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ABSTRACT
A Space-Variant Architecture for

Active Visual Target Tracking

David Claveau,>
Concordia University, 2007

An active visual target tracking system is an automatic feedback control system that
can track a moving target by controlling the movement of a camera or sensor array. This
kind of system {s often used in applications such as automatic surveillance and human-
computer interaction. The design of an effective target tracking system is challenging
because the system should be able to precisely detect the fine movements of a target
while still being able to detect a large range of target velocities. Achieving thisin a
computationally efficient manner is difficult with a conventional system architecture.

This thesis presents an architecture for an active visual target tracking system based
on the idea of space-variant motion detection. In general, space-variant imaging involves
the use of a non-uniform distribution of sensing elements across a sensor array, similar to
how the photoréceptors in the human eye are not evenly distributed. In the proposed
architecture, space-variant imaging is used to design an array of elementary motion
detectors (EMDs). The EMDs are tuned in such a way as to make it possible to detect
motion both precisely and over a wide range of velocities in a computationally efficient
manner. The increased ranges are achieved without additional computational costs
beyond the basic mechanism of motion detection. The technique is general in that it can
be used with different motion detection mechanisms and the overall space-variant

structure can be varied to suit a particular application.

il



The design of a tracking system based on a space-variant motion detection array is a
difficult task. This thesis presents a method of analysis and design for such a tracking
system. The method of analysis consists of superimposing a phase-plane plot of the
continuous-time dynamics of the tracking system onto a map of the detection capabilities
of the array of EMDs. With the help of this 'sensory-motor' plot, a simple optimization
algorithm is used to design a tracking system to meet particular objectives for settling
time, steady-state error and overshoot. Several simulations demonstrate the effectiveness
of the method. A complete active vision system is implemented and a set of target
tracking experiments are performed. Experimental results support the effectiveness of the

approach.
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Introduction

1.1 Active Visual Target Tracking

The ability to detect and track moving objects is an important part of our ability to
interact with the world around us. Our vision system allows us to detect motion at a
distance. Light from a moving object reaches our eyes and we are able to shift our gaze to
keep the object within our field-of-view. Actively shifting our gaze allows us to track the
motion of the object across a much larger field-of-view than our eyes provide. These
abilities have inspired researchers and engineers to build active vision systems that can
track a moving target by controlling the movement of a camera or sensor array to keep its
optical axis aligned with the target. This kind of work has been motivated by useful
applications in automatic surveillance [1]{2], human-computer interaction [3][{4], and

mobile systems such as exploratory robots that can use active visual tracking to perform a



variety of visually-guided tasks [5][6]. Even entertainment robots are easier to interact
with when given the ability to visually track objects in their environment [7].

An active visual target tracking system is a special type of automatic feedback control
system consistiﬂg of three functional components: i) vision, ii) control and iii) actuation,
as shown in Fig. 1.1. Particular to this type of control system is the vision component
which consists of a sensing stage and a processing stage. Sensing of the light reflected or
emitted by a target is usually performed by a 2-D array of light-sensitive elements. Over
the last 50 yearé there have been three main types of sensor arrays: the vidicon tube, the

CCD sensor and the CMOS sensor.

Sensing Signal Processing

- vidicon tube - discrete analog electronics
- CCD sensor array - programmable processors
- CMOS sensor array

Smart Sensor Arrays o
- sensing and processing
integrated on a single chip ’

target
motion

—»| Vision

Control Actuation

A

Fig. 1.1. Functional block diagram of an active visual tracking system listing the
sensing and signal processing technologies typically used.



The signal processing stage operates on the image signal produced by the sensor
array. Information about the target is extracted from the image signal. Usually a tracking
error, which may consist of a position error and a velocity error, is computed. The control
component uses the tracking error to generate a control signal for an actuator, such as a
motor, which physically moves the vision system accordingly. Subsequent observations
by the vision cc;mponent are affected by this movement, closing the loop between sensing
and acting.

The signal processing stage is critical to the operation of the system because it must
compute the tracking error in real-time. A variety of strategies have been used for this
processing, ranging from discrete analog circuits to programmable digital computers.
With the advent of very large scale integration (VLSI) in the last 20 years there have been
attempts to integrate the signal processing with the sensing on a single chip. These smart
sensors have become a viable implementation option in applications that require small
size and low power consumption [8].

By far the most common strategy has been to use a video camera, based on a CCD or
CMOS image sensor, connected to a digital computer. A block diagram of such a system
is shown in Fig. 1.2. Digitized images from a camera are stored in a frame buffer where
they are processed by a computer. The computer may be programmable or it may be an
application specific integrated circuit (ASIC). The computer can make use of various
algorithms to extract useful information from the images. However, despite advances in
algorithm develppment and improvements in technology, active visual tracking remains a

difficult problem. The specific challenges are described in the next section.



Video Camera Digital Computer

sensor array

.. H
L \\
AN N, processor

analog-to-digital
conversion frame
buffer

lens

"

A4

digital-to-analog
DC Motor < conversion N
and

Geartrain

Fig. 1.2. Component block diagram of an active vision system that consists of a video
camera connected to a digital computer. Digitized images from the camera are stored
in a frame buffer and the computer makes use of various algorithms to extract useful
information from the images.

1.2 Challenges of Active Tracking

The design and implementation of an effective tracking system involves several
challenges. First, an effective target tracking system should be able to detect a large range
of target velocities while still being able to precisely detect the fine movements of a
target. This combination of large range of operation and high precision is difficult to
achieve. Another challenge is the need to extract data from an image signal that can be
used to produce a useful action in a real-time control loop. This type of sensory-motor
coordination is challenging because it is often difficult for the designer to visualize how

the sensing capabilities of a system relate to the motor capabilities. Yet another challenge



is the need for all computation to be sufficiently fast so as not to incur delays in the
overall feedback loop that will lead to instability and loss of tracking. This is particularly
true for computations that involve successive images acquired by the vision system. The
volume of data is usually very large and strategies are needed to keep the necessary
computations simple and efficient. Often the image capture rate is 30 frames per second
as shown in Fig. 1.3. A typical image resolution will lead to a very high bit rate.
Processing such a signal requires high speed circuits and high clock frequencies,
depending on the algorithms being used for the tracking. Power-hungry computational

resources cannot be used on mobile systems that have obvious constraints on power

consumption.
frame 1 frame 2 frame 30
12345 N 12345 N 12345 N
] o080 1 [N N ] 1 * 0
2 i ] 2 1
3 1 3 ] 3 ]
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5 : 5 : o e @ 5 ]
. [ - . L}
. . .. — : .. — : .. —
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’ i b—--- : >
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Fig. 1.3. Typical video camera: frames processed every 33.3 ms. The throughput of
such a system-can be very high even at modest resolutions.
Designing and implementing an active visual target tracking system is a
multidisciplinary task. Techniques from computer vision, control systems and electrical
and mechanical engineering must be applied to the design of a complete system.

Integrating these techniques into a cohesive approach to system analysis and design is a



major challenge. A complete system model is essential for the design and optimization of
such a system for a particular application.

One way of.addressing all of these challenges is by taking inspiration from nature.
Clearly our own vision system is capable of active visual target tracking over an
impressive range of target speeds. Sensory-motor coordination is performed effortlessly.
This is also true for many other animals with vision systems similar to our own.
Researchers have begun to consider how strategies found in nature can be adapted to the
design of active vision systems [9]{10]. This thesis addresses all of the challenges

described in this section by applying strategies found in biological vision systems.

1.3 Scope and Organization of the Thesis

The objective of this thesis is to achieve active visual target tracking with both
precision and over a wide range of speeds in a computationally efficient manner. Another
objective is to develop an approach to the analysis and design of such a system and to
address the difficulties of sensory-motor coordination. The approach is bio-inspired. It
makes use of strategies for: 1) sensing, ii) motion detection and iii) sensory-motor
coordination that are inspired by what is known about biological vision systems. Using
these strategies this thesis describes an architecture for a space-variant motion detection
array that is designed to efficiently track a target over a wide range of speeds while still
being able to precisely track its fine movements. Although it is possible to solve this
problem by using faster and more powerful computers, this leads to systems that are
inefficient in terms of resource usage. The approach in this thesis solves the problems of

active visual tracking without using excessive computational resources. Here we use the



word 'architecture' to describe the 'sensing scheme' or the structure of the sensing that will
lead to more efficient computation.

The thesis is organized as follows. Chapter 2 consists of a review of background
topics includiné a survey of the basic motion detection techniques and a discussion of
related work done by other researchers. Chapter 3 describes the spatio-temporal
frequency response of a commonly used motion detector and how it can be incorporated
into a space-variant array to provide both range and precision for target tracking. Chapter
4 describes the broposed target tracking system along with a method of analysis and
design for the system and how it can be used to meet performance goals for settling time,
steady-state error and overshoot. In chapter 5 an experimental system is described along
with the results of target tracking experiments. Chapter 6 contains the conclusion and a

discussion of future work.



Background and
Related Work

The design and implementation of an effective visual tracking system involves
techniques from fields such as computer vision and control systems. At the core of visual
tracking is the process of extracting information about the target's motion from the image
signal. This chapter provides background information on a variety of techniques that have
been used for visual motion detection for target tracking. In section 2.1 several motion
detection techniques are considered from a target tracking perspective highlighting some
of their advantages and disadvantages. Particular attention is paid to the spatio-temporal
frequency-based techniques of section 2.1.5, as the work of this thesis is based on these
techniques. Other researchers have attempted to use some of these techniques and a
review of the approaches they have taken is provided in section 2.2. Section 2.3
concludes the chapter with a brief description of some bio-inspired strategies that are

central to the approach taken in this thesis.



2.1 Measuring Motioh for Visual Tracking

This section is a survey of several commonly used techniques for visual motion
detection and estimation. The goal of these techniques is to extract useful motion
information from time-varying imagery. The patterns of visual motion include those
produced by the target's motion relative to the sensor and also those produced by the
sensor's motion relative to the background. It is assumed that motion due to the
background is insignificant compared to motion due to the target. For target tracking,
relevant motion information includes the position of the motion in the image, the
direction of motion and the speed. The techniques are mathematically very similar
[11][12] though they differ in terms of their computational complexity, their generality,

and their precision and range.

2.1.1 Techniques Based on Matching

This section briefly describes three commonly used motion estimation techniques
based on matching: high-level template matching, feature matching and block matching.
High-level template matching techniques make use of a 2-D template or a small image of
the target to search for the position of the target in each image as shown in Fig. 2.1. This
is done by 'sliding' a template, 7, over an image, /, and finding the best match by

minimizing a distance measure such as the sum of square differences (SSD):

k&
SSD(x,y) = 3, 3 [TG, N~ 1(x+i,y+ )f @21

i=—k jm—k



in which (x,y) is the position of the candidate window in / and 2k+1 is the size of both the
template and the candidate window. The SSD has convenient mathematical properties but

may be less efficient than the sum of absolute differences (SAD):

k k
SAD(x,y) =Y, D ITG N~ 1(x+i,y+ )| (2.2)

i=—k j=k
Alternatively the best match may be found by maximizing a similarity measure such as

the cross-correlation:

k. k
R(x, )= DTG j)-I(x+i,y+)). (2.3)

i=—k j=—k

The maximum of R(x,y) indicates that the best match is at location (x,y).

template, T image image
frame frame
A oo I; Lin
-~ N . T - . R
A} = ~ ~
4 A

At

A
v

Fig. 2.1. Template matching techniques begin with a template image of the target and
search each image frame for the best match.

As described above, by searching for the best match it is possible to find the position
of the target in each image. The target speed can then be estimated by dividing the

change in position by the amount of time between images. If the entire image is searched

10



then the technique can detect a wide range of velocities. One drawback is that a template
or model of the target must be available a priori. Another drawback is that the target may
appear differentlly in the image and multi-resolution techniques may be needed. Also, the
accuracy of matching is usually better when more pixels are compared, leading to an
accuracy/computational efficiency tradeoff.

Examples of template matching being used for target tracking include some of the
first visual tracking systems developed for classified military applications such as missile
guidance [13]. The availability of digital computers and CCD-based video cameras in the
1970's and 1980's lead to several other systems based on template matching [14][15],
though usually limited to contexts in which the target's appearance is known.

Feature matching techniques begin by extracting features such as edges [16] or
corners [17] in each image. For each feature in the current image, the corresponding
feature in the previous image must be searched for. If features can be properly matched
between the current image and the previous image then the motion vector for that feature
can be estimated. This is called the correspondence problem [18] and it is an example of
an ill-posed problem for which there is no unique solution; multiple features could be
legitimate matches. This technique also depends on the presence of a sufficient number of
features in the images to compute motion. Feature extraction itself can be
computationally demanding and susceptible to noise.

Block matching techniques [19] are very similar to template matching techniques.
Each image in a sequence is partitioned into an array of blocks. Each block is then

searched for in the previous image frame, within a search window, as shown in Fig. 2.2.

11



The best match can be determined using the SSD, SAD or correlation. For example, the

sum of absolute differences (SAD) may be computed as:

k k
SAD(py, p,) =D D | (%, +i,y, + )= 1,(x, +i,y, + )| (2.4)

i=—k j=—k

in which p; = (x1,y1) is the center of the candidate block in 11, p2 = (x2,y7) is the center of
the block in I, and the block size is 2k+1. This must be computed for each possible
position in the search window to find the best match.

A motion vector can be assigned to each block producing a motion vector field
sometimes referred to as an estimate of the optical flow. The size of the blocks and the
search window are adjustable. A larger block size means more accurate motion vectors
but results in a sparser vector field and requires more computations. A sparse vector field
means that only coarse image features can be assigned a motion vector.

In summary, all of the matching techniques can be used to detect motion over a wide
range of velocities however they exhibit a tradeoff between accuracy and computational

efficiency.

frame i-1 frame i

+

search
window

Fig. 2.2. Block matching techniques partition each image into an array of blocks each
of which is then searched for within a search window in the previous image frame.
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2.1.2 Gradient-Based Techniques

A simple way to detect motion is to detect a temporal change at each pixel. This does
not require any searching or sliding window computations. All that is needed is an

approximation to a temporal derivative of the input at each pixel:

d I(x,y,t)—1I(x,y,t—At
El(x,y,t)=lim (5 y,0) ~Ix,y )- (2.5)

At>0 At
A pixel-level block diagram in Fig. 2.3 is used to show the computations needed to
approximate this derivative. Only one spatial dimension is shown and the inputs, p; and
P2, are the values of image intensity at two adjacent pixels. The blocks can be
implemented with either digital or continuous-time components and all that is needed is a
delay and a subtraction. Similar to a simple feedforward comb filter, the output for each
pixel is formed as a linear combination of the input and output of a delay line.

If the input is considered to be a sequence of images, as in a digital video signal, then
the previous image must be subtracted from the current image, pixel by pixel. The
position of motion can be estimated in this way. The estimate becomes less precise as the
speed of image motion increases since many pixels will have changed after a delay of At.

Variations on this simple technique have been used for active visual tracking [20].
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Pi P2

delay < At At

differencing < — 2 - Z

Fig. 2.3. Block diagram of the computations needed to approximate a temporal
derivative at each pixel. Only one spatial dimension is shown.

In order to estimate more than just the position of motion, an approximation to a
spatial derivative at each pixel is needed. For example, in the x-direction:

I(x’yat)_](x—Axaynt)
Ax .

d
—1I(x,y,t) = lim (2.6)
dx A0

An estimate of motion speed in one dimension can be computed as a ratio of the temporal

and spatial derivatives [21][22]:

dl
dx Z 1,
e 2 e T e 2.7
de dl I, @7)
dx
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in which 7, and I, denote the spatial and temporal derivatives of I respectively. A pixel-
level block diagram in Fig. 2.4 shows the computations for two adjacent pixels in one
spatial dimension. This technique has been extended to 2-D [23]. The usual derivation

begins by assuming that image intensity remains constant:
—I(x,y,t)=0 (2.8)
dt > '

then, using the Taylor expansion:

ol ol ol
—V +—V +—=
ox oy’ ot

0. 2.9)
in which v, and v, are the local velocities in the x and y directions respectively. This can
be written as:

Iy, +1y, +1,=VI-v+1,=0. (2.10)

The velocity perpendicular to the spatial gradient can be estimated as:
-1 ¢ -1 t

NI e

Other components of the velocity cannot be estimated. This is referred to as the aperture

@.11)

problem. To solve for both v, and v,, assumptions are usually made about the
'smoothness' of the image motion, but these are only valid for low image velocities.
Another problem is that pixel-level estimates of the spatial derivative are often noisy and
unreliable, resulting in poor accuracy. These factors have made it difficult to apply this
technique to visual tracking. On the other hand, the technique is conceptually simple and
requires only basic arithmetic operations. There have been successful implementations of
this technique including an integrated smart sensor developed by Tanner and Mead [24]

and one developed by Stocker [25].
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Fig. 2.4. Block diagram of the computations needed to estimate motion speed in one
dimension as a ratio of the temporal and spatial derivatives.

2.1.3 Spatio-temporal Frequency-Based Models

Biological vision systems appear to perform motion detection in a way that is
different from the matching and gradient techniques. Evidence suggests that these
systems compute the spatio-temporal frequency content of local image regions [26][27].
Individual spatio-temporal frequency filters are arranged in an array. Each filter is
selectively activated by a range of spatio-temporal frequency patterns produced by the
motion of a target. This allows motion to be computed across the array without restrictive

assumptions. One commonly used filter structure is based on correlation [26] and another
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is based on 'motion energy' [28]. They are mathematically equivalent, however, the work
of this thesis is based on the correlation-type filter because of its simplicity.
Cross-Correlation is a measure of the degree to which two signals agree in behavior
[29]. It is used as a similarity measure for the template matching techniques of section
2.1.1. If we consider two arbitrary continuous-time signals, f7(f) and f3(¢), the cross-

correlation, R,(t), can be expressed as:

Rlz(r)=;gg% [he=o)- £t (2.12)

In actual practice, the average is taken over a finite length of time, 7, and what is usually

measured is:
1 T
Ro(r,D)=— Ojfl(r—r)-fz(t)dr. (2.13)

The block diagram of this computation is shown in Fig. 2.5 (a). When the two signals are
the same, the operation is called an autocorrelation and it will peak for a lag of T = 0.

A similar configuration can be used for pixel-level motion detection, as shown in Fig.
2.5 (b). The two signals, p; and p,, are point samples of the image plane, separated by a
distance Ax. The image intensity at p; is delayed by A¢ and then multiplied by the
intensity at p,. If a target, with a uniform intensity and a size that is smaller than Ax,
moves rightward at velocity v then it will travel from p; to p, in time Ax/v. This operation

is similar to an autocorrelation for which the 'effective lag' T depends on Ax, At and v:

v (2.14)
A%
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l Ri(7)

Fig. 2.5. (a) Block diagram of a cross-correlation operation. (b) If p; and p, are
signals from adjacent pixels then this simple computation can be used to detect
rightward motion and (c) leftward motion.
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If the time it takes for the target to pass from p, to p; is approximately the same as At,
then the amplitude of the output of the correlator will likely be large resulting from the
product of the two signals. It will peak for a target velocity of Ax/Az. For a range of target
velocities the effective lag will be small and the output of the correlator will be close to
the peak value. If the target moves leftward from p, to p; then the effective lag will
increase and the configuration in Fig. 2.5 (b) will not respond to this motion. Rather, if p;
is delayed by At instead of py, as in Fig. 2.5 (c), then the correlator will be sensitive to
leftward motion rather than rightward motion. This type of 'delay-and-compare' motion
detection was first reported by Reichardt [26] in the 1950's after experimenting with the
visual capabilit{es of insects.

Reichardt combined two correlators in a symmetric fashion as shown in Fig. 2.6. This
Reichardt elementary motion detector (EMD) computes the difference between the output
of two correlators that are sensitive to motion in opposite directions. This 'motion-
opponency’' res(xlts in a positive output for rightward motion or a negative response for
leftward motion and eliminates the response to full-field flicker. If a target with uniform
intensity and a size that is several times larger than Ax passes over the EMD then the
motion of its leading edge will be detected but when the object completely covers p; and

p2 then the two sides of the EMD will cancel and the response will be zero.
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Fig. 2.6. Block diagram of a Reichardt elementary motion detector (EMD).

Real-world objects and scenes have complex patterns. In order to use the Reichardt
EMD to track real-world targets it is important to understand how it responds to complex
patterns. To begin, consider a target with a simple sinusoidal pattern on its surface as
shown in Fig. 2.7 (a). Assume the length of the target to be just large enough to see a few
wavelengths of the pattern. For simplicity consider the intensity profile, /(x), along the x-
dimension. If the average or DC component is subtracted from the intensity profile then it

can be represented with a zero-mean sinusoid:
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I(x)=sin2z- f x) (2.15)
in which f£;, the spatial frequency, is measured as the number of times the spatial pattern
repeats itself over some unit distance. The target is moving at a constant velocity, v,
which means the sinusoid is being shifted to the right:

I(x,t)=sinQr- f x-27x- fvt). (2.16)
A space-time plot of the sinusoid moving to the right is shown in Fig. 2.7 (b). The initial
position is shown in bold along the x-axis. The sinusoid shown in bold along the time
axis is the signal that would be observed at a given point on the x-axis, in this case the 0
point, as the wave moves to the right. Its temporal frequency f; is related to the spatial
frequency f; and velocity v by f; = f,v. If the wave moves to the right at a higher velocity,
as shown in Fig. 2.7 (c), then the temporal frequency will increase. Likewise f; will
increase if f; is increased as in Fig. 2.7 (d) and v is held constant, or if both v and f; are
increased as in (e). Equation (2.14) can now be written as:

I(x,t)=sinQRxr- f x-2x- ft) (2.17)
and the sinusoid along the time axis is:

I(t) =—sinQ7z- f,1)| . (2.18)
The motion of a target will produce a particular pattern of spatial and temporal
frequencies depending on its appearance, its direction of motion and its speed. The
Reichardt EMD can be tuned to detect a particular spatio-temporal frequency pattern by

changing its distance parameter Ax and its delay parameter Az.
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Now consider the classical autocorrelation of a sinusoidal function of time:

R(7) =21—T Tjsin(27;,f, (¢ —7))-sinQ27f, -t) dt
-T (2.19)

1
= > cos(2rf, - 7).
This function is periodic in t and has a peak at t = 0. Again, consider the simple one-
sided correlator which detects rightward motion, shown previously in Fig. 2.5 (b), but
this time with a sinusoid passing over it. If the crest of the sinusoid moves rightward at
velocity v then it will travel from p; to p; in time Ax/v. As before we have an 'effective

lag' :

r=nt- (2.20)
v

which can be substituted into equation (2.19) to give us the output of the correlator for

rightward motion:

R (7) =lcos(27gﬂ ~(At—£D (2.21)
2 v
which simplifies to:
Ry(7) = —;—cos(2zy‘, At —27f.A%). (2.22)

Using the trigonometric identity for the sum of two angles we have:

Ry (7) = —;—(cos(Zzzf, - At)cos(27f Ax)+sin(27f, - At)sin(27f,Ax)).  (2.23)
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Fig. 2.7. (a) A simple target with a sinusoidal pattern moving to the right with
velocity v. (b) A space-time plot of the sinusoid moving to the right. The sinusoid
along the time axis is the signal that would be observed at 0 on the x-axis. In (c) the
velocity is increased and in (d) the spatial frequency is increased. In (e) both spatial
frequency and velocity are increased.
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For the leftward sensitive correlator in Fig. 2.5 (c), the 'effective lag' T will be:

T=At +_A_x (2.24)
v

and the output after substitution will be:
R, (v)= ;—(cos(ng’, -At)cos(27f Ax)—sin(27f, - At)sin(27,Ax)).  (2.25)

A complete Reichardt EMD computes the difference between equations (2.24) and (2.25)
resulting in a function of spatial and temporal frequency:

R(f.,f,) =sin(27f, - At)sin(27f . Ax). (2.26)
The plot in Fig. 2.8 (a) shows how the output of an EMD will vary with f;. For simplicity,
we set Ax = 1 'spatial unit' and express f; in units of cycles/Ax. Likewise Fig. 2.8 (b)
shows how the output will vary with f; which is expressed in units of cycles/At. The
response peaks for a spatial frequency of 0.25Ax and a temporal frequency 0.25A¢. The
plot in Fig. 2.8 (c) shows why the EMD is referred to as a spatio-temporal filter. The
EMD will respond most strongly to a particular range of spatial and temporal frequencies
depending on the values of Ax and At. As such it is a bandpass filter. The ranges in which
the response is valid are 0 < f, < 0.5 and 0 < f; < 0.5. The response actually becomes
negative for 0.5 <f, <1, incorrectly indicating leftward motion since the actual motion is
rightward. Spatial prefiltering can be used to eliminate this incorrect portion of the

response. This is discussed in more detail in section 3.1 of chapter 3.
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Fig. 2.8. (a) Plot of EMD response as a function of spatial frequency and (b) as a
function of temporal frequency. (c) The complete response characteristic as a function
of spatial and temporal frequency. For all plots, Ax = 1 spatial unit and f, is expressed
in units of cycles/Ax. Likewise, Af = 1 time unit and f; is expressed in units of
cycles/At.
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The above analysis was based on an ideal delay, At, which can be achieved in a

discrete-time system. In a continuous-time system, A¢ can be achieved by using the

inherent phase delay of a first-order lowpass filter [30]:
D(f,) = A(f)e*" (2.27)

in which A(f;) and ©O(f;) are real-valued functions representing the amplitude and phase

respectively. The delayed signals, as shown in Fig. 2.6, are then:

b ()= A(f)sinQz- £ -O(f,) (2.28)
p, ()= A(f)sinQz- fit =27 f,Ax~O(f,)) (2.29)
and:
R(f £)=p, () p, ()= p, (- p, (1) (2.30)
| = A(f,)sin[®(f,)]sin(27f,Ax) (2.31)

If the frequency response of the filter is:

1 e—jarctan(27r'f,At) (232)

D(f,) = A(f)e ™" = ;
J1+ Q- fAL)’

where again A(f;) denotes the magnitude response and ®(f;) denotes the phase, then:

: 27, At
sin0(/,)]= \/ﬁ(zi}{—m)_ , 233
and the response is given by:
R(f.. )= ! / sin27 - £ - Ax) (2.34)

27At [ +1/2aAl)°
Fig. 2.9 shows the plot of this response as a function of spatial frequency in (a), as a
function of temporal frequency in (b), and the complete response in (c). This is the

typical responsé characteristic that appears in the literature. A complete derivation of the
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response is provided in Appendix A. Equation (2.34) will be used in chapter 3 to show
how the filter can be tuned to different ranges of velocity and spatio-temporal frequency
by varying the parameters Ax and At.

A single EMD or an array of identical EMDs will be limited to detection over a very
specific range of spatial and temporal frequency patterns and therefore to a specific range
of velocities. This is common to all spatio-temporal frequency-based techniques.
However, their ability to individually detect the spatio-temporal frequency content of local
image regions makes them well suited to target tracking applications. What is needed is a
study to find a way to design an efficient architecture for a motion detection system, based
on these filters, that can perform detection over a wide range of velocities and for both

coarse and fine spatial details.
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Fig. 2.9. (a) Plot of EMD response as a function of spatial frequency and (b) as a
function of temporal frequency. The dashed lines indicate the response curves from
Fig. 2.8. (¢) The complete response characteristic as function of spatial and temporal
frequency. All plots were produced using a simulated continuous-time low-pass filter
to create a delay, At = 1 time unit. Also, f; is expressed in units of cycles/Ax and f; is
expressed in units of cycles/At.
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2.2 Related Work on Motion Detection for Tracking

None of the visual motion detection techniques described in this chapter are perfectly
suited to target tracking. All of them have some deficiencies and researchers have tried to
work around these deficiencies in two different ways. Sometimes the basic computation
performed by the motion detector itself is modified. These computational level
modifications are usually an attempt to devise a new motion detection mechanism that is
still based on one of the basic principles such as matching or correlation. Alternatively,
sometimes the basic motion detector is used unmodified, but it is incorporated into a new
architecture that leads to more effective motion detection and tracking. In this section
both of these approaches are considered in terms of work that has been previously
reported by other researchers. The emphasis is on work related to correlation-based
motion detection, as performed by the Reichardt EMD, since this form of motion

detection is used for the work of this thesis.

2.2.1 Related Work at the Computational Level

A basic problem of motion detectors that are based on spatio-temporal filtering is that
they do not directly measure the speed of a target, rather they compute the spatio-
temporal frequency content of a local region. This makes it difficult to distinguish
changes in a target’s velocity from changes in its spatial frequency pattern. To solve this
problem, a detection mechanism reported by Delbruck [31] extends the usual pairwise
correlation model to a sequence of several photoreceptors that are coupled into a delay

line. The basic scheme is shown in Fig. 2.10. The unidirectional delay line composed of
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low-pass filters serves as a tuned filter for a particular target velocity. If the motion of a
passing edge matches the tuning of the line then the amplitude at each output, labeled My,
M,,..., is reinforced and increases along the delay line; otherwise the output decays. In
this way the amiolitude of the output serves as a measure of the velocity of the target. The
use of a delay line to aggregate a signal across space and time improves the ability to
estimate velocity, however, differently tuned delay lines are still needed to estimate target

velocity over a wide range.

P19 p2® ps®

Fig. 2.10. Delbruck’s correlation-based motion detector [31]. A delay line is used to
measure the velocity of a target passing over the photoreceptors. The ( )* symbol
represents a squaring operation.

A different scheme that resembles the Reichardt EMD in structure, but operates in a
different way, is the facilitate-and-sample velocity sensor [32] shown in Fig. 2.11 (a).
The first stage consists of edge detectors which pass their signals on to pulse-shaping

circuits which then produce both a slowly decaying pulse, P/, and a narrow sampling
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pulse, P2. If an edge is moving to the right then its decaying pulse will be sampled by the
narrow pulse at a voltage that encodes the velocity of the edge, as shown in Fig. 2.11 (b).
Example systems based on the scheme still rely on mainly qualitative properties of the

computed optical flow despite the use of more complex computations. This is due mainly

to the vulnerability of the scheme to noise and mismatch.
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(a) M: sampling of P1 by P2 (b)

Fig. 2.11. The facilitate-and-sample velocity sensor [32]. (a) Block diagram. (b) Voltage
signals. The slowly decaying facilitation pulse is P1, the sampling pulse is P2 and M is the
output voltage which encodes the velocity of the edge.

2.2.2 Related Work at the Architectural Level

Researchers have attempted to. combine individual motion detectors into architectures
that lead to some performance improvement. Simply implementing a complete 1-D array
of basic Reichardt EMDs has been shown to be feasible in a standard VLSI process by
Harrison and Koch [33] and others [34]. The Harrison system is shown in Fig. 2.12 (a).

The layout of a single EMD is shown in Fig. 2.12 (b). The outputs of the array of EMDs
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are linearly summed and then passed through a temporal low-pass filter. The spatial
summation is a simple way to produce a motor control signal from the local
measurements of the individual EMDs. The arrangement was used in a complete sensory-

motor control system to simulate the ability of a fly to estimate self-motion and stabilize

its body during flight.
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Fig. 2.12. Harrison and Koch’s array of EMDs [33]. (a) Block diagram of the sensory-
motor system that uses the array to produce a motor signal. (b) Layout of a single EMD.

Perhaps the closest system to the one described in this thesis is that of Higgins and
Shams [35]. Théy have proposed to use a number of parallel motion detection arrays to

detect both fine and coarse motion. The architecture is shown in Fig. 2.13. An image is
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focused onto a sensor array which outputs changing contrast information to four parallel

arrays of EMDs. The arrays are distinguished by differences in EMD orientation, speed

tuning, spatial frequency tuning or other properties. The outputs of these EMDs is

multiplied by weighted matrices called innervation matrices (IMs) and then spatially

integrated to form the system’s output. One drawback of the system is that it requires

some non-trivial coordination between the separate arrays of EMDs. It also requires

significant computational resources, i.e. circuits and memory, for its tuning by using four

complete and separate arrays.

Visual

Fig. 2.13. Architecture for a set of parallel motion detection arrays [35].
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2.3 Bio-Inspired Strategies for Visual Tracking

Despite advénces at both the computational and architectural levels, visual tracking
remains a difficult problem. The challenging aspects, as described in chapter 1, include
the need for both precision and range in the measurements of target position and velocity.
Another challenge is to find an efficient way to map these measurements to a control
signal for tracking. It appears that biological vision systems have met these challenges,
given the fact that humans and many other animals are able to easily perform target
tracking. This has led researchers to pursue solutions that draw inspiration from
biological vision systems.

Researchers: and engineers have been taking inspiration from nature for thousands of
years. In the last 50 years many attempts have been made to imitate, with electronics and
computers, the structures and strategies found in biological systems. In the 1950’s and
1960’s the field of cybernetics developed many interesting robotic systems based on
negative feedbe;ck [36]. In the late 1980’s the field of neuromorphic engineering began to
use analog VLSI to emulate the computational strategies found in the nervous system
[37]. This section briefly describes some bio-inspired strategies that are relevant to active

visual target tracking.

2.3.1 Active Vision

Active vision systems are those in which the parameters of an image sensor or
camera, such as the orientation or the focal length, can be dynamically changed to meet
the needs of a task [38-40]. Rather than trying to extract a maximum amount of

information from any one image, the camera is actively controlled to sense different
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aspects of the scene. Bajcsy [39] observed that many traditional vision problems could be
solved with less computation by controlling the motion of the camera. It was also
proposed that a vision system should be designed to actively serve a purpose rather than
being a general image understanding system. The overall strategy is based on ideas found

in the oculomotor control system of biological vision systems.

2.3.2 Space-Variant Imaging

Researchers have been inspired by the observation that the eyes of humans and
many animals are space-variant sensors [41]. The density of photoreceptors is highest in
the center and decreases with distance from the center of the sensor as shown in Fig. 2.14
(a) and (b). The central region can be used for tasks which require high resolution, while
the lower resolution periphery can provide information about the background, reducing
the number of pixels required for computation and transmission. For real-time target
tracking, the most important property of a space-variant sampling structure is the
reduction of visual information that must be processed. This reduction is achieved
without a reduction in the field-of-view or a reduction in the resolution at the center of
the sensor. A review of space-variant image processing can be found in [42].

The most commonly used sampling geometry is the log-polar structure which has
been explored with both custom sensors and software simulations for over 20 years
[43][44]. It is a model of the mapping of the photoreceptors from the human retina to the
primary visual cortex. A constant number of photoreceptors are arranged over concentric

rings producing a linear increase in the spacing with distance from the center of the
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sensor. There have also been examples of using the mapping for active target tracking

[45][46].
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Fig. 2.14. (a) The density of cones and rods across the human retina [41] and (b) the
general form of the density of both types of photoreceptors combined.

Other sampling structures may offer advantages for particular applications. For
example, various animals have eyes that are adapted to their ecological niche, such as

birds that have two foveal regions to allow for hunting and flying at the same time [47].
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Following this idea, there has been a foveated sensor with a sampling structure that was
designed to priéritize obstacles in a robot’s path [48]. The sensor structure makes it easier
to make decisions about steering away from obstacles because of the way it filters the
visual information to emphasize obstacles which are close or those which are distant but
very large.

An interestiﬁg example of a space-variant sensor consists of a central region of a
single high resolution surrounded by a region of a single low resolution [49]. The low
resolution region performs target detection based on image intensity while the central
region performs target tracking using an EMD-tybe motion detection circuit. What is still
needed is a systématic method to design space-variant sensing to match different
applications.

Once motion information has been extracted from an image signal, the task that
remains is to produce an appropriate control signal to drive the vision system in such a
way as to track the target. This sensory-motor coordination can be difficult to design,
especially in a system that uses non-uniform, space-variant imaging. Both sensing and
motor functions are often characterized by nonlinearities that make analysis difficult.
What is needed is a tool to help visualize how the sensing and motor functions interact.
Research in neurophysiology has shown that sensory-motor regions of the vertebrate
brain, such as the superior colliculus, receive inputs from the eye in a retinotopic map
that is aligned with a ‘motor map’ of neurons that project to brainstem areas which then
control eye and head movement [S50]. This alignment of sensory and motor maps serves
as inspiration for a method of analysis and design presented in this thesis. It combines a

map of the motion detection capabilities of the system with a phase-plane plot of the
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tracking dynamics into a single sensory-motor map that can be used to design the

tracking control signal.

2.4 Summary

A variety of techniques have been used for visual motion detection for target tracking.
These include techniques based on matching, gradient-based techniques and spatio-
temporal frequency-based techniques. The techniques based on matching can be used to
detect motion over a wide range of velocities however they exhibit a tradeoff between
accuracy and computational efficiency. Gradient-based techniques are conceptually
simple but prob}ems with accuracy and reliability limit their applicability to target
tracking. Spatio-temporal frequency-based techniques compute the spatio-temporal
frequency content of local image regions. They use filters which are selectively activated
by a range of spatio-temporal frequency patterns produced by the motion of a target. A
simple and commonly used example is the Reichardt EMD. These techniques are very
useful for target tracking but an individual detector of this type is limited to a particular
range of spatial and temporal frequency and therefore to a particular range of target
velocity. Researchers have attempted to work around this by modifying the basic detector
at the computational level or by incorporating the basic detector into an architecture that
supports a wider range of motion detection. While these ideas have led to improvements,
further investigation is needed to find a way to design an efficient architecture for a
motion detection system based on these filters. Many promising approaches draw

inspiration from what is currently known about biological vision systems.
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Spatio-Temporal Frequency
Tuning of Reichardt EMDs
for Space-Variant Motion
Detection Arrays

The goal of this thesis is to achieve active visual target tracking with precision and
also over a wide range of speeds in a computationally efficient manner. Chapter 2
described how spatio-temporal filtering can be used to detect a specific range of spatial
and temporal frequency patterns. What is needed is an efficient way to incorporate
individual spatio-temporal filters into an array and to tune the individual filters to
different frequency and velocity ranges. This chapter provides an analysis of an example
of a spatio-temporal filter known as the Reichardt elementary motion detector or EMD.
Based on this analysis we propose that space-variant imaging be used to build an array of
EMDs that are tuned to different velocity ranges. We also propose a graphical technique,

called the EMD map, to visualize the different velocity ranges across the array.
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3.1 Tuning a Reichardt EMD

A diagram of a simple Reichardt EMD, as shown previously in Fig. 2.6, is shown
again in Fig. 3.1. It has two input signals, p; and p,, acquired from two points in the
image plane separated by a distance Ax. The inputs are assumed to come from

photodetectors and represent the image irradiance at two adjacent points in the image

&

Pi1 P2

delay ~

multiplication <

NS

differencing <

Fig. 3.1. Block diagram of a simplified Reichardt EMD showing the two adjustable
parameters: Ax, the distance between inputs and At the delay. The input sinusoid, at
top, could represent a target passing over the EMD.
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plane. The input p; is delayed by Ar and is multiplied with the undelayed input p»,
producing a response that is sensitive to rightward motion. The same delay-and-multiply
operation is performed for the opposite direction. The outputs of the two sides are
subtracted to reduce the response to static patterns and full-field flicker. For the
configuration in Fig. 3.1 the output will be positive for rightward motion and negative for
leftward motior}. A detailed discussion of the operation of the EMD is provided in section
2.1.3 in chapter 2.

The two parameters that can be adjusted in the simplified EMD are the distance, Ax,
between the two points where the inputs are acquired, and the delay, Az. To see how they
affect the response of the EMD to motion it helps to assume that the input to the EMD is
a zero-mean sinusoid that has unit amplitude and a spatial frequency of f; = 1/4, as shown
at the top of Fig. 3.1. This assumes that a phototransduction stage is able to produce such
a signal from the image of an actual target and allows us to ignore for now the effect of
contrast on the response. If the sinusoid is shifted to the right with velocity v then a
temporal frequency of f; = fyv will be induced at each input. The shifting sinusoid could
represent a target passing over the EMD. If the delay is modeled as the inherent phase
delay of a first-order low pass filter with time constant Az, then the response can be

expressed as [30]:

__< /. Isin(2z - £.-
R l) =00 a [ff+1/(27z-At)2i| sin@7-7,-40] 6

in which C, the ‘contrast’ or amplitude of the input sinusoid is equal to one. Physical
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realizations of the EMD are usually limited to having some minimum value for Ax and
At. For the following analysis we define the smallest time delay as a unit 6¢ and the
smallest distance as a unit 8x. A plot of the response for Ax = 18x and Ar = 16¢ was shown
in Fig. 2.9 and is shown again in Fig. 3.2. Spatial frequency, f;, is expressed in units of

cycles/8x and temporal frequency in units of cycles/dt.

0.5

R(f:> /)

S e 1
(cye/8f) 0.5

Fig. 3.2. Plot of EMD response to a unit-amplitude sinusoid as a function of spatial
and temporal frequency. The response is for the EMD of Fig. 3.1 with Ax = 16x and
At= 168t

As seen in Fig. 3.2, the response peaks for particular values of spatial and temporal

frequency. For a zero-mean sinusoidal pattern the response has a maximum value of 0.5

which is reached when the spatial frequency of the pattern is:

1

fx,peak = m

(3.2)

and when the temporal frequency is:
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1

f;,peak = 2 At . (33)

At higher spatial frequencies, a form of aliasing occurs and the response becomes
negative for rightward motion. This can be eliminated by spatially prefiltering the inputs.
If the image plane is not point sampled but each sample extends to fill the space between
samples then the photoreceptor itself performs this prefiltering. Assuming that the
photoreceptor averages the light intensity falling on its surface, then for one dimension in
the spatial domain the filter is simply a rectangular function as shown in Fig. 3.3 (a). In

the frequency domain it is described with a sinc function:

sin(z-Ax- f)

S =

(3.4)

in which Ax is both the separation and the physical extent of the photoreceptors, and f, is
the spatial frequency of the input sinusoid. The first zero occurs at £, = Ax = 1. The
magnitude response for 0 < f; < 1 is shown in Fig. 3.3 (b). Spatial frequencies above the
Nyquist frequency of 0.5Ax, which is twice the spatial frequency for the peak response,
are strongly attenuated. Fig. 3.3 (c) shows the EMD response without prefiltering while
Fig. 3.3 (d) shows the response with prefiltering. The spatial frequencies above 0.5Ax are
noticeably attenuated. Now a threshold can be used to eliminate the response due to
aliasing. Fig. 3.3 (e) shows a contour plot of the unfiltered response of (c) after

thresholding while Fig. 3.3 (f) shows the filtered response of (d) after thresholding. Only

the positive portion of the response is retained.
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Fig. 3.3. Effect of spatial prefiltering on EMD response. (a) A one-dimensional
spatial prefilter in the spatial domain and (b) in the spatial frequency domain. (c) and
(e) show the response and the thresholded response without prefiltering. (d) and (f)
show contour plots of the response and the thresholded response with prefiltering.
The negative response due to aliasing has been removed.
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Now we will consider how the two parameters Ax and At affect the frequency
response and the range of detectable target velocities for an EMD. To see the effect of
varying At, Fig. 3.4 shows contour plots of the responses for three EMDs with different
values of At bu£ the same Ax. The y-axis represents f; in units of cycles/df and the x-axis
represents f, in units of cycles/8x. Each set of concentric response contours represents the
response of a single EMD with a particular Az. The three EMDs have delays of At = 16¢,
206t and 46¢. For‘ each EMD three contours and a peak are shown. Each contour represents
a combination of spatial and temporal frequency of the input signal that produces the
same average response. The peak average response at the center is 0.5 and the outermost
contour represents a response of 0.4. This value has been chosen as a threshold to
indicate that a detection is made only if the response is above that value. The choice of
the threshold defines the passband of the filter. The slope of the line from the origin to
any point on a contour represents the velocity, in units of dx/3¢, of the input sinusoid
corresponding to that point.

If an array consists of EMDs with the three values of Af shown in Fig. 3.4 then the
range of detectable velocities for the array would be given by the difference between the
slopes of the lines that pass just above and below the outer contours of the three
responses as shown on the plot. The total velocity range achievable with the three
different values of At is greater than for a single fixed Az but the spatial frequency range
or bandwidth, shown on the x-axis, is the same as for any single At. An array of EMDs
with different values of At can be arranged to cover a large range of velocities, however,
the detectable spatial frequency range will not widen. Also, in practice it may be difficult

to vary At in an efficient and reliable way. In a standard imaging system Atz would be

45



0.3
fi
(cyc/dt)
0.25-
0.2}
16t
0.15
01r 26¢
005+ / 43¢
0 B s M 1 i 1 1 1 ] . J
0 0.05 0.1 015 _ 0.2 0.25 03 035
‘ spatial frequency range i (CyC/ 8x)

Fig. 3.4. Contour plot of the responses of three EMDs with delays of At = 18¢, 28¢ and 48¢. The range of detectable
velocities for the three EMDs together is the difference in the slopes of the v, line and the v,,;, line. The range of
detectable spatial frequencies, shown on the x-axis, is the same as for a single EMD.
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Fig. 3.5. Contour plot of the responses of three EMDs with input distances of Ax = 18x, 28x and 43x. The range of
detectable velocities for the three EMDs together is the difference in the slopes of the v,,,, line and the v,,;, line while the
range of detectable spatial frequencies, shown on the x-axis, is the combined ranges of the three EMDs.
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constrained to be an integer multiple of the frame rate. In an integrated smart sensor
implementation, the range for A7z would be constrained by the size of the on-chip
capacitors that would be needed to implement a low-pass filter.

To see the effect of varying Ax, Fig. 3.5 shows contour plots of the responses for three
EMDs with different values of Ax but the same A¢, The EMDs have input distances of Ax
= 18x, 26x and 46x. Each EMD is sensitive to a specific range of velocities and spatial
frequencies. An EMD with Ax = 18x is sensitive to lower velocities than an EMD of 26x.
It is also sensitive to higher spatial frequencies. If an array contains EMDs with these three
values of Ax then both the velocity range and the spatial frequency range will be
expanded. An array of EMDs with different values of Ax can be designed to cover a wide
range of velocities and spatial frequencies. Varying Ax can be easily achieved either by
varying photodetector spacing or, in the case of a standard imaging system, by grouping

and averaging p'ixels into pixel aggregates, resulting in a space-variant imaging system.

3.2 Space-Variant Motion Detection Arrays and the
EMD Map

An array of EMDs with different values of Ax can be easily achieved with a space-
variant imaging system. A diagram of a very simple 1-D space-variant motion detection
array is shown in Fig. 3.6 (a). The array is arranged such that the EMDs with the smallest
value of Ax are at the center and those with the largest value of Ax are at the periphery.
The EMDs have values of Ax that are in the same ratio of 1:2:4 as used in Fig. 3.5. Such a

progression from the center to the periphery is similar in principle to that found in the
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vision systems of many animals and is often referred to as a foveal array. Many variations
are possible and the diagram is meant only to show the idea of a space-variant motion
detection array of tuned motion detectors. The ease with which Ax can be varied in an
implementation makes many different progressions possible. The diagram also shows
that the image plane is not point sampled but that each sample extends to fill the space
between samples.

To visualize the overall velocity range of an array like that of Fig. 3.6 (a) we can
expand the diagram to show the velocity ranges of the individual EMDs as in Fig. 3.6 (b).
The x-axis represents distance along the array in units of 6x and the y-axis represents the
velocity range in the image plane in units of dx/6¢. The velocity can be either positive or
negative and so each EMD is represented by a pair of rectangles. The width of each
rectangle represents the width in the image plane occupied by the pair of photodetectors
for that EMD in units of 8x. The width of each rectangle also provides an indication of
the spatial frequency bandwidth for that EMD. The height of each rectangle represents
the velocity range over which the EMD is able to detect motion. In an active vision
system, the array itself is moving to aim at the target so that velocities and positions are
always relative to the velocity and position of the array. The y-axis is therefore labeled v,
for relative velocity and the x-axis is labeled x, for relative position. As a target passes
from left to right relative to the array we assume it has a positive relative velocity and if it
passes from right to left it has a negative relative velocity. With this EMD map we now
see that the periphery of the array covers higher relative velocities and lower spatial
frequencies than the center of the array which covers lower relative velocities and higher

spatial frequencies. This selectivity can help detect the motion of real-world targets with
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complex spatial frequency patterns. The lower spatial frequencies represent the gross
overall pattern of the target while the higher spatial frequencies represent the fine details
of the target and should only be resolved when the relative velocity between target and
sensor is low. These ideas have appeared in our previously published work [51][52].

In comparison, consider the EMD map for a uniform array. A simple 1-D uniform
array of EMDs with Ax = 28x is shown in Fig. 3.7 (a). Its EMD map is shown in Fig. 3.7
(b). All of the rectangles are of the same size and so the overall velocity range of the
array is the samé as for any individual EMD. The spatial frequency bandwidth is also the
same for all EMDs. In this case there is no selectivity in the motion detection. Whenever
a detection is made by any EMD in the array, nothing unique can be said about the speed
or spatial frequency of the target. Information of that sort must be computed based on
other data such és the location of previous detections. On the other hand, the foveal array
provides information unique to each detection without additional computation, simply by
virtue of the structure of the array.

The progression of Ax values of 1:2:4 is an example of an exponential progression.
Other progressions are possible and their usefulness depends on the application. An EMD
map can be drawn for any progression to visualize the ranges of detection. For example,
Fig. 3.8 (a) shows an example of a linear progression which provides more overlap of
velocity range for adjacent EMDs. Fig. 3.8 (b) shows that a custom array can be designed
for any special detection ranges. Fig. 3.8 (c) shows an array with a linear progression that
increases from left to right. This could be used for applications in which target motion

will always occur in only one direction.
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Fig. 3.6. A 1-D motion processing array (a) with an arrangement of EMDs symmetric
about the center with &x ratios of 1:2:4 and a plot (b) of the velocity ranges for the same
1-D array. Each rectangle and its mirror image about the x-axis represents a single EMD.
The height of each rectangle represents the velocity range over which the EMD is able to
detect motion.
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Fig. 3.7. A 1-D motion processing array (a) with a uniform arrangement of EMDs and a
plot (b) of the velocity ranges for the same 1-D array. The total velocity range of the
array is the same as the range for any individual EMD. The spatial frequency range is
also limited to the range for any individual EMD.
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Fig. 3.8. Examples of alternative EMD arrays. (a) A linear array, (b) a
custom array and (c) an array that linearly increases from left to right.
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For target tracking, a foveal array is expected to be more useful than a uniform array.
Clearly the foveal arrangement shown in Fig. 3.6 has an overall velocity range and spatial
frequency range that would exceed the ranges for an array of uniform EMDs. The
challenge with such a foveal array is to somehow make use of the increased range of
detection to coﬁtrol the movement of the array so that as the target becomes more aligned
with the center of the array, the relative velocity will be lower. The target can then be
detected with more precision by the smaller EMDs. This type of sensory-motor
coordination is difficult to achieve without a model of the complete tracking system. The
next section deécribes a model of a tracking system that incorporates a foveal array of
EMDs and that enables a method of analysis and design for the type of sensory-motor
coordination needed for target tracking. The analysis and the results are all based on 1-D
sensing arrangements. Extensions to 2-D are discussed in Chapter 6, however 1-D
sensing can ﬁn(i use in various industrial applications, for example in tracking objects on

conveyor belts and for tracking projectiles.

3.3 Summary

The goal of this thesis is to achieve a system that is able to detect targets both
precisely and over a wide range of speeds in a computationally efficient manner. The
analysis of this chapter has shown that a simple EMD can be tuned to detect different
velocity and spatial frequency ranges by varying the inter-receptor distance, Ax. This can
be achieved for an array of EMDs by varying the size and spacing of the photoreceptors
across the array. Such a space-variant array can be designed to provide sensitivity to

different velocity and spatial frequency ranges in order to improve a task such as active
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visual target tracking, A plot of the detectable ranges across an array, the EMD map, was
introduced as a visualization tool for the design of space-variant motion detection. The
EMD map can be used to visualize the detection ranges for any arrangement of EMDs.
For target tracking, a foveal array is expected to be most useful because for such an array
the periphery covers high relative velocities and low spatial frequencies while the center
covers low relaﬁve velocities and high spatial frequencies. The gross overall pattern of
the target can be initially detected by the periphery and then as the target and the array
become more aligned the fine details of the target can be detected precisely by the center
of the array. Now what is needed is a way to systematically incorporate a space-variant
motion detectioﬁ array into a tracking system. Chapter 4 describes such a tracking system

and a method by which to design it.
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Proposed Target Tracking
System and a Method of
Analysis and Design

The objective of the work of this thesis is to design an active visual target tracking
system that can track targets both precisely and over a wide range of speeds in a
computationally efficient manner. Chapter 3 described how space-variant imaging can be
used to create an array of EMDs that are tuned to detect different velocity ranges and
spatial frequencies. The detectable ranges across the array can be visualized with an EMD
map. Now what is needed is a way to incorporate a space-variant motion detection array
into a complete target tracking system. In this chapter we propose such a tracking system
and describe how it can be modeled. We also propose a method of analysis and design that

can be used to systematically design the parameters of the tracking system to meet
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performance criteria such as overshoot and settling time. This is a challenging task
because it is difficult to visualize how the motion detection array interacts with the control
system and the dynamics of actuation. The methods proposed in this chapter help to
visualize this interaction in order to facilitate the design of an effective and

computationally efficient tracking system.

4.1 Description of the System

A diagram of a basic target tracking task is shown in Fig. 4.1. The target is assumed
to be a rigid object of length, /, moving in a plane at some fixed distance, d, from a
motion detection array which can pan left/right in order to keep its optical axis aligned
with the target. For simplicity the motion detection array is assumed to be a 1-D array of

EMDs like the one shown previously in Fig. 3.6 (a). The target’s position is X(t) and its

TARGET X(t)
MOTION V(1) '

TARGET  x/t)
IMAGE v[(t)
MOTION

ARRAY  X,(t)

MOTION  y(t) k. S/,ﬁ

Fig. 4.1. Top-view diagram of a basic active visual target tracking system that is
based on a 1-D space-variant motion detection array.
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velocity is V(t) in the same coordinate frame as the array’s position x,(t) and velocity
va(t). When projected onto the array, the target’s image position is x(t) and its velocity is
v(t). It is assumed that the projection of the target onto the array is approximately
orthographic and that when the array pans left/right it is approximately the same as if it
has translated left/right. These approximations are good when d >> /. The result is that
changes in target position and camera position are related by a constant scale factor.

The target's appearance is assumed to consist of a range of spatial frequencies that fall
within the bandwidths of the different EMDs in the array. Thus, if the target moves such
that its image passes completely over an individual EMD and their relative velocity is
within the velocity range of that EMD, then the EMD's response will be sufficient to
indicate a detection of the target's motion. It is possible that the target’s image actually
spans more than one EMD so that multiple EMDs may simultaneously make a detection.
For simplicity it is assumed that the response of one of these EMDs will be dominant and
will be considered to be the only detection made.

The array of EMDs can follow any progression suitable for the application. It is
expected that for target tracking, a foveal array will be most useful because the target can
be initially detected by the periphery and then as target and array become more aligned
the fine details of the target can be detected precisely by the center of the array. The exact
dimensions used for the array depend on the needs of the application. If knowledge of the
target's appearance in terms of its spatial frequency content is known a priori then this
can be used to draw the EMD map for the application. The presence of such a sbace-
variant array in a feedback control loop leads to a nonlinear system. The nature of this

nonlinearity is what leads to efficient target tracking, as discussed in the next section.
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4.2 Modeling the Tracking System

As the target passes through the field-of-view of the array, a detection will be made
only when the velocity of the target's image, relative to the array, is within the range of at
least one of the EMDs. Initially the relative velocity may be high and detections will only
be possible at the periphery. Each detection results in a new estimate of the target’s
position and velocity relative to the array. This information can then be used to update the
control signal used to drive the motion of the array. Through the controlled movement of
the array, the relative velocity will be decreased and detections can be made closer to the
center. Each new detection that is made is a discrete event that marks a change in the
control signal. The arrangement of the EMDs in the array acts as a switching mechanism
that effectively ‘switches’ the system between different control signals depending on the
particular detections that occur. The tracking performance of such a system depends on
the interaction between the discrete events of detection and the continuous-time dynamics
of the actuator/plant. This type of system is often referred to as a switched system or a
hybrid control system [53][54]. This type of system is commonly found in a diverse
group of application areas including power systems [55], robotics [56], manufacturing
[57] and air traffic control [58].

Since detections and therefore ‘switching’ will occur at the boundaries of individual
EMDs, an EMD map as shown before in Fig. 3.6 (b) describes those switching
boundaries for a 1-D array. In order to be able to refer to particular detections and their
locations, an indexing scheme for the map is needed. Fig. 4.2 shows the same EMD map

as in Fig. 3.6 (b) but now each rectangle is indexed with a quadrant number g €

{LILIIL,IV} and an EMD number n € {1, 2,...N}. As before, the y-axis represents the
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relative velocity v, and the x-axis represents the relative position x, of the target with
respect to the array. Recall that the plot represents a 1-D array of EMDs so that quadrants
I and II represent positive relative velocities while quadrants III and IV represent
negative relative velocities for the same EMDs. When a detection is made, the relative
position and velocity of a target can be estimated resulting in a quantized measure of the
actual values. The EMD map is essentially a non-uniform quantizer that partitions x,-v,
space into a non-exhaustive set of disjoint rectangles, each associated with an estimate of
the relative position and velocity. One must be careful not to confuse the various spaces
that are being sampled in the system. First, the sensing plane is being non-uniformly
sampled, and second, the target is being detected at a non-uniform sampling frequency as

well.
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Fig. 4.2. Indexing of the EMD map’s rectangles or quantization regions in v,-x, space
showing quadrant numbers ¢ € {LILIILIV} and EMD numbers n € {1, 2,...N}.
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The complete tracking system can be modeled as a basic closed-loop system with
three components: the motion detection array, the controller and the actuator/plant. A

block diagram of such a system is shown in Fig. 4.3. The target state vector is:

o[

and the array state vector is:

Y 4.2
x, ()= va(t) 4.2)

The relative state vector is thus:
x, () =x,(t)—x,(t) (4.3)

When a detection is made at a particular (¢,7) in the EMD map, only an estimate of the

relative state vector can be made:

>

A r (q 4 n)
X,(¢q,n) = [ } (4.4)
vr (q9 l’l)
A control signal u(g,n) is then computed according to a control law. A very simple
proportional control law computes u(q,#) as the product of a gain vector K(g,#) and the

estimate of the relative state vector, both of which depend on which EMD has made a

detection:
) =Klan) o) =lelan) & a7 0] 4

The value of the gain vector K(g,n) can be set differently for each rectangle in the EMD

map. For each detection a new control signal will result from a new gain vector and a
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new estimate of the relative state vector. During the interval between detections the signal
is unchanged resulting in a piecewise constant signal that drives the actuator/plant. The
continuous-time dynamics of the actuator/plant can be described with a set of linear
systems that are parameterized according to the quadrant and EMD number from the

EMD map:

x_(t) = Ax, () + Bu(g,n) (4.6)

The state matrix A and the input matrix B depend on the dynamic characteristics of the
actuator/plant. The combination of these continuous-time dynamics with the nonlinearity
of the motion detection array makes for a difficult system to analyze. On the other hand,
this is the feature that enables the system to effectively compute improved estimates of the
target's position and velocity without the need for extra computational blocks. This is

discussed further in section 4.5.
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Fig. 4.3. Block diagram of a target tracking control loop with a space-variant motion
detection array.
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4.3 Phase-Plane Analysis and the Sensory-Motor Map

The analysis and design of such a system falls outside the scope of traditional control
system approaches. Phase-plane methods and numerical analysis have mostly been used
to study switched systems [54]. Some approaches to hybrid control systems with
quantization in fhe loop [60] might be useful in this case but the non-uniform and non-
exhaustive nature of the EMD map makes analysis difficult. A way to visualize the
interaction between the detection events and the continuous-time dynamics is needed to
acquire insight into how the various parameters of the system will affect tracking
performance. Uﬁsing a simple example, this section describes such a method based on
combining the EMD map with a phase-plane analysis of the system.

One way to visualize the tracking dynamics of the system in Fig. 4.3 is to plot the
relative state vector, x,(t), in the phase-plane. For a 1-D array we can plot relative
velocity on the 'y-axis and relative position on the x-axis. In the case of successful
tracking we expect both relative velocity and position to approach zero in a cyclic
trajectory about the origin. The exact trajectory would depend on the sequence of
detections made by the EMDs in the array. An ordinary phase-plane plot, however, does
not show the in‘;eraction between the detections made by the array and the changes in the
trajectory. What is needed is a way to combine the information in the EMD map with the
phase-plane trajectory in order to visualize the interaction so that we may design the
system parameters for better tracking performance. To see how this can be done we use a
simple examplé of the system in Fig. 4.3. Consider a 1-degree-of-freedom tracking
system that pans left/right with continuous-time dynamics described by a first-order

system:
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that has a single time-constant, t = 1/a. Such a system could serve as a simple model for a
dc motor or for eye movement control. Assume that a 1-D array of EMDs with an EMD
map as shown previously in Fig. 3.6 (b) is being used. A good way to visualize the
interaction between the detections that are made by the EMDs and the dynamics of (4.7)
would be to transform the coordinates of (4.7), which are radians and radians/sec., into
the coordinates and units of the EMD map, which are dx and &x/3¢. By making this
simple transformation it becomes possible to overlay a phase-plane plot of the relative
state vector, x,(t) onto the EMD map. Fig. 4.4 shows a Simulink block diagram that was
used to compute and plot x,(t). The light grey triangles represent the transformation from
rad./sec. to 6x/8¢ and the dark grey triangles represent the transformation from 8x/5¢ to
rad./sec. The plot of the resulting trajectory in the phase-plane x,-v, can then be

superimposed onto the EMD map.
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Fig.4.4. Block diagram for simulation of the tracking system with a tool like
Matlab/Simulink. Light grey triangles represent transformation from rad./sec. to
dx/8t. Dark grey triangles represent transformation from 8x/8¢ to rad./sec. Relative
position and velocity (x,, v,) can be plotted on top of the system’s EMD map.

For this particular example, Fig. 4.5 (a) shows a plot of the phase-plane trajectory of
x((t). Fig. 4.5 (l‘.;) shows the same trajectory superimposed onto a plot of the EMD map.
The combination produces a 'sensory-motor map' that reveals the interaction between the
motion detection capabilities of the array and the tracking dynamics of the system. We
assume that the motion detection array is initially stationary and the target is entering its
field-of-view fr;)m the left at an image plane speed of 3 &x/8t. The y-axis of the sensory-
motor map corresponds with zero position error, the x, = 0 line, and the x-axis
corresponds with zero velocity error, the v, = 0 line. The origin represents zero tracking
error. The diagram shows ideal results obtained after manually tuning the value of the
gain vector. A (ietection is assumed to be made if the trajectory enters a rectangle on one

side and leaves from the other side.
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Referring t(; Fig. 4.5 (b), when the first detection at (II,3) is made, one possibility is to
compute a control signal and use it to move the array to the left to reduce the position
error. This would, however, raise the velocity error beyond anything that could be
detected. Instead the correct reaction is for the array to move to the right to reduce the
velocity error. ’fhe result of this motion is shown in the plot as the trajectory gradually
slopes downwards towards zero velocity error. The trajectory eventually crosses the y-
axis overshooting the x, = 0 line. The next detection is made at (1,2), indicating that the
target is moving toward the right edge of the field-of-view and so the array should
continue to move to the right to decrease both position and velocity error. The trajectory
eventually crosses the x-axis overshooting the v, = 0 line. This means that the array is
now moving strongly to the right to ‘catch’ the target and the relative velocity now
becomes negative.

When a detection is made at (IV,2) it means that the velocity error is now negative
and the array should slow its rightward motion gradually so as to reduce velocity error.
This is shown as the trajectory is pushed closer into the origin as it crosses the negative y-
axis. This process continues until the trajectory enters a periodic cycle in which it orbits

the origin at a distance that is limited by the size of the smallest EMDs. The time
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Fig. 4.5. (a) The phase-plane trajectory of x,(t) and (b) the sensory-motor map
showing the trajectory x,(t) superimposed onto EMD map. (c) The relative position as
a function of time and (d) the relative velocity and control signal as functions of time.

66



response is plotted in Fig. 4.5 (c). It shows the correspondence between the shape of the
trajectory and such time-domain metrics as overshoot, settling time and steady-state
error. The settling time is the time needed for the trajectory to reach a periodic cycle and
the steady-state error is given by the width of the cycle in the phase-plane.

By experimenting with the model it was found that achieving the type of trajectory
shown in Fig. 4.5 (b) was only possible for an actuator/plant with a relatively large time
constant. If the time constant T = 1/a was too small then no amount of tuning of the gain
vectors K(g,n) would lead to this trajectory. The trajectory would not cross the x and y-
axes in a way that is needed for periodic orbiting. With a larger time constant and
sufficiently large gain the array would be able to overshoot the target in a smooth and
gradual way that is controllable with the gain. This is because the velocity of the plant
should continue to increase/decrease between any two detections in the lower/upper half
of the map. Its response to the control signal should be like that of an integrator. This
means that the time constant should be several times larger than the time between any
two detections. If L is the total length of the array in pixels and v, is the smallest

relative velocity of interest, in units of 8x/3¢, then as a guideline:

T >>

- At
. (4.8)

rmin

For the array and trajectory of Fig. 4.5 (b), L = 1448x, At = 0.01 sec. and if we set Vi, =
0.5 8x/8¢ then we need t >> 2.9 sec. The actual value used for the plot was a = 0.01 or Tt =
100 sec. Fig. 4.6 shows a plot of v, and u over time for t = 0.1 sec. The velocity of the

array matches that of the target instead of continuing to decrease as shown by the dashed

line. The result is that v, goes to zero asymptotically while x, increases without bound. A
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physical actuator/plant will have its own dynamics that may be very different from what is
needed for good tracking performance. In that case, compensation can be used to reduce
the effects of those dynamics and introduce a sufficiently large time constant into the

system.

Vr

A
' € desired v,
\

0 0.2 04 06 038 1 12 14

t (sec.)

Fig.4.6. Plot of v, and u over time for T = 0.1 sec. showing how the velocity of the
array now matches that of the target instead of continuing to increase, as shown by the
dashed line.

68



The sensory-motor map makes it possible to explore the influence of the system
parameters on the tracking performance by showing both the EMD map and the relative
state trajectory together. From Fig. 4.5 (b) it can be observed that the array must be
controlled to move in such a way that the trajectory will spiral inward gradually and enter
into a cycle close to the smallest EMDs. As long as the relative velocity is positive the
array should mc;ve to the right. When the relative velocity becomes negative then
detections in quadrants III and IV should cause the array to slow its rightward motion. The
control signal, u(g,n), should be positive for detections in quadrants I and II and negative
for detections in quadrants III and IV as shown in Fig. 4.5 (d). The control signal is shown
in grey and the £elative velocity is shown in black. The vertical dashed line shows the
correspondence between v,(t) = 0 and the peaks of x,(t). The shape of the plot in (d)
resembles the same type of plot for a simple nonlinear oscillator in which a relay with
hysteresis and a linear system are connected in a feedback loop [59]. The relay is an odd
function and then:refore guarantees zero-mean cyclic signals. For our tracking system,
u(g,n) should also be an odd function symmetric about the x-axis. This is shown
graphically in Fig. 4.7 (a). The values of K(g,7n) must be set appropriately to achieve such

a u(q,n).
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(a)

(®)

Fig. 4.7. (a) A simplified EMD map showing that u(g,n) should be an odd function
about the x, axis, resembling the action of a relay in a simple nonlinear oscillator.
Only the rectangles for the smallest EMDs are shown to highlight the shape of the
control signal. (b) Quadrants I and III are adjusted for less overshoot.

Looking back at Fig. 4.5 (b) it can be seen that a detection at (I,2) causes the
trajectory to flatten out somewhat and thereby increase the overshoot. To reduce the
overshoot it appears that all that is needed is to increase the value of the control signal,
and therefore K(g,n), for quadrants I and III as shown in Fig. 4.7 (b). Increasing K(g,7) in
any case must be done incrementally because if the slope of the trajectory becomes too

sharp then it will not pass left/right through a rectangle which means that the target’s
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motion is not detected. Without detections the trajectory will move outward away from
the origin. and the target will be lost. What is needed is a trajectory that spirals inward

gradually but not so gradually that the settling time and overshoot are prohibitively large.

4.4 A Design Example Using the Sensory-Motor Map

Designing the tracking system requires a systematic way or algorithm to determine
the values K(g,7) that will minimize settling time, steady-state error and overshoot for
any combination of motion detection array and actuator/plant. Insights provided by the
sensory-motor map make this possible. Experiments with the simulation have shown us
that large values of K(g,n) result in trajectories that slope sharply toward the origin,
reducing the settling time. Examples are shown in Fig. 4.8. But if the slope is too sharp
then detections will be missed and the target will be lost. The lower the relative velocity,
the sharper the slope will be for a given K(g,#). Thus, if we consider a target entering the
field-of-view of the array on the left or right, we should use the minimum relative
velocity detectable by the outermost EMD, call it vyin(q,N), when maximizing K(g,#). A
simple algorithm would initialize K(g,#) to zero for all (¢,n) and iteratively increment all
of the values by some step size. A good step size can be quickly found manually by
trying a few values to see the effect on the shape of the trajectory.

A simple two-stage algorithm is used in which the first stage attempts to minimize
settling time and steady-state error while the second stage attempts to minimize
overshoot. For the first stage, K(g,n) is iteratively incremented causing the trajectory to
slope more sharply toward the origin. Eventually the slope of the trajectory will be too

sharp to be detected and the trajectory will move out of range. The values of K(g,n) for
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Fig. 4.8. The effect of different values of K(g,#) on the trajectory. In (a) the
values of K(g,n) for q = II are incremented causing the trajectory to slope more
downward. In (b) the values of K(g,n) for q = I are incremented causing the
trajectory to slope more downward until it cannot be detected.



the previous iteration are those that will minimize the settling time and the steady-state
error associated with that settling time. This simple procedure is shown as Stage 1 of the
algorithm in Table L.

For higher relative velocities the trajectory will begin to have a larger value of
overshoot. To reduce this overshoot, a second stage of optimization can be used. In this
stage the values of K(g,n) for quadrants I and III only are iteratively incremented to
increase the rate at which the trajectory will slope downward to cross the x-axis. The
iterations continue until the trajectory suddenly diverges, indicating that a detection was

missed. This is Stage 2 of the algorithm in Table L.

TABLEI
ALGORITHM TO SET K(gq,7)

Stage 1: Minimize settling time (¢;) and steady-state error |x(¢>1;)|

o g=LILILIV
initialize: K(g,n) =0 for {,=12.n

do
- increment K(g,n) < K(g,n) + step* for 3211112111]{,\/

- solve system for v{f) = Vmin(q,N)
while [x(t>1;)| < [xAt>t;)|prev

Stage 2: Minimize overshoot

do
- increment K(g,n) < K(g,n) + step* for 4[ N
- solve system for v{?) = Vmax(q, V)

while |x(t>1)| < X At>15)|prev

* step size graphically determined
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The algorithm is demonstrated with an example array of EMDs with values of Ax in a
progression of 1:2:3:4:5:6:7:8, resulting in the most overlap of velocity range for a system
based on a standard camera. The plots in Fig. 4.9 (a)-(c) show the resulting sensory-motor
diagrams after the first stage of the algorithm for target velocities of 4 dx/5¢, 68x/8¢ and 8
dx/0t. As the target velocity is increased from (a) to (c) the trajectory approaches the origin
less sharply and with more overshoot. The plots in Fig. 4.9 (d)-(f) show how the
trajectories look after the second stage of adjustment for the same relative velocities as
used in (a)-(c). The overshoot has been improved but the settling time has gotten worse. It
is possible to continue in this way to tune the gain vectors individually to achieve the

performance that a particular application calls for.

The sensory-motor diagram is a visualization tool that helps in exploring the behavior
of tracking syst;ems that are based on space-variant motion detection arrays. It would be
difficult to design such a tracking system without being able to make the observations that
were made with the help of the diagram. The approach easily extends to larger arrays with
an endless variety of arrangements of EMDs. More sophisticated algorithms to find

optimal values of K(g,n) are possible and can easily be explored within this framework.
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Fig. 4.9. Sensory-motor maps produced using the algorithm in Table I to set K(g,#»).
The first stage of the algorithm was used for (a)-(c) and the second stage was used for

(d)-(f). The initial relative velocities are 4 8x/8¢, 63x/6¢t and 8 dx/8¢. The trajectories of
(€) and (f) show much less overshoot but longer settling times than the corresponding

trajectories in (b) and (c). For all plots x, is in units of &x and v, is in units of 6x/3¢.

75



4.5 Discussion

The model for the active visual target tracking system, as presented in sections 4.1
and 4.2, consisted of a set of linear systems to determine the position and velocity of the

sensor array, X,(t):
x,(t) = Ax,(¢) + Bu(q,n) (4.9)
in which:

u(g,n)=Klg,n) -%,(q,n). (4.10)

K(g.,n), is a gain vector assigned to each rectangle (¢,n) in the EMD map and X, (¢) is the
estimate of the relative state of the target to the array. This estimate is produced by the
motion detection array each time a detection is made. The values of K(g,n) can be
computed, as shown in section 4.3, such that each detection of a constant velocity target
will lead to a relative state trajectory, X,(t), that converges to the origin. With this
convergence the accuracy of each estimate should be increasing because the range of
possible velocities and positions are getting smaller, as shown in Fig. 4.10 (a). If the
ranges of the possible velocities for » = 1,..,N in any quadrant of an EMD map are
denoted with 1,...,0n, then:

0,<0,2..20) (4.11)
This means that the estimates are always improving. Fig. 4.10 (b) shows the response of
each EMD and how the 'spread’ or accuracy of the estimates will improve as detections
are made closer to the center of the array. This is an important result of the space-variant

array. In systems that use uniform sensing there must be some other way to improve the

quality of the estimate. Often, recursive computations are used to improve the estimate,
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most notably algorithms such as the Kalman filter [61]. These recursive algorithms are
usually computationally expensive. A space-variant motion detection array, on the other

hand, will produce improved estimates without any extra computation.
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Fig. 4.10. (a) One quadrant of an EMD map showing the ranges of velocities for
which each EMD is sensitive. (b) A plot of the response of each of the EMDs in (a)
showing how the 'spread’ of each estimate is narrower for detections closer to the
center.

An active visual target tracking system is a closed-loop system with a sensor and an
actuator. Typically, for such a closed-loop control system, the issue of stability is
important. Stab;lity can be defined in several different ways depending on the type of
system being considered and the way it is modeled. For linear time-invariant (LTT)

systems, the most common definition is bounded-input, bounded-output (BIBO) stability
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and the criterioﬁ is that the impulse response is absolutely integrable or that the transfer
function has all of its poles in the open left-half plane.

The tracking system described in this thesis is not an LTI system. It has been
described as a hybrid system. Such a system is characterized by the interaction between
its continuous-t;me dynamics and the discrete events, in this case produced by the
detections of target motion. Many hybrid systems, including the tracking system in this
thesis, exhibit periodic behavior. The system is designed with the goal of trapping the
evolving system state within a constrained region of state space defined by the smallest
EMDs closest té) the origin. This periodic behavior is usually called a limit cycle. A limit
cycle can be stable (attracting), unstable (repelling) or non-stable (saddie). The stability
of a limit cycle can be explored in a number of different ways. One interesting way
involves determining the characteristic or Floquet multipliers [61]. These multipliers are
a generalizatioﬁ of the eigenvalues at an equilibrium point. A limit cycle, or periodic
solution, corresponds to a fixed point on a Poincare map. The stability of the periodic
solution is the same as the stability of the fixed point. The multipliers are the eigenvalues
of the Poincare map linearized about the fixed point. While interesting, this approach and
others are not aioplicable to the system in this thesis because of some particular features
of the way motion is detected. The EMD map captures this, showing that the motion
detection is essentially described as a non-uniform quantizer that partitions x,-v, space
into a non-exhaustive set of disjoint rectangles, each associated with an estimate of the
relative positim; and velocity. As such, it provides an incomplete measurement of the
system state. Fig. 4.11 shows how this can affect the tracking. Two trajectories are

shown. The lower trajectory shows the system converging to a cycle very close to the
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Fig. 4.11. Sensory-motor map showing how a target can be lost because of the non-
exhaustive nature of the EMD map.

origin. The upper trajectory shows how a slight change in initial velocity of the target and
the system parameters results in the system being unable to detect the target’s motion and
the trajectory diverges. The system is not observable and therefore is not stabilizable
since it is possible for the system to evolve in ways that are not detectable by the sensor.
The system would need more EMDs distributed in such a way as to better cover the x,-v,
space.

Although a formal statement regarding the stability of the tracking system cannot be
made, the system can be designed to tend toward a stable limit cycle as described in
section 4.3. Through the use of the sensory-motor map it is possible to set the system

parameters so that the trajectory cycles inward to the origin. Of course, if a detection is
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not made when needed, then the target will likely be lost. This can only be helped with a

denser and more redundant array of EMDs.

4.6 Summary

This chapter has presented a complete target tracking system based on a space-variant
motion detection array. The system is based on a foveal arrangement of EMDs making it
possible to detect a target moving at high speed and to gradually reduce the tracking error
while increasing the precision of the tracking. It does not require any special
computational resources beyond the basic mechanism of motion detection. We have
proposed a model for such a tracking system and we have shown how the model can be
used as the basis for a method of analysis and design to systematically design the
parameters of the system to meet performance goals. A visualization tool, called the
sensory-motor map, makes it possible to design the tracking system by showing both the
EMD map and the relative state trajectory together. Overall, the proposed method of
design of a spaée—variant tracking system involves two major steps:

i) First, the EMD map, as described in chapter 3, must be defined to determine the

distribution and tuning of the EMDs across the array. This is based on the needs of

the application such as the range of velocities that must be detected and the size of the
minimum sf)atial feature that must be resolved and tracked.

ii) Second, a sensory-motor diagram of the tracking system is used to plot the

behavior of the tracking system for a range of target velocities. This can be done with

any suitable numerical package such as MATLAB/Simulink. An optimization
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algorithm can then be used in conjunction with the plots to determine the control gain
for each EMD.
The result is an effective and computationally efficient tracking system that combines
both range and precision in a single array. Designing such a system without the aid of
these visualization tools would be extremely difficult. The approach is general and can be

applied to different motion detection arrays for a variety of applications.
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Experiments

A complete target tracking system based on a space-variant motion detection array
has been proposed. The system is based on a foveal arrangement of EMDs making it
possible to detect a target over a wide range of velocities and with high precision. A
method of design and analysis for such a system has also been proposed. The purpose of
this chapter is to demonstrate how these ideas can be used to implement an experimental
active vision system. The implementation is used to explore the effectiveness of the
proposed architecture in an experimental setting. A set of target tracking experiments are
conducted with the goal of verifying the usefulness of the architecture by comparing the

results with the predictions of the system model.
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5.1 Experimental Setup for Target Tracking

Fig. 5.1 (a) shows a schematic diagram of the active tracking system and the
experimental setup that was used to perform the target tracking experiments. Fig, 5.1 (b)
shows a photograph of the setup. For all of the experiments the target is a rectangular
paper card with a spatial frequency pattern printed on it. The card is attached to a 2m long
horizontal conveyor belt that is driven by a DC motor. A signal generator and amplifier
are used to control the speed of the left-to-right movement of the target. Images of the
moving target are captured by a standard video camera. The camera is mounted on a pan-
head at a distance of 4 = 0.8m from the target plane. The video output of the camera is
connected to a (}esktop PC via a USB interface. A program written in C and the OpenCV
library [62] processes the video. Fig. 5.2 shows the graphical interface of the program
while a target is passing from left to right in front of the camera. The plot at the bottom of
the picture shows the response of the EMDs to the target’s motion. The video is
processed in two stages. First, each frame’s resolution is modified to create a foveal
image according to a pre-specified EMD plot. This is done by combining pixels into
groups and computing their average value. Second, the output of each EMD operation is
computed using the previous frame for the delayed inputs. This means that the Az is fixed
by the system’s achievable frame rate, which in this case was about 15 frames per
second. A separate thread in the program computes the control signal u(g,n) at each frame
interval and outputs a pulse-width modulated (PWM) signal to the RS232 serial port.
That signal is then amplified in order to drive a DC motor on the pan-head to pan the

camera horizontally.
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Fig. 5.1. Schematic diagram (a) of experimental setup along with a photograph (b) of
the setup.



Fig. 5.2. Interface of tracking software showing the image captured by the camera
(top) and the response of the EMDs across the array (bottom).

The video camera used in the experiments has a focal length of /= 5Smm. Its imaging
area is 4.69mmx3.54mm and it captures images at a resolution of 640x480. This means
that each pixel has a width of approximately 7.3pm which is the 8x for this system. For
each experiment the same EMD plot was used. Fig. 5.3 shows a sensory-motor diagram
for the experiment with a target initially moving to the right at 20 8x/8¢. The algorithm of
Table I was used to compute the values of K(g, n).

Assuming perspective projection, distances in the image plane are related to distances

in the target plane by:

d
xt7=X, (5.1)
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Speeds in the image plane are related to speeds in the target plane by:

124 00175 m/s 52)
y |

ot

in which &x = 7.3x10° m and &¢ - 1/15 sec. Of course the depth, d, actually changes with
time because the camera is panning but the target is translating. This alters the target’s
image size and speed slightly but the approximation of a constant d was found to be
acceptable when the camera only pans through an angle of less than 90°. Equation (5.2)
can be used to calculate the speed of the target’s motion needed for the experiments. For
example, 20 dx/d¢ in the image plane is 35cm/s in the target plane, which can be achieved

by adjusting the signal generator that drives the target’s conveyor belt.
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Fig. 5.3. Sensory-motor map for the experimental system.
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5.2 Experiments and Results

Each experimental run consisted of initially positioning the target at the left extreme
of the conveyor belt and pointing the camera such that the target was just outside the left
edge of its field-of-view. The target was then driven to the right at one of three pre-
selected speeds. Fig. 5.4 shows the tracking results for speeds of (a) 20 8x/8¢, (b) 25 &x/5¢
and (c) 30 dx/8¢. Each plot shows the estimate of the relative position, x,, as a function of
time. The values were measured by the program for each frame processed.

For each run the relative position converged to the expected oscillation about the zero
error axis. As expected, the settling time, #;, increased with target speed as shown in the
plots. The general form and tendency of each plot agrees well with the predictions of the
model. The experiments confirm that it is possible to design a single array that can track
targets over a wide range of velocities and with precision.

There were, however, some deviations from the expected results. The overshoot was
expected to increase with target speed but the results in Fig. 5.4 (a) and (b) show, with
dashed circles, times at which the tracking system reacted too quickly and then produced
overshoots wheh compensating for the overreaction. This occurs twice in (a) likely due to
the slow speed of the target at 20 5x/5¢, but only once for (b) when the target was moving
at 25 6x/¢t. Because of the way the system was implemented it was difficult to control the
time constant of the tracking dynamics. The use of a software generated PWM signal and
the PC’s serial ;h>ort undoubtedly led to unpredictable delays in the feedback loop and
made it difficult to control the system’s performance precisely. Nonetheless, the
experiments showed that even a crude implementation of the proposed approach enables

target tracking over a wide range of speeds while still being able to achieve precise
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tracking. It should be emphasized that no special calibration of the camera or of the
experimental setup was required. The camera and platform could be oriented in a very

approximate way without significantly affecting the results.

5.3 Summary

A complete active vision system has been implemented based on the architecture
proposed in this thesis. The system has been designed using the proposed methods
including an EMD map, a sensory-motor diagram and a simple optimization algorithm. A
set of simple target tracking experiments have confirmed the effectiveness of the
architecture and the design method. The results show that even a crude implementation of
such a system will enable target tracking over a wide range of speeds while still being

able to achieve precise tracking.
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Conclusion and
Future Work

6.1 Conclusion

An active visual target tracking system is a type of automatic feedback control system
that can track a moving target by controlling the movement of a camera or sensor array.
This kind of system finds use in application areas that include automatic surveillance,
human-computer interaction and mobile robotics. The design of an effective target
tracking system is challenging because the system should be able to precisely detect the
fine movements of a target while still being able to detect a large range of target
velocities. Achieving this in a computationally efficient manner is difficult. Conventional

system architectures usually consist of a standard video camera connected to a digital
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computer. That approach generally requires high-speed computational resources to
process the image signal in real time. The algorithms needed to extract the target's
motion information and to produce a control signal are usually very complex.

The design and implementation of an effective visual tracking system involves
techniques from fields such as computer vision and control systems. At the core of visual
tracking is the process of extracting information about the target's motion from the image
signal. In this thesis we have reviewed three general categories of motion detection
techniques: 1) techniques based on matcﬁing, i1) gradient-based techniques and iii) spatio-
temporal frequency-based techniques. Spatio-temporal frequency-based techniques
compute the spatio-temporal frequency content of local image regions. They use filters
which are selectively activated by a range of spatio-temporal frequency patterns produced
by the motion of a target. A simple and commonly used example is the Reichardt EMD.
Because of its simplicity and efficiency, the work of this thesis is based on the Reichardt
EMD, however the results are applicable to any tunable spatio-temporal frequency-based
technique.

The spatio-temporal frequency-based techniques are very useful for target tracking
but an individual detector of this type is limited to a particular range of spatial and
temporal frequency and therefore to a particular range of target velocity. Researchers
have attempted to work around this by modifying the basic detector at the computational
level or by incorporating the basic detector into an architecture that supports a wider
range of motion detection. While fhese ideas have led to improvements, they have not

achieved visual tracking in a computationally efficient manner.
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This thesis has presented an architecture for an active visual target tracking system
based on the idea of space-variant motion detection. Here the word architecture has been
used to describe the space-variant 'sensing scheme' that is used. In general, space-variant
imaging involves the use of a non-uniform distribution of sensing elements across a
sensor array, similar to how the photoreceptors in the human eye are not evenly
distributed. In the architecture proposed in this thesis, space-variant imaging is used to
design an array of elementary motion detectors (EMDs) that are tuned in such a way as to
make it possible to detect motion both precisely and over a wide range of velocities in a
computationally efficient manner.

Each EMD is a bandpass spatio-temporal filter. It can be tuned to detect different
spatial frequency ranges and different velocity ranges by varying the inter-receptor
distance, Ax. This can be achieved by varying the size and spacing of the photoreceptors
across the array. Such a space-variant array can be designed to provide sensitivity to
different velocity and spatial frequency ranges. The increased ranges are achieved
without additional computational costs beyond the basic mechanism of motion detection.
The technique is general in that it can be used with different motion detection
mechanisms and the overall space-variant structure can be varied to suit a particular
application.

The basic idea of the architecture is that a foveal array is expected to be ideal for
target tracking because the low-resolution periphery covers high relative velocities and
low spatial frequencies while the high-resolution center covers low relative velocities and

high spatial frequencies. The gross overall pattern of the target can be initially detected
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by the periphery and then as the target and the array become more aligned the fine details
of the target can be detected precisely by the center of the array.

A visualization tool called the EMD map was proposed as a way to show how the
velocity and spatial frequency ranges of the EMDs vary across the array. The EMD map
can be used to visualize the detection ranges for any arrangement of EMDs whether they
are foveal or some other custom arrangement. It facilitates the design of these arrays by
helping the designer to see the how the spatial frequency and velocity ranges of detection
are distributed across the array in the v,-x, plane.

A complete target tracking system based on a space-variant motion detection array
has been proposed. Based on a foveal arrangement of EMDs, it combines both range and
precision while not requiring any special computational resources beyond the basic
mechanism of motion detection. Estimates of the relative position and velocity error
improve as the system converges on the target. This improvement arises automatically
from the foveal arrangement of the array without the need for complex state estimation
algorithms.

Because of the unconventional nature of the tracking system, we have proposed a
model for the system. We have shown how the model can be used as the basis for a
method of analysis and design to systematically design the parameters of the system to
meet performance goals such as overshoot, settling time and steady-state error. A
visualization tool, called the sensory-motor map, makes it possible to design the tracking
system by showing both the EMD map and the relative state trajectory together.

The proposed method of design of a space-variant tracking system involves two

major steps. First, the EMD map must be defined to determine the distribution and tuning
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of the EMDs across the array. This is based on the needs of the application such as the
range of velocities that must be detected and the size of the minimum spatial feature that
must be resolved and tracked. Second, a sensory-motor diagram of the tracking system is
used to plot the behavior of the tracking system for a range of target velocities. This can
be done with any suitable numerical package such as MATLAB/Simulink. An
optimization algorithm can then be used in conjunction with the plots to determine the
control gain for each EMD. The result is an effective and computationally efficient
tracking system that combines both range and precision in a single array. Different
implementations for such a system are possible, including a VLSI smart sensor, because
of the system's modest computational needs.

Several simulations have shown how the method can be used to control tracking
performance and to meet tracking specifications. Experiments with a real active vision
system have shown that the basic idea and the design method can easily improve tracking
performance.

Overall the approach represents an effort toward a more general treatment of sensory-
motor systems. It may be possible to use the proposed sensory-motor map in other
sensory-motor contexts such as in haptic devices and auditory systems. Being able to
visualize both sensing and motor actions on the same plot makes it possible to design
effective systems that require fewer computational resources. When the sensing is well
matched with the motor activities, and both are well-matched with the task, then the
entire system can operate more efficiently. In addition, this approach may help
researchers to model real biological systems and gain insight into biological mechanisms

of sensory-motor control.
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6.2 Future Work

It has been shown that a space-variant motion detection architecture can be used to
design an activé visual target tracking system that exhibits both range and precision. In
particular this thesis has focused on a foveal arrangement for a 1-D array. Future work
will involve an exploration of other space-variant arrangements and how they can be used
in different applications. The spacing of the photoreceptors can be done in many different
ways and it is péssible that other visual tasks, such as obstacle avoidance, may benefit
from specific arrangements that have not been explored here.

Another area for future work involves the extension of this architecture to 2-D arrays.
A simple way to extend a 1-D array to a 2-D array is to arrange a set of 1-D arrays
radially as shov&;n in Fig. 6.1 (a). Each circle represents a photoreceptor. The

photoreceptors along each dashed straight line form a 1-D array and the EMDs can be

(a) ®)

Fig. 6.1. 2-D arrays of photoreceptors. In (a) the photoreceptors are individually
sized. In (b) the array is based on a standard uniform resolution camera.
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arranged between adjacent photoreceptors as in the thesis. They can also be arranged
between adjacent photoreceptors on the same dashed circle. These can be used to detect
rotational motion. The same type of arrangement can be achieved using a standard
camera with a uniform resolution, as shown in Fig. 6.1 (b). Each enclosed area represents
a group of pixels that are averaged to create a foveal array. This approach can easily be
implemented with field programmable gate array (FPGA) hardware to accelerate the
averaging. Other 2-D schemes are possible, for example motion can be measured in the x
and y directions with a rectangular array of EMDs. Often x,y motion information is
sufficient.

Another area of future work involves an exploration of how the architecture can best
deal with real-world targets that have complex appearances and complex motion patterns.
It may be possible to design a space-variant array that will be more suitable to certain
real-world situations depending on the spatial frequency content and motion

characteristics of the targets and the surroundings.
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Appendix A

Here we present the complete derivation, as found in [30], of the basic Reichardt EMD’s
response to a sinusoidal grating with amplitude C, spatial frequency f,, temporal
frequency f;, and a constant DC component K:

I(x,t) =Ccos(Qrm- ft =27 fx)+ K (A.1)

A block diagram of the basic Reichardt EMD is shown again in Fig. A.1.

= 1/

! C\\W// ERN

photoreceptors -

low-pass filters

mutitipliers

E!ifferencing -

* R

Fig. A.1. Block diagram of a simplified Reichardt EMD.

If the photoreceptors are separated by a distance, d, then the outputs of the photoreceptors
are:

p(x,t)=Ccos2z- fit)+ K (A.2)
p,(x,0)=CcosQCr- fit =27 d)+ K (A.3)
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If the delay is achieved with a first-order lowpass filter:
D(f,) = A(f,)e ®" (A4)
then the delayed signals are:

(6,0 =C- A(f,)cos@r - £t —O(f)) + K - A0) (A.5)
Poa(,t)=C-A(f)cos@r- fit =27 f.d—O(f)+K-A0)  (A.6)

The output of the multipliers is:

m(t)= pp (1) p, () (A7)

my(8) = pp, () p, () (A.8)
and:

R(®) = pp () D, ()= ppy () P, (D) (A9)

The first term is:

po(®) P, (1) =[C- A(f,)cosQaf;t —O( )+ K - AO)]- [C - cosf;t — 24f ) + K]
=C?. A(f,)cos2Af,t —O(f,))cosaf,t —27f d) +
C-K-A(f,)cos(2rf,t —O(f,))+
C-K-A0)cosrf,t -2 d)+

K? - A(0)
(A.10)
Using the identity:
cos(a)cos(f) = %[cos(a + ) +cos(a — ,B)] (A.11)
equation (7) becomes:
P (6)- P, (0)= C* - A(f)cos(dxft — O(f,) - 24, d) + cos2rf,d — B(f, )]+
C-K-A(f,)cos(2nf t—O(f,)) + (A12)

C-K-A(O)cosQnf,t —27f d)+
K?*-A(0)
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and similarly for the second term of equation (9) we have:

P (&) =[C - A(f,) cosQaft —27f,d —O(f,)) + K - A0)]-[C - cos2f1) + K]

=C?- A(f,)cosRaft - 2f.d — O(f,))cosnf t) +
C-K-A(f,))cosQaft -2 d -O(f,))+
C-K-A(O)cosnft)+
K?. A(0)

=C - A(f,)cos(4nf;t = O(f,) - 27f,d) + cos(~2af,d - O(,)) ]+
C-K-A(f,)cosQaf,t —2nf d —O(f,))+
C-K-A(O)cos2nf )+

K- 4(0)
(A.13)

Combining the two terms yields:
R(#)=pp(®): p, ()= ppy () P, (¥)

=%—-A(ﬁ)[cos(ny’xd—@(f,))—cos(—27y”xd—®(f,))]+

C-K - A/, oos@af;t—O(f,))—cosQft —2f,d —O( )]+
C-K - A0)[cosQrf t —27f,d) —cosQrf t)]
(A.14)
Using the identity:
cos(a + ) = cos(a) - cos(f) —sin(a)sin(f) (A.15)

gives us:
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()= gi A ){cos(Z;_zfxd) cos0(£.))—sinRxf.d)sin(-O(f,))— }r
2 » cos(27f.d)cos(-O(f,))+sin(27f d)sin(-O(f,))
C-K - A(f)[cos@rt—O(f,))~cosQaf,t —2af.d —O(f,))|+
C-K - A(0)[cosQrf;t—27f.d) —cosQft)]
=C?- A(f)sinQf.d)sin@(f,))+
C-K-A(f)[cos@f,t —O(f,)) - cosQaf;t - 2f,d -O(f;)) |+

C-K - A(0)[cosRrf;t —2xf.d)—cosQrft)]
: (A.16)

Now, using the identity:
cos(a) —cos(f) = —2sin(* ;ﬂ )sin& ;ﬂ ) (A.17)

gives us:

R(t)=C?- A(f,)sin@(f,))sinQf.d) +
C-K - A(f)|-2sinQaf;t— nf,d —O(f,))sin(xf,d) | +
C-K - AO)[-2sinQRft — f.d)sin(rf.d)]
=C?. A(f))sin@(f)))sinQf.d) +
2-C-K-sin(f,d)[~ A(f,)sinQaf;t— #f,d —O(f,)) + A0)sinQ t — . d)]

(A.18)
If the frequency response of the filter is:
DUf) = A(f))e ™) = e een (a19)
: J1+Qr- £7)° ’
then:
2ha (A.20)

sinlO(/)]= N+ fo)t

which gives us:
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_C¢
RO =5 £ +1/Q7r)?

sin(27f.d) +

(A.21)

107



Appendix B

Here we present the entire C++ program used in the implementation of the active vision
system described in Chapter 5.

#include "cv.h" .
#include "highgui.h"
#include <iostream>
#include <fstream>
#include <ctype.h>
/f#include "Imagelterator.h”
#include "modetect.h”"
#include <time.h>

#include <windows.h>
using namespace std;

int GetKeyCode(char c);

bool program_done = false;

float u=0.0;

float sigma_u = 0.0;

int idle_count = (;

bool left_fov = true;
bool left_motion = false;

1
// serial port thread
1

HANDLE hSerial;

DWORD WINAPI
SerialPortThread(LPVOID lpParameter)
{

OVERLAPPED osWrite = {0};
DWORD dwWritten;
DWORD dwToWrite = 8;
while (program_done)
{
// integrate the command, u
//sigma_u = sigma_u + u;

/1 quantize the result

//int tcode = sigma_u*27;
int tcode = u*27;

code = left_motion ? 27 - tcode : 27 + tcode;

//cout << code << endl;
/1if (code > 48)
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/! code = 48;

lelse
/if (code < 10)
I code = 10;
//if (sigma_u == 0.0)
if (u==0.0)

code =27,

// output to serial port

if (!WriteFile(hSerial, &motor_cmd2[code], dwToWrite, &dwWritten, &osWrite))
cout << "serial write failed" << endl;

return 0;

//
// Motion Detection thread
//
DWORD WINAPI

MotionDetectionThread(LPVOID IpParameter)

{

//---- output file

ofstream mfile("C:\\Program Files\MATLAB71\\work\\mfile.txt");
ofstream nfile("C:\\Program Files\MATLAB71\\work\\nfile.txt");

/[---- timer

LARGE_INTEGER ticksPerSecond, start_ticks, end_ticks, cputime;

// counter's accuracy

if (!QueryPerformanceFrequency(&ticksPerSecond))
printf("QueryPerformance not present");

printf ("freq test:  %I64Ld ticks/sec \n\n",ticksPerSecond ),

//---- OpenCV initialization

Ipllmage *image = 0, *grey = 0, *prev_grey = 0;
CvCapture* capture = 0;

capture = cvCaptureFromCAM( 0 );

cvNamedWindow( "Sensor", CV_WINDOW_AUTOSIZE ),
cvNamedWindow( "EMD Responses", CV_WINDOW_AUTOSIZE );

Iplimage* frame = 0;

frame = cvQueryFrame( capture );

image = cvCreatelmage( cvGetSize(frame), 8, 3 );
image->origin = frame->origin,

grey = cvCreatelmage( cvGetSize(frame), 8, 1 );
prev_grey = cvCreatelmage( cvGetSize(frame), §, 1 );

CvSize sz = cvGetSize(frame);
cout << sz,width <<'' << sz height << end];
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CvSize test_size = {640,256},
Iplimage* testimage = cvCreatelmage( test_size, 8, 1 );

//---- foveation array initialization ---------=--===-=-=-—-
int full_foveation[NUM_RINGS];
for (int idx = 0, fidx = 0; idx < NUM_LEVELS; idx++)
for (int jdx = 0; jdx < foveation[idx].num; jdx++)
full_foveation[fidx++] = foveation[idx].res;

//---- start timer and initialize frame count -—-----meeemnv

QueryPerformanceCounter(&start_ticks),
int count = 0;

//---- grab frames and process them

unsigned char line_buf[NUM_RINGS];
unsigned char line_buf prev[NUM_RINGS];
float motion_array[NUM_RINGS-1];

for(;;)
{
count++;
frame = cvQueryFrame( capture );
if( frame )
break;

cvFlip (frame, NULL, 0);

cvCopy( frame, image, 0 );
cvCvtColor( image, grey, CV_BGR2GRAY ),

//---- foveation begin

int x = 50*640;

for (int r = 0; r < 240; r++)

{
int num, res;
char* image = grey->imageData;
float ave;

unsigned long im_total;

int buf_idx = 0;

for (inti=0; i < 12; i++)

{
num = foveation[i].num;
res = foveation[i].res;
for (int j = 0; j < num; j++)

ave = 0.0;
im_total = 0;
for (int k = 0; k <res; k++)
im_total = im_total + static_cast<unsigned char>(image[x+k]);
ave = static_cast<float>(im_total)/static_cast<float>(res),
for (int m = 0; m < res; m++)
image[x++] = static_cast<unsigned char>(ave);
if (r == 239)
line_buf[buf_idx++] = static_cast<unsigned char>(ave);
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// draw white center lines on image
for (int 1 = 0; i < 640; i++)
grey->imageData[x++] = static_cast<unsigned char>(0xFF),

for(intj = 0;j<20; j++)
for (i=0; i <NUM_LEVELS; i++)
{
x = x + foveation[i].num * foveation[i].res;
grey->imageData[x] = static_cast<unsigned char>(0xFF);

3

X = sz.width/2;

for (i=0; i <480; i++)

{
grey->imageData[x] = static_cast<unsigned char>(0xFF);
X = X + sz.width;

}

//---- motion detection begin
if (count > 1)

{

//---- clear bar chart

CvPoint ptleft = {0,0};

CvPoint ptright = {639,255};

cvRectangle( testimage, ptleft, ptright, CV_RGB(0,0,0), CV_FILLED);

//---- motion detection proper
int max_idx = 48;
float max_motion = 0.0;

//---- go through EMDs
for (int i = 0, pos = 0; i < NUM_RINGS-1; i++)
{
//---- EMD calculation
float left_current = static_cast<float>(line_bufli])/255;
float left_delayed = static_cast<float>(line_buf prev[i])/255;
float right_current = static_cast<float>(line_buffi+1])/255;
float right_delayed = static_cast<float>(line_buf_prev[i+1])/255;

motion_array[i] = right_current*left_delayed - left_current*right_delayed,

//---- keep maximum response
if (fabs(motion_array[i]) > fabs(motion_array[max_idx]}))
max_idx = i;

/L draw bar for this EMD

float motion = motion_array[i]*255; // motion_array: 0-0.5

CvPoint ptl = {pos,127};

pos += full_foveation[i];

CvPoint pt2 = {pos,127-motion};

cvRectangle( testimage, ptl, pt2, CV_RGB(220,220,220), CV_FILLED);
}

//---- get pixel and velocity error from table

left_fov = (max_idx-48)<0 ? true:false;

left_motion = motion_array[max_idx] > 0 ? false:true;

int fov_index = left_fov ? abs(max_idx-48)-1:abs(max_idx-48);

float pixel_error = detectors[fov_index].pos/304.0;  /mormalized: 0-1
float velocity_error = detectors[fov_index].vel/0.6; //normalized: 0-1
float Kp = detectors[fov_index].Kp;

float Kv = detectors[fov_index].Kv;
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//---- threshold

if (motion_array[max_idx] > 0.1 || motion_array[max_idx] <-0.1)

{

clse

//float u;
/*

if ((left_fov && left_motion) || (!left_fov && !left_motion)) // mving out FOV

/hn = Kp*pixel_error + Kv*velocity_error;
u = Kv*velocity_error;
else

if ((left_fov && !left_motion) || (left_fov && left_motion)) // mving in FOV

/h = Kp*pixel_error - Kv¥*velocity_error;
u = Kv*velocity_error;
*/

if ( !left_motion )
if (left_fov)
u = Kv*velocity_error*0.6;
else
u=Kv*velocity error*0.85;

else
if (left_fov)
u = Kv*velocity_error*0.85;
else
u = Kv*velocity_error*0.6;
/= -Kv*velocity _error*0.02;

/lcout << velocity_error;
// quantization
/*

int tcode = u*27;

code = left_fov ? 27 - tcode : 27 + tcode;

if (code > 48)

code = 48;
else
if (code < 10)

code = 10;
*/

//---- output pixel error to file

idle_count++;
if (idle_count == 20)

{
u=10.0;
idle_count = 0;
cout << u << endl;

}

/lu=10.0;

/fcode = 27,

//mfile << 0 << endl;

if (left_fov)

mfile << -detectors[fov_index].pos << endl;
else

mfile << detectors[fov_index].pos << endl,
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//nfile << motion_array[max_idx];

//cout << code << endl;

}

for (int 1b = 0; Ib < NUM_RINGS; 1b++)
line_buf prev[lb] = line_buflIb];

//---- show the images

cvShowlmage( "Sensor", grey );
cvShowlmage( "EMD Responses", testimage );

int ¢ = cvWaitKey(1);
/lcode = GetKeyCode(static_cast<char>(c));
if{ c==27)
{
program_done = true;
break;

QueryPerformanceCounter(&end_ticks);
/'

cputime.QuadPart = end_ticks.QuadPart- start_ticks.QuadPart;
float etime = (float)cputime.QuadPart/(float)ticksPerSecond.QuadPart;
float fps = float(count)/etime;

cout << "fps =" << fps << endl,
cvReleaseCapture( &capture );
cvDestroyWindow("Sensor");

cvDestroyWindow("EMD Responses");

mfile.close();
nfile.close();

return O;

H

//
// main

//
void

main( int argc, char** argv )

{

//---- serial port

hSerial = CreateFile("COM1", GENERIC_READ | GENERIC_WRITE, 0, 0,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);

if(hSerial==INVALID_HANDLE VALUE)
if(GetLastError()>=ERROR_FILE NOT_FOUND)
cout << "serial port does not exist" << endl;
else
cout << "some other error occurred” << endl,
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//---- serial port thread
DWORD dwThreadld];

HANDLE hThread!l = CreateThread(
NULL,  // pointer to security attributes

0, // initial thread stack size
SerialPortThread, // pointer to thread function
0, // argument for new thread

0, // creation flags (immediate)

&dwThreadld1 // pointer to receive thread ID
) :

if (NULL == hThread!) {
cout << "problem creating thread" << endl,

exit(1);
}
//---- motion detection thread
DWORD dwThreadld2;

HANDLE hThread2 = CreateThread(
NULL,  // pointer to security attributes
0, // initial thread stack size
MotionDetectionThread, // pointer to thread function
0, // argument for new thread
0, // creation flags (immediate)
&dwThreadld2 // pointer to receive thread ID

)

if (NULL == hThread2) {
cout << "problem creating thread" << endl,

exit(1);
}
//---- wait for motion detection thread to end
if (WaitForSingleObject(hThread2, INFINITE) = WAIT _OBJECT 0)
{
perror("Thread join failed");
exit(EXIT_FAILURE);
H
//---- close everything
CloseHandle(hThreadl);
CloseHandle(hThread2);
CloseHandle(hSerial);
}
/!
#ifdef WIN32
#pragma warning( disable : 4305)
#endif

const int RES = 640,
const int RES HALF = RES/2;

int code = 16;
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typedef struct
{ .
int num;
int res;
} Fov;

constint NUM_LEVELS = 12;
const int NUM_RINGS = 96;

Fov foveationf[NUM_LEVELS] =

{
{4,32},
{4,16},
{8,8},
{8.4},
{8,2},
{16,1},
{16,1},
{8.2},
{8.,4},
18,8},
{4,16},
{4,32},

|5

typedef struct

{ .
int pos;
float vel,
float Kp; .
float Kv;

+ PosVel;

PosVel detectorsyNUM_RINGS/2] =

{

{1,0.1,0.8,0.2},
{2,0.1,0.8,0.2},
{3,0.1,0.8,0.2},
{4,0.1,0.8,0.2},
{5,0.1,0.8,0.2},
{6,0.1,0.8,0.2},
{7,0.1,0.8,0.3},
{8,0.1,0.8,0.3},
{9,0.1,0.8,0.3},
{10,0.1,0.8,0.3},
{11,0.1,0.8,0.3},
{12,0.1,0.8,0.3},
{13,0.1,0.8,0.3},
{14,0.1,0.8,0.3},
{15,0.1,0.8,0.4},
{16,0.1,0.8,0.4}, //--
{17,0.2,0.7,0.4},
£19,0.2,0.7,0.4},
{21,0.2,0.7,0.4},
{23,0.2,0.7,0.5},
{25,0.2,0.7,0.5},
£27,0.2,0.7,0.53,
{29,0.2,0.7,0.53,
{31,0.2,0.7,0.5}, //--
{34,0.3,0.6,0.5},
{38,0.3,0.6,0.6},
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{42,0.3,0.6,0.6},
{46,0.3,0.6,0.6},
{50,0.3,0.6,0.6},
{54,0.3,0.6,0.7},
{58,0.3,0.6,0.7},
{62,0.3,0.6,0.7}, /-
{68,0.4,0.5,0.7},
{76,0.4,0.5,0.7},
{84,0.4,0.5,0.7},
{92,0.4,0.5,0.8},
£100,0.4,0.4,0.8},
£108,0.4,0:4,0.8},
{116,0.4,0.4,0.8},
{124,0.4,0.4,0.8}, /-
{136,0.5,0.4,0.8},
{152,0.5,0.4,0.8},
{168,0.5,0.4,0.8},
{184,0.5,0.4,0.8, //--
{208,0.6,0.3,0.8},
{240,0.6,0.3,0.8},
{272,0.6,0.3,0.8},
{304,0.6,0.3,0.8}

__int64 motor_cmd2[57]} =
{

0x0000000000000000, //0 -8.57
0x0000000000000001, n -8.27
0x0000000000000003, 2 -1.97
0x0000000000000007, /3 -7.67
0x000000000000000f, /4 -1.37
0x000000000000001f, /5 -1.07
0x000000000000003f, 116 -6.77
0x0000000000000071, "1 -6.47 ~-4.3
//0x00000000000000FF,

0x00000000000001FF, 18 -6.17
0x00000000000003FF, 9 -5.87
0x00000000000007FF, /110 -5.57
0x0000000000000fFF, M1-527
0x0000000000001 fFF, 12 -4.97
0x0000000000003{FF, /13 -4.67
0x0000000000007{FF, //14 -4.37
//0x000000000000F{FF,

0x000000000001 ffFF, /115 -4.07
0x000000000003ffFF, /16 -3.77
0x000000000007ffFF, N7-3.47
0x00000000000FffFF, //18-3.17
0x00000000001FffFF, /19 -2.87
0x00000000003F{fFF, 1120 -2.57
0x00000000007F{fFF, //21 -2.27
//0x0000000000FFffFF,

0x0000000001FF£{FF, 122 -1.97
0x0000000003FFf{FF, 123 -1.67-=--mmme--
0x0000000007FF{{FF, /124 -1.37
0x000000000fFF{{FF, /125 -1.07
0x000000001 fFF{fFF, 1126 -0.77
0x000000003fFF{{FF, 1127 -0.47--=-----
0x000000007{FF{fFF, /128 -0.17
//{0x00000000ffFF{{FF,
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0x00000001 ffFF{{FF,
0x00000003ffFF{{FF,
0x00000007ffFF{fFF,
0x0000000FffFFf{fFF,
0x0000001FffFFftFF,
0x0000003FffFFffFF,
0x0000007F{fFF{fFF,
//0x000000FFffFF{fFF,
0x000001FF{fFF{fFF,
0x000003FFffFFffFF,
0x000007FF{fFF{{FF,
0x00000fFFffFFffFF,
0x00001fFF{fFFf{FF,
0x00003fFF{{FFf{FF,
0x00007fFF{fFF{fFF,
/10x0000ffFF{fFF{{FF,
0x0001 ffFF{fFF{{FF,
0x0003ffFF{{FF{{FF,
Ox0007HfFF{fFF{{FF,
O0x000FffFF{fFF{fFF,
OxOO01FffFFffFFffFF,
Ox003FffFFffFFf{FF,
Ox007Ff{FFffFFffFF,
//0x00FFffFFftFF{fFF,
OxO1FFffFF{ffFF{{FF,
Ox03FFffFFffFF{{FF,
OxO7FFffFF{{FF{{FF,
OxOfFFffFFffFF{{FF,
Ox HFFfIFFffFF{FF,
Ox3{fFFf{FFf{FFffFF,
Ox7fFFffFFffFFf{FF,
/OxtfFFHFF ffFFffFF

/129 +0.13
/130 +0.43

1131 +0.73<<<<<<LLLLLLLLLLLLLL
/132 +1.03<<<<LLLLLLLLLLLLLLLLL

//33 +1.33
/134 +1.63
/735 +1.93

//36 +2.23
//37+2.53
//38 +2.83
/139 +3.13
//40 +3.43
//41 +3.73
//42 +4.03

//43 +4.33
//44 +4.63
//45 +4.93
/146 +5.23
/147 +5.53
//48 +5.83
//49 +6.13

//50 +6.43
//51 +6.73
/152 +7.03
//53 +7.33
/154 +7.63
//55 +7.93

/156 +8.23
1164

~+43
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