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ABSTRACT

Rational Functions and Other Techniques for RF and Microwave Modeling
Arash Kashi

This thesis contributes several techniques for electromagnetic-based computer-aided
modeling of microwave components exploiting rational functions, space mapping, Fi-
nite Difference Time-Domain (FDTD) method etc.

First, enhanced adaptive sampling algorithms, both in single and multi-dimensions,
are proposed. The algorithms are based on rational interpolation, which leads to
more accurate high-frequency models as compared to other existing interpolants,
e.g. spline. Starting with a minimal number of support points, i.e. electromagnetic
data, and with lowest-order rational functions, the algorithms systematically produce
models, which meet user-specified accuracies. In each stage of these algorithms new
support points are adaptively selected based on model errors. The advantages of the
proposed algorithms are shown through practical RF and microwave examples.

Second, a new space-mapping based CAD methodology for modeling temperature
characteristics of combline resonators is proposed. With the aid of two commercial
simulation tools, namely Ansoft’s HFSS and Agilent’s ADS, this methodology gener-
ates accurate temperature models of combline resonators. The method is generic i.e.
it is capable of generating corresponding models for a variety of resonator structures
including the mushroom and straight. The model generated using space mapping is
suitable for compensation methods where the type of material to be used has yet to
be determined.

Third, a FDTD based technique, integrated with rational functions has been de-
veloped to generate fast and accurate temperature models for combline resonators.
Through examples, it has been shown that a FDTD algorithm with 2D uniform-grid

distribution is fully capable of modeling temperature behavior of combline resonators.
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The advantage of this work over other numerical solutions in terms of computational
complicity and required simulation time is illustrated. This technique can be applied

to compensation methods requiring geometry optimization.
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Chapter 1

Introduction

1.1 Motivation

Computer aided design (CAD), often referred to as design automation, has progressed
considerably in recent years owing to R&D contributions both in the form of approx-
imate models and full-wave simulators. Currently, there is a strong demand from
industry for accurate CAD tools that allow first-pass design of radio-frequency (RF)
and microwave modules. This first-pass design is becoming possible with the aid of
optimization techniques that emerged during the past three decades [1][2]. These
techniques have provided designers with strong and reliable CAD tools necessary for
complex and demanding needs of modern circuit design.

As operating frequency increases, EM effects become more critical. Recently,
commercial software packages Such as Sonnet software [3] and Ansoft’s HFSS have
been developed to fully account for high order EM effects in modern circuit design.
Such simulators are denoted as Electromagnetic (EM) simulators and the solutions
provided by these simulators are denoted as "fine” solutions. EM simulators exploit
different numerical methods. For example Ansoft’s HFSS is based on Finite Element
(FEM) and Agilent’s ADS is based on Method of Moments (MoM). However, high

computational resources are required for large and complex microwave structures,



especially for CAD operations such as Monte-Carlo analysis, yield optimization, and
so forth.

One typical way engineers have tried to incorporate basic EM effects is to use
knowledge-based models. For instance, several empirical and circuit models of many
microwave circuits have been developed and used frequently. The empirical and
circuit-theoretic models are denoted as ”coarse” models. Circuit models may be con-
sidered to alleviate RF /microwave design problems, because they are computationally
efficient. However, circuit models for multi-port devices are difficult to construct and
their accuracy over a wide band is questionable.

In the light of above discussion, research on EM-based fast models that are reliable
at high frequencies and account for high order EM effects is becoming important. Re-
cent approaches in this direction include look-up tables [5], interpolation techniques
[6], space mapping (SM) (7] and artificial neural networks (ANN) [8]. Look-up tables
are built from exhaustive execution of EM simulation. These exhaustive simulations
become prohibitively large in case of large number of design parameters and multi-
port components. Interpolation techniques can be used to extract a fine response
using limited number of data. Interpolation models can be quickly evaluated, and
hence are well-suited for circuit optimization and statistical design [9]. Among inter-
polation techniques, rational functions are best-suited for interpolation of scattering
parameters of microwave components. Rational interpolants yield accurate EM ap-
proximations owning to their pole-zero arrangement, in cases where other traditional
interpolants, e.g. polynomial functions, fail. In situations where both coarse and
fine models of a passive component are available, space mapping is efficient. Space
Mapping combines the computational efficiency of empirical /circuit-theoretic models
with the accuracy of the EM simulator. A mathematical link (mapping) is estab-
lished between the spaces of the parameters of the empirical and EM models. This
approach directs the bulk of the required CPU time to the fast model while preserv-
ing the accuracy and confidence supplied by few EM analyses. ANN modules have



recently gained attention as an useful tool for RF and microwave modeling. ANNs
are first trained offline to learn high-frequency component behaviors from EM data.
The resulting neural models are then used to facilitate efficient EM based CAD of
RF/microwave circuits.

In spite of these advances, EM-based modeling remains an open research topic.
In this thesis, several EM-based modeling techniques combining a variety of above-

mentioned techniques are researched upon.

1.2 Objectives

¢ Reducing the number of EM data required for accurate EM-based frequency

modeling techniques up to 40% through the use of rational functions.

e Developing improved multidimensional modeling algorithms for general cases
where there is no distinguishable highly non-linear design parameter while re-
ducing the number of required EM samples up to 10% in comparison to standard

algorithms.

o Formulating improved multidimensional modeling algorithms for special cases
where the model-input space can be divided into two sub-spaces namely highly
non-linear and relatively less non-linear while reducing the number of required
EM samples up to 25% in comparison to standard algorithms through the use

of rational functions together with a hybrid mapping.

e Exploring temperature models for combline resonators with accuracies in terms
of cut-off frequency drift as impressive as +2ppm/°C through the use of space

mapping and FDTD.



1.3 Thesis Outline

The thesis discusses different modeling techniques applicable to RF and microwave
design and optimization. Since these techniques are based on different mathematical
tools and serve different applications, literature review related to each technique is
included in the corresponding chapter.

Chapter 2 introduces rational functions as an interpolation tool in modeling of
RF/microwave components. The importance of adaptive sampling in RF/microwave
modeling is explained and the standard algorithm based on rational functions is re-
viewed. The new concept of dynamic grid is proposed and is integrated into the
standard adaptive sampling algorithm. The enhancements as a result of the dynamic
grid application are illustrated through practical examples. It has also shown that
in severely non-linear cases, conventional multidimensional modeling algorithms fail
and hence a new multidimensional modeling algorithm is presented that facilitates
design/optimization of RF /microwave components.

Chapter 3 presents space mapping as a tool to modeling temperature behavior of
cylindrical resonators. A review of conventional temperature modeling of combline
resonators is presented. The concept of space mapping is reviewed and a space map-
ping temperature modeling framework is fully explained in both Ansoft’s HFSS and
Agilent’s ADS. The accuracy of this technique is validated through a comparison with
measurement results.

In Chapter 4, the application of FDTD method for temperature modeling of
combline resonators is proposed. A simplified FDTD method is integrated with
Padé approximation to generate a fast and accurate temperature model for combline
resonators of arbitrary structure. It has been shown that a simplified finite difference
method with 2D uniform-grid distribution is fully capable of modeling the tempera-

ture behavior of combline resonators.



1.4 Contributions

The author contributed to the following original developments:

e A new dynamic grid concept is developed and incorporated into single and multi

dimensional modeling algorithms based on rational interpolants.

¢ A new multi dimensional RF /microwave modeling algorithm combining rational

interpolants, hybrid mapping and genetic concepts is proposed.

e A framework for temperature modeling of combline resonators (cylindrical cav-

ity resonators), exploiting space mapping concept, is proposed.

o Application of FDTD method incorporated with Padé approximation is pro-

posed for temperature modeling of combline resonators.



Chapter 2

RF /Microwave Modeling
Algorithms Based on Adaptive
Sampling

2.1 Introduction

Novel approaches for development of EM-based models from EM data leading to
accurate/fast CAD of RF/microwave circuits are constantly evolving. One of the
techniques gaining attention is neural networks. Neural networks are trained offline
to learn RF/microwave component behaviors from EM data. Resulting neural models
are used to facilitate efficient CAD of RF /microwave circuits [10]. In situations where
both coarse and fine models of a passive component are available, space mapping {7]
is a preferred modeling approach.

Here, the challenges in EM-based modeling are reviewed from different perspec-
tives. In general, acquisition of EM data through full-wave simulations tends to be
computationally intensive. This motivates research on algorithms that facilitate de-
velopment of accurate and fast EM-based models using as little EM data as possible.

Latest research in this direction includes knowledge based neural networks [11], trust-



region aggressive space mapping [12], etc.

Here, the challenges in EM modeling from the perspective of EM data genera-
tion, which is a key prerequisite to RF/microwave modeling, are discussed. The task
of data generation involves important decisions with regard to the distribution of
sampling locations in the EM design parameter space. One common practice is to
employ "equidistant sampling”, which is also referred to as ”uniform distribution”.
In order to achieve the desired model accuracy in highly nonlinear regions, such an
approach often necessitates a fine sampling grid. In the case of highly complicated
EM structures, which operate at higher and higher GHz frequencies, uniform sam-
pling demands even finer grids, thereby making it computationally prohibitive and
impractical [13]. In essence, there is a need for novel sampling strategies.

Latest research in EM-based modeling revolves around the application of adap-
tive sampling algorithms. Examples include adaptive frequency sampling algorithms
based on polynomials [14] and rational interpolants [15][16], as well as novel concepts
such as error-based sampling [17] and automatic model generation [18]. For instance,
a rational function model of a microstrip filter was presented in [19]. Interestingly, this
chapter incorporates both ”efficient modeling” and ”eflicient sampling” approaches
in advanced research.

In a recent work [16], adaptive sampling algorithms based on a dynamic grid is
presented in single dimension. These algorithms have been shown to outperform a
standard algorithm [15] in terms of convergence and model accuracy.

This chapter describes a detailed framework of enhanced adaptive sampling algo-
rithms A and B as applied to rational interpolants both in single and multidimensional
problems. Starting with a minimal number of EM data and with lowest-order ratio-
nal functions, these algorithms automatically proceed in a stage-wise manner. After
each stage, the model error is compared with the user-specified accuracy to decide
whether to terminate the algorithm(s) or to proceed to the next stage. Appropriate

error measures are used for both adaptive sampling and model validation. Due to



their iterative nature, the number of EM data used to build satisfactory models is
kept as low as possible. The performance of the proposed algorithms is compared

with standard algorithms through practical RF/microwave examples.

2.2 Rational Functions

Let x represent a vector containing physical parameters of an RF/microwave com-
ponent not including frequency (f), and y represent a vector containing its EM

responses. The EM relationship between x and y can be expressed as

Y= grm( f) (2.1)

In the EM-CAD area, gp,, is available to designers in the form of commercial
simulators. At microwave frequencies, g, tends to be highly nonlinear with respect
to both & and f. In general, the objective of EM based modeling algorithms is to
develop a fast and accurate surrogate model g based on EM data from gg,,. The EM
data, i.e. (@, fi,y;), where ¢ is the sample index, are obtained via repetitive execu-
tion of an EM simulator. In the 1D case, & is kept constant and f alone is sampled.
As such, EM data used are of the form (f;, ;). Once all or part of the EM data is
acquired from simulations, an appropriate input-output mapping function needs to be
identified to proceed with model development. In practice, an interpolation function
that can take into account the physics behind the problem becomes a natural choice.

In the last decade, several researchers have demonstrated both univariable [21][22][23] and
multivariable [15][19][24] interpolation functions. Among them, a popular RF /microwave
oriented interpolant is the rational function. Rational functions are best-suited for
interpolation of scattering parameters (S-parameters) of microwave components. For
example, rational interpolants such as (2.2) yield accurate EM approximations owing

to their pole-zero arrangement, in situations where other traditional interpolants, e.g.



polynomial functions, fail. A general-form of a rational function is given by

ag+a1f +-- -+ auf"
S = 2.2
140+ -+ by fv ! ( )

where a; and b; are unknowns. To determine these coefficients, at least 1 + u + v
EM data points are required. The order of a rational function can be defined as the
number of EM data used to solve for a;, and b;. Let S, represent an n*-order rational
function i.e. n = u + v + 1. Rational functions of the same order can have different
pole-zero arrangements (i.e. different combinations of v and v) and as to which of
the arrangments better suits an EM modeling problem is not known a priori.

There are several classic algorithms to generate a rational model. All these tech-
niques can be classified into two groups. In the first group, S is determined for an
arbitrary f without solving for unknown coefficients i.e. a; and b;. Examples of such
indirect algorithms are Neville-type, where S*V is indirectly evaluated through an
iterative process. In the second group, the unknown coefficients of §*¥ are directly
determined. Once the coefficients are determined, the realized rational function can
replace the physical model. Examples of direct algorithms are Gaussian elimination,
Gauss-Jordan algorithms and Choleski decomposition algorithms [27). Two follow-
ing sections are overviews of the commonly used algorithms i.e. Neville-type and

Gaussian elimination.

2.3 Neville-Type Algorithms

In order to determine the value of interpolating rational function for a single value of
[, a Neville-type algorithm [27], proven to be fast and stable for lower order rational

functions, is given by

S9(f) = S )

f=fig 1 Shi-1(f)-Si-Li-1(f)| 1’
T SEII(f)=8Li2(f)

S9(f) = S47(f) +




where 7 is the index of n EM data, j is the iteration number, and 1 < j < n.
Recursive Neville-type algorithms are useful only if the function value of the de-
sired interpolant is required at a small number of points different from the support
points. However, in adaptive sampling algorithms, the rational interpolant needs to
be evaluated over an entire high-dimension grid in order to approximate the error
function and locate new sampling points. Hence, Neville type algorithms are not effi-
cient solutions for afore-metioned problems. Alternatively, direct algorithms such as
Gaussian elimination and Gauss-Jordan, which compute the coefficients of the ratio-
nal model and lead to an explicit representation of rational model, are more efficient

for the fast computation of rational model over a fine grid of data.

2.4 Gaussian Elimination

Gaussian elimination is a method for solving a linear set of equations. In the context

of the previous formulation, the set of equations will be of form of

AB =y, (2.4)
where
1 fi o -t —nff o —nft
1 fo - f3 —wfe —wfi - —wfs
AQruroxrur = | . N
-1 fn f# _ynfn "‘ynfr% —‘ynf:z)_
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Qo

a
B(1+u+v)x1 = b ’
by
and -
Y1
y(1+u+v)x1 = ’ (25)
[ Yn

where n represents the number of support points or samples. After converting (2.4)
into an augmented form, elementary row operations are carried out to generate an
upper triangle matrix. The equation of the (1 + u + v)™ row is solved for b, which
is then substituted back into the equation of the (u + v)™" row to obtain a solution
for b,_,. This iterative process is continued until all the unknown coefficients are
determined.

Critical aspects of Gaussian elimination, i.e. computational complexity and ma-

trix conditioning, are already addressed in literature. An overview of technical details

is presented in the following subsections.

2.4.1 Displacement Rank

A standard Gaussian elimination scheme performs O(n®) operations. Converting the
Gaussian elimination procedure into appropriate operations such as displacement rank

structure results in fast O(n?) algorithms which allows faster triangular factorization

11



of a matrix [29].

According to [29] the displacement rank « of an (14 u + v) X (1 + u + v) matrix
A is defined as the rank of the matrix LA — AR with L and R being the so-called
left and right displacement operators. If A is a Vandermonde matrix (common form
of matrix generated for solving the unknown coefficients of rational functions), then

the suitable displacement operators are given by

L = dzag(l/yo, ey 1/y1+u+'v)

R" = z0 o z{}, (2.6)
with . -
0 0 w
1 0 - --- 0
Z¥) = . (2.7)
01 . :
- 0 10
L d kxk

The resulting matrix LA — AR then takes the form

yo(1 — zp) 0 -0 ~(1/zo — ) 0 -0
: : : (2.9)
y1+u+v(1 - x?f+u+v) 0 ---0 _(1/x1+u+v - x?—l—u+v) 0 --- 0 ok

Hence, the displacement rank o of A equals @ = 2. From a factorization
LA—-AR=GB, G ¢ Cttuivxa  pe oxituty) (2.10)

An LU factorization of the Cauchy matrix A = A(Q¥, ® Q¥,,,) can be obtained
from [29] with order of complexity O((1 + u + v)?). Here the subscript # denotes

complex conjugation and transposition, and the columns of the matrices ¢J1, and

12



Table 2.1: Comparison of conditioning in different bases for example of section 2.10.3

Dim(A) i T:(f) Li(f)
18 56 x 10° 5.6 x 103 5.7 x 103
20 7.5 x 10° 7.5 x 103 7.4 x 103
22 6.6 x 108 6.6 x 10* 6.3 x 10*
24 1.2 x 108 9.8 x 104 9.0 x 10*

(1,u+1 contain the eigenvectors of RT. By exploiting the displacement structure of the
matrix A, the complexity of solution computation is thus reduced from O((1+u-+v)3)

to O((1 +u + v)?).

2.4.2 Orthogonal Basis

Condition number associated with a problem is a measure of that problem’s amenabil-
ity to digital computation, that is, how numerically well-posed the problem is. A
problem with a low condition number is said to be well-conditioned, while a problem
with a high condition number is said to be ill-conditioned.

Linear set of equations in solving rational functions coefficients are usually ill-
conditioned matrices and hence the determined coefficients are sensitive to the pertur-
bation of matrix A [28]. As the solution proposed in [28], the multivariable rational
data fitting problems are formulated in terms of an orthogonal basis, such as T;(f) of
the Chebyshev polynomials or L;(f) of the Legendre polynomials, instead of multi-
nomial basis f;. For the example in section 2.10.3, the condition numbers in different
bases are compared in Table 2.1. As it can be seen, the condition numbers, using
Chebyshev and Legendre, are highly improved in compare to the ones with monomial

bases.

13
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Figure 2.1: Flow-chart of the standard algorithm [15].

2.5 Standard 1D Adaptive Sampling Algorithm

The key to efficient adaptive sampling is minimizing the need for EM data. Choosing
a reasonable number of EM data at critical frequencies (e.g. resonant frequency of a
microstrip filter), at which ¥ is highly nonlinear w.r.t. f, becomes critical. Here, an
adaptive sampling algorithm [15], used for the purpose of comparison, is briefly re-
viewed. The standard algorithm shown in Fig. 2.1 begins with two rational functions
of orders 3 and 4 respectively. Initial samples are chosen at the two extremities and
in the middle of the frequency range of interest [finin, fmaz)- The frequency sample

f* at which new EM data needs to be simulated is given by

(2.11)

1Sa(f) - sn_l(fn?}
1+ S, ()

fr= a,rgm?x{

where S,,(f) and S,_1(f) represent the best and the second best rational approxi-
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mations and n represents the number of EM samples that have been used thus far.
This ensures that the maximum error of S,(f) w.r.t. ggy is minimized in Sp41(f).
The results are promising, especially in situations where EM responses are rela-
tively smooth. In cases where the frequency response of a component exhibits sudden
variations or spikes, this algorithm could either miss such variations entirely or could
get trapped in the vicinity of one of many such spikes. Such a phenomenon is un-
desirable, since further increasing the number of EM samples would not improve the
rational model accuracy. Consequently, the total number of EM data points used by
this algorithm could exceed that required by a crude non-adaptive sampling algorithm

for a given user-specified model accuracy.

2.6 Proposed 1D Adaptive Sampling Algorithm A

The standard algorithm [15] reviewed in section 2.5 determines the new frequency
sample based on an /,-error measure and uses the same measure to check for the ter-
mination condition. In automated CAD tools, it is important that any such measures
used be obvious to users and hence can be user-inputs to the algorithm. Motivated

by [10], a residual function at the end of the k** stage is formulated in {;-sense as

(5k(f) - |Sk+2(f) —' Sk+1(f)|

= Tax (Seralf)) = min (Sera (7))’ (2.12)

Based on (2.12), frequency f* at which new data needs to be simulated is given by
f* = argmax {8(f)} (2.13)

At this juncture, an important aspect of the proposed algorithm A is discussed.
The standard algorithm, which allows frequency sampling at any numerical value
[ € [fmin, fmaz|, has been observed at times to get trapped in certain frequency neigh-

borhoods. On the other hand, it has been noted that crude non-adaptive sampling
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algorithms based on a uniform-grid yield highly accurate models, when a sufficiently
fine grid is permitted. Motivated by these observations, a new dynamic (i.e. pre-
defined and iteratively readjusted) grid is presented, which tends to be ”adaptive”
globally and ”grid-based” locally. As a result, in the proposed algorithm A, a new
data point is generated not necessarily at f* but at some f;, where f; is an allowed
grid point in the neighborhood of f*.

Since the proposed algorithm operates in a stage-wise manner, it is important to

define a termination criterion, i.e.

Bo=1 (Z |6k<fi>|) , (214)

where L is the total number of frequencies at which the residual function in (2.12) is
evaluated. In practice, L is allowed to be very large, since rational function evaluations
are computationally inexpensive. A systematic framework of the algorithm is shown
in Fig. 2.2 and the pseudocode is presented below.

Let user-input {fmin, fmaz| represent the frequency interval of interest. User inputs
also include initial number of subintervals 2™ and desired model accuracy Ej.

Initialization: Set & = 1. Initial grid-size is calculated as
f z T f ]
Ay = —’ZLQ-WTL"EE (2.15)
Using the above grid definition, the algorithm creates 2™*! possible frequency
sampling locations or grids.
Stage 1: Two EM data are simulated at f,;, and fq; using an EM solver. Based
on these samples, a second-order rational approximation S is developed. An addi-
tional EM data is generated at fiq, é.e. the mid-point of [fiin, frmez)- Based on

the three samples, a third-order rational approximation S; is developed. Residual

function k-1 (f) at the end of the first stage is computed using a fine-grid. Error E;

16



is calculated using Ox—1(f). If By > E,, then set k = k + 1, otherwise STOP.

Stage k: Set Ay, = Ag_;. Frequency f* around which a new EM data point needs
to be simulated is identified using (2.13). In the array of possible sample locations,
unused grid frequency f, closest to f* is located. If |f* — f,| >> Ay , then GO TO
RedefineGrid, otherwise set f* = f,. Simulate EM data at f*. Proceed to develop a
(k + 2)t" order approximation. GO TO CheckTerminationCondition.

RedefineGrid: Set m = m+1, re-evaluate and update the array of possible sample
locations. Unused grid frequency f, closest to f* is located. If [f* — fo| >> A,
then GO TO RedefineGrid, otherwise set f* = f,. RETURN Ay and f*.

CheckTerminationCondition: Residual function dx(f) at the end of the k™ stage

is computed using a fine-grid, based on which FE is calculated. If Ey > Ey, then set

k =k + 1 and GO TO stage k, otherwise STOP.

2.7 Proposed 1D Adaptive Sampling Algorithm B

In the proposed algorithm A, the fact that multiple rational functions (¢.e. with dif-
ferent pole-zero arrangements) exist for a given number of EM samples is not taken
into account. This could indirectly slow down the convergence of algorithm A.

The proposed algorithm B performs a trial-and-error with all possible combina-
tions of v and v with regard to the equation (2.2). Consequently, this algorithm
is able to choose a relatively better pole/zero arrangement, which in turn allows a

relatively better sample selection (i.e. f* or f).

2.7.1 Motivation

According to [27], if ¢1 and ¢, are both solutions of a homogenous linear system
S%Y then ¢; and ¢2 are equivalent (i.e. ¢; = ¢2) and hence determine the same
rational function. As such, for a given set of EM data, it may be perceived that there

exists a unique rational function with an unknown pole-zero arrangement, which best
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Figure 2.2: Flow-chart of the proposed adaptive sampling Algorithm A from [16].

approximates the EM response. Of course, the problem here is to search for and find
that unique rational function.
Consider two rational interpolants, S2(f) and $%!(f), developed using the same

set of EM samples (K = 3). The distance between them is bounded by ¢, i.e.
|SY2(f) - S*Mf)| <e Y fel (2.16)

Both from literature and from our experimental studies, it has been noted that closely
bounded rational interpolants (from among a family of rational interpolants) typically
represent a relatively accurate microwave response. Intuitively, it would appear that

iteratively selecting ”closely bounded” models and using them to identify the next
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19



best EM sample could accelerate convergence. Motivated by the above discussions,
the proposed algorithm B considers all possible pole-zero arrangements but only picks

the closely-bounded interpolants.

2.7.2 Definitions

Let §“?(f) denote a generalized S-parameter to be modeled in the frequency interval
of interest Is = [fmin, fmaz)- Here, u and v represent the degree of the numerator and
the denominator respectively. Within this interval of interest, a set I' = f; consisting
of L discrete frequency grid points is defined by the user. Since I' is primarily used for
rational function evaluations and not for EM simulations, these grids can be as fine
as possible (i.e. L is allowed to be very large). A set 2, which represents potential
EM sampling locations, is defined as 2 = f; C I'. Let X C () represent a set of
K EM data given by ¥ = {(fx,vx)},fx € Q. Both Q and ¥ are defined by the
user initially and updated by the algorithm iteratively. Conceptually, the algorithm
converges when Y is able to provide adequate EM samples in all critical sub-regions

of the design-parameter space.

2.7.3 Implementation

The algorithm begins with K = N user-defined EM data. Here, N also denotes the
initial number of rational interpolants involved in calculating the next EM sampling
location. The algorithm evaluates unknown coeflicients corresponding to all possible
rational interpolants (i.e. with different pole-zero arrangements). For example, if
the algorithm begins with three EM data points, coefficients of three rational models
5§20 811 and 5§92 are evaluated. For each rational model S**, a corresponding fitness

value dy, is calculated in two steps. First, the distance of S% from all other current
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interpolants is calculated at all f € " as

Nep= D [S™()=8M()] VY (kD). (2.17)

Y(m,n)#(k,l)

Second, i, is calculated using

(5]0,1 = max Ak,l(f) Y (k, l), (2.18)

M —1 fer

where M represents the total number of possible pole-zero arrangements for the ra-
tional interpolant.

From a geometrical perspective, d; represents the maximum average distance of
Skl a.r.t. all other interpolants (m,n) # (k,!). According to the earlier sub-section,
rational interpolants that better approximate gg;, should lie relatively close to one
another. In other words, their fitness §;; must be numerically smaller as compared to
the interpolants that are far from the given EM relationship gg,,. In the subsequent
stage, the algorithm sorts the interpolants in ascending order of their fitness and picks
the first NV interpolants.

An error criterion, which can be used to guide the algorithm, is then calculated
using

Dholy = —lr?ggcz |skili () — Skb(f)], Vi,i=0,...,N—1  (219)
Let ¢ represent a user-specified model accuracy, which can help to formulate the

termination condition for the algorithm B. The algorithm terminates when
G <¢ Vi=0,...,N-1 (2.20)

The understanding here is that if all the short-listed N interpolants lie satisfactorily

close to one another, then all of them can be expected to accurately model the EM
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response S(f). In practice, the algorithm picks the rational interpolant with the least
&r; ;- 1f the condition in (2.20) fails, the algorithm proceeds to the next stage, wherein
an additional EM data is acquired/simulated and all the above steps are repeated.

The process of selecting the next EM sample is described in the following sub-section.

2.7.4 Adaptive Sampling

As mentioned earlier, if the user-specified model accuracy is not achieved, the algo-
rithm proceeds to the next stage. Before proceeding to the next stage, a new EM
sampling frequency needs to be identified. Ideally, the new EM data (fx,yx) should
potentially lead to a relatively accurate rational model in the next stage. A close in-
spection of (2.19) indicates that for each of the N best interpolants, the error criterion
&x; 1; is associated with a specific frequency f € I'. In other words, corresponds to a
frequency at which S%! differs the most from N — 1 other short-listed interpolants.

Based on the minimax concept, frequency f* is identified as

f*=argr§c}fal;cq§ki,li, Vi=0,...,N—1. (2.21)

fer

The new EM data point is then generated not necessarily at f* but at some f;, where
fq is an allowed grid point in the neighborhood of f* (in a manner very much similar

to the algorithm A). Further, the set of current EM sampling grids is updated as
L=XuU{f,}. (2.22)

If all allowed grid points in the neighborhood of f* have already been used up, then
the allowed sampling grid in that neighborhood is halved. The data set {2 is updated
as

Q=QUY, (2.23)
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where U represents the newly added grids.

2.8 Proposed Multidimensional Adaptive Sampling
Algorithm A

In the case of multidimensional modeling, the model responses (e.g. S-parameters)
are functions of geometrical or physical parameters & in addition to frequency f. For
ease of notation, a new vector p = [¢ f]7 is introduced, where p represents the
multidimensional design parameter space. While p, represents the k** model input
(or k™" design parameter), p, represents the input vector corresponding to k** EM
sample. Let g, (p) represent a generalized RF /microwave response to be modeled
and S*"(p) represent the corresponding rational approximation. A set of u +v +1
EM data with inputs {p, | 1 < £k < u+ v + 1} is needed to develop such an approx-
imation. Assuming the data is available, the objective of multi-variable rational
interpolation is to find polynomials H;(p) and V;(p) and corresponding coefficients
a; and b; such that
u

ag + Z a;H;(p,)
5 (py) = —

- , (2.24)
1+ bV;(py)

j=1
forallk, k=1,2,...,u+v+1.

As can be seen in (2.24), the numerator and the denomiator of the rational func-
tions contain u and v number of polynomial terms respectively. The polynomial
terms H; and V; are mixed-terms of the input/design parameters. For example, the
it, polynomial term in the numerator H; could be one of pq, p2, p?, p1p2 and so forth.
Typically, the choice of the polynomial terms could depend on the modeling problem
or on the implementation scheme, or on both. Based on the work of [19], the proposed

multidimensional algorithm A first generates all possible mixed-terms of the design
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parameters py, ps, ..., pp and sorts the terms in an ascending order of their degree. In
a given stage, where rational approximation S*V is being developed, the proposed
algorithm selects the first u and the first ¥ number of mixed-terms for the numerator
and the denominator respectively. It is to be noted that the afore-mentioned sorting
could be performed in several ways leading to multiple S** for a given v and v. This
observation is exploited to indirectly contribute to the convergence of the proposed
algorithm. In other words, when a particular sorting strategy fails to result in a
user-specified model accuracy, other sorting schemes can be tried before exiting the
algorithm.

As mentioned in Section 2.6, incorporation of the dynamic grid concept poten-
tially avoids over-sampling in certain design sub-spaces. As such, adaptive sampling
based on the new dynamic grid is integrated with standard multidimensional model-
ing technique [19] resulting in the proposed algorithm A. In each stage of the proposed
algorithm A, two of the several possible rational functions, S,,(p) and Sp,—1(p) of
orders m and m — 1 respectively, are selected and their coeflicients are determined.
The point p, which happens to be the point of biggest mismatch between S,,(p) and
Sm—1(p) is identified. The new EM data/sample is generated at a corresponding grid
location p,, which lies on the dynamic grid. A systematic framework of the proposed
multidimensional sampling algorithm A is shown in Fig. 2.4. The pseudocode of the
proposed algorithm is presented below.

Let user-input p C R¢ represent the design subspace where d denotes the di-
mension of design parameters including frequency. User input also includes desired
model accuracy E; and number of maximum allowed iterations k.

Initialization: Set £ = 1. Initial grid-size is calculated as

i _ max {p:i} — min {p;}
E= om;

=1,2,..,d. (2.25)
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Figure 2.4: Systematic framework of the proposed multidimensional sampling algo-
rithm A.
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Using the above grid definition, the algorithm creates 2™ 4 1 subinterval along each
design parameter where m; represents the number of intervals along the i** dimension.

Stage 1: d?> numbers of EM data are simulated in a star distribution within the
p subspace without the centre point. A rational function of order Sy is developed
based on current available samples. Then the centre point is simulated and the
corresponding rational function of order Sz, is developed. Residual function é;—;(p)
at the end of the first stage is computed using a fine-grid and (2.26). Error F, is
calculated using ;-1 (p) and (2.27). If E; > Ey, then set k = k+ 1, otherwise STOP.

|Sk12(P) — Sk1(D)|

Ie(p) = max Ski2(p) — min Sky2(p)’

(2.26)

L
By = % (Z |6k(pi>l> : (2.27)

i=1

Stage k: Set AL = Ai_,. The new point around which p* new EM data point need
to be simulated is identified using (2.28). In the array of possible sample locations,
unused design parameter grid p, closest to p* is located. If there exist a dimension (i)
where [p} — pg,| >> A}, then GO TO RedefineGrid, otherwise set p* = p,. Simulate
EM data at p*. Set k =k + 1. GO TO ConvergenceCondition.

p* = arg mgX{ék(p)}- (2.28)

RedefineGrid: Set m; = m;+1 for dimensions where |p} — p,,| >> A} , re-evaluate
and update the array of possible sample locations. Unused grid frequency p, clos-
est to p* is located. If [p} — pg,| >> AL, then GO TO RedefineGrid, otherwise set
p* =p,. RETURN A} and p*.

ConvergenceCondition: If £ > k4 and all the different sortings have not been used

up, then change the sorting of mixed-terms polynomials and GO TO stage 1. If
k > kg and all the different sortings have been used up GO TO STOP. If ¥ < kg4 then
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GO TO CheckTerminationCondition.

CheckTerminationCondition: Residual function d;(p) at the end of the k** stage

is computed using a fine-grid, based on which Ej is calculated. If Ej > Ey, then set
k =k +1 and GO TO stage k, otherwise STOP.

The proposed multidimensional modeling algorithm A is purely based on ratio-
nal functions. One of the key steps in the algorithm involves substituting the EM
data into equations of the form (2.24) leading to a system of linear equations and
solving for the coefficients. It is to be noted that the matrix of linear equations is
relatively larger than the 1D modeling case, and is relatively more likely to be ill-
conditioned [34]. Although in the proposed multidimensional algorithm A, the matrix
conditioning is expected to be improved through the use of dynamic grid, the pro-
posed algorithm A is less likely to be able to model cases where the model-resposne
is highly non-linear along certain axis [19]. One way to address this difficulty is to re-
solve the system of equations into several sub-systems of lower-order [37]. Motivated
by this challenge, multidimensional modeling algorithm B is proposed. In contrast
to multidimensional algorithm A which solely uses rational functions, in proposed

multidimensional algorithm B rational functions are utilized together with a hybrid

mapping.

2.9 Proposed Multidimensional Adaptive Sampling
Algorithm B

The multidimensional modeling problems can be divided into two categories. In
the first category, there is no distinguishable highly non-linear design parameter. Such
problems are already addressed in the proposed multidimensional algorithm A. In the
second category, the model-input can be divided into two sub-spaces namely highly

non-linear and less non-linear. Proposed multidimensional algorithm B is applied
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Figure 2.5: A typical multi-dimensional RF /microwave behavior.

to the second category of modeling problems. The division of model-input into two
sub-spaces enables the proposed algorithms B to further reduce the number training

EM samples in comparison to proposed algorithm A.

2.9.1 Motivation

Consider the 3D graph of Fig. 2.5 that represents a typical multidimensional S-
parameter response of a high-frequency component. Two of the three dimensions
represent the input parameters (z, ) and the third dimension represents the output
(y). From the highlighted curves, it can be observed that y = S is relatively
more non-linear along one of the inputs f. Motivated by this typical RF /microwave
tendency, a decomposition approach is employed, in which, a multidimensional input-
space is divided into highly non-linear and less non-linear sub-spaces. The two sub-

spaces can be addressed separately in two different phases of the proposed algorithm

B.
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2.9.2 Phase 1: Development of a Rational Sub-Model

The objective of Phase 1 is to develop a rational sub-model representing the RF /microwave
behavior along the highly non-linear input (say f). This model will be developed for
a fixed value of other inputs ¢ = #,.;. By doing so, the multidimensional problem
is simplified to the form of a single dimension problem. Using proposed algorithm
B in section 2.7, S“*(f)|e=sz,, ; Tepresent a rational sub-model approximating the S-

parameter of interest in the reference plane i.e. £ = x,. i

2.9.3 Phase 2: Development of a Hybrid Mapping

This phase is motivated by the space-mapping concept [35] and the work of [16]. The
objective of Phase 2 is to develop a set of rational sub-model which satisfactorily
represent the given RF/microwave behavior at any new & = @y 7.6, S“Y(f)|o=wnen
As such, Phase 2 is a sub-routine, which will repeat until a minimal set of rational
sub-models that accurately emulate gg,, in the entire (x, f) space of interest. More
specifically, in each repetition of Phase 2, a set of EM data at @, is used to map
S**(f)le=z,e; (of Phase 1) to S*”(f)|s=zpe,- Fig- 2.6 and Fig. 2.7 together illustrate

the proposed hybrid concept, which maps a highly non-linear sub-model along a
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Figure 2.7: A block diagram showing Phase 2 of the proposed algorithm.

relatively less non-linear input dimension.

An inspection of the EM models at #..f and @, indicates that they are not
only ”shifted” but also "scaled” w.r.t. one another. This aspect must be considered
while developing S“”(f)|e=gne, from S“*(f)|e=s,,;- A hybrid mapping is proposed
that unifies implicit and explicit mappings P and () such that

f=P(f) (2.29)

and

S (Famanew = QOU(S™ (f')) o=ty (2.30)

Considering that Phase 2 focuses on mappings along the less non-linear input
axes, both P and @ can be defined as Taylor series expansions of orders £ and 7

respectively i.e.

F=Pf)=rw+nf+ - +%1f (2.31)

and

S ozt = QLS (Dlomare)

= po + Pl(Su’v(f)]a:mref) +o Pn—l(su’v(f,)lmmmf)n (2.32)
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Here, v;’s and p;’s are unknowns. The initial mappings are set to be v; =1, p; =1

while all other unknowns are zero. Consider

q
(v, 0") = argmin 3 g s (Tnew, i) = 5 ()lamaneul] (2.33)
T k=1

where ¢ is the number of uniformly spaced frequency samples at & = @, and fj is
the k** sampling location. Based on (2.33), the coefficients are optimized such that
SUP(f)|z=ane, accurately represents ggs(Tnew,f). Finally, phase 2 is repeated for
every optimization iteration to further minimize the required number of EM samples.
In few cases where the algorithm in phase 2 does not converge for & = @, phase 1

is applied to & = @, and then = @, is replaced with = ...

2.10 Numerical Results

In a typical RF and microwave component response, S;; which represents matching,
often shows a relatively highly non-linear w.r.t. frequency. Hence, in all the following

examples in this chapter, Si; is considered as model response.

2.10.1 Band-Pass Filter

In this example the performance of the 1D standard algorithm is compared with the
proposed 1D algorithms A and B. Left-handed microwave structures are gaining at-
tention, and accurate EM based modeling of such structures is important. In this
example, a band-pass filter consisting of a left-handed microstrip transmission line
offering the benefits of compact-size and low-loss is modeled. The geometry of the
band-pass filter is shown in Fig. 2.8. Data required for modeling the filter is obtained
from an EM simulator, namely Zeland’s IE3D.

The frequency response of the filter is highly nonlinear in the [3,13]GHz range.

Conventional modeling based on non-adaptive uniform-grid is expensive, and the stan-
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Figure 2.8: Geometry of the left-handed transmission line band-pass filter with D =
0.8mm, T = 3.925mm and W = 4.425mm from [16].

dard algorithm gets trapped in the vicinity of f = 9.15GHz as seen in Fig. 2.9(a). At
the end of the 22" stage, it is observed that the standard model completely misses
the resonant frequency f = 7.14GHz. At this stage, the average error between the
best and the second best models is 8%. The best model is compared with EM data,
and the average error is found to be 14.67% > E; = 10%. Continuing further with
14 additional stages (using 14 extra EM data) leads to an improvement in the above
errors to 4.8% and 12.46% respectively, which is not considerable.

Alternatively, the proposed algorithm A is applied. After 22 stages, the algorithm
results in a model with Ey; = 3.55%. The model is compared with the EM data,
and the average error calculated by (2.12) is observed to be an acceptable 5%. The
response of the proposed model versus EM data is shown in Fig. 2.9(b). Finally, the
proposed algorithm B is applied. After using 20 EM data, the algorithm results in
a rational model S%1! with error criterion ¢g;; = 5.27%. This model is compared
with EM data (Fig. 2.9(c)) and the average error in this case is observed to be an
acceptable 8.34%. For this example alone, algorithm A resulted in a relatively better

model than algorithm B.
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Figure 2.9: Frequency response of the filter’s rational model developed using (a)
standard algorithm after 36 stages, (b) proposed algorithm A after 22 stages, (c)
proposed algorithm B after 20 stages (all represented by solid lines), and the EM test
data used for model validation (dotted lines). Circular dots represent the distribution
of the frequency samples used by the respective algorithms.
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¥ 0.794mm

Figure 2.10: Geometry of the microstrip patch antenna from [16].

2.10.2 Patch Antenna

In this example the performance of the 1D standard algorithm is compared with the
proposed 1D algorithms A and B. In high-performance aircraft and missile applica-
tions, where size and weight are critical, microstrip patch antennas are preferred. In
this example, rational function models of a patch antenna are developed. The ge-
ometry of the antenna is shown in Fig. 2.10. EM data required for modeling are
obtained from Ansoft’s HFSS. User-specifications are fpnin, = 5GHz, fne = 20GHz,
and E; = 5%. The presence of several resonant frequencies in this frequency range
leads to interesting results.

Conventional modeling based on non-adaptive uniform-grid distribution requires
a large number of EM data points and is hence computationally expensive. The stan-
dard algorithm is observed to get trapped in the proximity of f = 7.52GHz. At the
end of the 40%" stage, it is observed that the standard model completely misses the
resonant frequency f = 18.17GHz. At this stage, the average error between the best
and the second best models is 7.8%. The best model is compared with the EM data,

and the average error is observed to be 12.5%. Continuing further with 20 additional
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Table 2.2: Comparison of the model accuracies for the patch antenna

Error Between the
& Best and the Second Error Between the Best Rational
s Best Rational Approximation and the EM Data
- Approximations
=
E Proposed Proposed Proposed
: Efg&?ﬁﬁfﬂ Algorithm Efgﬁ:ﬁi Algorithm | Algorithm
z A A B
24 9.9% 24.5% 17.5% 26.4% 5.1%
30 8.2% 9.7% 16.2% 10.5% 4.8%
36 7.8% 6.0% 14.8% 8.6% 4.8%
38 7.8% 4.8% 12.9% 4.9% 4.0%
42 7.8% 4.0% 12.5% 4.5% 3.8%

stages still fails to help detection of the missed resonant frequency (See Fig. 2.11(a)).

Alternatively, the proposed algorithm A is applied. After 40 stages, the algorithm
results in a model with Fy = 4%. The model is compared with the EM data, and
the average error is observed to be an acceptable 4.5%. The frequency response of
the proposed model versus EM data is shown in Fig. 2.11(b). Finally, the proposed
algorithm B is applied. After using 25 EM data, the algorithm results in a rational
model S%15 with error criterion ¢g 15 = 5.37%. For the purpose of validation, this
model is compared with the EM data (Fig. 2.11(c)), and the average error is observed
to be 4.9% < E; = 5%. The proposed algorithm B uses 15 fewer EM data than the
algorithm A and achieves almost equal model accuracy. The stage-wise model errors
presented in Table 2.2 demonstrate the effectiveness of the proposed algorithms w.r.¢.

the standard algorithm.

2.10.3 Waveguide Filter (One-Dimension)

In this example the performance of the 1D standard algorithm is compared with the

proposed 1D algorithms A and B. A waveguide with a cross-section of 1.372” x 0.622”
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Figure 2.12: Geometry of the H-plane wave guide filter from [7].

Table 2.3: Geometry values of the H-plane wave guide filter from [7].

Parameters Geometry(in inches)
Wh 0.499802
W, 0.463828
Ws 0.44544
W, 0.44168
Ly 0.630762
Ly 0.644953
L3 0.665449

(or 3.485¢m x 1.58¢cm) is used [7]. The six sections (See Fig. 2.12) are separated by
seven-plane septa, which have a finite thickness of 0.02” (or 0.508mm). The values
corresponding to the geometry of the waveguide filter are shown in Table 2.3. EM
data are obtained from Ansoft’s HF'SS. The frequency response of the filter is highly
nonlinear in the [5.5GHz, 8.5GHz] GHz range.

Conventional modeling based on non-adaptive uniform-grid is expensive, and
the standard algorithm gets trapped in the vicinity of f = 8.5GHz as seen in Fig.
2.13(a). At the end of the 60" stage, it is observed that the standard model com-
pletely misses the resonant frequency at f = 5.76GHz. The average error between
the best and the second best models is 8%. The best model is compared with EM
data, and the average error is found to be an unacceptable 14.67% > E; = 10%.

Alternatively, the proposed algorithm A is applied. As it can be seen in Table 2.1,

the condition numbers, using Chebyshev and Legendre, are highly improved in com-
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Figure 2.13: Frequency response of the waveguide’s rational model developed using
(a) standard algorithm after 60 stages, (b) proposed algorithm A after 40 stages, (c)
proposed algorithm B after 25 stages (all represented by solid lines), and the EM test
data used for model validation (dotted lines). Circular dots represent the distribution
of the frequency samples used by the respective algorithms.
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Figure 2.14: The Geometry of the open-stub microstrip.

pare to the ones with monomial bases. After 40 EM samples, the algorithm results in
a model with E3s = 3.55%. The model is compared with the EM data, and the aver-
age error, calculated by equation (2.12) is observed to be 9.78% < F;. The response
of the proposed model versus EM data is shown in Fig. 2.13(b). Finally, the proposed
algorithm B is applied. After using 25 EM data, the algorithm results in model $410
with ¢1410 = 4.67%. This model is compared with EM data (Fig. 2.13(c)), and the
average error is observed to be 5.14%. In this example, algorithm B uses 15 fewer EM
data than algorithm A, while achieving significantly improved model accuracy. Extra
computation time used by the algorithm B for selecting ”closely bounded rational
models” can be neglected, since rational function evaluations are much simpler/faster

than EM simulations.

2.10.4 Open-Stub Microstrip

This example compares the proposed multidimensional algorithm A with the standard
multidimensional algorithm. An open-stub microstrip on a 100um GaAs substrate
with €, = 12.9 is considered. The geometry of the open-stub is shown in Fig. 2.14.
The model outputs are S-parameters. In this example itself, illustrative graph show-
ing one of the outputs to be modeled i.e. Re[Si1] is shown in Fig. 2.15. Design
parameters that are involved in the modeling are the width of the strip W and fre-

quency f. The width of the strip and frequency intervals which the model is generated
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Figure 2.15: Real part of Sj; for the open-stub microstrip.

upon are [20um, 118um] and [2GHz, 60GHz] respectively. Model accuracy (E;) and
convergence criterion (kq) are adjusted to 0.005% and 50 respectively. Data required
for modeling the microstrip is obtained from a well known EM simulator, namely
Agilent’s ADS.

The standard multidimensional modeling algorithm is applied. In the first iter-
ation, EM simulations are carried out for the star distribution of EM samples i.e.
(2GHz, 68um), (30.41GHz, 118um), (60GHz, 68m) and (30.41GHz, 20um). These
initial samples result in a rational function of order 4 (S;). In the next step, the
simulation for the centre point i.e. (30.41GHz, 68um) is executed and the second
rational function of order 5 (Ss) is generated. The next sample is precisely selected
at the location of biggest mismatch between two previously generated rational mod-
els i.e. Sy and Ss. Proceeding further with 20 samples, the algorithm reaches the
average accuracy of -72dB (E1s = 0.0002%). The error between the fine EM data and
rational model after 20 samples is shown throughout the design space in Fig. 2.16(a).
EM sample distribution shows regions that samples are unnecessarily selected in the
vicinity of each other (see Fig. 2.16(b)).

Alternatively, the proposed multidimensional algorithm A is applied. The number
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posed multi dimensional algorithm A (b) EM sample distribution for proposed algo-
rithm A.
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of modeling parameters (d) is set to 2 corresponding to model parameters i.e. W and
f. The initial number of grid intervals along frequency and strip width are set to
my = 8 and mq = 4 respectively. Starting with the star distribution of EM samples
and generating the initial S; and S5 rational models, new data point p* at which a new
data needs to be simulated is identified. New samples are selected at p, on dynamic
grid which is not necessary the same point of biggest mismatch. Proceeding further
with 16 samples the average accuracy of -104dB (Ey2 = 6.3 x 107%%) is achieved. The
error between the fine EM data and the rational model is shown throughout the design
space in Fig. 2.17(a). EM sample distribution for the proposed multidimensional
algorithm A shows no over-sampling at any unnecessary region (See Fig. 2.17(b)). It
is observed that in the light of dynamic grid, the number of samples is reduced by 4
and yet the average model accuracy is improved by 32dB. This aspect is important in

the case of recursive optimization algorithms for high performance component design.

2.10.5 Waveguide Filter (Multidimensional Algorithm A)

A waveguide filter of Fig. 2.12 is modeled using the proposed multidimensional algo-
rithm A. The model-output is the amplitude of S; which is relatively more non-linear
in comparison to other scatering parameters. The model response using a fine EM
simulation is shown in Fig. 2.18. The number of model-inputs is two including W,
and f and their corresponding intervals of interest are Wi € [0.38inch,0.48inch] and
f € [5GHz,10GHz|. Model accuracy (E;) and convergence criterion (k4) are set to
be 0.005% and 50 respectively. Data required for modeling the waveguide filter is
obtained from a well known EM simulator, namely Ansoft’s HFSS. The proposed
multidimensional modeling algorithm A is applied. After 87 stages, the algorithm re-
sults in model Sgg with Fgy = 0.004%. The model is compared with the EM data and
the average error is observed to be an acceptable 0.0048%. The model errors in Table

2.4 clearly demonstrate the advantage of the proposed multidimensional algorithm A

42



S11(dB)

Frequency(GHz)

Figure 2.18: Model response of the waveguide filter using a fine EM simulation.

in comparison to the standard algorithm.

2.10.6 Waveguide Filter (Multidimensional Algorithm B)

In this section, a [5, 10] GHz waveguide filter of Fig. 2.12 is modeled using the
proposed multidimensional algorithm B. The number of model inputs is 8 including
7 geometrical parameters of Table 2.5 and frequency. Table 2.5 presents the input
regions over which the developed model is to be validated. It may be noted that these
regions are bounded by the extremities of at least 2 of the 7 parameters. Hence, of
the entire input space of interest, the RF/microwave behaviors in these regions are
difficult to model. Simulations of Ansoft’s HFSS are used as fine data.

In Phase 1, a rational sub-model is to be generated at @..s (of Table 2.5) from
an initial analytical design [7]. User-defined parameters M = 4 and ¢ = 0.5dB.
After 25 iterations of Phase 1, i.e. N = 25, the termination condition in (2.20) is

met. Evolution of $%"(f)|s=s,., With increasing N is shown in Fig. 2.19. In Phase
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Table 2.4: Comparison of the model accuracies for the waveguide filter.

Error Between the Best and Error Between the Best
3 the Second Best Rational Rational Approximation
% Approximations and the EM Data
=
% Standard Proposed Standard Proposed
@ Algorithm Algorithm A Algorithm Algorithm A
59 0.1950% 0.1097% 0.5647% 0.1976%
69 0.1374% 0.0497% 0.3486% 0.0736%
79 0.0166% 0.0097% 0.3245% 0.0135%
39 0.0100% 0.004% 0.3142% 0.0048%
20 20
(e
g2 g-20
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Figure 2.19: Evolution of the rational sub-model 5**(f)|z=x,., as Phase 1 progresses
through (a) 7, (b) 15 and (c) 25 iterations.
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Figure 2.20: Sub-model for region 2 developed using Phases 1 and 2.

Table 2.5: Reference plane and validation regions

z(inch) Tref Region 1 Region 2 Region 3
L, 0.706 1.152 0.891 1.413
L, 0.644 0.905 1.288 1.166
Lg 0.655 1.330 1.187 0.926
Wi 0.499 0.597 0.662 0.630
W, 0.463 0.496 0.594 0.561
Ws 0.445 0.510 0.543 0.608
Wy 0.441 0.474 0.539 0.572
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2, the order of the Taylor series’ for both implicit and explicit mappings are set to
E=n=23. Reducing the number (gq) of uniform frequency samples in the "z = .,
plane” or "region 2” reduces the CPU-cost. Here, ¢ = 9. Fig. 2.20 shows a result from
Phase 2 corresponding to region 2. The hybrid mapping not only shifts and scales
S§“%(f)|o=z,.; but also detects/changes the number of resonant frequencies from 6 at
Trep t0 4 at Xygyy.

In the case where an advanced genetic concept based 1D rational modeling algo-
rithm is used (see section 2.7), EM data in the order of N® will be required, since the
1D algorithm needs to repeat along all 8 input axes. The proposed multidimensional
algorithm B, on the other hand, will require N + ¢® EM data. Since ¢8 << N8, the
proposed algorithm B considerably reduces the number of EM data needed to develop
a satisfactory model. Table 2.6 compares the proposed algorithm and the brute-force
repetition of the 1D algorithm. The proposed multidimensional algorithm B uses 25
EM data to create the sub-model at & = @, and 9 EM data to generate a sub-model

for each additional validation region.

2.11 Summary

Enhanced frequency sampling algorithms for automatic development of EM-based
RF /microwave rational interpolants have been proposed in both single and multidi-
mensional problems. Starting with a minimal number of EM data and lowest-order
rational functions, these algorithms iteratively build surrogate models, which satisfy
user-specified model accuracies. The algorithms use relatively fewer samples than the
standard algorithms to achieve similar model accuracies, and are hence cost-effective.
Illustration examples show that in contrast to the standard algorithm, the proposed
algorithms avoid over-sampling around critical regions and significantly reduce the

number EM samples.
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Chapter 3

Space-Mapping-Based
Temperature Modeling of

Combline Resonators

3.1 Introduction

Frequency drift due to temperature changes is a key concern in RF/microwave filter
performance. This aspect is particularly critical in the case of combline resonators
(cylindrical cavities) used in a wide variety of RF/microwave systems. Several tem-
perature compensation techniques exist. One such techniques involves the use of
special materials with low thermal coefficients of expansion, e.g. invar. However,
such materials could lead to other problems such as low thermal conductivity and
high cost. It was also shown that for a combline resonator with given dimensions of
housing and resonator rod, perfect temperature compensation can be achieved at two
resonant frequencies through appropriate selection of materials for the housing and
the rod [36]. Another recent temperature compensation method [37] advocated use
of a shape memory alloy (SMA) actuator.

To be able to apply temperature compensation techniques such as the above to
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RF /microwave filter design procedures, accurate and fast temperature drift models
of combline resonators are essential. Simple relationships between the resonant fre-
quency of a combline resonator and the temperature exist [37][38]. However, these
empirical formulae are not accurate enough and fail to cover different rod structures
e.g. those in Fig. 3.1. There is a demand for a reasonably accurate model, which
takes into account all the geometrical aspects of a combline resonator.

A direct approach to address this problem is to use detailed theoretical models
such as the full-wave EM solvers. In practice, full-wave EM simulations tend to be
CPU-expensive and hence unsuitable for design/optimization tasks. This scenario
motivates research on novel EM-based CAD models [39].

This chapter starts with literature review of available empirical formulae and
numerical methods for temperature modeling of cavity resonators. Subsequently, a
space-mapping-based CAD model which is fast and accurate is proposed. The ro-

bustness of the proposed model is illustrated through numerical examples.

3.2 Conventional Modeling

3.2.1 Empirical Model

In this section, an empirical model for the frequency drift of a combline resonator
due to temperature is reviewed. In reality, it is the geometry of a cavity resonator
that changes with temperature. As such, all the lengths such as cavity height and
width change with respect to three factors: temperature drift, initial length and the
thermal expansion coefficient of the material. In metals, which are allowed to expand
freely, linear expansion can be assumed. It can be shown that the change in metal

length AL is given by equation

AL = aL;AT, (3.1)
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Figure 3.1: The gap capacitance C,qp and the equivalent screw capacitance Cyerey are
shown in (a) a Mushroom rod and (b) a straight rod resonator structure.
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where o, AT and L; are the thermal expansion coeflicient (CTE), temperature change
and the initial length respectively.

In some temperature compensation methods, designers try to achieve an effective
CTE, which is not naturally available. In such cases, two pieces of metals are attached.
Depending upon the length of each piece, the equivalent CTE for the combined part
lies within the CTE’s of the two attached metals. The equivalent CTE (¢) for such

a part can be calculated as

al bl
9 = +
a; + bla a;+b

g, (3.2)

where o and [ are the CTEs for two metals and a; and b; are the initial lengths
respectively.

According to [37], based on free expansion assumption, it can be easily shown
that the resonant frequency of a conductor-loaded rectangular cavity following a AT

temperature change can be calculated by

c\/af(1 4+ aAT)? +do(1 + aAT)? ; 1
1+ agdo(1 + aAT)? T Y AT

f(AT) = (3.3)

where f is the resonant frequency of the unperturbed resonator and ag, by and dg rep-
resent the length, width and height of the rectangular cavity resonator respectively
(bo < ap < dp). Although [37] claims that equation (3.3) achieves high accuracy for
different structures, i.e. reentrant coaxial resonator, disk resonator and half cut res-
onator, it can be easily observed that (3.3) does not distinguish between a conducted-
loaded cavity and a simple unperturbed rectangular waveguide cavity. Besides, EM
simulations in [36] also shows that (3.3) is not valid for other structures and does
not represent a reliable model for temperature behavior of combline resonators with

different structures e.g. mushroom.
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Figure 3.2: A mushroom rod cylindrical combline cavity shown with designable di-
mensions.
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3.2.2 C(Circuit Model

In this section, a simple equivalent circuit for a combline resonator is reviewed. An
idealized circuit model for a combline resonator is a coaxial transmission line, which
is loaded by three types of capacitances namely parallel plate (gap) capacitance Cyap ,
screw capacitance Csere and fringing capacitance Clringing [38] (See Fig. 3.1). Ac-
cordingly, the the quality of temperature modeling depends upon how accurately
these three capacitances are calculated. Since these capacitances are in parallel, the

total effective loaded capacitance can be calculated using

Ce = Cgap + Cscre'w + Cfringing- (34)

Different empirical formulae have been presented to approximate all the components
of loaded capacitance C,. Martin [38] approximates the parallel plate capacitance

Cgap by
0.008857d?

Cgap (pF ) = 4r 1

(3.5)

where r and d are the gap and the diameter of mushroom rod both in mm (See Fig.
3.2).

Nicholson [40] presents a simple linear function using Whinnery et al’s data [41],
for calculating fringing capacitance of a mushroom rod. This fringing capacitance

can be approximated over a certain range as
Cringing@F) = 002754 where 2— <05, (3.6)

where d, s and a are the diameter of mushroom rod in mm, cavity diameter and rod
diameter respectively as shown in Fig. 3.2.
Somlo [41] also presents a more accurate relationship for fringing capacitance

(Ctringing ) using Taylor series of degree two to fit the same set of data. The final
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Taylor expression is given by
d?
Cringing (pF) = 0.0013a +0.0164d + 0.0183—, (3.7)

where a and d are the outer diameter and mushroom rod diameter in mm shown in
Fig. 3.2. Equations (3.6) and (3.7) treat the resonator terminated in an open circuit
without the assumption of an end wall. The equations are only valid for relatively
large gaps (r) and if the gap is small, the effect of C,qp becomes more dominant and
hence the effect of Ctringing can be neglected.

The behavior of tuning screw capacitance is hard to be described mathemati-
cally. Depending on the position of the tuning screw which is not a known a priori,
a combline resonator shows various temperature behaviors. Despite this difficulty,
according to [38], reasonable accuracy can still be obtained by choosing one of two

possibilities given below.

1. The screw diameter (h) is small relative to the outer diameter of the combline
resonator (a). In this case, the effective height of the cavity can vary propor-
tionally with the length of the screw. In other words, adjusting the depth of the
tuning screw effectively changes the cavity height. This change in cavity height
leads to change in the effective gap and consequently changes the effective gap

capacitance.

2. The screw diameter is considerable in comparison with the outer diameter of
resonator. In this case, in addition to a change in the effective height of cavity,
the tuning screw results in a cylindrical capacitance (Cyerew) With the outer

walls of the combline resonator. This cylindrical capacitance can be calculated

by
2 €0

Cscrew = l_n'('a'jvy (38)
where v, a and h are the screw penetration inside the cavity, cavity diameter
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and screw diameter respectively (See Fig. 3.2).

After calculating the effective capacitance (C.), employing the above formulae, the

centre frequency can be determined using

1

= 21C.Zytan @’

(3.9)

where Z is the estimated characteristic impedance of the straight rod combline res-
onator, C, is the total loading capacitance, 8 is the electrical length of rod and f is
the centre frequency of the resonator. In a combline resonator with a straight rod,
Zy is given by

Zy = 60 ln(%), (3.10)

where a and k are the cavity diameter and rod diameter respectively. Martin [38]
modifies (3.10) and offers another formula for the characteristic impedance of a mush-

room rod combline resonator i.e.

Zo = 60 m%), (3.11)

Although this method is widely being used in industry for straight structures, it is

not accurate enough for other structures such as mushroom.

3.3 Motivation for Space Mapping

Although empirical formulae are fast and easy to compute, they are not accurate for
arbitrary rod structures such as mushroom. This imprecision is due to inaccurate
estimation of loading capacitances and not taking into account the fringing effects
[38]. Commercial EM solvers are alternatives to modeling the temperature behavior
of combline resonators. Although full-wave methods can accurately determine the

temperature behavior of combline resonators, they are slow and CPU-expensive. As
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Figure 3.3: Overview of space mapping {42].

such they are not practical for design and optimization, which require repetitive
simulations.

Space mapping [42] effectively connects the efficiency of empirical formulae (coarse
models) to the accuracy of the EM simulators (fine models). Space mapping yields
a surrogate model which is reasonably accurate and fast to evaluate. The generated

model then can be exploited by design and optimization algorithms.

3.3.1 Review of Space Mapping

The fundamental concept of space mapping is to match the response of the coarse
and fine models by establishing an input mapping as shown in Fig. 3.3 [42]. Once
again, coarse model is typically a computationally fast circuit-based model which
does not take into account detailed electromagnetic effects, whereas the fine model is
a CPU-intensive full-wave EM simulation.

In Fig. 3.3, #. € X, stands for coarse model parameters and x; € X stands
for fine model design parameters. X, C R#"*! and X; C R"*! are coarse model and
fine model parameter spaces of n design parameters. The corresponding vectors of m
responses (e.g., |Sa1| at m different frequency points) for the coarse model and fine

model are denoted as R, C ®™*! and R; C ®™*! | respectively. The original design
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problem can be formulated as
x} = argmin U(R¢(xy)), (3.12)
@y

where U is an objective function, e.g., minimax function with upper and lower spec-
ifications, and @} is the optimal design. The original idea behind space mapping is

to determine a mapping P between the fine and coarse model inputs i.e.
z. = P(xy), (3.13)

such that the response of the fine and coarse model match each other in the region
of interest i.e.

Re(P(zf)) ~ Ry(y)- (3.14)

Once such a mapping is developed, estimation of z} can be made using
x; = Pl (x}), (3.15)

without optimizing the fine model. In (3.15), % is the optimal solution in the coarse

space.

3.3.2 Implicit Space Mapping (ISM)

Implicit space mapping (ISM) [42] calibrates pre-assigned mapping parameters (P),
e.g., the dielectric constant and loading capacitances, through parémeter extraction
(PE) to match the coarse and fine models’ responses. The calibrated coarse model
is called surrogate model (See Fig. 3.4). In standard space mapping, the mapping
box and the coarse model are cascaded separately whereas is ISM the mapping is
embedded within coarse model itself.

According to [42], f) is the j** frequency response where the response of coarse
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Figure 3.4: Basic concept of ISM [42].

and fine model are going to be matched and PO s the vector containing the initial

pre-assigned parameters. PJ at the j** iteration is
PO = arg min ”Rf(mc,f(j)) ~ Ro(z, fO, P)||, i=1,2,...,m. (3.16)

After ISM modeling, the recalibrated coarse model (surrogate model) in ISM predic-
tion is optimized in order to find the new optimized % as in (3.17)

x; = arg min U(R(x., P")), (3.17)

z.€Xe

where X, is the parameter space of the surrogate model. This process (ISM mod-
eling and ISM prediction) continues until the stopping criterion is satisfied, e.g.,
convergence is reached or the satisfactory model is met. The basic concept of ISM is

illustrated in Fig. 3.4.

a8



Thermal
. Xorn <X 2
__’x linear exp=Xf Y Fine model 3
expansion
A
J Optimization |« Residual
Temp.
ROd CTE # 1 —_ '— ------ I::?'_ ............. |
Rod CTE #2 i Implicit C | 2
Cavity CTE t . oarse I R,
vity : mapping model :
i

parameters Surrogate model

Figure 3.5: The block diagram of the ISM algorithm implementedin as part of this
work.

3.4 Temperature Modeling Using ISM

A block diagram of implicit input space mapping, applied to temperature model-
ing of combline resonators, is shown in Fig. 3.5. In Fig. 3.5, x represents the
geometry/design parameters of the combline resonator at the lab ambient temper-
ature (25°C). The geometry parameters change with temperature variations. The
"thermal linear expansion” block calculates the expanded geometric values (Zesp)
using equations (3.1) and (3.2). The coarse and fine model simulation are carried
out and consequently the corresponding Residus over a frequency range of interest
[ € [fmin, fmaz] are calculated. Ry(Zerp) and Rs(@esp) represent the response of the
fine and coarse model over the m frequency points of interest with expanded param-
eters (Zeyp). As inputs, the magnitude and phase of Y/Z/S parameters matrixes
are considered as possible responses for Rf(@egp, f) and Ry(@exp, f). The calculated
Residus are inputted to the ”optimization” box to iteratively update the pre-assigned
mapping parameters.

From an implementation prospective, four steps are involved in setting up such a

space-mapping-based modeling algorithm.
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1. Suitable coarse and fine models are selected.
2. Suitable mapping function is selected.

3. The fine model is simulated which in this case simulation of combline resonator

in HESS is used.

4. The final step is parameter extraction, which is an iterative process leading
to computation of mapping parameters. At the end of the fourth step, the

mapping is updated and the surrogate model is derived.

A flowchart for space mapping programming is also shown in Fig. 3.6.

3.4.1 Coarse Model

Based on the equivalent circuit mentioned in section 3.2.2, the idealized coarse model
for a combline resonator is a coaxial transmission line cascaded with two parallel
capacitances namely Cg,p and Cierew (See Fig. 3.7). This coarse model is compu-
tationally fast but it does not consider the fringing effects of loading capacitances.
After setting up the coarse model, the input impedance seen through the 50 port
of coaxial transmission line is calculated and used in parameter extraction. In this
section, all the components of the coarse model are described.

The effective capacitance between the rod and the cavity Cyep can be calculated

using parallel plate capacitor equation

60A
Coap = = (3.18)
where ¢y, A and r represent permittivity of the free space, area of the parallel plates,
and separation between the plates respectively. The area of the parallel plates is

the same as the top area of the rod structure. Screw capacitance (Cserew ), Which is

caused by the penetration of the tuning screw into the rod, can be calculated using
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Figure 3.6: Flowchart of the space-mapping algorithm used in this chapter for tem-
perature modeling of combline resonators.
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the cylindrical capacitance equation

2mseg

Cscrew = Wv 3

(3.19)

where ¢, s, v, g and h denote permittivity of the free space, relative permittivity,
length of screw penetration, diameter of the rod hole, and diameter of the screw
respectively.

A coaxial transmission line (TL) is exploited to model the body of the cavity itself.
The value of cavity diameter (a) and the rod diameter (s) are matched with the coaxial
TL external diameter (D,) and internal conductor (D;) diameter respectively. The
height of the rod (e) is also set to the length of coaxial TL (L). According to [43],

the characteristic impedance for a coaxial transmission line is given as

Zp= \/g%@ (3.20)

where s and a are the internal and external diameters of the coaxial transmission
line. Once the characteristic impedance of coaxial TL and the estimated values for

loading capacitances are calculated, the input impedance of coarse model is given by

1
J W(Cgap + Cscrew)’

Zin = —jZytan c+e)+ (3.21)

_W_(
3 x 108

where Zy, e, and ¢ represent characteristic impedance, height of the rod, and height
of the mushroom section respectively. As mentioned earlier, since the geometry of
a combline resonator changes with temperature, the absolute geometrical values are

replaced by temperature-dependent symbolic expressions as shown in Fig. 3.7.

3.4.2 Fine Model

In this work, EM simulations of combline resonators based on Ansoft’s HF'SS are con-

sidered as the fine model responses. EM data from HFSS consisting of S-parameters
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Figure 3.8: S1P representation in ADS.

versus frequency is obtained in touchstone format. An S-parameter file, namely SnP
in Agilent’s ADS, can import such data. In SnP, n stands for the number of ports.
For example, Fig. 3.8 depicts a one-port S-parameter file component (S1P). It is
to be noted that S-parameters can then be converted into Z-parameters by library
functions of ADS or MATLAB.

There are two key factors to achieving fast and accurate fine model simulations in
HFSS i.e. assigning proper excitation and setting proper boundary conditions. First,
some aspects of excitation are discussed. In practice, combline resonators are usually
excited by a SMA Female Chassis Mount Receptable connector screwed from the
side to the body of cavity (See. Fig. 3.9). Since in the implemented space mapping
algorithm, the coarse model is excited as a coaxial TL, the implemented excitation
in HF'SS should model the same type of behavior. As such the wave port is located
on the bottom face of the combline resonator (See. Fig. 3.10) and all the other wave
port parameters are set to their default values to excite the first dominant mode at
the specified centre frequency.

Second, some aspects of boundary conditions are discussed. Assigning ”Perfect
E” boundary condition is necessary to model the perfect conductor effects on the
inner cavity wall (See Fig. 3.11). Alternatively, in order to simplify the simulation

using symmetric structure of combline resonator, there are other guidelines to de-
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Figure 3.9: Combline resonators excited by a SMA Female Chassis Mount Receptacle
connector screwed from the side to the body of cavity.

cide which type of symmetry boundary conditions to use. These symmetry boundary
conditions allows for the simulation of a small portion of a combline resonator which
results in less CPU and memory resources. If the symmetry is such that the E-field
is normal to the symmetry plane, a ”perfect E” should be exploited. In other cases
where the symmetry plane is such that the E-field is tangential to the symmetry
plane, a "perfect H” is assigned to the symmetry plane. In the case of a combline
resonator a ”perfect H” boundary condition is assigned to the symmetry plane (See

Fig. 3.12).

3.4.3 Mapping Function

The capacitance values calculated using equations (3.18) and (3.19) do not account
for nonlinear fringing effects e.g. fringing that depends on the geometry of the rod.

As such, it is necessary to adjust these approximate values to accurate ones. This is

65



*
#
@
&
L4
&

Ry .

s
¢
2

e,
{Ai;n?amso;h
i
/

Figure 3.10: Excited face (highlighted area).

accomplished using linear mapping given by
Cyap+ fringing = Tti0gqp X Coap + of fsetyqp (3.22)
and

Cscrew+fringing - Tatioscrew X C(scvﬂe'w =+ Offsetscrewa (323)

where ratios and of fsets are mapping parameters. Implementation details are shown

in Fig. 3.13(a).

3.4.4 Parameter Extraction

As mentioned earlier, responses of coarse and fine models are matched through a

parameter-extraction process. More specifically, ratiogep, ratiOsrew, 0ffsetyq, and
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Figure 3.11: The highlighted areas show Perfect E boundary condition assignment to
model the perfect conductor on inner cavity wall.

Figure 3.12: The highlighted area show the area which has been assigned by proper
symmetry boundary (perfect H).
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of fsetsorer in (3.22) and (3.23) are iteratively adjusted based on full-wave EM sim-
ulations from the fine model i.e. Ansoft’s HFSS. To implement this step, an opti-
mization framework shown in Fig. 3.13(b) has been setup in ADS. The goal for such
optimization process is to accurately match both magnitude and phase of Z;, com-
puted using coarse and fine models. Hybrid optimization option in ADS is employed.

The optimization problem can be formulated as

P* = argmin | R(@eaps f) — Bel@esp: 1, (3.24)
where P is _ -
T0t1044p
P, of fset g
P= 1 _ ff gap ‘ (325)
P2 'ratioscrew
| offsetscrew i

3.5 Numerical Results

For the purpose of illustration, a combline resonator with mushroom structure is con-
sidered. EM simulations have been performed using HFSS and resulting S-parameter
data is loaded into ADS wia an S1P file. Fig. 3.14 shows the matching of Z;, from
the coarse model (after parameter extraction and coarse model update) and the fine
model. The combline resonator is simulated for two different rod materials: stainless
steel and invar. The results show a +2ppm/°C error, which is satisfactory in terms of
model accuracy. Table 3.2 shows a comparison of the results from both simulations

and measurements.
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Figure 3.14: (a) Magnitude of the input impedance computed using the coarse (zIN11)
and the fine (zIN22) models (b) Phase of the input impedance computed using the
coarse (zIN11) and the fine (zIN22) models.
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Table 3.1: Geometry of the combline resonator.

Geometry mm
Cavity Diameter (a) 61
Cavity Height (b) 65
Resonator Mushroom Height (c) 3
Resonator Mushroom Diameter (d) 34
Resonator Base Height (e) 52.5
Resonator Base Diameter (s) 19.06
Resonator Hole Diameter (g) 13.8
Screw Diameter (h) 5
Screw Length (v) 15

Table 3.2: Comparison of numerical results from simulations and measurements.

CTE Cavity Aluminum 6061 (23.6 ppm/°C)
CTE Screw Brass (20.3 ppm/°C)

~ CTE Resonator SS (9.9 ppm/°C)

@ | Temperature Drift (Simulated) -6.714 ppm/°C

O | Temperature Drift (Measured) -4.93 ppm/°C

o~ CTE Resonator Invar (1.3ppm/°C)

@ | Temperature Drift (Simulated) +1.856 ppm/°C

© | Temperature Drift (Measured) +1.82 ppm/°C
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3.6 Summary

A CAD model based on space-mapping has been proposed. Using the systematic
steps of this methodology, temperature behavior of a variety of combline resonator
structures can be modeled. This modeling algorithm is suitable for compensation
designs where the type of material to be used should be determined. The resulting
models are accurate and fast around the expansion point and hence can be of practical

significance in RF/microwave filter design/optimization.
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Chapter 4

FDTD-Based Modeling of
Resonant Frequency for Combline

Resonators

4.1 Introduction

Low cost and easy manufacturing process have made combline resonators attractive
for RF/microwave systems such as filters and oscillators. A major challenge in filter
design using combline resonators is to achieve a frequency response which is indepen-
dent of temperature. This aspect becomes even more critical in the design of narrow
band filters. To be able to design filters with robust frequency response, one should
be able to accurately estimate frequency drift due to temperature.

Numerical solutions to Maxwell’s equations e.g. finite element (FEM) [45] and
and finite difference time-domain (FDTD) [46] are full-wave methods used in mod-
eling the temperature behavior of combline resonators. One of the difficulties in
FEM based methods is potential non-convergence owing to the large scale eigenval-
ues problem with tens to hundreds of thousands degree of freedom [44]. The other

problem of FEM is that simulating for a broad frequency range becomes prohibitively
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time-consuming. Alternatively in FDTD-based methods, the 3D grid generated to
solve for time-domain electromagnetic field pattern, is prohibitively large and uses a
considerable portion of memory resources. Besides, in order to achieve a frequency
response with a reasonable accuracy, FDTD based methods require lot of CPU time.

One of the recent works in temperature modeling of combline resonators has ex-
ploited the space mapping technique [39]. Although space mapping yields fast and
accurate models for combline resonators with arbitrary structures, temperature com-
pensation methods using space mapping models are limited to material optimization
i.e. the type of material to be used in the structure of a combline resonator. Al-
though material based compensation methods remain attractive, there is a growing
need for new structures that intrinsically possess temperature-independent behavior.
In situations involving generalized structures, application of FDTD and FEM be-
comes critical.

Mittra [46] proposed a fast FDTD method for cylindrically symmetric structures
where the 3D conventional Yee cell [47] structure is mapped into a 2D cell structure.
Day [44] integrated FDTD algorithm with rational functions (Padé expression) to
avoid simulation for large time intervals and yet maintain an acceptable accuracy.

In this chapter, an efficient FDTD method is combined with Padé expression to
model the cut-off frequency drift of the dominant mode due to small geometry vari-
ations. Such small geometry variations can indirectly represent the frequency drift
as a result of temperature. In other word, in this work, the temperature is not di-
rectly involved in the FDTD formulation of Maxwell’s equation but considered in
the geometry. In this direction, the work of [46] and [44] are integrated to generate
fast and efficient temperature models of combline resonators. The integrated method
efficiently works for temperature modeling and uses less CPU and memory resources
in comparison to other numerical methods such as FEM. The @ parameters can also
be extracted using the techniques represented in this chapter. In the context of filter

design, a higher @ will results in a better signal to noise ratio. Through examples, it
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is shown that FDTD algorithms integrated with Padé expressions accurately model

slight geometry changes (i.e. frequency drift) due to temperature.

4.2 FDTD Algorithm for Rotationally Symmetri-

cal Structures

4.2.1 Angular Variation Factoring

In [46], a simplified two dimensional FDTD algorithm for rotationally symmetric
structures is introduced. This simplified FDTD algorithm assumes that the angular
variation of electromagnetic fields has either a sin(m¢) or cos(me¢) variation, and
hence this angular behavior can be factored out from Maxwell’s equations. Using
generalized matrix operators [48] in the cylindrical coordinate system, the Maxwell’s

curl equations can be represented as

0 -3, xm/r E, (toperOs + Oy ) Hy
0, 0 O, Ey | =— (uou¢8t + O’m¢)H¢ (4.1)
:F'rn/r (3""7‘/"') 0 E, (Hoﬂzat + Umz)Hz
and
0 -9, Fm/r H, (e0€+0; + 0er) By
J, 0 Oy H¢ = (606¢3t + O'eqs)E¢ ) (4'2)
tm/r (Or./r) 0 H, (e0€,0; + 0¢2) E,

where J, represents a partial derivative w.r.t. one of r,z or ¢. In (4.1) and (4.2), p,
€, o and o, represent permeability, permittivity, magnetic and electric conductivity

respectively. In the following o,, and o. are set to zero for the sake of simplicity.
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4,2,2 The Mapped 2D Lattice

In view of equations (4.1) and (4.2), the fields at any arbitrary ¢ = ¢y plane can
be readily related to their corresponding value in the reference ¢ plane. i.e. ¢ = 0.
This helps reduce the original Yee algorithm in 3D to an equivalent 2D one, at the
¢ = 0. The work in [46] starts with the 3D Yee-Cell in cylindrical coordinates and
projects it into r — z plane resulting in the 2D finite difference lattice. A unit cell of
new projected cell is shown in Fig. 1. Such a unit cell possesses all six electric and
magnetic components along cylindrical coordinates. This 2D lattice is different from

the conventional 3D case in the following two ways:
1. (E,, H,) and (E,, H,) share the same geometrical locations.

2. E, is located at the four corners of the cell. However, as in the conventional

Yee lattice, H, still resides at the centre of the face.

4.2.3 FDTD Formulation of the 2D Lattice

According to [46], after disceretizing the two curl equations (4.1) and (4.2) in the 2D

cell in Fig. 4.1, the discretizied equations are given by

(1_ZLQ_§> maAt n+1/2,. .
.. 2¢g€r . €0€r z Z,J)
ErH(i, §) =L B0, ) — 705 = (
(o)™ ) e
ot [HMG5) - HZ PG5 - 1)
e 2 43
ardt Z
<1+2€05r)
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il 2e0€g n(s g
E¢+ (%J) =< M) E¢(17])
2eoe¢
At [ 7 ;4 i ) -
4 e HY2G,5) - BP TG, 5 - 1)
(1 + U¢At) ) Az
2e0€4 - .
At roon .o n ) ]
g HP V%0, 5) — HPPY2( - 1, 5) (4.4)
ALY Ar ’ .
(1 + 2:oe¢) - -
EM(i, ) =—2(’TZEQ(ivj)+ EOEZAt = T'(Z,])
() " ()
eertz {TiJrl/zHZH/Z(ivj) — T"—l/zHgH/z(i - Lj)} (4.5)
oAt A | |
(1 + 2606:) '
A At [E3(,5 +1) — E3(i, 5)
HPM2(, ) = HRY2(0,5) - ——— B2 (3, ) + [ ¢ ¢ ] *
/2 ) (i) = o B ) + = Az (4.6)
n+1/2; n=1/20; 5
Hy 20, 5) =Hy ™ (i, )
_ At TEG ) - BRGg)  ERiH19) - BRGA)] g
Hotiy Az n o
and
n .. n— ) ’ITIAt (4,7
HIV3,5) =HI (0, ) + o — B, )
HoftzTit1/2
At [rin B +1,5) - riEg(i, ) (4.8)
fothz Tit1/2r |

where 7; = Ar(i — 1/2) and ry/5 = ro = 0. The above equations are suitable for the
time domain iteration once the problem of singularities at r = 0 for E,, E, and H,

has been addressed.
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4.2.4 Handling Singularities at r =0

On the natural boundary r = 0 there exists a total of three components E,, Hy
and H, [46]. However, as seen of equations (4.4) and (4.5), only the components
tangential to this boundary, i.e. H, and H,, are needed to update the adjacent E,
and F, fields internal to the mesh. In order to compute F, at i = 1, Hy at ¢ = 0
is to be multiplied by a factor 7;_1/2 = 0. As such, computation of Hy at r = 0 is
not required. H, is the other element that must be defined on the natural boundary.
It may be noted from the Ey updating equation (4.4) at ¢ = 1, the value of H, at
i = 0 is required. In summary, only H, is needed at the boundary ¢ = 0 to update all
the relevant fields. Since in the dominant mode under consideration (T'E,(11)) the
angular variation along ¢ is zero, m in all of the updating equations should be set to
zero. Hence, H, is required to be evaluated at r = 0 for m = 0. The integral form of

Maxwell’s equations in the time-domain is

E dl = / /A . u— ds, (4.9)

where AS and AC' are the finite difference area and integral paths defined in Fig.
4.2. From (4.5), the discretized time update equation for H, at r = 0 and m = 0 is

given by
4At
Ptz Ay

H[2V =m0 - Eyl7 . (4.10)

4.3 Dispersion

In the time-domian simulation, the maximum time-step for stability [50] follows from

the requirement
1 1 1 7

e S ER v RN 7

(4.11)
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Figure 4.1: The projected 2D cell.

Ac

Figure 4.2: Integral path to evaluate H, at r = 0.
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where c is the speed of light. Since the original 3D cell is projected into an equivalent
2D cell, 1/(A¢)? factor is unavailable. In the absence of value for 1/(A¢)?, At is

determined by a trial-and-error. Equation (4.11) is simplified to

! L ]_1/2 (4.12)

oA e+ (oo

In (4.12), the regular dispersion equation is simply multiplied by a factor of k. to

compensate for the absence of undetermined 1/(A¢)? factor.

4.4 Excitation

In order to achieve the initial field transitions as well as the final standing waves,
the cavity must be excited with a band width limited signal. The bandwidth of
the excitation signal should be in the frequency range in which the cavity is being
analyzed. As suggested in [46], the Blackman-Harris (BH) window excitation function
is used in this work [49]. This window function provides a smoother transition of the
excitation function. There two tunable variables for BH : f. which indicates the
time position for the centre of the window function and Npq which represents the
half width of the BH window function. In practice, smaller values of Npqy result in a
broader frequency range. BH excitation is designed in a manner such that it is turned
on only during a designed time interval ¢, € [tc — Nhqif,tc + Npary). BH excitation in

the "on” period is shown in given by

3m(t, — tc))
Nhalf '
(4.13)

n T le n = tc
x(tn) = 0.35 + 0.48 cos(TIn =16y | (.14 gos( 2l = tc)

+ 0.01 cos
Nhaiy Nhaif ) (

In the context of temperature modeling, designers are interested to analyze the behav-

ior of a cavity within a narrow frequency bandwidth around the centre frequency. As

such, the BH excitation parameters (¢, and Npqy) should be adjusted such that the

80



excitation signal has a narrow band frequency spectrum at around frequency range

of interest.

4.5 Padé Expression

The afore-mentioned FDTD method results in a time-domain response. This time-
domain response is transferred to frequency-domain by performing a Fast Fourier
Transformation (FFT). The FFT, however, requires a large number of time samples
to calculate the resonant frequency with reasonable accuracy and resolution, and
this translates to a relatively long computation time. To overcome this limitation,
Padé expression is used in conjunction with the FFT to approximate the coarse
frequency response in a two step process [44]. First, the FFT is applied on the time-
domain data to obtain the frequency response. Second, frequency response is further
processed using Padé expression leading to improved accuracy. More specifically, the

second step involves fitting the frequency response into a rational function ¢.e.

s(w) ~ - (4.14)

w — W
n n

by adjusting the unknown coefficients and poles i.e. C, and w, in equation (4.14).
Once such poles (w,) are identified, resonant frequencies can be accurately deter-

mined. In Fig. 4.3, it is evident that the conventional FFT is unable to resolve two

resonance frequencies when they are close to each other. However, the new method

can easily extract the correct resonant frequencies.

4.6 Numerical Results

An in-house FDTD-based program is developed by integrating the rotationally sym-

metric FDTD algorithm [46] and Padé expression [44]. Temperature behavior of two
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Figure 4.3: Normalized frequency response of rectangular cavity with conventional
FFT and FFT/Padé technique [44].

cylindrical cavities in Fig. 4.4 is investigated. Responses generated using analytical
solutions, in-house FDTD program and HFSS are compared in Table 4.2. In both

examples, the cut-off frequency of dominant T Ey; mode is considered.

4.6.1 Simple Combline Resonator

A simple cylindrical cavity (an unperturbed combline resonator) is considered. To
evaluate analytical solutions to the resonant frequency of cylindrical cavities are avail-
able in the form of Bessel functions. Simple structures, such as one in this example,
are commonly used to validate in-house programs. A cross-section of the empty
cylindrical cavity and its dimensions are shown in Fig. 4.4(a). Analytical resonant
frequencies [43] for two temperatures for T'F,11) which is the dominant mode are
listed in Table 4.2. Simulation in HFSS is carried out and after generating 10907
tetrahedra, a satisfactory convergence is observed (max. Af < 0.001). Finally, the

in-house FDTD program is applied. The structure has been discretized by a 50 x 100

82



wg'Q =

z

r=0.15m

(a)

Figure 4.4: (a) Simple cylindrical cavity (b) Mushroom combline resonator.

Table 4.1: Geometry of the combline mushroom resonator.

Geometry mm
Cavity Diameter (a) 61
Cavity Height (b) 65
Resonator Mushroom Height (c) 3
Resonator Mushroom Diameter (d) 34
Resonator Base Height (e) 52.5
Resonator Base Diameter (s) 19.06
Resonator Hole Diameter (g) 13.8
Screw Diameter (h) 5
Screw Length (v) 15

cells along r and z respectively. The time stepping (At) for the FDTD algorithm is
set to 4.9532 x 10712 sec which is ten times smaller than the shortest wavelength under
consideration (A = 0.3m, f = 3GHz). t. and Nyay for Blackman-Harris excitation
are set to 3.7501 x 10~? sec and 2.8068 x 10~ sec respectively. In order to avoid a DC
value in excitation, the Gaussian pulse has been modulated with a 1.1GHz carrier.

In Fig. 4.5(a), a frequency spectrum of the field component E is illustrated at cell
[20,60] for the dominant T'E,;1) mode. In Fig. 4.6.(a) the amplitude of electrical

filed is shown and it can be easily concluded that the excited mode is TE,(p11). Re-
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Figure 4.5: (a) The cut off frequency of dominant T'E,qo1) mode for simple cavity
(b)The cut off frequency of dominant T E,q1) mode for mushroom Cavity.
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sults show that the in-house FDTD program converges much faster that Eigen-Mode
solution in HFSS as shown in Table 4.2.

4.6.2 Mushroom Combline Resonator

A combline resonator with mushroom rod structure is considered. Analytical solu-
tions to the resonant frequency of perturbed combline resonators are not available.
Hence corresponding entries in Table 4.2 are left blank. The cross section of the
mushroom cavity and its geometric parameters are shown in Fig. 4.4.(b) and Table
4.1 respectively.

Simulation in HF'SS is performed and after generating 7779 tethrahedras a sat-
isfactory convergence is met (max. Af < 0.001). The in-house FDTD program is
applied. The structure has been discretized by a 50 x 100 cells along r and z respec-
tively. The time stepping (At) for the FDTD algorithm is set to 1.4088 x 107°
sec which is ten times smaller than the shortest wavelength under consideration
(A = 0.3m, f = 3GHz). t. and Npggqy for Blackman-Harris excitation are set to
1.4088 x 1079 sec and 5.9694 x 10710 sec respectively. In order to avoid a DC term
in our excitation, the Gaussian pulse has been modulated with a 1.3GHz carrier.

In Fig. 4.5.(b), a frequency spectrum of the field component E at cell [20,60] is
illustrated for the dominant T'F, 1) mode. In Fig. 4.6.(b) the amplitude of electrical
filed is shown and it can be easily concluded that we have exactly excited TE,q11).
Results show that the in-house program converges much faster than eigen-mode so-

lution in HFSS as the results in Table 4.2.

4.7 Summary

FDTD method for solving Maxwell’s equations in rotationally symmetric geometries
has been integrated with Padé expression to generate a temperature model of combline

resonators. Through practical examples, it has been shown that a FDTD algorithm
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with a uniform grid distribution is fully capable of modeling temperature behavior of
combline resonators. The advantage of this work over other numerical solutions is the
required memory and CPU resources. This modeling technique can hence be applied

to temperature compensation methods where a geometry optimization required.
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Chapter 5

Conclusions

5.1 Overall Summary

In this thesis, enhanced frequency sampling algorithms for automatic development
of EM-based RF /microwave rational interpolants have been proposed for both single
and multidimensional problems. Starting with a minimal number of EM data and
lowest-order rational functions, these algorithms iteratively build surrogate models,
which satisfy user-specified model accuracies. Using the new proposed dynamic grid,
the algorithms use relatively fewer samples than the standard algorithms to achieve
similar model accuracies, and are hence suitable for recursive optimization algorithm.
Ilustration examples show that in contrast to the standard algorithms, the proposed
algorithms avoid over-sampling around critical regions and significantly reduce the
number EM samples and yet maintain the user-defined accuracy.

In this thesis, a new CAD modeling technique based on space-mapping has been
proposed. Using the systematic steps of this technique, temperature behavior of a
variety of combline resonator structures can be modeled. This modeling technique
is suitable for compensator design where the type of material to be used should be
determined. The resulting models are accurate and fast around the expansion point

and hence can be of practical significance in RF /microwave filter design/optimization.
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In this thesis, FDTD method for solving Maxwell’s equations in rotationally sym-
metric geometries has been integrated with Padé approximation to generate a temper-
ature model of combline resonators. Through practical examples, it has been shown
that a FDTD algorithm with a uniform grid distribution is fully capable of modeling
temperature behavior of combline resonators. The advantage of this work over other
numerical solutions is the required memory and CPU resources. This modeling tech-
nique can hence be applied to temperature compensation methods where a geometry
optimization is required.

All the discussed EM-based modeling techniques in this thesis have a potential to
accelerate the convergence of algorithms employed in RF and microwave design and
optimization. One way to enable this is to extract accurate derivative or sensitiv-
ity information from such EM-based modeling techniques and supply the numerical
derivatives to CAD algorithms. In addition, the proposed EM-based modeling tech-
niques when combined with evolutionary design methods, e.g. genetic algorithms,

could lead to even more efficient RF and microwave design and optimization.

5.2 Future Work

EM-based modeling techniques which account for high-order EM effects represents
one of the most recent trends in RF and microwave computer aided design. Such tech-
niques, including those presented in this thesis aim to achieve highest level of speed,
precision and automation, in an attempt to meet the challenges posed by the next
generation of high frequency design. These techniques are combined with state-of-
the-art CAD technologies creating numerous opportunities for industrial applications
at various stages of high frequency CAD including modeling, simulation and design.

The new dynamic grid concept possesses a unique quality which makes it attrac-
tive. This concept is ”generic” in the sense that it can be applied to other modeling

methods such as ANN to further reduce the number of training data. Once the dy-
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namic grid is integrated with other numerical modeling techniques e.g. ANN, it is
important that we continue to incorporate such concepts as they evolve into readily
usable tools. A key requirement is to develop plug-in software tools that can be em-
bedded into currently available EM simulator environments for carrying out circuit-
and system-level CAD.

The space mapping based temperature modeling technique has already led to ro-
bust designs in industry. However this technique can be modified and extended for
other structures as well as higher order filter designs with several combline resonators.
The in-house implemented technique can also be turned to a user-friendly tool avail-
able to RF /microwave designers.

Finally, the application of FDTD-based technique in temperature modeling of
combline resonators is confirmed to be accurate. The future work includes incorpo-
ration of FDTD-based technique with evolutionary design methods such as genetic
algorithms. Such evolutionary algorithms are capable of handling optimization prob-
lems with numerous goals and constraints including technical user specifications and
feasibility of designs implementation. Such algorithms have tremendous potential for
designing combline resonators which their frequency response is intrinsically indepen-

dent of temperature.
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