Model Driven Development: A Comprehensive Case
Study

Rajiv Abraham

A Thesis
in
The Department
of
Computer Science
and
Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2007

© Rajiv Abraham, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34612-9
Our file Notre référence
ISBN: 978-0-494-34612-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Model Driven Development. A Comprehensive Case Study
Rajiv Abraham

The major complexity in creating software systems lies in the understanding of the problem domain for
which the software is developed. Models help analyzing the problem domain more effectively as they
provide a higher level of abstraction by filtering out the low-level details. Model Driven Development is a
methodology that advocates the use of models as the primary artifacts that drive the development of
software instead of serving as informal sketches. In this thesis, we demonstrate the application of MDD to
the development of a non-trivial software system using a state of the art tool: IBM's Rational Software
Architect (RSA). We also investigate how MDD attempts to solve the problem of model-code
synchronization through Round-Trip Engincering. With the help of this case study, we present the
limitations and guidelines learned regarding the use of the state of the art for MDD, highlighting the

difference between theory and practice.

it

Acknowledgments

I would like to extend my gratitude first and foremost to my supervisor Professor Patrice Chalin. The
guidance provided by him throughout the thesis has been invaluable. Every meeting is an opportunity to

learn. He has been a role model both professionally and personally.

Secondly, 1 would like to thank the DSRG group for their combined effort in reviewing my thesis. It is a
privilege to be a member of this group. 1 would especially like to thank Stephen Barrett, Perry James and

Daniel Sinnig for their detailed review of the final versions of this thesis.

Last but not the least, I would like to thank my family and my fiance Manali, for their support throughout

the thesis.

Table of Contents

LLST OF FIZUIES . ettt ettt ettt et e s e e e e e e bt s e ee st et ee st oese et e e beenee e eceeane e vii
LS OF TADIES ..ot h ettt iX
LAST OF ACTOMYIMIS ..ottt ettt e et et et ee et ea e s ettt e et e s e s e b e e e ete et s enbeeaeeeeanees X
I INEPOQUCTION ..ottt e et et et e st et e bt s e en e bt et eenean 1
1.1 Importance 0f MOdelSoooiiii et I

F.2 PRODBICIMIS ..o ettt e et e e et e et e et e e e et e e eee s 2

1.3 COMUIIDULIONS. .ot itteeiieeiiiie ettt ettt sttt ch e e e e sree s esbeesa s esbeesraeesabeessban e be s bt e sabnesareeenssresneeesns 3

T4 OULEHNE ettt h et e e b e bbb ekt a et ea e 4

2 Background and Related WOrKco.coooviiiiiiii e s 5
2.1 Unified Modeling Language (UML) ..ottt 5
2.1.1 UML and Modeling.......c.ooooviiiiiiiiiiiic e 5

212 PTOPETLIES .. ettt ettt ettt e b e et et e n e e s e b E e Rt et re b et ene e ee b et es e ene s 7

8 T T O 15 13 0] T U UURUTSSUUSUI 8

2.1.4 CONSIIAINTS. ..evivieeeiirieitieite e bt e et e e eib e e eeette et cesabeeeetaesaseibeeetaaenseeeassaeaasesasbeeasaeeessaeansessasneeneos 9

215 SHETEOLYPES ..ot et 9

2.2 Model Driven Development (MDD) ... 9
2.2.1 The Need for MOGEIS.o. oottt ettt 9

2.2.2 Essentials Components of MDDc.cooiiiiiiiiiiiiiiiie e 10

2.2.3 Model Driven Architecture (MDA).......oiiiiii et e 11

224 MDD VISION ottt 12

2.3 Test Driven Development (TDD) ..o e, 12
2.3.1 TeStNE FraAMEWOTKS c..ccviitiiiiiicceie sttt sttt eae e e 13

2.3.2 MEthOAOOZY ..ottt sttt 13

2.3.3 Advantages and DisadVantagesccooovviiiiviiiiiiieeieee ettt ettt et 14

24 REIACTOTINE ... tite ittt ettt e et e bt ee s e et em b es e e et e e sae s esbesbeese et e eneennesaan 14

2.5 Related WOTK ..o et 18

3 Rational Software Architect (RSA) ... oottt ettt e e e eree e 19
3.1 Scope of Usage 0f RSA ..ottt et 19

3.2 Key RSA Features for MDDocooiiiiiiiie e 19

4 Case Study: Development of a Project Management System (PMS).........cccooiiiiiin, 24
4.1 Tteration Presentation SEYLEccoiiiviiiiiiiriiiiciict ettt et 24

4.2 lteration 0: Preliminary Analysis and Creation of a Domain Model............ccocooiiiiiiii, 24

4.3 Tteration 1: MDD for Basic FEatUNES.......ccooiiviiii it 27
4.3.1 Domain Model: Order of Tasks and FOIJErs ..., 28

4.3.2 Basic Features for Tasks and Folders. ... 32

4.4 Tteration 2: Preliminary Thick Client Ul.........ocooiiiiii e 36
4.4.1 Eclipse Rich Client Platform (RCP) ..ot 36

4.4.2 Feature: Basic Ul features for Tasksocoooiiriiiiiiieeie e 38

4.4.3 Feature: Basic Ul features Tor FOIAErs........cccooviii e 40

4.5 Tteration 3: View All Tasks for a FOIerocoooi i, 41
4.5.1 Feature: View All Tasks OF FOIAETccoiiiiiii e 4]

4.5.2 Feature: View All Tasks by Folder (UI)........ocooiiriiii e 42

4.5.3 Rework on Remove Task ..o e 43

4.6 Iteration 4: TDD for Sorting Taskscooi i 43
4.6.1 Design RAtIONAlE ... oo ettt 43

4.6.2 JUNIt TeStS FOT SOTLING «.oeviiiieiie ettt 44

A4.6.3 SOrtinG i Ulooooiiii ittt ettt e 50

4.6.4 LessoNs Learnedcoooviiiiiiiii e 50

4.7 Iteration 5: Reordering of Taskscooovioiiiiiiio e 51
4.7.1 Initial UL INVESHZAION.otiiiiieiiieeeeiiei ettt ettt et e eeae e aeemeeenes 51
4772 MDD: Unique Task ID ..o e e e 54
4.7.3 MDD: RankExpert for Reordering Tasks...........cccoiiiiiiiiiiii e 54
4.7.4 MDD: Reordering TasKScooiiiiiiiee ettt 56
4.7.5 Providing the Right Tasks to the RankEXPertcocoiiiiriiiiiiiee e 57

4.8 Tteration 6: Share Tasks.......ocoiiiiie ettt 62
4.8.1 DOMAIN ANALYSIS c..ivirieiitiiieere et ettt ettt et bt 62
4.8.2 Feature: Sharing TasKSoooooiiioi ettt 63
4.8.3 Sharing Tasks in Ul......o.oooiiiiii et 64
4.8.4 RETACLOTINEG .oovitiiiieetie et ettt ettt et a e et b et eseeeneene e 65
4.8.5 Class DIiagram of PMSottt sttt e ere e stb e eeaa e baeenaeeens 66

4.9 HEration 7. PerSISEICE ..ot iiiieieii i eieeeti e eeeeee et e e et e s ere et estee s e e e bs e taesbeessbesebseeabceeasssentseaasneeses 67
4.9.1 INITOAUCTION ..c.eiieiteniee ettt ettt b et h ettt e e na e raeseeesbeenees 67
4.9.2 Database Table SChemMa.......oovcviiiiiicc s 67
4.9.3 1D Allocation to Domain ENtities.........cocoooiiiiiiiiiiii it 68
494 UDNIEOTWOTK Lottt et bt b et b vsesbe b ens v 68
4.9.5 TAENULY MAP ..ottt ettt ettt ee st ee et es et e b e e s eana e eaeene e 70
4.9.6 Data Mapper and Table Data GateWay............cccoiouiieiiiniiiiie e 71
4977 VATTUAL PTOXY 1 oeeieiet ittt sttt et b e et et an b e bt e ebe e 72
A4.10CaS€ STUAY SUMIMATY -...oouiiiiiiiiiie ettt ettt ee et eese et e b e s e s e ebesmeeba e s eneansseeaeneees 74
RSA Limitations and GUIAeIINeS.............coivioiiiiiieit ittt ete e 81
5.1 Reverse Transformation Done For Entire Java Project............ccoooiiiiiiiiiiinee 81
5.2 Synchronization Issues in Reverse Transformationccoco it 83
5.2.1 Limitation: No Link Created by Reverse Transformation for Added Code.c.cccee.e. 83
5.2.2 Importance of Reverse Transformation for the Adoption of MDD ... 83
5.2.3 Workarounds for Reverse Transformations in RSA ... 84

5.3 Reverse Transformation of UML Profiles ..., 87
5.4 UML-to-Java Transformation Impacts.........cccoovvvreiviviiiiiiiiiiiic 89
5.5 Sequence DIagram SUPPOTL......ccoco i ittt ettt ettt bbb eas e en e 90
5.6 Java Specific LIMITAtIONSoceoiiiiiiiii et ettt 91
5.6.1 AccesSOr and MULALOTSo.ooiiieiiicticet ettt ettt b e eae b e b e s s 91
5.6.2 Lack of Complete Support for Java GeNeTIiCS.......ocoieviiiiieiieeeieieieieee e 91
5.6.3 Method Parameters and Return Valuesccocoioiiiiiiiiiiiiecei e 92
5.6.4 Lack of Support for Enumeration Operationsc..ccooieoioieioenieecee e 93
5.6.5 Final Keyword for Method Parameterscoccooiiiiiiniiii e 94

5.7 General GUIACHIIES.oovi oo 94
5.7.1 Model Public INterfaces FirStc.ociiviiiiiieie ettt 94
5.7.2 Detecting Erasure of Codeccooiioviiiiiiiiiiiiii it 95
5.7.3 Undo Forward Transformation Effectccocoooiiiiiiiii e 96

6 Conclusions and FUtUre Workcooiiiii ettt 97
RETETEIICES ettt ettt e e se et e e e e eaeeene e eabeeereene s 100
APPENAIX <o e et ettt e e e e e 104
Tl RS A e e et s e et n et 104
7.1.1 Importing Java Model LIDIariesc..ccoovvvvviiiiiiiciiee ettt 104
7.1.2 View Enumeration COMpartmentsooueoioiririiiie it et 104

72 B I PSE ettt ettt a et bRt bt e b e b ettt e eabaeas et s et 104

vi

List of Figures

Figure 1: Types of UML Diagrams [Fowler 2003 ... 6
Figure 2: Class Diagram explaining basic UML CONCEPLS.....oocvririiirinirieiereeee e 7
Figure 3: MDA software development life cycle [Kleppe et al. 2003].............c.ocoooin, 11
Figure 4: Example of Code that has a “bad sSmell™ccooiiiiiiiiieeece e 16
Figure 5: Example of Code after Refactoring.........ccocoeeeiiiiiiineneee e 16
Figure 6: Modeling Perspective in RSA ..o 20
Figure 7: The mechanism used by RSA to maintain a link between model and code.................... 21
Figure 8: Snapshot of generated code with (@generated tag and inline comments........................ 22
Figure 9: Model Merging Window during Reverse Transformationccoccooviiniiiiiiiiceenee. 23
Figure 10: Inittal Domain Modelc.ooiviiiieiiiiie et 26
Figure 11: Initial class diagram..........ccoeereieeeiiieeiciieriee e ste et esestr e e s e be e erseeeneesneaeanereeneans 28
Figure 12: Snapshot of properties for FO1lder . tasKsS oo 29
Figure 13: Collection tab in transformation configuration file..........cccoooniiniiiiiiin 29
Figure 14: RSA support for Design Patternscoooeieiiiiieieee et 31
Figure 15: Singleton code automatically generated by RSA ..., 32
Figure 16: Class Diagram for Basic Features for Task and Folder..........c.ccoccoovniiiin 34
Figure 17: Empty Method body for Folder.newFolder () generated by RSA after Forward
TranSTOIMIATION.cooiiiiiiieiie ettt ettt eaa et e e 35
Figure 18: Programmer Filled Method body for Folder.newFolder () after Forward
TranSTOMMATIONccvoriiiiiee e bbb en e 35
Figure 19: Eclipse Platform Architectureccoooiiiiiiiiniiiiiiictc e 37
Figure 20: Class diagram for FolderTaskListUIWrapper and ITaskListViewer.....39
Figure 21: Table View Of Tasks. ..ot 39
Figure 22: Tree view of fOldersooooiiiiiiii e e 40
Figure 23: Class diagram for FOlderUIWIapper..........ccoovviiiiiiviicieerie et 40
Figure 24: Context menu for Add Folder and Delete Folder.......ooovveiviniiiciiieiee e 41
Figure 25:Class diagram after implementing View All Tasks feature.........cc..ccoocovvieniinciiienncn. 42
Figure 26: View Tasks by FOMET.......ocoooiiiiiie e et 42
Figure 27: Code showing InverseImportancelevelComparator undefined while
WITHINZ FITST IS ..ottt ettt et er st e et e esbaete e e eaneebaeenssemsaenseessaeensaassnssaesnneeenns 45
Figure 28: Shows Eclipse Quick Fix feature ... 45
Figure 29: Shows Class ImportanceLevelComparator created by Eclipse with default
TETUIN VAIUE OF ZEIO ..etiiiiiit ittt et 46
Figure 30: compare method for class ImportanceLevelComparator..........co.coeeeeeviivececeivneennnne. 46
Figure 31: JUnit Eclipse View showing all tests pass indicated by the green bar........................ 46
Figure 32: Code for TestCompareTasksByInverseImportancelLevel ... 48
Figure 33: Code for TestTaskSortByImportanceLevel ..o 49
Figure 34: Sorting tasks by column widget ...t 50
Figure 35: Hlustration of task reordering through the Ul’s drag-and-drop capability: moving Task
L 10 AFTET TASK 3 ..ot sttt 51
Figure 36: Class Diagram showing Ul implementation for DnD feature ... 53
Figure 37: Class Task with UUIDc.ocooiiiiiic s 54
Figure 38: Illustration shows example of class Folder not being a candidate for reordering tasks.
Folder A cannot place Task 3 before or after Task 6..........cccoooiiiiiiiiii e 55
Figure 39: Sequence Diagram showing TaskTreeDropAdapter checking drop location 59

Figure 40: Sequence Diagram showing TaskTreeDropAdapter reordering with next task.. 59

vii

Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:

Class Diagram for Reordering Tasks featurecccoovveviriniiinei i 60
Task View showing Drag and Drop featureccccocooiviiiiiiii 61
Class Diagram showing Domain Layer after implementing reorder feature............... 61
Why a folder cannot remove a subfolder’s tasks..........cocooeiiiiiiiinince 62
Class Diagram after adding Share Task feature ... 64
Snapshot of UI showing a task dragged and dropped for sharing between folders...... 65
Snapshot of Context Menu for Removing shared Tasksccovveveercereiiininnenene, 65
Class Diagram of FolderView before refactoringccccccvvnirvnnirincinceencnnnn. 66
Class Diagram of FolderView and ContextMenu after Extract Class 66

Class Diagram for Presentation Layer..........ocovvviiriiiiiiiinciii s 66
Class Diagram of Domain Layer.........cc.c.coooiiiiiiiiiiiiiiniietceeceeee e 67
Database Table Schema for Folder and Task Entities.................c.cocoiinnn 68

Figure 53: Class Diagram for 1D generation...........cocovveimriiiieriiiiiiiiice ettt et 68
Figure 54: Class Diagram showing functionality for Batch Updatesc..occooevviininiiiiinnnns 70
Figure 55: Class Diagram showing functionality for maintaining unique domain entity instances
... 71
Figure 56: Sequence Diagram showing behaviour of finding a task in TaskMapper 71
Figure 57: Class Diagram showing functionality for mapping objects to persistence................... 72
Figure 58: Class Diagram showing functionality to prevent deadlock for loading domain entities
... 73
Figure 59: Sequence Diagram showing behavior of loading a task from the database 74
Figure 60: Package Diagram for the Project Management Systemccccoovvinnciiiniiiininne 77
Figure 61: Class Diagram of the Presentation Layerc.cccociiiiiiniiniiiniiiie e 78
Figure 62: Class Diagram showing Domain and Technical Services Layersccocovrnennn. 79
Figure 63: Class Diagram showing Unit Tests for the Domain Layer..........c.cceceevivniinicnninnc. 80
Figure 64: Conflict Merge during Reverse Transformation from code to model 82
Figure 65: Eclipse Content Assist for Tag Template ... 86
Figure 66: Singleton Profile in RSA ... 87
Figure 67: Visualization of generated Java Class A ..., 87
Figure 68: Model Merging Window during Reverse Transformation from Java to UML for the
SINGIEON PAEIT ...ttt st 88
Figure 69: Class Signature of RaNKCOMPAT AT O 1iviiiiiioiieieeiieetieie st ee et siieenie e 91
Figure 70: Illustration showing a workaround for generics in method parametersc.ccccoevee... 92
Figure 71: Public methods of RANKEXDETT coeooiiiiiiirieiircceere e ereeneen 95
Figure 72: Evolution of RankExpert during implementation........c..ccooceoneiiinirnininnie i, 95
Figure 73: Code Style In Eclipse Preferences............ccoeeiiiiiiiiiiini e 105
Figure 74: Snapshot of Eclipse Code Templatescccccviiniiiiiiniiiiiie e 106
Figure 75: Comment Template for Methods.................o 106
Figure 76: Comment Template to be pasted in the Pattern textbox for methods......................... 107
Figure 77: Comment Template to be pasted in the Pattern textbox for getter methods.............. 107
Figure 78: Comment Template to be pasted in the Pattern textbox for setter methods............... 107
Figure 79: Code Template to be pasted in the Pattern textbox for methods............ccocccoeinine 107

Figure 80:

Figure 81:
Figure 82:
Figure 83:

Code Template to be pasted in the Methods Pattern textbox for throwing an Exception

... 107
Code Template to be pasted in the Pattern textbox for getter methods..................... 107
Code Template to be pasted in the Pattern textbox for setter methods 108
Creating Templates In ECHPSE.....ccooveiiiiiiiiiiiiiccii e 108

Viii

List of Tables

Table 1: Impact of UML-to-Java transformation on modified code

Table 2: Impact of UML-to-Java transformation on code if model is changed..........................

X

List of Acronyms

Acronym Definition

DnD Drag-and-Drop, a Ul capability.

1P Intellectual Property

Java EE Java Standard for building server side enterprise applications.

MDA Model Driven Architecture: A framework for MDD

MDD Model Driven Development: A methodology where models are primary artifacts of
software development.

NET Framework for creating applications using Microsoft Technologies.

OCL Object Constraint Language, declarative language for describing rules that apply to
UML models

PIM Platform Independent Model. A model abstraction used in Model Driven Architecture

PSM Platform Specific Model: A model abstraction used in Model Driven Architecture

RSA Rational Software Architect, a tool for MDD used in the case study.

Ul User Interface.

UML Unified Modeling Language, a visual object modeling language

1 Introduction

1.1 Importance of Models

Software systems increase in complexity every decade. From the humble beginnings of solving simple
mathematical problems, software now powers spaceships and complex medical instruments. Current
practices in developing complex software involve advances in programming languages and IDEs
(Integrated Development Environment). However, these advances have proven insufficient for managing
the complexity of software development. This is because while these technical advances improve the
implementation domain, the major complexity in creating software lies in understanding its domain of
application, i.e., the problem domain. The semantic gap between the problem domain and the
implementation domain is too wide for these technical advances to have a pronounced effect in

understanding the problem domain [France & Rumpe 2007].

Therefore, there is a need to analyze the problem domain without being concerned with the implementation
details [Hailpern & Tarr 2006]. This is normally achieved by creating abstractions of the problem domain.
These abstractions or models are conveniently expressed using graphical notations. A pervasive graphical
modeling notation is the Unified Modeling Language (UML) [UML 2007}. The UML defines a suite of
graphical notations, based on a single meta-model, which helps in describing and defining software systems

using the Object Oriented (OO) style [Fowler 2003].

Through models, developers can focus on the high-level design of a system instead of its low-level
technical details. Using models, developers can communicate quickly and efficiently about design
decisions [Larman 2004]. In addition, the models themselves serve as documentation for these high-level
decisions, which can be very useful to maintenance developers who have to understand the system well

after 1t is first deployed.

The desirability of such benefits has led to increasing amounts of research in the area of Model Driven
Development (MDD), a software engineering approach that considers models to be the primary artifact of

software development. Models as defined in MDD, have a precise syntax and semantics, and are machine-

readable. This forms the necessary basis of the MDD vision - the automatic generation of executable code

from models with the help of tools.

1.2 Problems

Detailed case studies in MDD are quite rare. This is probably due in part to the fact that the industrial
application of MDD is still in its infancy, so there are few cases to report. Other reasons could be that
issues of Intellectual Property (IP) prevent those that have been carried out from being made public [France
& Rumpe 2007] and that early adopters may be unwilling to face criticism. The case studies that have been
published almost exclusively discuss only high-level architecture issues [Mattsson et al. 2007] or have a
business focus [Guttman & Parodi 2007]. Another issue with current case studies is that they do not offer a
realistic description of the practice of MDD. Simplified case studies [Quatrani & Palistrant 2006] or vendor
white papers do not provide practical guidelines to developers interested in adopting MDD. Other case
studies [Nilsson 2006] provide a realistic description of the practice of modeling but are not set in the
context of MDD. Case studies also do not detail the role of tools in MDD. The successful adoption of MDD
is dependent on the degree of automation provided by tools. Since MDD is a relatively new methodology, it
is likely that tools work well only within certain limitations. Current literature does not provide adequate

information about these limitations.

The biggest challenge in MDD is ensuring model-code synchronization [Haskins 1997]. Synchronization

problems may occur due to the following reasons:

e The generated code may be optimized for better performance. making it hard to understand.
Developers may change the code to make it easier to understand, using practices like refactoring of
code.

e Many MDD tools provide only limited support for integrating generated code with human-written
code, as the architectural choices made by the tools are hidden from the modeler and non-customizable
[France & Rumpe 2007]. For this reason, once the initial code has been generated, the developers may

simply ignore the tool and continue development directly on the code itself.

Reverse engineering the changes made in the code back to the model is complex. This is because, for
automatic conversion from code to model, current tools cannot perform the same level of abstraction as
done by humans [Selic 2003]. If the changes made in the code cannot be propagated to the model
completely then the model will represent an incomplete and incorrect picture of the software. Such an
incomplete model can only be partially reused across similar applications. Hence, model-code

synchronization is important to facilitate maximum model reuse.

In addition, there has been an increase in the adoption of Agile methodologies in software development
[Ambler 2007]. Test Driven Development (TDD) [Astels 2003] is one of the popular Agile methodologies
[Saiedian & Janzen 2005]. TDD advocates writing tests before implementation. All production code must
have associated tests. Agile MDD [Ambler 2004], an agile activity related to MDD, advises the
combination of MDD and TDD. However, there is a lack of detailed examples describing the application of

such a combination.

1.3 Contributions

The main contributions of this thesis address the previously mentioned problems through

o A detailed case study that applies MDD to the creation of a software application of non-trivial size,
namely, a Project Management System (PMS).

e A special focus during the case study execution on how MDD attempts to solve the problem of model-
code synchronization using a state-of-the-art tool. namely 1BM Rational Software Architect (RSA).

o Guidelines that we have learned when applying the principle of MDD to our case study. The objective
here being to highlight important differences between theory and practice as a guide to developers
interested in adopting MDD.

e In particular, we offer guidelines for overcoming the observed limitations of RSA with respect to

model-code synchronization.

In addition to being a comprehensive assessment of MDD through RSA, as a secondary contribution we

also

e Investigate the combination of Test Driven Development (TDD) [Astels 2003] with MDD.

(V%]

1.4 OQOutline

This thesis is organized into six chapters and one appendix. Chapter 1 introduces Model Driven
Development, the main problems that have to be resolved and the major contributions of this thesis.
Chapter 2 provides brief background information of our work. We introduce the modeling language UML,
the MDD and TDD methodologies followed by the topic of refactoring. We then provide a summary of the
related work with respect to this thesis. Chapter 3 provides the scope within which RSA is used and a brief
description of the key features of RSA. It also explains the technical details of applying MDD with RSA.
Chapter 4 describes the main contribution of this thesis namely, a detailed case study in MDD. The
subsections describe the iterative process applied to the case study. Chapter 5 describes the major
limitations of RSA with respect to MDD, especially the problem of model-code synchronization. It also
offers guidelines based on the lessons learnt while applying MDD to the case study. Chapter 6 provides the
conclusion of our thesis and discusses future investigations that can be carried out to build on our work.
The Appendix lists various technical details regarding RSA features and customizations made to the IDE to

implement the guidelines as suggested in Chapter 5.

2 Background and Related Work

In this section, we present background material that is necessary for the understanding of the core
contributions of the thesis. We first introduce the Unified Modeling Language (UML), which is used
extensively for modeling in this thesis. This is followed by introductions to Model Driven Development
(MDD) and Test Driven Development (TDD), the two approaches followed in this thesis. We then cover

the topic of refactoring, followed by related work.

2.1 Unified Modeling Language (UML)
2.1.1 UML and Modeling “

The Unified Modeling Language (UML) defines a suite of visual notations suitable for expressing business
processes, system and software requirements as well as design, implementation and deployment scenarios.
UML is particularly suited for the description of software systems developed in the Object Oriented (OO)
style. There are different ways to approach modeling with UML which have been classified into two main

categories (see Figure 1):

* Dynamic Modeling. Dynamic modeling is performed to analyze business processes, understand user
behaviour, or design the interactions between software entities. In UML 2, dynamic modeling is
performed using Behaviour Diagrams.

e Static Modeling. Static modeling is performed to organize the structure of the various software

components. In UML 2, static modeling is performed using Structure Diagrams.

Clazs Dingram

interaction ﬁ
Diagram

Componant
Diagram
sincass v
Diagram DI
Deployment
Diagram
Obect Diagram
Diagram Q”‘ Package
Diagram
Activit
Diagram
Use Cass
Diagram
Behavivr SBiate Maching
Diagram Diagram
Sequence
Diagram

Communication
Diggram

inaraction
Overvigw
Diagram

Timing Disgram

Figure 1: Types of UML Diagrams |Fowler 2003|

Though there are many types of diagrams in UML, we shift our focus to the UML Class diagram, as it is
the diagram type used most frequently in the thesis. A class diagram is used to describe the static structure
of classes and interfaces, and the static relationships between them. The static structures of, and
relationships between classes are represented through UML Properties and UML operations. In a UML

class diagram, a class is shown as a rectangular box usually with three horizontal compartments (see Figure

2). The horizontal compartments from top to bottom give the class name, class properties and class

operations.

' ((Sihglétom;
@ Printer

&5 print { file : File)

Director - files =

= %[:'_rgizzw - Eghame : 5tiing .

L g Paln . - 'gF'I {unique} * | #dgetName () : String .

i copy (file : File) &3 setName (name : String)

Figure 2: Class Diagram explaining basic UML concepts

2.1.2 Properties
UML properties denote the structural features of a class i.e., its fields. UML Properties can be shown in two
different ways in a UML class diagram: UML Attributes, or UML Associations. An attribute is shown

within the class box in its second compartment. The syntax for an attribute is of the form

visibility name: type multiplicity = default-value {property-string}

o visibility: describes the access rights to the property. The symbols +,-, ~, or # representing public,
private, package or protected access, respectively

* name: the attribute name. This is the only mandatory field.

e type: class or primitive type of the attribute.

e multiplicity: the number of instances contained in this property.

o default-value: the value assigned to the attribute the moment an object is instantiated.

e property-string: additional qualification(s) given to the attribute

For example

- title:String [1} = “"NO TITLE” {readOnly}
defines a private attribute ‘title’ of type stxring that can contain only one instance of type string. It has a
default value of “NO_TITLE”. The readonly property signifies that its value cannot be modified, but only

read.

In the case of properties, a UML association is normally a solid, directed line from the class that owns the

property to the class that indicates the type of the property. Figure 2 shows that class Directory has an

association with name £iles of type File and a multiplicity of more than one. The name of the property
as well as its multiplicity is mentioned near the directed end of the association. Normally, attributes are
used to represent common data types like String, Boolean and Date, where the value of the object is
more important than its identity. Associations are used to represent a complex type like Person, Product,

etc., where the identity is more important than its value [Fowler 2003].

2.1.3 Operations

A UML operation is an action that a class or interface can perform. It is distinct from the term methods in
that an operation is a declaration (or method signature) of what the class can do and a method is the
implementation of how a class chooses to perform such an action. This distinction between an operation
and a method is associated with polymorphism whereby if three classes implement an interface, then one
interface operation may have up to three different methods corresponding to one for each class. The syntax

for a UML operation is of the form

visibility name (parameter-list): return~type {property-string}

o visibility: : describes the access rights to the operation. The symbols +,-, ~, or # representing public,
private, package or protected access, respectively.

e name: method name. This is the only mandatory field.

o parameter-list: list of parameters for the operation. The syntax is similar to those of properties.

e return-type: the type of the value returned by the method.

e property-string: method qualifiers.

For example

+ getName () :String {query}
declares an operation named getName with public access that returns an object of type String. The
method is qualified as a query method [Meyer 2000]; i.e., it does not modify the state of the object on

which it 1s invoked.

2.1.4 Constraints

UML constraints define restrictions on UML elements. An example of a restriction might be that a UML
property of multiplicity greater than one should only have unique instances. All UML constraints are
placed between curly braces. Figure 2 shows that the association files, of class Directory, should refer
to only unique instances of class File. These constraints can be expressed in a natural language, a

programming language, or UML’s formal Object Constraint Language (OCL).

2.1.5 Stereotypes

The basic building blocks of UML (i.e., classes, properties, operations, and constraints) can be extended to
capture domain concepts or common design solutions. Extensions allow the domain concepts or design
solutions to be also used as building blocks, thereby supporting better abstraction of the problem domain
and enhancing design reuse. These extensions are called UML profiles. One of the extension mechanisms
for defining UML profiles is the stereotype. Stereotypes introduce domain concepts and design solutions
into the vocabulary that will be used for modeling. Figure 2 shows that class Printer has been stereotyped
as a Singleton [Gamma et al. 1995] as indicated by the word appearing between guillemets (i.e., <« and »).
Stereotyping relieves us of having to specify methods like getInstance ()} which are understood to be

implied by the stereotype.

2.2 Model Driven Development (MDD)

2.2.1 The Need for Models

Before introducing Model Driven Development (MDD), it is necessary to list the motivations for
considering this paradigm in software development. Most of the motivations stem from the limitations of
current third generation languages (3GLs) for developing complex, distributed systems. The main

limitations that are relevant within the scope of this thesis are:

e 3GLs are normally used to express the implementation details of software development, i.e., the
technical domain. However, the major complexity in developing large-scale complex systems lies in
understanding the problem domain for which the software is being created [Evans 2003]. This

understanding serves as a basis for software design, independent of the user interface or any other

technical infrastructure (which may be implemented in 3GLs). Thus, the technical nature of 3GLs
makes them inadequate for bridging the wide semantic gap between the technical domain and the
problem domain [France & Rumpe 2007].

e Even in the technical domain, the detailed syntax of 3GLs makes them too verbose for effectively

communicating the high-level design decisions of large-scale systems.

These needs for better expression of the problem domain and high-level design have led to the usage of
graphical modeling languages like the Unified Modeling Language [UML] where developers reason and
communicate about the system to be built using model abstractions. In such models, the visual notations are
expressive enough to describe the underlying concepts of the problem domain, and yet hide the
implementation details of the design solution. At the same time, these models are formal enough to be
similar to the concepts in a technical domain so that they can be mapped to an implementation structure

without much effort.

2.2.2 Essentials Components of MDD
The above-mentioned value of modeling has given rise to MDD where models are considered as the
primary artifact of software development. There are two essential components in MDD: the meta-model

and model transformations.

In MDD, a model’s syntax and semantics is made precise by defining its meta-model (i.e., a model of the
model). This is important because it is necessary to ensure that the same graphical symbols are not
interpreted differently by users. Having a meta-model also facilitates communication between stakeholders.
For example, if a stakeholder uses the term package, other stakeholders can refer to the meta-model and
understand that a package refers to a model element that groups model elements of all types including other
packages. In addition, perhaps the most practical use of a meta-model is that tools can generate code from

models using the meta-model.

In fact, the ability of tools to transform models to code via automation is a critical factor for the success of
MDD. A transformation is formally defined as the process of taking one or more source models as input
and generating one or more target models as output with the help of transformation rules [Sendall &

Kozaczynski 2003]. It is the transformation rules that enable possible automation of activities like reverse

10

mostly
text
MDA m

Process PiM

low-tevel design

PSM

Code

Figure 3: MDA software development life cycle [Kleppe et al. 2003]
engineering for code synchronization, application of patterns and refactoring. Though transformations can
take care of almost all code generation activities, it is important to allow extensibility of transformations.
This is because different teams have different needs from the same transformation and prefer tuning it to
their own requirements. If transformations cannot be extended, then developers prefer not using

transformations at all [Weis et al. 2003].

2.2.3 Model Driven Architecture (MDA)

One of the popular instances of MDD is called Model Driven Architecture (MDA) and is defined by the
Object Management Group [OMG]. MDA is an MDD framework where the modeling language is the
Unified Modeling Language [UML]. Figure 3 shows the software development life cycle as prescribed by

MDA.

In the MDA software development cycle, the analysis phase produces a Platform Independent Model
(PIM). The PIM is used to model concepts as close as possible to the problem domain, abstracting away
from the technical platform details of the implementation. For example, the problem domain of healthcare
industry can be modeled using the PIM. Whether the software project is developed, using Java or CANET
does not matter at the PIM level. Once the PIM is created, we can use transformations to obtain a technical

platform specific abstraction, i.e. the Platform Specific Model (PSM). The technical platform could be Java

I

EE or .NET. It could also be a client server system or a mainframe. The PSM is used to model concepts
close to the technical domain but at a level where it is still able to capture the high-level design aspects of

the technical domain. The PSM is then transformed to partial or complete code.

2.2.4 MDD Vision

If the vision of MDD is realized, the following gains can potentially be made in the field of software

development:

e Productivity: Models can be used to generate partial or complete software systems using automated
transformations provided by tools. Best practices in coding can be captured in these automated
transformations, thus potentially improving developer productivity and software quality. In fact,
current code generated by tools is comparable to hand written code in terms of efficiency [Selic 2003].

e Maintenance and Documentation: Since software development is driven by models, the high-level
design documentation is always synchronized with code. This would be very useful for long-lived
projects where the developers who initially developed the software are replaced by other developers
(“maintenance developers™) who will have up to date documentation of high-level design.

e Knowledge Reuse: Considering the importance of capturing domain and design knowledge, it would
be very productive if the same knowledge can be captured once in an implementation independent
model and tools use the model to generate code in various technological platforms like Java EE or
NET.

e Validation: If the model is precise enough, it can be analyzed mechanically for desirable or
undesirable characteristics. By detecting and resolving the undesirable characteristics in the model
itself, we can analyze potential design decisions before investing time and resources on

implementation and testing.

2.3 Test Driven Development (TDD)

Test Driven Development (TDD) is a software methodology that advocates writing tests first and then

writing code to satisfy those tests. These tests are called Programmer Tests [Astels 2003]. Programmer

Tests are unit tests with the difference that their primary aim is to determine what code is to be written, in

addition to testing the code for different scenarios.

2.3.1 Testing Frameworks

Unit/Programmer Tests are normally written using testing frameworks like JUnit [Hunt & Thomas 2003]
that help the programmer in creating automated tests. These frameworks enable maintaining a large suite of
tests and running all of them together with less effort. Programmers can test their implementations by using
assertion methods provided by the framework. These assertion methods generally compare the actual
output from the implementation and the output expected by the test. If the expected and actual output do
not match, then the assert method throws an error which is caught by the framework and reported to the
programmer. Thus, with the help of assert methods, a programmer can validate if the implementation
provides the expected behavior. The framework also provides mechanisms to reuse common code (also
called fixtures) that should be run before and after every test. In JUnit, the common initializing code is
written in a method called setUp () and the code required to dispose of the fixture is written in a method

called tearDown ().

2.3.2 Methodology

When a feature is to be added to the software, the programmer thinks of the tests required to validate the
presence of the feature in the implementation. The programmer writes a test and executes the test. Since the
feature has not been implemented yet, the test fails. The programmer then writes the minimum code to
satisfy that test. If the test succeeds, the programmer writes another test and enhances the code just enough
to satisfy this test and no more. In this manner, the programmer works in a cycle of test and code,
incrementally developing the feature for the software. As tests are written incrementally, soon there will be
a large collection of automated tests. These tests may have common programming problems like code
duplication, long methods, etc. and hence have to be refactored. For example, duplicate code can be

refactored to fixtures supported by the testing framework.

2.3.3 Advantages and Disadvantages

o By writing tests first, we ensure that for every feature that goes into production code there are tests to
verify its behavior.

o Tests and implementation are developed concurrently when the context of the feature is fresh in the
programmer’s mind. Thus, the collection of tests has a greater likelihood of being comprehensive and
relevant to the feature.

e Automated testing encourages repeated validation of code changes. When used consistently after every
code change, the programmer can instantly detect the offending change. As opposed to this, the
programmer may make a large set of changes collectively. However, if a bug is detected, the
programmer may spend additional time trying to figure out which change introduced the bug.

e Refactoring code is essential for successful maintenance of systems. The safety net of tests allows one
to refactor code without the fear of breaking a feature or some other dependent feature. An incorrect
refactoring can be immediately caught by running tests and the feature can be reverted to the version
before the refactoring.

e As tests drive implementation, one only designs what is necessary to satisfy those tests. This prevents
the introduction of additional code that may not be used later. Such a restriction on design keeps code
simple and relevant.

e The TDD methodology requires a different mindset as compared to traditional methodologies, and so
there is a slight learning curve associated with TDD.

e Though TDD keeps code simple and relevant, some industry practitioners find that a lack of upfront

design is a hindrance to its adoption [George & Williams 2003].

2.4 Refactoring

[Fowler 2000] defines refactoring as “a change made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its observable behavior.” Managers would typically
resist such changes, as they do not want to change code that works and the time spent changing code could
be spent writing new features, thus gaining more revenue for the company. However, refactoring cannot be

neglected because of the following factors:

e Every time we add new features to the software without considering its impact on the overall design
structure, we may possibly introduce unfavorable aspects of programming like duplicate code or long
methods/classes that perform multiple responsibilities. Ad hoc addition of features will result in the
decaying of the system design to such an extent that it will become infeasible to add any more features
without breaking the system. Refactoring the design at regular intervals cleans it up and makes it more
adaptable to change. For example, by eliminating duplicated code, we ensure that if changes are to take
place, only a single section of code needs to be touched, instead of having to modify multiple places,
which is error prone.

e The reality of software development is that code may be developed by one developer but it has to be
maintained by many developers. Many developers, after a short while, cannot understand even their
own code, and rediscovering the design of others’” wastes precious time. One of the driving purposes of
refactoring is to write code that is easily understood by other developers. Code that is easy to
understand better reveals the intent of the design. The code also becomes easier to modify when

requirements change or bugs are reported.

Nevertheless, managers still may not be convinced. Since refactoring involves making changes to software,
it can also break a previously working system. This concern can be relieved by maintaining a suite of
automated tests, which can be performed quickly and effortlessly after every change. These tests will
quickly point out if the change is faulty, and we can switch back to the previous version of working code.
Refactoring without tests can lead to additional bugs in the system or cause a failure in another part of the

system.

Refactoring can be further divided into two different approaches depending on the level of abstraction:

o Refactoring to Code [Fowler 2000}: These are low-level refactorings made to code. They mostly

involve minor changes like renaming variables and methods to be more meaningful or moving

methods from one class to another for more cohesion and less coupling.

o Refactoring to Patterns: These refactorings are performed to improve the design of the software. The

source design model is transformed into a target desigh model resembling a design pattern [Gamma et

al. 1995], which embodies best design practices. Sequences of low-level refactorings are performed to

apply the design pattern in our design model. After every low-level refactoring, we still run tests to
verify that the changes made work. These sequences of refactorings are also called “composite
refactorings” [Kerievsky 2005].
In order to start refactoring, we need to know what code to refactor. Catalogs of refactorings have been
published to improved code and design [Fowler 2000, Kerievsky 2005]. Most common problems arise due
to duplicated, unclear, and complex code. These problems are also called “bad code smells” [Fowler 2000}

which signifies that certain pieces of code do not feel right to the intuitive nature of good developers.

A simple adapted example from [Nilsson 2006] can explain how to find a code smell and refactor code.
This code is an example of software built for a mining company. The purpose of the code is to determine

the number of trucks required to carry extracted asphalt from the mills. The code piece in Java is

public int numberOfTrucksReqguired() {
return millingCapacity/ (truckCapacity*60/unloadingTine) ;

}
Figure 4: Example of Code that has a “bad smell”

The formula in the code, though simple, does not reveal well its intent.]t takes some time to understand the
reasoning behind the formula. Using a refactoring called “Extract method” [Fowler 2000], we extract the

formula into a method which expresses the intent better. The refactored code is shown below.

public int numberOfTrucksRequired() {
return millingCapacity/singleTruckCapacityDuringOneHour () ;
}

Figure 5: Example of Code after Refactoring
As it can be seen, understanding the code becomes much easier, and we do not waste time trying to figure it

out the next time around.
While refactoring, several best practices can be followed. They are

e Undertake refactoring in small safe steps. After every small refactoring, run tests to verify that the
change is valid. Making small incremental changes is faster than performing a set of refactorings
together. When we make many refactorings together, we could introduce errors. We would spend a

considerable amount of time determining the location of the mistake and trying to fix it.

e Perform code reviews. Code reviews allow multiple developers to inspect the code, thus providing
insights that the author of the code may have missed. Thus, extreme programming [Beck 1999]
encourages pair programming where two developers work together.

e Make code readable. At many places, complex code can be replaced by code that is nearer to a natural
language. This abstraction makes it easier to understand code and change it, if required.

e Make refactoring a continuous habit. By refactoring at regular intervals, the code is kept clean thus
making addition of features and solving bugs that much easier. The more we procrastinate about

refactoring, the messier the code becomes and the more difficult making changes to code becomes.

Even though refactoring aids in understanding code and managing complexity, critics can argue that
refactoring often increase the number of classes and methods which may decrease the performance of the
software. This could indicate that if performance is a prime concern, then refactoring should not be done.
Apart from real-time systems, there are applications that may not require such stringent performance
requirements. For such applications, it is appropriate initially to design for better understanding and ease of

change. Refactoring should be done as required without considering performance.

Once the design is stable and there is a working application, the developer can consider the performance of
the system. Most studies of software performance [McConnell 1999] state that the majority of performance
slow downs are caused by a minor section of code. It has been found that 20% of a program (also called hot
spots) consumes 80% of the execution time {Boehm 1987]. By tuning these hot spots, we can obtain a huge
improvement in performance. There hot spots can be detected by using a performance profiler. The profiler
will detect the code sections that are frequently invoked, take a lot of time to execute or use a lot of
memory. These code sections can then be optimized for better performance, giving the developer more
value for time spent. Additionally, virtual machines for platforms like Java detect hot spots during program
execution and generate highly optimized native code for them. If the virtual machine detects that a method
is invoked repeatedly, it will inline the native code for that method in the native code of the invoking
method. This reduces the overhead of method invocations and provides the virtual machine with a larger

section of code to optimize [Java HotSpot]. This further reduces the performance impact of refactoring.

Thus, apart from virtual machine optimizations, if the developer has to focus on finding the code sections
that have to be tuned, it will be very difficult if the design is not understandable and flexible. Refactoring at
regular intervals allows developers to create a design that makes it easier to pinpoint the region of change
and make modifications. In this manner, we can have the best of both worlds, well-designed software with

minor tweaks in code for better performance.

2.5 Related Work

MDD has been used in a case study for the development of a software platform for a new generation of
digital TV set top boxes [Mattsson et al. 2007]. The project requirements were to develop a software
platform with a short time to market for a continuously evolving hardware platform. It was understood that
the platform would have to be maintained and adapted to various markets, with stringent quality and
performance criteria. The case study found MDD to be inadequate for capturing all the architectural
constraints that go beyond structure. Though the architects had created an executable architectural
framework, they still needed to use natural language to express rules for the usage of the architectural
framework in order to design components in the architecture. The rules were hard to understand and were
often interpreted differently by developers. The rules could not be enforced, and hence the architects had to
do manual reviews, which took a significant part of their time. Since the architects were busy, there was a
scarcity of resources to review the code with the result that the development was error prone. In addition,
when the architecture changed, there was major rework regarding the architectural constraints added
manually. Thus, the authors advocated support for the modeling of architectural rules, coupled with

automatic enforcement of the architectural rules in the generated models.

Case studies highlighting the adoption of MDA in the industry have also been published [Guttman &

Parodi 2007]. These case studies describe all aspects of the project using a business focus.

3 Rational Software Architect (RSA)

In this chapter, we highlight the key features of IBM Rational Software Architect (RSA) for the application

of MDD. RSA serves as a tool not only for modeling but for implementation as well. RSA is built over the

extensible Eclipse Platform [Eclipse] that provides the basic IDE framework for software development.

3.1 Scope of Usage of RSA

For this thesis, we investigate the use of RSA within the following scope.

This thesis explores the application of MDD with RSA by a single developer only. The use of RSA by
teams is outside the scope of this thesis.

RSA is only used for creating design models. It is not used for creating use cases or other analysis
artifacts.

Though MDD can involve the creation of both static and dynamic model artifacts, the use of RSA is
limited only to static UML class diagrams. In other words, this thesis is restricted to the study of
maintaining model-code synchronization and communicating design intent using class diagrams in
RSA.

Complete code generation is outside the scope of this thesis. For this case study, the basic
transformation functionality that generates methods signatures only is used. In such transformations.
the implementation details have to be fleshed out in the method body by the developer.

The usage of RSA for the thesis is also confined only to the Java Platform.

3.2 Key RSA Features for MDD

Before we explain the key features of RSA for MDD, it would be useful to compare the MDD methodology

used by RSA with the MDA framework. As explained in section 2.2.3, MDA supports the creation of a

Platform Independent Model (PIM), which is translated to a Platform Specific Model (PSM). The PSM is

then translated directly to code. The modeling language used in MDA is UML.

Though RSA employs UML as its modeling language for MDD, it does not strictly adhere to the MDA

framework. Instead of creating an explicit PSM from PIM, RSA allows the user to transform PIM directly

19

Modeling - Main - Rational Softare Architect

= g org.derg
PomdB sAjave (ASCIIkkv)
B swteatendar

BB JRE System Library [jrel 5.0_t2]

wompatitdity §.1 (Binary)
§ project 1.1 {ASCIE k)
3G TriahMLProject

=] é? Diagrams

i o plank Mods] =

;g FieldFromModel

H k % methodFromModet {)

B2 (avaPrimitiveTypes)
. (RoseJavaDatatypes)
LB (UMLPrimitiveTypes)
b - B (Defaulty

: - '?{:, {Deployment)
L " (Standard)
B uML-to-Javate
§ compatilhy

project

Mame: i methodFromModel

2 Visibility:

Qualifiers: Otesf B crdered Ostatic B imicus [abstract [J Query

4 Return Type:

Figure 6: Modeling Perspective in RSA

to code. To compensate for the lack of a PSM, RSA provides the feature of code visualization as UML
diagrams which provides features like refactoring [Swithinbank et al. 2005]. Therefore, in RSA, the

concept of PSM is absent.

3.2.1.1 Modeling Support

The creation and management of UML models and all related artifacts is performed in the Modeling
Perspective in RSA (Figure 6). A Perspective as defined in Eclipse is a customized layout of windows,
menus, and actions in the IDE for the efficient execution of a particular software activity. For example, the
Debug Perspective contains all the windows, menus, and actions that are relevant to the debugging of

source code.

The Modeling Perspective contains a set of views that makes working with models easier. The Project

Explorer (left of Figure 6) is the main view used to navigate within models. The user can select model

20

element attributes and related UML diagrams as well. UML diagrams are created and edited in the Diagram
Editor (centre of Figure 6 titled as Main). To the right of the diagram editor, RSA provides a quick
reference to the list of UML model elements in a palette (right part of Figure 6). Model elements like
classes and packages can be dragged and dropped from the palette to the diagram editor. If a model element
is selected in the Project Explorer or diagram editor, all its information is displayed in the Properties view
(lower section of Figure 6). RSA also supports the modeling of Java primitive types and Java library
classes directly into the UML model. This is possible by importing the required model libraries into the

particular UML model (see the Appendix).

3.2.1.2 Transformations

As explained in section 2.2.2, a transformation maps a source model into a target model using
transformation rules. A transformation instance for a particular source and target model is called a
transformation configuration. Along with the source and target model, the user can specify other
transformation properties specific to these models. For example, by selecting an option in the

transformation configuration, the user can choose to auto generate getters and setters for class attributes.

With respect to Java, RSA 7 provides transformation from UML to Java 1.4 and UML to Java 5.0. The
source model for such transformations is the UML model. The target model is the implementation. In this

thesis, a transformation from UML to a target model is called a forward transformation.

When a class is created for the first time by forward transformation, the members of the class are appended

with an @generated tag (see Figure 7) within the Javadoc comments before every member (see Figure 8).

@generated "UML to Java V5.0
(com.ibm.xtools.transform.uml2.java5.internal .UML2JavaTransform)".

Figure 7: The mechanism used by RSA to maintain a link between model and code
This tag is significant because if the forward transformation is rerun, then all qualifiers and members of the
class along with qualifiers, parameters, and methods bodies are overwritten. If the user wishes to prevent
the overwriting of a class or its class members, then the particular @generated tag should be removed.
However if the tag is removed, then the link between that class member or class and the corresponding
element in the UML model is lost (i.e., if an element in the UML model is deleted and a forward

transformation is rerun, the corresponding element in code is not deleted if the @generated tag has been

21

AL
<i-- begin-uger-dog -->
* o <i-— end-user-doc -->

* gauther r_abrah

*

* ggencrated "UML to Java V5.0 (com, ibm. xtools.transform. uml?, javas. internal, UMlzdavaTransform ”

S

‘
*/

i public class A {

I
. * <l-- begin-user-doc --»

; § £l-— end-ugsr-don —->

[] *

Z * Bygepnerated "UHL to Java V5.0 (com. ibm.xtools.transform. umll . jsvasS. incernal.MLZJavaTransform) "
| L

private Object fieldFromiodel:

Fxad
¥ £t-— hegin-user-dog -->
* <t—— pnd-user-doc —->

» ggeneyated "UML to Jawva V5.0 jcom.ibm.xtools.transform.well. iavab.internal .UNL2JavaTransform)
w,f
public void methodFromModel () {
/7 begin-user-code
System. cut.printlin("Some code written manually after transformation” +
"AAd placed Within €he inline comments”)]
// end-user-code

Figure 8: Snapshot of generated code with @generated tag and inline comments
removed). However, after creating a class for a first time after forward transformation, the user may just
write the method bodies without changing the class or method structure. In this case, the user can prevent
the overwriting of method bodies by placing the method body between the comments // begin-user-
code and // end-user-code (see Figure 8). Instead of the user manually entering these comments, they

can be auto generated by customizing Eclipse Preferences as explained in the Appendix.

RSA also supports transformations where a Java Project is the source model and a UML model is the target
model. In the thesis, this transformation is called reverse transformation. During reverse transformation, a
temporary UML model is created from the source model (i.e., the Java Project). This temporary UML
model is then automatically compared with the target UML model by RSA. The user inspects both the

models and accepts or declines changes from the temporary model.

An example of such a model merging is shown in Figure 9. The temporary model is shown in the left half
with differences in bold. The target model is shown in the right half. In this example, a method
methodFromCode () has been added in the Java Project before reverse transformation. RSA already

selects the checkbox associated with the method to indicate that it is going to be added to the target UML

22

: Merge transformed model

Check-mark changes from the temporary model to be merged into target model

5

&; (RoseJavaDatatypes)
57 (QavaPrimitiveTypes)
?{; (UMLPrimitive Types;

%J;, {RoseJavaDatatypes)
&% (JavaPrimitiveTypes)
B (UMLPrimitiveTypes)

= [0 org B & org
B [Es dsrg B Bx dsrg
B @ A Main
&g fieldFromModel S @ A

5 methodFromMadel)
M {5 methodFromCode ()

£ fieldFromModel

#% methodFromMode! {)
9;;, {Standard)
Fi (Defoult)
5‘::, {Deployment}

?:;, (Standard)
?1;, (Default)

fak)

. (Deployment)

Figure 9: Model Merging Window during Reverse Transformation

model. The user confirms whether it should be added or not and then the changes are merged into the target

UML model.

In addition to modeling and transformations, RSA also provides a feature to validate models. In order to
use the model validation for transformations to Java, RSA provides transformation profiles that can be
applied to the model. These profiles help validating the models before transformation or provide warnings

after the transformation is executed.

23

4 Case Study: Development of a Project Management
System (PMS)

In this chapter, we describe the application of MDD and TDD to the development of a Project Management

System (PMS), where the term “project” is taken to encompass many different sorts of undertakings (not

only software development projects). This chapter is organized as a series of iterations, each describing the

evolution of the PMS with respect to MDD.

4.1 Iteration Presentation Style

In the iterations where we apply MDD, we perform frequent cycles of modeling, forward transforming the
models to code and filling in the implementation details. If any structural changes (e.g., adding or removing
class members) are made in the code directly, then reverse transformation from code to model is
performed. In this manner, the model represents the up-to-date static information of the code (i.e., the

model and code are always synchronized).

However, the thesis describes all MDD iterations with a discussion of the design rationale for each feature
followed by the corresponding UML model class diagram. The associated implementation and tests are not
described in this thesis. This description style is chosen to demonstrate how developers can reason about
software development at a higher level with the help of models and abstract away from the implementation
details. The description of the design rationale also demonstrates that the case study is not contrived.
However, for a practical demonstration of MDD, a sample of the cycle of modeling, forward

transformations, and implementation is presented in section 4.3.

4.2 Iteration 0: Preliminary Analysis and Creation of a Domain Model
In this iteration, we define an initial domain model that drives development. Initial domain analysis with

users gave rise to the following domain concepts:

Task: The main goal of the system, according to the users, is to capture project related actions. Since the
term “action™ is too generic, we asked the users to clarify the nature of their actions. Common actions for

users include attending meetings, reading, and writing papers, coordinating courses and graduate student

24

projects. Possible alternatives like “Activity” and “Task™ arose during the discussion. We settled on

“Task,” as it is a term commonly associated with project management and it is familiar to users.

Status: Each task has a completion status. Initially, the possible values defined are NOT STARTED, IN

PROGRESS and DONE.

Importance Level: Tasks have different levels of importance. Importance levels are defined as A, B and C,

with A indicating the most important.
Description: Information that explains the task in more detail or supports its execution.

Folder: Users normally have huge collections of tasks. They wanted a mechanism to manage their tasks
more effectively. To reduce information overload, a user suggested grouping related tasks by categories.
Categories could also be divided into subcategories, allowing further division of tasks. However, users also
have a requirement to store tasks and related documents or other artifacts together. In this regard, a
category is more a concept used to group entities, not to store artifacts. The storage of artifacts is normally
associated with folders (a metaphor commonly used in software applications including operating systems).
The hierarchical decomposition provided by categories is also present in folders, as folders can have

subfolders. Therefore, the folder metaphor was chosen as a means of storing tasks and related artifacts.
A very brief list of the features requested by users includes:

e Create Task

o Edit Task

e Group Tasks using Folders

¢ Add/ Remove Tasks from Folders

e Create/ Remove Folders

e Create a Hierarchy of Folders

e View Tasks in a Folder and Subfolders
+ Sort Tasks by Task Attributes

e Reorder Tasks in User-Specified Order

e Share Tasks between Folders

25

S 0.1 Contains

= Folder
e
% *
1
Contains
* {ordered}
U S S—— wenumeration»
‘*‘Enumel,_'at;@my | E Task Progress-shown-b Status
Importancel evel Prioritizes title Frogress-sinown-by EINOT STARTED
=IA 1 1 | EgdueDate 1 1 = IN_PROGRESS
=1 B description =3 DONE
= g UesUTIPHON |

Figure 10: Initial Domain Model
For initial iterations, a task can be contained in a single parent folder only. This helps simplify the domain
logic and hence allows us to complete initial iterations more quickly so that user feedback can be obtained.
Since users would like to order tasks, we explicitly qualify the tasks to be ordered in the domain model.
This is because collections in UML, by default, are assumed to be unordered and have unique elements

[Fowler 2003, p. 38].

Most folders have a containing folder, and those that do not are called root folders. Note that we restrict
each folder to have at most one containing folder. This is because if a folder were shared by multiple
folders, it could lead to folder loops, which would need additional logic. The restriction on sharing may be
reassessed later when the domain concepts have been realized in an initial implementation. All the concepts

explained above are presented in the domain model shown in Figure 10.

26

4.3 Iteration 1: MDD for Basic Features

In the previous iteration, we created an initial domain model that defines the main concepts of project
management. In this iteration, we transform the initial domain model into a design using MDD. This design

is then implemented and tested. The following are the features that are created in this iteration:

Create/add task

o Delete task

o Edit task

e Create/add folder
o Delete folder

e Edit folder

The rationale behind choosing these features for implementation is that they form a very basic set of
features and they are very similar in functionality. Hence, the effort taken to create one feature would carry
over to similar features. For example, the logic required to add a task and to add a folder would be very
similar. We manually created an initial design class diagram (see Figure 11) with the help of the domain

model. To keep the diagram simple, we do not show the accessors and mutators of class properties.

27

- containingFolder

0.1
= Folder *
Egname : Sting - subFolders
- containingFolder % 1
|
-tasks |
[Importancelevel | E5tite : §tig 1 «e%rgirattmn»
o i A A A Alm atus
B A - importanceLevel ﬁ«t&due[)ate . GregorianCalendar Ko7 ST ARTED
B P 5y description ; String - status & —
B2 C - =1 IN_PROGRESS
EDONE

Figure 11: Initial class diagram

4.3.1 Domain Model: Order of Tasks and Folders

As indicated in the domain model, users require tasks within a folder to be ordered. This characteristic of
the domain model is considered before the basic features mentioned previously because it influences the

decision concerning the type of collection that should be used to hold tasks.

In general, UML class properties' can be decorated with qualifiers as is shown in Figure 12. In particular,
we can constrain collection properties (i.e., properties declared with a multiplicity greater than 1) as having
unique and ordered elements. Such qualifiers have an impact on the transformation process from UML
models to code. Details about the transformation, along with the source UMIL model and the target Java
project, are specified in a transformation configuration file. One of the details that can be specified in a
transformation configuration is the type of Java collection to be associated with collection properties. An
example of a transformation configuration for the Folder.tasks property is shown in Figure 13. In
particular, what is shown is the Collections tab, which defines the mapping between the UML collection

properties and the corresponding Java collection types.

" Recall that a UML class property is expressed as either a class attribute or a class association.

28

perty tasks

Marmne: f tasks

WVisibility : O public @ private O Protected O Package

Qualifiers: [Leaf oOrdered [static Unigue [J perived [Derived union] Read Only

Type: Task<Class>

Default Value: |

Multiplicity:

Aggregation:

java.util LinkedList

i

Figure 13: Collection tab in transformation configuration file

As shown in Figure 12 and Figure 13, if we require the collection tasks to have ordered and unique
elements, RSA provides a java.util.SortedSet as a possible collection type. Elements in a
SortedSet can be ordered using an implementation of java.util.Comparator<T> (Java 5 API). The
tasks could be compared based on a rank property in Task. We could alternatively use a
java.util.List or an array. A List provides ordering, but fails to enforce uniqueness of instances. We

could enforce uniqueness by controlling the addition of tasks to the list.

Using a java.util.List seems to be the simpler solution; however, one of the features requested by the
user is to see all tasks in a folder (including the tasks in its subfolders) and be able to reorder all these tasks
relative to each other. This means that the user could choose to reorder a subfolder task before all of the

folder tasks. Since the folder only knows about tasks residing within it, it cannot determine if any subfolder

29

tasks precede its own tasks. Since using a simple list is inadequate, we chose to utilize the
java.util.SortedSet functionality by creating a rank attribute in class Task. We create a private field

NEXT RANK in class Task to assign a rank when a task is created (see Figure 16).

Once a rank 1is assigned, we make use of a RankComparator, which implements the
java.util.Comparator<T> interface for the ordering of tasks according to their rank. During the
creation of every sorted set tasks in class Folder, we have to assign a RankComparator. Creating
multiple instances of RankComparator is redundant, as it does not possess state information. Therefore,

we make it a Singleton [Gamma et al. 1995].

RSA supports modeling and partial code generation of the design patterns. Figure 14 shows the “Pattern
Explorer” view on the left that presents all the design patterns. We select the Singleton Pattern from the
pattern explorer, drag and drop it to the class diagram “Domain Model Pattern” on the right to obtain a
“Pattern Instance” Singleton. We drag and drop the class RankComparator into the Singleton pattern
instance. This stereotypes RankComparator as a Singleton as shown in Figure 14. RSA also generates

code for the Singleton pattern during forward transformation from model to code (see Figure 15).

|5, Pattern Explorer 52

2 Design Patterns F
2% Behavioral «Pattern Instano

4% SingletonO

Singleton 5
pingleton [1]: E%:RankComparatar | -

] RankComparator

#5 compare (0l Task, 02 ; Task) ;int

Ensure a class only has ane instance, and provide
a global point of access ko it, i

Figure 14: RSA support for Design Patterns

31

¥ <l-— hegin-user-doc —-x

¥ o2 l-— end-user-doc -->
*oggenevated "UML o Java W5.0 {com.ibm.xtools.transform.uml2. javas.
*/

private static final RankComparator instance = new RankComparator ()

JEE
* 1=~ begin-user-—-doz -—-->
Fogf e pnd-user-do -

¥ dgenegrated "UML to Jevwa VELD {com. ibm. xtools.transform,wnls . javas.
x.j
private RankComparator() {
S¢ begin-user-code
P ¥ DT Inblemént,constructor Iogie
/¢ end-user-code

> i /" * %
* <le- begin-user-doc —-->
. * 2l-— ppd-nser-doc —-->

*

Sgenerated "UML to Java V5.0 {com. ibm.x<tools.transform. umls . Jjavab.
g

o public static RankComparator getlInstance{) {

/f bhegin-user-oode

return instance;

S/ end-user-code

Figure 15: Singleton code automatically generated by RSA

4.3.2 Basic Features for Tasks and Folders
In this section, we describe the development of the basic features of creation/addition, editing, and removal
of tasks and folders. From the domain model, we see that tasks are always contained in a folder. In

addition, since tasks cannot be shared or moved, we do not provide a mutator for the containingFolder.

In terms of responsibility assignment, we ask ourselves which class should be responsible for creating
Tasks. On the one hand, we can simply have a public Task constructor, ensuring that a containing folder is
provided. On the other hand, the Creator pattern [Larman 2004] advises that the creation of an entity A
could be assigned to an entity B if B aggregates A. Since a folder aggregates tasks, we could provide a

method newTask () in the Folder class which creates the task and adds it to the folder’s task collection.

32

Considering both options, having a public Task constructor is not as simple as it seems. We would also
require a Folder.addTask (task:Task) method. Before the call to addTask (), a newly created task
would fail to satisfy the global invariant that all tasks be contained within a folder. Furthermore, this design
alternative would actually allow a task to be added to the collections of multiple folders. Such task sharing
is not part of our current requirements. Using the Creator pattern is a better choice for the present, as it is a
simpler design and it encapsulates task creation, helping us to maintain necessary invariants. Note that
under this design, we declare the Task constructor to have package scope (Figure 16). The Task
constructor also assigns rank using its NEXT RANK property. For the removal of tasks, the folder that

contains the task removes it from the folder’s task collection with a removeTask (task:Task) method.

The rationale for folder creation is similar to that for creating tasks. We provide a method
Folder.newFolder (). However, the creation of root folders varies. A root folder has no containing
folder. Hence, the responsibility to create it cannot be assigned to any particular folder. We indicate a
folder is a root folder with an isRootFolder () :boolean method. We can create a root folder with the
help of the Folder constructor by passing null for the containing folder. The constructor documentation
could make it clear that this would result in the creation of a root folder. On the other hand, we could
provide a “creation method” [Kerievsky 2004, p.57] named newRootFolder () that clearly specifies the
kind of folder it returns. Such a self-documenting method, in the opinion of the author, better clarifies the
intent of the method while the constructor would need additional documentation to indicate that it is
creating a root folder. For the removal of folders, the folder that contains the given folder removes it from

its collection with a removeFolder () method (Figure 16).

(93]
(5]

- containingFolder - subFolders

s ———

= Folder

% Folder (containingFolder : Folder)
% remaveFolder { folder . Folder }
&y removeTask: (task : Task)

5 newRootFolder {) : Folder

&5 newFolder {) Folder
#onewTask () Task

5 isRootFolder (} ; boolean

- rontainingFolder 1

+ - tasks

E ETask

g, title @ String

Eg dueDate ; GregorianCalendar

g status : Status

g importancelevel | Importancel evel
£ description © String

rank ! long

g NEXT_RANK : long = 1

2, Task (containingFolder : Folder)

Figure 16: Class Diagram for Basic Features for Task and Folder
After the model is created, we use it to generate code. An example of the modeling-implementation

workflow is given below where the model whose view is shown in Figure 16 is forward transformed to a

Java project. The forward transformation by RSA creates empty method stubs in the Java project with
@generated tags and //begin-user-code and //end-user-code comments within the method body
(Figure 17). We then fill the details of the method body between the //begin-user-code and //end-

user-code comments so that our code is not deleted in subsequent forward transformations (Figure 18).

/'.*:'#
< !-- begin-user-doc —->
o te— pnd-user-dog -->
* grelprn
* ggenerated "UHL to Java V5.0 {com. ibm.xtoola.cransfori.
*/
publie Folder newFolder() {

/¢ begin-user-code

J¢4 TRBO Auto-generated method stub
return null;

// end-user-code

Figure 17: Empty Method body for Folder.newFolder () generated by RSA after Forward

Transformation
_/",t?r
* <l-— begin-user-doc -->
Fogle- pnd-uzer-dog —->

* @return

* dgeneyabted "UHL to Jave V5.0 jcom,ibm.ztoolszs.transform.umls .,
:’:',a'
public Folder newFolder(} {

Sf hegin-user~-code

Folder folder = new Folder (this):;
subFolders.add(folder) ;

return folder:

A4 end-user—-code

Figure 18: Programmer Filled Method body for Folder.newFolder () after Forward
Transformation

Regarding getters and setters for class properties, there is an option in the transformation configuration file,
by which RSA can automatically create getters and setters for the required fields. However, we create the

getters and setters as explained in Section 5.6.1.

Note that in Figure 16, the directed associations between Task and Folder replace the bidirectional
association and the composite aggregation shown in the domain model of Figure 11. This is because when
RSA performs the reverse transformation from code to model, it merges a temporary model generated from
the code and the original UML model. In this merge, the properties in code are considered different from

those selected in Figure 11, though the qualifiers of these attributes have not been changed in code. If we

chose to maintain such information in the model, then we manually have to merge them every time we

choose to reverse transform code to model.

4.4 Iteration 2: Preliminary Thick Client UI
In previous iteration, we realized the basic functionality for folders and tasks. Next, we create a thick-client
Ul that provides access to this basic functionality. Specifically, the Ul features that are going to be

implemented in this iteration are:

* View tasks.

e Add and remove a task from a folder.
e Edit task details.

e View folders.

e Add and remove a non-root folders.

Edit a folder’s name.

These capabilities are realized using the Eclipse Rich Client Platform (RCP) [McAffer 2005]. We choose

Eclipse RCP for the following reasons:

e It has a rich source of Ul components and forms that can accelerate the development of rich client
applications, once the initial learning curve is overcome.

e The widgets created in Eclipse RCP have a look and feel similar to that provided by the underlying
operating system.

e For building Uls, the author has more prior experience with Eclipse RCP than with other Ul toolkits.

4.4.1 Eclipse Rich Client Platform (RCP)
Eclipse RCP is a subset of the Eclipse Platform providing the minimum set of components required to
create rich client applications. The highlighted components in Figure 19 comprise the Eclipse RCP where

the upper components build on the lower components [Eclipse RCP].

i - Team/
C@;}}pafe {?@b}.ﬂg “S‘gamh Ve

%iﬁ% g&é{é@mﬁ%y

R&s@gm‘:@é
(optional)

Eclipse RCP s

Figure 19: Eclipse Platform Architecture

As seen in Figure 19, one of the basic components in the Eclipse architecture is the Standard Widgets
Toolkit (SWT). The SWT is a low-level graphics library providing a thin layer on top of operating system
facilities. It provides standard Ul controls such as lists, menus, fonts and colors through a consistent,

portable Java APl [McAffer 2005].

However, SWT is too low level for most Ul programming tasks. Eclipse provides a Ul toolkit called JFace
that builds on the SWT in order to shield the developer from low level Ul programming. The developer can
concentrate on the domain and use JFace to communicate with the Ul widgets. One of the ways JFace
bridges this gap between domain objects and UI widgets is through viewers. Viewers are Ul structures that
populate the SWT widgets with the required information from domain objects and at the same time, update
the Ul widgets if there are any changes in the domain objects. In other words, the viewer is the subscriber

and the domain object is the publisher [Buschmann 1996].

Additional presentation and coordination to JFace components is provided by the Generic Workbench.
When a user interacts with the application, he or she may use views provided by the Workbench. A view is
typically used to display and navigate a hierarchy of information, open an editor or display properties for an
active editor. The viewer described above normally provides this information to a view. Depending on the
viewer, a view can display information as a tree hierarchy or even in a tabular form. Views can also contain

other standard Ul features such as toolbars and menus. In this section, we use the term view to refer to

Eclipse views. Thus, the JFace toolkit along with the Workbench provides a convenient framework to

create rich clients [McAffer 2005].

4.4.2 Feature: Basic Ul features for Tasks

As explained in the previous section, the JFace Ul toolkit aims to allow developers to focus on the domain
though the toolkit requires that a domain object notify its viewers when it changes. This requirement can be
implemented in different ways. We can maintain the notifications in each domain object, or we can assign
the notification responsibility to a super class of all domain objects. Another option is to create a level of

indirection by using Ul specific wrapper classes for domain objects.

We choose to keep the domain objects independent of such notification responsibility. Creating a domain
super class can be considered when the domain model becomes more mature. For now, we choose to create
wrapper classes. This creates maintenance overhead but it serves the purpose of keeping the domain objects
independent of notification responsibility. With this basic design decision taken, we move forward and

implement the Ul features.

The users would like to see the tasks of a single folder or multiple folders collectively. The ideal
representation of task information would be a table view to show the important or most relevant aspects of
each task at a glance and some view to show the details of each task. Since the table view is a necessary
feature, we can use it now to show all relevant details. When the domain becomes more complex, we can
add another view to the application. Thus for now, the table view represents the task list of a folder—see
Figure 21. In keeping with the design decision to create wrapper classes for the domain classes, we create a
wrapper class FolderTaskListUIWrapper, which provides access to the folder’s task list and notify the
UL (Ul classes that wish to receive notification have to implement the ITaskListViewer interface) when

the task domain objects change (see Figure 20).

38

g Fo.derTaSkLmempper B

. «interfacen
E NEW_TASK : String = "New Task " skListViewer
£ DECRIPTION COMES HERE : String = "'Description comes here ... e e
(5 folder : Folder & addTasl: (task: Task)
&5, tasks © Task [*] . .
) : nLod # removeTask: (task : Taslk)
&, Folder TaskListUIVerapper { folder : Folder) - changeListeners, g updateTask { task : Task)
@goetTasks (): Task[*] 1§23 updateTasks (tasks ; Task [*])

5 addChangelistener (viewer ; ITaskListViewer }
&3, removeChangelistener (viewer : 1TaskListviewer)
% addTask {)

5 removeTasks (tasks [*])

2 notifyAllListenersToRefreshAlTasks ()

42 notifyAllListenersToAddTask tasl: : Task)

3 rotifyAllListenersToRemoveTask { task ; Task)

&5 notifyAllListenersToUpdateTask (task : Task)

2 getFolderName () : String

Figure 20: Class diagram for FolderTaskListUIWrapper and ITaskListViewer

DakaipanE | Foider 1
OOPSLA 07 deadline Aug 10 2007 N PROGRESS 5 Research
Discuss MDD with Asif/Raiiy Jun 11 2007 MOT STARTED B Research

DONE

Figure 21: Table View of Tasks
As explained above, the task list is represented as a table view with each column representing a task
attribute and each row representing a task instance. Therefore, a cell in the table would represent the value
of an attribute for a particular task. To create an editable cell, the Eclipse JFace API provides functionality
that requires the list of columns in the table view that can be modified, the values to be displayed before
editing and the task to be modified. When the user edits a task attribute in the UL, the JFace toolkit changes
the state of the corresponding task attribute and the FolderTaskListUIWrapper instance associated with

this table view is notified of the change so that it can refresh the table view to show the updated value.

For the addition and deletion of tasks, we create two Ul button widgets in a tool bar in the table view—

shown as “w> and 3, respectively in the top right corner of Figure 21. These widgets call the
FolderTaskListUIWrapper instance for selected folder, which updates the folder domain object and

notifies the table view to reflect the addition or deletion of tasks.

39

4.4.3 Feature: Basic Ul features for
Folders

One of the key aspects for choosing folders to collect
tasks is the ability to create folder hierarchies. A

hierarchy can be effectively shown in the Ul as a familiar

tree structure with nodes and leaves—see Figure 22. We
can create a class FolderUIWrapper (see Figure 23) to Figure 22: Tree view of folders

access the folder’s list of subfolders. Any addition or deletion of folders is delegated from the
FolderUIWrapper to the parent folder and Ul classes are notified of changes to the folder domain object.

Ul classes have to subscribe by implementing the TFolderListViewer interface shown in Figure 23.

We have chosen to keep the folder tree view as a fixed standalone view on the left (Figure 24). For this
reason, we cannot choose the same technique as for tasks for addition and deletion of folders. Therefore,
we choose to implement it with the help of a special type of menu called the context menu. A context menu
is the menu that is obtained when a user normally clicks the right mouse button in the Windows operating
system. It is called a context menu as the actions populated in the menu depend on the entity on which it is
clicked. This context menu is filled with actions representing add and delete folders respectively.

Therefore, if an action to add folder is clicked in the context menu, a new folder with a default name is

I FolderuTwrapper

£ folder : Folder
g parent : Folder TWrapper

&g, folder TaskListUIWrapper : Folder TaskListUIWrapper witarEacon

& treeChildren : FolderUIWrapper [*]) TrolderlistVi

'% FolderUlWrapper (folder : Falder, parent : FolderUTWwrapper) older-ist¥iewer

%addcmgj [h'ld' F‘D'I(;jef'“'lv""appef') . i rh’:"”g‘QL"°’t'2”er'5ﬁ§‘~5adch)lclel { TolderUlWrapper : FolderUlwrapper)

getChidren {) : Folderulwrapper [1..%] s * 43 removeFolder folderUlWrapper : FolderUIWrapper)

##, hasChildren () : boolean

5 removeChild { chid ; FolderIWrapper)

8 getName () : String

#5 getParent () : FolderlUIWrapper

i, setParent (parent ; FolderUIWrapper)

2 tostring () @ String

i getFolder [) : Folder

% getTasklistUlWrapper () .. FolderTaskListUIWrapper

i, addChangeListener (viewer | IFolderListViewer)

#, removeChangelistener { viewer : IFolderListViewer)

5 notifyAllListenersToAddrolder { folder ; FolderUIWrapper)
2, notifyAllListenersToRemoveFalder (folder @ FolderUDrapper)

Figure 23: Class diagram for FolderUIWrapper

40

created and its corresponding FolderUIWrapper EH&I

. . B work
instance is created. Co .
--{2 Teaching
_ , -(F% Research
For editing folder names, we use an implementation L5 Graduate Students

o sonal

very similar to the one used for editing the table view

for tasks as mentioned in 4.4.2; i.e., utilize the support

provided by JFace where we only have to specify the

Figure 24: Context menu for Add Folder and

columns that can be edited, the values to be displayed Delete Folder

before editing and the folder whose name is edited.

4.5 Iteration 3: View All Tasks for a
Folder

In the previous two iterations, we implemented a basic feature set for tasks and folders and created an
initial Ul for this feature set. In this iteration, we implement the feature of viewing tasks for a particular

folder and its subfolders.

4.5.1 Feature: View All Tasks of Folder

Users want to see the tasks not only in a specific folder but in its subfolders as well. We provide this feature
with a method Folder.getAl1Tasks (). When a folder is requested for its tasks, it will first collect the
tasks that reside in it. It will then collect tasks from each of its subfolders, which will do the same, thus
calling the getAl1Tasks () recursively. Figure 25 shows the model after adding the above-mentioned

feature.

41

- containingFolder

§
|
%

:L;’;W

= Folder

 § Folder { containingFolder : Folder)
% removeFolder (folder : Folder)
5 getAlTasks () Task [*]

#5 removeTask (task : Task)

§ newRootFolder () : Folder

5 newFolder { } : Folder
#newTask {) Task

#% isRootFolder {) : boolean

Figure 25:Class diagram after implementing View All Tasks feature

= i i Eric Evans -
ikl Research H Update SOEN 344 slides 05/04§2007 IN_PROGRESS Teaching
- Graduate Studerts 14 Mail Exam date 05/05/2007 NOT_STARTED Teathing

L Personal | QOPSLA 07 deadine 07j04/2007 IN_PROGRESS Research
Discuss MOD with AsifjRajiv 3] ch
Teach grads 5w design 05{06§2007 NOT_STARTED Graduate Students
Ask Raijiv to improve Task Yiew 06/04/2007 . DONE Graduate Students
Increase Graduate Fundirg 07/04/2007 NOT_STARTED Graduate Students
Extend Defence date for Graduate Students 07/04/2007 NOT_STARTED Graduate Students

Figure 26: View Tasks by Folder

4.5.2 Feature: View All Tasks by Folder (Ul)

In Sections 4.4.2 and 4.4.3, we established a tree view for the folders and a table view for the tasks. We
now provide the capability to view tasks by folder in the Ul. The Generic Workbench provides a selection
service between views. This selection service links views such that a target view can respond to selections
in a source view. In our project, we use this selection service so that the table view can show the tasks of a

folder selected in the tree view. Figure 26 shows all the tasks in the folder “Work™ and its subfolders.

42

4.5.3 Rework on Remove Task

After implementing the above-mentioned features, a design flaw was discovered. In the U}, when the user
selects a folder to see its tasks, we show the tasks not only of the folder but of the subfolders as well. In
Figure 26, the user can select a task in folder “Work™ and another task in subfolder “Research.” The user
would expect that on clicking the delete task button, both these tasks would be deleted. However, the
remove task functionality was designed such that the containing folder would do the removal of its tasks. A
folder cannot delete the tasks contained in its subfolder. Thus, the task in the subfolder “Research™ is not
deleted. We solve the problem by asking each task for its containing folder. Each containing folder will
then remove its respective task. Since this involved a minor modification, this rework was carried out in

this iteration itself.

4.6 Iteration 4: TDD for Sorting Tasks

In this iteration, we explore the use of Test Driven Development (TDD) as a means of implementing the
user requirement of being able to sort tasks in a folder by their importance level, due date. We make this
early switch to TDD, as one of our secondary goals is to investigate the possibility of combining TDD with
MDD. This will allow us to make an initial estimation about its merits and demerits along with the
techniques we should use in order to fit it with MDD. Since the implementation and tests for sorting by task
importance level and task due date are very similar, we will only describe the development of sorting tasks
by importance level. This sorting is to be done in the order of decreasing importance level, i.e., starting

from the highest level A and ending with the lowest level C.

4.6.1 Design Rationale
Tasks are stored in a folder according to a user specified order, which we call the ranking of tasks. In this
iteration, we will ensure that a sorting functionality will only affect the view of the tasks in the Ul and not

alter the tasks ranking.

One option for the design is to create a sort () method in class Folder. We can pass it a Criterion by
which to compare objects. It can then return a sorted collection without altering the order in the collection

tasks of the class Folder. However, though the operation is placed within the class that has the required

data, sorting is a general responsibility that can be used independently of the criteria for comparison. We
may have other domain classes that may want to sort their collections too. Keeping a sort method in each

interested class is duplication of code.

In comparison, the Java platform already has support for sorting user-defined objects. In order to make use
of this support, the library requires classes that are responsible for comparison to implement the
java.util.Comparator<T> interface. This interface consists of a method that compares its two
arguments. It returns a negative integer, zero or a positive integer if the first argument is less than, equal to
or greater than the second argument, respectively. In our application, we create classes Inverse-
ImportancelevelComparator, and DateComparator. The class RankComparator defined earlier
allows the user-specified (ranking) order to be shown in the Ul. The class RankComparator defined
earlier allows the user-specified (ranking) order to be shown in the UL With all these benefits, we choose to

use the support provided by Java libraries to sort in our application.

4.6.2 JUnit Tests for Sorting

Thus, in order to sort tasks in decreasing importance level, we first develop the functionality of comparing

importance levels. The tests used to develop this functionality are

e Test 1: Compare two tasks with the same importance level. Zero should be returned.

e Test 2: Compare two tasks, the first with a lower importance level than the second. A positive value
should be returned.

e Test 3: Compare two tasks, the first with a higher importance level than the second. A negative value

should be returned.

In Test 1, we create two tasks with the same importance level. To compare the importance level, we create
a class InverselmportancelevelComparator. Figure 27 shows the code for the first test as it is so far.
Note that InverseImportanceLevelComparator does not yet exist, and hence it is reported as a syntax
error. An Eclipse “Quick Fix™ for this problem offers to create the class—see Figure 28. The class creation
dialog already shows that InverseImportanceLevelComparator implements the java.util.-

Comparator<T> interface. When RSA creates the class and its compare (0l :Task, o2:Task) method,

44

it will have a default return value of zero (see Figure 29). One of the TDD principles is that we change the
implementation only to fix the failing test [Astels 2003]. Since zero is the value that is expected, we do not
change the return value. We add the following final line to testCompareTasksWithSameImportance-

Level ():

assertEquals ("Equal Importance Level not determined",
0,comparator.compare (firstTask, secondTask));

We run the test and it succeeds as expected.

public void testCompareTasksWithSameImportancelevel () {

Folder root = Folder.rewRootFolder():

Tasgk firstTask = root.newTask():

firstTask.zetImportancelevel {Importancelevel.B);

Task secondTask = root.nevTaski):

zecondTask.setImportancelevel (Importancelevel. B) ;

Comparator<Task> comparator = new InvergelmportancelevelComparator () :

Figure 27: Code showing InverseImportanceLevelComparator undefined while writing first test

secondTask. setImportancelevel (ImportanceLevel.3) ;
Comparator<Tasky Comparator = new {37
Opens the new class wizard to create the type. & Change type b ‘Comparator <T acks' o

) o . ' Figva.uti
Package: org.dsrg.pms.domain.test hange to cmparato' {java.uti) v
public class InverseImportancel evelComparator implements Create class TrverselmportanceLevelComparator
Comparator<Task:> { # Change to ‘ImportancelevelComparator' {org.dsrg.pms.doma
i} & Renama in file {Ctrl+2, R direct access

Figure 28: Shows Eclipse Quick Fix feature

45

public class InverseImportancelevelComparator implements Comparator<Task> {
public int compare(Task ol, Task 02) {
// begin-user-code
return 0O;
// end-user-code
}
}

Figure 29: Shows Class ImportancelevelComparator created by Eclipse with default return value
of zero

In Test 2, we create a task having a lower importance level than that of a second task. If we run the two
existing tests again, it will fail as the compare method just returns zero, while we need a positive value in
this case. Therefore, this test motivates us to modify the implementation. The implementation is enhanced
Jjust enough to satisfy Test 2 (see Figure 30). Thus, TDD ensures that all code is tested and that we do not

implement features that may not be used at all. We now run the two tests, and they both succeed.

public class InverselmportancelLevelComparator implements Comparator<Task> {
public int compare(Task ol, Task 02) {
// begin-user-code
Importancelevel firstImpLevel = ol.getImportancelevel ();
Importancelevel secondImplevel = o2.getImportancelLevel();
return firstImplevel.compareTo (secondImpLevel);
// end-user-code

Figure 30: compare method for class ImportanceLevelComparator

In Test 3, the first task has an importance level higher than that of the second task. Since we have already

fully implemented the compare method, all the three tests pass—see Figure 31.

. testCompareTasksWithSameImportancelevel
‘ &3 testCompareFirstTaski essImportant ThanSecondTask
: @ testCampareFirstTaskMorelmportant ThanSecondTask

Figure 31: JUnit Eclipse View showing all tests pass indicated by the green bar
With the three tests written, we observe that there is code common to all the three tests: i.e., the creation of
an instance of InverseImportancelevelComparator, the first task and the second task. This block of

code is refactored to the setup () fixture method that is run before every test—see Figure 32. Thus, by

46

removing duplication, we improve the quality of test code. When such refactorings are performed for an

entire suite of tests, it creates more maintainable code.

Now that we have the comparison functionality fully implemented and tested, we should test if the
InverselmportancelLevelComparator (in conjunction with Java support for sorting) satisfies our

requirements.
The test cases we create for the sort functionality are

e Test 4: Sort Empty Set
e Test 5: Sort Already Ordered Set

e Test 6: Sort Unordered Set

The code for these tests is shown in Figure 32 and Figure 33. These tests succeed on execution, signifying
that we have correctly utilized the Java support for sorting. Now that the sorting functionality is tested, we
follow the same procedure for due date also. We can now begin implementing the Ul for the sorting

functionality.

47

package org.dsrg.pmns.domain.test;
import
public class TestCompareTasksByInverseImportanceLevel extends TestCase |

private Folder root;

private Task firstTask;

private Task secondTask;

private final Comparator<Task> comparator = new
InverselmportancelevelComparator () ;

protected void setUp () throws Exception ({
super.setUp();
root = Folder.newRootFolder () :
firstTask = root.newTask();
firstTask.setImportancelevel (Importancelevel.B);
secondTask = root.newTask();

}

public void testCompareTasksWithSameImportanceLevel () |
secondTask.setImportancelLevel (ImportancelLevel.B);
assertEquals("Equal Importance Level not determined",
0, comparator.compare (firstTask, secondTask));

}

public void testCompareFirstTasklessImportantThanSecondTask () {
secondTask.setImportancelevel (ImportanceLevel .A) ;
int result = comparator.compare (firstTask, secondTask):
assertTrue ("comparison result == " + result + "; it should to be > 0",
result > 0);

}

public void testCompareFirstTaskMoreImportantThanSecondTask () {
secondTask.setImportancelevel (Importancelevel.C);
int result = comparator.compare(firstTask, secondTask):;

assertTrue ("comparison result == " + result + "; it should to be < Q",
result < 0);

Figure 32: Code for TestCompareTasksByInverseImportancelLevel

48

package org.dsrg.pms.domain.test;
import .

public class TestTaskSortByInverselImportancelevel extends TestCase |

private Folder root;

private final Comparator<Task> comparator = new
InverselmportancelLevelComparator () ;

private List<Task> actualTasks;

private List<Task> expectedTasks;

private Task taskAl, taskA2, taskBl, taskCl, taskC2;

protected void setUp() throws Exception ({
super.setUp{);
root = Folder.newRootFolder ();
actualTasks = new ArrayList<Task>();
expectedTasks = new ArrayList<Task>();
}
public void testSortingEmptyList () {
actualTasks.addAll (root.getAllTasks ());
Collections.sort(actualTasks, comparator);
compareCollectionByImportancelevel (expectedTasks, actualTasks);

public void testSortingAlreadyOrderedList () {

taskAl = createTaskInRootFolder ("taskAl", ImportancelLevel.A);
taskA2 = createTaskInRootFolder ("taskA2", ImportancelLevel.A);
taskBl = createTaskInRootFolder ("taskBl1", Importancelevel.B);
taskCl = createTaskInRootFolder ("taskCl", ImportanceLevel.C);
taskC2 = createTaskInRootFolder{"taskC2", Importancelevel.C);
expectedTasks.add (taskAl

expectedTasks.add (taskA2

expectedTasks.add (taskCl

(Vi
()
expectedTasks.add (taskB1) ;
()
expectedTasks.add (taskC2);

I

actualTasks.addAll (root.getAllTasks ());
Collections.sort (actualTasks, comparator);
compareCollectionByImportancelevel (expectedTasks, actualTasks);
}
public void testUnOrderedList () f

taskC2 = createTaskInRootFolder ("taskC2", Importancelevel.C);
taskCl = createTaskInRootFolder ("taskCl”, Importancelevel.C);
taskBl = createTaskInRootFolder ("taskBl", Importancelevel.B);
taskA2 = createTaskInRootFolder ("taskAZ", ImportancelLevel.A);
taskAl = createTaskInRootFolder ("taskAal", Importancelevel.A);

expectedTasks.add (taskAl) ;
expectedTasks.add (taskA2) ;
expectedTasks.add {taskBl);
expectedTasks.add{taskCl);
expectedTasks.add(taskC2);

actualTasks.addAll {(root.getAllTasks ())
Collections.sort (actualTasks, comparator);
compareCollectionByImportancelevel (expectedTasks, actualTasks);
}
private Task createTaskInRootFolder (String taskTitle, ImportancelLevel ilevel)
Task task = root.newTask();
task.setTitle(taskTitle);
task.setImpcrtancelevel (iLevel);
return task;

private void compareCollectionByImportanceLevel (Collection<Task>
tasksl,Collection<Task> tasks2) {
Iterator<Task> il = tasksl.iterator();
Iterator<Task>» i2 = tasksZ2.iterator();
while (il .haasNext ()) {
Task taskl = il.next ();
Task task2 = i2.next ();

assertBqguals ("Importance level ", taskl.getImportancelevel(),
taskz.getImportancelevel ());
}

}

Figure 33: Code for TestTaskSortByImportanceLevel

49

®

1] roject Management System i

- K Mark SOEN 344 Papérs Jun 01 2007 - Teaching
e MDD mieeti ; Jun 05 20! B | Meetings
& Teaching D meeting un 05 2007 NOTSTARTED A Meet

b Meetings

Ask T to submit assignments Oct 15 2007 IN_PROGRESS ! Teaching

Revise for SOEN 343 Lecture ! &ug U1 2907 I _PROGRESS] | Teaching |
) Teke Backipof gL ¢ Jun 20 2007 o DoMe Research
Meeting with grads for TA andMDD - | Sep 01 2007 I4_PROGRESS Teaching

Figure 34: Sorting tasks by column widget

4.6.3 Sorting in Ul
For the implementation of sorting in the Ul, we can use the column widgets of the table view. Figure 34
shows the table view with many tasks. The column widgets are just above the first task, starting with

wp

column widget named

We can fire an event when any of the three column widgets or /mportance Level is clicked. Clicking the
column widget “!”” will sort the tasks in ascending order of rank. The respective column event handler will
supply the particular comparator to the current FolderTaskListUIWrapper instance shown in the table
view. The FolderTaskListUIWrapper instance will notify the table view that it has to refresh itself. The
view then requests the FolderTaskListUIWrapper instance for the task list. The FolderTaskListUI-

Wrapper instance sorts the tasks and provides it to the view.

4.6.4 Lessons Learned

In TDD, the developer will write a test and execute it. If the test fails, the developer will then write the
implementation to fix that particular test only and no more. If the test succeeds, the developer will write
another test and execute it. If the latest test fails, then the developer enhances the code to fix this test and no
more. In this manner, the design of the code evolves incrementally with each failing test. Agile Modeling is
performed [Astels 2003], but the majority of the design is at the code level i.e., at the same level of

abstraction.

In MDD, the design is developed in a model, which is a separate artifact. This model is forward

transformed into an implementation and the implementation details are filled out. While filling the

50

i Task 2

i Task 3

oTaskd
“Tasks

Figure 35: Hliustration of task reordering through the Ul’s drag-and-drop capability:
moving Task 1 to after Task 3

implementation details, if the design is found to be incomplete, the design is rectified in the model and
again forward transformed into the implementation. In this manner, the design is at the model level i.e., at a

higher level of abstraction.

Therefore, both these approaches work at different levels of abstraction to create a design solution. Since
our focus is on MDD, we will henceforth design at the model level and will no longer perform TDD. Note

that tests will still be written but only after the implementation of each feature.

4.7 TIteration 5: Reordering of Tasks

In this section, we explore the addition of the feature of reordering tasks in a folder (see Figure 35). The
user would typically reorder tasks one at a time. This means selecting a task to be reordered and selecting

the position to relocate it.

Normally, as observed in previous iterations, we first apply MDD, creating a model and implementation,
and then create the Ul for the implementation. However, in this case, we know that the Eclipse Ul toolkits
(SWT and JFace) have a drag and drop (DnD) feature wherein the user can select a task, drag and drop it at
a preferred location in the task view. This feature seems well suited for the action of reordering tasks. We
do not know how the UI will provide reordering information to the domain layer. The UI could provide the
domain layer with indexes of the tasks to be reordered or the actual tasks themselves. For this purpose, we

decide to investigate the Ul capability before designing the domain layer for this feature.

4.7.1 Initial Ul investigation
For the DnD feature, Eclipse SWT introduces the concept of a transfer type. A transfer type 1s the
permissible type of object that can be dragged from a drag source widget and dropped onto another (or the

same) widget. Eclipse RCP Ul developers can extend the basic transfer type to create domain object

51

transfer types so that domain objects can also be transferred between widgets. In our case, we would create
a TaskTranfer, which extends org.eclipse.swt.dnd.ByteArrayTransfer, for transferring tasks.
The TaskTransfer type enables drag and drop by supporting object serialization and deserialization, thus
allowing drag and drop across different views or editors. Instead of marshalling the entire Task object, we
can choose to marshal a unique identifying attribute of the task. This unique identifying attribute will be
used to retrieve dragged and dropped tasks from the TaskTransfer instance. We will determine this

unique identifier during the modeling phase.

The dragged tasks to be serialized are provided by method dragSetData (event:DragSourceEvent) of
TaskDragListener which extends org.eclipse.swt.dnd.DragSourceAdapter. Supplementing the
SWT support, the JFace toolkit provides an org.eclipse.jface.viewers.ViewerDropAdapter,
which specifies the action to be taken after the drop. The RCP application developer has to extend this class
and perform the desired action, in our case, reordering of tasks. In particular, the action to be done after the
drop is validated is carried out in performDrop (data:Object) :boolean of TaskTreeDropAdapter

which extends viewerDropAdapter mentioned above.

52

B Wava Classy
(3 ViewerDropAdapter

{from org.eclipse. fface. viewers)
¥ LOCATION BEFORE :int = 1.
Y LOCATION AFTER :int = 2;
W LOCATION ON:int = 3
% getCurrentLocation () int
& getCurrentTarget [) Object

|

H
e e b
[=

'] TaskTreeDropAdapter

%5 TaskTreeDropAdapter (treeYiewer : TreeViewer)
#5 performDrop (data) : boolean
&3 validateDrop { target, operation : int, transferType : TransferData) : boolean

L wWavaCmsy Bl wlava Classy
(3 ByleArrayTransfer {3 DragSourceAdapter
{From org. eclipse. swt.dnd} (From org.eclipse.swt.dnd)
¢ ByteArrayTransfer [) X
% getSupportedTypes () : TransferData [*) £
@. isSupportedType { argd : TransferData) : boolean |
2 javaToNative (argD : Object, argl ; TransferData) : vaid E
& nativeToJava { arg0 : TransferData) ; Object g TaskDraglistener
& checkByteAray { arg0 . Object) . boolean g viewer : StiucturedViewer
Jat "4 TaskDragListener [treeViewer : Treeviewer)
WWWWWWWWWWWWWWWWWWWW e &2 dragStart { event : DragSourceEvent)
K Tasktransfer #, dragSetData (event : DragSourceEvent)
5 dragFinished { event . DragSourceEvent)

#5 getinstance () . TaskTranster

%8 TaskTransfer ()

% toBytedray { tasks : Tasl: [*1): byte [1..*]

. fromByteArray (bytes : byte [*]) 1 String [1..*]

Figure 36: Class Diagram showing Ul implementation for DnD feature

JFace provides the following information to the performDrop () method:

e the object(s) that are dropped,
e the current target in the drop widget over or near which the drop takes place and

e the location with respect to the current target.

For example, consider the illustration shown in Figure 35. Given tasks Task 1 to Task 5 in ascending order,
if we drag-and-drop Task | to the location between Task 3 and Task 4 then the dropped object is Task 1,

the current target is Task 3 and the location is “after” Task 3. However, if we drag Task 5 to the same place
between Task 3 and Task 4, then the dropped object would be Task 5, current target would be Task 4 and

the location will be “before” Task 4.

53

Thus, the location of insertion depends in the direction sy

B rask
in which the drag takes place. There are three location fitle : String
. : g dueDate : GregorianCalendar
positions relative to a drop target task: £33 status : Status
B importancelLevel | ImportancelLevel
e If the drag is made from top to bottom in a table &g containingFolder : Folder
(g description : String
then the drop position is affer a target task. Egrank : long

i3 NEXT RANK :long = 1

e If the drag is made from the bottom to top then the Egid : LUJID

{4 Task (contaningFolder : Folder)
drop position is before the target task. 5 0getld {) : Stiing

o If the drag is stopped on a task then the drop

position is o the target task Figure 37: Class Task with UUID

The visual feedback provided by SWT is not supported by the table viewer [Eclipse NewsList 2007] which
we have used to display tasks. However, the tree viewer supports visual feedback while at the same time, it
can have table like columns. For this purpose, we convert the table view for tasks to a tree view. We

manipulate the tree view so that it looks like a simple table of tasks without any hierarchy.

4.7.2 MDD: Unique Task ID

Before starting on the design proper for reordering tasks, we first concern ourselves with finding a unique
identifier for tasks so that the dragged task can be retrieved from TaskTransfer and provided for
reordering. Currently, there is no field in Task that can serve to identify a task. Therefore, we have to create
a new field id, which we assign during the creation of the task. The field id can be of type
java.util.uuiD, which is an immutable universally unique identifier (UUID). However, later on, we
could possibly use the same id to store ids from the database, which may not be of UUID format and
value. Therefore, we shall hide the internal storage type of id and return it as a St ring. In the future, if the
type of id changes, the Ul code will be protected from such variation. Figure 37 shows the class Task with

the field id and its accessor, which returns a st ring value.

4.7.3 MDD: RankExpert for Reordering Tasks.
Now that we know that the Ul can provide the dropped task (using the task id field) and the current target

task on which it is dropped, we can proceed with designing the domain layer for reordering tasks. In terms

54

{5} Root Folder!
£} Folder

- Task3.
- Taskh
=} FolderB

-~ Tasks
- Task?

Figure 38: Hlustration shows example of class Folder not being a candidate for reordering tasks.
Folder A cannot place Task 3 before or after Task 6

of responsibility assignment, we ask ourselves which class should be responsible for reordering tasks. In
other words, since we define natural order by rank, which entity should be responsible for reordering tasks

by manipulating rank?

The folder seems to be a good choice, as it knows about the tasks it has to reorder. However, the folder
knows only about a selection of the entire tasks. There can be two tasks adjacent by rank but residing in
different folders — see Figure 38. If a folder A has tasks (ranks are shown as subscript) Task;, Task, and
another folder F2 has tasks Tasks, Task, then folder A cannot reorder Tasks after or before Task, as it does

not know about the tasks before and after Task,, which are in folder B.

Therefore (by Pure Fabrication [Larman 2004]), we choose to create a new entity RankExpert that will be
responsible for reordering tasks. Since we now have a RankExpert, we can assign it the responsibility of
assigning ranks as well. The RankExpert will assign rank with the rank (task:Task) operation. We
could instead choose to return a rank to the task when it is being created, but we want to present a
consistent level of abstraction in the RankExpert APl [McConnell 1993]. Since we have an entity to
assign ranks, we should also consider revising the ranks when tasks are deleted. We could revise the ranks
of all tasks after each task deletion but this could have a performance overhead. Therefore, we choose to
revise all ranks only when the application is opened using the operation RankExpert.reviseAll-
Ranks (). However, the reviseAl1Ranks () operation should be called when the application is opened.
This is because we should be able to rank newly created tasks after the last rank of the tasks previously
persisted. We also realize that a single instance of RankExpert for ranking tasks is sufficient. Therefore,

we can use the Singleton pattern [Gamma et al. 1995] to create RankExpert.

4.7.4 MDD: Reordering Tasks

Once the responsibilities of assigning and revising rank are finalized, we focus on reordering tasks.
Considering that we will be provided the reordering information as dropped task and drop target task (the
task near which the drop takes place), we could specify an operation reorder (previousTaskAtThat-
Position:Task, newTaskAtThatPosition:Task) where the drop target task is previousTaskAt-
ThatPosition and the dropped task is newTaskAtThatPosition. We do not want to use the Ul
terminology of dropped task and drop target, as we would like to keep the domain layer independent of Ul

concepts.

Such an operation would suffice for all except one type of reordering, namely reordering any task to the last
position of a folder. Note that a folder can show tasks that belong to its subfolders as well. The user may
want to reorder a subfolder task to the last position of the parent folder. As there can be a hierarchy of
folders, there can be parent and grandparent folders to whose last position we want to reorder the subfolder
task. Hence, we will explicitly pass the folder as an argument as well. Since we want the folder as an
argument for reordering to the last position only, we create a separate operation reorderTolast-

PositionInfFolder (folder: Folder, newTaskAtThatPosition: Task).

However, for reordering to the last position of a folder, we need to reorder relative to the last task of that
folder. Since we need the last task of a folder, we will create an operation Folder.lastTask () :Task.
This operation works for all cases except when the folder is empty. The operation could return the value
null to signify that there are no tasks in the folder. The author is of the opinion that, instead of overloading
null with a different interpretation, it is better to create an explicit check to see if the folder has tasks. This
could be done with an operation Folder.hasTasks () :boolean. This requirement that the query be

checked before calling 1astTask () : Task is mentioned in the model documentation.

All the above operations of RankExpert have been made with the assumption that the total set of tasks in

the application will be provided to RankExpert. How do we provide these tasks to the RankExpert? We
could provide the root folder to the RankExpert, or we could just assign the tasks with the help of a setter.

We will decouple the folder from the RankExpert and provide the total set of tasks via a setter method

56

setTasks (tasks: Task([*]). This setter method should be called before each of the RankExpert

operations so that RankExpert has the latest collection of tasks. This requirement is documented.

After the RankExpert manipulates the ranks of tasks, the tasks will remain in their previous positions in
Folder.tasks, irrespective of their newly updated ranks. We have to restore Folder.tasks to contain

tasks in their natural ranked order.

The decision to be taken is, “who notifies the folder to restore the order of its internal tasks?” Since the
RankExpert is the entity that changes the rank, we can ask it to inform the task’s containing folder if it
changes a task rank. We could enforce this by creating a private method which changes the rank as well as
notifies the containing folder. We could also ensure that the task’s containing folder is notified in
Task.setRank(rank:long). Alternatively, we could restore the natural order when the tasks are

requested using Folder.getAllTasks ().

Restoring the folder order in RankExpert is open to error, as it may be forgotten to notify the task’s
containing folder every time the task’s rank is changed. Setting the rank in the task setter makes the task
aware that the folder collects tasks by rank. In addition, setters and getters should ideally just get and set a
value, respectively, and nothing else [Fowler 2003, p. 45]. This could complicate the design later. Restoring
the order in Folder.getAllTasks () would create an overhead of ensuring that the tasks are always in
natural order every time Folder.getAllTasks () is called, even though the tasks may not be reordered at

all.

Thus we have a choice between either introducing a chance of error in programming or complicating the
design and increasing performance overhead. In this case, we choose to have a slight increase in
performance overhead and provide a private method Folder. restoreNaturalTaskOrder () which will

be called by Folder.getAll1Tasks ().

4.7.5 Providing the Right Tasks to the RankExpert

Once the RankExpert class operations have been added to the model, we need to decide how to provide
the correct tasks to it from the Ul. As explained previously, there are three different types of locations

relative to the target task (i.e., the task on or adjacent to which another task is dropped). The RankExpert

57

can directly be used when the location is on or before the target task as we can pass the target task as
previousTaskAtThatPosition iIn reorder (previousTaskAtThatPosition,newTaskAtThat-

Position).

However, when the location of drop is after the target task, we have to consider the task next to the target
task and provide the next task as the argument for previousTaskAtThatPosition (Figure 39). Note that
the next task in this case is the next task in all the tasks of a folder (including the tasks of its subfolder). It is

not the next ranked task, which may reside in another folder.

Since the next task is relative to the folder, the folder can provide the next task with taskNext-
To (task:Task) : Task. However, this operation will return a null value if the argument parameter task
is the last task of the folder. We can adopt the convention that the Ul is to treat a null return value, as an
indication that task is the last task of the folder. However, if task is not contained in the folder, the
operation will return null as well. As can be seen, the same null value is overloaded with different
interpretations. The author therefore prefers to minimize the use of null by creating an explicit query
hasTaskNextTo (task:Task): boolean. Since hasTaskNextTo () will return false if task is the last
task in the folder, we can use it to call the reorderToLastPositionInFolder (folder: Folder,
newTaskAtThatPosition: Task). Figure 40 shows the sequence diagram explaining how reordering
takes place with the next task or to the last position in folder when TaskTreeDropAdapter.reorder-
WithTaskNextTo () is invoked. Figure 41 and Figure 42 show the class diagram and Ul for the feature

reordering tasks, respectively.

58

?W’Q‘HSskTreéDmpAdaptEt | {;;}F%Eéﬁipert:1.<Singleton»RankExpert *

i

{

XWithReferenceToCurrentTarget == LOCATION_AETER]

reorderwithTaskNextTo [dropTargetTask : Task,: reorderingFolder : Folder, droppedTask : Task)

§

£ &

reorder (dropTargetTask : Task, droppedTask : Taské)

C
1
i

Figure 39: Sequence Diagram showing TaskTreeDropAdapter checking drop location

%Q?asw ropAdapter | | K folderFolder | "B rankExpert:«Singleton»RankExpert |
| | |
§ hasNextTask = hasTaskMextTo { dropTargetTask : Task) : bool?an
|
i
) z -
o |
i
' | z
[hasNextTask] ! nextTask = nextTask { dropTargetTask : Task) : Task ’ [
| i
| |
. %.;.%
| reorder { nextTask @ Task, droppedTask : Task))
% z]
.. R 0O SN S
reorderTol astPasitionInFolder { droppedTask : Task, folder : Folder)
E H
i |
1 i

Figure 40: Sequence Diagram showing TaskTreeDropAdapter reordering with next task

59

- rantainingFolder

1 *. - subFolders

Q Folder
Eg name : String
= tasks : Task [*]
5 Folder { containingFolder : Folder }
#2 rernovefolder (folder : Folder)
¥ getAlTasks () Task [*]
#2 removeTask: { task @ Task)
#newRootFolder [) : Folder o
% newFalder {) : Folder
B newTask)@ Task
#5 contains (task : Task) . boolean
#3 isRootFalder {) : boolean
taskMextTo (task : Task) : Task
&5 taskNextIn (tailSet ; Task [*] }: Task
#i lastTask [) : Task
g hasTasks () : boolean
#% hasTaskNextTo { task : Task } : boolean
& restoreNaturalTaskOrder ()

. eSngletors
] rRankExpert

3 tasks © Task {*]

S MEXT RANK @ Iong
5 INITIAL_VALLE : long = 1

&3, rank: (task:: Task)

&3 reorder { previousTaskAtThatPosition : Task, newTaskAtThatPaosition : Tasl:)

43, reorder TolastPositionInFolder { folder : Folder, newTaskAtThatPosition : Task)

42, setTasks { rankedTasks : Task [*])}

&3 reviseAlRanks {)

& ranksMissingBetween { precedingTask © Tash:, task : Task } . boolean

&% placeTaskAfter { task : Task, nextTask : Task)

&2, pushTashs (tasks : Task [*])

#% shouldTaskBePushed { precedingTask : Task, task : Task) : boolean

i taskNextTo (task ; Task) Task

5 isLast (task: Task } . boolean

isFirst { task : Task) : boolean

4%, taskPreceeding (task : Task) : Task

% arcEligibleForReordering (previousTaskAtThatPosition : Task, newTaskAtThatPosition : Task) : boalean

Figure 41: Class Diagram for Reordering Tasks feature
Figure 43 shows the high-level class diagram of the domain layer to the current point of development. Note
that DateComparator, InverselmportancelevelComparator and RankComparator were created

directly in code and are obtained by reverse transforming using RSA. At this point, RSA does not support
implementing parameterized interfaces. So during reverse transformation, RSA did not reverse transform

the fact that all comparators implement java.util.Comparator<Task>.

60

Jun 18 200
Jun 18 2007

Jun 15 2007 ‘NOT_STARTED
Mar 19 2007 NOT_STARTED
Jun 18 2007 NOT_STARTED

Figure 42: Task View showing Drag and Drop feature

Sngletors
I RankExpert

g rank (tasi: Task)

& reorder [previousTaskAt ThatPosition @ Task, newTaskAt ThatPosition : Task)
#, reorder ToLastPositionInFolder { folder : Folder, newTaskAt ThatPosition : Task }
5 setTasks (rankedTasks : Task [*])

&3 reviseAlRanks {)

., - contaningFolder

Ll rotder
g name : Sting

- SubFolders

43 Folder (containingFolder : Folder)
5 removeFolder (folder . Folder)
&5 9etAlTasks {) Task [*]

&5 removeTask (task : Task }

45 newRootFolder {) Folder

i newFalder {-} : Folder

B newTask () Task

3 cortains { task @ Task } @ boolean
& isRootFolder {)« boolean

& taskMextTo { task: Task:) : Task

] DateComparator

5 compare (ol : Task, 02 Task) 1int

5 lastTask {)@ Task Q InvérseimpurtancelevelCombarator
%o hasTasks { § : boolean T o
& hasTaskNextTo (-task : Task) boolean &5 compare (01 Task, o2 @ Task) :int

- containingFolder Q RankComparator

g3 compare (ol : Task, 02 : Task) :int ‘

*o - tasks
© Hrask

e merationy &5 title © String wenumeration» 5

Status 1 &5 dueDate : GregorianCalendar - importancelevel ImportanceLevel |
ESNOT_STARTED 2 .'jr_‘};l}fgg p =BA
=9 IN_PROGRESS ~ *121% R e =
= DONE 2 Task { containingFolder . Folder) =0 i
%getld (): String : e

Figure 43: Class Diagram showing Domain Layer after implementing reorder feature

61

oot Folder!
[ﬂ Folders

5} FolderB
-~ Task]
- Task3

Figure 44: Why a folder cannot remove a subfolder’s tasks

4.8 Iteration 6: Share Tasks

4.8.1 Domain Analysis

In this iteration, the feature of sharing tasks between folders is implemented. In discussions with the users,
other concepts of file sharing were considered. The usage of symbolic links (a metaphor used in the UNIX
operating system) was contemplated, which would make a distinction between the folder containing the
task and the folder containing the link. Another option was just to increase the multiplicity of containing
folders so that each containing folder had equal rights over the shared task. For the Project Management
System, it was decided that making a distinction between a containing folder and a sharing folder did not
add much value or flexibility as compared to having multiple containing folders. It was decided that at the
current stage of development, it was not necessary to add another domain concept. Thus, the users agreed

that a task was shared if it had multiple containing folders.

Since a task could now have multiple containing folders, a user could choose to remove a task in two
different ways; the task could only be removed from the selected containing folder or the task could be

removed entirely from the application. Both these concepts should be considered while designing.

Once we settled on having multiple containing folders, as in most cases, we also have to consider the
impact of being able to view all the tasks in a folder including its subfolders’ tasks as well. Consider the
case shown in Figure 44, in which Tusk/ is shared by both Folder A and Folder B. Since they are
subfolders of Root Folder, Taskl will also be visible if the user chooses to view all tasks of Roor Folder. If
the user removed Task! from the view of Root Folder, the subfolder to remove it from is not clear. Hence,

we keep the restriction that a task can only be removed by its containing folder.

62

4.8.2 Feature: Sharing Tasks

First, the multiplicity of containing folders is increased to be greater than one. Therefore, Task will have
the methods addContainingFolder (folder:Folder) and removeContainingFolder (folder:
Folder). We need to know if a task is shared in order to activate the context menu. By definition, a task is
shared if the folder is a containing folder and if the task has multiple containing folders. Both these pieces
of information reside in Task. Therefore, by the principle of Information Expert [Larman 2004], we create
a method Task.isSharedBy (folder:Folder). Since a task can now belong to multiple folders, we
introduce a method Folder.addTask (task:Task). When a folder adds a task, it will add itself to the
task’s set of containing folders. Likewise, when a folder removes a task, it will remove itself from the
task’s containing folders. For deleting a task from the application, the task is removed from each of its

containing folders. The class diagram for the share task feature is shown in Figure 45.

63

- subFolders\

i ———

I Folder
ame : String
3 Folder (containingFoider ; Folder)
3 removeFolder (folder : Folder }
&5 9etAlTasks {) Task [*]
&2 removeTask { task : Task)
2 newRootFolder (} : Folder
#3 newFolder () : Folder
g newTask {) Task
&5 contains (task : Task) : boclean
#5 isRootFolder {) : boolean
5 taskNextTo [task ; Task) : Task
& lastTask {) : Task
& hasTasks () : boolean
&2 hasTaskNextTo (task : Task } : boolean
4 addTask (task : Task)

- containingFolders

g title © String
5 dueDate : GregorianCalendar
g stafus : Status
&g importancelevel | Importancelevel
g description © String
Egrank : long
Egid : LUID

2 Task (containingFolder : Folder)
#3getld (3. String
#5 addContainingFolder (folder : Folder)
5 removeContainingFolder { folder : Folder)
&3 isSharedBy (folder : Folder) : boolean

Figure 45: Class Diagram after adding Share Task feature

4.8.3 Sharing Tasks in Ul

The Eclipse Ul feature of drag and drop can be reused for sharing tasks as well. Note that the same drag
and drop functionality is being used for two separate views. For reordering of tasks in the same folder,
tasks are dragged and dropped on the same task view. However, for sharing of tasks between folders, the
tasks are dragged and dropped on to the folder view. In Figure 46, a task Meeting with grads for TA and
MDD of folder Research is dragged and dropped into the folder Teaching. To implement this feature, we
create a FolderTreeDropAdapter that handles the sharing of tasks after a task is dropped onto the folder

view. It is similar to TaskTreeDropAdapter created in the feature for reordering tasks.

64

I Project Managem

=29 Retearch = = b ~ 2 Sabs | tmoorta ; i \\Desc

H ey N A 2t 5% i
. C« Meetings | MDD mesting Jun 05 2007 Meetings
=4 Take Backup of ML 3un 20 2007 Research

TMesting with grads For TA and MDD Sep 111 2007

Figure 47: Snapshot of Context Menu for Removing shared Tasks

Whether a task is shared is a property of that task. Therefore, the Ul action of removing a task from a
particular folder only (and not from the application) should be placed in a context menu (see Figure 47) for

each task.

1f multiple tasks are selected, the context menu should be inactive even if one of the selected tasks is not a
shared task. The responsibility for performing such a check is done by FolderTaskListUIWrapper with

the method areAllTasksSharedByFolder (tasks:Task[*]).

4.8.4 Refactoring

While creating a context menu for the task view, it is observed that there would be significant duplication
of code in the task view and the folder view (the folder view uses a context menu to add and remove
folders). Applying the refactoring Extract Class [Fowler 2000], we move the context menu related code
into a class ContextMenu. Figure 48 shows the Folderview before the refactoring with the relevant

context menu code. Figure 49 shows the extracted class ContextMenu with the updated Folderview.

65

=l Folderview

#5 createPartContral { parent : Composite }

&% createContextMenu ()

5 createMenuFromMenuManager { menuMgr : MenuManager)
3 createMenuManager {) : MenuManager

% filContextMenu { mgr : IMenuManager)

5 createAction ()

Figure 48: Class Diagram of Folderview before refactoring

] ContextMenu

g viewer | Viewer
&5 createPartControl (parent | Composite) g menuManager : MenuManager

%5 createContextMenu () [actions : Action [*]

{#; eateContextMenu ()

3 createMenuManager {)

&% setActions { theActions @ Action [*])
getMenuManager {) | MenuManager
5 filactions (manager ; IMenuManager)

i createAction () ¥, ContextMenu [theViewer : Viewer, theActions ; Action [*])

Figure 49: Class Diagram of Folderview and ContextMenu after Extract Class

o . . ¢ LdTaskviewer
i :;"}TaskTmeDropAdapm eebropAdapter 8 -
: *
- treeChidren 1i . parent H
: 1 - rumentTaskList
T ' rotde B - folder TaskListUWranper 13 FoldarTaskListUIWrapper .
g folder s Foider T > g folder Folder ‘
- changel isteners T) 1 i tasks ; Task [*]
S 1 | 1 i Tast "
- currentFolderList - rootll - cusentTaskLs

=5 TaskDraglist ;

i P Taskview
HDataManagu i

Figure 50: Class Diagram for Presentation Layer

4.8.5 Class Diagram of PMS

- changelisteners

= TaskTranster

S
TaskListViewer |

Ceinterfacen

¢ ¥ 1commandids

At this point, a filtered view of all the classes in the Presentation layer (see Figure 50) and the domain layer

(see Figure 51) is shown. Note that the presentation layer does not show the RCP specific classes which are

created with every RCP application.

66

7 «singleton»
g DateComparator

 «Singletony

Q Inverselmportancel evelComparator

- containingFolder - subFolders

Q Folder

U Sndeton».
Q RankComparator

J—

§ U wenumerations

. = ImportanceLevel

A

- containingFolders

- status

- importanceLevel

- tasks

«Singleton»
Q RankExpert

Figure 51: Class Diagram of Domain Layer

Introduction

4.9 Iteration 7: Persistence

required to persist the domain entities into the database.

4.9.2 Database Table Schema

67

«enumeration»
Status

1 i

In the previous iterations, we developed the domain and presentation layer for the Project Management

System. In this iteration, we create the database schema for the domain entities and develop the classes

We choose to use MySQL [MySQL 2007] as the database for this application. In the domain layer, Folder
and Task are the entities to be persisted. We create tables FOLDER and TASK each having an id column
that serves as the primary key. Task and Folder have a many-to-many association. This association is
captured in an intermediate table FOLDER TASK. This table has the fields FOLDER 1D and TASK 1D that

are foreign keys to the tables FOLDER and TASK respectively. Since a folder can have at most one

- l Task

FOLDER [FOLDER TABLE o
£ P
PK |ID PK,FK1 | FOLDER ID —
€— PK,FK2 | TASK_ID > TITLE
NAME DUE_DATE

FK1 | CONTAINING_FOLDER STATUS
IMPORTANCE_LEVEL
DESCRIPTION
RANK

Figure 52: Database Table Schema for Folder and Task Entities

.. T ——

] DomainEntity : CltdGenerator
=) id : Lang

%5 getMaxId (table . String) : Long

Figure 53: Class Diagram for ID generation
containing folder, we can represent this information with an additional column CONTAINING FOLDEK for
each folder record. The columns that are highlighted in bold font (Figure 52) are columns that are required

to have a value.

4.9.3 1D Allocation to Domain Entities

When a new domain entity (i.e., Folder or Task) is created, it should be assigned an id. We could create
an id field in both Folder and Task. Alternatively, we could create an abstract super class
DomainEntity that holds the id field. Creating a separate bomainEntity class for just containing the id
field would be an overhead. However, we know that the bomainEntity is going to have added
functionality when we create the UnitOfWork as will be discussed in Section 4.9.4. Therefore, we choose
to create the DomainEntity class. To generate the id, we create a generic TdGenerator with a method
getMaxId(tableName:String) :Long that will take the domain entity name as input and get the

maximum id value from the database (see - Figure 53).

4.9.4 Unit of Work

Every time a user makes a change, we could connect to the database to persist the change. This would mean

connecting to the database for minor changes e.g., changing the title of a task. Such frequent connections to

68

the database could decrease the performance of the application. Therefore, we consider the possibility of
performing a batch update on the database. When the user makes a set of changes and decides to save them,

we consider that a user session has concluded and the changes are collectively persisted to the database.

In order to keep track of all the changes made, we can use the Unit of Work pattern [Fowler 2002}.
Whenever a domain object is created, modified or removed, we can register the changes with the Unitof-
Work using the operations registerNew(domainCbject:DomainEntity), registerDirty(do-
mainObject:DomainEntity) Or registerRemoved(domainObject:DomainEntity) respectively
(see Figure 54). Since this functionality is common to every domain entity, we assign the responsibility of
notifying the UnitOfWork to DomainEntity. The UnitOfWork is notified using the operations
markNew (), markDirty () and markRemoved () which is invoked when the domain model is changed.
For example, if the task title is changed using the operation Task.setTitle(title:String) then
setTitle(title:String) will invoke the domain super class operation DomainEntity.mark-

Dirty (). Thus, the task is marked for an update to the database.

Changes like renaming the title are simple changes made to the task. However, when a folder is removed,
we need to have an additional mechanism of notifying the UnitofWork to remove the folder’s subfolders
and tasks too. Therefore, when we delete an instance £ of Folder, we invoke a method f. removenll ()
which marks all subfolders and tasks recursively for removal from the database as well. In addition, a task
is marked for removal only if it has one containing folder. This is because if the task is shared by multiple

folders, removing a task from one folder should not remove the task from the database.

In this manner, all the changes for the session are tracked in the UnitOfWork. When the user wants to save
the changes, the operation UnitOfWork.commit () is invoked. This method is assigned the responsibility
of persisting changes by calling the Data Mappers (c.f. Section 4.9.6) for Folder and Task. The Mappers
update the changes to the database. Once all the changes are persisted, we clear the UnitOfWork of the
changes with the operation clear (). Any change after this point, is treated as the beginning of a new

session.

69

E'Unimf’ﬂork e
£ Domainentity
&5 registerhew (domainCbject : DomainEntity) E%'EWI:PPEM -
&5 registerDirty (domainObject : DomainEntity) §, markMew {)
#2 registerRemoved (domainCbject : Domainentity) # makDirty {)
&5 commit () &, markRemoved ()
5 clear [

Figure 54: Class Diagram showing functionality for Batch Updates

4.9.5 Identity Map

While loading folders and tasks from the database, we face the issue of multiple instances existing for the
same entity in the database. For example, if two folders f7 and f2 share a task £. When the tasks for f7 are
loaded from the database, an instance is created for r. However, when tasks for /2 are loaded from the
database, a separate instance will be created the same task r. Each instance could be updated with different
values, which is not desirable. In order to prevent multiple instances of the same entity, we use the I/dentity
Map pattern [Fowler 2002]. This pattern has the added advantage of caching so that we do not spend

additional time asking to the database for the same entity if its instance is already loaded.

The Identity Map works similarly for Folder and Task. Taking the example of Task, when a Data
Mapper (cf. Section 4.9.6) is invoked for finding a task, it will check the identity map for an instance
representing the task. If the ldentity Map does not contain the instance, the Mapper loads the entity
information from the database, creates an instance, and then places the instance in the identity map. The
behavior of obtaining the instance from the ldentity Map and placing the instance in the Identity Map is
performed by getTask (taskId:Long) and addTask (task:Task) respectively (Figure 55). Also, since
an Identity Map should be notified if an instance of an entity is created or deleted, the UnitCfWork will
notify the ldentity Map whenever operations registerNew () and registerRemoved () of UnitOfWork
are invoked. Since an ldentity Map is relevant for a particular session, it is recommended [Fowler 2002] to
place the Identity Map in the UnitOfWork object since the UnitOfWork is specific to a session. Figure 56

shows a simplified interaction between the Data Mapper and the Identity Map.

70

T UnitotWork

"%, add (folder : Folder)

&5 add (task: Task)
getFolder { folderld : Long) : Folder

5 getTask (taskid : Long) : Task
&5 containsFolder { folderld : Long) : boclean
2, containsTasl: (taskd . Long) : boclean

Figure 55: Class Diagram showing functionality for maintaining unique domain entity instances

findTask {id : Long } : Task

T]

[Identity Map contains taskid] getTask (taskd : Long) : Task |

{

]
iz
H

LoadT askFromDatabase

add{task: Task) |

Figure 56: Sequence Diagram showing behaviour of finding a task in TaskMapper

4.9.6 Data Mapper and Table Data Gateway

A Data Mapper [Fowler 2002] is used to map data between objects and the relational database. When
loading the data from the database, we first load the root folders with FolderMapper.find-
Roots () :Folder [*]. We then need to determine how to load the subsequent folders and tasks. For
loading tasks, we could have an operation e.g. TaskMapper. find (taskId:Long) : Task. This operation
would be called by the FolderMapper when it is loading the task’s containing folder. However, this
means that the responsibility to find the task ids for a particular containing folder will be executed in the
FolderMapper. By the GRASP pattern /nformation Expert [Larman 2004], this logic should reside in the
TaskMapper. Additionally, we would be creating connections to the database for each task when they can
be retrieved all together with the containing folder id. Hence, we create an operation

findTasks (containingFolderId:Long) :Task{*] in the TaskMapper. Since the operation Task-

71

. E TaskMapper
EHTask < = -
. i ¥ findTasks (containingFolderId ; Long)« Task: [*] :
§insert { tasks : Task [*
5 defete { tasks : Task [*])
B update [tals ; Task [7])
= 'mlﬂ.erMapper
& Folder “# fndioots ¥ ¢ Folder [*
e T gy insert (folders : Folder [*])

43 delete { folders : Folder [*])

% update { folders : Folder [*
@ fndrolder (folderid : Long) : Folder

6

% update (id : Long, name : String)
gy insert {id ; Long, name : String, containingFolderld : Long)
3 delate {ids : Long [*]}

% findRoots {) : ResultSet
¥ findSubFolders { containingFoldeitd : Long) : ReswitSet

] @jnqu!@er (folderld : Long } : ResuliSet

&, update {id : long, containingFolderid : Long [*]; title : String, dueDate : GregonanCalendar, status : Sting, implevel : Sting, description : String, rank: : fong Y

| insert (id ; Long, containingFolderIds : Long [*1, tithe ; String, dueDate : GregorianCalendar, status @ Stiing, impLevel @ Stiing, description : String, rank: ; long)
& delete (taskiDs : Long [*])

i findTasks (containingFolderld : Long) : ResultSet

| g findContainingFolderlds { taskid : Long) @ ResultSet

{ &% findTaskids { folderld ; Long) ¢ ResultSet

4 findTask { taskid : Long) : ResultSet

Figure 57: Class Diagram showing functionality for mapping objects to persistence
Mapper. findTasks (containingFolderId:Long) :Task[*] is invoked by the FolderMapper, it is
package visible. We similarly create an operation findSubFolders(containingFolder-
Id:Long) :Folder [*] as well (See- Figure 57). In addition, we also create an operation findFolder-
{folderId: Long):Folder in FolderMapper which will be required for lazy loading as will be
explained in Section 4.9.7. We could place the SQL queries to be executed in the appropriate Mappers.
However, for a cleaner separation of responsibility, all SQL queries are placed in a separate class that
applies the Table Data Gateway (TDG) Pattern [Fowler 2002] (See- Figure 57). We also decide about the
important responsibility of who will maintain the mapping between a folder and its tasks. Either the
FolderTDG or the TaskTDG can maintain the mapping. We choose the TaskTDG to manage the mapping

that allows us to create the folder records in the FOLDER table first.

4.9.7 Virtual Proxy
The classes Folder and Task have a bidirectional association between them. This can lead to an infinite
loop when we load the database records into memory. For example, consider a folder F that has a task 7. If

the folder F'is to be loaded into memory, its ficlds are to be populated. Since T is a task of F, an attempt is

72

«interfaces
IFolder

&, removeFolder (foider : Folder)
43 getAlTasks () : Task [*]

2 removeTask. { task : Task)

2 getName {) : Stiing

3 setMame { theName : Stiing)
i, tostring [) : String

2 getContainingFolder () : IFolder
&5 newFolder {) : IFolder

iy newTask () Task

#% contains { task : Task) : boolean
#3 isRootFolder () : boolean

& taskiNextTo (task : Task) : Task
§ lastTask {) : Task

5 hasTasks () : boolean

§3, hasTaskNextTo { task : Task) : boclean
#5 addTash: { task : Task)

#3 getSubFalders () : Folder [*]

& 9etld () : Long
5 setld {id : Long)

- folder

pome,p,m . gpdder

1

Figure 58: Class Diagram showing functionality to prevent deadlock for loading domain entities
made to load 7. However, T has a containing folder field to be loaded where it attempts to load F, which

leads to an infinite loop. A similar problem is faced for a folder and its subfolders as well.

In order to prevent this, we use the Proxy Pattern [Gamma et al. 1995], which allows us to lazily load one
of the roles in the bidirectional association. We could create a proxy class for both Folder and Task.
Therefore, when we load a folder, we can create proxies for its subfolders and tasks. The other option is to
create proxies only for the containing folder. Since the second option restricts the creation of a proxy to a
single domain entity. namely Folder, we create a FolderProxy. Figure 59 illustrates how a proxy is
created by a Mapper. When any operation of the FolderProxy instance is invoked for the first time, the
FolderProxy instance loads the folder using FolderMapper.findFolder (folderId:Long) : Folder

and delegates all calls to the folder instance.

73

"ltoadTaskFromDataBase

| <<metaclass> > TaskMapper ’QtasPTDGTasWPTDG

firndTask { taskid : Long) : ResultSet

findContainingFolders { taskld : Long) : IFolder [*]

findContaningFolderlds (taskld : Long } : ResultSet

Soeg ceate(folderld) e

Figure 59: Sequence Diagram showing behavior of loading a task from the database

4.10 Case Study Summary

In the previous section, we completed the final iteration in the case study. In this section, we summarize the

work done in the previous iterations and provide a high-level view of the complete model.

In iteration 0, we defined the initial domain model for the Project Management System (PMS). We
identified the domain concepts such as, Task, Status, ImportanceLevel. We brainstormed to find a
concept that could be used to group tasks and settled on the concept of Folder. We decided that a task can

only belong to one folder and that tasks within a folder should be ordered.

In iteration 1, we selected the basic features to model. They involved creating, deleting and editing of tasks
and folders. To satisfy the constraint of ordering tasks, we decided to allot each task a rank. We
demonstrated how to use the RSA support for design patterns by generating a RankComparator Singleton.

We also demonstrated how RSA generates code from the model.

In iteration 2, we implemented the basic Ul for the features implemented in iteration I. We introduced the
Eclipse Rich Client Platform (RCP) as our Ul toolkit. In this iteration, we chose not to populate the domain

objects with event notification code. Hence, we created wrappers around the domain entities to take care of

74

the notification responsibilities. It was in this iteration that we settled on a table view to show tasks and a

tree view to show the folder hierarchy.

From iteration 3 onwards, whenever we implemented a feature, we developed both the domain layer and
the presentation layer in the same iteration. In this iteration, we provided the feature of viewing all the tasks

in a folder including the tasks in folder’s subfolders as well.

Once we became familiar with the application of MDD, we chose to introduce TDD into the project. We
applied TDD for iteration 4 where we developed the functionality of sorting tasks by their importance level
and due date. The code was written incrementally to satisfy each failing test. We first developed the tests,
code for the different comparators, and then did the same for the sort functionality. We then created the Ul
functionality for displaying tasks in a sorted order. We discovered that TDD and MDD both incrementally
evolve the code but work at different levels of abstraction. The tests work at the level of code while the
model is at a higher level of abstraction. Since our focus is on MDD, we returned to MDD in subsequent

iterations.

In iteration 5, we developed the functionality of reordering tasks. We knew that we wanted to use the
Eclipse JFace Drag and Drop (DnD) feature but were not familiar with the APL. Hence, in contrast to
previous iterations, we performed an initial Ul investigation before designing for the feature. We created a

RankExpert that would reorder tasks.

In iteration 6, we decided to develop the functionality of sharing a task across multiple folders. We relaxed
our initial constraint that a task can only belong to one folder. Since we were already familiar with the
Eclipse JFace functionality of Drag and Drop, we utilized it for sharing tasks between folders as well.
Noticing a major duplication of the Ul context menu for both the Folderview and the Taskview, we

refactored the code into a separate ContextMenu class.

Once the domain layer stabilized, we developed the functionality to persist the folder and task entities into
a database, taking inspiration from enterprise application architecture patterns [Fowler 2002]. First, a
database schema was created for the Folder and Task entities. This influenced the design of the
UnitOfWork, the Data Mappers, and the Table Data Gateways. We created a UnitOfWork to perform

transactional updates to the database. Faced with the challenge of maintaining a single instance for each

75

task entity, we introduced an Identity Map. Due to the bidirectional association between Folder and Task,
we created a Virtual Proxy [Gamma et al. 1995] for Felder so that we could prevent infinite loops while
loading folders and tasks. The entire complexity of mapping objects into the database was encapsulated in
the Data Mappers and Table Data Gateways. The Data Mappers hid the complexity of interacting with the

Identity Map, creating FolderProxy instances, and interacting with the Table Data Gateways.

The following diagrams give a high-level view of all the classes used in this case study. First, Figure 60
shows the three-layer architecture used in this case study i.e., the presentation layer (labeled Ul), the
domain layer, and the technical services layer. Figure 61 shows the presentation layer details and Figure 62
show the domain and technical services layer details. Figure 63 shows the tests written for the domain

layer.

76

.
Hidropadapters |

e

o

D repsupport

iy
o

T wrappers

frmmen

Lo

parators

Figure 60: Package Diagram for the Project Management System

77

(1 ava Ciason
- {3 LabelProvider T dinterfacen einterfacen
T R e : £ IrolderListViewer 2 MasktistViewer
G Drag dap [vDrop dapter (D ByteArrayTranster : i addrolder () : # addTask ()
S brserceiinta 13 S e vaTanstve 3 %}I emaveFalder () £y removeTask ()
o,;raggt?r:v{’d)() % getCurrentTaget { § % NativeTolava {)
. dragFinishe: & getviewer ()
edagSetata () &: performbrop (§ :
Ui vakdatean){] f Ll ¥oldert abelProvider

{Hpgetlext (] P skContentProvider
L#pgetimage () . “gyinrutChanged 1 3 D
4 gotBlements () H ggeti‘gwm“d(())
i s S | #3 getParent () ; InputChange
k=] AbsiractTaskOropadapter © ggetChidien {)
: - . FgetParent ()
I Qm"akmmustmg - ash:sBeforeSeriafization {) QT%"."M"“ Taski abelb
5 vewsr : StructuredViewer & toByteiinay () & getfolmnimage ') - .
: ration {) | | 8 getColumnText () {DataManager
E brosRdae Bty
= YaskTreeDrof per Y A ——— atinstanc
i Kl FolderTreeDropAdapter & GetFoldarUDNrappesTree {)
TaskTrecOropAdapter [} e o ¢ g saveData ()
%perfolmorop [§) & Folder TreeCropAdapter (§] %badData 0
&5 getReorderedrolder () %W'W“P'W [§] # getRoot ()
 initiahseRank Exper twithTasks {) yrefieshview () = | &, getRootul {)
i rerderwithTaskiextTo {) hysharingFalder {) # createContextviont 1) N
£, vahdateDrop {) £ yaidateDrop () g3y setactions (} .
- A & filactions () T s
: TatkViewer
- deleteltamaction - taskViewer teComparatos tiDateComparator
R e ni B IMPE evalComparator : Inverselmportancel evelComparator
1 [rarkComparator @ RankComparator
dropAda 4 4, eateTable {1}
. EN getTasklist {)
= Tt erodr s o oetre
4 VST R T dSKRCTIOrY
- actigns
: 1 = — —— 1 -frontil - mlféntTaskLvsl
- deleteTaskAction i fad! :é’;?::;e‘;;l i H FolderTaskListUIWrapper
- addTaskactbn folder Folder
i s Task
#oetiasis ()
$asort ()
- folderTaskListUIgaOmSHIfy AllistenersToRefreshaliTasks ()
- curventFaldeitist > * gy notifyAlListenersToAddTask ()
getrolder {} § & notifyAllistenersTcRemove Task:)
1 %mtlfyAllLiglgngysToAdanldqn 0 i, CuTentTaskList 8 rotifyAlListenersToUpdateTask: {)
2, notifyAllistenersToRemoverolder (} N
&, createPartContiof { § H3ava Interfacan
sy 4% createContextMenu {) 5 IPerspectiveFactor
FolderView &, aeatesctions {) i - tiesChidien - aent 1 e it
- saveaction i createPartControl (] | @ createlnitidayout ()
iy createContextMenu ())
%cl’ea(_e.&cmn (R
H & Perme&ivu :
hbevideer i | createlnitialLayout ¢ §
TTION DI e H |oadDa(a
o aea Classh 1 It & £
D1 P
- treeviowsr - treeViewer
; "pewé;ma‘ o e
3 . & workbenchwindowAdvisor
“dava tse eiva Thierfacen .
| (3 Abstractumlugin €3 ICelModifier
astat () A - . i varmadh {1 Bl
sastop(y - irolderCelMadifier -
o Lemodf () ¥ UES AphcationWorkbenchWindowAdvi
PROJECT MANAGEMENT SVSTEM | String
g % ApplicationWorkbenchWindowAdvisor { §
'QG A:tji?:ﬂcmisor i g rreateActionBarAdvisor {)
tivator T —— . ! I il : g3 prawindowOpen ()
wavalnieifaces %
€ IPlatformRunnable
. ¢ i X :
- . he - ¥ @, Apphcationac tionbar Advisor { . X QADphcatMWOrkbmcthsor
& Application L . mabections () B ava Clgsse : JERPERSPECTIVE ID sting
g ¢ i s ” . & i : ; &% createWarkbenchwindowAdvisar ()
- wJavaTnterfaces | Gyl & fiMenuBar {) : '
Frun () " - SIVBASACHION | & SichalBar {) & getinitiaWindowPerspectiveld {)
5 _clinit () OIWDrl(henchAchon i R 3, postShutdown { }

Figure 61: Class Diagram of the Presentation Layer

78

ateComparator
tance ; DateCompaiator
i %compa’e ()
&y DateComparatan ()

e 18
5 0etAllTasks { }
@ removeTask. [)
&% getName { }

& sethame {)

), tosting { }

portancel evell

tor | gunewrolder {)

& rompare (}

Fhgetinstare ()

4§ Inverselmportancel evelComparator ()

@y newTask ()
§ rontains {)
5 isRootFolder {)
& taskNextTo { }

ankComparator

RanlLornparator { }
& getinstancs {)

compare { }

=4 long

3 INITIAL_VALLE : long

g instance ; RaniExpert:
RankExpert (}

& getinstance {

& lastTask)
#hasTasks ()

Wy hasTaskiNentTo {)
H #addTask ()
wpeees e Ui getSubFolders 4)

P iRuetld ()
Liggsetid ()

5 getContainingFolder ()

- dirtyCbjects

- ontairingFalder

Egtitie t Siring

EgontaningFolders : HashMap
[;hdesrriptiun Stiing

‘-?Q,Task (3

frank ()}
g ieordet ()

5 otDescription)

- task:
a8 3 addContairingFalder {)

i reorderTo.astPositiorinFolder ()
& setTashs ()

g reviseAlRanks)

& ranksMissingBetwaen
& placeTashafter {)
B pushiTasks ()

& should T askBePushed
) taskNextTo (3
FyisLast ()

& ieFist ()

& taslPrecesding {)
%aveEhgihleForReordemg {1}

{)

1 -status

wgrlamerations::
] status
NOT. STARTED |
IN_PROGRESS |
5 DONE

2 ggremoveContainingFolder {)
Sisshavedsy (}
pisCortainingFolder ()

@ Task ()

gy Task ()

Egduebate | GregorianCalendar |.:..

Eifolder

- Egyname String
#Folder)

@ Foldar ()
 ggyFolder ()
&y internalAddTasks ()

& getFolder Tasks {)

@y removeal ()
ﬁ&ramaveAMSubFoldms()
Byl rnuveAllTasYs L)

- subFolders »

S Foldermapper

EHNO_CONTAINING FOLOER FOR ROOT ¢

IFolder.

- importanceLeveal

cenumerstong:
Importancelevel

LTS T Hagh
% 7etMaxld {)

£, findRoats ¢
Fiosert {)

@ dolete ()

5 update {

& findrolder {3
i findSubFolders
i rontResultset
§y oadrolder (]

SO SEECT ROOT FOLDERS ™ St
5 SQL_DELETE FOLDER : Sting
€ SQL_INSERT__FOLDER : Strng
SQL_SELECT_FOLDER : String
% 50L_SELECT SUBFOLDERS : Stiing
ﬁ-a SOL_UPGATE FOLDER : String
55 COLUMN_ID : Sting
COLUMIY_NAME : String
K‘SCOLUMN CONTAINING_FOLDER :

update {)

insert ¢ 3

delete (§

@ update ()
&
Hydelete ()
& fincdRonts { 3
& fin
%
Gl

Stiing

indSubFolders { }
getbbConnestion
findrolder { }

@ omalNew (3
g malDirty [) y
& malrenoved ()

2 senalVerdonlii tlong

Yy restorsNatural TaskOrder ()

"} g8 internaladdSubFolders { }

folder

.

- removedObjerts
« - newObjects

L Untotwork

fo!delsldsnhtyMgg Map
asisldentityMap : Map
i registeriew (7
ParegisterDirty ()

& registerRemoved {)

& commit ()

@ inserthew ()

iy updateDirty {)

4§y deleteRemoved {)

5 setCurent
& getCurent ()
#sNew ()
Fisremoved ()
Fo newlurent {)
iy Unitofwork ()
Hadd (
& add {
% getFoldey ()
getTask ()
b TaskMapper %COHGMTSFOHEV
: & containsTask:
b ®oea ()
% AndTaskldsFor (}
4 loadTaskFromDatabase { 1
& load T agkFromDataRase
P @insert ()
i delete ()
i % update
?éﬁndContarnmgfofdels)
L3 1askTDG

SOLSELECT SINGLE TASK : Sting
% SQL_SELECT_TASK_ID_FOR_CONTAINING_FOLDER : Sting
QL_DELETE_FOLDER_TASK_MAPPING : Stiing
QL LIPDATE TASK : String
] 5QL_INSERT FCLDER_TASK_MAPPING : Stiing
5 5QL_INSERT_TASh : Stiing
(jéSQL SELECT_CONTAINING_FOLDERS ; Sting
5 SQL_SELECT_TASKS : String
g SQL DELETE_ TASK : String

ﬁfg Update
$insert

% delete

g PndTasks ()
! & fndContainingFolderlets {)

#% getDbConnertion

4} updateTaskTable {

3 UpdateFolderTasiMapping {)

Sy insertTask ()

% InsertFolderTaskMapping {)

£ deletePreviousFoldet TaskMapping {)
4 findTaskids {

& findTask ()

Figure 62: Class Diagram showing Domain and Technical Services Layers

79

Pl Abstract Test

" AbstractTest (3

‘@setUp ()

: AllTests

suite {)

sisameDateAsTask1 : Task
Eynow : GregorianCalendlar
zoneMinAfterNow : GregorianCalendar
zoneHourAfterNow : GregorianCalendar
szoneDayAfterNow : GregorianCalendar
walikeTask1 : Task
= folder : Folder

#:tearDown ()
HtestSortingEmptylist (
#testSortingAlreadyOrdetedList ()
BtestSortingUnOrderedList ()
#createTaskInRootFolder {)
#acompareCollectionByDueDate ()

ﬁ'és{TaskSohB’vaerseImpé;rtanceLevel d
#groot : Folder 7
#pcomparator : Task
#gactualTasks : Task
gexpectedTasks : Task
EgtaskAl : Task

ggtaskCl : Task
watask(2.: Task hd
#testSortingEmptylist ()
#testSortingAlreadyOrderedList (}
#testSortingUnOrderedi ist (
2 createTaskInRootFolder { }
@ compareCollectionBylmportancelLevel (}

14 Test Task
ﬁtdsk H Tasl(’ o
someDescription : String
garoot : Folder

(& setUp ()

fcreateTask ()

& testSetContainingFolder ()

% testSetImportanceLevel ()

B testSetStatus {)

@ testIsDone ()

& testAddContainingFolder ()

testRemoveContainingFolder ()
& testIsContainingFolder ()

i = TestCompareTasksByDate

1 int

day : int

zadate : GregorianCalendar
afirstTask : Task
oimparator : Task
wsomeDescription ; String
Eproot : Folder

2 tearDown ()
#testCompareTasksWithSameDate ()

testCompareFirstTaskEarlierThanSecondTask ()
| & testCompareFirst TaskLater ThanSecondTask ()

% testGetAllTasks (}
ghoreateTask (
& createfolder

& testRemovingNotContainet
#testCreatingRootFolder ()
testHasNextTlaskTo ()

% testGetNextTask ()

testHasTasks|()

testGetlastTasl ()

testContainsTask (}

testAddingNewlyCreatedFdlders {)|

Py
|
i TestTaskSortBiDate s [TestRank
: Folder |restiolder egroot : Folder

comparator : Task earoot : Folder @t : Task

actualTasks : Task &setup () at2 : Tgsk

expectediasks : Task # testAddTask ToRootFolder [}
lask] : Task # testAddTaskToFolder {) #setpi()
eptask2 : Task @ testDeleteTask () HlestNextRank ()
zxtask3 ! Task & testRemoveFplder () &testRznk!ngAfte'Delet!ngFI_rstTask ()
Tptaskd ; Task & testGetSubFolders () % testRankingAfterDeletingMiddleTaslc ()

% testRankingAfterDeletingLast Task ()

[TestReorder Tasks

fFolder ({) | i &aroot : Folder
igtaskl : Task
“atask2 : Task
“htask3 : Task
igtask4 : Task
igtasks : Task
gaexpectedTaskList : Task
ggrankExpert : RankExpert

gxtaskd @ Task

#groot ; Folder
“atask : Task

heOtherContainingFolder @
ontainingFolder ; Folder
% parentOfContainingFolder :

ZsetUp ()

& testUnsharingTask ()
testDoesShareTask ()

£ Test TaskSharing|

parentOfTheOtherContainingFolder §... :

Ztask? : Task
Eataskd @ Task
£5f1 : Folder

Z:.setUp ()

& convertSetToArrayOfTasks ()
asetToArray ()

@createTask ()

& testPut TaskAtFirstLocation ()

Folder

Folder

& testShareTaskWithAnotherHolder (

ftestPutTaskwithinCollectionBotndaries ()
#compareCollections ()

& testPut Task AtSecondLastPosition ()

& testPutTask TolLastPositionInContainingFolder ()
@ testReviseRanking }

@ testReorderingTasksInPreceedingGap {)

& testReorderingTasksInSuceedingGap ()
&removeTaskFromContainingFolders ()

ggroot : Folder
apfirstTask : Task
econdTask : Task
omparator : Task

o TestCompareTasksBylywerselr

| & testCompareTasksWithSameImportanceLevel {)
testCompareFirstTaskLesshpportant ThanSecondTask ()
#testCompareFirst TaskMoreImportantThanSecondTask {)

portancel evel

= Test(fompareTasksByInverseIn‘por!:anceLevel

‘ggroot : Folder
firstTask : Task
econdTask : Task
‘Ehcomparator : Task

& testCompareTasksWithSamelmportancel evel ()
{# testCompareFirst T aski_essImportant ThanSecondTask ()
‘i testCompareFirst TaskMoreInportant ThanSecondTask {)

Figure 63: Class Diagram showing Unit Tests for the Domain Layer

During the application of MDD in this case study, certain limitations of RSA were encountered. Their

impact on MDD and guidelines to work around these limitations are suggested in the next Chapter.

80

S RSA Limitations and Guidelines

In this chapter, the limitations of RSA that were discovered during the case study are highlighted. 1t is
important that these limitations are resolved if the practice of MDD is to be integrated into mainstream
development. This chapter is useful to developers interested in adopting MDD because some of the
limitations described in this chapter will influence the mode in which RSA is utilized for MDD. Some of
these limitations restrict the use of the tool while others restrict the use of Java language constructs. If
guidelines for a limitation are possible, they are suggested after the limitation. The chapter then discusses
general guidelines for the application of MDD with RSA. The guidelines will aid the developer in using

RSA for MDD.

5.1 Reverse Transformation Done For Entire Java Project

For a reverse transformation from code to model, the source is an entire Java project. This means that even
if we make a small change to code, we have to run the reverse transformation for the entire Java code, even
for those modules that have not been changed at all. Figure 64 shows an example of the conflict merge
window shown by RSA during a reverse transformation. If the developer merging the models is very
familiar with the code and model, it is possible to merge the models. However if the developer is not very
familiar, merging models may be an effortful task due to the many changes that are reported by the reverse

transformation.

&l

Merge transformed model

Descrlptlon P

Dﬁ; asTaskNextTo ()

hange: Add main { Jrain <Operatlon> to «Slngletan»RankE‘(pert <Class =, Owned Operation

Check-mark changes from the temporary model to be merged into target modet

3] DF:E Properties
&9 ReturnParameter
(?.) task
O & pefete: «documentation»
5 restoreMaturalTaskOrder ()
RankExpert

1B NEXT_RANK
I:lLa INITIAL_VALUE

| Properties 23} ﬁ Properties
O Type= & OwnedParameter
B [MEg instance = &% hasTaskNextTo ()
¥y 0 # % Properties
-'2”‘ RankExpert () «documentation»
& [A¥% getinstance () & OwnedParameter
&P ReturnParameter # rask
=} D‘ﬁ?ﬁ rank () ﬁ restuveNaturalTaskOrdev ()
.
3 & Delete: «documentation»
[reorder () 4#& (Singleton)
= O3 éaﬁ reorderTol astPositionInFolder () i Eg tasks
® : 5% NEXT_RANK
%[5 revisenliRanks |) =
= O anksMissingBetween ()
& TJER Properties % Properties
Dm Is Query= false ﬁ Type= long <Primitive Type>
&% ReturnParameter = &5 rank ()
& precedingTask i «dorumentation»
& task & task
&3] % placeTaskafter () & & reorder ()
& [1€4 pushTasks () €3 reorderToLastPositionInFolder ()
#® [3§% shouldTaskBePushed () {‘; setTasks ()
B [1¢% taskNentTo () §% reviseAllRanks {)
i Dﬁ; isLast {) i’}_i ranksMissingBetween (}
[£3] Dfig‘: isFirst () = 3 Properties
® 4 raskPreceeding () IR Is Query= true
1 iy areEligbleForReordering () @ precedingTask

his element can be manualk; mapped ko a selected element in the opposite model.

¥ &% getsubFolders ()
4% taskNextTo ()
i’& taskNextIn{)
5 & Propetties
Eg Is Query= true
[& tailset
&% OwnedParameter
B §; lastTask ()
 £3 Properties
i@ «documentation»
£ OwnedParameter
ﬁ; hasTasks{)

 task

Figure 64: Conflict Merge during Reverse Transformation from code to model

Therefore, modifications to the code should be done in very small increments before reverse transforming
the code. This will reduce the complexity of merging during reverse transformation. Fortunately, for
forward transformation from UML modcl to Java code, the source for the transformation can be as small as
a UML class. This feature should be used to make changes to a class or a small set of classes and

immediately forward transform those classes into code.

82

5.2 Synchronization Issues in Reverse Transformation

5.2.1 Limitation: No Link Created by Reverse Transformation for Added Code.

RSA allows a developer to have class members (i.e., class fields and methods) that are added directly to the
code to be incorporated in the UML model using the Java-to-UML reverse transformation. After reverse
transformation to the UML model, there is no distinction between members added directly to the code and

those added directly to the model.

A problem arises when a member is deleted from the model and the developer runs the UML-to-Java
transformation. If the deleted member was initially created in the model then it is deleted from the code.
However, if the deleted member was initially created in the code (and hence does not possess an
@generated tag), it would not be deleted in the code, contrary to the expectations of the developer who
has removed it from the model. The developer has to remember to remove the method from the code as
well. If the method is not deleted from the code then the model and code are not synchronized. Worse, if
the developer has created an alternative solution for the same functionality then there may be two solutions

to the same problem, which is a form of duplication.

5.2.2 Importance of Reverse Transformation for the Adoption of MDD

If we assume that MDD is still in the early stages of adoption by industry then it would be safe to say that
significant code generation and model reuse is limited. Hence, unlike mature compilers which abstract
assembly language to the extent that developers no longer need to work with assembly language, the same
cannot be said of tools that manipulate models. Therefore, it would be appropriate to note that a significant
if not major part of the software development done would still be at the implementation level. This includes
development teams and projects whose main interest in MDD is the communication of design intent and
high-level documentation to maintenance developers, which in their own right is a valuable benefit for
large-scale projects. In such cases, it is highly possible that along with code modification, current software
practices like refactoring and agile methodologies like TDD are practiced where most of the work is done

directly with the code.

Additionally, not all design may be done up front. Certain design abstractions may emerge from code

refactorings. For example, if we create methods in different classes which perform the same operation, such

duplication would be visible at the model level. This improvement in design occurs because enough
refactoring happened at the code level. Therefore, it becomes imperative for MDD tools to take into

consideration working directly with code until code can be completely generated from models.

5.2.3 Workarounds for Reverse Transformations in RSA

Since reverse transformation from code to model in RSA is still not mature, certain guidelines have to be
devised so that developers can synchronize modified code and the model. However, before we suggest
ways to work around the limitation of reverse transformation, it must be understood that this is not the way
the RSA’s documentation encourages developers to maintain model-code synchronization. According to
the documentation, all structural changes should be made to the UML model instead of to the generated

code.

If teams are interested in working at the code level but still maintaining model-code synchronization, then

the following basic strategy should be considered if additions are made to the code:

e Every time a field or method is created in code, we also create the tags @generated, // begin-
user-code and // end-user-code. The Ggenerated tag is required to establish the link between
the model and code. The // begin-user-code and // end-user-code are required to prevent the
code in the method body from being deleted once the link is established.

e After creating the link for the new fields and methods in the code, reverse transform the Java project
back into the associated UML model. This reverse transformation should be done before any future
forward transformations. If the reverse transformation is not performed, the subsequent forward

transformations will remove any changes made in the code.

The following subsections suggest some more ways for working directly with code and maintaining model-

code synchronization.

5.2.3.1 Create Field
Creating a field in the code is discouraged, as the effort to create a field in the UML model is minimal.

However, if the field was created as a part of a refactoring, then the @generated tag can be generated by

84

Eclipse using the key combination of Alt+Shift+} (see Appendix). This change should then be reverse

transformed back into the model.

5.2.3.2 Create Method
For adding methods directly in code, there are two common ways to do so other than manually typing a

new method signature and body:

e While writing code, the developer feels the need for another method and types a call to it. The
developer then uses the Eclipse Quick Fix feature (as explained in 4.6.2) to create the method with an
empty body.

e The developer can select a section of code and create a new method using the “Extract Method” option

in the Refactor menu.

For both of these techniques, we can automate most—if not of all—of the work of creating the tags for
every method created in the code by customizing Eclipse Preferences (see the Appendix). By customizing
the Eclipse Preferences, every time a developer uses the Eclipse Quick Fix feature to create methods,
Eclipse will automatically generate both the @generated tag in the Javadoc comments and the // begin-

user-code and // end-user-code tags within the method body.

However, while extracting a method using the Refactoring Menu, the developer has to follow the advised
workflow so that the refactored code is not deleted. Once the method is generated, the method body can be
entered and then the Eclipse Content Assist feature invoked by pressing Cir/ + <Space>. Eclipse will show
a Content Assist Dialog (see Figure 65). Type “tag” and press Enter. The // begin-user-code and //
end-user-code tags will be generated in the editor. The method body should be then copied and pasted
within these comments. Note that failure to do so will erase all the code within the method the next time the
model is forward transformed. Hence, though such a template eases the work of maintaining refactoring

code, this technique should be used with caution.

85

private statie ‘Task findTazk (Long id) throws 3SQ0LException {

Task taskl;
if (UnitOfWork. containsTask(id)) {
taskl = UnitOfWork.getTask(id);
H
else{
taskl= I0saTHekFromDatabess(id) ;
UnitCfWork. add{taskl);

a o Evantwining Aus / begin-user-code
F_%I tag - Start and End comment tags to prevent wiping away'
5] Tag - javax.swing.text,htmi, HTML
@ Tag - javax,swing.text.htmi, HTML
Tag - sun.security. krbS.internal, ccache

1] Tag - sun.security.krbS.internal ccache

€9 TAG_ALTERNATE_ITOP_ADDRESS - org.omg.IOP
: TAG_ALTERNATE_ITOP_ADDRESS - org.omg.IOP

Ay

// end-user-code

G e :

Press 'Ctl+Space” to show Template Proposals

/’ﬁ"k

Figure 65: Eclipse Content Assist for Tag Template
It is important to perform the next step only after placing the method body between the // begin-user-
code and // end-user-code comments comment template: place the cursor within the method signature
and generate the @generated tag by using the key combination of Alt+Shift+J (see the Appendix). If this
step is done without placing the method body within the comment template, then the subsequent forward

transformation will wipe away the method body.

After making a series of refactorings, always perform a reverse transformation to update the UML model
with the changes in the code. If this is not done, then the subsequent forward transformation will delete the

changes made in the implementation.

5.2.3.3 Rename Class Members

Renaming Class properties and operations in the UML model does not refactor the fields and methods in
the corresponding Java class as expected. All references to the previously renamed field or method will still

exist in the code. Eclipse marks these references as compilation errors.

Therefore, we have to use the refactoring capability of Eclipse to make the required renaming in the code
itself. For propagating the change back to the model, it is simpler to change the name directly in the UML

model rather than to reverse transform the modification back to the model.

86

* uPattern Instance» e
= Singleton “Singletons

[y

Singleton §
" Bingleton [1]: %A | ¢

Figure 66: Singleton Profile in RSA

¥ instance T A = new A();
g A()
& getlnstance [} A

Figure 67: Visualization of generated Java Class A

5.3 Reverse Transformation of UML Profiles

In our case study, we had the opportunity to use the Singleton pattern [Gamma et al. 1995]. Figure 66
shows a class a after the application of the Singleton profile. After forward transformation to code, the

appropriate class fields and methods were generated (RSA generated visualization shown in Figure 67).

However, if we reverse transform the same code without making any changes at all, the class properties and
methods generated in the code by the design pattern profile are not recognized as a part of the same design
pattern profile but are instead treated as independent properties and methods. Figure 68 shows the merging
window during this reverse transformation. The temporary model generated from the source code is on the
left and the existing UML model with which the changes are to be merged is on the right. Since the
attributes in the code were generated from the profile itself, there should be no conflict. However, the
merging window shows a conflict and suggests deleting the UML Singleton Profile (bottom left of Figure
68). If we retain the profile and deselect the fields and methods in the temporary model, RSA will report

the same conflicts every time the developer performs a reverse transformation. If we choose to delete the

profile information then the class loses all profile information except the Stereotype declaration.

87

fank Madel
?!:: {RoselavaDatatypes)
?{; (JavaPrimitiveTypes)
27, (UMLPrimitiveTypes)
Byt trial
162 A
a GE Properties
E D@;} Client Dependency=
CI5R Delete value
& [P instance
5% ()
&a0)
=1 (¥ getinstance ()
& ReturnParameter
O & pefete:
[0 & Defete: «wPattern Instance» Singleton
[& Delete: (Singleton}
?Z:; {Standard)
9{; (Default)
?I:, (Deployment)

& i Blank Model

::, {RoseJavaDatatypes)
B2 (JavaPrimitiveTypes)
27, (UMLPrimitive Types)
% trial

{} Main

]@ Singleton Diagram
& & «Singleton» A
£ §R Properties

=] @ Client Dependency = <Abstraction>

Bl <Abstraction>

j;;* (Singleton)
4 «Pattern Instance» Singleton
S x;;, {Singleton)

2 Singleton -> A

B>
7 (Standard)
[l
i (Default)
juhk]
< (Deployment)

Figure 68: Model Merging Window during Reverse Transformation from Java to UML for the

Singleton Pattern

Maintaining profile information in models is important because it can provide the following benefits:

¢ Toreuse domain knowledge captured as abstract concepts in the model.

e To generate significant portions of code using models.

e To reuse best practice design solutions, like Design Patterns [Gamma et al. 1995].

Profiles may be used in large-scale industry projects where teams have expertise in building a family of
similar applications. Such teams may choose to capture their domain knowledge and design choices using
profiles. These profiles would then be used to generate a significant number of classes in code. Due to the
large number of classes created, reverse transformations could be a source of excessive overhead with
respect to model-code synchronization (as seen in Figure 64). Thus, if RSA is to be used effectively by
teams with mature domain or design models for the purpose of code generation, they will have to refrain

from modifying the structure of classes directly in the code. This restriction would impede practices like

refactoring and TDD where developers interact directly with the code.

88

5.4 UML-to-Java Transformation Impacts

After an initial model is transformed into code and the required methods are filled, a developer can make
changes to code directly. Once the code is modified, if the same model is again transformed to code, certain
modifications in the code are impacted. A detailed table of the impact on code is mentioned under the
heading “/mpact of code changes on UML-to-Java transformation output” in RSA documentation [RSA

Help 2007a). An abridged version of the RSA documentation table, enhanced with comments inspired by

the author’s experiences, is presented in Table 1. The comments elaborate on the full impact on code.

Changed | Change Impact of rerunning the Additional Comments by Thesis

code transformation Author

element

Class or Add Added implementation or

interface implementat | extension is removed.

ion or
extension

Class or Remove Previously generated

interface implementat | implementation or extension is

ion or restored.
extension

Field Move Field is removed from the new References to the Field in the new
location. Field is restored to the location are still present and show as
previous location. compilation errors.

Field Rename Previously generated field is References to the Field in the class are
restored. Renamed field is still present and show as compilation
removed eITors.

Method Modify Previously generated return type is

return type | restored.
Method Modify Previously generated method and The method body in the method with
signature signature are restored. Method the new signature is removed as well.
with the new signature is removed

Method Move Method is restored to the previous | All method calls to the method in the
location. Method in the new new location are still present and show
location is removed. as compilation errors

Method Rename Previously generated method is The method body in the renamed
restored. Renamed method is method is removed as well.
removed

Qualifier Modified Previously generated qualifier is
restored.

Table 1: Impact of UML-to-Java transformation on modified code

Similarly, after an initial model is transformed into code and the required methods are filled out, a

developer can make changes to the model. If the code is modified and the changed model is again

transformed to code, the code can be affected [RSA Help 2007b]. Details are given in Table 2.

89

Model Change Impact on previously generated | Comments by Thesis Author

element code when you rerun the
transformation

Class or Add File overwrite option of the UML-

interface to-Java transformation determines
whether the previously generated
Java file is deleted. New Java file
is created

Class or Add Clauses are rewritten or added.

mterface | implementation or

extension
Class or Remove Clauses are rewritten or removed.
interface | implementation or
exlension

Field Move Field in the previous location is References to the Field in the
removed. Field is added in the new | previous location are still present
location and show as compilation errors.

Field Rename Field with the previous name is References to the Field with the
removed. Field with the new name | previous name in the class are
is added still present and show as

compilation errors.

Method Modify return type | Method return type is updated

Method Modify signature Method with the previous Even the method body in the
signature is removed. Method with | method with the previous
the new signature is added signature is removed

Method Move Method in the original location is All method calls to the method
removed. Method is added in the in the original location are still
new location present and show as compilation

errors
Method Rename Renamed method is added The method with the previous

name and its method body is
removed

Table 2: Impact of UML-to-Java transformation on code if model is changed

5.5 Sequence Diagram Support

Dynamic modeling has been used frequently during this case study. For example, sequence diagrams were

very useful for modeling the interaction with the FolderMapper for finding a folder. This involved

reasoning about creating proxy folders for lazy loading, the interaction with the UnitOfWork for accessing

the ldentity Map, interacting with the TaskMapper for loading tasks, and more importantly, reasoning

about recursion since folder have subfolders. It would have been very impractical to reason about all these

interactions using class diagrams alone. Therefore, in MDD, dynamic modeling should be frequently used

to reason about complex behavior.

However, the sequence diagrams are not created using RSA’s sequence diagramming support. RSA is

impractical for quick, initial dynamic modeling. This is because using the tool breaks the flow of thought

90

and is not as intuitive as class diagram modeling in RSA. Secondly, we often make changes to the sequence
diagram as the interactions become clearer. It is cumbersome to make changes to a sequence diagram
created within the tool. Thus, it is advisable to create sequence diagrams on paper and manually map each

message call in the sequence diagram to a method in a UML class diagram within the tool.

5.6 Java Specific Limitations

5.6.1 Accessor and Mutators

In RSA, one can create getters and setters for class properties by selecting an option in the UML-to-Java
transformation configuration file. However, there may be certain private fields in classes for which the
developer may not want getters and setters to be generated. Presently, there is no way to indicate that
getters and setter should not be generated for certain class fields. The developer can deselect the option to
create getters and setters for class properties in the configuration file, requiring getters and setters to be
created directly in the code by hand. The problem with the approach of creating methods in code has

already been mentioned above.

If we choose not to use the RSA transformation option of generating getters and setters, then we can use the
basic Eclipse feature to generate getters and setters (available from the Source Menu). The @generated
tag in the Javadoc comment and method body tags (// begin-user-code and // end-user-code) can
be created automatically by customizing Eclipse Preferences (see the Appendix). The Java project should

then be reverse transformed so that the getters and setters are introduced in the corresponding UML model.

5.6.2 Lack of Complete Support for Java Generics
In the case study, parameterized comparators were created with the help of Java Generics. The class type

information for RankComparator is provided in Figure 69.

public class RankComparator implements Comparator<Task>, Serializable {

public int compare (Task ol, Task 02) {

}

Figure 69: Class Signature of RankComparator

91

public void sort (Comparator comparator) {
Comparator<Task> com = (Comparator<Task>) comparator;
}
*/

Figure 70: lllustration showing a workaround for generics in method parameters
RankComparator implements the Comparator parameterized with Task. This is necessary in order to
realize the type Task in the method interface compare (01:Task, 02:Task). When we reverse transform
from Java to UML, the information that RankComparator implements a Comparator is not present in the
UML model. However, if RankComparator had implemented a non-parameterized comparator (e.g.,

public class RankComparator implements Comparator {..}), then the information would have

been present in the UML model after reverse transformation.

This limitation extends to method parameters and class properties as well. For example, if a method sort-
(comparator:Comparator<Task>) is added to the code then after reverse transformation the method
signature in the UML model would be sort (comparator:Task). The type information changes during
reverse transformation. Hence, semantic information is lost and the model have inconsistent information

with respect to the code.

Therefore, RSA only supports parameterization of collections of objects i.e., the fields and method
parameters that are to hold multiple values. Non-collection Java types (e.g. Comparator<T>,
HashMap<K, V>) cannot be parameterized. If model-code synchronization is required then non-
parameterized types have to be used. If parameterization is important, one can remove the @generated tag
above the corresponding class or field. This will unlink the field or class from the model, thus allowing the
use of parameterized types. For method parameters, a parameterized argument can be passed to a non-

parameterized formal parameter, which is type cast to the required parameterized type (see Figure 70).

5.6.3 Method Parameters and Return Values
In RSA, a method parameter having multiplicity greater than one can be qualified using the isOrdered and
isUnique options in the UML model. Based on the selection of these options, the appropriate Java

collection is created during forward transformation from UML to Java.

92

The limitation pertains to using collections for method parameters in the UML model. If the parameter is a
collection and is the last (or only) formal parameter, then the method will be transformed to a variable arity
method in Java (varargs) after forward transformation. Irrespective of the qualification of the collection,
the method will only accept an array or variable number of arguments of the same type. It will not accept

Java collection types.

The implication of this limitation arises when the developer creates a method directly in the code with a
collection parameter as explained above and reverse transforms the Java project into a UML model. Note
that such a method will not have an @generated tag associated with it. When the same UML model is
forward transformed into the Java project, a new method with same name but with variable arity parameter
is created. Thus, the class will have two methods with the same name but different parameter types. One
must be removed. If not then, during another reverse transformation, there will be two methods with the
same name and signature in the UML model. If we forward transform from model to code again, there will

be three methods: two with variable arity and the original method with a collection as a parameter type.

In order to prevent such cases, the developer should follow the discipline of using varargs for the last (or
single) formal parameter if a multiplicity greater than one is required. In addition, a method cannot have an
array as a return value. If a method has to return multiple instances, collections have to be used. Therefore,
if multiple instances are returned as a collection by a method, the collection has to be converted into an
array before passing it to a variable arity method. Eclipse has a convenient template called toarray that

helps to convert collections to arrays.

5.6.4 Lack of Support for Enumeration Operations

In RSA, an operation can be added to an enumeration in the UML model. However, during forward
transformation, if the implementation for the enumeration is generated for the first time, only a method
signature is generated for the operation but with compilation errors. For example, suppose an operation
enumMethod () is added to an enumeration E in the UML model. If £ is forward generated for the first
time, then the method signature public void enumMethod(); is generated. Since there are no curly
braces for the method, the compiler detects it as an error. If the operation was added to an enumeration in

the model whose implementation already exists, then on forward transformation, the operation is not

93

generated in the implementation at all. In addition, methods that are added to an enumeration in the code
itself are not recognized by the reverse transformation. Support for displaying operations in the UML
model would be useful because Java 5 now supports the enum construct that can have arbitrary fields and

methods.

5.6.5 Final Keyword for Method Parameters

It is considered bad practice to use method parameters as working variables [McConnell 1993] i.e., method
parameters should not be assigned to within the method body. In Java, this can be prevented by making the
method parameter a constant by affixing the final qualifier just before the method parameter declaration
e.g., public myMethod (final int x) {...}. There is support in RSA to qualify a class property as a
constant using the Leaf option as shown in Figure 12. However, the same cannot be done for method
parameters. Even if the developer affixes the final qualifier to the method parameter declaration in the

code directly, subsequent forward transformations will remove the final qualifier.

5.7 General Guidelines

5.7.1 Model Public Interfaces First

While designing for a feature, model the responsibilities (public methods) for classes and important private
methods first. There is more value modeling detailed private methods of the class during implementation.
This is because private methods are also used for purposes other than public responsibilities of a class.
Small methods are used to increase the understandability of the program. Methods can be used to abstract
algorithms internal to the class. They can also be used to remove duplication, which may not be evident
when designing the class structure at a higher level. The point to be stressed is that such methods emerge

during implementation rather than during design.

For example, while designing for the reordering feature, we first settled on the public interface for

RankExpert as shown in Figure 71. However while writing the algorithm for RankExpert.reorder (),
we decided to perform the refactoring Consolidate Conditional Expression [Fowler 2000] and added the
private method areEligibleForReordering. We also introduced methods like RankExpert.place-

TaskAfter () and pushTasks () for better understandability as they hide the complexity of

94

T
El RankExpert

& rank (task : Task)

2 rearder { previousTaskAtThatPosition : Task, newTaskAtThatPosition @ Task)
#, reorder ToLastPositionInFolder (folder © Folder, newTaskAtThatPosition © Task)
#5 setTasks { rankedTasks : Task [*])

5, revisealRanks ()

Figure 71: Public methods of RankExpert

T

«Singletons
E RankExpert

s s

&5 rank {task : Task)

§ reorder (previousTaskAtThatPosition : Task, newTaskAtThatPosition : Task)

3, reorder ToL astPositionInFolder { folder : Folder, new TaskAtThatPosition : Task)

3 setTasks (rankedTasks : Task [*])

g2, reviseAlRanks ()

& placeTaskAfter (task : Task, nextTask : Task)

4 pushTasks (tashs : Task [*])

&% areEligibleForReordering { previousTaskAt ThatPosition : Task, newTaskAtThatPosition @ Task } : boolean

Figure 72: Evolution of RankExpert during implementation
manipulating the rank. A partial evolution of the model is shown in Figure 72. Thus, these methods

originated during the implementation phase.

For teams, which are interested in code generation and usage of profiles, addition of such methods would
have to be done at the model level. However, those teams more interested in using models for
communication of design intent and maintenance can perform reverse transformations using the

workarounds mentioned earlier.

5.7.2 Detecting Erasure of Code
Even if all the guidelines and workarounds are followed, it may very well happen that a method body is
erased during a forward transformation (from model to code). Some of the scenarios where the method

body can be wiped out include:

¢ The developer accidentally removes the // begin-user-code and // end-user-code comment

tags within the method body.

® The developer performs refactoring and forgets to put the // begin-user-code and // end-user-

code comment tags.

95

o The developer performs refactoring but forgets to reverse transform the modified code back to the
model.

¢ The developer comments out a method but not the @generated tag that is associated with the method.
The @generated tag will be associated with the next method in the source code. If the next method
was added directly in the code—and hence may not have // begin-user-code and // end-user-

code comments—then that next method will be erased during the next forward transformation.
Some suggestions to detect erasure of code are given below:

e If unit tests are maintained, execute them after making forward transformations of the entire model.
The operations whose method bodies are erased will fail the tests.

e When RSA generates an empty method body, we can also generate code to throw an
UnsupportedOperationException as shown in the Appendix. This exception will be thrown

during the execution of the method, allowing us to detect that the method body has been erased.

5.7.3 Undo Forward Transformation Effect

In all cases where the forward transformation has caused undesirable effects, the developer can revert the
source code to its state before the transformation by using the Eclipse feature Replace with previous from
local history (one way to access this is by right clicking in the editor frame of the file to be reverted. In the
context menu that shows up, select Replace with = Previous from Local History). In addition, if the
developer has the habit of versioning source code in short increments, then the latest generated code can be

replaced by the last version of the file from the version repository.

96

6 Conclusions and Future Work

The major contribution of this thesis is a detailed case study describing the application of MDD to the
development of a non-trivial software application. We developed the application as a series of iterations
thus showing that MDD can be used in an iterative process. This was demonstrated by performing MDD in
very short increments of modeling, transforming model to code and then working out the implementation

details.

We demonstrated how a developer can think and communicate about sofiware development at a higher
level of design using MDD. The details of round-trip engineering and implementation were hidden in the
background. Thus, this text serves as an example of how developers can manage complexity by abstracting

from the implementation details with the help of models.

We described the linking mechanism by which RSA attempted to solve the problem of model-code
synchronization. As explained in Section 5.2, this linking mechanism did not provide complete round-trip
engineering. Guidelines have been provided in Chapter 5. We also demonstrated the potential of software
reuse by utilizing design pattern transformations supported by RSA. In addition, we came across relevant
practical issues that RSA needs to address in future versions. These practical issues include the lack of
support for Java Generics, suppression of code generation of getters and setters for class properties and the
overhead of converting collections into Java arrays when passing them as method parameters. Realizing
that code-centric activities like refactoring can be performed by developers during MDD, we demonstrated
how to use the refactoring feature of Eclipse and still maintain model-code synchronization for simple

refactorings.

We applied another code-centric activity namely, TDD to one of the iterations in our case study. We
wanted to combine the TDD principle of writing tests before implementation with MDD. When we applied
TDD, the design of the software evolved incrementally with tests, which were at the same level of
abstraction as the implementation. When we applied MDD, the design of the software evolved directly with
models that were at a higher level of abstraction. Thus, we discovered that TDD and MDD support the

activity of design at different levels of abstraction.

97

Based on our observations about forward and reverse transformations, we form the opinion that depending
on the objectives, RSA can be used for MDD in two different ways. If the main objective is code
generation via the use of UML profiles then an MDD workflow that heavily favors forward transformations
may be applied. The reverse transformation feature may not be used due to the limitation described in
Section 5.3. If the main objective is design reuse and documentation without employing UML profiles for
code generation then the reverse transformation feature can be used. This will encourage developers to

perform activities like refactoring.

Though this thesis addresses many issues regarding the use of RSA, there are additional aspects of MDD
that need to be investigated. In our case study, we briefly touched upon the use of UML Profiles. Future
work can investigate in detail the use of UML profiles for capturing elaborate domain specific or design

specific abstractions.

In this case study, we explored the creation of UML models for modeling in the Object-Oriented style.
Another useful modeling feature in RSA is modeling database schemas. Database schema models created
with RSA can be used to generate tables in the database. Additionally, RSA also provides a transformation
that can transform a UML model to a relational database model. However, in order to use the output of this
transformation, another IBM tool (Rational Data Architect [Rational Data Architect]) is required. A
practical application of the data modeling capabilities of the IBM Rational suite of products could be

another objective of future investigations.

The findings in this case study are based on the application of MDD by a single developer. Further work is
required to investigate the use of RSA in a team environment. In a team environment, responsibilities could

be distributed in the following manner:

e An architect or a team of architects creates a detailed design model which is implemented by a separate
team of developers

e Different teams work on the same model and implementation together

If the first case is considered for large-scale projects then direct changes to the code cannot be resolved in
the same manner as described in this thesis. This is because modeling and implementation are done by

separate individuals, and there has to be communication between them before model and code are

98

synchronized. To accommodate changes from code to model, a workflow may have to be adopted by the
design and development team for using RSA for MDD. The creation of such a workflow should be guided

by the following questions:

e Can developers directly change the static structure (i.e., the class properties and operations) in the
implementation?

e Ifthe developer can change the static structure of classes, how does he or she communicate the change
and change rationale to the architect?

e If the changes suggested by the developer are not acceptable, how can the architect communicate

design alternatives?

For teams working on both model and code, a stricter workflow may be required. Such a scenario is

relevant when teams are in different time zones and simultaneously working on the same module.

Therefore, further research and industrial experience (i.e., case studies) are required to understand the
issues concerning model-model and model-code synchronization regarding team development?. Such case
studies will highlight additional limitations of MDD tools and practices, which can be improved upon.
They could provide guidelines for applying MDD in team projects. It is only with such feedback and
continuous improvement of MDD tools and practices that the integration of MDD into mainstream

application development can become a reality.

? This latter issue is currently under investigation by one of the DSRG Ph.D. students.

99

References

[Ajax 2007}

[Ambler 2004]

[Ambler 2007]

[Astels 2003]

[Beck 1999]

[Boehm 1987]

[Buschmann 1996]

[Eclipse 2007]

[Eclipse NewsList 2007]

[Eclipse RCP 2007}

[Evans 2003]

[Fowler 2000]

[Fowler 2002]

[Fowler 2003]

AJAX: Getting Started. Online at http://developer.mozilla.org/en/docs-
/AJAX:Getting_Started, Accesssed on July, 2007.

Ambler, S. The Object Primer, Third Edition. Cambridge University Press,
2004.

Ambler, S. Agile Survey. Online at http://www.ddj.com/architect-
/2000019862cid=Ambysoft, Accessed on August, 2007.

Astels, D. Test-driven development: A practical guide. Prentice Hall, 2003.

Beck, K. Extreme Programming Explained: Embrace Change. Addison-

Wesley Professional, 1999.

Boehm, B. Improving Software Productivity. IEEE Computer 20, no. 9: pp
43-57,1987.

Buschmann, F., Meunier R., Rohnert H., Sommeriad P. and M.Stal. Pattern-
Oriented Software Architecture, Vol. 1: A System of Patterns. Wiley, 1996.

Eclipse Site. Online at http://www .eclipse.org/, Accessed on May, 2007.

NewsList Title: Table DND Feedback. Online at http://dev.eclipse.org-
/mewslists/news.eclipse.platform.swt/msg34483.html, Accessed on July,

2007.

Extensible Applications. Online at http://dev.eclipse.org/viewcvs/index.cgi-
/platform-ui-home/rcp/stides/RCP.ppt?view=co#311,19,Extensible
Applications, Accessed on April, 2007.

Evans, E. Domain-Driven Design: Tackling Complexity in the Heart of

Software. Addison-Wesley Professional, 2003.

Fowler, M. Refactoring: Improving the Design of Existing Code. Addison-

Wesley Professional, 2000.

Fowler, M. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, 2002.

Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Third Edition. Addison-Wesley Professional, 2003.

100

[France & Rumpe 2007}

[Gamma et al. 1995]

[George & Williams 2003]

[Guttman & Parodi 2007]

[Hailpern & Tarr 2006]

[Haskins 1997].

[Hunt & Thomas 2003]

France, R., and Rumpe B. Model-driven Development of Complex
Software: A Research Roadmap. International Conference on Software

Engineering, 2007.

Gamma, E., Helm R., Johnson R., and Vlissides J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995.

George, B., and Williams L. An Initial Investigation of Test-Driven
Development in Industry, Proceedings ACM Symposium on Applied
Computing, Melbourne, FL, 2003.

Guttman M., and Parodi J. Real-Life MDA: Solving Business Problems
with Model Driven Architecture. Morgan Kaufmann, 2007.

Hailpern, B., and P. Tarr (2006). Model-driven development: The good, the
bad, and the ugly, IBM Systems Journal, vol. 45, pp. 451-461, 2006.

Haskins, C. Model Driven Development: Integrating tools with practice.

IEEE Workshop on Engineering of Computer-Based Systems p. 421, 1997.

Hunt, A., and Thomas D. Pragmatic Unit Testing in Java with JUnit. The

Pragmatic Programmers, 2003.

[Janzen & Saiedian 2005] Janzen, D., and Saiedian H. Test-driven development concepts, taxonomy.

[Java HotSpot 2007}

[Java 5 API 2004]

[Kerievsky 2005]

[Kleppe 2003]

[Larman 2004]

and future direction. IEEE Computer, Volume 38, Issue 9, 2005.

The Java HotSpot Performance Engine Architecture. Online at
http://java.sun.com/products/hotspot/whitepaper.html, Accessed on May,
2007.

Java 2 Platform SE 5.0 API Documentation. Online at http://java.sun.com-
/j2se/1.5.0/docs/api, Accessed on April, 2007.

Kerievsky, J. Refactoring to Patterns. Addison-Wesley Professional, 2005.

Kleppe, A., Warmer J., and Bast W. MDA Explained: The Model Driven
Architecture-Practice and Promise. Model Driven Architecture-Practice and

Promise. Addison-Wesley Professional, 2003.

Larman, C. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and lterative Development (Third Edition).
Prentice Hall PTR, 2004.

101

[Mattsson 2007] Mattsson A., Lundell B., Lings B., and Fitzgerald B. Experiences from
representing software architecture in a large industrial project using model

driven development, ICSE, 2007.

[McAffer & Lemieux 2005] McAffer, J., and Lemieux J. Eclipse Rich Client Platform: Designing,
Coding, and Packaging Java(TM) Applications. Addison-Wesley
Professional, 2005.

[McConnell 2004} McConnell, S. Code Complete. A practical handbook of software

construction. Microsoft Press, 2004.

[Meyer 2000] Meyer, B. Object-Oriented Software Construction. Prentice Hall PTR,
2000.

[MySQL 2007] MySQL Website. Online at http://www.mysql.com/, Accessed on August,
2007.

[Nilsson 2006] Nilsson, J. Applying Domain-Driven Design and Patterns. With Examples

in C# and NET. Addison-Wesley Professional, 2006.

[OMG 2007] Object Management Group. Online at http://www.omg.org/, Accessed on
April, 2007.
[Quatrani & Palistrant 2006] Quatrani, T. and Palistrant J. Visual Modeling with IBM Rational

Software Architect and UML. IBM Press, 2006.

[Rational Data Architect 2007} Rational Data Architect. Online at http://www-306.ibm.com-
/software/data/integration/rda/, Accessed on August, 2007.

[RSA Help 2007a] Impact of code changes on UML-to-Java transformation output. RSA
7.0.0.2 Help Documentation, 2007a.

[RSA Help 2007b] Impact of model changes on UML-to-Java transformation output. RSA
7.0.0.2 Help Documentation, 2007b.

{Rumbaugh 1998] Rumbaugh, J., Jacobson 1., and Booch G. The Unified Modeling Language
Reference Manual. Addison-Wesley Professional, 1998.

[Selic 2003] Selic B. The pragmatics of model-driven development. IEEE Software, vol.
20, pp. 19-25, 2003.

[Sendall & Kozaczynski 2003} Sendall, S. and Kozaczynski W. Model transformation: the
heart and soul of model-driven software development. Software, IEEE.

Volume 20, Issue 5, Page(s):42 — 45, 2003.

102

[Swithinbank et al. 2005} Swithinbank P., Chessell M., Gardner T., Griffin C., Man J., Wylie H. and
Yusuf L. Patterns: Model-Driven Development Using IBM Rational
Software Architect. IBM Redbook, 2005.

[UML 2007] Unified Modeling Language. Online at http://www.uml.org/, Accessed on
June, 2007.
[Weis 2003] Weis, T., Ulbrich A., and Geihs K. Model Metamorphosis. IEEE Software,

Volume 20, Issue 5, Page(s): 46 — 51, 2003.

7 Appendix

This Appendix starts with RSA specific directions. Section 7.2 provides illustrations for automating the
generation of the @generated tag in the JavaDoc comments and the //begin-user-code and //end-
user-code tags within methods. The purpose of these automations is to ease the work of the developer to

maintain model-code synchronization while working at the implementation level.

7.1 RSA

7.1.1 Importing Java Model Libraries
If modeling of Java types is desired, then right click on the particular model (not the .emx file) and select
Import Model Library. The modeling libraries for java primitive types and Java Data types are titled

JavaPrimitiveTypes and RoseJavaDataTypes respectively.

7.1.2 View Enumeration Compartments
The Enumeration method compartments are not shown by default. To make all compartments visible, right

click on the enumeration box, select Filters = Show/Hide Compartments 2 All Compartments.

7.2 Eclipse

In this customization, it is shown how to automate the creation of Javadoc templates for methods, getters
and setters. We then show how to customize the tag template to be used within the method bodies while

refactoring.

First, we show how to automate the addition of @generated tag in Javadoc comments every time a
method is added. Navigate using the Windows menu to Windows 2 Preferences >Java ->Code Style

(Figure 73). Here we select the option Automatically add comments for new methods and types. Now the

Javadoc comments that have to be generated should be placed as code templates. Navigate to Windows
SPreferences 2Java >Code Style >Code Templates (Figure 74). As seen in the right of Figure 74, select

the leaf Methods in the Comments tree. We edit the template to obtain a new dialog box (Figure 75) and

104

& Preferences

l type. Filter kext

FJ Install{Update
- Internet

i J2EE .
£ Java sl L varieble
_Appearance & Fields
B Build Path ol] 9 staticFields
[3 Code Style . D Parameters
i i~ Code Templates £ Local Yariables
- Formatter i
. Crganize Imports
[Compiler
[{I Debug
f- Editor

., Instafled JREs

Figure 73: Code Style In Eclipse Preferences
copy paste the following template as shown in Figure 76. For getters and setters, perform the same

procedure with the templates shown in Figure 77 and Figure 78 respectively.

105

Edit Template

*
*

*

& preferences

I type filter text

{31 Agent Controller
Analysis

1 Ant

- Backward Compatibility
i Connectivity

41 Crystal Reports

@ Data

fi-EMFT.JET Transformations
Help

3+ InstalifUpdate

- Internet

JZEE

Java

- Appearance

- Buitd Path

=i Code Style

Kol Terplotast
Formatter
i - Organize Imports
15} Compiler
- Debug
3} Editor
- Installed JRES
- Jnit
- Properties Files Editor
- Logging
Model Publishing
+-Mode/ Validation
Modeling
3 Mylar
Package Naming Preferences
71 Plug-in Development
Process
¥i- Profiling and Logaing
RAS
¥i- Report Design
Requirement Management
& RunjDebug
- Server
Spedl Check.
#1- SQL Developrent
- Team
i Test
+i- Yalidation
5t Web and XML

Pl

]
3

begin-uzer-doc

- end-uger-dos

${tags)
Sgernerated

TUHAL te Java VSO

l-Files
i Types
i Fields
b qufltructors

wvertiding methods
i Délegate methods
- Getters
L Satters
“1 Code
New Java files
: « Class body
nterface body
Enum body
- Annotation body
i Method body
i~ Constructor body
| - Getter body
i~ Setter body
Catch block body

* <!-- begin-user-doec -->
* <l-- end-user-dos --»

{tagsh
genorated "UHL to Java

5 tr

L

feam. thre. xtocls.cransform. umll . javas. internal, UHLZJavaTransform)

Figure 75: Comment Template for Methods

106

/*‘k

* <l-- begin-user-doc -->
* <l=— end-user—-doc —->
* ${tags}

* @generated "UML to Java V5.0
(com.ibm.xtools.transform.uml2.java5. internal.UML2JavaTransform)"”

x/

Figure 76: Comment Template to be pasted in the Pattern textbox for methods

/»k*
* <!-- begin-user-doc —-->
* <!-~ end-user-doc -->

* @Qreturn the ${bare_field_name}

* @Qgenerated "UML to Java V5.0
(com.ibm.xtools.transform.uml?2.java5.internal .UML2JavaTransform) "
*/

Figure 77: Comment Template to be pasted in the Pattern textbox for getter methods

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->

* @param ${param} the ${bare field name} to set
* @generated "UML to Java V5.0
(com.ibm.xtools.transform.uml?2.javaS.internal .UML2JavaTransform)"

*/

Figure 78: Comment Template to be pasted in the Pattern textbox for setter methods

// begin-user-code

// ${todo} Auto-generated method stub
S{body statement}

// end-user-code

Figure 79: Code Template to be pasted in the Pattern textbox for methods

// begin-user-code

// ${todo} Auto-generated method stub

if(true) throw new UnsupportedOperationException("Method body not filled or wip
off");

${body statement}

// end-user-code

Figure 80: Code Template to be pasted in the Methods Pattern textbox for throwing an Exception
// begin-user-code

return ${field};

// end-user-code

Figure 81: Code Template to be pasted in the Pattern textbox for getter methods
In order to add the // begin-user-code and // end-user-code within the method body, we have to
navigate to the Code tree and then leaf Method Body. Similar to Figure 75, we have to copy and paste the

template in Figure 79. If the guideline of throwing UnSupportedOperationException (See - Section
5.7.2) is to be followed, then the code template in Figure 80 should be pasted. For getters and setters, the

code template to be pasted is shown in Figure 81 and Figure 82 respectively.

107

// begin-user-code
${field} = ${param};
// end-user-code

Figure 82: Code Template to be pasted in the Pattern textbox for setter methods

New Template

'/ begin-user-code

Y end-user-codes

Figure 83: Creating Templates in Eclipse
The above settings take care of generating tags and Javadoc comments when creating new methods.
However, for using the Extract Method feature of the Eclipse Refactoring Menu, we add a tag template.
Navigate to Windows - Preferences —?Java —Editor Templates. Click on New and enter the
information as shown in Figure 83. The advantage of using this template is that while working on a source
file, we can use the Eclipse Content Assist feature to minimize typing. So. if a developer uses the Eclipse
Content Assist feature and enters tag, then the // begin-user-code and // end-user-code shown in

Figure 83 will be automatically generated in the selected location.

In order to generate comments for class fields or methods, place the cursor within the field declaration or
the method body. Right click and select Source = Generate Element Comment. This will generate the

Javadoc comments including the @generated tag.

108

