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ABSTRACT

Estimation of the Lévy Measure for the

Aggregate Claims Process in Risk Theory

Md. Sharif Ullah Mozumder

Lévy processes (LP) are gaining popularity in actuarial and financial modeling. The
Lévy measure is a key factor in the versatility of LP applications. The estimation of the
Lévy measure from data is shown to be useful in analyzing the aggregate claims processes
in Risk Theory.

Starting with infinitely divisible distributions (IDD), some nice constructions are ob-
tained for finite sums of Lévy processes. The Lévy properties of compound Poisson pro-
cesses are extensively used in the thesis. Examples illustrate the close relationship between
IDDs and Lévy processes.

The Poisson random measure associated with jumps of a Lévy process exceeding a given
threshold is discussed and a new derivation is obtained. The relation with subordinators
(increasing Lévy processes) is explored. Intuitive ideas and results are obtained for the
jump function G appearing in Lévy’s characterization of the Lévy—Khinchine formula. A
non—parametric estimator of G is discussed. A detailed relation between G and v, the Lévy
measure, is derived, yielding an estimator of v. The latter gives an estimator of the Poisson
rate A, and the claim size distribution F' for claims larger than the threshold €. Extensive
numerical simulations illustrate the paths of gamma, inverse Gaussian and a-stable claim

subordinators and their corresponding estimates for A, and F*.
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Chapter 1

Tools and Characteristics

1.1 Introduction

We consider a particular family of stochastic processes called Lévy processes (see Appendix

A for the definition of a stochastic process on a probability space).

Definition 1.1 A cadlag (see Appendiz A) stochastic process X = {X;;t > 0}, on
(Q, F,P) with values in R is called a Lévy process if it satisfies the following properties:

[L1] Xo =0 a.s. (see Appendiz A.1)
[L2] X; has independent and stationary increments, i.e.

(i) for every increasing sequence of times tg < t; < ty < +++ < t, the random

variables Xy, Xy, — X4y, -+, X4, — X1, are independent.

(it) Xeen — Xi L Xishot = Xy, i.e. the distribution of Xiin — X; does not depend

on t.
[L3] X, is stochastically continuous, i.e.

’llir%PﬂXH,h — X >€) =0, Ve>0.

In no way does condition [L3] imply that the sample paths are continuous, as we will see

in the case of the Poisson process. The intuitive meaning of [L3] is that for a given time



t (deterministic) the probability of seeing a jump at ¢ is zero, i.e. discontinuities (jumps)
do not occur at deterministic times and so occur at random times. It serves to exclude
processes with jumps at fixed times which can be regarded as “calendar effects” and are
not interesting for our modeling purposes. All these facts together with the notion of jumps

(discussed in Appendix A) yield the following result.
Proposition 1.1 If X = {X,; t > 0} is a Lévy process then for fizedt > 0, AX; =0 a.s.

Proof. Consider a sequence {t,; n € N} in R* with ¢, / ¢ as n — oco. Since X has
cadlag paths
lim X, = X,-.

n—oo
However by [L3] the sequence {X;, ; n € N} converges in probability to X; and so has
a subsequence which converges almost surely to X;. Hence the result follows from the

definition of jumps and the uniqueness of the limits. O

Remark 1.1 The above proposition shows that AX is not a straightforward process to

analyze.

We now deviate from the discussion on Lévy processes to introduce the class of infinitely
divisible distributions (henceforth IDD). We will then come back to see how closely these

IDD’s are related with Lévy processes.

1.2 Notion of Infinitely Divisible Distributions
(IDD)

The increments of a Lévy process are in one-to-one correspondence with infinitely divis-
ible distributions. We present here a brief overview of this relation. For a more general
discussion on IDD’s we refer to [13], [10] and [4].

By sampling a Lévy process at times 0, A, 2A,34,------ we simply obtain a random

walk

n—1
Sa(A) = Z Yy, where each Yy = X114 — Xk,
k=0



are iid random variables whose distribution, by[L2], is the same as that of
D
Yi = Xkr)a — Xka = Xgr1)a-ka = Xa, k=0,1,---.

Since this can be done for any sampling interval A we say that by sampling a Lévy
process with different A we specify a whole family of random walks S, (A).

Choosing n/A = t, we see that for any £ >0 and any n > 1,

n—1
Sn(A) = Z Y
k=0
= (Xa—Xo) + (Xoa — Xa)+ -
+(Xn-1a — Xn-2)a) + (Xna — Xn-1)a)

= XnA = Xt'

That is, X; can be represented as the sum of 7 iid random variables whose distribution is
that of XA = X;/,. Otherwise said, X; is divided into n iid parts. A distribution having
this property is said to be infinitely divisible. We now formally define IDD’s.

Definition 1.2 A distribution function F (or an F distributed random variable X ) is said
to be infinitely divisible if for any positive integer n there exists independent and identically
distributed random variables Y1,Ys,--- Y, such that Y1 + Yo+ --- + Y, is F distributed.

“Equivalently” a distribution function F is infinitely divisible if and only if its characteristic

function
Qp(s) = /eiszdF(x), s € R,
can be written for any integer n in the form
Or = [g]",
such that ¢ is also a characteristic function of some distribution.
The following result characterizes IDD’s.

Theorem 1.1 The following are equivalent:

[1] X is infinitely divisible.



[2] Fx has a convolution n** root, for any n, that itself is the distribution function of a

random variable.

3] ®p has an n'® root, for any n, that itself is the characteristic function of a random
y

variable.

For a detailed proof we refer to [?] and [16].

Remark 1.2 In general the convolution n‘* root of a probability measure is not unique.
However it is always unique when the measure is infinitely divisible. See [7].

Now let M;(R) be the set of all Borel probability measures on R. The above theorem

suggests us to generalize the definition of IDD to distributions that have a convolution n**

root in M;(R).

Proposition 1.2 F € M;(R) is infinitely divisible if and only if for each n € N there

exists

F'™ e My(R),
for which

Or(s) = [Pp/m(s)]", for all s € R.

Proof. Since F' € M;(R) is infinitely divisible there exists a convolution nt* root in
Ml(R) i.e.

F = (FU™)™
So

n—times

As the random variable X with distribution function F' is infinitely divisible, then in X =

X1+ Xy 4 -4 X, each X; has a distribution F/* and it leads to

Pr(s) = [ /_ : eiswlFI/n(da:l)} n.



That is
Or(s) = [P (s)]”.
Conversely let there exist F/* € M;(R) for which ®z(s) = [®z1/-(s)]". But

e = | [ et rian)]
= / / gis@itazttan) pl/n(gp o FY™(dg,)
_ /_Oo isz(F1/myn ().

Comparing this expression with

Op(s) = / e“*dF (z),
we get that F' = (FY/™)* | that is F is infinitely divisible. a

1.3 Examples of IDD’s

Example 1.1 Gaussian random variables

Appendiz A shows that if F' has the underlying random variable X ~ N(n,02) then

2.2

Op(s) = ei1-35°0 s €R.
So we can write
. 21"
Or(s) = [e'sg_%szT] , s € R,
and hence we can recognize FY/™ as the distribution with underlying random variable Y ~

N(Z, "2) having the characteristic function
(5) = e*n —3 s eR.

Then ®p(s) = [®pi/n(s)]" and hence F = (FY/™)*™, which implies by Proposition 1.2,
that Gaussian random variables are infinitely divisible.

Similarly in the multivariate case, as shown in Appendix A, the characteristic function can

be written as

(I)F(ﬁ) — ei(§.ﬂ —%(§.A§) _ [ 1(s 2)-1(s.4 s] , s € Rn,

which shows that multivariate normal random variables are infinitely divisible.



Example 1.2 Gamma random variables

If F has the underlying random variable X ~ G(a, 3) then

Dp(s) = /oo eisz—ﬂa z* e Podr.
0 I(a)

<I>p(s)=(ﬁi.s>a= [(ﬁf}w)_r s €R.

is the characteristic function of F1/™ ~ Gamma(Z, 8), we get

That is

3

2R

; 8
Since ( ﬂ—is)
Dr(s) = [Dpi/m(8)]" implying that ~ F = (FY/™)™,
So gamma random variables are infinitely divisible.

Example 1.3 Poisson random variables

In the univariate case, as shown in Appendiz A, if F is for an underlying random

variable X ~ Poisson()) its characteristic function is then
Bp(s) = D), s €eR,

so we can write
Afis n
Op(s) = {ei(e "1)] , s €R.
Thus we recognize F'/™ as the distribution of a Poisson (%) random variable with charac-

teristic function @ 1 (s) = ea(e”

-1, Hence we get
Or(s) = [Ppu/m(s)]” implying that ~ F = (FY/™)™,

So Poisson random variables are infinitely divisible.

Example 1.4 Compound Poisson (CP) random variables

Definition 1.3 Suppose that {Z,,n € N} is a sequence of #d random variables taking
values in R with common law Fz and let N ~ Poisson()\) be independent of all Z,,. Then
the compound Poisson random variable X, denoted CP(\, Fz), is defined to be X = Z; +
Zo+ -+ Zn, with Z =0 if N =0, so that we can think of X as a random walk with a
random number of steps (jumps), controlled by a Poisson(\) random variable N and with

random step sizes Z;.



Proposition 1.3 For X ~ CP(\, Fz) and each s € R

Ox(s)=E [eiszﬁlz’] = exp [/_:(eisy — 1)AFz(dy)| .

Proof. Let ®; be the common characteristic function of Z,. By conditioning on the

number of jumps and then using independence we get for any s € R,
Dx(s) = E[e*Zhi%]

= Y E[e¥&++2N) | N = n] P(N =n)
n=l 0

- ZE 1$(Z1+Zo+- +Z) —/\)‘ /\Z /\(I)Z

That is
Ox(s) =exp [MPz(s) —1)]. (1.1)

Now with ®z(s) = [ €*¥Fz(dy) it follows that

®x(s) = exp {,\ ( /_ Z "V Fy(dy) — 1)]

Using [*° Fz(dy) = 1 we get that
(I)X(S) = exp !:/\/ (eiSy — ]_) Fz(dy)],
so the proof is complete. a

Now from (1.1), above, it can be easily seen that

ox(9) = [ow |2 (@2 -1)]| . s

implying that the compound Poisson distribution is infinitely divisible with each division

following a CP(2, Fy).

Remark 1.3 We invariably write ®x(s) and ®r(s) to mean the characteristic function
of the random wvariable X and characteristic function of its distribution F. This rises
no confusion since there is a one—one correspondence between characteristic functions and

distributions.



Example 1.5 Inverse Gaussian (IG) random variables

If F' has underlying random variable X ~ IG(u, ) then for its density given by

1 2
f(ﬂ?):mexp{uH—i(%-ke%)}, x>0 and u, >0,

the characteristic function can be obtained as:

_ 00 isx & __]; ,U_2 2
bp(s) = /0 e Nor =T exp { o 2( " + 6%z)} dz
= exp{ — u(vV-2is+62-10)}, seR. (1.2)

Hence we can write

dp(s) = {e[—%(\/—%sw?—(i)] }"’ seR,
and therefore recognize FY™ as the distribution with underlying random variable Y ~
IG(&,0) having the characteristic function

Opiym(s) = e[_ﬁ(' ~Her-0)] , s €R.

Then ®p(s) = [<I>F1/n(s)]n and hence F = (FY/™)™ which implies by Proposition 1.2 that

inverse Gaussian random variables are infinitely divisible.

1.4 Important Results Concerning IDD’s

Now we intend to discuss various results concerning IDD’s which are related with our work.
The first one tells us what happens when we add two IDD’s (or consider the convolution

of two IDD measures; see Appendix A).

Theorem 1.2 The sum of two infinitely divisible independent random variables is itself

infinitely divisible.

The proof results from a similar argument used for Lévy processes. The result implies that
a finite sum of IDD’s is itself IDD.
With this proposition and the examples of IDD’s discussed above we now construct a

new IDD, which is in fact the corner stone of the whole thesis.



Let X = X + X,, where X1 ~ N(n,0%) and Xy ~ CP(), Fz) are independent. Then
1 o :
b x(s) = exp [ins - 53202 +/ A(e*Y — 1)Fz(dy) |, seR. (1.3)
-0
By the above definition, Example 1.1, Proposition 1.3 and Theorem 1.1, X is infinitely
divisible. Hence IDD’s can be constructed by convolution of Gaussian and compound
Poisson random variables.

The expression in (1.3) is close to the expression in the celebrated Lévy-Khinchine

formula. This is further explored in the following section.

1.4.1 The Lévy measure

Before formally stating the Lévy-Khinchine formula it is necessary to introduce a special
measure of important significance. This central element of the theory is known as the Léuvy
measure.

Let v be a Borel measure defined on R \ {0}. We say that v is a Lévy measure if

/ (Jz)* A1) v(dz) < oo, (1.4)
R\{0}
or equivalently
/ |z|2v(dz) < 0o and / v(dz) < oo. (1.5)
|z|<1 |lz|>1

Since (Jz]2A€) < (|z2A 1) for all 0 < € < 1 it follows that

/ (|z|* A€) v(dz) < / (jz|* A1) v(dz), if 0<e<1,
R\{0} R\{0}
and hence from (1.4) it follows that

/ (|z]* A €) v(dz) < 0o = vi(—ge))<oo for 0<e<l. (1.6)

R\{0}
So we have
/ |z|?v(dz) < oo and / v(dr) < o0, if 0<e<l. (1.7)
lri<e |z|>e

Remark 1.4 [About the Lévy measure]

[1] With the convention v({0}) = 0 one can extend v on R.



[2] Any finite measure on R\ {0} is a Lévy measure but a Lévy measure on R \ {0}

need not be finite. v being a Radon measure, it is c— finite.

[3] Alternative characterizations of Lévy measures can be found in the literature. One

of the most popular is

/m\{O} (1_|f_||2£|_2) v(dr) < oo (1.8)

It can be shown that (1.4) and (1.8) are equivalent. This latter form is useful in different
computations, e.g. in estimation.

We will gain more insight on Lévy measures when we study the results for Lévy process
using those for IDD’s.

With the characteristic function in (1.3), for the convolution of two independent Gaus-
sian and compound Poisson random variables and its relation to the notion of the Lévy
measure, we are now in a position to state the central formula of the theory of Lévy pro-

Cesses.

1.4.2 Lévy—Khinchine formula

Theorem 1.3 F € M;(R) is infinitely divisible if there exists scalars a,b € R and a Lévy

measure v on R\ {0} such that for all s € R:

1 .
Op(s) = exp [ias — =57 +/ [e® — 1 — iszl_113(z)] v(dz)|, (1.9)
2 R\{0} '

where 1 is an indicator function (see Definition A.2). Conversely any mapping of the above

form is the characteristic function of an infinitely divisible probability measure on R

A detailed proof can be found, for example, in, [16], [1], or [5]. We prefer the proof in [1]

because of its constructive nature.

Remark 1.5 [On the Lévy—Khinchine formulal

[1] It represents all infinitely divisible random variables arising through the interplay

between Gaussian and Poisson distributions.

10



[2] The “cut-off” function inside the integral C(z) = I{_;13(z) takes different forms in
the literature. The only constraint one needs to take into account in choosing C' is

that it needs to ensure the integrability of the function
ge(z) = % — 1 —isz - C(x), reR,
with respect to v, for each s € R.

[3] While choosing a cut-off function C it is sufficient to assume that C(z) = 1 +
O(|z]). With this restriction we see that the integral in (1.9) will never yield any
term involving s? which means that the parameter 5% is invariant of the choice of
C. Also with the same restriction on C, the integral in (1.9) always yield a term
involving ¢s. This means that the parameter a should be adjusted with the choice of
C. And as we saw before the definition of the Lévy measure is independent of the
choice of C, so v is also invariant of the choice of C. Thus relative to the choice of
C the members of the triplet (a.,b?, v) are called the characteristics of the infinitely

divisible distribution F' (or infinitely divisible random variable X)

[4] To use a cut-off function C(z) other than I;_;;}(z) we need the following adjust-

ments in the Lévy-Khinchine formula:

1
®p(s) = exp {iacs — =s%? +/
2 R\(0}

To find the relation of a, to a we simply divide (1.10) by (1.9):

[em —1—isz-C(z)] I/(dl‘):' (1.10)

1 =exp [z’s(aC —a)+ /]R\{O} —isz [C(z) — [iZ1,13(z)] V(dl’)J ;

which implies that

0=1is(a. —a)—1is /m\{o} z [C(z) - [{_113(z)] v(dz),

and in turn that

a.—a= / z [C(z) — Lj—1,1)(2)] v(dz).
R\{0}
That is
a.=a+ / z [C(z) — I_1,13(2)] v(dz). (1.11)
R\{0}

11



[5] If v satisfies the condition f

lel<1 |z|v(dz) < oo, in addition to the usual conditions,

we see that the integral in (1.11) exists with C(z) = 0. Then the corresponding ay is

known as the drift of F' and is given by:

ag=a-— / zl_1 1y (z)v(dr).
R\{0}
With this choice of ¢ = 0 and the corresponding a. expressed as ag, (1.10) turns into:
Op(s) = exp [is{a — / -1y (z) v(dz)}
R\{0}
1 .
—=s%? + / (e"** —1) V(d:v)]
2 R\{0}
= exp [is{a —/ zv(dr)}
{{lel<1}\{0}}
1 .
—=5%b? +/ (e®* —1) V(da:)] . (1.12)
2 R\(0}

This is the Lévy—Khinchine representation of F' in terms of drift ag, that is with

respect to the characteristic triplet (ag, b2, v).

Also if v satisfies flzlzl |z|v(dx) < oo then we see that the integral in (1.11) exists
with C(z) = 1. Then the corresponding a, is known as the centre of F’ which is given
by:
ag=a +/ z [1-Ti1,13(z)] v(dz).
R\{0}

With this choice of C =1 and the corresponding a. expressed as a; (1.10) turns into:
®r(s) = exp [is{a + / z [1 = I_113(z)] I/(d.’L‘)}]
R\{0}
1 .
exp [ — 5% + / (emc —-1- isx) V(dl’)]
2 R\{0}
1 .
= exp |is{a+ / rv(dz) p — =522 + / e — 1 —isz |v(dz)|.

(1.13)

This is the Lévy—Khinchine representation of F' in terms of center a;, that is with

respect to the characteristic triplet (a;, b%, v).
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It can be shown that the finiteness of fl |z|v(dz) is equivalent to the finiteness of

z|>1
Jz |z|dF(z) and that a; = [ 2dF(x), the mean of F. Thus the centre and the mean

are identical.

Equations (1.9), (1.12) and (1.13) explicitly shows the required adjustment one needs

to carry out for choosing cut-off functions other than I;_;1(x).

[6] As indicated in the discussion on the proof of the Lévy—Khinchine formula (for details
see the proof in [1]) it is worth noting that all infinitely divisible distributions can
be constructed as weak limits of the convolution between Gaussian with independent
compound Poisson variables. This is precisely the reason why the expression in (1.3)

is close to the expression of this Lévy—Khinchine formula.

The next theorem shows that in fact the compound Poisson distribution is sufficient for a

weak approximation.

Theorem 1.4 Any infinitely divisible probability measure can be constructed as the weak

limit of a sequence of compound Poisson distributions.

Proof. Let ® be the characteristic function of an arbitrary infinitely divisible proba-
bility measure F', so that ®'/" is the characteristic function of F1/*. Then for each n € N

we may define
®,(s) = exp [n{®"(s) — 1}] = ezp [/ (e — 1)nFY™dz)|, seR.
R

So that ®,, is the characteristic function of a compound Poisson distribution (see Proposi-

tion 1.3). We then have

(Dn(s) = exp [n (e(l/n)log[é(s)] _ 1)]
= exp [log O(s)+n- O(%)] — &(s) as n — oo,

where log is the principal value of the logarithm. Then the result follows by Glivenko’s
theorem (see Appendix A). o

In a more general framework we have the following result.
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Proposition 1.4 If {F,} is a sequence of infinitely divisible distributions and F,, — F,
then F is infinitely divisible, i.e. weak limits of sequences of infinitely divisible probability

measures are infinitely divisible.

For a proof we refer to [1].

We saw that the Lévy—Khinchine formula is related to the characteristic function of
an infinitely divisible distribution F' (or an F' distributed random variable). It can be
expressed, using two parameters and a measure, as an exponential function with a complex
exponent, i.e.

Op(s) =e¥®) where U:R —C.

The complex function VU is known as the characteristic exponent or Lévy exponent of F' (or
an F distributed random variable). Some authors prefer referring to it as the Lévy ezponent.
Since we know that |®r(s)| < 1 (see Appendix A), then using ¥ = Re(¥) + iIm(¥) we

have

‘QF(S)’ = ’e\I'(s)

_ ’eRe(@)‘

oRe(¥)+ilm(¥) ‘

eiIm(\I/)‘ = R < 1.

Hence eRe(¥) < 1implies that Re(¥) < 0, that is the characteristic exponent should always

have a non positive real part.
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Chapter 2

Lévy Processes

With the tools and ideas discussed for IDD’s we are now in a position to relate their pro-

perties with Lévy processes. Then we discuss some constructions involving Lévy processes.

2.1 Basic Ideas

The first result is at the core of the relation of Lévy processes and IDD’s.

Theorem 2.1 If X = {X;; t > 0} is a Lévy process, then X, is infinitely divisible for each

t>0.
Proof. For each n € N, we can write
Xe=Y"{O) + Y5 (t) +--- + Y1),
where each
Y'(t) = X%—X(k;u, k=1,2,--- n,
2 X ), by [L2)-(ii) of Definitionl.1,
= X:.

3o

The last term in the above equality is independent of k£, which shows that for all k, the

Y,*(t)’s are iid with the common distribution X:. Hence
ox(s) =[x, ()], seR,

which shows that X;, for each ¢ > 0, is infinitely divisible. O
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Remark 2.1

[1] The term infinitely decomposable would be more appropriate than infinitely divisi-

ble.

[2] Here n can take any value in N, which has an infinite cardinality. Hence the name
infinitely divisible.
By the above theorem we can write that ®x,(s) = e¥®*), for each t > 0 and s € R,
where ¥(t,-) is a Lévy exponent.

We now show that ¥(t,s) = tW¥(s), for each ¢t > 0 and s € R. To prove this result we

need the following lemma.

Lemma 2.1 If X = {X;;t > 0} is stochastically continuous then the map t — Px,(s)

is continuous for each s € R.

Theorem 2.2 If X is a Lévy process then E[e®*Xt] = ®x,(s) = '¥®), for each t > 0 and

s € R, where ¥ is the Lévy exponent of X;.

Proof. Suppose that X is a Lévy process and that ®x,(s), for each s € R and ¢t > 0

is the characteristic function of X;. Then from Definition 1.1-L2, we have for all A > 0,

Oxon(s) = E(c*)
= E {eis(x‘“‘_xt)] E (eisxt) , using [L2]-(i)
= E [e“(xh)] E (e*X) using [L2]-(ii)
— 0y, () - D, () (2.1)
Now by L1 we have that
Dx,(s) =1 (2.2)

Also, by L3, X; is stochastically continuous and so we can apply Lemma 2.1 to see that
the map t — ®x,(s) is continuous. Together with the multiplicative property in (2.1) this
implies that ®x,(s) is an exponential function in ¢. Hence the unique continuous solution

of (2.1) and (2.2) is given by
Dy, (s) = K, s € R,
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where K : R — C. Now by Theorem 2.1, X; is infinitely divisible. Hence

Dy, (s) = KO s €R, (2.3)
which implies that K is the Lévy exponent of X, completing the proof. a
Remark 2.2

[1] Recalling the definition of cumulant generating function of a random variable from
Appendix A, we see that ¥ in the above theorem is the cumulant generating function

of X; i.e. ¥ = Kx, and that it varies linearly in ¢, i.e.
Kx, =tKx, =1tV.

The distribution of X, is therefore determined by the knowledge of the distribution
of X;. Thus the only degree of freedom we have in specifying a Lévy process is to

specify the distribution of X; for a single period say t = 1.

[2] The Lévy exponent of X; is simply the cumulant of X; and Theorem 2.2 is useful

as the definition of the characteristic function of the Lévy process X = {X;; t > 0}.

We now have the complete expression of the Lévy—Khinchine formula for the Lévy process
X ={X;;t >0} as:

; 1
Ele**t] = exp {t [ias - =s%% + /
2 R\(0}

[ =1 —isel 1y (@) v(dz)| ). (24)
Comparing (1.9) with (2.4) we observe that the latter is simply a version of the former
corresponding to t = 1, which leads to the following more convincing definition of the Lévy
measure of a Lévy process.

The characteristic triplet of the Lévy process is just the characteristic triplet of the
infinitely divisible random variable X;. It can be shown that this correspondence is unique.
Thus given a Lévy process there corresponds a unique IDD which is the distribution of X;.
It follows that corresponding to every infinitely divisible distribution there exists a Lévy

process so that the characteristics of the process evaluated at ¢ = 1 coincide with the

characteristics of the IDD.
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Definition 2.1 [Lévy measure of a Lévy process] For a Lévy process X = {X;;t >0} on
R , the measure v on R defined by:

v(A) =E#{t €[0,1] | AX, £ 0,AX; € A}], A€ B(R), (2.5)

is called the Lévy measure of X. Here v(A) is the expected number, per unit time, of the

Jumps with size in set A (see [3]).
We now see what happens when two independent Lévy processes are added.
Theorem 2.3 The sum of two independent Lévy processes is also a Lévy process.

We need the following lemma to prove the above theorem. This lemma is known in the

literature as Kac’s theorem (see [1]).

Lemma 2.2 The random variables X,,--- , X, are independent if and only if

E (eiz?ﬂ“fxf) =®x, (u1)- - Dx, (un), for all uq,- - ,u, €R. (2.6)
Proof of Theorem 2.3. Let X; and Y; be two independent Lévy processes and
consider

Z,=X,+Y, t>0.

By Definition 1.1-[L1], we have that Z; = Xy + Yy = 0, a.s.. To prove the independence of

the increments consider forany n e Nand 0 =ty <t < --- < ¢, < o0:
E [ei{ SrZo w1 (Zegyy —Z,k)}]

- K [ez{ SRlo Uk+1 (th+1_X‘k)}] E [ei{ ko k1 Yoy, —sz)}] , by independence,

n—1 n—1

=11 ®x,, e (k1) ] @iy, v, (1) s by [L2]-(i) and (2.6),
k=0 k=0
n—1

= H CDXek_H—Xck (uk+1) (I)Ytk+1—ytk (uk+1) ’ for all ug,--- ,un €R,
k=0
n—1

= H Dy ) Ko +Yi Ve (Wkt1) 5 by the independence of {X,} and {Y;},
k=0
n—1

= H q)Ztk_H—Ztk (uk+1) :

k=0
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Considering (2.6) again this implies that Z; has independent increments.

Now to show that Z, has stationary increments we proceed as follows. Let AX; =

Xty — Xi; and AY; =Y, — Y. Since X; and Y; have stationary increments it follows
that:
Fax, = FX(t]-H—:j) and Fay, = FY(:jH—:j) .

Now we observe that Z; , — Z; =4 AZ; = AX; + AY; and that AX; and AY; are
independent. Hence by the definition of convolution (see Appendix A).

z,) = Faz = Fax;+ayy) = Fax, * Fay,

1T
- Fx(tﬂl—tj)

Fiz,

1) Fz

* FY(t F(X(t y+Ye

417t i+1-t) J+1-t5)?

which shows that Z; has stationary increments.

Finally the stochastic continuity follows from the elementary inequality of probability:
P2~ Z|>a) SP(Xi- X, > ) +P( Y=Y [>2) —0 as t—s,

since X; and Y; are Lévy processes. Hence Z; is a Lévy process. O
Now because of the one-to-one correspondence between Lévy processes and IDD’s, as dis-

cussed above, the following result is immediate.

Corollary 2.1 The sum of two infinitely divisible random variables is itself infinitely di-

visible.

2.2 Examples of Lévy Processes

This section presents some important examples of Lévy processes and their properties.

2.2.1 The Poisson Process

From Appendix A we recall that if N is a Poisson random variable with parameter X\ then

its characteristic function is given by:
Op(s) = e’\[eis_l], s eR. (2.7)
We now define the Poisson process.
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Definition 2.2 Let {ﬁ}i21 be a sequence of independent exponential random variables with

parameter A and let T,, = > | 7;. The processes N, defined by

Ne=) lisg, (28)

n>1

15 called a Poisson process with intensity \.

The Poisson process therefore counts the number of random times T;, which occur between
0 and ¢, where {T, — Tn_l}n21 is an i.i.d. sequence of exponential variables. Why this

process is called Poisson is better understood from the following proposition.

Proposition 2.1 If {7;};>1 are independent and identically distributed exponential random

variables with parameter A then for any t > 0 the random variable

Ny=inf{n>1; Y 7 >t}—1 (2.9)

1=1

follows a Poisson distribution with parameter At:

P{N,=n} = e‘”%, vn € N. (2.10)

A nice intuitive proof can be found e.g. in [5].
From (2.7) and (2.10) it follows that the characteristic function of a Poisson process is
given by
E[e"*™] = exp {Mt(e** — 1)}, Vs € R. (2.11)

The following proposition lists many important properties of Poisson processes.
Proposition 2.2 Let N; be a Poisson process. Then
[1] for any t > 0, N, is almost surely finite.

[2] for any w, the sample path t — Ny(w) is piecewise constant and increases by jumps

of size 1.
[3] the sample paths t — N, are cadlag.

[4] for anyt >0, N;- =N a.s.
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[5] N is continuous in probability, i.e. Vt > 0, N, L N; whens — t.

[6] N has independent increments, i.e. for any t; < --- < tp,

Ath ’s are independent random variables.

[7] the increments of N are homogeneous (stationary), i.e.

for any t,h > 0, Npyp — Ny 2 Np.

[8] N has the Markov property i.e.
Vt,h >0, E[f(Nesn) | N, s < 8] =E[f(Nen) | N

Proofs can be found in any standard book on this subject, e.g. [5].
Proposition 2.3 The Poisson process is a Lévy process.

One possible proof follows from Example 1.3 and the discussion after (2.4). Here we recall
(2.10) to note that the characteristic of this Lévy process is just the characteristic of the
infinitely divisible random variable N;. Another proof follows as a corollary of the similar

result presented for the compound Poisson process in the next section.

2.2.2 Compound Poisson process

The definition of a compound Poisson process that follows uses Definition 1.3 of a compound

Poisson random variable.

Definition 2.3 A compound Poisson process with intensity A > 0 is a stochastic process

X = {X,} defined as

S Z,=Zi+---+Zn, if N,>0,
X, = ! (2.12)

0 ZthZO;

where jump sizes Z,, are iid with common distribution Fz and N = {N;,t > 0} is a Poisson

process with intensity A, independent of {Z,},~,.

Remark 2.3
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[1] Again the sample paths of X are cadlag, piecewise constant functions on finite
intervals with jump-discontinuities at random times 7,,. However this time the size
of the jumps is itself random and the jump at T,, can take any value in the range of

the random variable Z,,.

[2] The jump times {T3},, of X are the jump times of the Poisson process N, they
can be expressed as the partial sums of the independent exponential random variables

with mean %

[3] The Poisson process itself can be seen as a compound Poisson process on R such
that Z, = 1 for all n, which explains the origin of the term compound Poisson in the

definition.
A simple derivation gives the characteristic function of a compound Poisson process:
E[e"X*] = exp {tA /00 (e — 1)Fz(dz)}, Vs € R, (2.13)
—00
where A denotes the jump intensity and F' the jump size distribution.

Theorem 2.4 The compound Poisson process X in Definition 2.3 is a Lévy process, where

N is a Poisson process with intensity A and the Z;’s are i.1.d. random variables independent

of N.

Intuitively the proof follows from Example 1.4 and the relation between IDD’s and Lévy
processes. However a detailed proof follows.
Proof. Ny = 0 a.s., by the definition of a Poisson process, which implies that Xy = 0

as. ForO=ty<t; <tag < - <t
Ny .
E [Ci 7;01 (u]'+1 Zki]&:_+1 Zk)]

00 00 sn-1f Niiv1 z
= Z T Z E[elzjzo <u]+1 Zk:th+1 k> | Ntl = ?:],Ntz = 7/] + 227 T

11=0 in=0

Niy =i+ 4 in| PNy = i3, Ny = ix +ig, o+, Noy =i+ + i}
oo oo

- Z o Z ®E(u1)¢?(un)P{Nt1 _Nto =11, ’Ntn - Ntn—l = 1’71}

11=0 in=0
oo o

= ) Y 0%(ur) - B (ua)P{Ny — Nyp = ia} - P{N, — Ny, = in}.

i1=0 in=0
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(2.14)

Now, by independence we also have

[ (8 T )] gl (B )

B i(ul Z:ZIMOH Zk) _ . _ —4.1...
= Z ce Z E[e |.]Vt1 Nto = 21] P{.ZVt1 Nto = 11}

i{ un Nf" V4
]E[e ( Tk, 41 k) N, — N, = in]P{Ntn D\

=) ) 0 (w) - B (u)P{Ny, — Ny =iy} P{N,, = N,,_, =in}.  (215)

11=0 in=0

Hence from (2.14) and (2.15) we get that X, — X, X, — X4y, -+, Xt — Xi,,_, are inde-

pendent.

Now to show stationarity, let 0 < s < t, then

E [ ez’u(x,—xs)]

E [ei(" EkNiN,H Zk)]

ZE[ei(“Egimﬂ Zk)th - N; = j]P{Nt — N, = j}

.
Il
[l

&}, (u)P{N, - N, = j}

M8

3=0
o0

> L (w)P{N,_, = j}, by Definition 2.2,
j=0

E [ei(u T Zk)] —F [ei(uxt_s)] ’

which shows that X; — X 2 X s

Finally to show the stochastic continuity, consider for any @ > 0 and ¢ > 0

P{| X; |> a}

=1

= > P{lZi+ 2+ +Zi |> a}P{N, = i}
=1
< l—e_’\t—>0, as t— 0,

where the last equality holds since Z,, and N are independent. Hence the compound Poisson

process is a Lévy process.

O

The converse statement of the above theorem is also true, provided we add a condition.

This leads to the following more general result.
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Theorem 2.5 X = {X;; t > 0} is a compound Poisson process if and only if it is a Lévy

process and its sample paths are piecewise constant functions.

One implication of Theorem 2.5 was proved above. The proof for the converse implica-
tion, which is rather involved, can be found in [5].

Thus to conclude whether a general Lévy process is a compound Poisson process or
not it is sufficient to observe whether its sample paths are piecewise constant. In fact the
compound Poisson process is the only Lévy process with piecewise constant sample paths
(considering the Poisson process as the simplest compound Poisson process). The following

result is thus a simple corollary of Theorem 2.5.

Corollary 2.2 The Poisson process is a Lévy process.

Equation (2.13) is a special case of the Lévy—Khinchine formula in (1.9) or (2.4). Let us
introduce a new measure v defined by v(A) = AF(A). Then

Fy(A) = "(;4) . (2.16)

Here A € B(R) (the collection of all Borel sets in R) and v(A) is the Lévy measure of the

compound Poisson(A, Fz) process, then the Lévy—Khinchine representation becomes

E[e"%t] = exp {t/

—00

o0

(e — 1)V(dm)}, Vs € R. (2.17)
Since ¥(R) = [° AdFz(x) = X # 1, v is a positive measure on R but not a probability

measure.

2.2.3 Gaussian Lévy process

Definition 2.4 A standard Brownian motion in R is a Lévy process B = {By; t > 0} for
which:

[B1] By ~ N(0,t) for eacht >0,

[B2] B has continuous sample paths.
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In fact Brownian motion is the only Lévy process with continuous sample paths. From
[B1] and the definition of characteristic function (see Appendix A) it follows immediately

that the characteristic function of Brownian motion is given by:
1
®p,(s) = exp{—5t32}, foralls € R and t > 0. (2.18)

Remark 2.4 The terminology “Brownian motion” may correspond to an arbitrary variance—
covariance matrix where as the terminology “Wiener process”, {W;; t > 0} is used only

for standard Brownian motion with unit co-variance matrix that is W; = B, ~ N(0,1).

Thus Brownian motion is by definition a Lévy process. Another more intuitive derivation
of this fact follows from Example 1.1 and the one—one correspondence of IDD’s with Lévy
processes. The deterministic process {X; = at; ¢t > 0} is known as the linear drift. The

following proposition states that it is a deterministic Lévy process.

Proposition 2.4 The simplest Lévy process is the linear drift.

The proof follows directly from the Lévy—Khinchine representation of a Lévy process. Now
by Theorem 2.3, X; = {at+W;; t > 0} is also a Lévy process which is known as “Brownian

motion with drift”.

2.3 Random Measure of Lévy Processes With Thresh-

old Exceeding Jumps

Since a Lévy process is cadlag, the number of jumps AX; such that [AX,| > ¢, before
some time ¢, has to be finite for all ¢ > 0. Hence if B € B(R), is bounded away from 0
(i.e. 0 ¢ B, the closure of B), then for ¢t > 0

NP =t{s € [0,t]; AX, € B} = Jx([0,t] x B), (2.19)

is well defined and a.s. finite. The process N2 is clearly a counting process, called a counting
process of B. It inherits the Lévy property from X. Since the Poisson process is the only
non-trivial counting process which is Lévy then NP is a Poisson process with a certain

intensity v* (B) < oo. If B is a disjoint union of Borel sets B;, then NF = ", N. Hence
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considering (2.5), vX(B) = E(Nf) = S E(N¥) = X v(B;). v is a Borel measure and as
indicated in (1.6) it holds that (R \ (—¢,¢€)) < oo for all € > 0. In particular v is o—finite
(see Appendix A).

Now to discuss the term Jx([0,t] x B) in (2.19) we need the ideas of a random measure
and Poisson random measure. However we keep our discussion about these two measures
at an introductory level. For more details see [3] and [1].

From the definition of the Poisson process we recall that the jump times 77,75 - - - form
a random configuration of points on [0,00) and that the Poisson process N, counts the
number of such points in the interval [0,¢].This counting procedure defines a measure on

[0, 00).

Definition 2.5 For any measurable set A C RY a positive integer valued counting measure
M(w,-) defined as
M(w,A) =t{i > 1; T;(w) € A}, w € Q, (2.20)

is a random measure.

The very first property of a Poisson process ensures that M (A), for any bounded mea-
surable set A, is almost surely finite. The intensity A of the Poisson process determines the
average value of the random measure M, i.e. E[M(A)] = A|A| where |A| is the Lebesgue
measure of A. M is also known as a random jump measure associated to the Poisson
process N. The Poisson process can be expressed in terms of the random measure M in
the following way:

N,(w) = M(w,[0,4]) = o M(w,ds).

The properties of the Poisson process described in Proposition 2.2, can be translated into

properties of the measure M. Some of the important ones are as follows.

[1] For disjoint intervals [t1,1],"* , [tn, tn], M ([ts,t4]) is the number of jumps of the
Poisson process in [tg,t]. It is a Poisson random variable with parameter A(ty —
tr). Generally for any measurable set A, M(A) follows a Poisson distribution with

parameter A|A|, where |A| = [, dz is the Lebesgue measure of A.

[2] For two disjoint intervals [t;, ;] and [t;,t;] where i # j, M ([t:, £;]) and M([t;,t,]) are

independent random variables.
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A natural extension of this notion of random measure is the Poisson random measure,
where R* is replaced by any E C R and the Lebesgue measure by any Radon measure p

on E.

Definition 2.6 Let (2, F,P) be a probability space, E C R and u a given positive Radon
measure on (E,E). A Poisson random measure on E with intensity measure u is an integer

valued random measure
M:QxE—->N, (wA)w+— Mw,A)
such that:

[1] for almost all w € Q, M(w,-) is an integer valued Radon measure on E, i.e. for any

bounded measurable A C E, M(A) < 0o is an integer valued random variable.

[2] for each measurable set A C E, M (-, A) = M(A) is a Poisson random variable with

parameter pu(A), i.e.

P{M(A) =k} = e * [“(%)]k, Vk € N. (2.21)

[3] for disjoint measurable sets Ay, -+, A, € &, the corresponding random variables

M(Ay), -+ ,M(A,) are independent.

We state the following proposition, without proof, which ensures the existent of the Poisson

random measure.

Proposition 2.5 For any Radon measure u on E C R, there exists a Poisson random

measure M on E with intensity .

For a proof see [5].
It can be shown that to every cadlag process and in particular to every compound
Poisson process X = {X;; ¢t > 0} on R we can associate a random measure on R x [0, 00)

describing the jumps of X. For every measurable set B C R x [0, 00)

Jx(B) = Jx(A x [t1,t1]) = #{t € [t1,t1]; AX; € A}, (2.22)
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that is Jx(A X [t1,t1]):=number of jumps in X occurring between time ¢; to ¢; whose
amplitude belongs to A.

The random measure Jx contains all information about the discontinuities (jumps) of
X. It tells us when the jumps occur and how big they are. Jx does not give any information
on the continuous part of X. It is easy to see, indeed we will see, that X has continuous
sample paths if and only if Jx = 0 a.s. which implies that there are no jumps.

The following proposition shows that Jx is a Poisson random measure in the sense defined

above.

Proposition 2.6 Let X = {X;;t > 0} be a compound Poisson process with intensity
A and jump size distribution F. Its jump measure Jx is a Poisson random measure on

R x [0, 00) with intensity measure pu(dx x dt) = v(dz)dt = M\dF(z)dt.

For a proof see [5].
Thus to see the distribution of the number of jumps of size larger than a threshold e,
consider A = [¢,00) in (2.22). Then using the above proposition together with (2.21) we

have

, . .
P{x(Ax [t =k} = exp|- / /h lde x dt)] [f" Ju ”(:f x do)|

i s JEAF d:c)dt]
= exp // )\Fdzdt]
t1

= exp[ |t1—t1|/V(dx] (it - tllfAV(dx)]
(
!

[t1 — t1|v([e, 0)) ] '

_ olitieoo L
k!

(2.23)

Equation (2.23) helps us clarify one of the intuitive results involving Lévy process and its

jump measure which we mentioned earlier. We now give its proof.

Proposition 2.7 X has continuous sample paths if and only if Jx = 0 a.s. which implies

that there are no jumps.
Proof. P{Jx(A x [t1,t1]) = 0} = 1 implies, by (2.23), that

(It = ta)w(fe, 0o])]”

ol =1

exp | — [£ = tilv([e, o))
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Which, for any choice of #1, t; and ¢, directly implies that v(e,00) = 0, since |t; — #;| can
not be zero. But then using equation (2.4) of the Lévy-Khinchine representation of a Lévy
process we see that X is just a Brownian motion with drift. And so X has continuous
sample paths.

On the other hand, if X has continuous sample paths then its Lévy measure, which
controls all jumps, should be identically zero. That is v(e,00) should be identically zero

for any choice of e. Then (2.23) implies for any positive integer k
P{Jx(A x [t2,t2]) =k} =0

and since 0° is numerically 1, for k = 0 we get
P{Jx(A x [t,t1]) =0} = 1.

That is Jx is almost surely zero. Hence the proof is complete. |

2.4 Poisson Point Process

In this section we define the Poisson point process and relate it with the Poisson random
measure given in Definition 2.6 and characterized by (2.22). This relation will help us avail
an estimate of the Lévy measure of a subordinator through a construction. The statement

of this construction appears in Theorem 3.1.

Definition 2.7 The Poisson point process (A¢)i>0 with intensity function g : (0,00) —

[0,00) is a process such that

d
N((ti,t1] x (e, d]) =t{t1 <t <t : Ay € (c, d|} ~ Poi ((t1 - tl)/ g(a:)da:) ,  (2.24)
0<t; <ty (c,d] C(0,00). It defines a Poisson counting measure on [0, 00) x (0, 00).

Interpret A, as a jump at time s, then it can be shown that »> ..., A, the process
performing all these jumps, is a Lévy process.
Note that according to this definition there is no restriction in choosing ¢ = € and

d = oco. Thus we have:

[|t1 — t| f:og(x)dx}k.

- (2.25)

P{N((t1,t1] x (¢,00]) = k} = exp [— [t1 — t1] /600 g(:r)d:z:]
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Equations (2.23) and (2.25) show that the distribution of the Poisson point process
follows the distribution of the Poisson random measure, provided that the intensity function
g of the Poisson point process is the density of the Lévy measure v. This is where this
process gets its name. In chapter three we will see that in deed g is the density of the Lévy
measure. For more details on Poisson point processes and Poisson random measures we

refer to [3].
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Chapter 3

Special Lévy Processes and their

Applications

In this chapter we discuss Lévy processes associated with special jump measures. Consider
discarding those jumps which are less than a certain threshold. We see also how to get the
density of such truncated jumps and how they are related to the compound Poisson (CP)

process through a construction with the gamma process.

3.1 Distribution of Truncated Jumps
The Lévy-Ité6 decomposition states that

Xt=at+Bt+Xt‘+1§%X§, t>0, (3.1)
where

X = o rJx(ds x dz)

Jx|>1

corresponds to discontinuous large jump process and

Xt z{Jx(ds x dz) — v(dz)ds}

s€[0,t]
e<|z|<1

= Jepq z{Jx(ds x dz)}
e<|z|<1
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corresponds to compensated small jump process.

The terms in (3.1) are independent and the convergence in the last term is almost sure
and uniform in ¢ on [0,¢]. For more details see [16] and [5].

In (3.1) the term at+ B, corresponds to a continuous Gaussian Lévy process as discussed
earlier. In fact every Gaussian Lévy process is continuous and can be represented in this
form by two parameters: a the drift term and the variance—covariance matrix A of the
Brownian Motion.

The term X} (I symbolizing large) is a discontinuous process incorporating the jumps
of X; and is described by the Lévy measure v. The condition f|$|21 v(dz) < oo in (1.5)

assures that X, has a finite number of jumps having sizes larger than 1. Hence the sum

I _ —
Xt = / e @ Jx(ds x dz) = og;t AX, (3.2)
lel>1 |AX,|>1

contains a.s. a finite number of terms and X! is a CP process. From (2.23), with £, = 1
and t; = 0, it follows that the jump times of this CP process is controlled by a Poisson
process with rate v{1,00). Also considering (2.16) we see that the distribution of jumps of

this CP process is

dF(z) = v(dz)

= o) (3.3)

Since fl (dz) < oo in (1.5), then if we replace 1 in (2.23) by €, where 0 < € < 1, we

still get a CP process:

z|>e v

Xt = Z AXs, t 2 0,
0<s<t
|AXs|>e
with jump times controlled by a Poisson process with rate v{e, 00) and the distribution of
jumps following
v(dz
dF<(z) = —u
Ve, 00)
In fact it can be shown that the sum of jumps with amplitude between ¢ > 0 and
1 is again a well defined CP process. But this time the number of small jumps may be
infinitely many and their sum may fail to converge. To have convergence mean-subtracted
jumps are summed up which leads to the compensated jump measure J x(dt x dx) =

Jx(dt x dz) — v(dz)dt in the last term of the Lévy-1té6 decomposition.
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3.2 Truncated Jumps Density and the Compound Pois-

son Process

The process whose jumps follow a gamma distribution is known as the gamma process.
From Example 1.2 it follows that this process is a Lévy process. Thus if X; ~ gamma(a, 3)
then X; ~ gamma(at, B). It is natural to ask if these gamma processes are also CP?

The moment generating function of X; is thus given by

]E[exp {th}] = (%)at = exp {t/ooo(e” -1 %e’ﬁx dm} , s< g, (3.4)

where the first equality follows from Example 1.2 and the second equality is proved in
Section 3.3.1.

Now the expression in (3.4) is almost of the same form as that of the moment generating
function of a compound Poisson process X; = Z; + -+ + Zy(;) with non-negative jump

sizes Z; and common probability density function f = fz;:
]E[exp {sZt}} = exp {/\t /Ooo(es"” —1) f(z)dz}, seR. (3.5)
Now to match the above two expressions we set:
A f(z) = %e—ﬁf =X fz), >0. (3.6)

However this is not a probability density function because it is not integrable as = \, 0.

To get a probability density from this, we can truncate f at ¢ > 0 and write:
o
Ae fi(z) = —e P2, x> €, (3.7)
z

where f€ corresponds to the density of jumps which are truncated at level € > 0.

Now for f€ to be a probability density we just need to choose A, appropriately. However
from (3.7) we notice that A\, — oo as € \, 0. Since A is the rate of the Poisson process
driving the compound Poisson process, we interpret this as “there will be increasingly more
jumps as € \, 0”.

At the same time from (3.7) we can write

1
F@ =+ %e’ﬂ”‘, z>¢, (3.8)

which means that as € \, 0 the mean of the distribution with density f¢, as given above,
tends to zero (since Ac — o0). Hence these increasingly more frequent jumps are very

small.
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3.3 Subordinators

Refer to the definition of finite variation of a function from Appendix-A. A Lévy process

is said to be of finite variation if its trajectories are a.s. functions of finite variation.

Proposition 3.1 A Lévy process is of finite variation if and only if its characteristic triplet
(ac, b?,v) satisfies:

b =0 and / v(dz) < 0.
|lz|<1

For a proof see [5].

Now from Remark 1.5-[5] it is known that if [_

le|<1 |z| v(dx) < oo then the corresponding

cut-off function is C(z) = 0, which leads to the following corollary.

Corollary 3.1 Let {X;;t > 0} be a Lévy process of finite variation with Lévy triplet
(ao,0,v). Then X can be expressed as the sum of its jumps over times 0 to t and a linear
drift term:
Xt=dt+/ xJX(dsxdx):dt—{-ZAXs, t>0, (3.9)
[04]xR X,#0

s€0,t]

and its characteristic function can be expressed as

E[e**] = exp [t{ids + /(eisaB - 1)1/(dx)}] (3.10)

where d = ag — flml<1 zv(dr).

Remark 3.1 For a compound Poisson type Lévy process i.e. a Lévy process with all tra-
jectories a.s. piecewise constant, d in (3.10) is zero. Another important thing to note here

is that the characteristic triplet of X is not given by (d,0,v) but by (ao, 0, v).

The variation of a Lévy process can be characterized by its Lévy measure:

/000(1 Alz)v(dz) = (3.11)

finite if X, is of finite variation.
00 if X; is of unbounded variation.

We are now in a position to define a subordinator.
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Definition 3.1 If the Gaussian component of a Lévy process b*> = 0 and the Lévy measure
v is defined on (0,00) such that f,°(1 A z)v(dz) < oo then the Lévy process is known as a

subordinator.

From this definition it is clear that subordinators always have positive increments and are
Lévy processes with a.s. increasing trajectories.

The value of a subordinator X;, at each ¢ > 0, is a positive random variable. Thus
subordinators are increasing (weakly) Lévy processes. It is convenient to describe them
in terms of their Laplace transform (since here it always exists) instead of their Fourier

transform. Consequently (3.10) implies that
E[e***] = exp [t{ds + /(esz -1) V(dl‘)}] = =), t>0, seR, (3.12)

where [(s) where is called the Laplace exponent of the subordinator X.
All these facts yield the following proposition which completely characterizes a subor-

dinator.

Proposition 3.2 Let {X;;t > 0} be a Lévy process on R. The following conditions are

equivalent:
[i] X; >0 a.s. for somet > 0.
[ii] Xi > 0 a.s. for every t > 0.
[iii] Sample paths of X; are almost surely non-decreasing:
t> { = X, > X; a.s.
[iv] The characteristic triplet of X, satisfies b2 =0, v(—o0,0] =0,

Jo (LA z)v(de) < 00 and d = ag — [, ., zv(dz) > 0, that is X; has no diffusion

component, only positive jumps of finite variation and positive drift.

For a proof see [5].
We end this section with a nice construction showing how subordinators can be obtained

from Poisson point process.
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Theorem 3.1 Let d > 0 and let (A;)i>0 be a Poisson point process with intensity function

g : (0,00) — [0,00) (or intensity measure v on (0,00)) such that

/000(1 Az)g(z)dr < oo <0r /(0,00)(1 Az)v(dz) < oo) ,

then the process X; = {dt + Zt»g A;;t > 0} is a subordinator with moment generating
function E(exp {th}) = exp {t\Il(s)}, where

wg=@+4ﬂw—nm@m er@=@+/

(0,00)

@“—nuum).

For a proof of see [19].
Note that the g in Theorem 3.1, in (2.24) and (2.25) is the same.

3.3.1 Examples of subordinators

Here we will discuss some frequently used subordinators. We will derive in closed form
the Laplace exponents of gamma and a-stable subordinators hence getting their moment

generating functions.

Poisson Subordinator

Comparing (2.11) with (3.12) we can easily see that the Poisson process {N;;t > 0} is a
subordinator with d = 0 and v(dz) = X §;(z)dz where &, is the discrete unit point mass at
jump size 1.

Compound Poisson Subordinator

Comparing (2.13) with (3.12) we can conclude that the CP process is a subordinator with
d = 0 and Lévy measure v(dz) = Af(z)dz, for z > 0, where f is the probability density

function of the independent and identically distributed non-negative jump sizes.

Gamma Subordinator

The process with gamma distributed increments is known as the gamma process. From

Example 1.2 it follows that this process is a Lévy process. Thus if X; ~ gamma(a, §) then
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X; ~ gamma(at, §). The moment generating function and Laplace exponent are given by:

at o]
E(exp{sX;}) = (%) = exp {t/o (e**—1) %e_ﬁz dz} = et'=2 s< fB. (3.13)

Hence by (3.12), X = {Xt; t> 0} is a subordinator with d = 0 and the Lévy measure

defined as v(dz) = %e‘ﬂz dz. Its Laplace exponent is given by:
00 —sT a —pBz
I(s) = (€75 — 1)—e ""dr, s<p. (3.14)
0 x

In (3.13) the first equality follows from Example 1.2, however the integral in the second
equality is mathematically tricky to evaluate. Here are the details.

For simplicity let a = 1 and assume that

/ (1- e"s’)%e_ﬂ’”dm = g(s), with g(0) = 0.
0

Observe that for fixed # > 0 both sides equal 0 at s = 0. It is therefore sufficient to show

that g is such that the s—derivative on both sides coincides.

Now to check that on left side the differentiation under the integral is plausible we need to

ensure that after differentiating the integrand the result will not diverge. This is true as:

dis[(l _ e—sx)%e—ﬂz] _ e~ P < o
where # > 0 can be fixed in such a way that the dominance holds for any s > 0. Figure
3.1 shows a typical example of such a dominance.
Since z — e#* is integrable on [0, co), for § > 0, the differentiation under the integral

is plausible. Hence we have:
[oe)
/ e *Te Pdx = ¢'(s).
0

That is,

and hence
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d ?
0 infinity

Figure 3.1: Dominance of e=#* (dotted-line) over e~**e¢~%* for # = min{s | s = 0.5 (red),

s =5 (green), s = 50 (yellow)}.

where the constant C' is assumed equal to 0 without loss of generality. Hence

—Il(s) = alog (w) and so  Il(—s) =log (L)a, s<f.
B 8—s
Finally
ot=s) — glog (725)° _ (ﬂé S)o‘t, t>0 and s<f.
Hence the second equality in (3.13) holds.
a-stable Subordinator
The process with Lévy-Khinchine representation given by:
o 1
E{exp{—th}] = exp {t/ (e7%F = 1) Hd:c}, s> 0, (3.16)
0 z*

is known as the a-stable Lévy process. Comparing this expression with (3.12) we see that
X = {X;; t > 0} is a subordinator with d = 0 and v(dz) = —=dz. Its Laplace exponent
is given by:
> —8T 1
I(s) = /O € ~1)apds,  5>0 (3.17)
Like in the previous example, obtaining the closed form

1

exp {t/ooo(e_sz — 1)de} = exp {tM

s}, s> 0, (3.18)
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is mathematically tricky. As before we are looking for h satisfying:

/ Tl 1) —dz=h(s), with  h(0)=0,

:L-oH—l

% </0°°(1 _e_sz)xa1+1dx) = K(s), (3.19)

up to a multiplicative constant. Differentiation under the integral is plausible since:

and for fixed o > 0

d 1 e % 1
. _ —S8T . — < _ :
7 ((1 e )za+1) — <o for a suitably fixed @ > 0,

where z +— I%, for @ > 0, is integrable on [0,00). A typical example of such dominance

appears in Figure 3.2. Hence we have

infnity 3

o,
~ o,
Nid]
°°°°°°°°

oooooo

ST

for a =

Figure 3.2: Dominance of the graph of - (dotted-line) over the graphs of ¢

I(X

B =min{s | s = 0.5 (red), s =5 (green), s = 50 (yellow)}.

/ g1 lems2 gy — p/(s) = T -a) = h'.(s)

0 5(1—0)

That is

h(s):/o*sr(l—a)dz:F(l—a){sa_o}zysa s> 0.

Z(l—a) a ’

Therefore I(s) = F—(la_—a)s“ and hence for s >0 and t > 0

E(exp {—sX.}) = exp {t /0 Tle 1) dx}zexp{tz(ia_—(s)a} L (3.20)

xa—}—l
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Remark 3.2 [On the a-stable subordinator]
[1] From the expression in (3.20) we have the notion of stability:

E[exp {—scéX%}] = exp {EM(scé)a} = exp {tMsa},

o o
which implies that caXe ~ X;.

[2] More generally one can consider the tempered stable processes with v(dz) = —5r exp {—pz}dz

with the tempering factor p > 0.

[3] For an a-stable process to be a subordinator we must have o between 0 and 1.

Inverse Gaussian Subordinator

Sparing details we mention that equation (1.2) can be written in the form of equation (3.12).
Then it can be shown that if X; ~ IG(u,§), the inverse Gaussian process X; ~ IG(ut, 9)
is a subordinator with Lévy measure v(dz) = \/—z_ﬁgﬁ exp { — 36%z}dz, z > 0.

The next chapter focuses on the estimation problem of subordinator for the aggregate
claims process in insurance settings. A recent work on parametric estimation of subordi-

nator is [12].
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Chapter 4

Estimation of v and )\

We saw, in the previous chapter, that the estimation of v is of great importance in revealing
the distribution of jumps of size greater than some threshold ¢ > 0. This distribution
corresponds to F¢, the distribution of claims larger than the threshold € in an increasing
insurance claims process driven by a subordinator. In this chapter we discuss the estimation

of v as well as that of A for the underlying subordinator.

4.1 Insurance Aggregate Claims Process

Consider the aggregate claims process of an insurance company. A close look reveals that
this can be modelled as a Lévy process, or more precisely as a subordinator. Here the
positive drift may be generated by small claims. This liability may not be a problem for
the company as its impact may be accommodated by redistributing different assets. But
the insurance companies remain cautious about the occurrence of claims larger than some
threshold. This threshold itself is a parameter to be determined by the insurance business.
So knowledge about the distribution and rate of claims larger than a certain threshold is
of interest in an insurance business.

Here our goal is to estimate the rate A, and the distribution F* of claims (or jumps)
larger than some threshold € > 0 from a set of observed values sampled from the claims
subordinator process. There are many other exciting applications of subordinators in fi-
nance and insurance. For a recent application of a subordinator in Risk theory we refer

to [8]. In the case when the process is of jump-diffusion type, rather than a subordinator,
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[11] is a recent reference with applications to both in insurance and finance.

There may be three different sampling schemes:

Scheme 1: Estimation of a Lévy driven increasing jump process based on continuous
time realizations such as {X,; 0 < s < t}.

Scheme 2: Estimation based on a set of discrete time observations, say,
Xt,, Xty -, Xz, at fixed time points ¢1,%9,- - ,t,, of a Lévy driven increasing jump pro-
cess.

Scheme 3: Estimation based on a set of discrete random time observations, say
Xy, , Xrt,, where the random time points T3, 75, - - - represents claim arrival times.

With these observations it is of interest to estimate A and v which in turn reveals the

distribution of jumps of a given magnitude falling in some Borel set A C [0, 00).

4.2 Some Motivations

We discuss an estimation procedure for the jump function associated with a Lévy process.
In Theorem 2.1 we saw that the distribution of X; is infinitely divisible for each t. The

logarithm of the characteristic function of X;, can be written as:

, , ist 7 (1+2%)
log @x(s) =iats +t [ [ —1-
og Px,(s) = tats + /_oo e (1+a:2)] 5

This is known as the canonical or Kolmogorov representation, see [13], [10]. Here a is a real

o

dG(z), s€eR. (4.1)

x

constant and G is a bounded non—decreasing function with G(—o0) = 0. This G is known
as the jump function. Section 4.3.3 shows how this representation of the logarithm of the
characteristic function is related to the logarithm of the characteristic function appearing
in (2.4). We recall that the distribution of X, is the convolution of a normal law and a

possibly infinite number of Poisson laws. The followings are two important properties.
Property 4.1 The function G in (4.1) satisfies the following properties:
/1] The jump of G at x = 0, i.e. 02 = G(0F) — G(07), is the variance of the normal

component.

[2] Its set of points of increase for x # 0 gives information as to the nature of the
Poisson components, i.e. the relative density of the magnitude of the discontinuities

of the sample function.
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We explore these facts further, since we believe these are the motivating factors in the
application of the theory of infinite divisibility and hence the theory of Lévy processes.

First let us discuss the relationship between the jump function G and infinite divisibility.

4.2.1 Jump function G and infinite divisibility

To make things simpler let us consider the following lemma.
Lemma 4.1 In the case where the random variable X; in (4.1) has a finite variance:

[1] There exists a real constant a* and a bounded non-decreasing function H such that
(4.1) takes the form

o o]

: 1
log ®@x, (s) = ia*s + / (e —1-— isx)PdH(w), seR. (4.2)

—00

[2] The random variable X; has finite variance if and only if

/00 (1+ z%)dG(z) < oo, (4.3)

and then the relation of H to G becomes

H(s) = / s (1+ z%)dG(x), (4.4)
for all s € C(H) and that of a to a* is
a*=a+ /00 zdG(z). (4.5)

Proof.  See [10] for Part-[1], which is in fact the proof of (4.1) for a simpler case. A
rigorous treatment of the relations in Part-[2] can be found in [13]. O
Here we recall Remark (1.5)-[5], suggesting the cut-off function C(x) = 1 when finiteness
of the variance of the distribution implies finiteness of the Lévy measure. For more general
results on the finiteness of the integrals involving Lévy processes we refer to [6].
The following proposition characterizes the relationship of jump function G with in-

finitely divisible distributions.
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Proposition 4.1 FEquation (4.2) is the characteristic function of an infinitely divisible
random variable X such that
E(X;) =a" and V(X1) = / dH(z) =b".
R

Proof. Differentiating (4.2) with respect to s we get:
P’ _ {ia‘s+f_°° (ei”—l—is:c)—lde(a:)} . x * isz 1 dH 4.6
X, (8) =e o z ia” + (ize —zx)ﬁ ()] - (4.6)

-0

So @', (0) = €°[ia* + 0]. Thus {E(X;) = @ (0) implies that E(X;) = a*.
Differentiating (4.6) with respect to s we get:

;¥ o0 isx : o0 ; ]- 2
By (5) = eliamsHf (e —1misn) ()} [ia* + / (ize'*® —iz)de(x)] (4.7)

yelinst [ (e —1ise) JdH ()} { / " (1'291726"‘”)%05H (‘”)] )
—00 z

/)1(1(0) — eo[ia*]2 _ 60[/00 dH(([;)] _ _a*2 — b

oo

Then i’E(X?) = %, (0) = —a*® — b" implies that E(X?) = a*? + b*. Hence V(X;) =b*. O

Remark 4.1 Considering (4.3), (4.4) and (4.5), a similar result can be proved for (4.1).

4.2.2 Explanation of Property 4.1

Let us come back to Property 4.1. Assume that H has a point mass of ¢ (it will be clear
later why we use the symbol 02) at £ = 0 and a density of A\z? at = # 0. Then from (4.2)

the characteristic function of the process in (4.1) can be written as:

. 1 4 1
log @x,(s) =ia*s +/ (e** — 1 —isz)—dH(z) +/ (e" —1—isz)—dH(z). (4.8)
{0} r R\{0} T

To see what is the value of the first integrand as £ — 0, consider

. s 1 . 1se¥® — s e
iﬂr(l)(@ -1- ZS$)F = i% o by L'Hopitals rule,
) (iS)Zetsac _82
200 2 2 (4.9)
Then (4.8) becomes:
2
Oy, (s) =exp {ia*s - f2— dH(x)} exp {(em -1- ism))\}, s €R, (4.10)

{0}

44



82

= oxp {ia’s = SIHOT) ~ HO]} exp M~ 1)} exp {is(-aN)},

~ O\ s\ 7

Pa;?—l Part—1I1 Part—-I11

(4.11)
where Part-1 is clearly the characteristic function of say ¥; ~ N(a*,b) and b = |, 0y 4H (z) =
H(0%) — H(07). This explains why we represent the point mass at £ = 0 with the symbol
o2 and proves the first claim that the jump H(0%) — H(0™) of H at x = 0 is the variance
of the normal component. The same is true for G since from (4.4), with condition (4.3)
guaranteed by the finite variance, we have:

dH(s)
ds

-+ %)

which implies that
H(0") — H(07) =dH(0) = dG(0) = G(0") — G(07).

From (4.5) at z = 0 we have a = a*.
Part-II is the characteristic function of a Poisson(A), but not at s, rather at sz. Since

we know that for any random variable X,
D x(ct) = /ei(Ct)’”dFX(:v) = /e“(”)de(:c) = &, x(t), teR.
Hence Part-1I represents the characteristic function:
D pois(n) (5T) = Papois(n)(5), s €R,

of a random variable, say Y = xPois()\).

Finally Part-III is clearly the characteristic function of I{y,—_.x}. Hence ®x,(s) is the
product of three characteristic functions ®y, (s), ®y,(s) and Py, (s). Now by the uniqueness
of characteristic function we can conclude that X; = Y;+Y,+Y3 where Y;’s are independent.
Therefore Fx, = Fy, * Fy, x Fy,.

Now we can easily see that
E(X:) =EY, +Y2+Y3) =a" + 2\ — 2\ = a¥,
and
V(X)) =VY1+ Y2+ Y3) =02+ 22X+ 0=b".
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This explains Proposition 4.1.
Again from (4.8) we can write:
; 1
®x,(s) = Pn(ar,02)(s) exp{ (e — 1 —isz)—dH(z)}, s €R, (4.12)
R\{0} T
where we have seen that exp {\(e*** — 1 — isz)} is the characteristic function of Y2 —z A =

z[Pois(\) — \], a transformed centered Poisson random variable. Since e*¢**~17is2) —

[6%(61'”_1_"“)]71, (4.12) implies that:
Px,(s) = PN(ar02)(s) [‘P{z(pois(%)_%)}(S)] :

It means that X, is the convolution of a N(a*, 62) variable and the n-fold convolution of a

z[Pois(A\) — A] random variable.

In general:
; 1
Px,(s) = Pn(a=oz)(s) exp {/ (e —1— isx)—2dH(x)} (4.13)
R\{0} z
- ekt 18T . 1
= Py 02)(s) exp ; /ai (e —1-— zsx)FdHi(x)

where UOO [a”i’ ai+1] = R\ {0}? Hl(x) = H($)H[ai,ai+1](z) and H(ai+1) - H(ai) 7é 0.

1=—00

This last equation summarizes the spirit of Property 4.1-[2]. It says that H; is the relative

density of the jumps of size in the interval [a;, a;41].

4.3 Estimating G

Assume that the experimenter can observe a sample function of X at any finite number of

chosen values of t. Accordingly for any integer n, let
V=X 2 Xe - Xoy, k=1,...,nN.

Then the following estimator of G in (4.1),

nN
1 (¥)?
GFVn(S) =% n H[Y"Ss],
7N T ™
which is proposed in [15], is proved to be strongly consistent in the following sense:

P{lim lim Gy,.(s)=G(s) forall seC(G)} =1,

n—o0 N—oo
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where C(G) denotes the set of all values of s at which G is continuous. Here N = [Tn],
T being the largest observed time value. One drawback of this estimate is that it is not
necessarily an unbiased estimate of G(s), at all s € C(G).

If we have an estimator of G, we can then relate it to that of the Lévy measure v.

4.3.1 Description of the method for estimating G

The method is based solely on necessary conditions for a general central limit theorem for
sums of independent random variables. The statement of the theorem can be found in (9],

and is reproduced here as follows.

Theorem 4.1 In order for some suitably chosen constants Ay, As,--- , A, and the distri-

bution function of sums
Wn - Zn,l + Zn,Z + -+ Zn,kn - An

of independent random variables Z, , with distribution F, ;, to converge to a limiting
distribution function, it is necessary and sufficient that there exist a bounded non—decreasing

function G such that

kn s 2
z
kg=1 /_oo man,k(Z + /B'n,,k) — G(S), CES C(G), (414)

as n — oo and where B, = f_rr 2dF, k(2) for arbitrary r > 0.

One consequence of this theorem is that A, can be written as a sum A, = G,1 + B2 +

++++ Bn .. Hence
Wn = (Zn,l - /Bn,l) + (Zn,2 - ﬂn,Z) +---+ (Zn,kn - :Bn,kn)-

Now since the limit of infinitely divisible distributions is infinitely divisible, then the loga-

rithm of the characteristic function of the limiting distribution is of the form

isz ) (1+ 2%)
1+ 22 22

log ®(s) = ias + / (e — dG(z), seR. (4.15)

The function G in (4.15) is the same as in (4.14) which leads to avail an estimator of G.
By necessity and sufficiency in Theorem 4.1 the pair (a, G) determines and is determined

by this limiting distribution.
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In case the limiting distribution has a finite variance it is known that its characteristic
function is of the form (4.2) and then the relation of H to G is given by (4.4).
In the case of the Lévy process X = {X;t > 0} we have

Yi'=Xr — Xi, for k=1,2,--- ,nN.

n

3 |

Letting n € N* we see that our infinitesimal system of random variables satisfies

Yln+Y2n+"‘+Ynn = (X%—Xo)-f-(X%—X%)+"'+(X1—Xn_—1)
= X].

Hence the distribution of X; is the limit law of the distributions of this sequence of sums.
In this case since ¥} = X £ — X k1 2 x 1 (which is independent of k) and F,x(y) is,
for fixed n, the same for all k¥ (n fixed), hence it is denoted as F,(y). Consequently
B = Bn = [ _ydFu(y) for 1 < k < n. Then using (4.14) we have

s y2 s y2
/_ P ) 4t / TR —G6), (416)

that is

s 2
n/_oo (lij_y2)an(y + Bn) — G(s), s € C(G)

as n — 0o. Thus with

s 2
Gn(s) = n/_oo (1_?+}_—yz)an(y + Gn), s €R, (4.17)

we have G,(s) — G(s) for all s € C(G). So clearly the presence of 3, is the only problem
in establishing an estimator for G(s).

Now we show that for our purpose the presence of 3, is redundant, i.e. letting

~ . S y2 s
Gn(s) = n/_oo T+ y2)an(y), eR, (4.18)

we need to show that G,(s) — G(s), as n — oo, for all s € C(G).
Accordingly, let

*k —n ° (y - /Bn)2 S
G (s) = /_oo T+ (v - 677 dF,(y), eR. (4.19)

Using (4.17) and (4.19), we get a relation between G,(s) and G}*(s) as:

*k _ s+ (y - /Bn)z
Crls+hn) = n/_oo [1+ (y - 6r)?] W)

= n/_s (1+Ly25an(y + Bn) = Gu(s), s€eR. (4.20)
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We now need to prove the following results. These results can be found in [15] but we
reproduce them in a more accessible form. The first result is on the convergence of G;*(s)

defined in (4.19).

Lemma 4.2 G}*(s) — G(s) as n — oo, for all s € C(G).

Proof. For s € C(G) fixed and arbitrary € > 0, there exist a § > 0 and an integer N,
such that s + 6 € C(G) satisfy
G(s+6)—G(s—9) < % and Gn(s+9) — Gn(s — ) <,

while |3,| < 6 for all n > N. The inequality involving G,, follows because we have G,,(s) —
G(s) implying that

[Gals +8) = Gals = 8)] € (G(s) -~ &,Gls) +¢).
The above inequalities imply that
‘ [Ga(s + 8) = Gu(s — 8)] — [G(s +8) — G(s — 6)] ‘ <= (4.21)

Hence for all n > N,

G+ =G| = o[ " (eareyas o AERE
= |Gu(s) = Gn(s = Bn)), by (4.20)
< |Gals +0) = Gals = 0)]
< |[Ga(s +6) = Gu(s — 8)] — [G(s + 8) — G(s — )]
+|G(s +4)—-G(s— 6)] , using (4.21),
< €,
completing the proof. O

With the convergence of G%*(s) we now prove the convergence of Gy, (s).

Lemma 4.3 If s <0 and if s € C(G), then Gn(s) — G(s) as n — .

Proof. In order to prove this lemma we consider the function

¥ 14y -5
1+ (y—B)?

faly) = y <s, (4.22)
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where s € C(G) is fixed. Then f,(y) is finite for all sufficiently large n.

Now from (4.19) we have

dGy(s) _ (s= )’
dFy,(s) 1+ (s—Bu)?°
that is ( )
*k =7 Yy— ﬂn 2
Therefore, from (4.22) and (4.18)
| 56w = Guts). (4.23)
Hence
1Gate) =66 | < | [ nwaerw) - [ aerw)|+] [ dere)-66)
< sup|faly) ~ 1|7 (s) + |Gi7(s) — Gls)| — 0 asn — oo,

where the last convergence follows from Lemma 4.2 and the fact that f,(y) converges
uniformly to 1 over any closed set not containing zero. Hence the proof is complete. o

With a similar argument the following result holds (see [15] for a proof).
Lemma 4.4 If0 < a <b and if a,b € C(G), then
{Gu(b) = Gul(a)} — {G(b) — G(a)},
as n — oo.

Lemma 4.2 and 4.3 can now be used to prove the following more general theorem on

convergence.

Theorem 4.2 If s € C(G), then G,(s) — G(s).

Proof. Since in the case when s < 0 the convergence is shown in Lemma 4.3, we need to
prove the theorem only in the case when s > 0. We begin by establishing two inequalities

which are the building blocks for the proof:

1
[14 (7 +16a])?]

{n /_ : V2 dF,(y) — 2063 + nfa [Fu(r) — Fu(—)] }
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1

= [1 4 (7- + |/6 |)2]n/— (y - 5n)2an(y), for any T € ]R,

T =B T
s n/_ i+ gygi-wsn /_ = AR ) (4.24)

— / ’ y2dF,(y) — 2nB, /_ ' ydFo(y) + np2[Fa(r) — Fu(=71)]

-7

< n / ' Y dF,(y) — nB2, since [Fy(r) — Fu(-7)] <1, (4.25)
and
o[ i@ <arn [ coanm < [ pinw. @)

Now with the above inequalities we obtain:

" (y - ﬂn)z

< e l)n |t Pdn (4.27)
+[2 = Fo(7) + Fo(—7)nB2, by (4.24),
< [+ [ )
F[1= (7 + 1Bal)? = Fa(r) + Fa(—)]n2, (4.28)

using both (4.24) and (4.25).
Finally using (4.26) we get

y?
man(y)

+(1+7%) [1 — (T +Bnl)? = Fu(7) + Fn(—T)}nﬁ;‘;.

T y2 9 2 i

(4.29)

For the type of Lévy process that we consider, the sequence of constants {A,} must nec-
essarily be convergent. Hence A,, = ng, are bounded. This in turn implies that 3, — 0 as
n — 00. However we will revisit this again in the next section. For the moment we use the
fact that

nB2 —0 as n— oo. (4.30)
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Now with the selection of 7 in such a way so that 7, —7 € C(G), inequalities (4.27) and
(4.29) together with Lemma 4.3 imply that:

limnsup {n /_: #df_‘n(y)} < 1+ [G("') - G(_T)]

T 2
< 2)2im inf / Y __4F,
< (1+719) im in {n Sy (y)}

(4.31)

Now applying Lemma 4.4 with 0 < 7 < s we get:

i {n [ Him - [ iR} =66 - 60

s 2 T 2
. Y Y
+tim {n [ 2ar) -n [ oan)} = 606) - 60
e 2
. Yy
+ lim {n / . T F)]
2

= lim {n/_m ly—zzan(y)} =G(s) — G(1) + lim {n/_T Y _4F, (y)}

n—oo +y n—o0 - 1+ y2 "
+G(—7).
Now applying (4.31) we get:

1
1+ 72

lim inf{n /_ T an(y)} > G(s) — G(r) + (G(7) = G(=)} + G(=).

n—00 1+ y2

Taking limit on both sides as 7 — 0 we get:

n—o0

s 2
- y

Similarly it follows that:
s 2
lim sup {n/ y—2an(y)} < G(s), s € C(G).
n—00 o0 1+Yy
Hence the proof is complete. m]
Theorem 4.2 implies that

Gre) =3 B[ amles] — G), s€C(6).

as n — o0o. Since the Y*’s are identically distributed for each k we have:
¥e)?

Go(s) = nm[wn{%s}] —G(s), seC(@), (4.32)
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as n — o0.

Now by the strong law of large numbers:
niN
. 1 Y 2 .
N’n(S) = — Z (L)]I[Yknss] — Gn(s)’ (433)

with probability one, as N — oo, for every value of s and for every fixed n. Since G(s) and

~.n(8) are non-decreasing in s we have:

P{ lim lim Gy,(s) =G(s) foralls € C(G)} = 1.

n—oo N—oo

Thus the estimator to be used for G(s) is Gy, (s), as defined in (4.33).

4.3.2 On the convergence of [,
In this section, assume a particular form of the Y;*’s as:
A, —
Y= :\/ﬁﬂ, where 4 = E(4;) and o2 = V(4,).

By the central limit theorem we have

n
ZY,C"—&N(O,I), as n — oo.
k=1

Now by Tchebychev’s inequality, for any a > 0,

P(|A1 — p| > gav/n) = P(|4; - P4, —upoayiy > 0aV/T) (4.34)
E[l41 — pPLia, - pizoaymy]
= o02a?n ’
Furthermore,

n—oo

Ua\/I < Ua\/§ LI ]I{IAI—MSUG\/I} < ]I{'Al—#lsaa\/i} s — ]I{|A1—p,[§oo}~
Hence by the monotone convergence theorem
E[|A1 = u’ka,—pi<oaymy] — E[lA1— pl’] = 0%,

So

1
(@) = B[l — b Tjapzoaym)]
1
= 02a2]E[|A1 — ulPTga,—pi<ooy — A1 — T 4, —pi<oaym}]

1
= =5 [02 CE[A1 — 1Pga, <on ﬁ}”,
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and hence

Tn(a) — 0, asm — 00.
Also (4.34) implies that
P(|A; — p| > oay/n) < %T@. (4.35)
Now if M,, = max {|Y{,---,|Y,}|} then

P(M,<a) = P(WI<a- ¥ <a
= [POvI<a)]
I S

> 1—7"—w)] — el =1, as n — o0.

n

This implies that
P(|M,| >¢) =1-P(|M;| <€) =50, forall e>0.
So M, — 0 in probability. Thus

-
By = / ydF,1(y) — 0, as n — oo,

for r > 0.

4.3.3 Relation of G and v

In this subsection we discuss the connection between G and v. This relation leads to avail
an estimate of v from that of G.

We can split log @, in (4.1) to write it as:

— 4 1ST ST (1 + $2)
log®y,(s) = iats +t/m\{0} [e 1 i+ xz)] p dG(z)
isx ) 1 + 5132
+t/{0} [e - (1:2:2)] ( > ) 4G(z). (4.36)

Now applying ’Hospital’s rule, as in (4.9), we see that the integrand

2

isx ] (1+z%) —s

li [ isT 1— _
20 [ (1+4+22)1 22 2
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Hence the second integral in (4.36) reduces to:

2

ist isz  1(1+ 2?) =S
/{ ) [ 1~ 5 +a:2)] Cd6() = - [00+) - GO-)]. (437)

Further, we observe that

isa isz (14 z?)
[e —1- (1+:r2)] 22
(e — 1)(1 +a?) s

(1+ x2)

- — + ZSQ:]I“,;KH

T
e — 1 —iszl |x|<1)

1
- — + zs]I[|z|<1]— + ’LS:Z?]I“:,;|<1]

1 + z2 .
et —1— ZS:E]I“x|<1]) ( = ) + ; []I[lz|<1] - 1] + ZS.’L‘]I[|E|<1].

= (6 —-1- ZS.’L‘]I[|z|<1]

Hence the first integral in (4.36) becomes:

/ [em—l— zsxz](l-f-a;)dG()
sz . 1+ x2 . ]‘
= / (e —-1- ZSSC]I“IKI]) ( B )dG(:L') + ZS/ []I[|Z|<1] — 1] dG(.’L‘)
R\{0} d R\{0} ¥

+is/ x]I[|m|<1]dG(a:)
R\{0}
, 1422 1
= / (em -1- isa:]I“zK]]) ( +2a: )dG(x) - z's/ —dG(z)
R\{0} z R\(-11) £

+is / zdG(x).
(—=1L,1\{0}

Therefore we can rewrite (4.1) as

(I)Xt(s)
. 1+ 22 1
= exp {iats + t/ [e’” -1- isx]I”mkl]] ( +2$ )dG(.’L‘) — ist/ —dG(:v)}
R\{0} z R\(-1,1) ¥

2
exp {ist /(_1’1)\{0} zdG(z) — % [G(O+) - G(O—)]t}

= exp { [a - /R\(_l’l) %dG(m) + /(_171)\{0} a:dG’(:c)]t - S—;[G(O+) - G(O-—)]t}
exp {t/]R\{o} [ei” -1- ism]I[|z|<1]] (1 + ad )dG( )} (4.38)

Comparing (4.38) with (2.4) we see that for the characterization of Lévy—Khinchine’s for-
mula in terms of G, as in (4.1), the drift is [ fm\( "y 1dG(z) + f( LI\0} zdG(x )]
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the Gaussian component is [G(O-}—) - G(O—)] and the explicit relation of G and v is
v(dz) = £li—fz)dG(ac).

Finally in case of subordinator, (4.38) reduces to:

®x.(s)
t
) . 2
e{is [a= a1y 2AC@+S1 a0y 2AC@)] tt f g0y [e557 - 1-ish o %’;_)dc(z)}

(s) = & S OO0

G being non-decreasing and its estimator being G} (s N 1 TR

]I[yn<s], as in

(4.33), it now follows that an estimator of

I/[E,OO)I/eool/(d.’II)=/€ (1;_1} )dG( )

can be obtained as

. 1+ (Y22 (V) 1 & 14 (V)2
V[E,OO) = — Z (Y" T+ (Yn)z]l[yknsoo] - N Z (Yk”)z 1t (Y;c")z]l[y"nse]
1

1 1
= ¥ Z Ty <co] = 7 Z Iyvp<- (4.39)
1 1

4.4 Estimating A,

In this section we discuss an estimation procedure for the rate A, of the Poisson process
associated with the jumps larger then a certain, predetermined, threshold ¢ > 0. There
may be several ways to get such estimates. We solely present one based on maximizing the
likelihood function.

Assume that we observe the process at equally spaced time points {t } _, such that
t; — t;—1 is constant. Further assume that n; < ns < --- is a set of non-negative integers,
including zero, such that the n; are the number of jumps larger than the threshold ¢ > 0,
at some observation point, not necessarily at the i** observation point. Then a typical set
of observations may be as follows: nodes t7*,¢5", - - ,t;‘:l corresponds to ni jumps larger

than threshold, nodes t72%,t52, - - - ’tj:2 corresponds to ng jumps larger than threshold and

so on. Where

Z #{t™; nodes (time points) which accounts for n; jumps larger than €} = n.

)
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Then the corresponding likelihood function can be written as:

e‘“/\eA?l j"l e_AeA?Q j"'2 C_A‘/\?i j"li
L(/\e)=< ! ) ( na! > ( ;! > (4.40)

where n;’s and j,,’s are need to be computed from data.

4.5 Claim Size Distribution Through ©

In this section we discuss the distribution of jumps which are larger than a certain threshold
€. We will see how we can approximate such a distribution using our estimator of v.

The conditional distribution of jump-sizes AX given that AX > ¢, can be obtained as:

Fix(z) = P(AX<z|AX >¢)

[7 fy)dy ;o
m y where F' = f
_F@-F© o
- —Fg d F=1-F. (4.41)

Now from the relation between v and F' we have that v(0,z) = AF(z), where A =

I3 v(dz) = v(0,00). So

_ _ v(0,z)
F(z) = 1- 3

A = {v(0,00) — v(z,00)}

vz, 00)
- B2 (4.42)
Thus from (4.41),
Fix(z) = A{Fl(jzz ;OI)?(C)} (4.43)
However using the relation between v and F' we have:
Fla) = F() = 1{v(0,2) ~¥(0,6)}
= %[V(0,00) —v(0,z) — {u(O, oo) — (0, e)}]
1
= X{I/(E, 00) — v(z,00)} . (4.44)
Then (4.43) turns into:
Fix(z) = 20— 15,00) (4.45)



Clearly from (4.43),
MF(e) — F(e)}

(e, 00)

Fix(e) = =0

and
P (o) = MFC) — FO)

So F5 x(z) is a distribution on (¢, 00).

=1, considering (4.42).

v(e, 00)

In practice we do not know from which distribution our claims arise. We just know a
finite set of values of claims which are larger then some threshold e. Equation (4.45) then
helps us to obtain a purely non-parametric approximation of the underlying distribution

of such claims through the estimator of v.
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Chapter 5

Numerical Implementation

In this chapter we test our estimators numerically for estimating the intensity rate A of
jumps exceeding the threshold € and for approximating the conditional jump size distribu-
tion of jumps larger than e. Finally we compare our approximation with the theoretical
and estimated distributions of such jumps.

Observations are sampled from simulated aggregate claim subordinator paths. We
simulate gamma, inverse Gaussian and o-stable subordinators on a time interval of [0, 500].

We sample the path at nodes spaced equally by 50 time units, that is we sample at time
points 50¢, for 4 = 1---10. Then we estimate the average number of jumps, A, larger than
a given threshold ¢, occurring between two consecutive nodes. We use equation (4.40) for
this estimation.

To get an estimate of the Lévy measure v(e, 00) of a subordinator X = {X;; ¢t > 0}
with jump exceeding the threshold , we use (2.24) and (2.25). Note that, by Theorem 3.1,
to such a Lévy process there corresponds a Poisson point process of rate A. Now recall our
estimate of rate A, is a per node estimate, where the nodes are at time points 50i. Instead if
our program uses only one node at time point 500, our rate estimate is just the number of

jumps in [0, 500] which exceed the threshold e. This rate is the same Poisson rate appearing

in (2.24). Thus we obtain:
|500 — OI/ g(z)dz = §{t; 0 <t <500, AX; € (e,00)}.

The number on the right hand side is an output of our program for any simulated path of
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a subordinator. Thus we have

_ #{t10<t <500, AX, € (e,00)}

=00 (5.1)

D(e, 00)

We then apply (4.39) to estimate the Lévy measure through the estimator of G. We
compare these two estimators of the Lévy measure.

These estimates are consistent with the definition of Lévy measure of a Lévy process
appearing in Definition 2.1.

We produce four plots for each model, with their estimated A, and v, corresponding to
different thresholds. The decreasing threshold sizes show the convergence of the truncated

jump sample paths to the original non-truncated jump paths which agrees with intuition.

5.1 Estimation of the Rate A,

In this section we use our estimators of Lévy measure to estimate the rate A, of the ag-
gregate claims process. We produce such estimates for both gamma and inverse Gaussian

subordinators.

5.1.1 Gamma process

The chosen simulation parameters for the gamma process are o = 0.09/20 and § = 1.
These parameter values make the sample paths easily observable at different jump sizes.
However one can rescale using the fact that for a gamma(1,1) process X = {Xt; t > 0},
the process X* = {aX gt} t > 0} is gamma(c, 3). A useful reference for simulating gamma
and variance gamma processes is [2].

We produce four sample paths of the gamma aggregate claims process using the same
parameters above. The paths of threshold exceeding aggregate claims process corresponding
to different thresholds appears with each path. All the graphs appear in Figure 5.1. The

corresponding estimates are summarized in Table 5.1.

5.1.2 Inverse Gaussian process

In this section we apply our estimators on inverse Gaussian aggregate claims process for

threshold exceeding claims. The chosen simulation parameters are g = 200 and 8 = 0.3.
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$ampla Pah of the Gamma Process for the Thrasnoid 1.2

{a) Threshold 1.2 (b) Threshold 0.5
— ol | M T -
,ij'
L
2 '_,/'_F
[ & {}’J_d-’/'
gf( ,__'/_
(c) Threshold 0.05 (d) Threshold 0.01
Figure 5.1: Gamma (a = %, 8 = 1) and truncated gamma processes for the thresholds

€=1.2,0.5,0.05 and 0.01.

However we mention that if X ~ IG(u,6) then, for any ¢ > 0, cX ~ IG(\/E}L,%).
This rescaling property can be used to model different jump sizes. Figure 5.2 reports
four simulated paths for the inverse Gaussian aggregate claims processes together with the

corresponding threshold exceeding paths. Estimates are summarized in Table 5.2.

5.1.3 «-stable process

We apply our estimators on a-stable aggregate claims process for different thresholds.
Here we mention that simulating positive a-stable process is a bit involved. A very useful

reference is [18]. We simulate standard a-stable process for @ = 0.8 and 3 = 1. However we
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Table 5.1: Estimates of rate A for gamma (o = %, = 1) process.
Threshold (¢) | A based on (5.1) | A, based on (4.39) | % error
1.2 0.7 0.625 10.71
0.5 2.5 2.625 5.00
0.05 10.8 10.625 1.60
0.01 18.2 18.00 1.11

Table 5.2: Estimates of rate A, for IG (u = 200, 8 = 0.3) process.

Threshold (¢) | A, based on (5.1) | A based on (4.39) | % error
40000 0.7 0.6 14.280
20000 2.7 2.75 3.703
5000 4.5 4.35 3.340

100 43.3 43.0 0.690

o X +u

a#1

oX-f-%ﬁaloga—i-,u a=1

mention that for a standard a-stable random variable X ~ S,(1, 3, 0), the random variable

&

is Sq(0, B, 1), where o, 1 and [ are respectively scaling , location and skewness parameters
and « is usually known as index which appears in the characteristic exponent. This rescaling
property can be used for simulating general a-stable process. For general properties and
different characterizations of stable distributions we refer to [21] and [20].

In Figure 5.3 we produce four simulated paths together with their threshold exceeding

paths for different thresholds. Corresponding estimates are summarized in Table 5.3.

5.2 Approximation of Jump Size Distribution

Here we approximate numerically the jump size distribution of jumps larger than some
threshold e. In this regard we use the theoretical developments in Chapter 4. Graphical
approximations of cumulative distribution functions (CDF) and probability density func-

tions (PDF) of such jumps, corresponding to different thresholds, are produced. Finally a
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Sample Path for the

Inverse Gauseian Sample Path for the Threshold 20000

(a) Threshold 40000

Inverse Gaussian Sampie Path for the Threehold 5000

(b) Threshold 20000

Inverss Gauseian Sample Path for the Threshoid 100

(c) Threshold 5000

goodness of fit test is conducted.

5.2.1 Gamma process

the sequel. Table 5.4 summarizes these estimates.

{d) Threshold 100

Figure 5.2: Inverse Gaussian (g = 200, § = 0.3) and truncated processes for thresholds
e = 40000, 20000, 5000 and 100.

At first we produce different estimates of the parameters which will be extensively used in

The corresponding densities for each set of estimates appear in Figure 5.4.

Figure 5.5 shows the corresponding CDF’s together with our non-parametric approxi-

mation of the empirical CDF through the estimator of Lévy measure v.

Finally in Table 5.5, we show the goodness of fit of such approximations.
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Figure 5.3: a-stable and truncated processes for thresholds ¢ = 1000, 500, 50, 2.

5.2.2 Inverse Gaussian process

We reproduce the estimates of parameters in Table 5.6. These parameter estimates are

used in the sequel.

The corresponding densities for each set of estimates appear in Figure 5.6.
Figure 5.7 shows the corresponding CDF’s together with our non-parametric approxi-
mation of the empirical CDF using the estimator of Lévy measure v.

Table 5.7 shows the goodness of fit.
We conclude by producing a comparative graphical study. It shows that when the

claims arise from a gamma distribution, conditioned by the fact that they are larger than
some threshold ¢, then the inverse Gaussian distribution, conditioned on the same fact
that claims are larger than the same threshold, provides a poor fit to the true distribution.

Figure 5.8 shows the graphs supporting this claim.
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Table 5.3: Estimates of rate A, for a-stable process with o = 0.8.

Threshold (¢) | A based on (5.1) | A, based on (4.39) | % error
1000 2.1 2.25 7.142857
500 5.0 5.25 5.000000
50 34.8 35.0 0.574712
2 953.2 953.125 0.007868
Table 5.4: Estimates of gamma parameters
Different estimates
Threshold | Theoretical (c, §) MLE (&, 3) MME (&, 3)
2 (1, 0.5) (0.9169898, 0.4869544) | (0.3752765, 0.2759984)
1.5 (1, 0.5) (0.9655107, 0.492039) | (0.5301264, 0.3282412)
1 (1, 0.5) (0.9890272, 0.4900115) | (0.720914, 0.3919935)
0.5 (1, 0.5) (0.9356638, 0.4733607) | (0.8452734, 0.4399136)
Table 5.5: Goodness of fit test for different CDE'’s.
Kolmogorov-Smirnov test
Threshold MLE MME Non-parametric | KS acceptance limit
2 0.007902474 | 0.08722181 | 0.006913213 0.02025472
1.5 0.009275763 | 0.05835448 | 0.006510432 0.01778040
1 0.009463755 | 0.02490687 | 0.006077613 0.01578701
0.5 0.005906946 | 0.01011186 | 0.005315381 0.01385737
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Gamma Process~Density of Jumps > 2

Gamma Process-Oensity of Jumps > 1.5
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(a) Threshold 2 (b) Threshold 1.5
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g
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Danaty

Cimns > 1 Cisims> 05

(c) Threshold 1 (d) Threshold 0.5

Figure 5.4: Gamma (o = 1, § = 0.5) and truncated processes for thresholds ¢ = 2,1.5,1

and 0.5.
Table 5.6: Estimates of inverse Gaussian parameters
Different estimates
Threshold | Theoretical (. 6) MLE (£, ) MME (ji, 8)
250 (40, 5) (509.7107, 1615.089) | (440.8967, 683.3879)
200 (40, 5) (456.3663, 1454.848) | (412.7533, 703.2026)
150 (40, 5) (371.5199, 927.676) | (332.6884, 403.3276)
100 (40, 5) (278.7732, 580.8884) | (252.227, 293.9069)
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Gamma Process~COF of Jumps > 2

s> 2 Ciama> 15

(a) Threshold 2 (b) Threshold 1.5

Gamma Process-CDF of Jumps > 1 Gamma Process-COF of Jumps > 08

Guima> 1 Cima>05

(c) Threshold 1 (d) Threshold 0.5

Figure 5.5: Gamma (a = 1, § = 0.5) and truncated processes for thresholds ¢ = 2,1.5,1

and 0.5.
Table 5.7: Goodness of fit test for different CDF'’s.
Kolmogorov—Smirnov test
Threshold MLE MME Non-parametric | KS acceptance limit
250 0.170295 | 0.1261079 0.03170745 0.06974276
200 0.1619935 | 0.1091162 0.02492963 0.05917869
150 0.1792451 | 0.1357120 0.01654300 0.04883909
100 0.1734932 | 0.1182062 0.01474935 0.04024409
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Figure 5.6: Inverse Gaussian (u = 40, # = 5) and truncated processes for thresholds

¢ = 250,200, 150 and 100.
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Figure 5.7: Inverse Gaussian (u = 40, € = 5) and truncated processes for thresholds

¢ = 250,200, 150 and 100.
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Figure 5.8: Histogram of ¢-exceeding gamma claims with estimated conditional gamma and

conditional IG densities.
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Conclusion

Lévy processes are gaining popularity in actuarial and financial modeling. In this thesis we
see how the Lévy measure plays a key role in applications of Lévy processes. In particular,
the estimation of the Lévy measure from data is required if Lévy processes are to be used
to model claims in Risk Theory.

The relation between classical risk processes and subordinators (increasing Lévy pro-
cesses) is explored. We obtain results for the jump function G appearing in Lévy’s charac-
terization of the Lévy—Khinchine formula. A non—parametric estimator of G is discussed.
A detailed relation between G and v, the Lévy measure, is derived, yielding an estimator
of v. The latter gives an estimator of the Poisson intensity rate A, and the claim size
distribution F for claims larger than the threshold e¢. Extensive numerical simulations il-
lustrate the paths of gamma, inverse Gaussian and a-stable claim subordinators and their
corresponding estimates for A, and F*.

The main results obtained in the thesis and conclusions drawn from them are summa-

rized as follows:

e The relation between the jump measure Jx and the Lévy measure v is given explicitly,

leading to a nice proof.

e The change from Paul Lévy’s jump function G to the now commonly used jump
measure v is independent from the choice of cut—off function. It only affects the

expressions for the drift parameter a and the Gaussian component b.

e The proposed non—parametric estimator of the Lévy measure is shown to be strongly

consistent.

o This non-parametric estimator provides a better fit than parametric ones (MLE or

MME) for the true distribution of jumps larger than the threshold.
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e The goodness—of-fit results are consistent for different simulated subordinators or

parameter values.

e Small threshold values yield more accurate estimations, for both A, and F*. This is
consistent with intuition, as smaller threshold values lead to less truncation of the
sample path, hence to an estimation based on more observed jumps. In applications,
a sufficiently small threshold can be selected to part jumps viewed as insurance claims
from the smaller, more numerous jumps, interpreted as other expenses (commissions,

taxes, etc.).
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Appendix A

Preliminaries in Probability

The goal of this appendix is to introduce the basic terminology and first results, some with
proof, from the general theory of Lévy processes. For details the reader is referred to [14],

[16].

A.1 Topics from Probability Theory

Definition A.1 Consider a measurable space (2, F, ) where the measure p is a set func-

tion defined as u : F — R* satisfying:
[i]VAEF, u(A) =20,

[ii] for any collection of disjoint events A; € F, j=1,2,3---
n n
a[U)a) = 3wy,
i=1 i=1

fidi] (9) = 0.
p is called o—finite if (1) = oo but there ewists a partition of 0, say {A;}32, such that
w(Aj) < oo for j =1,2,.... In particular if u(2) = 1 then w is called a probability measure
and is denoted by P. (Q,F,P) is then called a probability space.

A property, say “S”, about the elements of {2 is said to hold almost everywhere, abbre-

viated as a.e., if the set on which the property does not hold has measure zero, i.e.

R={we| Sw)is false} = pX)=0.
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In the case when p is a probability measure the terminology is rephrased as “almost surely”

and is abbreviated as a.s..

Definition A.2 (Indicator function) Let N be a set. The indicator function of a subset A
of N is defined as

I4: N — {0,1},
where
1 ifzeA
0 ifz¢gA

A.1.1 Notions of convergence

Let {X,; n € N} be a sequence of R—valued random variables (henceforth r.v.). We say
that :

e X, converges to X a.s. if
lim X,(w) = X(w), YweN\R,
where R € F satisfies P(R) = 0.
e X, converges to X in probability if

lim P(|X,(w) -~ X(w)| >a) =0, Va>o.

n—o0

In the case when the associated measure is not necessarily a probability measure the

convergence is know as convergence in measure:
lim p(|Xn(w) — X(w)| >a) =0.
n—oo
e X, converges to X in distribution if

lim F,(z) — F(z) where Fx(z) =P o X }(—o00,x2]

n-—o00

or equivalently

lim [ f(z)Fx,(dz) — /Rf(:v)FX (dz)

n—od R
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Vf € Cy(R)-the class of all bounded continuous functions in R. This notion of con-
vergence is also known as weak convergence of {F,} to F' and is important for what

follows in the sequel.

Proposition A.1 If X, converges to X in probability, X, % X, then the distribution

of X, converges to the distribution of X.

Definition A.3 (Characteristic function) Let X be a random variable defined on (Q, F,P)

taking values in R. Its Characteristic function ® : R — Cis defined by

dx(t) = BE(e"X) = /e“X(“’)P(dw) for allt e R
Q

= / e dF
R

- /_ " e f(2)da. (A2)

(o ¢]

where Fx(z) = PoX™!(~o00,1].

Clearly

@x(t)] = ' [ it < [ =1

Definition A.4 (Fourier transform) Let f be a compler valued integrable function on

R. The Fourier transform F(f) of f is a compler valued function defined by

o0

F(f)= f(s) = / e f(z) dz s€R. (A.3)

Remark A.1 From (A.2) and (A.3) we see that f(s) = ®(—s).
Example A.1 Consider the Gaussian density function
fx(z) = ——=e€27, z € R.
Using (A.2) its easy to see that the characteristic function of fx is
Ox(t)=e2"", teR.

By the remark above its Fourier transform is given by

< 1.2.2

f(s) o e—%(—s)zaZ _ 6_58 o , s € R
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Now for the transformed density corresponding to the centered r.v. X —n

—_ 1 _ (== n)2

using the shifting property of Fourier transform we get

2.2

F(s) =€ f(s) = e . ¢35 s € R,

where n = E(X). Now using Remark A.1 we get the characteristic function of the trans-

formed density fy(z) is given by:
Dy (t) = e em3t0" = gitn=3t’ teR.

This form of the characteristic function of a Gaussian density occurs frequently in the

thestis.

Analogous to the above definition, the joint characteristic function @ xy (¢1, t2) of random

variables X and Y is defined as

o0 xX
Oxy(ti,t2) =E [ei(nXHﬂ)] =/ / e'tettad) £\ (z, y)dzdy.

This can be recognized as a two—dimensional Fourier transform of fxy with the appropriate

change of sign in the exponent as suggested by Remark A.1. Generalizing this notion the

joint characteristic function of n random variables X;, X5, -+, X, can be defined as
_ t1.X1 +t2 Xg - +tn Xn
(le,Xz“-,Xn (tl, t2; e )tn) = z( 1A A " )]
= / / gihrotttaza) £ %o (@1, -, Tp)dTy - - - ATy
n— tzmes

Using a vector notation

X t1
and t=

>
I
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!

we get that ®x(t) = E [e“—'l] where / stands for transpose. Now with n = E(X) we get

T n
_t_’-g: [tl,"' ytn } N =Ztmi, which is a scalar.
M i=1

Hence generalizing the above example, the characteristic function of X, a Gaussian random

vector, is

L7 ool 1
Px(t) =E [@lt_ﬁ] = e[m—!_ 3 A4
where A is the variance-covariance matrix.

Example A.2 Let N be a Poisson random variable with parameter X i.e.

-, P
P(N =n] =1 n=01,
n!
Then the characteristic function of N is :
o - n o it
_ itn€ - A — oA [’\'e] _ o= ettt Alett-1
@N(t)—z%e = ZO e e =\ ], teR.
n= n—=

Definition A.5 (Cumulant generation function) The characteristic function ®x(s)
of a random wvariable X satisfies the condition that ®x(0) = 1 and ®x is continuous at
s =0. So ®x(s) # 0 in a neighborhood of s = 0 and one can define a continuous version
of the logarithm of ®x as follows: Vx(s) =logPx(s) with ¥x(0)=0.

By taking the derivatives of cumulant generating function with respect to s one can
directly obtain all the centered moments of X.

Cumulant generating function of sum of a number of independent random variables is the

sum of the cumulant generating function of each random variable.

Theorem A.l (Levy continuity theorem) Let {®,;n € N} be a sequence of character-
istic functions and there exists a function U : R — C such that for allt € R, ®,(t) — U(¢)
asn — oo and U is continuous at O then U is the characteristic function of a probability

distribution.

Theorem A.2 (Glivenko’s Theorem) If {®,;n € N} and ® are characteristic func-
tions of probability distributions Px, and Px (respectively), where Px, = P o X!, then

for allt € R and for each n € N, ®x, (t) —» ®x(t) = Px, — Px, weakly, as n — 0.
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A.2 Notions of Convolution
Given random variable X and Y and a function z = g(z, y) we form a new random variable
Z=g(X,Y).

We want to find the density and distribution of Z in terms of the same quantities for X

and Y. For real z define D, = {(z,y) | g(z,y) < z} then it satisfies that
{Z<z}={9(X,Y) <z} ={(X,Y) e D,},

so that

Fy(z) =P[Z <z =P[(X,Y) €D, = / [ @ axdy.

Thus to find Fz it suffices to find the region D,, for every z, and then evaluate the above

integral. For instance, let

Z=g(X,Y)=X+Y,

then

Fz(2) = //z+y§z fxv(z,y)dxdy.

Fo)= [ Z / oo Fv (@, y)dxdy.

Using Leibnitz rule for differentiating an integral, we get

So

d d e [y
o) = g1Fa@] = | [ [ pertaanay
= / fxy(z = y,y)dy,
and with the independence of X and Y this implies
f2) =[xz - iy (A4)

which is known as the convolution of fx and fy.
Before giving the formal definition of convolution and stating some results, it is necessary

to state Fubini’s theorem.

Theorem A.3 (Fubini’s theorem) Let (Qy, F1,P;) and (Qq, F2, P2) be probability spaces

and consider the product space (1 X Qo, Fy X F2,P1 x Py) where p; X Py is the product
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measure. Suppose that (X1, X2) is a two-dimensional random variable and g is a Fy X Ja

measurable function such that g is non-negative or integrable. Then

E[g(X,Y)] = // (X1, Xa)d (P x Pa)

:‘L(Lﬂm;&mmyml
=.&<Lﬁ&JMH»92
_ / /R 9(@1,7) Fxy i (di )
_ /R < /R g(wll‘g)del> dFx,
_ /R ( /R g(a:lxg)dez) dFy,

In the settings of Fubini’s Theorem let us consider F} and F3 as the marginal distribu-

tions of X; and X, respectively.

Definition A.6 (Convolution) The convolution of the distribution functions Fy and F,
is defined as
Fl * FQ(.’L‘) = / Fl(.’L' — y)dF2(y)a Vr e R

Remark A.2 The above convolution describes the distribution of X; + X5 as shown by

the next theorem.

Theorem A.4
Fron() = Frx Re) = [ Ru-1)dF0)
Proof. We need to apply the Fubini’s theorem
Fxx,(u) = P(X1+ Xy <w), u€eR

- //qud(FlXFz)(x )
_ / /uy (F1 x F2)(z, 9)
- ([ an) ) ara

= /_00 Fi(u — y)dFa(y).

o
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Corollary A.1 If X, is absolutely continuous with density f, then

o0

Fy o, (1) = / Fi(u—1)fely)dy, ueR.

—o0
If X, is also absolutely continuous with density fi then the density of the sum can be

expressed as

fram) = [ T hu-whdy,  ueR (A5)

Definition A.7 (Bounded and unbounded variation) The total variation of a right

continuous function with left limit is defined as:

j=n
||fHTV:=sup{Z|f(tj)—f(tj_1) |;0=t0<t1 <<t =1, nEN}
j=1

Clearly for an increasing function on [0,t] with f(0) = 0 this is just f(t) and for a difference
f = g — h of two increasing functions with f(0) = g(0) = 0 the total variation is at most
g(t) + h(t) < co. Such functions are known as functions of finite or bounded variation.

In case when the total variation of a function is infinite, the function is known as “of

unbounded variation”.

A.3 Jumps Caglad and Cadlag Functions

A function
f:0,T)—-R

is said to be cadlag if it is right continuous with left limits (rcll), i.e. for each ¢t € [0,T] the

limits
£(¢7) = lim £(s), £(¢7) = lim £(s)
exist and - -
F(&) = (&%)

So clearly any continuous function is cadlag but cadlag functions can have discontinuities.

If ¢ is a point of discontinuity of f, then the jump of f at ¢ is defined and denoted as
Af(E) = f(t) = F(7).
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Cadlag functions can not jump around too wildly. A cadlag function can have at most

a countable number of discontinuities, i.e.

{te[0,T): f(t) # f(t7)}

is finite or at most countable.

Also for any € > 0, the number of discontinuities(jumps) on [0, 7] should be finite.

So, after all, a cadlag function on [0,T] has a finite number of large jumps (larger than
¢) and possibly an infinite but countable number of small jumps.

In the definition the function is right continuous at jump times because we have defined
it so. If it were defined in the other way, i.e. at the jump times ¢;, the value of f(t) would
be defined as the value before the jump (f(t;) = f(t;')) then the function would have been

known as Caglad. Clearly this is not that suitable for modelling uncertainty.

Example A.3 Consider a step function having a jump at some point Ty whose value at T;

is defined to be the value after the jump i.e.
f(To) =g 1)(t). Hence f(I5)=0 and f(T})=f(To)=1
which tmplies that
Af(To) = f(To) - f(Tg) = 1.
In general given a continuous function g : [0,T] — R and constants f;,i =0,1,2---(n—

1) withty=0<t3 <ty <---<t, =T, the following function is cadlag;

ft) =g(t)+ Z fillig e (t) teR.
=0

In the above example, g is the continuous component of f to which jumps have been
added. Jumps of f occur at t; with Af(t;) = f; — fi_1. This is just a typical example .
In practice not every Cadlag function has such a neat decomposition into continuous and
jump parts.

Cadlag functions are, therefore, natural models for the sample paths of jump processes.
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A.4 Stochastic Process

A random variable X is a mapping between the sample space {2 and the real line R, i.e.
X:Q—=R.

A stochastic process is a mapping from the sample space into an ensemble (collection)
of time functions. To every w € (2 there corresponds a function of time (a sample function)
X (t,w). It is usual to drop the sample space variable w and to write simply X ().

For a fixed ¢t = t, the quantity X (¢p,w) is a random variable mapping 2 into the real
line and for fixed wy the quantity X (¢,wp) is a well defined non-random function of time.

Also for fixed ty and wy, X (to,wp) is just a real number.
Example A.4 Consider the coin-toss experiment. So we have
Q={HT}.

Then if we define X(t,H) = sin(t) and X(¢,T) = cos(t) we get a stochastic process.
Here although the sample paths are continuous the process itself is discrete because w takes

discrete values.
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