features at
discourse-level, when many strong features lost their power of discrimination after they were
normalized in the discourse. The reason is that irregular presence of Unambiguous
characteristics in greater number in a text reduces the chances of an Ambiguous characteristic
to be acknowledged. Such irregularities increased noise in our data that eventually led our

C4.5 decision-tree-based classifier to perform poorly after training.

Hence, we looked forward to using the sentence classifier, discussed in chapter 5, to isolate
the scope of the syntactic features and redo task of discourse-level classification to analyze its

performance at discourse-level.

78



6.3 Using the Sentence Classifier

6.3.1 Preprocessing

As discussed in section 5.1, we have used Annotator3’s sentence-level annotation (reviewed
and refined by both Annotator]l and Annotator3) for the purpose of building the training
corpus of sentence classifier. Our goal was to use this same classifier for the task of discourse

classification. To achieve this goal, we undertook the following two preprocessing tasks:

a) Selecting the Scores of the Gold-Standard:

The Annotation Guideline, described in section 4.4.1.2, permitted all of our
annotators to have freedom in scoring and use their own scoring technique in
selecting a higher or lower score while annotating the discourse-level corpus. This
allowed an annotator to have a different mental model than the other while scoring an
instance in terms of Surface Understanding. And, we wanted to seek out the
Annotator, whose scoring technique would conform the most to the detection of

ambiguous sentences using our sentence classifier.

When we interviewed the annotators to know their scoring technique, we
identified that Annotator3’s scores for discourse-level annotation precisely followed
the sentence-level annotation that she had done beforehand — a technique that others
never used. Our inspection on the corpus also supported this fact that she mostly
followed a rule of reducing 1 point from her score for every ambiguous sentence that
she could find in an instance. Thus, for using our sentence classifier, which had
already been trained with Annotator3’s sentence-level annotations, our best option
was to use Annotator3’s discourse-level scores as the decisive scores of the gold-
standard of our corpus, and build a discourse-level classifier using the annotations. It
should also be mentioned here that Annotator3 (Dr. Ormandjieva) is the only expert

in the field of Requirements Specification in our group of annotators.

79



b) Raising the Decision Threshold:

For our new gold standard, we raised the decision threshold to 9, so that, we could
divide the discourse-level corpus in two nearly equal half based on Annotator3’s
scores. Therefore, if the score was higher than 9, the instance was held to be

annotated as “Unambiguous”, and, otherwise, “Ambiguous”.

The resultant distribution of the corpus after the preprocessing tasks is shown in Figure 23.

New Distribution of The Discourse-level Corpus
(Size=165)

|73

W Unambiguous
1 Ambiguous

56%

Figure 23: Distribution of the Corpus after preprocessing tasks mentioned in
section 6.3.1

6.3.2 Ambiguous Sentences as a Discourse Feature

We developed a Feature Extractor program that first trains the sentence-level classifier with
the Sentence-level training data file, which had been created earlier by the tool described in
section 5.4. The program then reads each passage or instance of the discourse-level corpus
and extracts sentences from them. The sentences are then syntactically parsed, one at a time,
using the Stanford Parser [Klein & Manning, 2003], and the values of the required features
(see Table 9) are counted and fed into the trained sentence classifier. If the sentence is
classified as an ambiguous sentence by the sentence classifier, a counter increases counting

the frequency of ambiguous sentences for a particular instance in our discourse-level corpus.

80



We found that the absolute value of the correlation between the number of ambiguous
sentences in the passages of our corpus and the corresponding scores of the passages given
Annotator3 is 0.62506, which is higher than any discourse features used in the experiments of
section 6.2.6 (compare with the values mentioned in Table 13). Figure 24 shows the

distribution of ambiguous sentences in our discourse-level corpus with 165 instances of

passages:
Ambiguous Sentences in the Corpus
12
s s 10 -
£ 2 Unambiguous Instances
@O 8 (Scores >9)
9 3
2 c
g
I =
2t 6
"8 o
E >
<2 4
>3
28 2
E®
204
1 21 41 61 81 101 121 141 161

Instances of the Discourse-level Corpus
(Ordered by Annotator3's Scores)

Figure 24; Number of Ambiguous Sentences detected by the Sentences Classifier in the instances of the
Discourse-level Corpus (Instances are sorted by Anootator3’s scores during annotation)

Therefore, we selected our new discourse feature as the density of ambiguous sentences
(number of ambiguous sentences divided by the total number of sentences) in an instance.
For the next experiment we also supplied the feature values two of the strongest discourse
features used in our previous experiments (discussed in section 6.2.6) — “Uniques /word”
and “words /sentences”’, along with the new “ambiguous-sentences /sentences” features, to
the C4.5 decision-tree learning algorithm [Quinlan, 1993] to check if the resultant decision

tree includes the previous features as well.

Thus, all these feature values for each of the instances, with their corresponding annotations
are saved in the Discourse-level training data file (which is in ARFF format, similar to the

one mentioned in section 6.2.4) by the Feature Extractor program. The Discourse-level

81



classifier program reads this file to train the C4.5 algorithm using Weka’s framework [Witten
& Frank, 2005]. The following figure shows a part of training file:

@RELATION discourse_corpus_2

@GATTRIBUTE ambiguous_sent_per_sentence REAL
@ATTRIBUTE uniques_per_word REAL

@ATTRIBUTE words_per_sentence REAL
@ATTRIBUTE class {Ambiguous,Unambiguous}

@DATA

0.2,0.603603604,22.2,Ambiguous
0.086956522,0.334916865,18.30434783, Ambiguous
0.2,0.242424242,19.8,Ambiguous
0.235294118,0.194581281,23.88235294, Ambiguous
0.166666667,0.154811715,19.91666667, Ambiguous
0,0.138888889, 18, Unambiguous
0.090909091,0.237837838,16.81818182, Ambiguous
0,0.385964912,57,Unambiguous
0.25,0.171717172,24.75, Ambiguous
0.25,0.151394422,31.375,Ambiguous
0.263157895,0.146981627,20.05263158, Ambiguous
0,0.048780488,20.5, Unambiguous

Figure 25: Training data file (in ARFF format) saved by the discourse-level
Feature Extractor mentioned in section 6.3.2

6.3.3 Building the Discourse-level Classifier

We again chose the C4.5 (revision 8) decision-tree learning algorithm [Quinlan, 1993] for the
purpose of building the discourse-level classifier. The Weka machine learning workbench
[Witten & Frank, 2005] provided the necessary framework for training, and evaluating our

classifier.

We used the Discourse-level training data file saved by our Feature Extractor program, as
mentioned in the previous section, and trained our classifier with the file. The classifier,
therefore, requires three feature values to be extracted from a passage of unknown status, so

that it can predict its classification as the nominal values: “Ambiguous” or “Unambiguous”.

The decision-tree generated by the aforesaid C4.5 algorithm after training is shown in Figure
26.

82



Figure 26: Decision tree generated by C4.5 learning algorithm [Quinlan, 1993] after
training with the feature-values mentioned in section 6.3.2

Figure 26 shows the discrimination power the sentence classifier has in classifying discourse.
The tree contains a single feature, namely, “ambiguous_sent_per_sentences” (i.e. the density
of ambiguous sentences, or the number of ambiguous sentences divided by the total number
of sentences in a section), at its root. No other feature is included by the tree by C4.5

algorithm affirming that the feature alone was enough for the classification task.

Now, after examining the tree of Figure 26, we could have built the discourse classifier using
only one feature, i.e. only checking if a passage had one or more ambiguous sentences; and if
did, then we could have classified the passage as “Ambiguous”, and otherwise,
“Unambiguous”. Although this would have simplified the processing steps of the classifier
reducing the execution time and space requirements of the program, we chose not to hard-
code this rule into our classifier. Otherwise, it would have been to endorse this decision-tree
as the only static tree required to detect ambiguity, which it may not be the case real life. It
would have also ignored the chance of the two other strong discourse features — “words
/sentences” and “Uniques /word’, which are, however, useful features in discourse (for
example, “words /sentences” is used as readability measure of documents in [Wilson, 1997]
and [Gnesi et al., 2005], “Uniques /word” as a feature of ambiguity in [Wasson et al., 2005]
and as a feature of subjectivity in [Wiebe et al., 2004]) to be included in this decision-tree
later on by the learner as new training data becomes available in future. Thus, we embed the

C4.5 decision tree learner with our discourse classifier to keep the learning process dynamic,

83



and to check the applicability of the other comparatively less strong features in classification

every time, when learning from new training data.

We used our classifier to carry out the following experiment.

6.3.4 Experiment and Results

In this experiment, our objective was to test the accuracy of using the discourse-level
classifier presented in section 6.3.3 in detecting ambiguity. The experiment considered three
features, the new feature, “ambiguous-sentences /sentence” (ambiguous_sent_per_sentence),
along with “Uniques /word’ (uniques per word) and ‘“words /sentences”
(words_per sentence). As discussed in section 6.3.1, we used the pre-processed discourse-
level corpus (of size 165) for the experiment, and considered the three features mentioned
above. The batch program, “ishrarExperimentC.bat”, was used to run the experiment and
display the result on-screen. Like before, the program uses the previously saved feature
values and trains the java implementation of C4.5 (revision 8) algorithm. It then tests the
classifier once using the same corpus, which it is trained on, and the other time, using 10-

fold-cross-validation technique. The results are shown in Table 21.

| Romars onthe
g 'deciSiOntree’

T;élnlng +

Newly ) The tree is very
Preprocessed Testing on same | 146 (88.48%) | 19 (11.51%) 0.7572 simple with one
Discourse-level |-COPuS Set feature at the root,

| see Figure 26 of

Corpus Set | Cross-validation
E | section 6.3.3

(Size = 165) | (10 Folds)

- 143(86.67%) | 22(13.33%) | 07203

Table 21: Results of using the new discourse-level classifier, presented in section 6.3.3

Table 21 presents better results showing an accuracy of 88.48% when training and testing
were done on the same data, and 86.67% when 10-fold-cross-validation was performed. The
tree being very simple was also of desirable characteristics (see Figure 26 of section 6.3.3).

We also find that the agreement between the system’s predicted classifications and the actual

84




annotations was significantly high (Kappa index 0.7572 and 0.7203, when training and
testing were done on the same corpus, and when performing 10-fold-cross-validation

respectively).

Thus, this result again affirms the optimum efficiency of our sentence classifier in classifying
most of the sentences correctly in terms of ambiguity in surface understanding. Using the
new feature, density of ambiguous sentences in an instance, derived by the sentence classifier,
radically improved the overall efficiency of our new discourse-level classifier, clearly placing

it above the classifiers used in our previous experiments, discussed in section 6.2.6.

In the next section, we analyze the performance of our classifiers in terms of their

applicability in a practical environment.

6.4 Performance Evaluation Compared to Human

Performance of a system can be evaluated from different perspectives. For evaluating the
performance of our system we first chose to compare its performance with the level of

agreement human annotators displayed while annotating our discourse-level corpus.

6.4.1 Discourse Classifier That Used Discourse Features

Measuring the inter-annotator agreement of our annotators in annotating passages from our
discourse-level corpus showed how efficiently human with average knowledge in
requirements analysis can detect ambiguity in terms of surface understanding. The results of
this measurement in kappa, explained in section 4.4.2.2, pointed out that in detecting
ambiguity at the level of surface understanding the average pair-wise agreement of the four
annotators with the gold-standard (when decided by the median of the annotators’ scores) is
0.6661 in terms of the kappa index (see section 4.4.2.2 to find the agreement measure for
each of the annotators individually). We found this value of kappa to be the indication that
our human annotators had “substantial” level of agreement (see Table 2 of section 2.7) and

the process of detecting ambiguity can be automated.

85



Now, for all the experiments in section 6.2.6, the gold standard annotations of the discourse-
level corpus were similarly decided by the median of the annotators’ discourse-level scores,
reflecting their collective decision on the annotation of each instance. We, therefore, compare
the performances of the discourse-level classifiers that use discourse features, used in all
those experiments, opposed to that of the human annotators, by measuring their level of

agreement with the gold standard in terms of kappa index values, as shown in the following

figure:

Using Discourse Features Compared To Human
(When Gold Standard was decided by the median of Annotators' scores)

R R B e SO
R R B St

A
SRR R
Rl % e
st It R
Srnatanant Jraaaoatlanania RAKIL, s I
] SR SRR s
] SERLSEESESRT < R S SR S

e
SRR
s

B

o

. Slight

e
o o o J o ) o !
E @ %:.CW 3:.5‘0 B e | Lo e | Ew 83 c £
231 865§ |83| 85|23 | 086 |83|86|%3 |66 w38
] o | 1] Q. 173 o . 73 o . 7 o . - 8
o 2| 58|l | 58|02 | 52 0B | 52 |0 |5 DES
~ o I I O | - 0o i 8 -0 i ® |- 0O T8I0 8
LO B2 L0 | B2 HO0 |22 40 |22 |H0 |22 8D
20 | 2% (22|28 | 22|88 (22(8F |22 |88 RSE
£ E | o E | S 2 E| S Z E o c E | o 2 5
=@ | - =@ | - =g | - S g |- £S5 | - o
& w Sw cw S w S w <
(= (= [ [ =
Results before Results of Results of Results of Results of
Preprocessing | Experiment A1 | Experiment A2 | Experiment A3 | Experiment A4

(Agreement with the Classifier)

Figure 27: Performance evaluation of discourse-level classifier that uses discourse features compared to
human annotators in terms of their level of agreement with the gold-standard, which were decided by
the median of the annotators' scores

Figure 27 shows that experiments Al and A2 over-fitted the training data with hugely sparse
trees, which resulted in exceptionally higher degree of agreement with the gold-standard
when training and testing were done on same corpus, but very poor agreement when 10-fold-
cross-validation was performed. Again, simplification of the tree by combining features, as

done in experiments A3 and A4, resulted in even lower agreement with the gold-standard, all

86



of which exhibits poor performance comparing to that of human annotators. This re-
establishes the fact that the discourse-level classifier that use discourse features is unusable in

practical fields.

Results of these experiments are described in details in section 6.2.6, whereas the reasons of

this poor performance of the discourse-level classifier are thoroughly investigated in section
6.2.7.

6.4.2 Discourse Classifier That Used Sentence Classifier

Our sentence classifier was trained with the sentence-level annotations of Annotator3
(reviewed and refined by Annotatorl), and our discourse-level classifier that uses our
sentence classifier was trained with our discourse-level corpus, where the gold standard of

each instance was, therefore, decided exclusively by the discourse-level score of Annotator3
only.

Thus, to compare the performance of our discourse-level classifier to the human performance,
we compare the level of agreement of the classifier and that of each of the annotators with the

gold standard decided by the scores of Annotator3. Figure 28 shows the comparison:

87



Using Sentece Classifier Compared To Human
(When Gold Standard was decided by Annotator3's Score)

2
et %
s SR
s o i
i < SugudeRann R
e R

%
SRR
*#&ﬁh?&?:%d’wftﬂ

o ' [ - <t
£ s s ? 5 5 5
¢ & 55 g 3 g 3
£ R - O < £ c c
+ O = = c c [
2o 27 < < >4
€ E o
€5 e
Swn
’_.
Results of Experiment B Agreement of Human Annotators with Annotator3
(Agreement of Classifier)

Figure 28: Performance evaluation of discourse-level classifier that uses the sentence classifier compared to
human annotators in terms of their level of agreement with the gold-standard, which were decided by the
scores of Annotator3

Figure 28 shows that the classifier emulates the annotations of Annotaor3 successfully by
fitting its decision tree properly with the annotator’s annotation and attaining high
“substantial” level of agreement when training and testing were done on the same corpus, and
also when 10-fold-cross-validation was performed (kappa index 0.7572 and 0.7203,
respectively). This result is also considerably higher than the level of agreement human
annotators had with Annotator3 on average (Kappa index 0.5426 on average, denoting a
“moderate” level of agreement). Now, it should be mentioned that if we could expose our
annotators to extensive and repetitive training sessions on requirements analysis over a longer
period of time (as it was done in the studies of [Wiebe et al., 2004]), other annotators’
agreement with Annotator3 would have improved (for details, see chapter 8, where we
discuss the limitations of our project). Among our four annotators, Annotator3, a professor in

Software Requirements Specification, was the only expert we could avail for our corpus

88



annotation project. The other three annotators were all from the fields of computer science

and software engineering, and familiar with the concepts of requirements analysis.

Thus, we can affirm that our group of annotators, altogether, in general, represented human
with average knowledge in requirements analysis. And, the level of their average agreement
with Annotator3, therefore, portrays the performance of a human with average knowledge in
requirements analysis compared to that of an expert. Our classifier, being able to outperform

such a human, proves its credibility to be applied in practical fields of requirements analysis.

As the discourse-level classifier system aims to be a part of the requirements elicitation and
analysis process, where its outputs arc expected to be verified by an experienced

requirements analyst, we can endorse its performance to be fully adequate for the purpose.

6.5 Compared To Existing Tools or Approaches

Although we intended to compare performances of our classifier with the tools that were used
in the related studies, mentioned in chapter 3, we had no access to their systems to gather the

required data to compare their runtime performances and/or their accuracies.

However, Table 22 presents a comparison of different features between our classifier and the
tools/approaches used in other studies for detecting ambiguity in software requirements

specification.

89



SITPIIS YaIa Ul POSn soydeoIdde,SWoISAS Y YIM JIJISSRD N0 Jo vostedwio)) 17T d(qe,

51307 jeuLio] JO
s1oa03d wdzooyt Aq

urwny Jo

UONEZIBULIO)

..Buipuessopun
fenidasuo)).,

o o 0| o A 0| 0 2A] o 1B
N Jo/pue urumy Jo N N PlE oY) YuM ‘SIA Jenuel AG “$OA N b_w_ w.r::u r.wav
pie o Yaim “sa 4 01 51wy
Suipue)siopun
asupmg,,
SO ON SN SIR oN SO SOA JO PAdL A I
LimSique 13910p
03 sidwony
s3enduy| . . . & AmSiqury
waIs s WASAS 2y} sajng v
EXREIHTRILRT snondiqureun ) sndiod Suimen 19131 01 Sd[NY
: : sjqepieae tou sopny | Uy papod-piey sofna | ul popod-prey saina | uanum-puey Jo jas o
Aq panmbazjoN | 9maa 01 S3[1 JO 108 : o 195 DAXIT B 0 o135 paxi! B 0 XU 1 S551 O uo paseq “soA Jo uoneIdudn
Pax1] B s5asn ‘ON Jo s Py ON JO 1S paNY EON PaXL) B SosON anurui(]
- 1s&jeun
SPIOAADY spiom oy ¢, SpIomAdY
- e SOLIBUONDIP o ue jo asmadxs . ‘
snongique Anndique jo wos s oy ul o ut porsyy snondique o.:. Im SOURA sndioa Sururen snondiqury
, ,_,M ._HHM_;WJ aaap Apuasayut "oN | 151 popod-paey foN »:a::ﬁ.& .cz . ﬁ,ﬁ NM——_M”AWO pun m.?_oe..zs_ 1O paseq "SI Jo =oomwMM”mo
s 'ON BULES 1'ON 10195 paxy ‘ON 1WRUA(]
pURY210§2q tRIINY LIXa],
S ON SOA SaA Aq paysydus Sap SIA “IN pPMdLIsaIu
S1IXQ) “Ajjenae ] A {ROP 019]QY
simdino [ruy 1151 J0 uonepijea [enuew axnbai sayoeoldde/swiasss oy v
ulewop wapqod £)jeanewone -
[oua Jof spiomAay sjopow Sulatiop edors sndsos Suturen k :MEM !
pannbay 10N pasmbaroN palnbal 10N snongiquue IDYe ‘uswiny 210 .E_U_v...,. a Sunejouur udym H
Jo Avuonap apy | £q suop uonepijep I¥e J0F podtnboy *a3u0 {puo painboy
pring ot paainbay puE uonAANA(]
l9o0z
112 Suol] ] pue
[z661 “x1o1g pue
pue|ioyg] ‘Is661 -
[9661 “YSINO® “1e 1 0l 16661 {9661 Loz I2661 “IseAldN | o pue "”w% sosunduwo
9661 “USINIEN “uuag] | mwuesiml &g | 1 e uggeyl g weonquy] & | N ¢ JayIsseLD QO HBAWO)
pur swiogsQ] Aq 1 . jr 10 sanswey | 4q josaidoy,
o6l v WiV SYvnd )

Neadsman

1 paed | cooT
e 10 18ua(])
[s661 21401 Aq
N Sunorsay

uoIANI(Q [ENUB]

90




6.6 Conclusion

All these results of performance thoroughly prove our hypothesis affirming that the approach
of using a text classifier is applicable in the practical fields for detecting ambiguous passages
in SRS documents. Although our work is fully concentrated in detecting ambiguities at the
level of surface understanding, it will facilitate our future work of detecting conceptual

ambiguities by improving the quality of the SRS text.

91




Chapter 7

Design and Implementation

7.1 Domain Model

The domain model of our system is shown in Figure 29.

SRS
fext
IsAmbiguous

el

Vg~
Passage bi 5 L 4 woinod_wih
D 1 1 hoids > iscourseClassifier
text ous « doscrbes ;:‘resu 1_‘ D —
leAmbig passagelD L_ Feature - Node <71 dechionTree]]
1 i den
- | name | featureiD
v I1— vakie " e 1
1.2 1 right <hss | SentenceClassifier
:’"’-M“ 1 0.2
Sentence SentenceData |1 : decislonTreef]
D 1 1] tfeatures(] Keyword PPy
text < descrbes | class word
isAmbiguous sentencelD pos
passagelD |1
o rained_with

Figure 29: Domain Model of our system

92




7.2 The Prototype

We named the prototype of our system, Requirements Specification Ambiguity Checker
(ReqSAC). The system can label a discourse as ambiguous, and, at the same time, identify
the sentences that are responsible for making it so. The UI also features on-the-fly editing of
the text to correct the errors and enhance the quality of the SRS, using the same linguistic
features that our annotators used to detect errors at the level of surface understanding. As
explained in chapters 5 and 6, the Stanford Parser [Klein & Manning, 2003] and the Weka
machine learning workbench [Witten & Frank, 2005] are both embedded in ReqSAC. It is
implemented to run both as a standalone application and from within Rational XDE
environment. Figure 30 shows a snapshot of its main window (see Appendix III for more

snapshots of ReqSAC).

P2 ReqSAC Client

dassifier Trainer j D-Classifier Trainer |
iDeslon a program that allows a network operator to plan changes in every parameter of every celin the
inetwork. These planned changes should be verified for consistency and corractness and then applied to the
[ network in the least disturbing way.

[

[We would ke you to pay most of your attention to the Fact that there are so many different celis in the
inetwork that need to managed in a common way, but are stil of very different types. The problem is that the
| difference cannot be abstracted away because the operator also wants to use the unique features (they want
to have their cake and eat i tco). Do not focus on the specific aigorithms for frequency allocation and
| consistency checks. The program should be easily extendable to handle the aigorithms and rules of the network | &
‘operator 0 they cannot be hard-coded anyway.

|
| Design an infrastructure where the network operator can customize critical aspacts, instead of hard-coding
'Imowbdqe. The program must be very flexible for changes because these networks change at a rapid pace.

I
i
i
|

‘Resuits

‘iThe Text is classitied as ‘Ambiguous’

{|The following Ambigucus Sentencai{s) are detected:

‘l=- We would like you to pay most of your attention to the fact that there
are so many different cells in the network that need to managed in a
‘lcommon way, but are still of very different types.
*s* The sentence contains:

Adjective(s), Adverb(s), Ambiquous Adjegtives, Ambi

Status: Done.

Figure 30: ReqSAC: The prototype of our system

93



Chapter 8

Discussion

8.1 Introduction

The outcomes of our work have important significance in context of RE. The milestones we
achieved in our study did not only prove our concept for practical use, but also introduced
some profound analyses that can fuel future researches in this area. We will summarize the

scope of value additions of our work in this chapter.

In our work, we also faced many challenges that we had to overcome. We often had to
enrich our methodology with new ideas and modifications to endure these obstacles, and thus,
satisfied all our objectives. Yet, our accomplishments are not free from limitations. In this
chapter, we will also discuss all the limitations we faced that, although, did not hinder our

progress in any way, but should be stated here for the correct evaluation of our work.

8.2 Significance of Our Work

Our research objective, as a “proof of concept”, was to build a text classification system and
test its applicability for detecting ambiguity in SRS documents. The following is the list of
outcomes we achieved along the way of completing our objective that are of high

significance in the RE field:

94



ey

)

€)

(4)

We introduced a hierarchical quality model for the decomposition of software
requirements text quality into measurable features that would be collected
directly from the text (see Figure 2 of section 1.6). The quality model targets the
automatic assessment of textual requirements in terms of their ambiguity. The
model alone can be used by (semi-) automatic processes of quality assessment of

SRS documents.

We built two sets of annotated corpora: one discourse-level corpus (holding 165
samples of passages from 25 problem descriptions, each of different domains),
and one sentence-level corpus (holding samples of 1211 different sentences from
the same problem descriptions). All the passages and sentences of the corpora are
annotated into two distinct categories — “ambiguous” and “unambiguous”, using
a standard procedure of scoring and employing median voter model [Congleton,
2004]. The corpora can be used for the purpose of training and/or testing future
text classifiers in this field. It should be mentioned that to our knowledge there

exists no standard annotated corpus in this field.

The analysis on our work of corpus annotation and the level of the annotators’
agreement ascertained an important notion that the eventual extraction of the
features can lead to successful classification of ambiguity in both surface and
conceptual understanding. However, for this purpose, more improvement in NLP
tools in terms of accuracy is essential, especially for deeper semantic analysis
required by conceptual understanding. The analysis also showed that the task of
detecting ambiguity is relatively difficult for human. Moreover, it indicated a
positive correlation between the surface and conceptual understanding of the text,
and a negative correlation between the understanding and the time required to
analyze a text. The above, therefore, confirms that lowering the level of surface
ambiguity would lead to a better conceptual understanding of the requirements

and reduce the time needed for requirements analysis.

We have been successfully devised an NLP-driven feature extractor tools that

extract discriminating features of the SRS text influencing ambiguity in surface

95



®)

(6)

understanding. The tools can output data files (in standard ARFF format), each
representing an annotated corpus in terms of feature vectors. The file can be used

to train any machine learning algorithm to develop a classifier.

We finally developed a decision tree-based text classifier that works at both
sentence and discourse levels of an SRS document and detects ambiguity in
surface understanding. The classifier can also be trained with new training data,
which makes it robust to deal with unseen samples of SRS in future. The
classifier attained an impressive accuracy, high enough to be applicable in a
practical semi-automated environment. This eventually proves our hypothesis of

the usability of a text classifier in detecting ambiguity in SRS documents.

We also developed a small prototype (written in Java) to demonstrate the use of
our classifier. The prototype is platform independent, and can be executed online,
or from within Rational XDE environment. This ensures future usability of the

system.

8.3 List of Limitations

The following is a list of the limitation we encountered during our work:

1)

@)

We could avail limited time to conduct the series of long training of our human
annotators. We selected annotators who are already familiar with detecting
ambiguity in software requirements specification and carried out a brief training
session with a pilot study followed by sessions of groups discussions (section
4.4.1 presents the details). Yet, we feel multiple training sessions over a longer

period of time could have yielded a better agreement among the annotators.

Limited training sessions compelled us to find annotators, who were already
familiar with detecting ambiguity in software requirements specification. This
led us to find four annotators for discourse-level annotation, and only one

annotator for sentence-level annotation (the sentence-level annotations were later

96



reviewed and refined by two annotators). They are, although, not many in
number, but, considering a lot of other notable researches (e.g. [Wiebe et al,,
2004], which used a corpus annotated by one annotator only, and [Ide et al., 2002;
Poesio & Vieira 1998], which used corpora annotated by two annotators), we
find that their number is, however, in the acceptable range. Yet, having a large
number of trained annotators may strengthen the appeal of our annotations even

more.

3) To our knowledge, there exists no standard annotated corpus in this field. Thus,
we had to build our own annotated corpus, which eventually limited the size of
our corpus for training and testing. As our classifiers use decision tree learning
algorithm, with the inclusion of new training data, the system will be more

efficient in future.

4) Our sentence-level feature extractor tool has a built-in keyword generator that
dynamically generates lists of ambiguous keywords of different parts of speech.
By default, each of these keywords is one word. To avoid complexity and reduce
development time, we ignored the existence of possible multi-word terms as an
ambiguous keyword. An example is “a lot of’. The words “a”, “lot” or “of”,
individually, are not of ambiguous characteristics. Thus, our keyword generator,
based on our training data, should never list any of these words in the list of
ambiguous keywords that it automatically generates. But, “a lot of” altogether as
a collocation is found to be of ambiguous characteristics in the following

sentence from our training data:

“...the thermostat has a lot of work to do to keep the temperature even...”

8.4 Conclusion

The above limitations only suggest the possibility of valuable additions to our work. We,

therefore, intend to deal with these issues as our future work in this project. Now, despite

97



these limitations, we found that our work provided a significant contribution in the RE field
and proved our concept and established the idea of using our new approach successfully in

detecting ambiguity from SRS documents.

98



Chapter 9

Conclusion and Future Work

This thesis addressed the problem of detecting ambiguities in SRS documents.
Acknowledging the fact that none of the previous work has tested the applicability or
performance of using a text classification system to automate such detection process, this
research proved our hypothesis by affirming that the approach of using a text classifier is
applicable for detecting ambiguous passages in SRS documents. The work also encompassed
some related important topics, e.g. how difficult it is to detect ambiguity manually from SRS

documents and how the automatic tools developed can compare to human performance.

To prove our concept, we developed a text classification system that can detect
ambiguity in an SRS document by classifying its passages as ambiguous or unambiguous.
The system yielded high accuracy in performance demonstrating results with 86.67%
accuracy using 10-fold-cross-validation technique. Comparing its results of its degree of
agreement with the decisions of an expert, it outperformed human annotators with average
expertise in detecting ambiguities. It can also be affirmed that the system will perform better
in practical fields with the inclusion of new training data. We also built a prototype of this

system to demonstrate its use.

Our work concentrated in detecting surface understanding ambiguities only, avoiding the
detection of ambiguities, which are at the level of conceptual understanding. The reason for
this was the unavailability of efficient resources till this date that are able to perform
semantic analysis or hold domain knowledge, required for detecting the presence of the
features in text that degrades conceptual understanding of an SRS document. This also re-

affirmed the claims of Meyer [1985] and Kamsties et a/ [2001] that ambiguities of SRS

99



documents may not be detected without the aid of formalism. Thus, we proposed that our
NLP-driven quality assessment project would deal with detecting ambiguity at the level of
conceptual understanding by introducing a level of formalism (with domain model generation
and simulating the path of execution) and following a semi-automated approach with
continual feedback of the client (see Figure 1 of chapter 1). But, this thesis, being a part of
the project, successfully establishes its approach of detecting the ambiguities that are at the
level of surface understanding, and, thus, facilitating the processes of semi-automated
analysis, to be done by the upcoming modules. We strongly believe our system, with the
potential to clean up ambiguities at the level of surface understanding, will not only serve the
aforesaid project, but also be useful as a standalone application working in conjunction with
the requirements specification writing tools. The prototype of this system is, therefore,
implemented to run both as a standalone application and from within Rational XDE

environment.

Although our system with all the results of its performance proves our concept and
establishes the idea of using our new approach successfully in detecting ambiguity from SRS
documents, our future work should still focus on introducing more training data to improve
its efficiency in dealing with unseen SRS texts. As mentioned in chapter 7 on discussing our
limitations, we would suggest including a collocation extractor with our keyword generation
tool, which will improve its efficiency even more. Finally, we look forward to its successful

integration with the module that detects ambiguity in conceptual understanding.

100



Bibliography

[Ambriola & Gervasi, 1997] Ambriola, V., & Gervasi, V. (1997). “Processing natural
language requirements”. In Proceedings of Automated Software Engineering (ASE'97):
12th IEEE International Conference, November 1-5, 1997, 36-45.

[Best, 1995] Best, L. (1995). Delinquency Collections. OOPSLA DesignFest®. Last
retrieved on July 18, 2007 from
http://designfest.acm.org/Problems/Delinquency/Delinquency 95.htm

[Brill, 1992] Brill, E. (1992). “A simple rule-based part-of-speech tagger”. In Proceedings of
the 3rd Conference on Applied Natural Language Processing (ANLP-92), Trenton, Italy,
April 1-3, 152-155.

[Carletta, 1996] Carletta, J. (1996). “Assessing agreement on classification tasks: The kappa
statistic”. Computational Linguistics, 22(2), 249-254.

[Chomsky, 1965] Chomsky, N. (1965) Aspects of the theory of syntax. MIT Press.

[Cohen, 1960] Cohen, J. (1960). “A coefficient of agreement for nominal scales”.
Educational and Psychological Measurement, 20, 37-46.

[Congleton, 2004] Congleton, R.D. (2004). “The Median Voter Model”. Encylopedia of
Public Choice: Volume II (eds. Charles. K. Rowley and Friedrich Schneider), ISBN: 0-
7923-8607-8, 382-387.

[Cyre, 1995] Cyre, W. R. (1995) “A Requirements Sublanguage for Automated Analysis”.
International Journal of Intelligent Systems, 10 (7), July 1995, 665—689.

101



[Dasarathy, 1991] Dasarathy, B.V. (ed.). (1991). Nearest Neighbor (NN) Norms.: NN Pattern
Classification Techniques, ISBN 0-8186-8930-7.

[Denger et al., 2003] Denger, C., Berry, D., & Kamsties, E. (2003) "Higher Quality
Requirements Specifications through Natural Language Patterns". In Proceedings of
SWSTE, IEEE International Conference on Software-Science, Technology &
Engineering, 2003, p. 80.

[IEEE, 1998] The Institute of Electrical and Electronics Engineers, Inc. (1998). IEEE
recommended practice for software requirements specifications (IEEE Std 830-1998),
20 October, 1998, ISBN 0-7381-0332-2, New York: Author.

[Fabbrini et al., 2001] Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001). “An Automatic
Quality Evaluation for Natural Language Requirements”. In Proceedings of the Seventh

International Workshop on Requirements Engineering: Foundation for Software Quality
REFESQ'01, Interlaken, Switzerland, June 4-5, 2001.

[Fantechi et al., 1994] Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., &
Moreschini, P. (1994) “Assisting requirement formalization by means of natural

language translation”. Formal Methods in System Design, vol. 4,243-263.

[Fleiss, 1971] Fleiss, J.L. (1971). “Measuring nominal scale agreement among many raters”.
Psychological Bulletin, 76, 378-382.

[Harris, 1998] Harris, G., (1998). Case Management: A Framework. OOPSLA DesignFest®.
Last retrieved on July 18, 2007 from
http://designfest.acm.org/Problems/CaseManagement/CaseManagement_98.htm

[Heinrich et al., 1999] Heinrich E., Kemp E., & Patrick J.D. (1999). “A Natural Language
Like Description Language”. In Proceedings of the 10th Australasian Conference on
Information Systems (ACIS), 375-386.

102



[Heliotis et al., 2003] Heliotis, J., Freeman-Benson, B., & Paisley, B. (2003). Data Collection
in the Forest. OOPSLA DesignFest®. Last retrieved on July 18, 2007 from
http://designfest.acm.org/Problems/DataCollection/DataCollection_03.htm

[Ide et al., 2002] Ide, N., Erjavec, T., & Tufis, D. (2002) "Sense discrimination with parallel
corpora". In Proceedings of the ACL-02 workshop on Word sense disambiguation:
recent successes and future directions, July 11, 2002, 61-66.

[Just & Carpenter, 1987] Just, M.A., & Carpenter, P.A. (1987). The psychology of reading

and language comprehension. Boston: Allyn and Bacon.

[Kamsties et al., 2001] Kamsties, E., Berry, D.M., & Paech, B. (2001). “Detecting
Ambiguities in Requirements Documents Using Inspections”. In Proceedings of the
First Workshop on Inspection in Software Engineering (WISE'01), July 23, 2001, Paris,
France, 68-80.

[Klein & Manning, 2003] Klein, D., & Manning, C. D. (2003). “Accurate Unlexicalized
Parsing”. In Proceedings of the 41st Meeting of the Association for Computational
Linguistics, 2003, 423-430.

[Kleinberg, 1999] Kleinberg, J. (1999). “Authoritative sources in hyperlinked environment”.
Journal of the ACM, 46(5), 604—632.

[Kolcz & Alspector, 2001] Kolcz, A., & Alspector, J. (2001) “SVM-based filtering of e-mail
spam with content-specific misclassification costs”. In Proceedings of workshop on Text
Mining, IEEE ICDM-2001, IEEE Press, Piscataway, NJ.

[Kraemer et al., 2004] Kraemer, H. C., Periyakoil, V. S., & Noda, A. (2004). “Kappa
coeffcients in medical research”. Tutorials in Biostatistics Volume 1: Statistical Methods

in Clinical Studies, John Wiley & Sons, Ltd., ISBN: 0-470-02365-1.

103



[Krenn et al., 2004] Krenn, B., Evert, S., & Zinsmeister, H. (2004). “Determining intercoder
agreement for a collocation identification task”. In Proceedings of Konvens'04,

September 2004, Vienna, Austria, 89-96.

[Kriens, 1996] Kriens, P. (1996). CellKeeper, a Cellular Network Manager. OOPSLA
DesignFest®, 1996. Last retrieved on July 18, 2007 from
http://designfest.acm.org/Problems/CellK eeper/CellKeeper_96.htm

[Gnesi et al., 2005] Gnesi, S., Lami, G., Trentanni, G., Fabbrini, F., & Fusani, M. (2005).
“An Automatic Tool for the Analysis of Natural Language Requirements”. International
Journal of Computer Systems Science and Engineering, Special issue on Automated
Tools for Requirements Engineering, 20(1), Leicester, UK: CRL Publishing Ltd.,
January 2005.

[Landis & Koch, 1977] Landis, J.R., & Koch, G.G. (1977). “The measurement of observer

agreement for categorical data”. Biometrics, 33, 159-174.

[Larsen & Aone, 1999] Larsen, B., & Aone, C. (1999). “Fast and effective text mining using
linear-time document clustering”. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining, August 15-18, 1999,

San Diego, California, 16-22.

[Layda, 2000] Layda, T. (2000). Order Matcher for an Electronic Stock Market. OOPSLA
DesignFest®. Last retrieved on July 18, 2007 from
http://designfest.acm.org/Problems/OrderMatcher/OrderMatcher 00.htm

[Leffingwell & Widrig, 2003] Leffingwell. D., & Widrig, D. (2003). Managing Software
Requirements: A Use Case Approach (2nd ed.). ISBN 0-321-12247-6, Boston: Addison-
Wesley

104



[Letier et al., 2005] Letier, E., Kramer, J., Magee, J., & Uchitel, S. (2005). “Monitoring and
Control in Scenario-Based Requirements Analysis”. In Proceedings ICSE 2005 - 27th
International Conference on Software Engineering, St. Louis, Missouri, USA: ACM
Press, May 2005.

[Lin, 1998] Lin, D. (1998). “Dependency-based Evaluation of MINIPAR”. In workshop on
the Evaluation of Parsing Systems, Granada, Spain, May 1998.

[Lu et al., 1995] Ly, R, Jin, Z., & Wan, R. (1995). “Requirement Specification in Pseudo-
Natural Language in PROMIS”. In Proceedings of 19th International Computer
Software and Applications Conference (COMPSAC'95), 96-101.

[Meyer, 1985] Meyer, B. (1985) “On Formalism in Specifications”. IEEE Software, 2(1),
January 1985, 6-26.

[Ormandjieva et al., 2007] Ormandjieva, O., Kosseim, L., & Hussain, I. (2007). “Toward
Text Classification System for Quality Assessment of Software Requirements Written in

Natural Language”. Accepted at the SOQUA 2007 workshop.

[Osborne & MacNish, 1996] Osborne, M., & MacNish, CK. (1996) “Processing natural
language software requirement specifications”. In Proceedings of ICRE'96: 2nd IEEE

International Conference on Requirements Engineering, IEEE Press, 229-236.

[Quinlan, 1993] Quinlan, J.R. (1993). C4.5: Programs for machine learning. San Mateo, CA.:
Morgan Kaufmann.

[Poesio & Vieira 1998] Poesio, M., & Vieira, R. (1998). “A corpus-based investigation of
definite description use”. Computational Linguistics, vol.24 n.2, June 1998, 183-216.

[Rolland & Proix, 1992] Rolland, C., & Proix, C. (1992). “A Natural Language Approach
For Requirements Engineering”. In Proceedings of the Fourth International Conference
CAiSE'92 on Advanced Information Systems Engineering, vol. 593 of Lecture Notes in
Computer Science, Manchester, UK, 257-277.

105



[Rousseeuw & Leroy, 1987] Rousseeuw, P.J., & Leroy, A.M. (1987). Robust regression and
outlier detection, New York: Wiley.

[Spertus, 1997] Spertus, E. (1997). “Smokey: Automatic recognition of hostile messages”. In
Proceedings of the Ninth Annual Conference on Innovative Applications of Artificial
Intelligence (IAAI-97), Providence, R1, July 27-31, 1058-1065.

[Tjong et al. 2006] Tjong, S.F., Hallam, N., & Hartley, M. (2006). “Improving the Quality of
Natural Language Requirements Specifications through Natural Language Requirements
Patterns”. In the proceedings of the Sixth IEEE International Conference on Computer
and Information Technology, 2006 (CIT '06), September 2006, 199-199

[The Standish Group International, Inc., 1995] The Standish Group International, Inc. (1995).
The CHAOS Report.

[Wasson et al., 2005] Wasson, K.S., Schmid, K.N., Lutz, R R., & Knight, J.C. (2005). “Using
Occurrence Properties of Defect Reporting Data to Improve Requirements”. In
Proceedings of the 13th IEEE International Requirements Engineering Conference
(RE'05), 29 August - 2 September 2005, Paris, France, 253-262.

[Weiss et al., 2005] Weiss, S.M., Indurkhya, N., Zhang, T., & Damerau F. (2005). Text
mining: Predictive methods for analyzing unstructured information. New York:

Springer.

[Wiebe et al., 2004] Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004).
“Learning Subjective Language”. Computational Linguistics, v.30 n.3 (September 2004),
ISBN:0891-2017, Cambridge, MA, USA: MIT Press, 277-308.

[Wiebe et al., 2003] Wiebe, J., Breck, E., Buckley, C., Cardie, C., Davis, P., Fraser, B.,
Litman, D., Pierce, D., Riloff, E., Wilson, Theresa., Day, D., & Maybury, M. (2003).
“Recognizing and organizing opinions expressed in the world press”. In Working Notes
of the AAAI Spring Symposium in New Directions in Question Answering, Palo Alto,
CA, 12-19.

106



[Wilson, 1997] Wilson, W. (1997). “Writing Effective Requirements Specifications”. In
USAF Software Technology Conference, Utah, April 1997.

[Wilson et al., 1996] Wilson, W., Rosenberg, L., & Hyatt, L. (1996) “Automated Quality
Analysis of Natural Language Requirement Specifications”. In Proceedings of 14th
Annual Pacific Northwest Software Quality Conference, Portland.

[Witten & Frank, 2005] Witten, I. H., & Frank, E. (2005). Data mining: Practical machine

learning tools and techniques (2nd ed.). San Francisco, CA: Morgan Kaufman.

[Zhang & Varadarajan, 2006] Zhang, Z., & Varadarajan, B. (2006). “Utility scoring of
product reviews”. In Proceedings of the 15th ACM international conference on

Information and knowledge management, Arlington, Virginia, USA, 51-57.

107



Appendix 1

Each of the passages in our discourse-level corpus is saved as individual ASCII text files.
Their filenames hold the serialized ID numbers of the problem descriptions that they belong

to. We present 30 passages from our discourse-level corpus in the following:

1. p01g0l.txt

Case Management is a business function common to government health benefit programs, and
insurance and financial organizations. The problem you are here to solve today is to
develop an object oriented framework for use in developing specific case management
systems to support case workers in these industries. These systems must provide access to
all necessary information for case workers to process work or respond to customer service
needs. They may also provide workflow and business rules processing to support case
workers. As the main incoming channel for cases is frequently the telephone, the system
must have sub-second response times and be intuitive to use.

2. pOls02.txt

Many organizations use Cases as their basic unit of business. Consider, for example,
government benefit programs, insurance companies and lending institutions. A government
agency, in administering a benefit program, controls and tracks the issuing of cheques
and benefits to particular clients according to legislation, policy, rules and
regulations, making decisions on a case by case basis. Insurance companies must manage
claims against policies, making decisions for each case. Lending institutions grant or
refuse loans for a case based on specific criteria and regulations. The common element in
each of these is the Case.

A case is a specific instance of applying procedures to render a decision. It involves a
client, a specific set of rules in force at the time when the case started, and follows a
lifecycle. Case Management involves managing client tombstone data, supporting the
workflow specified by the case lifecycle, managing events and case status, and generating
bring-forward actions. These are described in more detail below. In addition, each
specific case management application will have analysis, display, and processing
requirements unique to the company, which, in the interests of simplicity, are not part
of this problem.

Commeon functions for case management include:

Capture and view tombstone information about an applicant, client, or case

Link the cases to other files and/or documentation (including integration with imaging
systems)

Prioritise the cases based on specific rules (including Artificial Intelligence engines
that deal with complex rules)

Manage the case history, update status, log relevant activities and events (e.g., receipt
of documentation, dispatch of correspondence, scheduling of a meeting)

Assign the cases to appropriate personnel, manage work, track performance

Capture and process business specific information

Create and track Bring-Forward items

Schedule work and associated resources (e.g., booking courtrooms and judges)

108



Prepare and print reports

The design problem for DesignFest® is to create an Object Oriented framework for use in
developing Case Management applications quickly, and customisable to the particular work
practices of the company purchasing the framework.

Four areas, correspondence management, contact tracking, prioritising cases based on
rules, and scheduling work and resources, have been excluded from the scope of the
framework to simplify the problem.

3. p01803.txt

Client data and case tombstone data management refers to the capture and tracking of
basic client data such as name, addresses, and phone numbers. It also includes capturing
and tracking similar data for clients representatives, and the nature of the relationship.

This process also includes capturing data unique to the case management application under
development. The framework must provide facilities for defining data that needs to be
captured. There is no requirement for this to be configurable at run time (but it wouldn
hurt if that was an option).

4. p01s804.txt

Workflow support refers to the part of the system that allows multiple workers to work on
multiple cases in a wide variety of organisational arrangements.

The framework must support workflow functions that are managed either by assigning cases
to individual case workers or to a pool of case workers of the same subtype. The use-case
descriptions below will specify when this applies. In the former situation, the cases are
assigned centrally by a line manager. In the latter situation, the organisation using the
framework for developing their case management system has essentially chosen to empower
their case workers to partially manage their workload. These case workers will pick a
case from the pool to work on next. The manager is depending on their professionalism to
ensure that cases do not stay in the pool too long.

At a minimum, the framework should support:

A case worker is assigned cases which are managed from start to finish.

A case worker is assigned a case by a manager to perform a specific function for that
case, and then informs the manager the task is complete. The manager then determines the
next appropriate step (close, assign to another case worker for the next processing step,
put aside until a bring-forward is activated, etc.).

A case worker selects cases from a pool which are managed from start to finish.

A case worker selects cases from a pool to perform a specific function, and then moves
that case to the next appropriate step (close, put in another pool, put aside until a
bring-forward is activated, etc.).

Workflow support for case workers and managers requires an in-basket metaphor for
selecting one of the cases assigned or selecting a case from a pool. A manager should be
able to view, control and organise the work among the case workers.

Workflow support also includes integration with e-mail and other means of communication
in an office environment.

Finally, workflow support also means providing the ability to Approve or Reject a
particular request regarding a case. A case may involve a single or multiple requests
requiring approval, and security may be needed to restrict who can make these decisions,
depending on the organisation building the application using this framework.

S. p0ls05.txt
Event and status management forms the core of the case management framework. The sequence

of events trace the processing of the case by the organisation. These are referred to
frequently, and may ultimately be used to resolve disputes, respond to queries, and

109



predict trends in the business. The current status of a case situates the case within the
lifecycle model described by the organisation procedures, and may be used to determine
the next step in processing.

Event management refers to the creation, editing and reporting of events significant to
the business. The framework must provide facilities to configure, at run time, the types
of events and the information to capture for each event. An event may trigger a status
change, or close a bring-forward.

Status management refers to maintaining a status field for the case. The status values
may control other aspects of the framework, depending on the configuration. For example,
the framework must support restricting the next status or the types of events that may
occur based on the current status value. Changing to a particular status may cause an
event to be created automatically, such as creating a bring-forward entry due at some
future date. Changing to a particular status may also automatically close a bring-forward
(whether it is due or not).

6. p0ls06.txt

Bring-Forward entries are reminders to a case worker that it is time to perform a certain
action. The framework must provide a means to manually and automatically create, review,
and close bring-forwards.

7. p01s807.txt

The framework must be scalable for several hundred case workers and tens of thousands of
cases and clients. Case workers may be centrally located, or geographically dispersed. If
case worker are geographically dispersed, then you may assume that the cases are managed
by geographic regions.

Response times for case workers must be less than two seconds on saving and retrieving
case information, and sub-second on moving between views of different data for the
current case.

Line Management requires daily and weekly reporting. Senior Management requires the
ability to regularly coalesce case data from disperse locations for data warehousing and
data mining in support of Decision Support Systems. Usually this will be weekly, monthly
and quarterly.

Security is needed to control which users can do certain actions, such as assigning cases,
approving a request, or editing particular fields.

The system must support multi-lingual deployment using multi-byte character encoding.
The system must include an audit trail for each case.

The system must include archiving of old or inactive data.

8. p0280l.txt

A Flexible Manufacturing System (FMS) is a computerized factory production entity,
composed of numerically controlled machines, an automatic inventory system for storing
raw, temporary in-process, and finished pieces, and an automatic guided vehicle system
(AGV) for moving pieces, which can operate on different types of pieces.

9. p02802.txt

The production is planned at factory level and is represented by lots assigned to the FMS
(a lot is an administrative entity indicating a group of identical pieces to be
manufactured together.) Several lots of different types of pieces can be in production at
the same time in a given FMS.

110



Each type of piece requires a specific ordered sequence of operations. A machine can
perform one or more of those operations, but only a single operation on one piece at a
time. Each operation takes a certain amount of time.

10. p02s03.txt

A network connects the FMS computer to the machine, inventory, and AGV controllers. The
real-time dispatcher of the FMS assigns pieces to the machines as soon as they become
idle, and issues requests of missions to the AGV system, monitoring the shop-floor.

Pieces are taken one at a time from the input store and transported to an idle machine
where the first operation is performed. As soon as the operation is finished, the piece
is evacuated from the machine and transported elsewhere; either to another machine for
performing the next operation or to one of the temporary stores. Machines are assigned to
a waiting piece (if any) as soon as they become idle. A machine is idle when it is not
performing an operation on a piece and the last piece operated on has been evacuated.

The cell control interacts with the AGV through requests of the type "pick up piece X
from A and move it to B", where A and B can be one of the stores or the machines. For our
purposes (as is the case in a small FMS), the time needed to serve a transport request is
small relative to the time needed for a machine operation. When the destination is a
machine, the transport request is not made until the machine is idle and the piece has
been assigned to it.

11. p02s804.txt

As an example, we describe a simple FMS for manufacturing cylindrical mechanical parts,
congisting of

Two turning machines, M1 and M2, and a drilling machine, M3, each of which can work on a
single piece at a time. The machines can operate in parallel.

There are two different turning operations, TOl and TO2, and a drilling operation, DOl.
M1 and M2 can both perform the operations TOl and TO2; M3 can perform the operation DOl.
The two turning operations take 30 minutes to complete; the drilling operation takes 10
minutes.

Two types of pieces, TPl and TP2. TPl requires the operation sequence <TOl, DOl>, and TP2
requires the sequence <T02, DO1l, TOl>.

The store for raw pieces: Store_in.

The store for finished pieces: Store_out.

The store for temporary in-process pieces: Store_tmp. It can hold up to 50 pieces, each
of which can be recovered individually from their place in the store.

The transportation system with three carts, each of which can carry a single piece and is
equipped with a robot arm that loads or unloads the cart on command from the FMS computer.
The transportation system connects all machines and stores to each other.

There are two different lots, the first consisting of 10 pieces of type TPl, the other of
5 pieces of type TPl and 5 pieces of type TP2. The lots are processed simultaneously by
the FMS.

The controller/dispatcher knows at all times the state of all of the machines, the places
in the stores and the carts (free or occupied, and if occupied, by which piece) as well
as the position and state of all the individual pieces. Before the production run, the
controller is informed of the sequence of operations required by each type of piece, and
the configured operations for each machine.

The dispatcher calculates the next operation to be performed for each piece and on which
machine, requests that the transportation system move the piece to its next destination,
synchronizing the loading and unloading operation of the carts.

111



12. p02s05.txt

when the Drilling Machine M3 has finished the operation DOl on a piece, it notifies the
Dispatcher. The Dispatcher makes a request for a cart from the Transportation System for
evacuating the piece from the Drilling Machine.

When the cart has evacuated the piece, the machine enters the IDLE state. The Dispatcher
then checks if the piece is finished.

If the piece is finished, it is transported to Store_out; otherwise, the Dispatcher
checks if there is an idle machine capable of performing the next operation on the piece.

If an idle machine is found, the piece is transported there; otherwise, the piece is
moved to the temporary store Store_tmp.

13. p02806.txt

When a piece is evacuated from the drilling machine M3, the machine becomes idle and it
is ready to perform an operation on another piece.

When the machine enters the IDLE state, the dispatcher is informed and checks whether a
piece (in the store for raw pieces Store_in or in the temporary in-process pieces
Store_tmp) is waiting for the next operation on the drilling machine M3.

When the dispatcher find a piece Pw waiting for an operation, it requests the
Transportation System for a cart; the Transportation System is then assigned the task of
transporting the waiting piece Pw to the drilling machine.

When the Transportation System has accepted the transportation, the drilling machine
exits the IDLE state.

14. p02807.txt

The specification can be adjusted for different levels of complexity applying one or more
of the following constraints:

All pieces are identical

Each piece type requires only one operation

Each machine can perform only one type of operation
The machines can break and can be repaired

The transportation system has infinite carts

The transportation system has a limited number of carts
The transportation system has only one cart

15. p03s80l1.txt

Cellular telephone networks have shown exponential growth rates in the past few years.
From networks containing a handful of cells to cover a country, they have grown into
networks containing tens of thousands of cells. It used to be possible to configure these
networks by hand, but the tremendous growth has made this infeasible. There are just too
many cells to be handled by man.

We would like you to design a program, called CellKeeper, that can plan and execute
changes in the configuration of a live network without disturbing it. This is daunting
because of the volume of information involved, the myriad of hardware, and the complex
constraints that exists in cellular telephone networks.

112



16. p03s802.txt

A cell in a cellular telephone network handles all the calls of mobile phones in the area
it covers. To do this, it transmits identifying information on a beacon radio frequency
and handles the "traffic" on other frequencies. When a network is initially built, the
area that is covered by each cell is very large. When the number of subscribers increases,
capacity is added by splitting cells. This results in more and smaller cells, offering
more total capacity. This technique makes cellular networks highly scalable. In busy
areas like cities, cell diameters are measured in metres, in rural areas the diameters
can be up to 64 km. The only limit is the interference of cells that reuse the same
frequency. Networks that use digital signals instead of analog between the cell and the
mobile phone have an advantage because the interference levels can be considerable higher
at the same quality.

(IMAGE)

One of the most complicated aspects of a cellular network is the planning of the
frequencies. This is almost a black art and is usually handled by special planning
programs. These programs contain prediction algorithms that take into account the terrain
that the cell covers.

17. p03s803.txt

The mobile phone must be slaved to a cell when it is first turned on. It will select the
most suitable cell by scanning all beacon frequencies. It will then send an identifying
signal to the cell to make contact. After this contact is made, the cell is in full
charge of the mobile. The only initiative left to the mobile is to broadcast that it
wants to start a call. When the mobile is moving, the cell will detect that the signal
quality will become worse, and will hand over the mobile to a more suitable neighboring
cell.

18. p03s804.txt

A cell is implemented by a base station. A base station is a computer plus radio
equipment that is connected to a telephone exchange. Base stations are located on a
"site". The sites are the most visible part of a cellular network because of the very
obvious antenna masts that are visible all over the country. One site can host multiple
base stations. The base stations are connected to a telephone exchange that, besides
switching the calls, is also responsible for controlling the operation of the cells. In
the GSM system it is called the Base Station Controller (BSC).

(IMAGE)

19. p03s805.txt

The network operator wants to process as many calls as possible for the least amount of
cost. The tasks to achieve this are manifold. Planning, subscriptions, procurement,
installation, handling of alarms, measurements, configuration changes and many more. The
networks have become so large that they are normally split sections. Each section is then
managed by an Operational Maintenance Center (OMC). Each OMC manages a number of BSCs and
a geographic area.

For this problem we focus on how to change the network configuration. Configuring the
network is done by sending management commands to the cells that set values on parameters
or read these parameter values. This is complicated because each cell has literally
hundreds of parameters. A short summary:

Naming and identity. E.g. a cell has a "user friendly" name and a unique global
identifier

The set of frequencies the cell may use

Output antenna power settings

113



Relationship to neighbouring cells. E.g. to which cells and when should a handover take
place between two cells.

Handover strategy, under what conditions can a handover take place

Access rights from mobile phones. Calls can only allow emergency calls or a certain class
of mobile telephones.

Mobile phone parameters. The cell fully controls the operation of the mobile phone and
can set many of its operating parameters.

Connection to the available hardware

Many, many others

Several of these parameters are dependent on, and constrained by, the settings of other
parameters in other cells. For example, neighboring cells should always use different
frequencies. Also, each cell needs to know what its neighbors are. Not only for the cells
of the same network, but also for cells of adjacent networks when they have cells that
could interfere.

All these parameters for ten thousands of cells are difficult to manage. Many parameters
must be changed when cells are split. Not only for the split cells, but also for adjacent
cells.

Changing parameters in the network must be done in a short time on all related cells to
keep the disturbance to the network as low as possible. For example, changing the
frequency plan of a set of cells makes the cells inoperative during the changes.
Therefore, the changes must be planned and executed in a short time, usually during the
middle of the night. Such a change should of course be done carefully to keep the network
consistent.

A very complicating factor in the management of the cells is that in one network, one can
find cells from different manufacturers and different versions and variants from the same
manufacturer. Each type/variant/version can have its own specific management interface
and semantics. New types/variants/versions are introduced all the time to handle specific
situations. For example, special cells are developed to be used in trains, offices and
rural areas.

20. p03s06.txt

Design a program that allows a network operator to plan changes in every parameter of
every cell in the network. These planned changes should be verified for consistency and
correctness and then applied to the network in the least disturbing way.

We would like you to pay most of your attention to the fact that there are so many
different cells in the network that need to managed in a common way, but are still of
very different types. The problem is that the difference cannot be abstracted away
because the operator also wants to use the unique features (they want to have their cake
and eat it too). Do not focus on the specific algorithms for frequency allocation and
consistency checks. The program should be easily extendable to handle the algorithms and
rules of the network operator so they cannot be hard-coded anyway.

Design an infrastructure where the network operator can customize critical aspects,
instead of hard-coding knowledge. The program must be very flexible for changes because
these networks change at a rapid pace.

21. p03s807.txt

Adding new cells and new cell types should be relatively easy

The operator must be able to plan to change every parameter for every cell.

It must be possible to upgrade a cell to a cell of another type and revert back. All
parameters with the same name should be converted to the new type without loss of
information. Defaults should be assigned to new parameters. It can of course be assumed
that the program that does the conversion knows the new and old cell types.

It must be possible to develop "small" software modules that can work upon the
information without getting intricately tied to all the possible cell types. Functions
like: convert cell to new version.

When a change in the network fails, the plan should be rolled back to bring the network
back to its former state

114



The program should have no restrictions on the number of cell types, or number of cells.
It should be possible to minimize the number of commands sent to the cells. The reason is
that certain cells have a very slow connection (seconds per command).

22. p03s808.txt

Each OMC has a set of BSC that it manages.

Each BSC controls one or more cells.

Each cell is on a site (and a site can have many cells on it).

Each cell has a set of neighbors, which are other cells.

Some cells are managed by the same OMC, others are managed by other OMCs or other network
operators.

23. p03s09.txt

A cell in sector 301.402 is split in three. The original cell was a Sienokola and used an
antenna that created a cell where the site was in the middle. Three directional antennas
have been added plus the necessary base stations.

The operator starts the application and first selects the cell that must be removed. She
indicates that the cell should be removed. She then calls up a list of neighboring cells
and checks the frequencies on these cells to decide which frequencies can be used for the
new cells. She then modifies the frequencies of one of the neighboring cells and creates
the three new cells. The planning department had run predictions for the coverage of the
new cells and had given her values for the key parameters. All the other parameters were
left at default values. The next step is to see if the planned changes are consistent.
This is actually the case and she orders the plan to be executed at 3 am. The next
morning she finds in her mailbox a log that indicates that the changes have been
successfully applied to the network.

24. p038l0.txt

A new supplier has entered the market that can supply base stations for a significantly
lower price than the ones currently used. The network operator decides to buy 10 base
stations and installs them on new sites.

The new base stations have a different management interface than the older ones. The
supplier offers a special development kit that allows the base stations to be managed
over a standard Simple Network Management Protocol (SNMP) interface. The development
center of the network operator creates new drivers for this type and adds the type to the
application. After this change, parameters can be set that are specific for the new base
station.

25. p03sl2.txt

Reports have come in that the cell in sector 231.912 is not functioning well. Many calls
are dropped in a certain part of the sector. Inspection of the location reveals that a
high rise was built that blocks the passage of the radio signals. Another cell 10 km to
the north could reach the location but the parameter settings are such that the cell is
not allowed to cover that area.

The application is started and the cell is called up. The parameters that define the area
in which handovers can take place are modified. The change should take effect immediately
because there are people on the location that can perform measurements. After several
attempts the optimal settings are found.

115



26. p03sl3.txt
The operator who orders this program has the following systems:

Sienokola.

This supplier offers cells for the GSM and DCS systems. The operator has 2000 cells of
this type. Two variants are in use, the v15 type for rural areas (range 32 km) and the
vl6 that supports city areas (range 2 km). During the change of revision of the cells,
the management software must support the new revision and the previous. The Sienckola
cells can be accessed through a C-library from the Sienokola development kit.

Philison.

The operator has about 800 of these cells. This supplier offers a command line interface
to the cell to set its properties. Each command starts with a name and then the
parameters of the commands. Unfortunately, commands are not always "logically"
constructed. A command has a maximum length of 80 characters. Commands look very similar
to the AT command set for modems, for example:

(TABLE)

27. p03s8ld.txt

No two cells shall have the same name

No two neighbour cells shall use the same frequency

Cells in the same BSC should have the same MCC, LAC and MNC
Cells not in this OMC should not have the same LAC

28. p03sl5.txt

When filter = standard, neighbour relations algorithm can only be 0 or 2

Each neighbour mentioned in a neighbour relation "rels" should have its frequencies
listed in the neigbour frequencies "nfreg"

Paging channels + broadcast channels <= 12

29. p03s8l6.txt

Paging channels + broadcast channels <= 8
When bspower > 32, hopping cannot be used

30. p04s0l.txt

Financial markets are an example of an environment where sharing and maintaining large
sets of complex information give the holder competitive advantage. Often queries to such
databases are imprecise, producing large result sets that are visually scanned. Also,
changing market conditions and positions within them demand that results be kept current
while they are displayed.

In one version of a "fat client" 128-megabyte workstations cache nearly all business
objects in local memory. Logic in the client maintains the coherency of cached persistent
data and merges it with continuous streams of market information broadcast through a
private network.

One possible interpretation of a "thin" alternative architecture would be to move these
caches and coherency logic to a small number of large middle-level servers. Modest client
computers could "browse" these servers using software and protocols suggested by the
world-wide web.

116



Appendix I1

We developed the program “Detailed Analysis.class”, which trains both the sentence classifier
and the discourse classifier, and then tests the final results of the discourse-level classification
against the annotations of our human annotators. The log of the execution of the program is

as follows (here, only the 30 passages, presented in Appendix I, are used for testing):

Running DetailedAnalysis.class
[Current Time Stamp)] Sun Aug 05 07:22:04 EDT 2007

Reading Sentence-level Training Data File: sentencelLevel.arff ...done! [0.078 sec.]
Training The C4.5 Decision Tree-based Classifier ...done! [0.11 sec.]

Current C4.5 Decision Tree that classifies sentences based on ambiguity at the surface-
level is as follows:

digraph J48Tree {

NO [label="bad_RB" ]

NO->N1 [label="<= 0"]

N1 (label="fragment" ]

N1->N2 [label="= TRUE"]

N2 [label="Ambiguous (21.89/5.0)" shape=box style=filled ]
N1->N3 [label="= FALSE"]

N3 [label="vb_in_p" ]

N3->N4 [label="<= 0"}

N4 [label="bad_DT" ]

N4->N5 [label="<= 0"]

N5 [label="Unambiguous (118.61/21.61)" shape=box style=filled ]
N4->N6 [label="> 0"]

N6 {label="adjectives" ]

N6->N7 [label="<= 1"]

N7 {label="Unambiguous (8.28/2.28)" shape=box style=filled ]
N6->N8 [label="> 1"]

N8 [label="Ambiguous (5.93)" shape=box style=filled ]

N3->N9 [label="> 0"]

N9 [label="Ambiguous (9.58/2.0)" shape=box style=filled ]
NO->N10 [label="> 0"]

N10 [label="parentheses" ]

N10->N11 [label="<= 0"]

N1l [label="bad_JJ" ]

N11->N12 [label="<= 0"}

N12 {label="Unambiguous {(4.82/0.82)" shape=box style=filled ]
N11->N13 [label="> 0"]

N13 [label="Ambiguous (13.65/3.0)" shape=box style=filled ]
N10->N14 [label="> 0"]

N14 [label="Ambiguous (53.22/1.0)" shape=box style=filled ]
}

Stanford Lexicalized Parser v1.5.1 is now loaded into memory.

117



Loading Keyword Lists ...done! [0.016 sec.]

Reading Discourse-level Training Data File: discourseLevel.arff ...done! [0.031 sec.]
Training The C4.5 Decision Tree-based Classifier ...done! [0.07 sec.]

Current C4.5 Decision Tree that classifies a discourse based on ambiguity at the surface-
level is as follows:

digraph J48Tree {

NO [label="ambiguity_density" ]

NO->N1 [label="<= 0"}

N1 [label="Unambiguous (52.64/0.64)" shape=box style=filled ]

NO->N2 [label="> 0"]

N2 ({label="Ambiguous (112.36/19.0)" shape=box style=filled ]

}

Processing file #1: pOls0l.txt...done! [4.36 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- As the main incoming channel for cases is frequently the telephone, the system must
have sub-second response times and be intuitive to use.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #2: p0ls02.txt...done! [18.578 sec.]
The Passage is classified as 'Ambiguous'.
The following Ambiguous Sentence(s) are detected:

- Prioritise the cases based on specific rules (including Artificial Intelligence engines
that deal with complex rules).
*** The sentence contains:

Adjective(s), Word(s) inside Parentheses, Verb(s) inside Parenntheses,
Parentheses, Ambiguous Adjectives,

- The design problem for DesignFest® is to create an Object Oriented framework for use in
developing Case Management applications quickly, and customisable to the particular work
practices of the company purchasing the framework.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #3: p01s03.txt...done! [2.906 sec.]
The Passage is classified as 'Ambiguous'.
The following Ambiguous Sentence(s) are detected:

118



- There is no requirement for this to be configurable at run time (but it wouldn hurt if
that was an option).
*** The sentence contains:

Adjective(s), Word(s) inside Parentheses, Verb(s) inside Parenntheses,
Parentheses, Ambiguous Adjectives,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #4: p0l1s04.txt...done! [18.469 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- The manager then determines the next appropriate step (close, assign to another case
worker for the next processing step, put aside until a bring-forward is activated, etc.).
*** The gentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Word(s) inside Parentheses,
Verb(s) inside Parenntheses, Parentheses, Ambiguous Adjectives,

- A case worker selects cases from a pool to perform a specific function, and then moves
that case to the next appropriate step (close, put in another pool, put aside until a
bring-forward is activated, etc.).
*** The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Word(s) inside Parentheses,
Verb(s) inside Parenntheses, Parentheses, Ambiguous Adjectives,

- Finally, workflow support also means providing the ability to Approve or Reject a
particular request regarding a case.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

- A case may involve a single or multiple requests requiring approval, and security may
be needed to restrict who can make these decisions, depending on the organisation
building the application using this framework.
*** The sentence contains:

Adjective(s), Verb(s) in Passive form, Ambiguous Determinants, Ambiguous Modals,
Ambiguous Adjectives,

--- Result: CORRECT -»> System: Ambiguous | Annotator: Ambiguous

Processing file #5: p01s05.txt...done! (7.234 sec.]
The Passage is classified as 'Ambiguous'.
The following Ambiguous Sentence(s) are detected:

- Changing to a particular status may cause an event to be created automatically, such as
creating a bring-forward entry due at some future date.
*** The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Ambiguous Determinants,
Ambiguous Modals, Ambiguous Adjectives, Ambiguous Adverbs,

- Changing to a particular status may also automatically close a bring-forward (whether
it is due or not).
*** The sentence contains:
Adjective(s), Adverb(s), Word(s) inside Parentheses, Verb(s) inside Parenntheses,
Parentheses, Ambiguous Modals, Ambiguous Adjectives, Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

119



Processing file #6: p0ls06.txt...done! [0.766 sec.]
The Passage is classified as 'Unambiguous'.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #7: pOl1s07.txt...done! [5.5 sec.]
The Passage is classified as 'Ambiguous'.
The following Ambiguous Sentence(s) are detected:

- If case worker are geographically dispersed, then you may assume that the cases are
managed by geographic regions.
*** The sentence contains:

Adjective(s), Adverb(s), Verb{(s) in Passive form, Ambiguous Modals, Ambiguous
Adjectives, Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous Annotator: Ambiguous

Processing file #8: p02s0l.txt...done! [11.547 sec.]
The Passage is classified as 'Unambiguous’.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #9: p02s02.txt...done! [5.515 sec.]
The Passage is classified as 'Ambiguous'.
The following Ambiguous Sentence(s) are detected:

- The production is planned at factory level and is represented by lots assigned to the
FMS (a lot is an administrative entity indicating a group of identical pieces to be
manufactured together.) Several lots of different types of pieces can be in production at
the same time in a given FMS.
*** The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Too Many Words, Word(s) inside
Parentheses, Verb(s) inside Parenntheses, Parentheses, Ambiguous Adjectives,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #10: p02s03.txt...done! [12.297 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- Machines are assigned to a waiting piece (if any) as soon as they become idle. A
machine is idle when it is not performing an operation on a piece and the last piece
operated on has been evacuated.
**%* The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Word(s) inside Parentheses,
Parentheses, Ambiguous Determinants, Ambiguous Adjectives,

- For our purposes (as is the case in a small FMS), the time needed to serve a transport

request is small relative to the time needed for a machine operation.
*** The sentence contains:

120



Adjective(s), Word(s) inside Parentheses, Verb(s) inside Parenntheses,
Parentheses, Ambiguous Adjectives,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #11: p02s04.txt...done! [20.203 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- Two turning machines, M1 and M2, and a drilling machine, M3, each of which can work on
a single piece at a time.
*** The sentence contains:

Adjective(s), Ambiguous Adjectives, The sentence is detected as fragment.

- Two types of pieces, TPl and TP2.
*** The sentence contains:
The sentence is detected as fragment.

- The store for temporary in-process pieces: Store_tmp.
*+* The sentence contains:
Adjective(s), Ambiguous Adjectives, The sentence is detected as fragment.

- The transportation system with three carts, each of which can carry a single piece and
is equipped with a robot arm that loads or unloads the cart on command from the FMS
computer.
*** The sentence contains:

Adjective(s), Verb(s) in Passive form, Ambiguous Adjectives, The sentence is
detected as fragment.

- The controller/dispatcher knows at all times the state of all of the machines, the
places in the stores and the carts (free or occupied, and if occupied, by which piece) as
well as the position and state of all the individual pieces.
**%* The sentence contains:

Adjective(s), Adverb(s), Too Many Words, Word(s) inside Parentheses, Verb(s)
inside Parenntheses, Parentheses, Ambiguous Determinants, Ambiguous Adjectives, Ambiguous
Adverbs,

--- Result: CORRECT -> System: Ambiguous Annotator: Ambiguous

Processing file #12: p02s05.txt...done! [4.063 sec.]
The Passage is classified as 'Unambiguous’.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #13: p02s06.txt...done! [8.281 sec.]
The Passage is classified as 'Unambiguous'’.

--— Result: MISCLASSIFICATION -> System: Unambiguous | Annotator: Ambiguous

Processing file #14: p02s07.txt...done! [1.109 sec.]
The Passage is classified as 'Unambiguous’'.

121



--- Result: MISCLASSIFICATION -> System: Unambiguous | Annotator: Ambiguous

Processing file #15: p03s0l.txt...done! [4.563 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- It used to be possible to configure these networks by hand, but the tremendous growth
has made this infeasible.
*** The sentence contains:

Adjective(s), Ambiguous Determinants, Ambiguous Adjectives,

- There are just too many cells to be handled by man.
*** The sentence contains:

Adjective(s), Adverb(s), Verb({(s) in Passive form, Ambiguous Adjectives,
Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #16: p03s02.txt...done! [6.422 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- When a network is initially built, the area that is covered by each cell is very large.
*** The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Ambiguous Adjectives,
Ambiguous Adverbs,

- This is almost a black art and is usually handled by special planning programs.
*** The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Ambiguous Adjectives,
Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous ] Annotator: Ambiguous

Processing file #17: p03s03.txt...done! [2.843 sec.]
The Passage is classified as 'Unambiguous'.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #18: p03s04.txt...done! [2.625 sec.]
The Passage is classified as 'Ambiguous'.
The following Ambiguous Sentence(s) are detected:

- The sites are the most visible part of a cellular network because of the very obvious
antenna masts that are visible all over the country.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Determinants, Ambiguous Adjectives, Ambiguous
Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous



Processing file #19: p03s05.txt...done! [11.532 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- Planning, subscriptions, procurement, installation, handling of alarms, measurements,
configuration changes and many more.
*** The sentence contains:

Adjective(s), Ambiguous Adjectives, The sentence is detected as fragment.

- The networks have become so large that they are normally split sectionms.
*** The gentence contains:

Adjective(s), Adverb(s), Verb{(s) in Passive form, Ambiguous Adjectives,
Ambiguous Adverbs,

- This is complicated because each cell has literally hundreds of parameters. A short
summary :
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

- Relationship to neighbouring cells.
*** The sentence contains:
The sentence is detected as fragment.

- Access rights from mobile phones.
*** The sentence contains:
Adjective(s), Ambiguous Adjectives, The sentence is detected as fragment.

- Several of these parameters are dependent on, and constrained by, the settings of other
parameters in other cells.
*** The sentence contains:

Adjective(s), Ambiguous Determinants, Ambiguous Adjectives,

- For example, neighboring cells should always use different frequencies.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Modals, Ambiguous Adjectives, Ambiguous
Adverbs,

- Changing parameters in the network must be done in a short time on all related cells to
keep the disturbance to the network as low as possible.
*** The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Ambiguous Determinants,
Ambiguous Adjectives,

- Therefore, the changes must be planned and executed in a short time, usually during the
middle of the night.
*** The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Ambiguous Adjectives,
Ambiguous Adverbs,

- A very complicating factor in the management of the cells is that in one network, one
can find cells from different manufacturers and different versions and variants from the
same manufacturer.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #20: p03s06.txt...done! [6.312 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

123



- We would like you to pay most of your attention to the fact that there are so many
different cells in the network that need to managed in a common way, but are still of
very different types.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

- The problem is that the difference cannot be abstracted away because the operator also
wants to use the unique features (they want to have their cake and eat it too).
*** The sentence contains:

Adjective(s), Adverb(s), Verb(s) in Passive form, Word(s) inside Parentheses,
Verb(s) inside Parenntheses, Parentheses, Ambiguous Adjectives, Ambiguous Adverbs,

- The program must be very flexible for changes because these networks change at a rapid
pace.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Determinants, Ambiguous Adjectives, Ambiguous
Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #21: p03s07.txt...done! [4.266 sec.]
The Passage is classified as 'Ambiguous'.
The following Ambiguous Sentence(s) are detected:

- Adding new cells and new cell types should be relatively easy.
*x* The sentence contains:

Adjective(s), Adverb(s), Ambiguous Modals, Ambiguous Adjectives, Ambiguous
Adverbs,

- All parameters with the same name should be converted to the new type without loss of
information.
*** The gentence contains:

Adjective(s), Verb(s) in Passive form, Ambiguous Determinants, Ambiguous
Modals,

- It must be possible to develop "small" software modules that can work upon the
information without getting intricately tied to all the possible cell types.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

- The reason is that certain cells have a very slow connection (seconds per command).
*** The sentence contains:

Adjective(s), Adverb(s), Word(s) inside Parentheses, Parentheses, Ambiguous
Adjectives, Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #22: p03s08.txt...done! [1.234 sec.]
The Passage is classified as 'Ambiguous'.
The following Ambiguous Sentence(s) are detected:

- Each cell is on a site (and a site can have many cells on it).
*** The sentence contains:

Adjective(s), Word(s) inside Parentheses, Verb(s) inside Parenntheses,
Parentheses, Ambiguocus Adjectives,

- Some cells are managed by the same OMC, others are managed by other OMCs or other
network operators.
*** The sentence contains:

Adjective(s), Verb(s) in Passive form, Ambiguous Determinants,

124



--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #23: p03s09.txt...done! [5.516 sec.]
The Passage is classified as 'Unambiguous’.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #24: p03sl0.txt...done! [3.375 sec.]
The Passage is classified as 'Unambiguous'.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #25: p03sl2.txt...done! [3.079 sec.]
The Passage is classified as 'Unambiguous’.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #26: p03sl3.txt...done! [3.89 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- Two variants are in use, the v15 type for rural areas (range 32 km) and the v16 that
supports city areas (range 2 km).
*+** The sentence contains:

Adjective(s), Word(s) inside Parentheses, Verb(s) inside Parenntheses,
Parentheses,

- Unfortunately, commands are not always "logically"™ constructed.
*** The sentence contains:
Adjective(s), Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

- Commands look very similar to the AT command set for modems, for example:
*** The sentence contains:
Adjective (s}, Adverb(s), Ambiguous Adjectives, Ambiguous Adverbs,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

Processing file #27: p03sld4.txt...done! [0.688 sec.]
The Passage is classified as 'Unambiguous'.

--- Result: CORRECT -> System: Unambiguous l Annotator: Unambiguous

Processing file #28: p03sl5.txt...done! [1.218 sec.]

125



The Passage is classified as 'Unambiguous’'.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #29: p03sl6.txt...done! [0.282 sec.]
The Passage is classified as 'Unambiguous’.

--- Result: CORRECT -> System: Unambiguous | Annotator: Unambiguous

Processing file #30: p04s0l.txt...done! [4.953 sec.]
The Passage is classified as 'Ambiguous’.
The following Ambiguous Sentence(s) are detected:

- In one version of a "fat client" 128-megabyte workstations cache nearly all business
objects in local memory.
*** The sentence contains:

Adjective(s), Adverb(s), Ambiguous Determinants, Ambiguous Adjectives, Ambiguous
Adverbs,

- One possible interpretation of a "thin" alternative architecture would be to move these
caches and coherency logic to a small number of large middle-level servers.
*** The sentence contains:

Adjective(s), Ambiguous Determinants, Ambiguous Adjectives,

- Modest client computers could "browse" these servers using software and protocols
suggested by the world-wide web.
*** The sentence contains:

Adjective(s), Ambiguous Determinants, Ambiguous Modals, Ambiguous Adjectives,

--- Result: CORRECT -> System: Ambiguous | Annotator: Ambiguous

End of analysis.

DetailedAnalysis.class: Finished
[Current Time Stamp] Sun Aug 05 07:45:31 EDT 2007

126



Appendix II1

The following are snapshots of the user interface of our prototype, called ReqSAC
(Requirements Specification Ambiguity Checker):

A ReqSAC Client

Figure 31: A snapshot of the main window of ReqSAC

127




P2 ReqSAC Client

“Resuks

Status:

Figure 32: A snapshot of ReqSAC showing the File menu

P2 ReqSAC Client

Trainer | D-Classier Trainer|

~Results -

Figure 33: A snapshot of ReqSAC showing the Edit menu

128




2 ReqSAC Client
Fie Edt Hep
Ambiguity Checker

|Design a program that allows a network operator to plan changes in every parameter of every cellin the
Inetwork, These planned changes should be verified for consistency and correctness and then applied to the
inetwork inthe least disturbing way.

iWe would like you to pay most of your attention to the fact that there are so many different cells in the

| network that need to managed in a common way, but are stil of very different types. The problem is that the

| difference cannot be abstracted away because the operator also wants to use the unique Features {they want
to have their cake and eat it too). Do not Focus on the specific algorithms For frequency allocation and
consistency checks. The program should be easily extendable to handle the algorithms and rules of the network
operator so they cannot be hard-coded anyway.

Design an infrastructure where the network operator can customize critical aspects, instead of hard-coding
knowledge. The program must be very flexible for changes because these networks change at a rapid pace.

!|The Text is classified as ' Ambiguous '

The following Ambiguous Sentence(s) are detected:

‘|~ We would like you to pay most of your attention to the fact that there
are so many different cells in the network that need to managed in a
| |common way, but are still of very different types.

:{*** The sentence contains:

Adjective(s}, Adverbi(s), Ambiquous Adjectives, Ambiguous

Status: Done.

Figure 34: A snapshot of ReqSAC checking the ambiguity of a text with "Explanation On"

129



Y ReqSAC @ Current Sentence Classification Tr

Tree Yiew -

Figure 36: A snapshot of the Discourse Classification Tree viewer window in ReqSAC

>0

130




