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ABSTRACT

Analysis, Design Optimization and Vibration Suppression of Smart

Laminated Beams

Abolghassem Zabihollah, Ph.D.

Concordia University, 2007

A general frame work is developed for the sensitivity analysis and design optimization of
smart laminated composite beams with capability to suppress the vibration under random
excitations. The smart structure consists of a host laminated composite beam with
embedded/surface bonded piezoelectric sensors/actuators. A layerwise displacement
model including the electro-mechanical coupling is utilized to account for the strong
inhomogeneities through the thickness and to develop the finite element model. To
perform the sensitivity analysis of the smart structure for different design parameters,
analytical gradients based on developed layerwise finite element model for both static
and dynamic problems are proposed. The developed sensitivity gradients provide an

efficient way to predict the behavior of responses of smart structure without re-analysis.

A design optimization algorithm based on developed analytical gradients and layerwise
finite element model is then developed to determine the optimal design of the smart
laminated beams for a variety of objective and constraints functions, including inter-

laminar stresses, weight and natural frequencies.

il



The smart laminated beam design based on the developed optimization algorithm is used
in the dynamic analysis and vibration control. An optimal control strategy, Linear
Quadratic Regulator (LQR) is used to design the feedback control gain and to control the
vibration response of system under deterministic loads. Effects of laminate configuration
and sensor/actuator location are investigated in controlled response. An in-house
experimental set-up is designed to demonstrate the performance and functionality of the
proof-of-concept of smart composite beam. In many practical applications, including
aerospace and automotive industries, smart laminated structures are exposed to random
loading, considering this, an optimal control algorithm is developed to suppress the
vibration response of the smart beam under random excitations. Different types of
random loadings, including Gaussian white-noise, band limited and narrow-band

excitations are investigated.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

Recent advances in design and manufacturing of laminated composite structures have
greatly enhanced the use of these novel structural materials in various applications,
including aerospace, automotive and civil industries. Laminated composite materials
offer great potential advantages compared to their standard metallic counterparts,
including high strength-to-weight ratio, high corrosion and impact resistance, and
excellent fatigue strength. Today, laminated structures are being widely used in satellite,
aircraft components, automotive construction, helicopter blades, marine constructions,
and civil structures. Excessive vibration in these structures may result in instability and/or
poor functionality of the system and consequently may lead to uncomfortable
environment, structural fatigue and unpredicted failure. In order to control the stability
and enhance the functionality of the laminated structures during operation, conventional
laminated composite structures can be combined with sensing and actuating capabilities
of piezoelectric materials and a controller, to create a novel type of structural elements, so
called, smart laminated structures. These structures have the capability to adapt their
response to external stimuli such as load or environmental changes. These new structures
have opened new challenges in research communities. Contrary to the conventional

isotropic materials, laminated composites can be tailored according to desired



performance and functionality. Combining electrical effects and mechanical fields
increase the number of parameters to be considered in design and manufacturing of
laminated smart structures, requiring a robust optimization algorithm for the design

optimization of the system.

The potential of using piezoelectric elements for vibration control of metallic structures
has been demonstrated in variety of experiments. However, the use of piezoelectric
element for vibration suppression in laminated composite structures is limited to simple
cases. There are many issues, which require to be resolved to make realistic smart
laminated structures with suitable sensing and actuation capability to achieve the desired

response.

Further, in many applications such as aerospace and automotive, the structural elements
are under random loading. Therefore, it is extremely important to investigate the
functionality of these novel smart systems under stochastic excitations and also determine

the optimum location of actuators and sensors for optimal performance.

In the following sections, a brief introduction and literature survey of different aspects of
the present subject are provided in systematic way. The literature survey is limited to

available works in English that were mainly presented in the last two decades.



1.2 Composite Materials

Development of composite materials is one of the great technological advances of the last
half of the twentieth century. Composites refer to materials created by the synthetic
assembly of two or more organic or inorganic components, in order to obtain specific
characteristics and properties such as high directionable strength, high mechanical
modulus and low weight. Selected materials to create a composite material are a
reinforcing component and a compatible matrix binder. Composite materials are usually
subdivided into the following classes according to the structural constituents: (i) laminar:
composed of layers or laminar constituents; (ii) particulate: the dispersed phase consists
of small particles; (iii) fibrous: the dispersed phase consists of fibers; (iv) flake: the

dispersed phase consists of flat flakes.

Fiber reinforced composites are the most common materials used in aerospace,
construction and automotive industries. In fibrous composite materials, the fibers provide
virtually all strength and stiffness while the matrix is to bind the reinforcements together
and keep them in proper orientation, to transfer the load to and between them and
distribute it evenly, to protect the fibers from hazardous environments and handling, to
provide resistance to crack propagation and damage, to provide all the inter-laminar shear
strength of the composite, and to offer protection from high temperature and corrosion.
The key point behind the fibrous composite is that the individual fibers are stiffer and
stronger than the same material in bulk form whereas matrix materials have their usual
bulk-form properties . By changing the orientation of the fibers, we can optimize the

composite material for strength, stiffness, fatigue, heat and moisture resistance. Fiber



reinforced composite materials for structural applications are often made in the form of a

thin layer, which is called lamina.

The structural elements, such as bars, beams and plates are made by stacking together
several plies of fiber reinforced layers in different or similar angles to achieve the desired
properties. The different layers of lamina are permanently bonded together usually by the

matrix material under heat and pressure using a hot press, vacuum bag or autoclave'.

1.3 Smart Materials and Technology

Smart materials may be defined as the materials which adapt themselves to respond to
environmental changes. In the following, some of the most common smart materials are
introduced and their advantages and disadvantages as sensing and actuating elements in

laminated composite structures are reviewed.

1.3.1 Electrostrictive materials

Electrostrictive materials such as lead magnesium niobate compounds (PMN) and lead-
titanate enriched lead magnesium niobates (PMN-PT) deform when exposed to an
electric field. Electrostrictive materials are lightweight and can generate relatively
significant strain when used as actuators. These materials have potential applications in
micropositioners, deformable mirrors, precision laser systems and tools”. Electrostrictive
materials have been used in adaptive optic systems, scanning tunneling microscopes and

.. . .. 3
precision micropositioners’.



Yang et al' designed a smart cantilever structure with self-sensing and self-actuating
capability for vibration control using PMN-PT. However, due to the temperature-
dependent nature, Electrostrictive materials have limited application in aerospace

applications, including laminated composite structures.

1.3.2 Magnetostrictive materials

Magnetostrictive materials such as Terfenol-D change their shape when subjected to an
applied magnetic field. Potentially, sensing can also be accomplished by measuring the
variation in magnetic field resulting from changing the shape. However, due to the
excellent capability of generating strains and forces, magnetostrictive materials are
commonly used as actuators in many applications, including, ultrasonic transducers,
positioners, sonar projectors and vibration control’. Magnetostrictive transducers are
relatively heavy compared to piezoelectric materials, which limit their application in
laminated structures, since they can significantly alter the passive dynamics of the

system®.

1.3.3 Electrorheological fluids

Electrorheological (ER) Fluids are characterized by a considerable variation of their
rheological behavior when subjected to external electric fields’. In the absence of an
electric field, the strain rate of ER fluids is directly proportional to the applied stress.
Application of an electric field may significantly increase the viscosity, damping

capability and shear strength of ER fluids. This characteristic makes ER fluids attractive



for providing a rapid response interface in controlled mechanical devices. Kamath and

Werley® utilized ER fluids to design an active damping mechanism.

ER fluids have some shortcomings such as low yield strength, low operating temperature
range, high operating voltage and intolerance of common impurities (such as water)
picked up during manufacturing or use. In addition, modeling of ER fluids is difficult
since the interdisciplinary understanding of rheology and dielectric is required to develop

an accurate model of the system.

1.3.4 Magnetorheological fluid

Magnetorheological (MR) fluids are a class of new intelligent materials whose
rheological characteristics change rapidly and can be controlled easily in the presence of
an applied magnetic field’. They are stable suspensions of noncolloidal very fine
ferromagnetic particles in an insulating carrying medium exhibiting controllable
rheological behavior in the presence of applied magnetic field. MR fluids have been
utilized in various applications, including, dampers, brakes and clutches, polishing
devices, hydraulic valves, seals, and flexible fixtures. Recently, the application of MR
fluids in vibration control has been attracted by many researchers'’. However, due to the
nature of MR fluids, it is very difficult to integrate them with thin laminated composite

structures.



1.3.5 Shape memory alloys

Shape memory alloys (SMAs) are a class of metal compounds which posses the
capability of sustaining and recovering relatively large strains, approximately ten percent,
without undergoing plastic deformation. Nickel-titanium alloy (Nitinol, Ni: Nickel, ti:
titanium, nol: Noval ordnance Laboratory) and copper zinc aluminum (CuZnAl) alloys
are commercial examples of SMAs. These materials possess many potential applications
in aerospace and automotive industries as fire detector, sensors/actuators in air

conditioners, etc.

SMAs materials have slow response time compared to other smart materials, for example,
while electrical heating sources allow the materials to respond within seconds, cooling
often takes on the order of minutes. In addition, relatively high energy is required for
actuating shape memory alloys, and the effects are very limited to a certain thermal
range, requiring very precise actuation'. Thus, SMAs materials are not good candidates to

be used in laminated structures for vibration control.

1.3.6 Piezoelectric materials

In 1880, Pierre and Jacques Curie observed that a piezoelectric material generates an
electric voltage when stressed mechanically, called direct effect. Gabriel Lippman
predicted, a year later'' , that piezoelectric materials change dimensions when subjected
to an applied voltage, called converse effect. This observation indicated that piezoelectric
materials, potentially, can be used as sensors and actuators. The piezoelectric effect is a

property that exists in many materials. The name is made up of two parts; piezo, which is



derived from the Greek word for pressure, and electric for electricity. The rough

translation is, therefore, pressure - electric effect.

Natural crystals, such as quartz, Rachelle salts, tourmaline and lithium sulfate, were the
first known and commercially used piezoelectric materials. A quartz transmitter was used

for sonar application in 19162,

In 1940s it was discovered that the ceramic materials such as barium titanate could be
induced to exhibit piezoelectric properties. Today, Piezoceramic of lead Zirconate
Titanate (PZTs) and piezopolymers of PolyVinyliDene Fluorides (PVDFs) are the most
common piezoelectric materials’’, being widely used in commercial applications.
Piezopolymers are used mostly as sensors because they require extremely high actuating
voltage whereas piezoceramics are extensively used both as sensors and actuators, since

they require lower actuating voltages and are used for wide range of frequencies.

It should be noted that these ceramics are not actually piezoelectric but rather exhibit a
polarized electrostrictive effect. A material must be formed as a single crystal to be truly
piezoelectric. Ceramic is a multi crystalline structure made up of large numbers of
randomly orientated crystal grains. The random orientation of the grains results in a net
cancellation of the effect. Thus, the ceramic must be polarized to align a majority of the
individual grain effects. Today, the term piezoelectric has become interchangeable with
polarized electrostrictive effect in most literature'®. Piezoelectric ceramic materials, as

stated earlier, are not piezoelectric until the random ferroelectric domains are aligned.



This alignment is accomplished through a process known as poling. Poling consists of
inducing a D.C. voltage across the material (See Figure 1.1). The ferroelectric domains
partially align to the induced field resulting in macroscopic polarization, which facilitate
the electromechanical coupling. The number of domains that align depends upon the
poling voltage, temperature, and the time the voltage is held on the material. During the
poling, the material permanently increases in dimension between the poling electrodes
and decreases in dimension parallel to the electrodes. Thus, due to this coupling,
piezoelectric materials will deform when exposed to an electric filed, actuation, or sense
mechanical stresses by measuring the variation of electric field due to dipole rotations'.

The material can be depoled by reversing the poling voltage, increasing the temperature

beyond the material Currie point, or by inducing a large mechanical stress.

Electrode
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Piezoelectric

Polarization

Figure 1.1 Creating piezoelectric from piezoelectric ceramic'?

Piezoelectric materials have exhibited many advantages compared to other smart
materials, particularly for dynamic application. They have linear behavior at low electric
field (~300 volts), and show very low sensitivity to temperature when employed below
transition temperature, called Curie temperature. The variation of piezoelectric strain
tensor of a standard piezoceramic material under a constant load is less than 12 percent

over a temperature range of 120 °C'. These characteristics are very crucial when



piezoelectric materials are used in designing control systems. In addition, PZTs have
rigidities comparable to many host structures, including Graphite/Epoxy laminates.
Moreover, the dual piezoelectric properties of PZTs patches provide the potential of
being used as self-sensing actuators. For sensing applications, mainly PVDFs patches
which are available as thin plastic wrap and can be bonded to almost any geometry are

used.

Over the last decade piezoelectric materials have found numerous applications ranging
from car cigarette lighter, airbag, sensor and microphone to advanced applications as in
active fight control'®!”, and Micro Electro Mechanical Systems (MEMS)'®. Piezoelectric
accelerometers are perhaps one of the most common applications of PZTs used in
vibration experiments. Piezoelectric materials have been used as smart elements for shape
control’®, wave generators®® and crack detection in laminated composite structures®'.
Prasad et al** provided some criteria to select piezoelectric materials for smart structures

with emphasis on shape control. They also presented some typical applications of

piezoelectric materials.

1.3.7 Smart Piezo-laminated structures

Smart laminated structures are created by surface bonding or in situ embedding23 the
piezoelectric patches to the conventional laminated structures. The structure, is then
equipped with a controller to create a smart system (See Figure 1.2). The controller is

designed to analyze the feedback response from the sensors to command the actuators to
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apply localized actuations to alter the system response and control the response of the

structure.

The development of smart laminated composite structures using piezoelectric materials

may further improve the performance and reliability of the laminated structure.

Box

Figure 1.2 Schematic illustration of a smart laminated composite beam

These novel smart composite structures will combine the superior mechanical properties
of conventional composite materials, and incorporate the additional inherent capability of

piezoelectric layers to sense and adapt their static and dynamic response.

These advanced laminated structures potentially have the capability to compensate the
thermal and humidity effects and random loading conditions on structures as well as

sense any unpredicted behavior like delamination®*®

and possibly somehow adapt
themselves to perfectly respond to the unforeseen environmental conditions. Smart

laminated structures can be designed to actively react to disturbance forces in order to
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maintain structural integrity while maintaining or even improving the level of

performance.

1.4 Modeling of Smart Laminated Structures

With emerging use of smart laminated structures in aerospace, automotive and civil
engineering applications, it is required to develop reliable mathematical tools for the
analysis of interaction between induced strain in piezoelectric materials and the
composite host structures’®. The mathematical model should be accurate and
computationally efficient as well as capable to account for the electromechanical
coupling effects in the structure. In addition, the model should also account for the

inhomogeneities in the structure, particularly through the thickness due to application of

different materials and geometries in the system.

Various theories, including, Equivalent Single-Layer (ESL) theories, three dimensional
and layerwise theories have been developed for the analysis of laminated composite,
mainly by improvement of the plate theories. In the following section, the most common
mathematical models developed for the analysis of laminated structures integrated with

smart materials, particularly piezoelectric materials, are presented.

1.4.1 Equivalent Single-Layer theories (ESL)

The ESL theories assume continuous displacement through the thickness of the laminate.

The displacement fields for commonly used ESL theories, Classical Laminated Plate

12



Theory (CLPT) and First-order Shear Deformation Theory (FSDT) are shown in Figure

1.3.

Up
Uy

(a) (b)

Figure 1.3 Deformation of a transverse normal according to (a) CLPT, (b) FSDT

CLPT theory is based on the Kirchhoff assumption stipulating that the in-plane transverse
normal before deformation remains normal after deformation, i.e. the effect of shear
deformation is neglected. FSDT is similar to Mindlin theory for isotropic materials and it
is defined based on a linear distribution of the in-plane normal and shear stresses over the
thickness. Higher-order theories are mainly based on parabolic distribution of transverse
shear stress across the plate thickness. In these theories, the material properties of the
constituent layers are combined to form a hypothetical single layer whose properties are
equivalent to through-the-thickness integrated sum of its constituents. This category of
theories has been found to be adequate in predicting global response characteristics of
29

. . . . . 2 .
laminates, like maximum deflections, maximum stresses®”*%, fundamental frequencies”,

or critical buckling loads™.
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However, due to simplicity of ESL theories, smart laminated structures have been
modeled in the existing works mainly based on ESL theories’’. Edery-Azulay and
Abromovich®? developed a closed-form solution to investigate the actuation and sensing
mechanisms of a shear piezoelectric layer embedded in composite laminated beams for
quasi-static deflection. They derived a closed-form solution based on the first-order shear
deformation theory for the static deflection of a laminated beam with embedded

piezoelectric layers as continuous or distributed patches.

Lee et al’ discussed the transient response of laminated plate with embedded
piezoelectric layers using ESL theories. They also investigated the effects of lamination
orientations, and piezoelectric position on the vibration response. Reddy** developed a
finite element formulation for laminated composite plate integrated with sensors and
actuators using the most common ESL theories namely, CLPT, FSDT and third-order
shear deformation theory (TSDT). The work was basically limited to only actuator mode
of piezoelectric. Ghosh and Batra® used piezoelectric layers to control the geometric
shape of a symmetric laminated plate based on the FSDT. The work also dealt with only
the actuation mode of piezoelectric materials. Ray et al® derived the closed-form
solutions for deflection of a simply supported rectangular plate with distributed
piezoelectric layers attached on top and bottom surfaces of the plate under sinusoidal

loading.

Finite element formulation for laminated composite plates with distributed sensors and

actuators has been presented in a few publications®”***. Suleman and Venkayya®*
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applied CLPT and variational principles to present a finite element formulation for
laminated plate with piezoelectric layers. The work was limited to actuation mode of the
piezoelectric materials. Ray er al*! extended the application of finite element method in
smart structures by considering higher-order shear deformation theory to evaluate the
static deflection of laminated composite rectangular plate with PVDF layers. Higher-
order theories have been used for analysis of laminated plates with piezoelectric
sensor/actuator by Chattopadhyay et al**. They relaxed the limitation of location of the
smart layers by implementing distributed PVDF layers through the thickness.
Donthireddy®® used piezoelectric actuators to control the shape of a laminated beam
under static loading based on FSDT. Benjeddou ef al* obtained a closed-form solution
for the free vibration of laminated composite plate with bonded piezoelectric layers on
top and bottom using FSDT theory. Thirupathi et al® used a quadri-lateral piezo-
laminated shell element with eight nodes to model static deflection of turbine blades.
Fernandes and Pouget46 proposed a model for the displacement analysis of laminated
structures using CLPT. They considered the electric potential as a function of thickness
coordinates. Combining linear and parabolic distribution in thickness direction for the
electric potential, Krommer*’ provided a mathematical model for vibration analysis of
laminated beam with embedded piezoelectric layers using CLPT. Yang®® improved this

model by implementing FSDT to determine natural frequencies of the structure.

Knowing that, in general, the values of stiffness of the adjacent layers in the laminates are

not equal, continuity of displacement through the thickness, as stated by ESL theories,

15



results in discontinuity in transverse stress through the thickness, which is contrary to the

equilibrium of the inter-laminar stresses as shown in Figure 1.4.
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Figure 1.4 Inter-laminar stresses in the laminate

In general, ESL theories provide acceptable results for relatively thin laminate. For thick
laminate and laminate with material and/or geometric inhomogeneities, the ESL theories
lead to erroneous results for all stresses*. In addition to the limitations of ESL theories, it
has been indicated that in laminated structures, the presence of inter-laminar stresses near

the free edges are significant which may not accurately be determined by ESL theories*”.

Moreover, in smart laminated structures, due to the material and geometric
inhomogeneities through thickness, it is required to acquire an accurate evaluation of
strain-stress at ply level. The occurrence of inter-laminar stresses at the geometric
boundaries such as free-edges, cut-outs, notches, and holes is an important phenomena
since high concentration of these stresses may result in delamination cracks at these
locations which reduces the strength and stiffness and thus may limit structural life. Inter-

laminar stresses can lead to delamination and failure of the laminate at loads that are
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much lower than the failure strength predicted by the ESL theories®. Accurate
determination of the stress state through the thickness of the laminate is therefore, crucial
to correctly describe the structural behavior and to prevent it from unpredicted failure.
The accurate modeling of inter-laminar stress field in composite laminates requires the
displacement field to be piecewise continuous through the thickness direction. This can
be achieved by using a three-dimensional model’****** which is computationally
expensive. Another alternative is to construct mathematical models based on continuous
displacement for each individual layer through the thickness, namely, layerwise

displacement model.

1.4.2 Layerwise displacement theories

Reddy’® developed a layerwise theory based on the piecewise displacement through the
laminate thickness. This theory was later modified and improved by him and his
collogues to apply for plate bending’® and buckling®’ analyses. Free vibration analysis of
laminated plates has been investigated by layerwise theory in the work done by Nosier ez
al’®. Layerwise theory has been combined with ESL theories to improve the accuracy of

the model for moderately thick layers. Davalos et al’’

applied a similar mixed layerwise
model for static analysis of laminated beams. Similar model has also been used by
Carrera® for the analysis of laminated composite plate. Davalos ez al®! applied the mixed
layerwise theory developed by himself and his co-workers®® to analyze a plane frame

with rectangular laminated sections. Carrera® developed a layerwise model by

considering an rn-order expansion for displacement at each ply through the thickness in
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order to satisfy the continuity of displacements, transverse shear and normal stresses at

the interfaces between consecutive layers.

Kadivar and Samani * used layerwise theory to investigate the free vibration of a rotating
thick laminate with simply supported boundary conditions. Koo® investigated the effects
of layerwise in-plane displacements on fundamental frequencies for laminated composite
plates. Tahani and Nosier® applied layerwise theory to determine the inter-laminar
stresses in a rectangular cross-ply laminated plate under pure bending. The work was
limited to simply supported boundary conditions. Tahani and Nosier ¢ later used the
theory to investigate the inter-laminar stresses near the free edges of a cross-ply simply
supported laminated plate due to axial extensional loading. David® developed a two-
dimensional plate theory for the analysis of multilayered piezoelectric plates. This theory
was based on a hybrid approach in which the continuity of both mechanical and electrical
variables at layer interfaces is satisfied. The proposed model required higher computation

compared to the displacement layerwise theory.

Laminated beams with surface bonded/embedded piezoelectric sensor/actuator patches
are the specific structures that the accurate calculation of inter-laminar stresses
(particularly near free edges) directly affects the functionality of the structure. Exceeding
the inter-laminar stresses at these locations may break the bonding between
sensor/actuator and composite layer and thus result in the loss of the main functionality,
namely, sensing and actuating capability of the smart laminate. Analysis of smart

laminated structures requires a mechanics with capability to address the local through-
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the-thickness effects, such as the evolution of complicated stress-strain fields in smart
composite and interfacial phenomena between the embedded micro-devises and passive
composite plies®. In attempt to consider the inter-laminar stresses in smart laminated
plate, Gao et al’® developed a three dimensional model for the vibration analysis of
laminated composite plate with piezoelectric layers. However, the proposed model, like
other three-dimensional models, required higher computational effort compared to

layerwise models.

In spite of the material (i.e. piezoelectric and composite) and geometric (i.e. discrete
patches, bonded/embedded) inhomogeneities in smart laminated composite, very limited
works have been reported in the open literature for the analysis of smart laminated
structures using layerwise theory and many aspects still remain unexplored. Robbins and
Reddy”! improved the analysis of smart laminated structures by utilizing layerwise
displacement theory to investigate the static and dynamic interactions between the
piezoelectric actuator and the host laminated beam. The layerwise formulation has the
capability to address local through-the-thickness effect, such as the evolution of
complicated stress-strain fields in smart composite structures and interfacial phenomena
between the embedded micro-devices and passive composite plies in a smart laminate.
Due to its excellent capabilities, accuracy and computational efficiency, layerwise

formulation has been used by many researchers for a variety of applications.

Donthireddy72 applied the theory to develop a finite element model for shape control of a

composite beam by applying electric potential to piezoelectric actuators. Han and Lee”
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applied layerwise theory to analyze the free vibration of laminated plate with
piezoelectric actuators. Saravanos and Heyliger’* investigated the effect of electro-
mechanical response of piezoelectric sensors and actuators on static deflection of
laminated composite beams. Saravanos et al”” investigated the free vibration response of
laminated plates with embedded sensors and actuators. Lee and Saravanaos’® extended
this work to incorporate thermal effects for the complete mechanical, electrical, and
thermal coupling response of composite beams. This study again was limited to the
actuating mode of the piezoelectric materials. They concluded that limited thermal effects
could be compensated by applying electrical fields through the piezoelectric. Most
recently, Garcao ef al’’ applied the layerwise theory for vibration analysis of smart
laminated plate in actuating mode. This study illustrated the importance of the
approximation functions in thickness direction in the accuracy of the results. They
provided a comparison between different approximation functions along the thickness

direction for static problems. Sunar et al’®

developed a finite element model for a smart
plate with one piezoelectric layer at the bottom and one magnetoceramic layer at the top

to investigate the effect of both electrical as well as magnetic fields in the analysis.

Robbins and Reddy” combined the FSDT and layerwise displacement to analyze
laminated structures with integrated sensors and actuators. This model was appropriate
when each individual layer thickness is relatively thick. Kapuriaet et al* proposed a one-
dimensional model based on FSDT and layerwise theory to approximate electric field

though the thickness of laminated beams with piezoelectric elements. Thornburgh et al*'
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developed a higher-order formulation to analytically determine the transient response of

laminated structures with piezoelectric elements.

One of the goals of the present dissertation is to develop an accurate and efficient finite
element modeling of smart laminated beams using layerwise displacement theory with
considering full electromechanical effects and interaction between electric potential and

mechanical fields.

1.5 Design Optimization of Smart Laminated Structures

Design sensitivity analysis and optimization perhaps are two of the most practical and
challenging issues in smart laminated structures due to existing large number of material
and geometric parameters as well as loading conditions. The conventional design
methodologies lead to very long and expensive procedures which sometimes make the
design infeasible. Design optimization techniques have been used in smart laminated
structures for various applications. Yan and Yam®® used bending moment induced by
piezoelectric actuator as objective function to determine the optimal thickness of
piezoelectric actuators. Same approach was used by Barboni et al*’ to determine the

optimal size and location of piezoelectric actuator.

The optimal size and location of piezoelectric actuators were determined by introducing a
controllability index by Aldraihem er a/®. Frecker® reviewed the most recent
developments in the field of design optimization. The existing publications in design

optimization of smart laminated beams are developed mainly based on ESL theories.
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Chee et al*® developed a heuristic algorithm based on ESL higher-order to determine the
piezoelectric orientation for shape control of composite beams. In all these works,
numerical methods such as finite difference technique have been generally used to
determine the gradients of objective and constraints functions. Han and Lee®” and Yan ez
al® employed the genetic algorithm to determine the optimal placement of piezoelectric

elements in designing smart isotropic beams.

Design sensitivity analysis for the determination of the gradients of objective and
constraints is a critical step in any design optimization procedures. Therefore, it is
important to carry out an efficient design sensitivity analysis when the optimization
algorithm is to be applied to large structural problems such as aircraft or problems with
large number of parameters such as smart laminated structures. In addition, the design
sensitivity analysis provides the trends of variation of the design parameters. Thus, it can
be used by designer to change the preliminary design and reassess the mathematical
model. Therefore, the structural sensitivity analysis can be more than a utility for
optimization task and might be used as a useful design tool to evaluate the system
response to changing parameters efficiently. Perhaps, parametric study is the most
common approach to observe the sensitivity of each factor to desired parameters.
Kassegne ez al® applied this approach to investigate the sensitivity of a micro cantilever
smart beam for MEMS applications. However, as a large number of parameters exist in
smart laminated structures, a solid mathematical formulation for the sensitivity analysis

in these structures is required.
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Numerical methods are widely used by many researchers to determine the sensitivity
gradients. However, in large structural problems and in problems with large number of
design parameters, including smart laminated composite structures, numerical evaluation
of gradients is computationally expensive. Therefore, efficient analytical evaluation of
sensitivity gradients is required. Arora and Haug® presented the design sensitivity
analysis in structural applications. Later, by progression of numerical methods in
structural analysis, this technique was improved for discrete structural systems by
Adelman and Haftka®'. Sedaghati et a/”? developed an optimization algorithm using the
analytical gradients to minimize the weight of the isotropic beam structures under

frequency constraints.

Relatively very few works have been reported on the sensitivity analysis and the
determination of the analytical gradients of smart laminated structures. Soares ef al”
developed the analytical gradients to be used in an optimization algorithm based on the
higher-order finite element displacement theory. Liu and Begg’* presented the analytical
expressions for the design gradients of objective and constraints with respect to the

continuous design variables.

To design smart laminated structures for dynamic environment, various factors and
parameters should be taken into consideration, including size and locations of
sensors/actuators, layer thickness and laminate orientation. This requires a robust design
sensitivity analysis and optimization algorithm to determine the optimal design of the

structure. Development of design sensitivity formulation and analytical gradients for
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vartous constraints and objective functions in smart laminated composites is another

important contribution of this study.

In the present work, the developed analytical gradients are combined with layerwise
finite element model to formulate an accurate and efficient design optimization
methodology to determine the optimal design of the smart laminated beam for various

applications.

1.6 Dynamic Analysis and Vibration Control of Smart Laminated Structures

Smart laminated composite structures have been widely used for aerospace applications
such as satellite, and aircraft wings and tails. Excessive vibration in these structures may
result in instability and/or poor functionality of the system. Efficiency and accuracy of
the dynamic and static responses of smart systems highly depend on the mathematical
modeling of the structure and the control strategy. Thus, to achieve the desirable
performance and functionality of the smart laminated systems, these two aspects should
be thoroughly understood and accurately represented in the modeling. Dynamic
analysis95 and vibration suppression of isotropic structures has been investigated for

variety of issues and using various control strategies™>’’.

Blanguernon et af® developed a piezoceramic element composed of a piezoelectric
sensor, a viscoelastic damper and a piezoelectric actuator to control the dynamic response
of isotropic beam. Effect of applied electric potential on piezoelectric patches on

changing natural frequencies of structures integrated with piezoelectric element has been
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investigated by Kim and Jones®. Sun and Tong'" used the frequency response of a beam
structure to detect the debonding piezoelectric elements during operation. Analytical
studies on active control of isotropic structures using piezoelectric element have been

validated by performing experimental works' "%,

Research works on vibration control of laminated composite structures are very

d'®1% and still there are many issues that remain unexplored. Liang and Batra'®®

limite
studied the effects of embedded piezoelectric patches on natural frequencies of laminated
plates. Analysis and design of laminated structures for vibration control requires several
aspects to be taken into account, including, modeling of host structures, selecting
appropriate sensors and actuators, and designing control mechanism. The mathematical

model of the host laminated structure perhaps is one of the most important factors in the

efficiency and accuracy of the control mechanism.

Reviewing the available works on vibration control of laminated composite structures
reveals that in most of the works, a negative velocity feedback is employed as the
controller and the mathematical modeling of the laminated host structure has been
performed based on ESL theories, including, classical lamination theory, first-order shear

106197 and third-order shear deformation theory'®'*”. Lim et al''®

deformation theory
presented active vibration control for sandwich structure using a three-dimensional finite
clement model. Analytical solution for active vibration control of laminated beam using

I"'? used the most

damping layer has been studied by Bohua and Huang'''. Lee ef a
common ESL theories to investigate the transient response of laminated composite

structures. They also applied a velocity proportional feedback control for vibration
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control purposes. Effect of fiber orientation on vibration control has been investigated by
Lin and Nien'" using a finite element model based on CLPT. This approach was
demonstrated experimentally by Gaudenzi er al''® who performed some experimental
validation for vibration control based on the velocity feedback control. Chen et al'®
investigated the effect of piezoelectric elements on stability of a laminated beam under
compression loading''®. Sethi and Song''” applied pole placement technique to determine
the feedback control gain for vibration control of a composite [-beam with surface

bonded piezoelectric sensors/actuators.

In an attempt to improve the efficiency of the smart system in vibration control, Reddy
and Barbosa''® developed a simplified third-order shear deformation theory and

combined it with velocity feedback control. Correia et al' "’

developed a model based on
higher-order ESL to represent the mechanical displacement and a layerwise discretization
through-the-thickness to represent the electrical behavior of the structure. However,
delamination of piezoelectric element has significant effect on vibration control'%'!
requiring a layerwise displacement theory to accurately model the laminated structures

for vibration control. Han and Lee'? used layerwise theory to develop the modal form of

laminated plates with piezoelectric actuators.
To design an optimal control mechanism, Linear Quadratic Regulator (LQR) is an

efficient approach to determine the optimal feedback gain. In this approach, one may

define appropriate weightings for applied voltage and geometry of actuators. In general,
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higher weighting for applied voltage requires higher electrical energy and more

expensive actuators. Similarly, higher weighting for geometry requires more actuators.

The optimal control based on LLQR has been applied for vibration control of many
isotropic structures'”®. Bruant et al'** developed a finite element approach based on
Kirchhoff’s theory and LQR for vibration control of isotropic truss structures. This work

125
/

was improved recently by Stavroulakis et al'~ who used Timoshenko beam theory and

LQR theory to suppress the vibration of isotropic beams.

Yousefi-Koma'?® presented an analytical formulation for vibration suppression of
isotropic aluminum cantilever beam based on LQR to determine the optimal feedback

gain for full state control. Xu and Koko'’

investigated the vibration control of isotropic
beam using LQR and commercial finite element software for the analysis of the host
structure. Vibration control of sandwich beam using piezoelectric elements and LQR was

' Most recently, Vasques and Rodrigues129 presented a

studied analytically by Hwu et a
comparison between classical and optimal feedback control strategies for beams made of

isotropic materials with piezoelectric sensors and actuators.

In the open literature, the optimal control has not been utilized for laminated structures in
general, and in particular the layerwise displacement theory has not been used for the
mathematical modeling for vibration control. In the present work, optimal control
strategy is developed based on a layerwise model to control the vibration of smart

laminated beams. The analytical model is validated by performing experimental
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investigations. In-house experimental set-up, consisting of a laminated beam integrated
with PVDF sensors and piczoceramic actuator, voltage amplifier and controller is
designed to demonstrate the functionality of the system and to validate the analytical

model.

The vibration analysis of isotropic beams subjected to random excitations has been of
considerable importance for several decades. The interest arises from two major sources
of random excitations: earthquakes and wind loading on tall buildings, bridges, as well as
random excitation on aerospace and automotive structures. The uncertainty in the
environmental excitations results in uncertainty in the response behavior. Therefore, it is
critically important, especially in aerospace structures, to realize the response of the
structure under random external loading. For such sensitive applications, enhanced
accuracy in response analysis is possible by modeling the problem with random external
loading. The random vibration of elastic systems made of isotropic materials subjected to
random loading has been widely discussed in literature'**'*!13%133Elishakoff and Zhu'**
developed an improved finite element formulation for isotropic beam subjected to

random loading.

Fast growing interests in applications of smart laminated composite in aerospace and
automotive structures, arise immediate need to investigate the vibration responses of
these new structural systems under random loadings and develop accurate and efficient
control strategy to control the dynamic response of smart laminated structures under

unpredicted loading conditions. The research works on the influence of random
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parameters in laminated composites have been mainly focused on material randomness
like fiber orientation and volume fraction and thickness of lamina'*>'**""13% ' There are a
large number of important cases when the exciting forces vary in an unpredictable
random fashion. In many cases the input excitation is defined in a statistical sense, so that
the structural response can also be known in a statistical sense'*’. However, vibration
analysis of laminated structures under random excitations is very limited in the open
literature and is mainly restricted to application of ESL theories for modeling the
laminated structures. Cederbaum ez al'* investigated the random vibration of composite

laminate using first-order shear deformation theory.

Lin'"" investigated the effect of random loading in buckling analysis of composite
structures. Zibdesh and Abu-Hilal'*!' discussed the vibration response of a simply
supported isotropic beam coated by composite materials under random moving load.
Frangopol and Recek'® applied classical laminate theory to investigate the vibration
response of laminated composite plates under random loading. First-order shear
deformation theory and a narrow-band noise function have been applied for random
vibration analysis of a symmetric cross-ply laminated beam by Librescu and Elishakoff'*
and Cederbaum er al'*. Kang and Harichandran'®® developed a higher-order shear
deformation formulation to analyze the vibration response of a laminated plate under

random loading.

No specific study has been reported in the open literature to address the response of smart

laminated composites under random loading. Therefore, one of the main objectives of the
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present research is to conduct a study on the behavior of the smart laminated composite

under random excitations.

1.8 Present Work

This work is generally aimed to establish a comprehensive framework for design
optimization and vibration suppression of smart laminated structures under both
deterministic and random external stimuli. In particular, this work 1) improve the design
procedure of smart laminated beams through development of analytical sensitivity
analysis and consequently design optimization algorithm, 2) demonstrate the
functionality and performance of smart laminated beams under random excitations, 3)
demonstrate controllability of smart laminated beams under random loading through
designing a linear quadratic regulator controller to suppress the vibration response under
random loadings and 4) validate and demonstrate the proof-of-the concepts by
performing various open-loop and closed-loop experimental investigation on dynamic

response and vibration control of smart laminated beams.

Specifically, the thesis contains the following important components and contributions:

+» Mathematical modeling:
¢ Development of reliable mathematical modeling for smart laminated beam using
layerwise displacement theory.

e Formulating the coupled electro-mechanical interaction between sensors/

actuators and host laminated structure.
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¢ Sensitivity and design optimization:

Development of optimization techniques to design smart laminate considering
both sensory and actuator effects under different loading condition.

The discrete analytical gradients of the various design constraints and objective
functions with respect to various design variables are determined.

By combining the developed coupled layerwise finite element model, the
developed analytical gradients, and the Sequential Quadratic Programming (SQP)
technique, an efficient design optimization algorithm has been developed.

To determine the most accurate response of the structure, the effect of electro-

mechanical coupling has also been taken into account.

<+ Dynamic analysis of smart laminated beams:

*,

In order to reduce the number of degrees of freedom for control purposes, the
modal forms of the structural model and sensor and actuator are developed.
Free vibration response of smart laminated beams is formulated for modal

vibration and validated with experimental works.

% Vibration suppression:

Linear Quadratic Regulator (LQR) is applied to obtain the optimal control
feedback gain.

To demonstrate the advantages of the present algorithm on dynamic response of
smart laminated beams, conventional active control of smart laminated structures
based on the classical laminate theory and classical control strategies are also
investigated and the results are compared with present algorithm.

Vibration response under random loading has been studied.
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e A control algorithm to suppress the vibration response of the beam under random

loading is developed.
< Experimental investigations:

e A laminated beam with piezoelectric actuator and PVDF sensor is designed and
manufactured to investigate the dynamic response of the structure.

o A control algorithm is designed according to LQR controller and implemented in
LABVIEW 7.0.

o Experimental investigations for open-loop and closed-loop response of laminated

beams with integrated piezoceramic actuator and PVDF sensor are presented.

1.9 Dissertation Organization

The present chapter is aimed to present the motivation and objective of the work, a brief
and comprehensive introduction of the concepts and terminologies, and review of the

recent pertinent works in the field.

Coupled layerwise finite element modeling of laminated beam integrated with
piezoelectric sensors/actuators is developed in Chapter 2. First, the fundamental and
governing equations of laminated structures with piezoelectric elements are presented.
Then, the displacement field according to layerwise theory is introduced and followed by
the variational expression, electromechanical coupling effects and finite element
modeling of laminated beam with integrated piezoelectric sensor and actuators. The

analytical results are presented to demonstrate the capabilities of the developed model.
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Sensitivity analysis of smart laminated beam for static and dynamic applications is
presented in Chapter 3. First, the formal sensitivity analysis of the smart laminated beam
is presented. Then, the analytical gradients of constraints and objective functions are

provided to improve the efficiency and accuracy of the sensitivity analysis.

Chapter 4 dealt with the design optimization of smart laminated beams. The sensitivity
analysis and analytical gradients developed in the previous chapter are integrated in
Sequential Quadratic Programming (SQP) technique to determine the optimal design of

the smart laminated structure under various constraints and objective functions.

Chapter 5 is devoted to vibration control of smart laminated beam under deterministic
loadings. Classical and optimal control strategies are developed to actively control the
vibration response of the smart laminated beam. The simulation results are then validated
by performing an in-house experimental testing to demonstrate the performance and

functionality of the developed smart system in real and practical applications.

Vibration suppression of smart laminated beam under random loading is investigated in
Chapter 6. The response of the smart system under variety of random excitations,
including Gaussian white noise, band limited noise and narrow-band excitation, are

studied.

To conclude, a summary of work and major contributions of the dissertation and

recommendations for future works are presented in Chapter 7.
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CHAPTER 2

ANALYSIS OF SMART LAMINATED BEAMS USING LAYERWISE
THEORY

2.1 Introduction

Laminated composite structures with surface bonded/embedded piezoelectric layers are a
part of the new generation of adaptive structures. The sensing and actuation capability of
piezoelectric layers may further improve the performance and reliability of the laminated
structure. These novel smart structures will combine the superior mechanical properties
of conventional composite materials, and incorporate the additional inherent capability of
piezoelectric layers to sense and adapt their static and dynamic response. Implementing
sensing and actuating capabilities leads to strong inhomogeneities through the thickness
of smart laminated structures. However, most of existing analytical models are based on
Equivalent Single Layer (ESL) theories and use approximate strains through the
thickness of the laminate. This approximate representation fails to provide accurate
prediction of actuator forces and sensor voltage. In general, ESL theories are inaccurate

for both thick laminates and laminates which contain strong inhomogeneities through-

the-thickness.
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This chapter is devoted to the analysis of laminated composite beams integrated with
piezoelectric materials as sensing/actuating elements based on the layerwise displacement
theory. Implementing the layerwise approximation through the thickness diminish the
limitation of ESL theories and leads to more accurate analysis of smart laminated
structures. First, the background concepts of piezoelectric materials are reviewed and
then, layerwise approximations for displacement and electric potential are utilized to
construct the finite element model for laminated beams integrated with both sensors and

actuators as smart elements as shown in Figure 2.1.

Sensor /Z,, e
e ,/,, N \\
T

Actuator _

Figure 2.1 Schematic illustration of smart laminated composite beam

The present finite element model incorporates all the aspects of mechanical and electrical
responses of smart laminated beams, including the electro-mechanical coupling effect,
size and location of piezoelectric sensors/actuators. Variety of numerical illustrations is
presented to demonstrate the capabilities and performance of coupled layerwise model

for smart laminated beams.

2.2 Governing Equations

In this section, the governing equations of piezoelectric materials based on the linear

piezoe]ectricity146 are outlined. According to the theory of linear piezoelectricity, i) the
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equations of linear elasticity are coupled to charge equations of electrostatics through the
piezoelectric constants, ii) deformation and strains are small, and thus, no distinction is
made between the initial and final positions, iii) the two way thermopiezoelectric
coupling is neglected, which means that, temperature changes due to changes in strains,

and electric field are small compared to the magnitude of the thermal load.

The mechanical response of the piezoelectric material is represented by the following

equations of motion,

oy + ;= P, @.1)

while the electrical response is described by the electrostatics equations for the

conservation of the electric flux,

i =0 (2.2)

where o; are the stresses, pis the density, f; are the body forces per unit volume, u,

are the displacements and D; are electric displacements. Also, iand j indicate the material
axes which range from / to 3, superscript dot represents time derivative and subscript
comma represents differentiation with respect to spatial coordinates. The variational form

of the combined electro-mechanical response of the piezoelectric materials is determined

as:

[(pii, 6, + 0,05, — D,6E, JdV = [1,6u,dA+ [Q5ydA + [ f,6u,dV (2.3)
4 4, 12

Vv
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where &, represent the strains, E; represents the electric field, #;are the surface tractions
applied on the surface 4,, Qis the electrical charge applied on the surface 4,of the

piezoelectric material, y is the electric potential and V represents the whole volume

including the piezoelectric and substrate materials. Strains, ¢; considering small

i

deformation are given by

1 (2.4)
£; = E(ui’j +u;,)
and electric field, E; is related to the electric potential by
E=-v, 2.5)

2.3 Piezo-laminated Structures

Neglecting the thermal effects, the constitutive equations for an orthotropic lamina with

piezoelectric effect are given by

O E'n 6'12 613 0 0 a—'16 xx 0 0 &,

Oy C, C, Cy 0 0 Cyl|len 0 0 e, E

Tl _|Cu Cn Cy 0 0 Gje{ 0 0 e, Ex (2.6)
7, 0 0 0 Cy Cy 0 |l7e| |& & 0}

T, 0 0 0 s Css 0 |7k és €s 0 ’

Ty _6'16 Cx Gy 0 0 566_ Pw) LO 0 &)
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— — g)’)’ = =
D, 0 0 0 g, g, O . 81 8. O |[E, 27
Dye=10 0 0 ¢, e 0 ‘}/zz 18, &n 0 RE, .
Dz 53] 532 533 0 O 536 }/yz 0 O §33 Ez
Yy

where {o} represents the stress vector, {D} the electric displacement, {£} the electric
field, {¢} the strain field, [C] the transformed stiffness matrix, [¢] the transformed
piezoelectric coupling matrix and [g], the transformed permittivity matrix. The
Equations (2.6) and (2.7) can be written in compact form as{c} =[C{&} —[€]" {E}and
{D}=[el{e}—[g]{E}, respectively. Smart laminated structures are mainly produced as

plate structures, thus, can be considered as plane stress conditions.

The stress-strain relation in a plane state of stress are reduced to the following

O Q]l 912 le Exx 0 0 & ||E,
O (=| %2 D2 Ox[18s~|0 0 & |\E, (2.8)

Ty Os O Gee Yy 0 0 e |E,

{fyz}_FM Q,SHU}_[@ 2, o] . (2.9)
Ty Q45 st Vx €s €5 0 Ey
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gxx
D, 0 0 &, & 0|, gn & 0 E
Dyp=| 0 0 @& & O0hy. i+ & 0 \E, (2.10)
D, e ep 0 0 e |7 0 0 2u]lE

Vo

where Qj are the plane stress-reduced stiffness, provided in Appendix A. The

piezoelectric stiffnesses are known in terms of the dielectric constants, [d] and elastic

stiffnesses as:

[€1=[41[Q] 2.11)

2.3.1 Piezo-laminated beams

In general, two approaches can be used to obtain a beam model: (/) from plate model

which means neglecting transverse stress,o,, =0 and (2) reducing a 3-D model to a 2-D
model. In the first approach, in addition to ¢, =0, the beam model can be obtained by
using Equations (2.8) and (2.9) and consideringo, =7, =7,,=0 while

assuminge,, # y,, # y,, # 0. Thus the reduced equation of smart laminated beam can be

obtained as:

O ‘ _ é]l 0 ‘ & ) _ 0 g, ¢ E, !
sz 0 é55 }/xz ZIS O Ez (212)
Df =eje; +gyE! (2.13)
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where

Q—isézs _Qzées Py Q]zézs __Q—mézz

§11=—Q—”+ 0.0 =0 + === 0° Qe
0,06 — O 0,06 — Os (2.14)
-0, 8
st st + Q44 (2'15)
02,0 — O (2.16)

In the second approach, a beam model can be obtained by considering a three-

dimensional element and eliminating the stress through the width, o, =0, the in-plane
shear stress 7,, =0 and the transverse shear stress, 7, =0. While considering that the
corresponding strains &, # 7. # y,, # 0. Thus, for a two-dimensional beam element, the

constitutive equations in Equation (2.6) reduce to the form:

k ~ ~ k k — Ak k
0 0 ¢ |E,

0
o =|C;, Cy O & -1 0 0 e <E, (2.17)
0 0 Css Ve &s €s 0 E,

The modified elastic constants 5,.]. are obtained by expanding all the six components of
the strain vector in terms of the transformed elastic constants C_;,.j and the stress vector

o;and then eliminating e, , £, and &, from the ensuing equations'*’,

(2.18)
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¢,=C,. gcze ~CyCs = C1_2_C26 —CiCo Cu (2.19)

CyCe —Ca CCes —Ci
533 =Cy + 63—662-6__ 621666 Cy, + 52162_6__ Eﬁézz Cas (2.20)
C,Coo —Cr C,,Ces —Cr
=2
& - S 2.21)

The modified coefficients C, ,&, and g,, are the reduced stiffness, piezoelectric and

permittivity coefficients which are given in Appendix A. In practice, for smart laminated
beams, the electric field is exerted in thickness direction, z, and it is given as E, =V/t .

For all the examples described in the present work the electric field is considered in

thickness direction unless otherwise mentioned.

2.3.2 Layerwise theory approximations

In this section the layerwise displacement theory proposed by Reddy’ O for analysis of
laminated composite structure which is based on piecewise displacement approximation
through the laminate thickness as shown in Figure 2.2 has been applied for the analysis of

smart laminated beams integrated with piezoelectric elements.
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- Layer1

>
4 u

Figure 2.2 Layerwise displacements through the thickness

In deriving the layerwise theory for laminated beam, only axial and through the thickness
displacements are assumed. The displacement field and electric potential for a laminated
beam based on the layerwise theory are obtained by considering the axial and through-

the-thickness displacements as:

u(x, z,t)= IZ::U' (x.0)®"(z) (2.22)
wx,z,1)= lij W, (x.0)0' () (2.23)
w(x, Z,t)=gt//;d)’ (z) (2.24)
®2)=[1-¢ ¢] (2.25)
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where u and w are displacements along x and z-directions, respectively and y is the
electric potential. N denotes the total number of nodes through the thickness, { =z/h, h
represents the thickness of each discrete layer. Interpolation functionsd®(z)are defined
between any two adjacent layers. For thin laminate, displacements in z-direction between
layers are negligible, so, w(x,z,£)=W _(x,¢). In practical applications, the bottom and
upper surfaces of piezoelectric patches are covered with conductive materials which

require constant electrical potential at the covered surfaces, so, y, (x,f) = (¢).

Substituting through-the-thickness approximations, Equations (2.22)-(2.24), into the
variational form of the equations of motion and the electrostatic equation, Equation (2.3),

the generalized beam laminate matrices are obtained as:
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The coefficients that are related to the laminate thickness are given by:

k=1

Not Zea b’ (z
E311J = l: IbC13d31q) (2) Z( ) :,

Ll e (2) 07 (2
Gl =z[ [ oz, D21 @J

A7 = [Zkfbc,]cp (2)D’ (z)dzj'

k=1

Zy

(2.26)
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A= [Wicﬁm @yp(zykJ

Np —zk+] ]
BY - jbCka@ ) &7 (2)dz
k=] 2,
IAETE 1 i
BY = jbc;GQ @) &7 (2)dz
k=] 5 |
v K =1, 007 (2)
G = f bC, @7 (2) P dz
) i
vl -
’ oD (z 2.27
Cg:: Ibcﬁ® (z) a() ( )
k=1 oz, z ]

Ny [0 I J |
DY =¥ jbC;; oD’ (z) 0D (Z)dZ

=] oz oz
N [z J
| = 001 (2) 007 (2)
DIJ — bck
. k=1 z;“ aZ 62

hi2
Pt = [ [bp' ! ()@’ (z)dz}
k=1

~h/2

Pl = pl for  wixzi)= 3,00 )
I=1
N, h/2
pg = bp"dz for w(x, z, t) =W (x,1)
k=1_pt2

where ®'(z) represent the interpolation functions though the thickness of the beam and

p* stands for the density of 4™ layer of the laminate.
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2.3.3 Finite element model

Finite element formulation has been obtained by incorporating the local in-plane

approximations for the state variables introduced in Equations (2.22-2.23) as follows:

Nn ) 228
U, = 3 U1()e, () R
M 2.29
W, = Z}: W, o, (x) 229
N (2.30)

v, =Y wip(x)
i=1

where Nn is the number of nodes and ¢,(x) are the interpolation functions along the

length of the beam, respectively. By implementing the in-plane approximations for the

state variables into Equations (2.26) and collecting the coefficients of displacements, {U},
(W} and {y}, the following matrix equation for the smart laminated beam can be

obtained:

{[Mdd] [01]{{J}}+[[Kdd] [Kd.,]} {{d}}: {{F(r)}} 231)
[0] [0y K.l K, 1w} [HO®)
where [K4]1, [K4,]1, [K,,land [M,] are the elastic, piezoelectric, permittivity, and

mass matrices, respectively. Elastic stiffness and mass matrices are given by:
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K, ]{[K;J,] [K;f,]} [Mdd]{w;;] [01]

(K21 [K2] [0] [M}]

where the coefficients of the element matrices are given by:

l
(K, 1= [(E51 108108, hix
4]

[K,a1=[K4,1"
{
(K, 1= [(G SIS T
0
/
[K31= (L4110 108 1+ [Dss IS
0

!
(K21= [[Bi3 1S 1081+ [Dss1(S 1S
0

[Ka1=[K21
!
[K231= [[ 45510 108 .+ D SIS T ix
0

)
[Mg]= f([p‘][S][S])fx
0

14
(M21= [P US)sTix
0

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

where [S(x)] represents the vector of shape functions given by [S(x)]=[I -6.6], ¢c=x/I

and subscript comma means derivative with respect to the letter next to comma. Further,
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{F(t)} and {Q(r)} are the applied mechanical load vector and electrical charge vector,
respectively. The nodal displacement matrix {d}={U,W}" represents the displacement
vector containing axial, {U}, and transverse, {W¥} , displacements and {y/} represents the
electric potential. The electric potential vector is written as{y'} ={y*,w“} , where y*

and y“ represent, respectively the voltage output at the sensor and the voltage imposed on

the actuator layer. Equation (2.31) can be expressed in a compact form with the electric

potential partitioned into active and sensory components as:

[[Mdd] [0]]{{&}}{[@] [K;;]J{ {d}}= {{FN)}—[K;;]{W“}} (242)
1 fle) (K51 K] e o -1k 1

where superscripts s and a stand for partitioned sub-matrices in accordance with the

sensory and actuator components, respectively. The left hand side includes the unknown
sensor voltage, {/*}, and the nodal displacements, {d}. The right hand side includes the
applied mechanical load, {F,(¢)}, applied voltage on the actuator, {z“} and the electric

charge, {Q° (t)} . In open circuit conditions, the electric charge at sensors {Q°(z)} remains

constant with time and is assumed to be zero. Therefore Equation (2.42) can also be
condensed into the following uncoupled dynamic equations for the structural

displacements and sensor voltage, respectively as:
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(M, 1} + (K 4o 1~ [K 5K T K S ) = (2.43)

(F, o3+ (K5 K S T K- 1K v

'y =K T (KS Uy + K 1y ™) (2.44)

2.4 Numerical Examples

This section presents the results from several representative problems. First, the validity
and accuracy of the present model is demonstrated by comparison with published results.
Secondly, numerous examples are provided to investigate the coupling effects on quasi-
static response, effect of actuator voltage on deflection, and sensor location on generated
voltage. All the applications are focused on a laminated beam with embedded or surface
bonded piezoelectric as sensors and/or actuators. It is pointed out that the piezoelectric
properties are measured under stress-free conditions. In these examples the shear

piezoelectric effect d| and the axial electric permittivity g,, have been neglected.

2.4.1 Validation problem
A cantilever laminated beam made up of two layers of KYNAR piezo-films is considered
to investigate the effect of applied voltage on displacement of the beam. This problem

was also studied using layerwise theory by Donthireddy and Chandrashekhara®. The

material and geometric properties are given in Table 2.1.
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Table 2.1 Material properties for validation examples™

KYNAR G-1195 AS/3501
Piezo-film Piezo-ceramic Graphite/epoxy
E;(N/m%) 6.85 x10° 63.0x10° 144.8 x10°
E,(N/m?) 6.85 x10° 63.0x10° 9.65 x10°
G12(N/m?) 0.078 x10° 24.8x10° 7.10 x10°
Gi3(N/m’) ) ] 7.10 x10°
Gp(N/m?) - - 5.92x10°
Vi2 0.29 0.28 0.3
d31(m/V) 22.99%10™" 166.0x107"2 -
d3(m/V) 4.6x10™" 166.0x107" -
Length (m) 0.08 0.254 0.254
Width (m) 0.01 0.0254 0.0254
Thickness (m) 0.00011 0.0002 0.00127

The effect of applied voltage on the tip deflection of the laminated beam with

piezoelectric actuator is given in Figure 2.3. As it is observed the present results are in

excellent agreement with the reference.

>
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Figure 2.3 Tip deflection of the laminated beam vs actuator voltage
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2.4.2 Effect of actuator voltage on deformation of piezo-laminated beam
A cantilever laminated beam with [0/90], configuration made of graphite/epoxy

(AS/3501) with one layer of piezoelectric (G-1195) actuator bonded on top surface and
one layer at the bottom surface with opposite polarity is considered. A uniformly
distributed load of 2x10°N/m’ is applied on the beam. The material and geometrical
properties of graphite/epoxy and piezo-ceramic are given in Table 2.1. The effect of
actuator voltage on deflection of the laminated beam with surface bonded piezoelectric
actuator is presented in Figure 2.4. As it is realized increasing actuator voltage from 0 to

200 volts reduces the deflection up to 33% at the tip.
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0.1 0.1 0.2 0.25

Axial length (m)
Figure 2.4 Effects of actuator voltage on transverse deflection of a clamped-free beam

The same smart laminated beam but with simply supported boundary conditions is also
investigated. Deflection of this simply supported smart composite beam under different

applied voltage is provided in Figure 2.5. As it can be realized increasing voltage from 0
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to 200 volts can decrease the mid-span beam deflection up to %45. This shows the

potential application of piezoelectric actuators to change the response of the system.

Deflection (mm)

- Ovolt

0.08 - — 100 volt
i - 150 volt
0.097 200 vol
0 005 01 015 02 025

Axial length (m)

Figure 2.5 Effects of actuator voltage on transverse deflection of a simply supported
beam subjected to uniformly distributed load

The effect of laminate configuration is also investigated by considering the laminated
beam described in Section 2.4.2 for two cases of [0/90],and [+45] laminate
configurations. Here, the external loading is removed to acquire clear observation of the
effect of laminate configuration and actuator voltage on shape control. The responses of
the beam under an applied voltage of 150 V is computed and plotted in Figure 2.6. It is
observed that laminated beam with [+45], experiences higher deflection than [0/90],

laminate under the same applied voltage. This result was expected since the stiffness of

[£45], is lower than that of [0/90]; .
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Figure 2.6 Effects of ply orientation on the transverse deflection of a clamped-free beam
subjected to an actuator voltage of 150V

The results presented in this section prove the applicability and feasibility of using

piezoelectric elements as actuating components in smart laminated structures for shape

control.

2.4.3 Effect of electro-mechanical coupling on deflection

To investigate the effect of electro-mechanical coupling on deflection of smart laminated
beam, a cantilever smart laminated beam is considered. The thickness of the laminate is
1.524 mm which is made from 8 unidirectional layers. The length of the beam is 200 mm
and the width is 20 mm. A point load of 10 N is applied at the tip of the beam. Beam is

meshed with 10 equally spaced elements. One layer of piezoelectric material of thickness
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1.524 mm is bonded at the upper surface of the beam. Material properties of the host

structure are as:

E, =126GPa,E, =19GPa,G,, =3.4GPa, p=1521Kg/m’.

The mechanical and electrical properties of piezoelectric material are given as:
E=63GPa, p=T600Kg/m’,dy =d;, =—254x10""m/V,g,; =153x107"° F/m

In order to investigate the influence of electro-mechanical coupling on structural stiffness

of smart laminated beam, deflection of the beam with and without considering the

electro-mechanical coupling is presented in Figure 2.7.
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Figure 2.7 Effect of electro-mechanical coupling on displacement

It is observed that considering the coupling effects provide a reduction effect on nodal
displacement of the smart laminated beam and it can reduce the tip displacement by about
3.5%. It should be noted that effect of electro-mechanical coupling depends on the total

amount of piezoelectric materials used in the smart laminated structure. To have better
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understanding, the effect of volume fraction of PZT material on the coupling effect has
been investigated. The problem described in Section 2.4.3 has been considered. The
thickness and length of the PZT has been selected in such a manner that the minimum
thickness and length ratio of PZT and host laminate are 0.1 and the maximum thickness
and length ratio are 1 and 0.5, respectively which results in a beam with two equal
thickness and equal length parts of PZT and graphite/epoxy. Tip deflection of the beam is
normalized by dividing it by the tip deflection obtained without considering electro-
mechanical coupling. The effects of volume fraction of piezoelectric elements and host
laminated material are provided in Figure 2.8. It is observed that for the volume fraction
less than 10 percent the effect of coupling is negligible. The maximum effect of coupling

is for 50 percent volume fraction.
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Figure 2.8 Effects of volume fraction of PZT on electro-mechanical coupling
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2.4.4 Layerwise theory versus ESL theories

To compare the LayerWise Displacement Theory (LWDT) and Classical Laminated Plate
Theory (CLPT), transient response of a cantilever smart laminated beam [0/90/0],
integrated with one piezoceramic actuator and one PVDF sensor as shown in Figure 2.9

is considered. Sensors and actuator patches are mounted at / = 4 ¢m from the fixed end of

the beam.

PVDF Sensor /

/ﬂ/ '
1
1

e [ —m PZT Actuator /

/ 0 AN
[ 90 \
/ 0 \
| 0 |
Y 90 /

\ 0 /

Figure 2.9 Schematic illustration of laminated smart beam

Materials and geometric properties of graphite/epoxy layers, piezoceramic and PVDF

patches are given in Table 2.2.
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Table 2.2 Material and geometric properties

Graphite/ Epoxy Piezoceramic PVDF

E,, GPa 98.0 71.4 4.67

E,, GPa 6.78 71.4 4.80

Gz, GPa 3.48 24.8 2.66

p, Kg/m® 1380 7610 1610

ds;, m/V - -200x107"2 20x1071?
ess, F/m - 1501x071° 1.051x07°
Length, L, mm  300.0 25.0 25.0
Width, b, mm  30.0 25.0 25.0
Thickness, mm 0.2 0.50 0.0028

The free vibration response of the smart laminated beam for an initial tip displacement of
4 cm using CLPT and LWDT are presented in Figure 2.10. It can be realized that CLPT
shows lower defection compared to that of LWDT. This result was expected because the
CLPT effect of shear strain is neglected and thus it provides higher structural stiffness

compared to that of LWDT.

10, : : , i il ——

Tip Displacement (mm)
o (&)]

]
(8]

06 08 1
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Figure 2.10 Damped response of smart laminated beam using LWDT and CLPT
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2.5 Parametric Study on Sensor Voltage

In this section the effects of piezoelectric size and location on generated voltage for a
cantilever smart laminated beam are studied. The laminated beam made of nine
unidirectional layers of graphite/epoxy is considered. The length of the beam is 20 cm
and the width is 3 c¢m, and 9 equal-length elements are used to model the beam. In the
following sections variety of configurations are considered to study the effect of sensor
location in length direction, thickness direction and diagonal direction on generated

voltage.

2.5.1 Effect of location of sensor in thickness direction

To investigate the effects of sensor location along the length of the beam, 9 cases are
considered and for each case the location of sensor is mounted at one element. In case
one, the sensor is considered as the first layer on top surface at the fixed-end, for case
nine, the sensor is mounted at the bottom surface at the ninth layer. For other cases, the
sensor is replaced with 2" 3™ . layers. The voltage generated at sensors for each case
has been shown in Figure 2.11. It is worth noting that voltage generated above and below
the middle plane is similar. This phenomenon was expected when one recalls that in pure
bending and for unidirectional layers, the middle-plane is the neutral plane. However, in
case 5, the sensor is placed at the mid layer but the sensor itself has a thickness and the
generated voltage is due to deformation of the outer surface of the sensor layer, thus it

generates voltage.
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The effects of orientation angle on sensor voltage are shown in Figure 2.12. In this case
the laminate is not unidirectional. Thus, as one can easily realize the generated voltage is

not uniform above and below the middle-plane.
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Figure 2.11 Effects of sensor location in thickness direction
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Figure 2.12 Effects of sensor location in thickness direction ply orientation of [0/(+45) 4]
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2.5.2 Effect of sensor location along the length

As another example, the location of sensor has been changed in axial direction starting
from the fixed side moving toward the free end. In case one, the sensor is surface
mounted at the first element from the fixed end and for case nine, the sensor location is
considered at ninth element at free end, for other cases, the location of sensor is
considered at 2™, 3"... elements. The material and geometric properties of the beam and
the PZT material are similar to that of the problem described in previous section except
that the thickness of both graphite/epoxy and PZT are 1.0 mm each. The sensor voltage

for different lengthwise position is shown in Figure 2.12.
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Figure 2.13 Effects of sensor location in axial direction

As expected the voltage decreases gradually when the sensor is moved from the fixed

point toward the free end. This result is proportional to the element strain along the length

60



of the beam. To observe the effect of laminate configuration for this problem, some of the
common laminate configurations, namely, [0/(345),], [0/(0/90),]and [0,] are

considered and the results for tip deflection of the beam are presented in Figure 2.14. One

should note that this trend is valid for any laminate. Obviously the magnitude of the

sensor voltage will be different.

14 - oo _

P 0/(245),]

10| -

[0/(0/90),1

Sensor voltage, V

Sensor location (length direction)

Figure 2.14 Effects of sensor location in axial direction for different ply orientations

2.5.3 Effect of diagonal location of sensor

To complete our study on the effect of sensor location on generated voltage, nine cases of
sensor location in diagonal order starting from the most top left element moving toward
the most bottom right element are considered. In case one, the sensor is surface mounted

at the first element from the fixed end and for case nine, the sensor location is considered
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at ninth element at free end and in the ninth layer at the bottom surface, for other cases,
the location of sensor is considered at 2™ element and 2" layer, 3 element and 3" layer,
and so on. The generated voltages for all the cases are presented in Figure 2.15 where one
may observe that these results are similar to that of the generated voltage when changing

the sensor in length direction.
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Figure 2.15 Effects of sensor location in diagonal direction

This is due to the high aspect ratio of length and thickness of the structure which makes

the length direction the dominant factor in changing the stiffness and in turn strains in

sensor elements and finally generated voltage.
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2.6 Conclusions

Smart laminated composite beams with bonded/embedded piezoelectric layers as sensors
and/or actuators have been investigated based on the layerwise displacement theory. A
finite element formulation considering electro-mechanical effects has been developed and
validated by comparing the present results with the available published results. The effect
of electro-mechanical coupling on the static deformation of smart laminated beams has
been investigated. It was realized that effect of electro-mechanical depends on the
volume fraction of piezoelectric materials on the host structure and may cause up to 3 %
error in tip displacement of a cantilever beam for 50% of volume fraction. In order to
demonstrate the applicability and feasibility of the smart laminated beams in shape
control, a variety of problems with different laminate configuration and boundary
conditions are investigated to observe the influence of applied voltage on static
deflection. In sensor mode, effects of sensor location in thickness, length and diagonal
directions on gencrated voltage are also investigated. It was observed that sensor placed
at the outer surfaces generate higher voltage, however the amount of generating voltage

highly depends on laminate configuration and location of sensor.
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CHAPTER 3

SENSITIVITY ANALYSIS OF SMART LAMINATED BEAMS

3.1 Introduction

Design sensitivity analysis and optimization perhaps are two of the most practical and
challenging issues in smart laminated structures due to the existing large number of
material and geometric parameters as well as loading conditions. The conventional design
methodologies lead to very long and expensive procedures which sometime make the
design infeasible. Design optimization techniques have been used in smart laminated
structures for various applications®. Also numerical methods such as finite difference
technique have been generally used to determine the gradients of objective and
constraints functions. Design sensitivity analysis for the determination of the gradients of
objective and constraints is the dominant process in the accuracy and computational time
of many design optimization procedures. Therefore, it is very important to carry out an
efficient design sensitivity analysis when the optimization algorithm is to be applied to
large size structural problems. In addition, the design sensitivity analysis provides the
trends of variation of the objective and constraint functions versus design parameters
efﬁéiently. Thus, it can be effectively used by designer to change the preliminary design
and reassess the mathematical model. Thus, the structural sensitivity analysis can be

more than just a utility for optimization task and might be used as a useful design tool to
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evaluate the system response to changing parameters efficiently. Numerical methods are
widely used by many researchers to determine the sensitivity gradients. However, in large
structural problems with large number of design parameters, including smart laminated
composite structures, numerical evaluation of gradients may results an inaccurate
optimum solution and is also computationally expensive. Therefore, an efficient

analytical evaluation of sensitivity gradients is required.

In this chapter, the design sensitivity analysis of laminated structures with surface bonded
and/or embedded piezoelectric sensors and actuators is conducted using the finite element
model based on the layerwise displacement theory which incorporates the interaction
between electrical and mechanical fields. For this purpose, the discrete analytical
gradients of the various design constraints and objective functions with respect to the

design variables are determined.

3.2 Sensitivity Analysis

In the following section, the analytical stress, displacement and frequency-related
gradients of smart laminated beams are developed based on the coupled layerwise finite
element formulation presented in Chapter 2. The equations of motion for smart laminated

beams have been derived in Chapter 2 and are repeated here in matrix form:

(M, 1} + (K 1~ KK, 1 K 5 1)) =

3.1
F, 0+ (K2 KSR - 1K ) G-1)
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3.2.1 Static problems

For the static case, Equation (3.1) is reduced to:

[K1{d} = {F(1)} (32)

where[K]=[K, 1-[KS1KS T KS ],

and
(F@)} ={F (0} ~{F" (1)} (3.3)
where
(F 0y =~(1K3, K3, TR 11K ) ™) 34

where {F,(t)} and {F”(¢)} represent the mechanical and piezoelectric load vectors,
respectively. In actuator mode, and in the absence of the sensors in the structure, the

piezoelectric load is reduced to{F” Oy =[K;, Hw*}. Tt is noted that, the nodal
displacement vector, {d} 1is an implicit function of design variable vector,

{9} =1{q9,,9,,--.9,} of the system. Stress is also an implicit function of design variables

as it is calculated using the nodal displacements. In general, the stress and displacement

related constraints can be written in the following form:

g(ldyig))<0 . i=12...m (3.5)
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where m is the number of constraints. Using the chain rule of differentiation, the total

derivative of g, with respect to the jth design variable (g, ) are given as:

T
dg, _ og, +[ %, J otd;

dg, og, \d{dy) oq, (3.6)
where
T
og;, _|9%: Oog,  Og
o{d} |od, od, od, (.7)

where p is the number of displacement degrees of freedom.
Calculation of 0g,/0q; and dg,/3{d} are generally straight forward. The term d{d}/dg,
is calculated by differentiating both sides of equilibrium Equation (3.2) with respect

tog;:

ondy _olF,} olF"y Akl , (3.8)

K]
oq oq oq oq

J J j J

Since the external mechanical load vector is independent of design variables, we

have 0{F, } / 0q; =0 . Thus Equation (3.8) can be written as:

oq,; oq oq

ody _ K]( o(F") _alK], d}j
: (3.9)

For a piezoelectric actuator, 0{F "} / 0q ; can be determined analytically as
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ofF"y aKu 1, , w0y (3.10)
oq. = aq, vy +I[Kg, ] oq,

J J J

The gradient of element stiffness matrix, 6[1%]/ dq, 1s derived by differentiating all its

coefficients with respect to design variables and in principle, it is of the same dimension

as matrix [K]. Considering Equation (3.2), the derivative of stiffness matrix

8[12' ]/ 0q ; can be described as:

g a K a Kss/ a Kss |
a[K] _ [ da’] -2 [ dy ][Kss ]—I[Km] [Kss ][Kss ]—l [ V/W][Kvsj// ]— [K;Z/]
oq, 0q, oq, 9%, 3.11)

Further, based on Equations (2.33-39), the derivatives of components of Equation (3.11)

with respect to the jth design variable are also developed as:

J

aKa’l// "o 31
'l I( Pl isys, i ([S][s ])[Eﬂ]}i‘

j 0

(3.12)

oK, !
= I(a[G“]([S][SJ ——~a([§;[s])[c¥33])dx

4q; 0 q; J

(3.13)

K] f[ 4,1

d[Dss ] olsS, 1081 o[S]IS]
o 30, LS, IS 1+ a“ [S][S]+——5———[An] 3 [Dss]Jd (3.14)

j 0 J j q; q;
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12 I
Lal_ | [ Dsls yis1+ Ass)ig sy, A8 o AS ST ]de
oq; 5\ 0q; aq, oq; 4 (3.15)
AK*2y1 o4 o[D as IS,
BN =I( : “][S,x][s,mLQ[SJ{S]+L—][—’1[A55]+G[S][S][DB]}x
7, | 4 04, 04, %, (3.16)
KL oK 3-17)
oq ; 0q ;
oK, oK, T (3.18)
oq; oq;

where as mentioned in Chapter 2, [S(x)] represents the vector of shape functions given

by [S()1=[1-¢,5], ¢ =x/I and subscript comma denotes derivative with respect to the

letter next to comma.

3.2.2 Dynamic problems

For the free undamped vibration, Equation (3.1) is written as

(& 1- M)y =0 (3.19)

where A(=w”)denotes the squared value of natural frequency. The solution of the

eigenvalue problem represented by Equation (3.19) consists of & eigenvalues, A,, and
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corresponding eigenvectors {67 ++ . For the K™ vibration mode, the sensitivity of natural

frequency with respect to changes in the design variable g, is given by*%:

g 3.20
‘C% = {gk}T(a[K] ~ A a[M]J{Jk} ( )
q; oq; oq

where A, is the A" natural frequency and {d, . }is the ™ mode shape vector. The gradient

of mass matrix can be determined using the coefficients of mass matrix given in Equation

(2.40-41) as:

1 3.21
V1 I(a{” Fasisy+ A0, }J G20
oq oL O

J J J

a[M”] ’j(a{p ¥

j 0

(3.22)
s+ })dx

] q]

The gradients of the coefficients corresponding to the laminate thicknesses,
{455}, {B13},{4,}.{Dss},Gss . {E+ 3, {p' }and {p*} can be easily evaluated as these functions

are expressed as function of the layer thickness. Assume that the design variable is the

thickness of the first layer in the laminate; then the analytical derivative of the
coefficients, say for example, {4}, is taken which results in a 2x2 matrix. The

procedure continues by computing this matrix for 2"d, 3'd,...Nh node. Then theses

matrices are assembled using the common assembly procedure used in the finite element
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method which results in N x Nmatrix for {4} with only non-zero components
corresponding to the first sub-matrix 2x2 . Similarly, if the thickness of 2“d, 3"1, vees (N-
D)™ layers are considered as design variables, then {Ass} becomes a N x N matrix with
only non-zero components corresponding to 2™, 3 ... (W-H* layers, respectively.
Similar procedure is applied to compute the analytical derivatives of all the parameters

corresponding to {B;},{4,,} ,{Dss},{G;;} and{E;;} which are given as functions of

thickness.

To summarize, using the developed analytical derivatives, the gradients of the element

stiffness and mass matrices can be computed. It should be noted that ¢ are only function

of element length. In addition, if the design variables are not functions of the element
length, then the second terms in the derivatives given by Equations (3.12) to (3.16) and

(3.21) to (3.22) become zero and the analytical gradients are correspondingly simplified.

3.3 Numerical Illustrations

This section presents the results for several representative problems. First, a benchmark
problem is considered in order to validate the developed mathematical model for the
analytical gradients. Next, several illustrative sensitivity analysis problems are
investigated using the developed analytical gradients. All the application examples focus
on the laminated cantilever beams with embedded or surface bonded piezoelectric
patches as sensors and/or actuators. The properties of the material used for all the

examples are given in Table 3.1.

71



Table 3.1 Material properties for numerical examples

Property T300/934 Adhesive PZT

E,, GPa 126.0 6.9 63.0
E,,GPa 7.9 6.9 63.0

Vi3 0.275 0.4 0.28

G,;, GPa 3.40 2.46 24.8

dy, (m/V) - - -166x107"2
dy; (m/1V) - - 285x107"
dsmlV) - - -

g (farad /m) - - 11.53410°
p(Kg/m’) 1527 1662 7600

3.3.1 Sensitivity analysis using analytical gradients and finite difference method

A cantilever beam made of 5 layers of unidirectional graphite/epoxy T300/934 of
thickness 1.0 mm and one layer of PZT actuator of thickness 1.0 mm bonded on the top
surface is considered. The objective is to investigate the sensitivity of tip deflection with
respect to the layer thickness. The length and width of the beam are given as 20 ¢cm and 3
cm respectively. The piezoelectric layer is actuated by applying 1.0 V electric potential in

thickness direction.

In Figure 3.1, the sensitivity of the tip deflection with respect to the laminate thickness
(design variable), has been shown based on the developed analytical gradients and
compared with that obtained using the finite difference method. As it can be realized
insignificant difference exists between the numerical and analytically evaluated tip
deflection sensitivity, thus validating the developed analytical gradients. However,

determining the gradients using the finite difference method at a specific point requires
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repeating the whole procedure at a nearby point whereas analytical formulation directly
provides the gradients. For large size structural problems with many design variables,
numerical computation of gradients may become significantly computationally
expensive. Therefore, analytical gradients provide more efficient and cost saving

calculations in design sensitivity and optimization procedures.

x 107
0 T T T T

—%— Analytical gradient
—&~ Finite difference ¢

J
aV]

Sensitivity of tip deflection
&

5 5 7 8 9 10
Laminate Layer thickness, m x 10°

]
o<}

Figure 3.1 Comparison of analytical and finite difference gradients

3.3.2 Sensitivity of deflection with respect to layer thickness

A cantilever beam with similar material and geometric properties as described in Section
3.3.1, made of 4 layers of unidirectional graphite/epoxy T300/934 and one 1.0 mm layer
of PZT actuator bonded on the top surface is considered to investigate the sensitivity of
deflection with respect to the laminate thickness. Sensitivity of the tip deflection with
respect to the laminate thickness has been shown in Figure 3.2 for different applied

voltages on the actuator.
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Figure 3.2 Sensitivity of the tip deflection
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The variation of the tip deflection with respect to the laminate thickness is illustrated in

Figure 3.3. It is observed that reducing the laminate thickness increases the sensitivity of

the tip deflection. Also for a defined laminate layer thickness, increasing the applied

voltage reduces the sensitivity of the tip deflection.

Further, the effects of laminate orientation, piezoelectric actuator location and applied

voltage on the sensitivity of the tip deflection with respect to the layer thickness are

investigated. In Figure 3.4, the sensitivity of the tip deflection is normalized with respect

to that of unidirectional laminate. Different laminate orientations have been considered. It

is indicated that unsymmetric laminate [0/90/0/90] has the highest sensitivity with

respect to the unidirectional and other laminate configurations.

Normalized sensitivity of tip deflection
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Figure 3.4 Normalized sensitivity of the tip deflection with respect to the laminate

thickness
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Figure 3.5 presents the effect of actuator location on the sensitivity of the tip deflection.
L, represents the location of PZT patch from the fixed end and L, is the total length of the
beam. The result shows that the unidirectional laminate has the lowest sensitivity

compared with the other lamination schemes and unsymmetric laminate [0/90/0/90]

presents the highest sensitivity of tip deflection, dw,, /dt .
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Figure 3.5 Sensitivity of tip deflection with respect to actuator location

Figure 3.6 also shows the effect of applied voltage of PZT actuators on the sensitivity of

tip deflection with respect to the layer thickness, dw,, /dt. As it can be realized, the

value of tip sensitivity increases linearly by increasing the applied voltage for all laminate

configurations. The unsymmetric cross ply laminate scheme [0/90/0/90], shows the

highest sensitivity and the unidirectional laminate the lowest one.
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Figure 3.6 Sensitivity of the tip deflection versus actuator voltage for different laminate
configurations

3.3.3 Sensitivity of beam mass with respect to layer thickness

The sensitivity of the beam mass with respect to the layer thickness can easily be
determined by analytical gradient. Since the mass is a linear function of layer thickness,
its gradient with respect to layer thickness is a constant value. The sensitivity of mass
with respect to layer thickness can be obtained by differentiating the summation of
volumes of the graphite/epoxy layers multiplied by density of the material with respect to
layer thickness. Similarly sensitivity of mass with respect to piezoelectric layers is
obtained by differentiating the summation of volumes of piezoelectric layers multiplied
by the density of piezoelectric material with respect to piezoelectric layer thickness. For

the cantilever beam described in Section 3.3.1 with one layer of piezoelectric layer
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bonded on top surface, sensitivity of mass with respect to the thickness of the composite
layer (graphite/ epoxy T300/934) is 41.6 and sensitivity of the mass with respect to the
thickness of piezoelectric layer is 45.1. In the case that we have two piezoelectric layers
in the laminate, sensitivity of mass with respect to the laminate layer is 33.3 and with
respect to the piezoelectric layer is 91.2. Figure 3.7 presents the effect of ratio of PZT

volumes and graphite/epoxy volumes (V. /V,

Composi,e) to the sensitivity of mass with
respect to the layer thickness. This concludes that the mass of the structure is more

sensitive to the changes in PZT layers compared with the changes in the graphite/epoxy

layers. At the coincidence pointV,,, /V.

composite

=0.18, both PZT and graphite/epoxy show

an equal effect on the sensitivity of mass with respect to the layer thickness.
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‘ ‘ o am/é‘tcomposite ; P
250+~ OMMdtey |

|
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Sensitivity of mass to layer thickness gm/ot)

Volume fraction (V_,./V )

PZT composite

Figure 3.7 Sensitivity of mass with respect to volume ratio of composite material and
PZT
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3.4 Conclusions

Analytical sensitivity formulation has been developed for smart laminated composite
beams with bonded/embedded piezoelectric layers as sensors and/or actuators have been
investigated based on the layerwise displacement theory. A systematic sensitivity
analysis based on the developed analytical gradients of various constraints and objective

functions has been presented.

The design sensitivity analysis provides the trends of variation of the design parameters
and can be used by designer to change the preliminary design and obtain the desired
design without performing long and expensive optimization procedures. Accuracy and
efficiency of the presented algorithm have been demonstrated through numerical

examples.

79



CHAPTER 4

DESIGN OPTMIZATION OF SMART LAMINATED BEAMS

4.1 Introduction

Design optimization perhaps is one of the most important issues in smart laminated
structures due to the presence of large number of material and geometrical parameters as
well as loading conditions. The conventional design methodology (Figure 4.1) is an ad-
hoc procedure which typically results in a non-optimal design solution. The designer’s
experience plays an important factor in the success of the design process which may

sometimes be very computationally expensive.

Collect data

v
Estimate initial
design

|
v

Analyze the system
4

Check the
performance criteria

4
Is design satisfactory?
v No
Change design based Yes
on experience

Stop

Y

Figure 4.1 Conventional design process
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However, in formal design optimization, processes are performed following a systematic

manner to achieve the optimal design. The typical optimum design process is shown in

Figure 4.2.
. .| Collect data
Identify: g
1. design variable 3
2. cost function to be ) .
N Estimate initial

minimized desion

3. constraints that g
must be satisfied v

Analyze the system

A 4

!

Check the
constraints

!

Is design satisfy Yes
convergence

l —

Change design
using optimization

Figure 4.2 Optimum design process

| Stop

In this chapter, an efficient design optimization algorithm has been developed by
combining the coupled layerwise finite element model presented in Chapter 2, sensitivity
and analytical gradient developed in Chapter 3, and optimization technique based on the

Sequential Quadratic Programming (SQP) technique to obtain the optimal design of the
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structure. Various objectives and constraints are considered. Illustrative examples are

presented to demonstrate the methodology.

4.2 Design Optimization Algorithm

In order to determine the optimal design of laminated beam with integrated piezoelectric
actuators, one of the most powerful methods of the gradient based optimization
techniques, namely the Sequential Quadratic Programming (SQP) method has been
implemented. For more details of the procedure, one may consult the books written by

Arora'® and Fletcher'*’

. Here the most essential issues of the SQP technique have been
reviewed. The main idea is to generate a Quadratic Programming (QP) problem based on

the quadratic approximation of the Lagrangian function described as:

L(tah A) = £(ta) + 3 4 ,(1a) (“.1)

where{q},g,and A are design variable vector, constraints and Lagrange multipliers,

respectively. It should be noted that the bound constraints have been expressed as
inequality constraints in derivation of the Lagrangian in Equation (4.1). The SQP
implementation consists of three main steps: (i) a QP Sub-problem solution; (ii) a line
search and objective function calculation, and (iii) updating of the Hessian matrix of the
Lagrangian function given by Equation (4.1). The procedure proceeds by solving a QP

sub-problem at each major iteration.
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The solution of the QP sub-problem generates an estimate of the Lagrange multiplier, A,

and a search direction vector {d} in each iteration &, which is used to form a new iteration

e =g+ ld), 4.2)

The step length parameter, , should be determined by using an appropriate line search

technique (one-dimensional minimizations) in order to produce a sufficient decrease in
the merit function. At the end of the one-dimensional minimization, the Hessian of the
Lagrangian, required for the solution of the next positive definitive quadratic
programming problem, is updated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

updated formula.

For the solution of QP sub-problem, the algorithm requires computing the gradient of
both constraints and objective function at each iteration. Gradients are typically evaluated
using the finite difference method. It has been shown that the analytical gradients may

lead to an accurate optimal result efficiently.

It should be noted that the non-linear mathematical programming optimization techniques
such as SQP may find the local minima instead of the global one. In other words, they
may get trapped into the local optima, without having a mechanism to climb out of it.
Thus, these methods may fail to discover the global optimum. In this study, to alleviate
this problem, optimization algorithm has been executed for multitude of random initial

points in an attempt to catch the global optimum point.
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In the following examples the design variable vector {g} = ill,tz,...,t,,mp } is

considered as the vector of thicknesses of composite layers and piezoelectric actuators

unless otherwise specified.

4.3 Numerical Examples

This section presents the results for several representative problems. The effects of
various design variables on the design objective and constraints are also investigated. All
the applications focus on a laminated cantilever beam with embedded or surface bonded
piezoelectric sensors and/or actuators. The properties of the material used for all the

example applications are given in Table 4.1.

Table 4.1 Material properties for numerical examples

Property NCT/301 Adhesive PZT

E,, GPa 144.34 6.9 63.0
E,,GPa 9.85 6.9 63.0

Vi3 0.28 0.4 0.28

G,,, GPa 4.34 2.46 24.8

dy (m/V) - - -166x107"
dyy(m/V) - - 285x107"2
dys (m/V) - - -

8y (farad/m) - - 11.53x10°
p(Kg/m’) 1385 1662 7600

4.3.1 Optimal design for static problem

A smart laminated beam with 2 unidirectional layers of graphite/epoxy NCT/301 and of
30 c¢m length and 3 c¢m width are considered to investigate the effect of developed

analytical gradients on the efficiency of optimization procedure. Five piezoelectric
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actuator patches, made of PZT and of size 3x3cm’® are bonded at the upper surface
which covers half of the whole length of the beam and another five similar patches are
bonded at bottom surface as shown in Figure 4.3. One may note that in physical model,
the five PZT patches can be considered as one element as the applied voltage is equal for
all the patches. Mechanical and electrical loadings are: a 100 N point load applied at the
tip of the beam and a 240 V electric potential applied through the thickness at the
actuators. It is desired to determine the optimal design of the layer thickness of both
piezoelectric and composite materials in order to minimize the mass of the beam while

restricting the tip deflection to be lower than 0.2 mm.

Actuator
7
- % -

/i 1 L 1 T L1

. L -

Figure 4.3 Schematic illustration of piezo-laminated cantilever beam

The variation of mass in optimization process is presented versus number of iterations
and number of objective function evaluations in Figure 4.4 and 4.5, respectively. The
optimal thicknesses for piezoelectric patches and composite material are found to be 0.1
mm and 11.7 mm, respectively. Using the optimal layer thicknesses, the tip displacement

at optimal point is obtained as 0.189 mm.
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Figure 4.4 Iteration history for mass of the smart composite beam versus number of
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T L3 T

—&— Analytical gradients
-~ 4 --Numeric al gradients {

0 10 20 30 40 50 B0 70
MNo. of objective evaluation

Figure 4.5 Iteration history for mass of the smart composite beam versus number of
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Using analytical gradients, the optimal design has been obtained after 9 iterations and 24
function evaluations while using finite difference gradients the same results have been
obtained after 13 iterations and 68 function evaluations thus confirming the design
optimization process can be conducted more efficiently by using analytical gradients. It is
worth noting that this result has been obtained for a simple problem with only two design
variables. In large structural problems with many numbers of design variables and
constraints, using analytical gradients may dramatically improve the efficiency of the

design optimization procedure.

4.3.2 Optimal thicknesses of sensor and actuator

In this example, two 3x3cm’ patches of piezoelectric material are attached on top of the
laminated beam as sensing device and another two piezoelectric patches are attached to
the bottom of the laminated beam as actuating devices. The laminate consists of six

layers of 0.125 mm thick graphite/epoxy and is configured as[0/90/0],. The length and

width of the beam are (L = 0.3 m) and (b = 0.03 m), respectively. The beam is meshed
with 10 equal-length elements and PZT patches are bonded at the location of the first two

elements as shown in Figure 4.6. PZT actuators are excited by 100 V electric potential.

The objective of this problem is to obtain the thicknesses of both sensors and actuators to
minimize the mass of the beam while satisfying constraints on tip deflection (to be
greater than 0.1 mm) and generated voltage at sensors (to be grater than 5 volts). The
optimal solution has been obtained only after 2 iterations and found to be 0.5 mm

thickness for both sensors and actuators. The optimal mass is 11.3 gr.
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Figure 4.6 Schematic illustration of piezo-laminated cantilever beam

It should be noted that different initial points have been selected to confirm the global
optimality of the solution. This optimal configuration results in 0.177 mm tip deflection
and 6.0 V electric potential generated at the sensors. It is noted that the accuracy of
voltage generated in sensors is of great interest in shape control application, since it is
used to evaluate the deflection and in turn to compute the actuator voltage required to

control the nodal displacements.

4.3.3 Displacement control while monitoring inter-laminar stresses

The laminated beam described in example 4.3.2 is considered to investigate displacement
control while monitoring inter-laminar stresses between layers. The beam is meshed with
ten equal-length finite elements where the actuator patches are considered at the first
three finite elements. Material and geometric properties are given in Table 4.1. It is

desired to achieve the minimum mass of the beam while having 2 mm tip deflection. The
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inter-laminar stresses between layers are also monitored not to exceed 1 MPa. The
applied voltage is limited between 1 and 100 volt. The layer thicknesses are limited
between 0.125 mm (lower limit), which is typical for graphite/epoxy lamina, and 20 mm
(upper limit). The thicknesses of PZT patches are also limited between 0.2 mm and 20

mm. The optimization problem is cast into the following form:
Npzr N
f= Z bprthZT +prf t{ — min.
Jj=1 i=]

Subject to =2.0mm,

utip
(72 Vigyer <1MPa
1.0V <y <100V,

0.1 mm<t <20.0mm,

0.1 mm<t"?" <20.0mm

The thicknesses of composite and PZT layers as well as the applied voltage are

determined for laminate conﬁgurations,[o/go]ﬂ, [45],, and [430] . The results are

provided in Table 4.2 in which one can realize that configuration [+45]

.- requires higher

layers thickness and lower actuating voltage than that of the [0/90], and [+30], .. This is
due to the lowest stiffness of configuration|[+45] . Consequently, configuration [+30],

needs lower layer thickness and higher actuating voltage than that of [0/90]

37
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Table 4.2 Optimal layer thickness (mm) and PZT voltage (volt)

Laminate Layer thickness, mm Top Bottom Voltage
Li Ly L L4 Ls Le PZT PZT

[0/90],, 0.10 0.10 0.888 0.889 0.889 0.887 0.10 0.887 72.2

[+45],, 0.10 0.10 0913 1.110 0963 0.897 0.10 0.897 66.33

[+30],, 0.10 0.10 0.10 0.810 0.790 0.887 0.10 0.887 91.5

Iteration procedure leading to the optimal mass for different laminate configurations is
provided in Figure 4.7. As it was expected from the conclusion derived from the results

provided in Table 4.2, the minimum mass is obtained for[J_r30]3T and configurations

[0/90],, and [J_r45]3T are in the second and third ranks.

50 [ : — - L’Z’iff,:"
’\& o © —(i45)3.|. “
TS, i

40 Seg o (£30)y;
) v (0/90),;

10 15
fteration no.

Figure 4.7 Iteration history to minimize the mass

The inter-laminar stresses corresponding to the optimal design are provided in Figure 4.8.

It is indicated that inter-laminar stresses between the laminate layers and piezoelectric
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layers are higher than the inter-laminar stresses between host layers. This is due to the

higher value of shear stiffness for piezoelectric materials.

PZTlayert |
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Figure 4.8 Optimal inter-laminar stresses

This result is of great importance in designing smart laminated beam since the force
applied by the PZT actuators usually is very small. In terms of manufacturing, the
bonding between piezoelectric elements and host structure should be well treated in order

to prevent detaching of actuators from the composite layers.

In addition, the applied voltage should be kept in a safe region for PZT ceramics. It is
observed that the optimal thickness of the upper and lower PZT patches greatly depends
on the lamination orientation and applied voltage. It should be noted that monitoring
inter-laminar stress in optimization procedure using ESL theories is not straight forward

and also not accurate. However, the finite element method based on the layerwise theory
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provides inter-laminar stresses that are very close to the results obtained using three
dimensional finite element method". Therefore, finite element method based on the
layerwise theory is an efficient (in terms of computation) and accurate (compared to 3D

analysis) analysis tool in the design optimization procedure.

4.3.4 Optimal design with frequency constraint

The smart laminated beam described in Section 4.3.1 is again considered here with 4
layers and sequence configuration of [0/90], to determine the optimal thickness of
composite layers to minimize the mass under frequency constraints, while the thickness
of both sensors and actuators is 0.5 mm. The first three natural frequencies of the beam
are monitored not to exceed 40, 215 and 680 Hz, respectively. The optimal design for
layer thickness is obtained and given in Table 4.3 considering with and without
electromechanical coupling effect in the finite element model. It is observed that
performing optimization technique may reduce the total mass of the beam by 28 percent
when neglecting the effect of electro-mechanical coupling in the analysis. Considering

electro-mechanical effect in the finite element model may decrease the optimum mass by

34 percent.
Table 4.3 Optimal layer thickness with frequency constraint
Layer thickness, mm Total mass, gr % Reduced mass
Initial design 1.0 82.0 0.0
Optimal (no coupling) 0.59 58.55 28.65
Optimal (coupling) 0.54 56.0 34.14

The optimal layer thicknesses for both PZT patches and composite material are

determined using the finite difference and analytical gradients and are presented in Figure
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4.9. 1t is observed that the results obtained using analytical gradients and finite difference

methods are in very good agreement.
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Figure 4.9 Optimal design of piezo-laminated beam under frequency constraints
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Figure 4.10 Number of iteration, function evaluation and computational time in
optimal design of piezo-laminated beam under frequency constraints
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However, as shown in Figure 4.10 significant reduction in computational efforts is

achieved using analytical gradients in the optimization procedure.

4.3.5 Effect of boundary conditions and PZT patches on optimal design

In order to investigate the effect of boundary conditions and location of PZT patches on
the optimal design of the smart laminated beam, the beam described in the Section 4.3.1
is again considered except that the PZT patches are located in two different cases as
shown in Figure 4.11. The laminate configuration, geometric and material properties are
considered similar to the example in Section 4.3.1. Both cases are modeled with 10 finite
element meshes. In case I, the five PZT patches are attached in the ﬁrs£ five meshes. In
case II, the five PZT patches are distributed along the length of the beam by equal
distance. All the PZT patches are subjected to +240 ¥V at the upper surface and -240 V at

lower surface.

T\ N\

Case | ’ Case Il

PZT - Laminate

Figure 4.11 schematic illustrations of different cases of smart laminated beam

The optimization problem is defined as the following:

minimize (mass of the beam) ~ subjectto, (& o, @;)=(40 215 680)Hz
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where o, represent the natural frequency of the beam.

The optimization problem has been solved for simply supported, clamped free and
clamped-clamped boundary conditions and with different PZT locations, namely case I
and case II. The results are provided in Table 4.4. It is observed that for all boundary
conditions under investigation, the optimal mass for case I is lower than that of case II.
This effect is mainly due to the higher stiffness of the beam configured with case 1. Also,
the results indicate that, the beam with clamped—free boundary requires the higher value
of mass to satisfy the required constraints while the clamped-clamped boundary condition

requires the lowest value of mass.

Table 4.4 Optimal design of smart laminated beam under frequency constraint

Clamped-free Simply-support Clamped-clamped
TL TP Mass,g TL TP Mass,g TL TP Mass,g

Casel 6.7 1.0 42.6 3.8 1.0 2.72 2.47 1.0 2.00

Casell 6.9 1.0 43.7 3.9 1.0 2.77 2.57 1.0 2.06

*TL: thickness (mm) of individual layer of the laminated beam, TP: Thickness (mm) of
PZT patches

4.3.4 Optimal design for vibration control
A cantilever laminated beam with 4 layers [(0/90),] each of 0.125 mm thickness is

considered. The length and width of the beam are given as 0.33 m and 0.0254 m,
respectively. One piezoelectric actuator (16.5 x 25 x 0.8mm’) is attached on the top surface
at 0.05 m from the fixed end of the beam. The free end of the beam is initially displaced
by 10 mm. It is desired to determine the minimum electric potential desired to suppress
the transient vibration in a controlled manner. It is required to reduce the settling time to

0.5 seconds by applying electric potential to the actuators. The optimization problem is
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minimization of the control effort in time interval 0 to 7. The problem is cast into the

following standard format:

min f = LTVZ(t}it

subject to, w(T)=0, vie)<v, (4.4)

where 7 is the allowable time to suppress the motion and is assumed to be 2 sec, V, is the

maximum applied voltage on the actuators (1000 V), and w represents the transverse

displacement of the beam.

Figure 4.11(a) shows the initial response of the laminated beam and the response of the
system after the optimum voltages given in Figure 4.10(b) are applied to the system. It is
observed that by performing the optimization, the settling time is reduced from 2.5
seconds to 0.5 seconds. In Figure 4.12(a), the iteration history of the performance
function (control effort) is shown. In the second iteration, the control effort is jumped to

its maximum level and after six iterations is converged to its minimum value which is

about 10000 V2 sec.
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Figure 4.11 (a) Vibration suppression using optimal electric potential, (b) Optimal
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Initial and optimal control forces are presented in Figure 4.12(b) where one may realize a

significant reduction in the first peak. Obviously the difference is a relative value and it

depends on the initial design.
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Further, the effects of laminate configuration and location of actuator are investigated.
The same smart laminated beam is considered except that the laminate configuration and
location of the actuator are changed for different cases. In the first case, the actuator, 4,

and sensor, S, are attached at the lower and upper surfaces, respectively[S/(0/90), / A].
For the second case, the actuator is embedded inside the laminate, as, [S/0/90/.4/90/0].

In the third case, the effect of laminate configuration is studied by making a smart

laminated beam as [S/(£45),/A4].

For all cases the design variable is actuator force and the constraint is 0.5 seconds settling
time. In Figure 4.13 the optimal tip response and the optimal control force of the
laminated beam with different configurations are presented. As it is observed from Figure
4.13(a), the settling time for all the cases is 0.5 seconds as was prescribed in optimization
problem. Figure 4.13(b) indicates that the laminated beam configured as [S/(+45), / 4]
requires higher value of control force in order to suppress the vibration in 1 sec. This

value is slightly reduced for the laminate configuration [S/0/90/ 4/90/0]. This is due to

the change in stiffness matrices and piezoelectric force applied by the actuator.
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Figure 4.13 Effects of laminate configuration and location of actuator on (a) vibration
suppression using optimal electric potential, (b) optimal voltages applied at actuators

4.4 Conclusions

The coupled layerwise finite element formulation, and the analytical gradients have been
combined with Sequential Quadratic Programming technique to develop an efficient and
accurate optimization algorithm. In static case, nodal displacement and inter-laminar
stresses are considered as constraints to minimize the mass. In dynamic problems, natural
frequencies are monitored as design constraints for eigenvalue problem and minimization
of control effort is considered for transient vibration. It has been revealed that the use of
analytical gradients in optimization procedure results in significant reduction in
computational efforts in terms of iteration numbers as well as function evaluations
required to converge to the optimal result. The effect of boundary conditions and location
of piezoelectric elements on the optimal design of the smart laminated beam under
frequency constraints are also investigated. It is indicated that the beam with clamped-

free boundary condition requires the higher value of mass in order to satisfy the
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frequency constraints. Consequently, the beams with simply supported and clamped-

clamped boundary conditions require the lower value of mass.

The layerwise approximation for displacements through the thickness of the laminates
provides more accurate results for in-plane strain and stress distributions and inter-
laminar stresses. Therefore, the optimal designs of smart laminated structures based on

the layerwise approach are more reliable than that of the equivalent single layer theories.
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CHAPTER S

OPTIMAL VIBRATION CONTROL OF SMART LAMINATED

BEAMS

5.1 Introduction

Laminated composite structures have been widely used for aerospace applications such as
satellite, and aircraft wings and tails. Excessive vibration in these structures may result in
instability and/or poor functionality of the system. In order to control the stability of the
laminated structures during operation, the concept of smart laminated structures has been
recently attracted by many researchers. These novel structures consist of the laminated
structures as the host structure, smart materials with capability to serve as sensor and/or
actuator, and the control mechanism. Excellent sehsing and actuating capabilities of
piezoelectric materials make them the most practical smart materials to integrate with
laminated structures. This smart system is now, equipped with a control mechanism to
provide an active vibration control. Active vibration control is refereed to the procedure
of suppressing vibration response of the structure through an automatic modification of

the system structural response.

Efficiency and accuracy of the dynamic and static responses of smart systems highly

depend on the mathematical modeling of the structure and the control strategy. Thus, to
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achieve the desirable performance and functionality of the smart laminated systems, these
two aspects should be thoroughly understood and accurately represented in the modeling.
In this chapter, the coupled layerwise displacement theory developed in Chapter 2 has
been utilized to model the smart laminated structure. Finite element model based on the
layerwise theory typically results in large number of degrees of freedom. In order to
reduce the number of degrees of freedom for control purposes, the modal forms of the
structural model and sensor and actuator are developed. Linear Quadratic Regulator
(LQR) is then applied to obtain the optimal control feedback gain. Open-loop and closed-
loop investigations have been performed and the results are compared with those
obtained based on the classical laminate theory and classical control strategies.

Experimental investigations have also been conducted to validate the simulation results.

5.2 Structural Modeling

As shown in Chapter 2, finite element model based on the layerwise theory can be
effectively used to evaluate the generated voltage in sensor of the smart system. This
observation greatly influences the feedback control design where the actuating force is
deterrﬁined using the sensor output. Slight change in sensor output may lead to significant

change in actuator input as it is amplified by a gain factor.

Most of the smart laminated systems are developed based on velocity feedback control
where the sensor output current is used to detect strain rate (velocity signal) generated in
the structure due to external forces, however the output current may need to be amplified

by a gain factor of the order of 10' in order to be measured. In addition, in many
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practical cases velocity signal is not accessible or is expensive to measure due to number
of sensors, current amplifier, etc. Thus, the sensors are used to detect the displacement
signal, and then, are differentiated using a numerical approach to determine the velocity
signal. Numerical differentiation of displacement signal usually adds noise to the signal
which may significantly affect the controller functionality. Thus, inaccuracy in the sensor
input may significantly influence the performance of the smart system. To ensure the
highest accuracy and efficiency of the functionality of the smart laminated system, in the
present work, layerwise displacement theory is utilized to develop the mathematical

model of the smart structure.

Considering that in the sensor layers the converse piezoelectric effect is negligible, the

equations of motion and electrostatic, (2.43) and (2.44) are reduced to:

[M o 1{d} +[K 3 1d} = {F, (0}~ [K 52 1y ") (5.1)
') =—K2 T (K5 1)) (52)

where [K ;1=K 1-[K5IKS, 7K.

5.3. Vibration Control

Formulating the smart laminated beams using the layerwise finite element model leads to

a large number of degrees of freedom. On the other hand, vibration control is mainly
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concerns of controlling the specific vibration modes, practically the fundamental mode.

Thus, in this section the modal form of the governing equations are presented.

5.3.1 Modal form

Assuming a modal form with n vibration modes, the transverse displacement vector can

be written as the modal summation in the form'’:

n 5.3)
{dy = {q, @) =lql{m}

r=1
where [¢]is the modal shape matrix. Substituting Equation (5.3) into Equations (5.1) and
(5.2) and use the orthogonality of mass as [¢'][M]lg]=1 and stiffness as

[¢" 1K 1[g]=[»"], leads to:

G+ [0 167} = (9T [F1- 9] [K: 1w ' (5.4)
'y =K T (K2 1g1in]) (5.5)

If structural damping is also taken into account, Equation (5.4) may be written as

{7} + 280} +[0° 1} = [q) [F1-[q) [K ], Ky "} (5-6)
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where according to Rayleigh modal damping, [2¢w]is a diagonal matrix representing the

damping of the structures and & is a vector of modal damping factors.

5.3.2 State space model

The state vector x is defined as

iy = ' (5.7
Now using Equation (5.7), the state space form of Equation (5.6) can be written as the

following:

X} =141} + [Bu 5+ /3 (5.8)

v’y ={y=[CHx} (59

where {u,} represents the actuating control force, {f} is load force vector generating the

primary excitation force and the remaining coefficients are given by

0] [ } { [0] } { {0} }
[4]= , (B]= s {f}=
L—aﬁ [-2¢0] al K5, ] [a1" {F} (5.10)
[Cl=[-1K, V'K q) [0]] {u.} =y}

5.3.3 Classical control

The most common approach in controlling the vibration of smart laminated structures is
output feedback control in which the sensors outputs are amplified and directly fed back

to the piezoelectric actuators. The control voltage is given by
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{u} =Gl (0} (5.11)

where [G] is a feedback control matrix defined according to the control law. Substituting
Equation (5.9) into (5.11) and the resultant into Equation (5.8), the closed-loop system

state is given by

{x} = ([4]-[BIGICD{x} (5.12)

Equation (5.12) indicates that the gain matrix [G] modifies the closed-loop system
dynamic. Therefore, this approach can attenuate the vibration by transferring the initial

poles of the system to higher damped ones.

The velocity feedback control is the most common control law utilized in vibration
suppression of smart laminated structures. In this approach, the piezoelectric sensors are
utilized as strain rate detectors'”’ where the output current of the sensors is measured,
amplified and fed back to actuator through multiplication by a control gain. This
approach is called Constant Gain Velocity Feedback control (CGVF). The control gain is
selected based on the desired output response such as settling time and maximum
amplitude of the response. The given control gain is then utilized to determine the
required control voltage. If the control voltage exceeds the maximum allowable voltage
applied on the actuator, the design should be repeated using a new control gain. It is
worth noting that, most of commercial piezoelectric patches are applied within the

electric field of 300 ¥/mm"'. Exceeding that voltage may result in depolarization of the

106



piezoelectric material and consequently leads to loss of functionality of the smart

structures.

To investigate the CGVF control, a symmetric laminated beam [0/90/0], integrated with

one piezoceramic actuator and one PVDF sensor as shown in Figure 2.9 is considered to
determine the closed-loop response of the system. Sensors and actuator patches are
mounted at 4 cm from the fixed end of the beam. Material and geometric properties of

graphite/epoxy layers, piezoceramic and PVDF patches are given in Table 2.2.

The closed-loop vibration response of the smart laminated beam for an initial tip
displacement 4 cm and the required control voltage for constant gain of G = 1000, 2000,
4000, and 6000 are provided in Figure 5.1. It is expected, increasing the feedback gain
results in faster vibration suppression as shown in Figure 5.1. However, it requires higher
actuator voltage which may exceed the maximum allowable actuator voltage as shown in
Figure 5.2. Thus, designing the optimal controller requires a trial-and-error procedure and
trade off between vibration response of the structure and the actuating voltage of the

actuators.
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Figure 5.1 Tip displacement (a) and control voltage
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Figure 5.2 Control voltage of laminated smart beam using CGVF

To design control algorithm according to CGVF, one may encounter various difficulties:
i) Results similar to Figure 5.1 might be obtained for all the possible location/size of
sensors/actuators and control gains to find the optimum combination for the desired
vibration response. if) This approach does not include well defined criteria to find the

optimum value for the size, location and control gain. Thus, designing control algorithm
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based on the classical control strategies, including CGVF, for vibration control of smart

laminated beams requires very long and time consuming effort.

5.3.3 Optimal control

The optimal control system is designed based on the state feedback control law. The
Linear Quadratic Regulator (LQR) is a control algorithm employed here to determine the

optimal feedback gain. In LOR, the feedback gain, K, is chosen to minimize a quadratic

cost function of the form subject to the system equation

= % [ (037100 + ] YR e 3 e (5.13)

where [Q] is a symmetric semi-positive definite and [R] is a positive definite weighting

matrices, and are selected to provide suitable performance. The relative magnitudes of

[O] and [R] are selected so as to trade off the requirements on minimizing vibration
energy against the requirements on minimizing control energy. In general, a larger [Q]

puts higher demand on control voltage, and a larger [R] puts more limits on applied

control force.

State feedback control requires that

) =K, (%) (5.14)
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where the feedback gain [K.] is determined by solving the following matrix Riccati

equation132 .

[4]" [P]+[PI[4]-[PI[BI[R]"[BY [P1+[Q]=0 G.15)

where [P] is an auxiliary matrix. The control gain is then obtained by

(K, 1=[RT"'[BY [P] (5.16)

For details of LOR control, one may consult the book written by Kirk'.

Compared to classical control strategies, optimal control provides a systematic criterion
to determine the optimum feedback control gain. Once the weighting matrices
corresponding to control voltage and vibration energy are selected, then remaining
procedure is a standard optimization algorithm based on minimizing the cost function

defined by Equation (5.13).

5.4 Numerical and Experimental Works

In this section both open-loop and closed-loop responses of smart laminated beams have
been simulated and compared with experimental results. A proof-of- concept smart
laminated composite beam has been fabricated. First, the experimental open-loop
response of smart laminated beam is determined to obtain the actual damping coefficient
of the system. Then, the closed-loop response of the beam using the LOR controller is

determined to validate the performance and functionality of the structural and control
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model. The second case aims to provide a numerical insight on application of LOR
optimal control on a laminated composite beam with integrated piezoelectric sensor (top)
and actuator (bottom). The effects of location of sensors and actuators and that of

laminate configurations are also investigated in this simulation study.

5.4.1 Experimental open-loop response
The experimental set-up consists of a symmetric laminated beam [0/90/0], as the host

structure; one piezoceramic actuator (BM 500, Sensor Technology Ltd.) and one PVDF
sensor (28UM FILM W/NICU, Measurement Specialties) bonded at outer surfaces of the
beam, a home built voltage amplifier with capacity to supply +200 Volts, a data
acquisition board (NI-6220, National Instruments) and a PC computer loaded with
LABVIEW® 7.0 as the controller. The schematic and physical experimental set-ups are
shown in Figures 5.3 and 5.4 respectively. Material and geometric properties of
graphite/epoxy layers, piezoceramic and PVDF patches are given in Table 5.1. It should
be noted that the material properties of graphite/epoxy are verified through standard

tensile and DMA tests, provided in detail in Appendix B and C.

Table 5.1 Material and geometric properties

Graphite/ Epoxy Piezoceramic = PVDF

E;, GPa 98.0 71.4 4.67
E,, GPa 6.78 71.4 4.80
Gy, GPa 3.48 24.8 2.66
p, Kg/m’ 1380 7610 1610
ds1, m/V - -200x10" -20x1072
es3, F/m - 150x10"°  1.05x1071°
Length, mm 300.0 25.0 25.0
Width, mm 30.0 25.0 25.0

Thickness, mm 0.2 0.50 0.0028
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For simulation purpose, the structure is meshed with 15 equal-length elements along the
length of the beam. In thickness direction each physical layer, including piezoelectric
materials, are considered as one numerical layer to develop layerwise finite element
model. To obtain the free vibration response of the laminated smart beam, the tip of the
beam is dislocated 4 cm and then suddenly released. Sensor output is fed directly to the
data acquisition board and the time response is obtained using LABVIEW® 7.0 as shown

in Figure 5.5.

PZT 7Actuait0r

PVDF Sensor

I S G _

! | t. | Voltage Amplifier,
1, 200V
| DAQ NI-6220 | [‘;
| npyT | OUTPUT —
— | EHOV == Controller,
. LABVIEW 7.0

Figure 5.3 Schematic set-up of the test for vibration control of laminated beam
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Voltage Amplifier Terminal to DAQ

Figure 5.4 Experimental set-up for vibration control of laminated beam

Using the experimental response of the beam shown in Figure 5.5, it is noted that 31
cycles are realized in the time interval (0.069-1.969) seconds. Therefore, the natural
frequency of the system is determined as: @, = 31/(1.969 — 0.069) =16.3 Hz which is in

very good agreement with the natural frequency obtained using finite element analysis

based on the layerwise theory (@, =16.37 Hz). Using the same time interval, the damping

coefficient is determined by computing the logarithmic decrement as:

S =1/32In(2.526/0.1858) =0.0842 and the damping factor is determined as:
£, =6/2r=0.0134. The experimental value of damping coefficient is of great

importance to design the control strategy, since this value directly affects the state

matrices.
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Sensor output (V)

Figure 5.5 Experimental open-loop sensor output of cantilever beam with 4.0 c¢m initial
displacement

In addition, damping coefficient of laminated smart beam is influenced by many factors,
including, laminate configuration, material and geometric properties, and location of
sensors/ actuators, requiring testing of individual cases to determine the accurate damping
factor.

Now using the experimental damping coefficient in the finite element model, the open-
loop response of the system is obtained and compared with that of the experimental.
Figures 5.6 and 5.7 show the comparison between the experimental aﬁd simulation of
sensor output voltage in open-loop condition for 1 second and 2 second time response,
respectively. As it can be realized good agreement exists between the simulation and

experimental results.
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Figure 5.6 Simulation and experimental open-loop sensor output voltage of cantilever

beam with 4.0 cm initial displacement for 1 sec time response
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Figure 5.7 Simulation and experimental open-loop sensor output voltage of cantilever

beam with 4.0 ¢m initial displacement for 2 sec time response
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To design the feedback control using LOR, appropriate selection of the weighting
matrices [Q] and [R] plays a vital role. To have better understanding, the effects of [Q]

and [R] on vibration response and control voltage are investigated first.

The smart laminated beam described in Section 5.4.1 is again considered. The value of

[R] matrix is assumed to vary between 1 to 3 in the LOR procedure described in Section
5.3.3, while the value of [Q] is kept constant as [Q] =107 /,,,. Equations (5.15) and (5.16)

are solved using MATLAB® software to determine the feedback gain according to each

[R] value.
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Figure 5.8 Effect of [R] matrix on tip displacement

116



150 — —— e

100 %' ‘11

5011 1

Applied Voltage (V)
(o)

1450 - —

Figure 5.9 Effect of [R] matrix on applied control voltage

One should note that the order of matrix [R] is determined according to the number of
actuators used in the system. In the present example, only one actuator is utilized thus
requiring a single value for matrix [R]. Similarly, the order of matrix [Q] is determined
according to the order of state variable vector, {x}, which is defined by the number of
vibration modes considered in the control system. In this study controller has been

designed to suppress the fundamental vibration mode.

The effect of using this matrix [R] on tip displacement and the generated control voltage
applied on actuator are demonstrated in Figure 5.8 and 5.9, respectively. As is can be
seen, increasing the value of [R] decreases the required electric voltage but on the other

hand increasing the vibration settling time. It should be noted that to save computational

time, a relatively large the time step is
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Next, the value of [R] is kept constant as R =1.3 and the value of [Q] matrix is changed as

(107,10%,10°)1,,, . The effect of changing [Q] matrix on vibration response and control

voltage is shown in Figures 5.10 and 5.11, respectively.

It is observed that increasing the value of [(] results in decreasing the settling time from

one side, however increasing the applied control voltage from other side.
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Figure 5.10 Effect of [Q] matrix coefficient on tip displacement
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Figure 5.11 Effect of [Q] matrix coefficient on applied voltage

5.4.2 Experimental closed-loop response

Considering the effects of [Q] and [R] on control algorithm in smart systems presented in
Section 5.4.1, the weighting matrices utilized are: [Q]=1x1077,, and R=1.3 and the
feedback gain is determined as: [K,. ]=[0.049 1557]. According to this value, the
velocity state has a major impact on feedback gain. However, we have utilized only one
sensor and measured its output voltage which is proportional to displacement. To
measure the velocity state, it is required to take numerical differentiation of the
displacement values. Although this method may generate noisy signal, but it is acceptable
for validation purposes. In addition, it uses only one sensor to determine both

displacement and velocity signals.
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To demonstrate the control strategy, the set-up described in Section 5.4.1 has been used.
A push button is simulated in the LABVIEW® to activate the controller. A 4.0 ¢m initial
displacement has been applied at the tip of the beam and the beam is suddenly released.
After 1.0 second, the controller is activated to damp out the vibration. As it is observed
in Figure 5.12, once the controller is activated, the amplitude is significantly reduced.
After 0.2 second of controller activation the vibration is suppressed to about 3% of its
steady state response. Figure 5.13 provides a comparison between simulation response
with LOR controller and the experimental response. One may realize that good agreement
exists between experimental and simulation results. However, due to the effect of
measurement and system noise, a Steady noisy signal, as long as the controller is

activated, remains in the system even after the vibration is suppressed.
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Figure 5.12 Experimental closed-loop sensor output of cantilever beam with 4.0 cm
initial displacement
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Figure 5.13 Comparison between the experimental and simulated closed-loop sensor
output voltage of cantilever beam with 4.0 cm initial displacement

The open-loop and closed-loop experimental responses of the smart laminated beam are
presented in Figure 5.14 in which one may realize 50 % reduction in the settling time

when control is on.
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Figure 5.14 Comparison between the experimental open-loop and closed-loop sensor
output voltage of cantilever beam with 4.0 ¢m initial displacement
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In order to examine the influence of LOR algorithm on controlling the vibration modes,
the frequency response of the smart laminated beam is presented in Figure 5.15 and 5.16
It should be noted that in the experimental beam, only one sensor is utilized to control the
first mode of vibration. As it can be seen, the developed control mechanism has
significant impact on controlling the first vibration mode. It should be considered that
controlling the higher modes requires more sensors/ actuators or more complicated

mathematical modeling of the smart system.
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Figure 5.15 Frequency response of the smart laminated beam generalized modal
coordinate; open-loop (dotted line), closed-loop (solid line)

122



40— T

Magnitude, (dB)

10" 10t
Frequency (Hz)

Figure 5.16 Frequency response of the smart laminated beam; open-loop (dotted line),
closed-loop (solid line); sensor output

5.4.3 Effect of laminate configuration on optimal control

The smart laminated cantilever beam studied in Section 5.4.1 is considered. The first two

natural frequencies of this structure are identified to be: v, =16.31Hz and w, =102.0 Az,
respectively, and the corresponding damping ratios are determine as & =0.0113 and

52 :016

In order to determine the feedback control gain using LQOR, the matrices [Q] and [R] are
selected as [0]=2x1071,,,, [R]=1.3. Using the given numerical values, the feedback
control gain, [K], has been determined as:[K,.]=[0.79 -57.1 -2645 -38.7]. An

initial displacement of 10 mm is applied at the tip of the beam. Different laminate
configurations, [PS/(0/90/0)/PA), [PS/(£30/0)/PA), [PS/(:45/0)/PA] are investigated

(PS and PA stand for sensor and actuator, respectively). The closed-loop vibration
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response and corresponding applied control for each laminate configuration is obtained
and presented in Figures 5.17 and 5.18, respectively. It is indicated that [PS/(0/90/0)s/PA]
has the fastest deflection suppression. Correspondingly, [PS/(+£30/0)/PA] and
[PS/(+45/0)/PA] have the second and third positions. In terms of applied control voltage
at the actuator, the magnitudes are similar for all configurations except that there are
delays between each configuration. To make a better comparison, the decay envelopes
and the frequency responses for various laminate configurations are plotted in Figures
5.19 and 5.20, respectively. To save computational time, a relatively big time step is used
to plot theses graphs which cause sharp edges; however, it is sufficiently demonstrate the

effect of laminate configurations in time responses.

- [PS/(+30/0)s/PA] |
| — - - [PS/+45/0)s/PA] ||
|~ [PS/0/90/0)s/PA]

Tip Displacement (mm)

. Time (s)

Figure 5.17 Tip displacement for different ply orientations
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Figure 5.18 Applied control voltage for different ply orientations
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Figure 5.19 Family of decay envelopes for various laminate configurations
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Figure 5.20 Frequency response for various laminate configurations

The relation between settling time (+ 3% of steady state response) and control force has
also been investigated. In general, as the seitling time increases, the control voltage

decreases as shown in Figure 5.21.
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Figure 5.21 Maximum control voltage vs. settling time
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Figure 5.22 The decay envelope for different through the thickness locations of actuators

Another important factor in vibration control of laminated structures is the location of the
embedded piezoelectric actuator through the thickness. To investigate the effect of
piezoelectric actuator location through the thickness, the smart laminated beam described
in Section 5.4.1 is investigated but the laminate configuration is assumed unidirectional.
The location of actuator has been changed from outer surface (layer 8) to inner layers in
succession (5 and 3). The decay envelopes for various configurations are plotted in
Figure 5.22. It is observed that as the smart material layer is moved farther from the mid-
plane the suppression time decreases as expected due to the moment effect caused by

smart layer actuations.

Figure 5.23 and Figure 5.24 show the vibration response and corresponding control
voltage for two different locations of piezoelectric actuator through the thickness,
respectively. It is noted that in order to remove the effect of changing elastic stiffness due

to different laminate orientations, the laminate is considered as unidirectional. As it can
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be realized the relocation of piezoelectric actuator patch from the 3™ inner layer to the top

layer significantly reduces the settling time; however, it increases the control voltage

significantly.

——[PSIO/PA]

| ----- [PS/0 4/PA/02] |
E |
E
= |
© oY M
-a- N 0
L ’
e
2 .
}—.

1 1.5 2
Time (s)

Figure 5.23 The effect of actuator location on tip displacement for two different through
the thickness location of the actuator in unidirectional laminate configuration
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Figure 5.24 The effect of actuator location through the thickness in unidirectional
laminate configuration the control actuator voltage
In another investigation, the configuration [PS/(0/90/0),/PA] is considered and the
actuator element is relocated from the outer surface to the 3" layer from top. The tip
displacement and the corresponding control actuator voltage are shown in Figures 5.25
and 5.26, respectively. The same conclusion made for unidirectional configuration can
also be drawn for [PS/(0/90/0),/PA] configuration. It is worth noting that in non-
unidirectional configurations, when relocating actuator through the thickness, one should
take special care to achieve similar ply orientation for the host composite ply. For
example if one removes one layer with 90 degree and place an actuator instead of it, then,
the stiffness of the structure will change and the effect of actuator location can not be

pronounced.
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Figure 5.25 Effect of actuator location through the thickness on tip displacement in non-
unidirectional laminate configuration
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Figure 5.26 Effect of actuator location through the thickness on the applied control
voltage in non-unidirectional laminate configuration
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5.6. Conclusions

Vibration control of smart laminated structure has been performed using optimal control
strategy. A finite element model based on the layerwise displacement theory which
incorporates the electromechanical coupling effect has been developed to efficiently and
accurately obtain the response of the system. The smart system consists of laminated
composite beam as the host structure, piezoceramic actuator and PVDF sensor. Utilizing
the layerwise displacement theory, the modal form of both sensors and actuators has been
developed. The state space model of the active laminated beam is then used to design the
control system. Full state feedback controller based on Linear Quadratic Regulator (LOR)
is designed to suppress the vibration of the smart laminated beam. Dynamic response of
the smart laminated beam according to classical laminate theory and layerwise
displacement theory has been investigated to demonstrate the accuracy of layerwise
theory in vibration suppression. Numerical illustrations have been presented to discuss
the classical control strategies versus the optimal control. The effects of laminate
configuration, locations of sensors and actuators and weighting matrices on controlled
response of the smart system have also been investigated. An experimental set-up
consisting of a laminated beam, one piezoceramic actuator bonded on the top surface and
one PVDF sensor mounted on bottom surface has been developed to determine the open-
loop response of the system. Experimental damping coefficient of the smart system has
been determined and utilized to develop state space model. Based on LOR controller, an
experimental feedback controller has been designed and employed to determine the
closed-loop response of the system. It is indicated that optimal control strategy

significantly improves the vibration response of the structure. In practice, the system is
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very sensitive to changing the values of feedback gain requiring an accurate formulation
for mathematical modeling of the system. Utilizing layerwise theory for vibration control
purpose provides high accuracy (compared to equivalent single-layer theories) and
reasonable efficiency (compared to 3D models). In addition, this model can be applied at
the same time to monitor the inter-laminar stresses between the layers, particularly

between the actuator patches and the laminated host structure.
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CHAPTER 6

VIBRATION SUPPRESSION OF SMART LAMINATED BEAMS

UNDER RANDOM LOADING

6.1 Introduction

To date, the majority of works on modeling and vibration control of smart laminated
composite structures assumed deterministic loading conditions, where the applied forces
are known. However, many of the laminated composite structures are exposed to
randomly varying dynamic loading, such as aircraft components (due to turbulence,
acoustic pressure, or rough burning engines), and marine structures in which the variation
of such loading cannot be determined exactly. It is only possible to make probabilistic
statements about the variation of response. In order to design smart laminated structures
for realistic engineering applications, an in-depth understanding of the dynamic response
of the smart system under random excitations is of great importance. In this chapter the
spectral characteristics of response of smart laminated beam under stationary random
loading, for which the statistical properties are time-independent is studied. First,
fundamental concepts of random vibration analysis are reviewed. Then, dynamic
response of the smart laminated system under random excitation is investigated. An
optimal control algorithm based on Linear Quadratic Regulator (LQR) is designed to
actively suppress the vibration of the system. Numerical examples are presented to

demonstrate the rationally and validity of the active control model.
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6.2 Random Vibration Analysis
A random signal is defined by the probability of the variable X to take a specific value of

x and is shown as P, (x) and characterized as'>>:

0<P(x)<l, Y P (x)=1 (6.1)

all x

The function that describes the distribution of probability density over the sample space
of random variable, X, is called the probability density function (PDF) and is
designated f, (x) . Thus, to find the probability of X occurring between a and b, fy(x)is

integrated from a to b:

Pla<X<bh)= ffx (x)dx (6.2)

Mean value: The mean value, u, , is the average value. It is also called as expected value
and shown as E[X]. For discrete systems, the mean value is calculated by adding each

possible value of X multiplied by its probability:
My = E[X] :inPx (x;) (6.3)
X

For continuous systems, summation is replaced by integration and P, (x;)is replaced

by f, (x)dx . The mean value may also be thought as the first moment of PDF.
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Variance: The variance is defined as:

oy =E[(X —uy)’] (6.4)

The expected value of the square of X, E[X?], is known as the mean-square value and its
square root is called as the Root-Mean-Square, or RMS, value. If the mean of X is Zero,
then the mean-square value is equal to the variance o and the RMS is equal to the

standard deviation, o, .

Gaussian distribution: Many of the real-world random phenomena are approximated with
Gaussian or normal distribution. The probability density function of the Gaussian process

is given by

(6.5)
The Gaussian distribution is completely defined by its mean value and standard deviation
and it is symmetrical about its mean value. Also, all derivatives and integrals of a

Gaussian process are Gaussian processes.

Correlation function: If a random process consists of two individual processes, then the

expectation of their simultaneous occurrence is called as correlation function. F urther, if
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the correlation of a random process is measured with itself at two different times,

X(t,)with X(¢,), then this correlation is called autocorrelation function and is defined

as:

Ry (t,,t,) = E[X(t)X(t,)]= f; EO xlxzfX(t,)X(tz)(xl’XZ Ydx, dx, (6.6)

Power spectral density function: A random process is essentially a non-periodic process

and can be represented by the sum of individual harmonic processes:

m m 67
X(t):ZXk (t):Z(Ak cosw,t+ B, sinw,t) ©.7)
k=1 k=1

When m goes to infinity, the autocorrelation function of this process may be represented

as Fourier cosine transform:
_ _ 2 (6.8)
Ry(D)=E[X()X(t+71)]=0y | g(w)cos(wt)dw

The Fourier transform of the autocorrelation function is called the spectral density

function, S (@) can be defined as:

S (@)= i [ Ry(@)e ™ dr (6.9)
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and using inverse Fourier transform we have:

R.(1)= [; S (@) dw
(6.10)

If the mean value is equal to zero, then the area under the spectral density function is

equal to the variance:

Ry(z=0)=0} = [ 8, (o) 6.11)

In analog spectral analyzers, the waveform, represented by current i(f) or voltage v(¢), is
iteratively filtered to a signal with only a single frequency. The filtered signal’s mean-

square value is then measured and plotted. Since, i’and v’are proportional to the
average power dissipated in a resistive load, this is called the “power” at that frequency.
In practice, it is impossible to develop a physical filter that outputs only a single
frequency; the output is actually a signal that contains many frequencies but is dominated

by frequencies within a narrow bandwidth, Af . Thus, the measured power is divided by
the width of the band, Af', making a units i* per unit frequency or v per unit frequency.
Hence, S (w)is called Power Spectral Density (PSD) which is basically estimating how

the total power is distributed over frequencies from a finite record of a stationary data
sequence' ™, and provides information on the characteristics of mechanical parts under

study.

Another two practical issues are: changing the units of frequency from radian per second
to cycles per second, or Hertz and discarding the negative frequencies. If the first change

is applied then,
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Sy (f) =278, (o) (6.12)

If the negative frequencies are neglected then, the one-sided spectral density, G, (w)is

given by

Gy(@)=28,(@) @20 (6.13)

And if both changes are applied, the spectral density is called engineering spectral density

function and is represented by

We(f) =4Sy (@) o,f20 (6.14)

White-noise: White noise is the simplest random process and is one of the most practical
representations for many engineering random process. It is defined by a constant spectral

density for all frequencies:

Sy(@)=8,, -o<w<oo (6.15)

The spectral density function for white-noise process using mathematical spectral density

function as well as engineering spectral density function is shown in Figure 6.1 where the

terms W, and W, are corresponding to the engineering spectral density function in

which only the positive values for frequency are considered.
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Figure 6.1 Spectral density function for white-noise process

White-noise is physically impossible; however, many of practical random excitations,
including aerospace structures'>® can be approximated as white-noise for limited

frequency intervals.

Random vibration of single and multi degree of freedom systems:

Response of a single degree of freedom system under random excitation can be described

15
as 81

Sy (@) =|H(@)[ S, (@) (6.16)

where H(w) represents the transfer function of the system and § r(w) is the PSD of the

random excitation force. For multi-degree of freedom system, the response is given by

LSx (@) =[H (IS (@)l H ()] (6.17)
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where **” represents the complex conjugate. H ; (@) represent the transfer function for
coordinate i due to force at coordinate j. Similarly, § x; (@) 1s the PSD of response of

coordinate i due to force at coordinate j. For more details for the background on random
process, one may consult the books written by Wirsching et a/'’, Newland'*® and

Yang'?’.

6.3 Response of the Smart Laminated Beam to Random Excitation

In this section the response of the smart laminated beam to different random excitations
are studied. Following the finite element formulation of a smart laminated beam using
layerwise displacement theory described in Chapter 2, the equation of motion under a

random excitation can be expressed as

[M 4 W} + [CH} + [KUd} = {F, (0} +[K 1y () (6.18)

where {F, (1)} represents the external force vector generating the primary excitation. The
vector {“(1)} is the control force applied to the system. The matrix [K 4, 1defines the

location of the actuators and also converts the applied electric field to the mechanical

force. The remaining matrices in the equation we introduced in Chapter 2.

As mentioned before layerwise theory leads to the large number of degrees of freedom in

finite element model. Thus, using direct method to construct transfer function is not
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efficient for many practical cases. In fact, when dealing with vibration problems, usually
the effect of the first few modes is dominant. Using the

modal expansion {d()} =[¢]{(¢)}, and substituting in Equation (6.18), the equations of

motion take the following form

UIGO3} + DY} +[QHn0)} = [q) {F, (0} +[q) [K ;o 1w ()} (6.19)

where [D]=diag[2¢,o,], [Q]=diag[w’], for j=12..,n, and [q]is the normal mode
matrix of the smart structure. @ ; and & are the jth-order natural frequency and damping

ratio, respectively. The response of this system to arbitrary loading can be obtained using
the impulse response function. Using the mode superposition method, the response of the

Jjth degree of freedom in modal coordinates is obtained as:

1,0 = [(gyHF, (0} +a K Yy (D)), (1 - 1)dx (6.20)

where

h; () = mi exp(~¢£,@,t)sina, (6.21)

J

where @, = w;(1-£7)"?

The autocorrelation function matrix of the modal coordinates can be obtained from

Equation (6.20) as
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[R, &)= E[@} in¢ + )Y |= [ [IA@IR, (2 7, + £)]lh(e, )T ded, (6:22)

where [R, (¢)] is the correlation function matrix for the modal displacement response of

the smart system. [R,(r —7, + £)] represents the correlation function matrix of the total

force {P} given by

{P}=[ql"{F, (0} +[q) [K 5y 1y ()} (6.23)

By performing the Fourier transformation on [R,(¢)], the power spectral density matrix

of the displacement response [S,(@)] is determined as

[S, (@] =[H (D[S, (@)[H,, ()] (6.24)

where [S,(w)]is a diagonal matrix representing the power spectral function matrix of

{P(1)} and its diagonal terms represent the spectral density functions of each coordinate of

S, - [H,(®)]is the frequency response function matrix of the structure and [H, (@)]is its

conjugate matrix. The jth component of [H ,(@)]is given by

H,,, (@) = 1 =1 (6.25)

2 2 :
0; —0" +2i{,0,0
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The mean-square response of the jth coordinate is given by

Eln;(01=2["S, (0)dw (6.26)

For more details on spectral analysis, one may consult the book written by Goldman'*®.

6.4 Active Control of Smart Structure under Random Excitations

In this section both the classical and optimal control strategies are utilized to develop
closed-loop response of the smart laminated system under a variety of random loading

conditions, including, Gaussian white-noise, band-limited and narrow-band processes.

To study the active control of smart laminated structures as discussed in Chapter 5, the

equations of motion is formulated in the state space form. The modal state vector {x}is

defined as:

{x} = ) (5.7)

Now using the state variable matrix given by Equation (5.7), the state space form of

Equation (6.19) can be written as the following:

X =[x +[Bly "} +{f,} (6.27)

where {y“} represents the actuating control force and { f3={0} [qV{F,}}" . The

relation for sensor output given by Equation (5.9),
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') ={=IClx}

The remaining coefficients are given by Equation (5.10) as

[0] [7] [0] I
A = s e s C =[— KSS ﬁid O
Al [[—a)z] [—2560]] . [*[QJT[K” ]} (1=K, VK] (0]

dy

(5.9)

(5.10)

In the following sections, the classical and optimal control (LOR) methods are utilized to

develop feedback control gain.

6.4.1 Classical control

To design a controller in classical control method, the sensors output are amplified and

directly fed back to the piezoelectric actuators. The control voltage is given by

") =-1G1{y° ()}

(6.28)

where [G] is a feedback control matrix defined according to the control law. Substituting

Equation (6.28) into (6.27), the closed-loop system state is given by

5 = ([4)-[BIGICH{x} + {1}

(6.29)
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Performing Laplace transform and replacing s with jw, the frequency response function

for the closed-loop system can be obtained in steady state form as

H(jw)={jol -([4]-[BI[G][C]) (6.30)

Substituting the Equation (6.30) into Equation (6.24), the power spectral density for

closed-loop system can be obtained.

6.4.2 Linear quadratic regulator

In full state control method, the actuating voltage is determined as

' =K. 1z (6.31)
where [K ]is the optimal feedback gain, determined in Chapter 5. Substituting Equation

(6.31) into Equation (6.27) the closed-loop state equation is obtained as

3 = (4]1-[BIIK, . D{x} +{/} (6.32)

and the frequency response function in state space form is determined as

H(jw)=(jol —([4]-[BlK,])" (6.33)
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Substituting Equation (6.33) into Equation (6.23) the power spectral density of response

of the smart laminated structure can be determined.

For active control, the control force is induced to the actuators to respond to the
disturbance occurred due to random excitations. Thus, to design an efficient control
mechanism, it is of significant importance to know how the actuator forces correlate with

applied external random forces. The correlation functions of external force F L (1), and

actuator force F,(t), are defined as

Rpp (¥) = E[F,()F [(t + 1)) (6.34)

A numerical magnitude of correlation between F,(f)and F 4t +7) can be determined by

introducing the correlation coefficient, Pr,r, » defined as

(6.35)

PE,r,

where o, and &, represent the standard deviation of external random force F 4(), and
actuator force F,(t) respectively, and o r, 18 the covariance of the external and actuator

forces which indicates the deviations of F 4(t) and F, (1), from their centroid and is

given by
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O'Z}FA = E[FdFA]_/‘F,, M, (6.36)

Here, u, and u r, Tepresent the mean value of external random force and the mean value
of applied actuator force, respectively. Values of O, =0indicate that the two signals

tend not to vary together. It should be noted that since the units of external force and

actuator force are different, the covariance o rr, Should be normalized to remove the units

of measurements.

The values of =1 indicate there is perfect correlation, and =0, means there
Pr,r, p Pr,F,

is no correlation between the external force and the control force.

6.5 Numerical Examples

A smart laminated beam with [PS/(0/90/0), PA]configuration with clamped-free

boundary condition is considered in this section to study the response of the smart
laminated system to random excitation. The length and width of the beam are, 30 ¢m and
3 cm, respectively. The material properties for composite lamina, piezoceramic and
PVDF are provided in Section 5.5.1. The first three natural frequencies of this system are,
respectively, 17.93 Hz, 105.98 Hz and 276.07 Hz. As it is realized the three natural
frequencies are enough separated to be considered independently. Thus, in this section
the optimal controller is designed to suppress the vibration at the fundamental frequency

of the system under random loading.
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6.5.1 Response to a Gaussian white noise

The smart laminated beam is exposed to a random excitation approximated as Gaussian
white noise with zero mean value, variance of 95.0 N? and standard deviation of 9.70 N
as shown in Figure 6.2. The input random signal is considered to generate a realistic
displacement in the system and to show the performance of the control algorithm for
vibration suppression. The LQR control algorithm is utilized to control the response of

the system. The cost function coefficients are considered as Q0 =2x10°J soand R=13,

Time responses for open-loop and closed-loop are obtained and shown in Figure 6.3. As
it is indicated, applying LQR control significantly suppresses the vibration response of

the system.

40 ; . . —

Input force (N)

—

i 1

1 1.5 2
Time (s)

Figure 6.2 Input applied force approximated as Gaussian white noise

148



Time (s)

149

[
Rz
=
N
, ilJ N )
‘vﬁ o = |
S O =
53 0 2
55 -
S 1o W
s : o
Do : T 1% 1<
| B g
g
N 93
e S
—_— =]
! & 2
- - QO m -
E E
~ 5
- ;|8 -
s F
. &
© [22]
S 1@ °
= |
(en]
i ~ I= ©
= 2
=)
2,
N
B 4 2
=2 ———
k o “ e e———— 4 ,
L o M o o o o o =] o =
A\ . bt wn o wn [Ye] o Yo} ()
~ A - ' A} - o
(ww) jusweoedsip dij B0
i (N) a6ej|oA payjddy

Figure 6.4 Actuator voltage required to suppress the vibration



The required applied control voltage on the actuator is also provided in Figure 6.4 where
one can realize that the maximum actuator voltage never exceeds the maximum allowable
voltage (150 ¥). The variance of the actuator voltage is 3417 V’and its standard
deviation and mean value are 58.5 ¥ and 0.25 V, respectively. The power spectral density
of the tip displacement for the smart laminated beam is provided in Figure 6.5. It can be
realized that most of the power of the actuating signal is concentrated at the frequency
close to the fundamental natural frequency of the system. This result was expected since
the maximum deformation is close to the fundamental natural frequency. Thus, most of

the actuating energy supplied by the actuator is consumed at this frequency.

51
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Figure 6.5 PSD of actuator voltage

To design an active control system to efficiently suppress the vibration response of the

smart laminated system under random excitation, it is very important to have good
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correlation between the external random force and the actuating applied force. The

correlation coefficient for the above example is found to be p, ,, =0.658. It should be

noted that for a deterministic sinusoidal external force, the correlation coefficient is

0.998.

The correlation coefficient depends on laminated configuration, piezoelectric location
and weighting factors in LQR control design. In the following, the effects of the above
parameters on correlation coefficient between input random force and actuating force are
investigated. For all the cases, the Gaussian white noise excitation shown in Figure 6.2
utilized. Keeping a constant value for weighting factor R =1.0 in LQR and changing the
value of weighting factor @, the correlation coefficients for different laminate
configurations are computed and provided in Table 6.1. It should be noted that there is
always a time shift between the primary external force and the applied actuating force. In
this case, the results provided in Table 6.1 are determined when the actuator signal is

shifted for Az =0.01s to the origin.

However, we may compute the correlation coefficient at the time when both external and

applied actuating forces are available, (i.e. after £ =0.02s). Similar results are computed

for correlation coefficient after # = 0.02s and provided in Table 6.2.
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Table 6.1 Effect of weighting factor [Q] on correlation coefficient at (7 = 0) for different
laminate configurations

Laminate configurations

[PS/0, / PA] [PS/(0/90/0), / PA] [PS /£30/0), / PA] [PS/+45/0), / PA]
QX2 | prr, Ox2 Pr,r, QOx2 Pr,r, Qx2 Pr,r,
10771,, (0271 1071,,, 0.271 101, 0.312 1071, 0.350
10°7,, | 0.450 1087, 0.451 10°1,, 0.471 1081, 0.494
1()9]2x2 0.684 ]0812X2 0.685 10° I, 0.694 1()912X2 0.711

Table 6.2 Effect of weighting factor [Q] on correlation coefficient at (#=0.02s) for
different laminate configurations

Laminate configurations

[PS/0, /PA] [PS/(0/90/0), / PA] [PS/+30/0),/PA] | [PS/+45/0), / PA]
Ox2 | pry, P, Prr, Pr.r,
1071, |-0.0393 -0.0241 -0.0371 -0.1639
107, |-0.0913 -0.0900 -0.1051 -0.1480
10°1,, | -0.1361 -0.1383 20.1510 -0.1470
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As it can be realized, increasing the value of [Q] improves the correlation coefficient
between the random excitation and applied actuating voltage. This is basically due to the
fact that higher value of [Q] demands more power of actuating force which correlate
better with input signal. On the other hand, for the same value of [(Q], the correlation

coefficient is the highest for the laminate configuration [PS/(+45)/0), / PA] compared to

other three configurations.

It is worth noting that by increasing the value of [Q] to 2x10" x 1, , the value of
Pr,r, Will approach 0.999 (for = = 0) which is a perfect correlation between input random

force and applied actuating force. On the other hand, Table 6.2 indicates negative and
lower values for the correlation coefficients as in this case the actuating force is not
shifted, but the origin of computation is shifted to the point where both external and
applied forces are available. The lower and negative value is due to the phase shift
between the external and applied forces. However, increasing the value of [Q]
dramatically increases the required actuating voltage. Using the magnitude of
[Q]1=2x10° x I, in LOR results in 157 volts actuating voltage which is the maximum
practical amount for the present example. Applying higher voltage to the actuator

requires more powerful voltage amplifier and higher quality of piezoceramic actuators.

Next, the value of [Q]=2x10"1,, is kept constant and the value of [R] is changed form
1 to 3 to investigate its effect on the correlation coefficient for different laminate

configurations. Table 6.3 provides the value of p, . for similar laminate configurations
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described in Table 6.1. From Table 6.3, one can realize that increasing the value of
weighting matrix [R] reduces the value of correlation coefficient which is identical to the
results obtained in Chapter 5 showing that increasing the value of [R] requires weaker
signal for actuating voltage. In general, one may conclude that the weaker is actuating
voltage, the higher correlation exists between the actuating voltage and input random
signal. Similar investigation is conducted when the correction coefficient is computed at
t = 0.02s and the results are provided in Table 6.4. For this case, the actuating force is not
shifted, but the origin of computation is shifted to the point where both external and
applied forces are available. The lower and negative value is due to the phase shift

between the external and applied forces.

Table 6.3 The effect of weighting factor [R] on correlation coefficient at (7 =0) for
different laminate configurations

Laminate configurations

[PS/0,/PA] | [PS/(0/90/0) /PA] [PS/+£30/0), /PA] | [PS/+45/0), / PA]
R Pr,r, R PF,F, R Pr,F, R PE,F,
1.0 0.684 1.0 0.685 1.0 0.694 1.0 0.711
2.0 0.614 2.0 0.616 2.0 0.628 2.0 0.643
3.0 0.572 3.0 0.574 3.0 0.577 3.0 0.603
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Table 6.4 The effect of weighting factor [R] on correlation coefficient at (¢ = 0.02s) for
different laminate configurations

Laminate configurations

[PS/0, / PA] [PS/(0/90/0) /PA] | [PS/£30/0),/PA] | [PS/+45/0),/PA]
R Pr,F, Pr,r, Pr,F, Pr,F,
1.0 -0.136 -0.138 -0.151 -0.164
2.0 -0.128 -0.130 -0.145 -0.162
3.0 -0.121 -0.123 -0.138 -0.159

The effect of actuator location on correlation coefficient is also investigated for a
unidirectional laminated beam. The location of actuator is changed from the bottom
surface toward the inside layers. Table 6.5 provides the correlation coefficients for
different actuator locations through the thickness when 7 =0. Similarly, Table 6.6 is

computed based on the 7 =0.02s. Once again, one may realize that when 7 =0.02s, the

corresponding values are negative and lower compared to that of =0 which is as
explained before due to the phase change. It is observed that when the actuator is surface
mounted at bottom surface, the correlation coefficient is the highest and when we move
toward the middle plane this value reduces. As mentioned in Chapter 5, when the actuator
is surface mounted at the bottom surface the generating moment is the highest which

results in stronger control signals leading to the higher values for correlation coefficients.
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Table 6.5 Effect of actuator location through the thickness on the correlation coefficient
at (r =0)

Actuator location through the thickness

Correlation coefficient | [PS/0,/PA]  [PS/0,/PA/0} [PS/0,/PA4/0,]

Prr (7=0) 0.658 0.532 0.529

Table 6.6 Effect of actuator location through the thickness on the correlation coefficient
for different laminate (z = 0.02 5)

Actuator location through the thickness

Correlation coefficient | [PS/0,/PA]  [PS/0,/PA/0] [PS/0,/PA/0,]

Prr, (1=0.025) -0.134 0.114 -0.112

(note that after middle-plane the pattern will repeat.)

The statistical properties of structural controlled response of the smart laminated beam

under the input white noise random force (Figure 6.1) and for different laminate

configurations are provided in Table 6.7.
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Table 6.7 Effect of laminate configurations on statistical properties of tip displacement of
the smart beam for closed-loop control

Statistical properties of tip displacement

Laminate configuration M, M o, mm O_’z;) . mm?
[PS/(0) / PA] 0.0006 0.240 0.058
[PS/(£30)/0), / PA] 0.0007 0.248 0.0616
[PS/(£45)/0), / PA] 0.0008 0.257 0.066
[PS/(0/90/0), /PA] 0.0006 0.242 0.058

The effects of actuator location on the statistical properties of structural controlled

response are provided in Table 6.8.

Table 6.8 Effect of the actuator location on statistical properties of tip displacement of
the smart beam for closed-loop control

Statistical properties of tip displacement

Laminate configuration Hip» MM o, mm O';,, mm®
[PS /(0), / PA] 0.00058 0.241 0.0583
[PS/05/PA/0] 0.00053 0.179 0.0321
[PS/0,/PA/0,] 0.00043 0.178 0.0317
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In the previous examples the random input signal was available in time domain, however,
in many practical engineering applications only the stochastic characteristic, usually

power spectral density function, of the input random excitation is given.

In the following study a Gaussian white noise with given PSD, =40dBand zero mean

value is considered to investigate the displacement response of the smart laminated beam.
The displacement is also converted to decibel (dB) which commonly used for PSD plots.

Figure 6.6 shows the open-loop and closed-loop of the PSD of the system response for
the first mode. It is indicated that the maximum value of the PSD at natural frequency of
the system is reduced by almost 25% when the LQR controller is applied to the smart
system. Figure 6.7 presents the effect of control mechanism on the first two vibration
modes under random excitation. As one can realize, the developed optimal control can
successfully suppresses the vibration of both mode one and mode two. However, it has
much higher effect on controlling the vibration of the first mode than the second mode.
This is basically due to the fact that control system has been designed based on the
fundamental mode. It means the control system is developed to control the fundamental

vibration mode of the smart system.
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Figure 6.7 PSD for smart laminated beam using control-on /off; the first two modes
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6.5.2 Effect of laminate configuration on the PSD of the optimal closed-loop
response

The effect of laminate configuration on the PSD of the system response under the same
Gaussian white-noise random loading with a PSD of, 40 dB is studied in this section.
Figure 6.8 shows the PSD of response of the smart system for different laminate
configurations. It is realized that the power consumption for the smart systems with
configurations [PS/(0/90/0), / PA} and [PS/(0);/PA] are almost the same but lower
than that of smart systems with laminate configurations

[PS/(£30/0), / PAJand[PS /(+45/0), / PA]. It is interesting to note that the configurations

have higher amount of power concentrated at frequencies below the first natural

frequency.
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Figure 6.8 Effect of laminate configuration on PSD of optimal closed-loop response
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Effect of actuator location through the thickness of the smart laminated system is also
investigated for configurations considered in the study of vibration response in time

domain, namely, [PS /(0), / PA], [PS/0,/PA/0]and [PS/0,/PA/0,]for a known PSD

of the input white-noise excitation of 40 dB. The PSD of the response of the system is
provided in Figure 6.9. It is observed that the peak value of the PSD is almost equal for
all cases, however, when the actuator is surface mounted the overall energy consumption
for the given frequency interval is higher than that of the other two cases. This is due to
the fact that when the actuator is mounted on the upper surface the generating moment is
higher, and it remains higher for all frequencies in the domain. Obviously, the energy

corresponding to the configuration [PS/0,/PA/0}is higher than that of the

configuration[PS /0, /PA/0,] since the former is closer to the outer surface.
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Figure 6.9 Effect of location of actuator on PSD of optimal closed-loop response
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The effect of collocated and uncollocated sensor/actuator pairs on optimal vibration
control is also investigated in the following example. Two cases of uncollocated

sensor/actuator pairs are considered as shown in Figure 6.10.

Figure 6.10 Smart laminated beam with uncollocated sensor/actuator pairs

In case I, the sensor is mounted on top surface at /, =3c¢m from the fixed end and the
actuator is bonded on bottom surface at /, =6cm from the fixed end. In case II, the
actuator is bonded at 7, =8cm from the fixed end on the bottom surface, and the location

of sensor is kept the same as that of the case 1.
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Figure 6.11 Effect of collocated and uncollocated PZT pair on the response of the smart
beam

Figure 6.11 shows that for collocated sensor/actuator pairs, the peak of power is higher
than uncollocated pairs and occurs at the lower frequency. As the actuator is shifted away
from the sensor location, the peak of power occurs at higher frequency and becomes

more distributed through all the frequencies in the domain.

6.5.3 Response to a band limited excitation

Band limited random process is defined as random process whose spectral density is

uniform for all frequencies between frequency interval (w,,®, ) as shown in Figure 6.12.

The spectral density function of band limited random process can be defined as:
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So oy <|o|< o, (6.36)

Sy(@)=150/2 0| = o, 0,
0 otherwise
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Figure 6.12 Spectral density of a band limited random process

To study the vibration response of the smart system for band limited excitation, smart
laminated beam described in Section 6.4.2 has been exposed to a random excitation with
PSD of 200 dB which is concentrated in the frequency range between 10 and 30 Hz. A
LOR controller with properties similar to that of the section 6.4.2 is considered to
suppress the vibration response. The power spectral density of system without and with
control is presented in Figure 6.13. It is indicated that the power consumption at the peak
is reduced from -10 dB for free response to -70 dB in controlled response. This leads to

about 17 % reduction in RMS of the response when the control system is activated.
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Figure 6.13 Spectral density of smart system under band limited random load

Once again the effect of laminate configuration on the power spectral density for a band
limited excitation is investigated and the PSD of the response is provided in Figure 6.14.
The same conclusion derived for the effect of laminate configuration on power spectral

density for white-noise can be conceived for band limited excitation also.

It is observed that for laminate configurations with lower stiffness, namely,

[PS /(£30/0), / PA]and[PS /(+45/0), / PA] the PSD is shifted to the left, toward the lower

frequency range compared to the configurations with higher stuffiness,

[PS/(0/90/0),/PA] and [PS/(0);/PA] which is due to the lower value of natural

frequency for these configurations.
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Figure 6.14 Effect of laminate configuration on PSD under band limited random loading
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Figure 6.15 Effect of actuator location on PSD under band limited random loading
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The effect of actuator location on the vibration response to band limited excitation is also
investigated considering the same configurations given for the analysis of the response

under the white-noise, namely, [PS/0,/PA], [PS/0,/PA/O)and [PS/0,/PA/0,]. The

PSD of the response for different laminate configurations is shown in Figure 6.15. Here,
a similar conclusion achieved for the effect of actuator location under white-noise can be
drawn. When the actuator is mounted at outer surface the overall energy in the frequency
domain is higher compared to that of the configuration in which the actuator is inside the

laminate toward the middle plane.

6.5.4 Response to narrow-band excitation

Narrow-band process is a stationary random process whose realizations (samples) are

close to being sinusoidal oscillations of some fixed frequency w,, for time interval equal
to a large number of periods 27/, . Clearly such a process has a zero mean value'. The

spectral density of a narrow-band process is negligible everywhere except in a narrow

frequency band.

(6.37)

® —ATWSa)ga) +A—201, Aw <0

The spectral density function for a narrow-band process is impulsive and is defined as:

Sy(@)=03[0.56(w +w,)+0.56(w -, ] (6.38)
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The spectral density of a narrow-band process is shown in Figure 6.16 where one may

realize that S, =1/207.

4 Sx(m) WX(Q‘

—_—— - - - WO___._

o (rad/sec) £ (Hz),

'(Dn 0)0 f")

Figure 6.16 Spectral density of a band limited excitation random process

A random excitation with narrow-band frequency between (15-20 Hz) is applied to the
smart laminated beam described in Section 6.4.3. The spectral density function of this
loading can be realized as an impulse at the middle of frequency interval. The spectral
density of the open-loop and closed-loop responses of the smart system is provided in
Figure 6.17. It can be realized that PSD of the closed-loop system is significantly reduced
compared to the PSD of open-loop system. The autocorrelation of the open-loop and
closed-loop response to a narrow-band excitation is also provided in Figure 6.18 where

once again the similar conclusion is obtained.
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Figure 6.17 Spectral density of a narrow-band random process with frequency close to

004

Autocorrelation (m2

0.08

natural frequency

—
|

0.06

0.02¢

-0.02

-0.04

-0.06
-4

-~~~ control onvj'
+ ———— control off
]
20 40 0 10 20 30 40
Time lag (s)

Figure 6.18 Auto-correlation of response to a narrow-band random input
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Narrow-band process is of great importance for aerospace structures to simulate
operating environments. In practice, recorders are mounted at points of interest in the
structure to measure the vibration of the structure. Typically, the output of sensors is
monitored as a function of time. This signal is then analyzed in frequency bands, and the
spectrum at different time are plotted. A typical example of the vibration data is shown in
Figure 6.21. However, such a spectrum is too complicated to be used as test spectrum,
thus, usually, the envelope of this spectrum is considered. For conservative test, i.e., the
test is more sever than the environment, one may use curve A and for over estimate

. . . |
environment, curve B may also be considered for under estimate design o7,

PSD

Frequency

Figure 6.19 Typical narrow-band vibration spectrum for aerospace structures

Here, the vibration for the open-loop and closed-loop responses of smart laminated beam
subjected to a typical envelope spectrum is studied. The material and geometric
properties of the smart laminated structure are those provided for the problem described

in Section 6.4.2. The laminate configuration is assumed to be [PS/(0/90/0) /PA]. The
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upper and lower envelopes of the power spectral density are given in Figure 6.22. The
frequency range is considered from 1 Hz to 20 Hz to cover the frequencies below and
slightly beyond the fundamental frequency of the system. The power spectral densities of
the response of the smart beam subjected to both upper envelope 4 and lower envelope B
are shown in Figure 6.23. The open-loop and closed loop responses are provided to
demonstrate the performance of the controlled system for typical and practical random
loading conditions. It is observed that for both envelopes the power is well distributed
though the frequency range. However, as it was expected the peak value is occurred at

the natural frequency of the system.
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Figure 6.20 Spectral density of a typical input aerospace random process
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The effect of laminate configuration of the system subjected to random input force given

by envelope 4 is presented in Figure 6.24.

As it can be realized, the configuration [PS/(+45/0),/PA] has the highest peak level

which occurs at lower frequencies compared to other configurations. The configurations

with higher stuffiness, [PS/(0/90/0),/PA] and [PS/(0),/PA]provide lower level of

power consumption. These conclusions are similar to corresponding results obtained for
the smart system subjected to white-noise. The important feature is that for all cases the
power spectral density is evenly distributed in the frequency range and the peak which

occurs at the fundamental natural frequency is effectively suppressed when control is on.

.-~ -Control off|
10° ——— Controlon | -

20 - e — ]
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— l —
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Figure 6.21 Spectral density of a the response under envelope A and B
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Figure 6.22 Effect of laminate configuration on the response due to envelope A

The effect of actuator location on the power spectrum of the smart system subjected to
envelope A4 is also presented in Figure 6.25. Three different locations through the

thickness are considered as: [PS /(0), / PA], [PS/0,/PA/0Oland [PS/0,/PA/0,].

Here, a conclusion similar to the one achieved for the effect of actuator location under a
white-noise is obtained. When the actuator is mounted at outer surface, the overall energy
in the frequency domain is higher compared to configuration in which the actuator is

inside the laminate toward the middle plane.
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Figure 6.23 Effect of actuator location on the response due to envelope A

6.6 Conclusions

In this chapter random vibration of smart laminated beams has been investigated. The
response of a laminated beam with surface mounted/embedded sensor and actuator
subjected to Gaussian white-noise has been investigated. A control algorithm utilizing
linear quadratic regulator and layerwise displacement finite element formulation has been
developed to actively suppress the vibration of the system under random excitations. The
stochastic properties of the time response of the smart system for the closed-loop system
have also been determined. To demonstrate the correlation between the input random
force and the applied actuator voltage, the correlation coefficients for variety of case

studies, including those with laminate configuration changes and actuator location
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changes through the thickness have been provided. It is concluded that for all cases, the

developed control model can significantly suppress the vibration response of the system.

The study is further proceeded in frequency domain by considering band limited and
narrow band processes. Power spectral density of the displacement response of the
system subjected to a known input power spectral density of the excitation has been
computed. Using the developed LQR controller the closed-loop response in frequency
domain has been investigated. The effects of laminate configuration and actuator location

through the thickness as well as along the length of the beam we also considered.

The chapter is completed by considering typical envelopes of narrow-band random
process, usually used for aerospace applications, to determine the open-loop and closed
loop responses of the smart system. The study has been performed to investigate the
effects of laminate configuration and actuator location through the thickness of the
structure. It was observed that the developed control system successfully suppresses the

vibration response of the system for the input envelopes.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

A comprehensive framework is presented for design optimization and vibration control of
laminated composite beams integrated with piezoelectric sensors and actuators. A
layerwise displacement approximation is utilized to account for the strong material and
geometric inhomogeneities through the thickness and to provide the static and dynamic
responses of the smart laminated structures accurately and efficiently. Effect of electro-
mechanical coupling due to the presence of piezoelectric elements in the structure is
taken into account to develop the finite element model of the system. Parametric studies
are conducted to investigate the effects of sensor location through the thickness and along
the length of the beam on generated voltage at the sensors. Effect of electro-mechanical

coupling 1s also demonstrated in numerical illustration for static problems.

Sensitivity analysis for different parameters is conducted through development of
analytical gradients for static and dynamic applications. Utilizing the developed
sensitivity analysis and analytical gradients, a design optimization algorithm based on
Sequential Quadratic Programming technique is developed to determine the optimal
design of smart laminated beams for a variety of objective functions, including mass
minimization, and maximization of actuator performance, subjected to different

constraint functions, including displacement and inter-laminar stresses as well as
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frequency constraints. It is indicated that a cantilevered laminated beam with sensors and
actuators mounted at the outer surface close to the fixed end provides the highest

actuating force and highest sensor voltage.

The developed optimal model of the smart laminated beam is further investigated for
dynamic response under deterministic loadings. A Linear Quadratic Regulator is
developed to obtain the optimal feedback control gain to actively control the smart
laminated system. An in-depth study is performed to investigate the influences of
laminate configuration, sensor/actuator location through the thickness and along the
length on open-loop and closed-loop vibration responses of the system. It is shown that
the LOR controller can significantly reduce the settling time of the response with
reasonable actuating voltage. A proof-of-concept smart laminated composite beam is
fabricated and an in-house experimental set up is designed to validate the mathematical
model and to demonstrate the functionality and performance of the control algorithm.
The results obtained from the experimental set-up are in good agreement with the

simulation model.

Random vibration analysis is performed to investigate the response of the smart
laminated system under random loading. Different random processes, including Gaussian
white-noise, band limited and narrow-band random processes are considered. An optimal
control mechanism based on the Linear Quadratic Regulator is developed to suppress the
vibration response of the smart system subjected to random excitations. Influences of

laminate configuration and actuator location through the thickness are taken into account
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to obtain the closed-loop response of the system. It is observed that the developed
controller provides significant effect on reducing the level of the power spectral density

of the displacement response.

The major components of the work and important observations are summarized as
follows:
+¢ Mathematical modeling;:
e Development of finite element modeling for smart laminated structures using the
layerwise displacement theory.
e Incorporation of the coupled electro-mechanical interaction between sensors/
actuators and host laminated structure in the finite element model.
Finite element models based on the layerwise displacement model provides higher
accuracy (compared to Equivalent Single Layer theories) and higher efficiency
(compared to 3D models). This model is capable to account for all material and
geometric inhomogeneities through thickness which is very common in smart laminated
structures. The parametric studies in this part of the work indicate that for a smart
laminated beam, placing the sensor at the outer surface close to the constraint nodal
displacement generates higher voltage. Similarly, placing actuator at the outer surface
provides higher actuating force. The location of actuator along the length is related to
desired nodal displacements.
«» Sensitivity analysis:
o Formulation of the sensitivity analysis algorithm for smart laminated beams

concerning static and dynamic problems.
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e Development of the discrete analytical gradients of the various design constraints
and objective functions with respect to the design variables.

It is shown that utilizing analytical gradients significantly reduces the computational
effort required for sensitivity analysis. Further, for thin laminated beam, deflection and
the mass of the beam are more sensitive to changing the thickness and volume of
piezoceramic actuator than the thickness of the composite layers. However, when the
volume fraction of piezoceramic and composite is about 20%, the sensitivity of both
components on displacement are very close.

¢ Design optimization:

e By combining the developed coupled layerwise finite clement model, the
developed analytical gradients, and the Sequential Quadratic Programming (SQOP)
technique, an efficient design optimization algorithm has been developed.

e Numerical examples are provided to determine the optimal designs of the smart
laminated beams for different objectives and constraint functions.

It is proved that utilizing analytical gradients can significantly improve the design
optimization process based on SOQP algorithm. Using analytical gradients may reduce the
number of iterations required to achieve the optimal design by up to 35 % for a typical
smart laminated beam problem. In addition, the number of function evaluation required to
complete the design optimization process is reduced by up to 65%. This conclusion is
highly pronounced for large scale design optimization problem and/or problems with

large number of design variables, including smart laminated structures.
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+ Dynamic analysis of smart laminated beams:

e In order to reduce the number of degrees of freedom for control purposes, the
modal forms of the structural model and sensor and actuator are developed.

o Formulating the governing equations of smart laminated beam into the state space
forms to be implemented in modern control strategies is completed.

Development of modal forms of the equations provides the possibility to investigate
specific modes of vibration instead of performing the long and expensive computations to
run for all nodal displacements. Further, state space form provides the opportunity to
utilize many available well-defined modern control strategies.

% Vibration suppression:

e Linear Quadratic Regulator (LOR) is applied to obtain the optimal control
feedback gain.

e To demonstrate the advantages of the present algorithm on dynamic response of
smart laminated beams, conventional active control of laminated smart structures
based on the classical laminate theory and classical control strategies are also
investigated and the results are compared with present algorithm.

e Vibration response under random loading has been determined.

e Developed a control algorithm to suppress the vibration response of the structures
under random loading.

Utilizing LOR controller can significantly reduce the settling time for the first mode of
vibration without exceeding the maximum allowable actuator voltage. Placing the sensor
and actuator at the outer surfaces and collocated along the length close to the fixed end

(cantilever boundary condition) provides the minimum settling time. In addition,
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increasing actuator voltage reduces the settling time for free vibration. In random loading
problems, application of LOR controller can significantly reduce the power spectral
density of the response.
¢ Experimental investigations:
e A laminated beam with piezoceramic actuator and PVDF sensor is designed and
manufactured to investigate the dynamic response of the structure.
¢ A control algorithm is designed according to LOR controller and implemented in
LABVIEW 7.0.
¢ Experimental investigations for open-loop and closed-loop responses of smart
laminated beams are presented.
Experimental works successfully demonstrates the functionality and performance of the
smart laminated beam for vibration control. In addition, experimental results established
a strong platform to validate the mathematical model and results obtained from
simulations.

7.2 Relevant Publications

Based on the conclusions and results obtained from the present work, the following
articles are prepared and published/submitted in refereed journals/conferences:
o Zabihollah, A., Ganesan, R. and Sedaghati, R., “Sensitivity Analysis and Design

Optimization of Smart Laminated Beams Using Layerwise Theory”, Journal of
Smart Materials and Structures, 15(1), 2006.

e Zabihollah, A., R. Sedaghati, R. Ganesan, “Active vibration suppression of smart
laminated beams using layerwise theory and optimal control strategies”, Journal

of Smart Materials and Structures, 2007, in process.

e Zabihollah, A., Sedaghati, R. Ganesan, R., 2005, “Optimal Design of Smart
Laminated Beams Using Layerwise Theory”, Proceeding of 8™ Cansmart Meeting
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International Workshop on Smart Materials and Structures, October 13-14, 2005,
Toronto, Ontario, Canada.

Zabihollah, A., Sedaghati, R., Ganesan, R., 2006, “Design Optimization of Smart
Laminated Composite Beams using Layerwise Theory”, Proceeding of III
European Conference on Computational Mechanics Solids, Structures and
Coupled Problems in Engineering C.A. Mota Soares et.al. (eds.) Lisbon, Portugal,
5-8 June 2006.

Zabihollah, A., Sedaghati, R., Ganesan, R., “Sensitivity Analysis
and Optimization of Smart Laminated Beams by Layerwise Theory”, Proceeding
of The Eighth International Conference on Computational Structures Technology,
Las Palmas de Gran Canaria, Spain, 12-15 September 2006.

Zabihollah, A., Ganesan, R., Sedaghati, R., “Optimal vibration control of active
laminated beam using unimorphic piezoceramic elements and LQR controller”,
Proceeding of 9" Cansmart Meeting International Workshop on Smart Materials
and Structures, October 12-13, 2006, Toronto, Ontario, Canada.

Zabihollah, A., Ganesan, R., Sedaghati, “Optimal vibration control of smart
laminated beams using layerwise theory”, Proceeding of 21st Canadian Congress
of Applied Mechanics CANCAM 2007, June 3-7, Toronto, Canada,

Zabihollah, A., Sedaghati, R., Ganesan, R., “Sensitivity analysis and design
optimization of smart laminated beams using layerwise theory”, Presented in
Centre for Applied Research on Polymers and Composites, CREPEC, 2005,
University of Montreal, Montreal, Canada.

Zabihollah, A., Ganesan, R., Sedaghati, R., “Vibration control of laminated
smart structures: Experimental approaches”, Presented in Centre for Applied
Research on Polymers and Composites, CREPEC, 2006, Ecole de Technologie
Superior, Montreal, Canada.

7.3 Recommendations for Future Works

The present work established a framework for design and application of smart laminated

beams for vibration suppression applications. This work can be extended and improved

for the following aspects:

Structural elements: Design other smart laminated structural elements such as plates and

shells as well as structural components with variable thickness.
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Mathematical modeling: To improve the accuracy of mathematical model for thin
structure, effect of geometric non-linearity should also be taken into consideration. Smart
laminated structures are very sensitive to temperature and humidity, thus, the effect of
thermo-electro-mechanical coupling should be considered when the structure is being
used in moderately high temperature.

Smart materials: Application of other type of smart materials such MR fluids in
laminated structures should also be investigated.

Experimental works: In order to achieve the highest level of confidence and reliability,
more experimental work is required to demonstrate functionality and performance of
smart laminated system for real applications. Particularly, functionality of the smart
system under different random excitations is of great importance.

Design optimization: Application of other design optimization techniques such as genetic
algorithm should be investigated to improve the efficiency of the design optimization
procedure and to facilitate the procedure of designing smart laminated structures. In
addition, for smart laminated plate and shell structures, design optimization procedure
should be thoroughly conducted to determine the optimal location of the multi

sensors/actuators to control the different modes of vibrations.
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Figure 5.20 Frequency response for various laminate configurations

The relation between settling time (+ 3% of steady state response) and control force has
also been investigated. In general, as the seitling time increases, the control voltage

decreases as shown in Figure 5.21.
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Figure 5.21 Maximum control voltage vs. settling time

126



- 2 2 = 2 2
€3 =€3C teyns € =€35 teync

€3 = (e3, —€;5 )CS ey = (eIS €y )CS

- 2 2 —
€y =€yC +615S

The dielectric constants in global coordinates are given by:

2 2
o = 81€ +8nS
2 2
8,y =8nS +t8xn¢

gy :(gzz —g”)SC
where ¢ = Cos@, s=Sind

Relation of [e] as function of [d] and [Q]is given by:

0 0 e 0 0 4, O, 0O,
0 0 e,| ={0 0O dy | |On O
0 0 0 0 0 o0 0 0

k

_ 2 2 S
€15 =€)5C teyus, e, “(615_624)‘33

0
0

Q66 k

(A.3)

(A4)

(A.5)

205



APPENDIX B: Preparation of Specimen of Smart Laminated Beam
The procedure of preparation of smart laminated beams is described in detail in the

Figures B1-B.8.

Figure B.1 Selecting the composite preparage from freezer

Figure B.2 Cutting the layers according to desired laminate figuration

Figure B.3 Hand lay up aﬁd making the laﬁlinate
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Figure B.4 Putting the releasing plastic and bleeders

Figure B.5 Sealing bag and putting the vacuum valve

Figure B.6 Vacuum the bag before putting in autoclave
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APPENDIX C: Testing Composite Material

Composite materials are degrades in time, thus to validate a very accurate mathematical
model such as layerwise displacement theory, it is very important to use accurate values
of material properties. Therefore, the composite materials are tested to determine the
elastic modulus. In this order, two common machine are utilized, DMA and MTS

machines. In the following both test are described.

Dynamic Mechanical Analyzer (DMA):

The Du Pont 983 Dynamic Mechanical Analyzer (DMA) is a highly sophisticated
mechanical module that can be used with the Du Pont 9900 thermal analyzer running at
least version 6.0 software. The 983 DMA is an instrument that offers a rapid and
sensitive means to simultaneously obtain an elastic modulus (stiffness) and a mechanical
damping (toughness) for the materials. The 983 DMA module measures changes in the
viscoelastic properties of materials resulting from changes in temperature, frequency and
time. There are four modes of operations: resonant frequency, fixed frequency stress
relaxation and creep. Each of these modes measures different aspect of the viscouelastic

properties.

Test specimen for this machine are 3 laminated beam (I1x5cm’) with four layer 0

orientation to determine E; and 3 specimen of the same size with 90 degree orientation to

determine E>.
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Principle of operation:

The sample is clamped in between two parallel arms and is deformed under a constant
stress, oscillating stress or a constant strain, depending on the experiment mode. The
behavior of the sample under this deformation is monitored by a linear variable

displacement transducer (LVDT).

When operating DMA 983, in fixed mode, the sample and arms form a compound
system, the system is oscillate under a fixed frequency using a sinusoidal driver signal.
The sample displacement is monitored by LVDT and the lag between the driver signal
and the LVDT is the phase angle. The phase angle the driver signal are used to calculate
the storage, loss modulus and tan delta of the sample. Some of the most desired results of
the test are given as: E’: flexure storage modulus, E’’: flexure loss modulus, G’: shear

storage modulus, G*’: shear loss modulus.

Figures C.1 and C.2 shows results of DMA for E1 andE2.
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Tensile test:

Three test specimens have been prepared according to standard ASTM, the griping force
is set to 14 Mpa and rate is set to 100N/sec.

Specimen # 1: 122.25x15.5x1,

Specimen #2:122.34x15.6x1.02,

Specimen #3:122.5x15.3x1.02

The procedure of test is described in detail in Figures C 3-C10.

| Specimen for
| testing E;

Specimen for
testing E;

Figure C.3 Primary plate prepared for test specimen
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Figure C.4 MTS machine

Figure C.5 The specimen is clamped in MTS machine
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Figure C.7 The specimen #3, failure occurs at 28.292KN
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APPENDIX D: Experimental Works

In this section a brief description of the experimental works and some helpful tips and

techniques are provided.

Step 1: Cutting PVDF sensor element

Cut 2x 2 ¢m” from the corner of the PVDF sheet as shown in Figure D.1. Pay attention to
the orientation of the polling direction. Also, one should take care when handling PVDF
material, it should be handled wearing vinyl gloves because oily finger may results in
localized oxidation and changes to the surface resistively. PVDF sensors used in this
work are piezofilm with 28 zm and two sided electrodes (Measurement Specialties Inc.,
1000 Lucas way, Hampton, VA, 23666). More technical information about the sensors

can be obtained from www.piezofil.com

Laminated beam, Graphite /epoxy
6 layers, [0/90/0],

PVDF Sensor [

Figure D.1 Cutting PVDF sensor and bonding to the beam
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Step 2: Bonding Sensor to the laminated beam
Use non-conductive epoxy glue to make a perfect bonding between sensor and the host
structure. Connecting electrodes are chosen a thin strip of copper for higher accuracy.

Connecting wires is also 5 gmdiameter. To protect the sensor connection, an extra tape is

used to cover the arrangement and keep that in place. (Figure D. 2)

Connecting
electrode

Connecting
wire

Figure D.2 Bonding electrode to output

Step 3: Mounting PZT actuator

Use non-conductive epoxy glue to mount the PZT material. Since the electrodes should
be connected to both sides of the PZT, electrodes should be mounted before gluing the
element to the host beam. (Figure D.3). It should be noted that PZT materials are very

brittle and should be handled with more care.
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PZT Actuators used in this work are BM500,1x 1in”> (“Sensor Technology Limited”, PO
Box 97, Collingwood, Ontario, Canada) with p = 7650 Kg/m’and thickness of 0.3 mm

and d,, =-160x107" C/ N . For other information one may visits www.sensortech.ca

Figure D.3 Mounting piezoceramic actuator to the beam

218



Terminal to DAQ

Arrangement for
floating signal

Figure D.4 Boundary conditions and wire connections

Step 4: Connecting to the DAQ board

Connect the input and output connections according to the DAQ manual instruction. In
order to acquire a better signal from sensor, an arrangement of resistors, according to the
DAQ manual is required.

Since the maximum output voltage from the DAQ board is +10 volts, but the voltage
required to actuate the PZT is about +200 volts, we need a voltage amplifier. An in-
house voltage amplifier is designed using a high voltage amplifier (Figure D.5). It is
composed of a commercial minatory high voltage amplifier provided by EMCO (£200 V
http://www.emcohighvoltage.con/), cooling parts and connecting board. However, this
voltage amplifier requires a external power supply. (DC Power supply, GW-Dual

Tracking with 5 V fixed Model: GPC-303D).

219



Figures D. 6 and D. 7 show the physical and schematic ready to test set ups. The first
experiment is performed in open-loop to achieve the natural frequency and damping
factor of the smart laminated system. The block diagram of this test for LABVIEW 7

software is given in Figure D.8.

After performing the open-loop properties of the system and validating the mathematical
modeling, variety of closed loop have been performed for different purposes. A typical

closed-loop block diagram is provided in Figure D. 9.

| EMCO voltage
amplifier

Figure D.5 In-house voltage amplifier
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Voltage amplifier Terminal to DAQ

Power supply for )
voltage amplifier Laminated beam

Figure D.6 Ready to test

PZT Actuator
-

S

- ( Voltage Amplifier,

+200V
| DAQ, NI 6220
L | INPUT f OUTPUT I

H>L,, | IOV ’ Controllerj
: S , LABVIEW 7.0 ‘
L. j

Figure D.7 Schematic experimental set up
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Figure D.9 Closed-loop block diagram
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