Anycast Routing in Wireless Sensor Networks

Peizhong Zhao

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Computer Science
at Concordia University

Montreal, Quebec, Canada

September 2007

© Peizhong Zhao, 2007

Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34658-7
Our file Notre référence
ISBN: 978-0-494-34658-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Anycast Routing in Wireless Sensor Networks

Peizhong Zhao

An emerging new type of ad hoc network, a wireless sensor network, has great potential
to be used in many application areas. While each sensor network application has its own
particular technical issues, network topology formation and multi-hop routing are two
problems that are common to and very important for all applications. The key question is
how to organize and keep the network in an optimal topology so that sensor data can be

reliably and efficiently sent to sink nodes.

In this thesis, we present a new approach to construct a wireless sensor network topology
with a long network lifetime and high data delivery rate. Specifically, we designed an
anycast routing protocol named Dynamic Anycast Routing to form anycast trees that
enable a simple and efficient routing scheme. The protocol was implemented using the
sensor network-oriented operating system TinyOS. The protocol was tested both in a
simulation environment and on real sensor hardware. Experiments using the TOSSIM
simulator demonstrate that our protocol can significantly prolong network lifetime and at

the same time maintain a high data delivery rate.

il

Acknowledgements

I would like to thank my supervisor, Professor Lata Narayanan, for giving me insightful
advice and guidance. Whenever I had questions, Dr. Lata Narayanan always helped me

kindly. Without that great help, my research and this thesis would be impossible to finish.
Also, I am grateful to Dr. William Atwood for giving us great help when we were

installing the sensor network hardware in the labs. His help made the installation process

as smooth as possible.

v

Table of Contents
List of Figures
List of Tables

List of Acronyms and Abbreviations

1 Introduction

1.1 Sensor network applications.......c.ccceeieveiieiieeiciceeeece e

1.2 Overview of the problem

1.3 MIOTIVATION. ¢ ettt et e e et e e e e e e e e e eaee e

1.4 Scope of the study

1.5 Contributions

1.6 Organization of the thesiS.........cc.ccveoiiiiiiiiieceeecece e

2 Literature Review

2.1 Ad hoc network topologies and routing..........ccovercerereniesieniecresieninsieneenns

2.2 Routing Algorithms for MANETc.ccooviininiicrcciccteeeeene
2.2.1 AODV Protocol......couieienieieiieiinienii et tete et cie s es

2.3 Topology Formation and Reactive Routing in WSN..........cccocniiininnees

2.3.1 Directed Diffusion
2.3.2 Rumor Routing

2.4 Topology Formation and Proactive Routing in Static WSN
2.4.1 Single base station tree topology formation...........eceevereerereeeenennn
2.4.2 ABS Routing Algorithm for WSNScoeiiieviinniininiesienreenenieenene

2.5 Topology Formation and Proactive Routing in Dynamic WSN

2.5.1 WMEWMA Algorithm and MT Protocolccocveeeeieienieeeninenn.
2.5.2 HAR Routing Protocol........cccocuriiiniiniicieniecnenenieene e

2.6 SUMMATY ..voiiiiiiiiiieiieeireeireeiteeeneesreeeteeesseeseesesesteessassssseensassssessaessneesssanss

3 Proposed Algorithm and Protocolcovoeieeuiiiiinicceeieie i
3.1 Traditional Anycast SChemMecooeeieveieiiiieececieeeee e
3.2 DeSired TOPOIOZY .vveviereeiiereeeie et esteertr et e stresteereersenesesesneassaeanseanenans

3.3 Routing Cost EValuation..........ceeceeerieieeeiecieiiesceiesreesee e esene e esnee s
3.3.1 Routing cost formula...........ccoccooiiiiiiiiiiiieeeee e
3.3.2 Choice of tUNing Parameters........oceeeieriieeieesieneereesienereeeeeeeeseenenes

3.4 Adding and Removing Base Stationsccccuecvecevceciniininieneneenicnenenees

..

...

2.3.3 SARP Routing Protocol........ccceveriiirceriiniiiieieiieieescneeeeieneenes

viii

3.4.2 Protocol running on base STAtioNcccceeveevieirieeveciieieere e eieeaeeeae e eere s 41
3.5 Adding and Removing Sensor NOAESccvveirveciniieriienieieiereneeeee e s eresnenens 42
3.5.1 INTHAIZATION.cviriieiecieiieteie ettt ettt ettt s e esbe b e sreeas et abesnansessnasas 42
3.5.2 Hop count and energy usage broadcast.........ccovurvrvvesercerirercrninesesiresosesaeenns 42
3.5.3 Neighborhood management...........c.coerieueierrnenieinineneecereseeeseee e 42
3.5.4 Parent SEIECHION.cceviiieieeeiieie ettt e ettt et e ke b e e nseanean 43
3.5.5 Dealing with node removal...........cccocioriririieniiniinircictieei s 44
3.6 SUMIMATY ..ouiiiiiieiiieiierteei ettt ettt e st e ettt asteeteest e b e besbasbasbeeabasbeaabessbaassanbanssesneenee 45
4 Design and IMplementationccocecceieiieiienteiniee ettt 46
4.1 Wireless Sensor Network Hardware.............cccecuceee. e 46
4.2 Operating Systems and Programming Languages for WSN............ccccovervrvrrerrnnnn. 49
4.2.1 TINYOS and NESC....oviiniiiiieriiiiecieecie ettt et esir et e e e sebsetbe e et e snseeasaaeasean 50
4.2.2 CONEIKL vttt et et eb et b e et et e e et st e b ebe e bt eab e st e sat et e enes 54
4.3 Simulators for Wireless Sensor Networks..........ccoeiiioiiiiiericiiiiciieiesiiecie i 55
431 TOSSIM. ettt a ettt ettt e st seeans e bt ebeerbenneabeenes 55
4.3.2 NS-2 SIMUIALOT.....eitiiiiiieit ettt et et sb et e bt e sa e et eebeeaees 56
4.4 Reversion Control SYSIEM......c.cciviiiiiiiieieiiieie et sie e seee et aeaee s 57
4.5 ATCRITECTUIE ...coeeiiiiietiiieieceet ettt ettt et b bt et e be e besaeeebeenbesaeeneenas 58
4.6 SUINIMATY ..euiiiriiiieieenitteseieesteesebteesstesassesastesesaaseseessssessesnsseaassessssasasesesssssessnseessnes 59
5 Experiments in a Simulation ENvironment............ccoocveevererensiesiesieeseseesseeseeeeesieeeeseeens 60
5.1 Topology Display TOOL.......c..eeiiiiiiiiieeetece ettt 60
5.2 RAIO MOEL.....oiiniiiiiiiireeseeeert ettt b e be s b e ennens 62
5.3 EXECULION RESUIL......cotiiiiiiieieie ettt ettt et et 64
5.4 Adding/Removing Base STAtIONS........c.covveriiriieirieireciecieeesieeneessresseeesseaasseesseeassaeas 67
5.5 Adding/RemoVving MOLES.......ccccceeiirrriiirrereietesteseseee e saeseeieseesseesessse s e ensesnenee 70
5.6 SUIMATY . ..couiieiiiiieteesteeie ettt ettt sat e st ss e b e e st s b e b e eseeesseesmbeeneeeneesnnseasaens 71
6 Experiments on Real HAardWare.........cccccoiuiiviiiiieiiieieciesinieeec e st een e seeesaseeseee e 72
6.1 Hardware SETUD.cc.coriiiiiiiieiete ettt ettt sb e s e s enees 72
6.2 Topology Display ToOL.......c.cccevvirinininieieicirer ettt 73
6.3 Radio Transmission Range and Motes Layout..........ccccevveceeveinninniinecenenennennen. 74
6.4 EXecution ReSUIL.......co.coiiiiiiiiiiieeece ettt 77
6.5 Adding/Removing Base Stations and Motes.......ccuecviviriueenereniernienneeeneenveeneesaneens 78
6.0 SUIMIMATYcoiiiiitieiiiee ittt eeteeeer e eesereeesaateeseseeeesabeeesaeseasneeeesareeeeesasanaeeesamnsereesans 80

vi

7 Performance Evaluation and COMPAriSON...........ccceeeveiriemeseeeiereiereseseecesseneeseeessennns 81

7.1 MEthOdOLIOZY ... oeeiiriiiiieeiiicte sttt et ete e te e sbestaesabessbessbeaeneessbeessneensaennsesn 82
7.2 Measuring network lifetime and data delivery rate..........cccoveveviieiiennciinciensenennnne 83
7.3 Tuning the Parameters o and P.......ccooeeeeiiiniinieniniieiesreiesie et 83
7.4 Performance Comparison of DAR, HC, and MT.......ccocoviiiiiiiiiniiiniceiie e 87
7.5 Analysis of the Test ReSUltS.....c.ccociviieiiiiniiicine ittt e e snesrees 89
7.6 Impact of Multiple Base Stations...........cccoerieerernincneineincie et 90
7.7 SUIMMATY ...ttt ettt sb e s s b bt ettt e bbb s b e s s e sasasbs e b e i 91

8 Conclusion and FULUIe WOTK.........ccccoiiiiiiineiiiiirereeeeteee s ceeiesve et e e eiseseesiaeeeennesrenns 92
231 o) FTea v:1s) 1\ OO OSSN PU USRS PSOSUPRURRUPIUPOUPPO 95
APPENAIX ettt ettt sttt e st sttt e b e e bt s et b saeeen e e nneeneesb e beeenee 101
LINStall TINYOS. ..ottt e et e st sse e ee e et e sanesaseeeneesareenns 101
[LInstall Subversion and retrieve DAR source code.........coovveercerenerienieecnicnenrenennes 102
III.DAR demo application in TOSSIM ..o, 104
a.Build the DAR demo application..........cocceiviiiiiiinieiiierieceerenee e e 104
b.Run the DAR demo appliCation..........cccevrrieererrienieneniiinie et 104
IV.DAR demo application on motes hardware...........ccocoeeeeenirriniinnniic e 107
a.Build the DAR application for Motes........ceeveriirieneciiniccicereeeereceee e 107
b.Load flash image t0 MOLES........ccveeverieieiieieriieeieee ettt 108

c.Set up Tmote Connect gateway for base Stations.........ccceeeeveererrrerienieenecnonnens 109
d.Run the DAR demo application 0n motes.........cocevereierreeerieneenennenneesnsienne. 110
e.Build and run the SurgeTelos Java tool ..o, 110
V.Results of Performance Evaluationc.ccooceeeniiinennnninnennienecneceeeeeecsveene 113

vii

List of Figures

Figure 1.01: Possible deployment of WSN for precision agriculture............ccocoveevecienennnne. 4
Figure 1.02: WSN in battlefield.........coooieriiiiiieieeieeeeeeeee e 5
Figure 1.03: A data-collecting WSN (with 3 base Stations)..........ccoeveeieveerveeeceieeeieeeneenn 10
Figure 2.01: AODV reverse and forward path formation..............ccooeveeveveeereceeeeeeeenenee 15
Figure 2.02: Static tree tOPOIOZY.....cuieieeieeieietierieeieeietietesie e ereeeereeae e sseeteeaeeseensasessaesesnsens 20
Figure 2.03: Physical network layout in ABSocvoouierioieeeieecece e 24
Figure 2.04: ABS routing Pathis........c.ccoiiouiiiuiieiieeieceeeceeeee ettt e ana e 25
Figure 3.01: Traditional Anycast SChEME.........ceceuveivieieitieiieeeceeeee et 31
Figure 3.02: Nodes Distribution and TOPOLOZY......c.coueiieieierieiiiieerieeeere e eeeeeesveeveeseens 32
Figure 4.01: Tmote Sky mote front Side..........cooeueuiiierieeieicicieeeereeceeeee et 48
Figure 4.02: Tmote Sky mote back Side.........cooieieeieeieiieieieieeeee e 48
Figure 4.03: The Tmote Sky motes used in this research........c.ccocooieieiinieiiescniencenins 49
Figure 4.04: A sample TinyOS application Wiring graph........cc.cccceceecereverieieeniereneseneenenn. 51
Figure 4.05: Architecture of DAR and DARAPP........coooveriieieeieicieieeneeeeeee e 58
Figure 5.01: DAR topology plugin in TinYViZ.........cccccoieriorieieieseinesieieiesiesieveseveeenens 61
Figure 5.02: Node 0 and its NEIZHDOIS.ccccuieiiiiriiierieieieeieeceiereiete e sea st a e 64
Figure 5.03: The formation of anycast trees. Nodes 0, 20 and 40 are base stations........... 65
Figure 5.04: Motes joining the anyCast trees.......ccererirteriineieninereteneeeiesieesresreseeeeeaees 65
Figure 5.05: FINal tOPOLOZYccviiiiriiriiriiiiieteete ettt s 66
Figure 5.06: Topology change following routing cost change...........cc.cocoveeririeneneccncnnnnn 67
Figure 5.07: Topology after base station node 0 is turned off.........c.occoverviineviininininnnccns 68
Figure 5.08: Topology after base station node 20 is also turned off..........coccocceeeininnne. 69
Figure 5.09: Topology after all base stations are turned back on........cceceevreneenncncniennnn 69
Figure 5.10: Topology after sensor nodes are removed.......coovvvverernnerencnineeneneenenes 70
Figure 5.11: Topology after adding new sensor nodes and the base stations..........c..co..... 71
Figure 6.01: Tmote Connect Gateway with two connected motes.......coceevverierrnrcrerererenn 73
Figure 6.02: SyStenm CONMECHION.cuieeteerierieteieeeetertereseetereseesresressesseesetesessesesesssesnnens 74
Figure 6.03: Physical layout of motes. Grid space of 1.5 feet........coccevvviniiiiiinininnnnns 76
Figure 6.04: Actual devices (motes and gateway) in the test.......occeeverieeniinneiniceiinnnnenas 77

viii

Figure 6.05: Topology rooted at base Station O...........cccceiereiiiienieiierieieiieiese e serereereniens 77
Figure 6.06: Topology rooted at base Station 20...........cceccveirieinieiencnreeneneteeereereeeees 78
Figure 6.07: After base station node 20 is turned off..........cccoeeiiiiiiiieiiiiiieeecreeee e 78
Figure 6.08: Topology after router node 7 is turned off..........cccooiiiiiiiienniiinceee 79
Figure 6.09: Topology after router node 7 is back and node 4 is turned off...................... 79
Figure 7.01: Performance of DAR with different Bccocooveveniviiiiinniiiicccecne 85
Figure 7.02: Performance of DAR with different o (f=0.8)ccccevviviriiiniinnininnnenne 86
Figure 7.03: Performance comparison of DAR (=0.8), HC, and MT..........cccceuevinnnnnn. 88
Figure 7.04: Average hop counts of DAR (f=0.8), HC, and MT..........ccoovnvvvinniinninins 89
Figure 7.05: Performance of DAR with 1, 2, and 3 base Stationsc.c.ccecevceevcrceereeveennens 91

ix

List of Tables

Table 1: DAR features compared to that of other protocols
Table 2: Berkeley Motes......cccovveieirerineninenienieieceessianaes

Table 3: Effective radio transmission range..........c.ceevvennene

...

...

...

List of Acronyms and Abbreviations

ABS Anycast Basestation Selection
AODV Ad-hoc On-demand Distance Vector
CVS Concurrent Versions System

DAR Dynamic Anycast Routing

GPS Global Positioning System

HAR Hierarchy Based Anycast

HC Hop Count

IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

IP Internet Protocol

LAN Local Area Network

MAC Media Access Control

MANET Mobile Ad hoc NETwork

MT Minimum Transmission

NesC Networked Embedded Systems C
NS Network Simulator

OSPF Open Shortest Path First

PAN Personal Area Network

RAM Random-Access Memory

RFID Radio Frequency IDentification

RIP Routing Information Protocol

ROM Read-Only Memory

RSSI Received Signal Strength Indicator
SARP Sink based Anycast Routing Protocol
TCL Tool Command Language

TCP Transmission Control Protocol
TinyOS Tiny Operating System

TOSSIM TinyOS SIMulator

xi

TTL Time To Live

UAV Unpiloted Aerial Vehicle

UDP User Datagram Protocol

WMEWMA Window Mean Exponentially Weighted Moving Average
WSN Wireless Sensor Network

xii

1 Introduction

Wireless Sensor Networks (WSN) are a new emerging type of ad hoc network. An ad hoc
network is a network without any fixed supporting infrastructure. It is the transitory
association among wireless devices which just happen to be in a common geographic
location. The unique characteristic of the network is that any device in the network has no
prior knowledge of other devices surrounding it. Connection and disconnection are
determined by the wireless communication quality among nodes, and their willingness to
participate in the formation of the transitory communication system. All nodes could be
mobile or fail suddenly and most of them rely on each other to forward packets to
destinations not directly in their own transmission ranges [31]. Meanwhile, wireless
communication quality among these devices could be changing any time. Due to the

above facts, the topology of the ad hoc network may keep changing accordingly.

A MANET (Mobile Ad Hoc Network) is a particular kind of ad hoc network in which
nodes are mobile. Typical nodes in a MANET are notebook computers. Usually the total
number of devices in a MANET is pretty small and these devices have very high
computing and communicating power. In contrast, a wireless sensor network is formed
by a large number of ultra low-power and low-cost sensor nodes placed in a specific
geographic area to monitor certain events and interests. A sensor node is the result of
seamlessly integrating sensing, special-purpose computing, and wireless communications
functionalities into one thumb-sized device. Placement of new sensor nodes may take

place on demand at any time at specified locations or at random in designated areas. Once

deployed, these sensor nodes must form a larger network by themselves without any prior
knowledge of the neighboring sensor nodes. Once the network is formed, sensor nodes
must work unattended to provide users meaningful data in real time. Recent advances in
computer science, wireless communication, and micro-electronics have enabled the

development of this kind of sensor node and network [23, 24].

1.1 Sensor network applications

Wireless sensor networks can be used in various applications such as environment
monitoring, home appliance controlling, and military battlefield surveillance systems. A
sensor network can be homogeneous or heterogeneous. A homogeneous type network
contains the same kind of sensor, usually in a very large quantity, to perform a single
monitoring task. On the other hand, a heterogeneous network consists of different types of
sensor and actuator hardware such as temperature sensors, humidity sensors, acoustic
sensors, GPS (Global Positioning System), and electronic relays. This type of network
can perform more sophisticated operations including monitoring and controlling, to some

extent resembling traditional feedback control systems.

Environment monitoring is one of the first seen wireless sensor network applications. A
sensor network can track the movements of wild animals; can monitor environmental
conditions such as pollution or forest fires; can detect local weather conditions. The
project Habitat Monitoring on Great Duck Island is one typical example of this kind of
application. “In the spring of 2002, the Intel Research Laboratory at Berkeley initiated a
collaboration with the College of the Atlantic in Bar Harbor and the University of

California at Berkeley to deploy wireless sensor networks on Great Duck Island, Maine.

These networks monitor the microclimates in and around nesting burrows used by the
Leach's Storm Petrel. ... As of mid-October 2002, nearly 1 million readings have been
logged from 32 motes deployed on the island” [34]. Precision agriculture deployment is
another example of an environment monitoring application. In the desired locations of the
field, many low-cost sensor nodes can be placed to form a wireless sensor network to
send real-time environment data such as soil temperature and moisture to the control
center of the farm [23]. Volcano activity monitoring is also a good example of wireless
sensor network application in the environment monitoring area. In August 2005,
researchers deployed wireless sensor nodes on the active volcano Volcan Reventador in
northern Ecuador. The sensor nodes are equipped with microphones and seiesmometers to
collect seismic and acoustic information on volcanic activity. There were 230 eruptions
successfully detected in the sensor network's 19 day deployment period [45]. From the
above examples, we can see that wireless sensor networks can be deployed very
efficiently in harsh environments where fixed infrastructure is very difficult to set up. The
twin features of wireless and low cost enabled users to monitor environment events
remotely that would not have been possible before. Since sensor nodes can be
strategically deployed, people can put them in locations where most attention is needed.
Since the sensors are supposed to be running for years unattended, battery life becomes a

very important criterion for this type of application.

Figure 1.01: Possible deployment of WSN for precision agriculture [23]

Military applications are another important application area for sensor networks.
Battlefield surveillance information is vital for modern military operations. A very large
quantity of small and smart sensors could be dropped from airplanes to be deployed in
battlefields to monitor the enemy army’s movement [23]. Since the sensors are small,
they can not be discovered easily. By using sensors networks effectively in battlefields,
many soldiers’ lives can be saved. The following is an actual example, as described in
[23], “As part of an experiment with the US marines, the motes (wireless sensor nodes)
were deployed to detect vehicle activity at an isolated intersection in the desert near Palm
Springs, California. A collection of nodes were dropped in a line along the side of a road.
They were dropped from a small UAV (Unpiloted Aerial Vehicle) that was flying
autonomously based on a GPS flight plan. The plane was pre-configured with a multi-
point flight plan which included a low-altitude “bombing run”. The motes were released
from approximately 100 feet along a track parallel to the road. Once deployed, the nodes
configured themselves into a multi-hop network and synchronized internal clocks so

discrete sensor readings could be correlated across multiple nodes. As vehicles passed the

network, individual nodes used magnetometers to detect deviations in the magnetic field
caused by metal contained in the vehicles. Each node determined the closest point of
approach for the vehicle and then assigned a time stamp for the vehicle event. Events
from each sensor were then communicated to neighboring nodes. Once a node collected 5
readings, it performed regression analysis to determine the velocity and direction of the

vehicle. The high-level vehicle track information was then logged in persistent storage.”

Figure 1.02: WSN in battlefield

“Motes dropped out of an airplane self-assemble onto an ad-hoc network
in order to monitor for vehicle activity at a remote desert location” [23]

Home appliance controlling and supermarket article tracking are other emerging markets
for wireless sensor networks. Zigbee [9] and RFID (Radio Frequency Identification) are

two examples.

When sensor networks eventually integrate with IPv6 technology in the future, the way
we view the world will be completely changed. All people will have the whole world’s
real-time all-dimension information at their fingertips. Due to limited computing power in
current available sensor nodes, it is still not feasible to implement IPv6, even IPv4, on
current wireless sensor networks [17]. But Moore’s law (rapid increase of computing
capability) will make that feasible soon. Foreseeing this future, the IETF (Internet
Engineering Task Force) has created a new working group named 6lowpan (IPv6 over
Low power WPAN) to define the transport of IPv6 over IEEE 802.15.4 low-power
wireless personal area networks [33]. In the future, billions of all kinds of tiny sensor

nodes will be deployed all over the world and each one will have its IPv6 addresses.

Realizing the great potential of wireless sensor networks, researchers all over the world
are now paying more and more attention to the relatively new and challenging research

areas in wireless sensor networks.

1.2 Overview of the problem

While each wireless sensor network application has its own unique technical challenges,
topology formation and routing are two common and very important issues facing all
sensor network applications. The problem here is how to organize and maintain the sensor
nodes in a desired topology so that sensor data can be routed to users using optimal paths
efficiently. In most wireless sensor networks, it is not possible for sensor nodes to
transmit messages directly in a single hop to the base station because nodes are far away

from the base station and their radio transmission range is very limited. Thus, routing

messages in a multi-hop fashion to their correct recipient is a complex task involving

various intermediate routing nodes. Topology formation and routing are not trivial tasks

in wireless sensor networks due to the following unique characteristics:

i)

ii)

iii)

vii)

viii)

Sensor nodes join and leave the network dynamically at unpredictable times.
Sensor nodes' radio communication is prone to collision if the number of
nodes in an area is large.

Sensor nodes' radio communication is sensitive to environmental noise from
wireless signals because the radio in sensor nodes operate at a very low power
(sensor nodes typically are AA-size or even button battery powered).

Sensor nodes' radio communication may be blocked by obstructions.

The topology must be formed quickly to provide service to users on time.
Routing must be fast so to provide real-time sensor data to users with short
latency requirements.

Sensor nodes must use efficient computing and routing algorithms to reduce
power consumption.

Sensor nodes have a very small amount of memory, usually in the range of
1KB-16KB RAM and 32KB-256KB Flash ROM, thus the routing algorithm

must have low memory requirements.

Topology formation and routing are two related issues. Once a topology type is designed

for the network, there are limited numbers of viable routing algorithms for that topology.

Wireless sensor networks present unique challenges to topology formation and routing

algorithms due to the aforementioned characteristics. Traditional algorithms developed

for Internet and Mobile Ad Hoc Networks are not suitable for wireless sensor networks.
Those algorithms are computing and communication intensive, thus they can not be
afforded in low-power wireless sensor networks. Also, those algorithms often are not
scalable enough to be used in large scale and dense wireless sensor networks. Since
wireless sensor networks are still a very young research area, there are no mature

topology formation and routing algorithms developed yet although many algorithms have

been proposed.

Topology formation and routing algorithms are to be judged not merely by their
simplicity or efficiency, but primarily by the resulting performance of the network. This
can be evaluated by several metrics, the most important of which are perhaps network
lifetime and data delivery rate. Network lifetime is normally defined as the time when the
first sensor node in a network runs out of battery. Data delivery rate is the percentage of
successful packets delivered. Existing protocols have not addressed these two issues

adequately.

1.3 Motivation

Anycast is a network routing problem in which data from a source node is to be routed to
one and only one of many possible destination nodes. The one destination node is chosen
according to certain merits such as number of hops, quality of links, security, etc. In
large scale wireless sensor networks, often more than one base station is desired because
of the dense nature of this type of network. If multiple base stations are installed, it is best
to connect them by a dedicated high speed communication channel so that they can work

in a coordinated manner to share collected real-time data from individual sensor nodes.

This way, a sensor node can simply send the data to any base station it views as best.
When a base station wants to retrieve data from specific sensor nodes, it can get the data
quickly from other base stations if they already received the desired sensor data. Thus,
this scheme can lead to great simplifications in routing algorithms running on sensor
nodes. Since sensor nodes have limited computing and communication power, this
simplification is appreciated and can prolong the life time of the sensor network. As such,
we can see that anycast routing is very suitable for large scale wireless sensor networks.
To our knowledge, there is not much research on this topic yet. Our goal in this thesis is
to explore anycast on wireless sensor network and its potential benefits in terms of

improving the performance of topology formation and routing algorithms.

1.4 Scope of the study

We study anycast routing in large scale wireless sensor networks with multiple base
stations. It is assumed that these base stations are connected by a high speed
communication channel such as an Ethernet network, satellite or microwave
communication channel. Sensor nodes communicate with each other and to base stations
using low-power low-speed wireless connections. We consider a typical data-collecting
application, that is, all sensor nodes send their sensor data to base stations periodically.
Sensor nodes do not accept requests from base stations. We focus on how to construct the
network topology and how to route sensor data from sensor nodes to base stations

efficiently.

Figure 1.03: A data-collecting WSN (with 3 base stations)

Our goal is to form the network topology with routing paths that are both short and of
high quality. When these two performance metrics are improved, the network can be

expected to exhibit short routing latency, high delivery rate, and long network lifetime.

1.5 Contributions

In this research, we designed an anycast routing protocol named DAR (Dynamic Anycast
Routing) to form anycast trees that enable employing a simple and efficient routing
algorithm. Our approach is completely different from traditional anycast algorithms tuned
for Internet or other traditional wired networks. The DAR protocol segregates network
traffic and greatly simplifies multi-hop routing. The protocol was tested both in a
simulation environment for sensor networks called TOSSIM and on real sensor hardware
Tmote Sky [2] motes, where it was implemented using a sensor network-oriented

operating system called TinyOS [1].

Performance of the protocol was compared against existing protocols. The simulation
results demonstrate that our protocol can prolong network lifetime significantly and at the

same time maintain a high data delivery rate.

10

An important aspect of our contribution is that all of our source code and source code
history of changes is publicly available from Subversion version control system [4] hosted

on www.Sourcelforge.net [3]. Details of how to use the source code is given in the

appendix. According to our past experience, rarely students put their source code under
version control system and made them publicly downloadable, thus, their work could not

be re-used by others.

1.6 Organization of the thesis

The rest of the thesis is organized as follow:

e Chapter 2 is a survey of related work. We studied current mainstream topology
formation and multi-hop routing algorithms and protocols.

e In Chapter 3, we explain the algorithm and protocol details of our proposed DAR
protocol.

e Chapter 4 presents the design choices we made and the implementation details of
our DAR protocol, including the programming environment and tools.

e Chapter 5 gives details of how we tested our protocol in the TOSSIM simulator.

e In Chapter 6, details of how we tested DAR on Tmote Sky sensor hardware are
explained.

e In Chapter 7, we evaluated the performance of the DAR protocol and compared it
with other protocols.

e Chapter 8 concludes our work and discusses the possible future research

directions.

11

2 Literature Review

Various topology construction algorithms and routing protocols exist for wireless sensor
networks. Some of them are adapted from early algorithms/protocols for Internet and

MANET. In this chapter, we survey the important ones that lead to our proposed DAR

protocol.

2.1 Ad hoc network topologies and routing

There exist various kinds of topologies for wireless ad hoc networks. The common types
are:

Bus

Star

Peer to peer
Mesh

Tree
Cluster tree

The widely used wireless MAC and PHY layers standard, IEEE 802.15.4 [46], supports
the star, peer to peer, and cluster tree topologies. The IEEE 802.15.1 standard, which is
based on Bluetooth, supports a star topology in its Piconet format, and supports a
combination of star with bus, mesh, and tree topologies in its Scatternet format. Currently,
most sensor nodes are using IEEE 802.15.4 or IEEE 802.15.1 radios. Usually, the
physical connectivity graph among nodes is a mesh topology. But the routing protocol
may only use a subset of the mesh topology to construct a desired topology, i.e., peer to

peer or tree, to simplify the routing protocol.

12

Unlike wired networks, which have relatively static topologies, topologies in wireless ad
hoc networks are constantly changing. This fact makes the routing protocols in ad hoc

networks more complex than Internet oriented routing protocols such as RIP and OSPF.

2.2 Routing Algorithms for MANET

Much research work has been done and many routing protocols have been proposed for
ad hoc wireless networks. Routing protocols in ad hoc networks are usually either
proactive or reactive though some of them are hybrid. Proactive routing protocols
determine routing paths before any data packet is to be sent. The routing path is
maintained throughout the network lifetime. The advantage of proactive routing protocols
is that packet delivery latency is low since routing paths are always available. However,
the routing path maintenance overhead will be high if the network topology is volatile. So
proactive routing protocols are suitable for networks where nodes are relatively
stationary. On the other hand, reactive routing protocols create routing paths only if
necessary. If no nodes have data to be sent, there are no paths maintained in any nodes. At
the time a node wants to send data packets, it will initiate a process to construct a routing
path to the destination node. Obviously the network latency is high in this type of
architecture since the routing path construction takes time. The advantage of reactive
protocols is that the route maintenance overhead is low, and thus it is very suitable for

networks in which nodes are moving constantly.

Some algorithms and protocols are suitable for special types of networks. For example,
Geographic Distance Routing (GEDIR) protocol requires that sensor nodes know their

geographic locations (e.g., by using GPS). Most protocols, such as DSDV, DSR, AODV,

13

and TORA, are general purpose and can be used in all MANET networks. Among the
general purpose protocols, AODV (Ad-hoc On-Demand Distance Vector) [35]
(RFC3561) is considered the overall best routing protocol. Its strength is that it can handle
the mobility and scalability reasonably well and at the same time maintain an acceptable

latency and memory consumption.

221 AODYV protocol

As its name implies, AODV is a type of Distance-Vector routing protocol with the
property of reactive on-demand route setup. A route is to be set up only when a node (the
source) wants to send messages to another node (the destination). The route from the
source node to the destination node is set up by using the Path Discovery procedure. A
Path Discovery consists of two links' setup: a backward link setup from all intermediate
routers to the source node and a forward link setup from all intermediate routers to the
destination node. Routers use these two links to carry the packets back and forth between

the source and the destination nodes.

The backward link is set up after the source node sends out a Route Request message
because the source node wants to find a path to the destination node. The source node's
neighbors will forward this message again to their neighbors. The Route Request message
contains the source node’s address and a Broadcast ID, which uniquely identifies the
message. Upon receiving this Route Request message, routers set up the backward entry
in their routing tables pointing to the source node. Duplicated messages received by any
node are dropped. Eventually, the Route Request message will reach the destination node

and the destination node will send back a Route Reply message to the source.

14

The Route Reply message will be travelling back to the source in the reverse direction
and during this time all routers set up a forward entry in their routing tables pointing to
the destination node. Finally the Route Reply message reaches the source node and the

path discovery process is finished.

imeout

Reverse Forward

Path Formation Path Formation

Figure 2.01: AODV reverse and forward path formation [35]

When the route is set up successfully, the source can start to send packets to the
destination node. The data packets do not need to carry the intermediate routers'
information since the route is already set up. This keeps the data packet overhead low
compared to the source routing protocols. The route is maintained by using timeout
detection. After the route has been idle for a while, the route will be considered broken by
routers. Routers can also generate a Route Error message and send it to the source node to

indicate that the destination node is becoming unreachable [35].

15

From the above characteristics, we can see that the AODV is a protocol suitable for
MANET but not sensor networks. The routes in AODV are peer to peer and are set up on-
demand. The peer to peer route is not suitable for sensor networks that require routes of
many to one (from sensor nodes to base station). It is best for sparse networks in which
most traffic is of a bursty type. It also assumes the presence of symmetric links in the
medium, and disregards any pair of nodes that don’t establish a symmetric link [36]. Also,

it uses memory consuming routing tables to record backward and forward paths.

2.3 Topology Formation and Reactive Routing in WSN

In this section, we review some of the recent routing protocols that have been proposed
specifically for wireless sensor networks. All the algorithms described here can deal with
dynamic sensor networks (i.e., nodes joining/leaving the network or just moving in the

network).

2.3.1 Directed Diffusion

Directed Diffusion [49] is a reactive and data-centric routing algorithm for wireless sensor
networks. It is reactive because the routing paths are established on demand. It is data-
centric because all communication is for named data. The Directed Diffusion algorithm is
designed to let sink nodes in a wireless sensor network collect desired sensor data from

sensor nodes.

The first step of routing path establishment in Directed Diffusion is by the sink node
initially and repeatedly broadcasting an inferest message to its neighbor nodes. This is

called an exploratory event. In Directed Diffusion, an interest message is a query that

16

specifies what kind of sensor data a user wants to collect. It also contains the transmission

rate at which the source node should send the sensor data.

After a node received an interest from its neighbor, it examines its cache to see if there is
an entry for this interest or not. If no entry is found, a new entry will be created for this
interest. This entry has the information of how to send back sensor data to the sink
through its 1-hop neighbor. The received interest message is also locally broadcast by this
node to a subset of its neighbors so that the interest message eventually reaches the
sensor nodes that have the desired sensor data. In Directed Diffusion, this step is called

gradient establishment.

When a sensor node detects a matching interest, it sends back the exploratory event to the
sink. Since each node has multiple neighbors, the messages will be sent along multiple
paths towards the sink. When the sink receives these events, it starts a reinforce

procedure to draw down sensor data from a particular neighbor.

We can see that Directed Diffusion is similar to the AODV algorithm in the way of
setting up routing paths. It is suitable for routing in query-response type of wireless sensor

networks.

2.3.2 Rumor Routing

Rumor routing [50] is another reactive data-centric routing algorithm for wireless sensor
networks. The network comprises densely deployed wireless sensor nodes by which

unique events are recorded. Rumor routing lets the user send a query from the sink node

17

to a sensor node that detected a specific event. The Rumor routing algorithm does not rely

on any geographic related criteria. The sensor nodes do not need to know their geographic

coordinates.

One unique feature of the Rumor routing algorithm is that it uses agents to travel the
network and propagate event information. The agent is a packet with a large TTL (Time
To Live) value. It has an event table and this table is used to synchronize the event
information with all sensor nodes the agent visits. In this way, distant sensor nodes learn
the events detected by other nodes. When a query is sent out from the sink node, sensor
nodes use the information gathered by synchronizing with the agents to route the query to

the target node.

Rumor routing is a kind of variant of Directed Diffusion. Compared to Directed
Diffusion, the Rumor routing algorithm maintains only one path between sink and target

nodes where Directed Diffusion uses multiple paths between the nodes.

2.3.3 SARP Routing Protocol

Chalermek Intanagonwiwat in [21] proposed a hop count metric-based tree topology
construction protocol named Sink based Anycast Routing Protocol (SARP). This protocol
borrows ideas from the AODV protocol to reactively discover a path between a base
station (sink) and a sensor node on demand. A routing path is established only when a
base station is willing to get certain kind of sensor data (also known as an interest) from
sensors. So this protocol is suitable for the query-response type sensor network, not for

data-gathering type sensor network.

18

In SARP, the route establishment is very similar to that in AODV. A sink broadcasts its
interest to all of its neighbors. The neighbors then rebroadcast the interest packet after
increasing the hop count field in the packet. This process is repeated and eventually the
interest packet is propagated to all nodes in the network. All nodes then know how far
they are from a sink and how to route a packet to a sink. Nodes keep only the information
for the nearest sink (having lowest hop count) when there are multiple sinks. The target
sensor node that can generate the desired interest will send back the sensor data using the

reverse path to the sink.

SARP assumes the low level MAC protocol is IEEE 802.11. Link breakage detection is
done by probing the underlying IEEE 802.11 MAC layer indication that a packet could
not be sent to its next hop node. A Route Recovery process will be performed at a node
that detects a route failure when it is trying to forward the sensor data to a sink. The Route
Recovery is done by the router node detecting the route failure, not the source sensor
node. The router node floods a Route Request packet through the network back to a sink

and the sink will re-establish a path to the router node.

2.4 Topology Formation and Proactive Routing in Static WSN

In this section, we review some of the proactive routing protocols that have been
proposed for static wireless sensor networks. None of the algorithms described here deal

with dynamic sensor networks.

19

2.4.1 Single base station tree topology formation

The basic topology desired in data-gathering wireless sensor networks is a spanning tree,
since the traffic is in the form of many-to-one flows [13]. The advantage of this topology
is that sensor nodes do not need to maintain routing tables. After the spanning tree
topology is formed, routing is a very simple task. Any node simply sends its message to

its parent and then eventually the messages reach the base station.

Figure 2.02: Static tree topology

Much work has been done to construct a spanning tree topology assuming that nodes are
not dynamically added to or removed from the network. This kind of topology generation
is a two-phase process: a flood initiated by the root node (base station), followed by a

parent selection process by all sensor nodes.

In the flooding phase, the base station broadcasts its hop count as 0. All of its neighbors
that hear this message learn that they are 1 hop away from the base station. Then, all these
nodes increase the hop count value by 1 and re-broadcast the message. If a node receives
a message containing a hop count value greater than the hop count it already learned, the

message is ignored. This assures that the final topology is loop free. This process is

20

repeated until all sensor nodes in the network learn their hop counts. Flooding is
commonly considered a costly operation because all nodes are involved in the
broadcasting process and thus energy consumption is high and it also creates many
redundant packets. But if no sensor nodes are added or removed dynamically during the
whole network lifetime, there is only one flooding process needed at the beginning to
generate the network topology. Thus, this flooding does not affect the network

performance significantly.

In the second phase, a sensor node selects a node with lower hop count as its parent in one
of a few mechanisms. In [13], Congzhou Zhou surveyed the commonly used mechanisms
for parent selection in the second phase of the topology construction, and summarized that

there are four ways for sensor nodes to select parents:

o Earliest parent selection

e Randomized parent selection

e Nearest-first parent selection

e Weighted-randomized parent selection

These mechanisms differ in the manner in which the parent selection takes place and
result in qualitatively different tree structures. The characteristics of the above four parent

selection schemes are summarized in the following paragraphs.

In the earliest-first parent selection scheme, a node selects the earliest node from which it
receives the first flooding message as its parent. So the metric used here for parent
selection is time. As a result, a node that broadcasts the flooding message first will be

selected as parent node by all of its neighbors that are one more hop away from the base

21

station. The implementation of this scheme is very simple and straight forward. The node
does not even need to track other up-level nodes that are sending the flooding messages to

it since they will not be considered parent candidates [13, 52, 53].

In the randomized parent selection scheme, a node randomly chooses one node from all
up-level nodes as its parent. All candidates have equal chances to be selected. The
implementation of this scheme is a little bit more complicated than the earliest-first parent
selection scheme since the node has to track all up-level nodes that sent the flooding

messages to it and then select one as its parent later [13, 52, 53].

In the third scheme, nearest-first parent selection scheme, a node will choose the
geographically nearest up-level node as its parent. Thus the metric used here is distance.
Usually, this should result in very good link quality among nodes since the wireless
communication distance is short. In this scheme, the node has to have a method to
measure its distances to the parent candidates. The commonly used method is to estimate

physical distance by measuring the RSSI (received signal strength indicator) [13, 52, 53].

Finally, in the weighted-randomized parent selection scheme, each parent candidate node
is assigned a weight according to its number of neighbors. A candidate parent node with
more neighbors will be assigned a smaller weight. Then the parent selection metric is
based on randomization of these weights. The result is that a candidate node with more
neighbors will be less likely to be selected as a parent by all of its next level neighbors.
The purpose of this scheme is to try to balance the number of children a parent node has.

In other parent selection schemes, a node with dense next level neighbors will have many

22

children, and conversely a node with sparse next level neighbors will have very few

children [13, 52, 53].

Finally in [13], these four schemes are evaluated in a simulator (the name of the simulator
and the details of the simulation configuration are not given) and the topologies formed
by these four schemes are found have the following different characteristics: “The
carliest-first and nearest-first schemes produce a data-gathering tree with low network
reliability, high data aggregation ability, and long response time to an event. Randomized
and weighted-randomized schemes, on the other hand, construct a balanced data-
gathering tree with high network reliability, low data aggregation ability, and short
response time to an event. In addition, the nearest-first scheme outperforms the other
three schemes in channel quality. In all cases the differences in performance are
exaggerated most when the communication range is large (when the densities and

therefore possible choices for each mechanism are high)”.

2.4.2 ABS Routing Algorithm for WSNs

Thomas Hou proposed an algorithm ABS (Anycast Basestation Selection) [12] to route
messages from a sensor node to a selected base station. The algorithm assumes the
network has a static mesh topology. The primary goal of the algorithm is to maximize the
static network life time, which is defined in [12] as the time when the first (any one)

sensor node runs out of battery power.

The ABS algorithm considers a two-tier architecture for wireless sensor networks. There

are three types of nodes in the network: micro-sensor node (MSN) at the lowest level for

23

actually monitoring the environment and generating sensor data, base station (BS) at the
highest level for displaying and storing sensor data, and the last, aggregation and
forwarding node (AFN), which is in the intermediate level between MSN and BS. MSN
nodes are deployed in groups at strategic locations for sensing applications. Each group of
MSN has a central AFN which is to aggregate and forward the sensor data from this
group of MSN to a BS. Using AFNs effectively makes the dense sensor network work
like a sparse network. Thus the deployment of the AFNs can greatly reduce the global

traffic because only AFNs are sending data to BS.

Y P
» w7 » >
. " o E A L% » - E«» -
o Bl e rj - - « » LN A [T
. 9 [N e T gk v » - i
- L;_ » e *H ¥ e s
¥ . E . » » »
U .
x : tt Ew :Et > s ‘Ef N
(g - > [
LY * E{p w L *
Fuk ¥ . ko . b L r’f »
. Base Station (BS) L ey
g e e tanon® ., e
i " vl »
P o ko e k ﬂ: :".}_",,
[e ™ E [
w F
* L L
& ’l : i r ¥ E i’_ll"ht
w0 Lir r" i » (it]
. e R »rEy
- !-b - . ﬂ”’
. b m _v-",r-,_ (" :"»;" Wy
e il L s
s 0 S . rthe W
) Lg% » L3 [
P » . »
ok N =)
B [i & } LY
Y Eé LR ;diph lg% b
=t : 1 ek Base Station (BS) .
* Base Station (BS) o
ST MR A 5
* . it ﬁbhp -
». t’[- - [»
» LE "ol
-* * SR
- Sty
B R 2 LS
[Aggregation and Forwardingl L+ £ ey F"» [r-,_
Node (AFN) wi L W tu’{"
X 5 o - i ST
* Micro—Sensor Node {(MSN) [o o
"W

Figure 2.03: Physical network layout in ABS [12]

Due to the fact that only AFNs will be sending data to BS, the ABS algorithm only needs
to consider the upper tier wireless multi-hop communications among the AFNs and base
stations. The key feature of the ABS algorithm is to balance the traffic from a given AFN
node, so that all intermediate AFN routing nodes evenly participate in the routing task.

Thus, the power consumption of each AFN is balanced and no one node would run out of

24

battery significantly earlier than others. When messages generated by an AFN must be
relayed to the same base station, the bit stream can be split into sub-flows and sent to the

same base station through different paths. The following figure illustrates the traffic split

from AFNs.
' o t
tk P A th i
< Y N
i e AFX § 4
7 9 = o
7 BYa2 AN t

g O e £ z[/ UF, \

AFN i l ! ;f t
o i l th

i
th | P
t B L t
; L
-y it =)
¢ A 1 A t
By BR2
i
4
t t
B t
1 0

Figure 2.04: ABS routing paths [12]

2.5 Topology Formation and Proactive Routing in Dynamic
WSN

Realistically, the topology in a sensor network is constantly changing because sensor
nodes will be added to the network anytime and some nodes will fail due to various
reasons such as battery running out, heavy noise in communication link, software bugs,
and hardware failure. Routing protocols for static wireless sensor networks may be useful
for research in labs, but only the topology construction algorithms and routing protocols

that can deal with those real-life issues could be deployed in real applications.

25

2.51 WMEWMA Algorithm and MT Protocol

In the context of a dynamic sensor network for data collection, Alec Woo [37] proposed
an algorithm WMEWMA (Window Mean Exponentially Weighted Moving Average) to
periodically monitor the link quality change and a protocol MT (Minimum Transmission)

to maintain a tree topology dynamically.

First, the WMEWMA algorithm computes an average radio transmission success rate
over a time window T. The formula for the success rate is: (Packets Received in time T) /
(Packets Expected in time T). The success rate is then smoothed by the EWMA algorithm
to get the final WMEWMA value. The higher the WMEWMA value, the higher the link
quality between a pair of nodes. The tuning parameters are T and the history of the
estimator. Link quality estimation messages are sent from each node at a fixed interval
driven by a periodic timer. This way, the estimator can calculate the success rate by

counting the number of received packets.

The authors consider link quality to be the most important criterion for selecting the
parent. The authors argue that, “with lossy links, as found in many sensor networks, link-
level retransmission is critical for reliable transport, as each hop may require one or more
retransmissions to compensate for the lossy channel. With links of varying quality, a
longer path with fewer retransmissions may be better than a shorter path with many
retransmissions. That is, the best path is the one that minimizes the total number of

transmissions (including retransmissions) in delivering a packet over potentially multiple

26

hops to the destination.” Thus, this approach can be said to use the Minimum
Transmission metric.

A node passively monitors packets sent by neighbors to perform neighbor discovery.
Each node has a neighborhood table in memory to keep track of its neighbors. The
aforementioned link estimation is then used to calculate link quality and determine which
nodes should be kept in the neighborhood table. Because the deployment of a sensor
network is often dense, a node usually can hear from many nearby nodes. For the sake of
keeping memory consumption low, only neighbors with good link quality are kept in the
neighborhood table. In the MT protocol, the link quality message includes a parent

address, estimated routing cost to the sink, and a list of reception link estimations of

neighbors.

Besides a periodic timer for broadcasting, there is another one running at a slower rate for
parent selection. Once in a while, the parent selection process is running to identify the
best one (with the highest WMEWMA routing quality to the base station) of the
neighbors as the node's parent. Sensor data from the node are put in a queue for sending to
the parent to forward to the base station. Since the MT protocol only uses the WMEWMA
metric and not the hop count metric as the criterion for parent selection, a node may select
a node with bigger hop count value as its parent. Thus it is possible to form cycles in the
MT protocol. To deal with this issue, whenever the node receives an incoming sensor data
packet from its child node, the source node address is checked and the corresponding
neighbor table entry is labelled as a child to detect cycles in parent selection. When a

cycle is detected, a new parent selection process will be launched to break the cycle.

27

The MT protocol has been implemented on motes and deployed in the UC Berkeley
campus [37]. It has also been used in commercial wireless sensor network systems such

as Crossbow's Environment Monitoring solution [54].

2.5.2 HAR Routing Protocol

HAR (Hierarchy-Based Anycast) protocol [11] is a protocol building a tree topology in
which the base stations are root nodes. The overall structure of the protocol is, to some
extent, similar to the mechanism used in Bluetooth scatternet topology formation such as

the one described in [47].

Unlike SARP, but like the MT protocol, the HAR protocol is a proactive routing protocol.
The tree topology is formed before there is any sensor data traffic. In the HAR protocol,
initially, when the base stations are powered on, they start the tree topology construction
by flooding Child Request messages to all nodes in the network. A sensor node caches a
few Child Request messages it received from its neighbors. These neighbors are then
stored in the node's Parental Candidate table. After that, each node selects the neighbor
node from which it first received a Child Request message to be its parent. We can see
that, in HAR, the parent selection metric is the time stamp, which is the same as the
earliest-first parent selection scheme. There is no evaluation of the link quality in HAR.
After a parent is chosen, the node also replies with a Child Reply message to the selected
parent so that the parent node is aware of the event. The formed topology will stay static

without any change unless there are sensor nodes that are joining or leaving the network.

28

Sensor nodes can be added to the existing network. A new sensor node attempts to find a
parent by using the parent discovery process. The new node broadcasts a Parent Request
packet to its neighboring nodes. Any node in the existing tree that heard the Parent
Request packet sends back a Child Request packet to the new node. The new node then
caches these replies and also records these neighbors in its Parental Candidate table.

Again, the first node that replies to the Child Request is chosen as the parent.

When a node previously in the tree fails, the fact will be detected when its children nodes
try to send sensor data to it for forwarding. The HAR protocol assumes that the low-level
MAC protocol provides a mechanism to detect link breakages. When the sensor data from
a node cannot be sent successfully to its parent, the child node detects it and then chooses
a new parent from its Parental Candidate table. If no available node can be chosen as a

new parent, the node executes the joining algorithm described above.

2.6 Summary

In this chapter, we surveyed several algorithms and protocols that are related to our
research work. Some protocols are proactive and some are reactive. Furthermore, some
dynamically evaluate and change network topology according to certain metrics while
others do not. The difference in the characteristics make them suitable for different

application scenarios. These existing algorithms and protocols lead us to propose our own

algorithm and protocol.

29

3 Proposed Algorithm and Protocol

In this chapter, we propose a new anycast protocol called DAR (Dynamic Anycast
Routing) for dynamic wireless sensor networks. We are interested in applications that
require regular reporting of sensor data by sensor nodes, which moreover, may join and
leave the network at will. This implies the use of a proactive topology formation

algorithm, which must deal with issues of dynamicity. The characteristics and

requirements of the sensor networks we consider are summarized below:
e Large scale homogeneous network.
e The network is for data-gathering application.
e Nodes may join and leave the network at any time.
e Dense node deployment.
e Lossy radio links.
e Multiple base stations and they may join and leave the network at any time.
e Sensor data can be sent to any of several available base stations.

e Sensor data is sent to a base station periodically from sensor nodes.

We do not consider nodes that are mobile in this thesis.

3.1 Traditional Anycast Scheme

The anycast problem in our sensor network is to find a method to send sensor data from
every sensor node to exactly one of the base stations. In a traditional anycast scheme, a
source node has to discover all possible routes from it to target destinations, and then

choose one best route from them. In wireless sensor networks, the available routes from a

30

sensor node to base stations are subject to change at any time, so the route discovery has
to be done whenever messages are to be sent. For a periodical data-gathering application,
this kind of route discovery overhead is too high. Moreover, this onus on the source node
makes anycast routing computing-expensive and memory-hungry. Because the source
node in a wireless sensor network is a tiny sensor, which lacks this kind of computing

resource, the traditional anycast scheme is not suitable for sensor network applications.

® ®
® @ ® ® ® ®
° e
AT - T
® e o e
L3 L ® PS d/'./’ -
- e ® o m L) -
@ s

Figure 3.01: Traditional Anycast Scheme

3.2 Desired Topology

We consider a tree topology as a favorable topology for wireless sensor networks
especially in data-gathering applications. From the literature survey, we can see that the
tree topology is chosen in many protocols such as SARP, HAR, and MT. The merit of
this topology is that the routing is very simple: sensor nodes just need to send their data to
the single parent and the data will reach the base station. Since the application is a data-
gathering type application in which sensor nodes send data periodically, the underlying

protocol has the chance to monitor the network status periodically and then maintain the

31

network in the tree topology. Thus, route discovery is not needed when sending sensor
data. This is an advantage compared to AODV, which needs to discover a route whenever
messages are queued to be sent. We adopt the idea of building multiple trees rooted at
base stations from the HAR [11] protocol. In this way, the anycast routing scheme is
achieved very simply and efficiently. Figure 3.02 is a sample of node distribution and

network topology in HAR and DAR.

2590

200

150

100

i

Y Coordinate

501

X Coordinate

Figure 3.02: Nodes Distribution and Topology [11]

There are some sensor networks in which sensor nodes are mobile. However, in most
sensor network applications, the sensor nodes do not move to new locations frequently,
thus, a proactive topology formation approach is better than the reactive approach.
Besides that, since sensor data are sent to the base station periodically, the reactive

scheme will be having a much higher overhead. For these reasons, the DAR protocol

32

constructs the topology proactively similar to the schemes used in the MT and HAR

protocols.

3.3 Routing Cost Evaluation

The core of a protocol for tree topology formation is selecting a node's parent according
to a certain routing cost metric. The routing cost from a sensor node to the selected base
station is the sum of the routing cost of its parent and the local routing cost (the routing
cost from the sensor node to its parent). In traditional Distance-Vector routing protocols,
hop count is the only metric. Hop count is also considered the only metric in the SARP
and HAR protocols. We argue that lossy links constitute the actual situation for real
sensor network deployment, so that link quality must be considered as a metric as well.
The MT protocol considers the link quality as the only metric for route selection. A better
approach 1s to consider both of them. This is the approach that will be used in our DAR

protocol.

Like the WMEMWA algorithm used in the MT protocol, in our protocol, each node in the
network locally broadcasts its known routing cost to a base station periodically. Each
node also calculates the local routing costs according to the observed local link quality to
its neighbors. Its neighbors thus infer their routing costs according to the above two
parameters. The routing cost propagation process is a recursive process starting from base
stations. So the most important issue in determining the routing cost is evaluating the
local link quality. Estimating local link quality in wireless sensor network is a complex
and time consuming process in itself and is still a hot topic for research [10]. We are not

concentrating deeply in studying the link quality estimation, rather, our DAR protocol

33

will be using an algorithm derived from the WMEWMA [37] algorithm. We consider the
WMEWMA algorithm to be a good local link quality evaluation scheme. The merits of
this algorithm include the following:
e Estimating link quality by observing packet success and loss events, the scheme
fits into periodical data-gathering applications well.
e Takes advantage of the broadcast nature of the wireless medium to passively
estimate link quality by snooping on the channel.
¢ Simple implementation.
e Low in memory consumption.
e Reacts quickly to potentially large changes in link quality.
e No dependency on specific hardware such as RSSI (Received Signal Strength
Indicator), so it can be used on any hardware platform. Using RSSI to measure
local link quality is a widely used method, but it relies on the availability of the

hardware in the radio.

The drawback of the MT routing protocol is that it is not suitable for unreliable networks.
We define an unreliable network as a network does not need to re-transmit any lost
packet. In other words, an unreliable network uses a UDP type datagram communication
scheme. In contrast, the MT protocol assumes the upper layer applications require TCP
type reliable communication. We argue that the unreliable transmission scheme is more
suitable for data-gathering applications for the following two reasons: 1) sensor nodes are
densely deployed. 2) sensor data is read periodically. If a sensor reading from a specific

node at a specific time is not received, the sensor data management/analysis system

34

(usually a database system running on a resource rich server) can use some kind of
interpolation operation to calculate an approximate value upon user’s request. The
interpolation operation is possible because the sensor data from the sensor’s neighbors
and the sensor data from the same node at different times are available. In summary, an
unreliable network is acceptable by taking advantage of the fact there is some redundancy

in the collected sensor data.

A router node consumes more energy than a non-router (leaf) node or a router node with
fewer children because a router node has to forward all messages from its children. A
shortcoming commonly seen in previous protocols is that a node with good radio link
quality will be always selected by its neighbors as their parents and thus its battery will be
consumed rapidly. The result is that a node with better radio link quality runs out of
energy much earlier than nearby nodes with slightly worse radio link quality. To resolve
this uneven power consumption problem, we borrow the idea of wear-leverage from the
smart control firmware for Flash EEPROM. A Flash chip contains several sectors and
each of them can be erased/written independently. The total number of times a sector can
be erased/written is limited. In a typical usage scenario without wear-leverage firmware, it
is the first séctor will be always used while the others rarely used. So the first sector will
be worn out very quickly and the chip is considered to be at the end of its life. When a
wear-leverage firmware is used, all sectors will be used evenly because the firmware will
use others sectors when it detected the first sector have been erased/written too frequently.
Thus the life of the chip is prolonged significantly. Inspired by this feature seen in Flash

control firmware, we propose that the energy that has been consumed by a node should be

35

considered as well at the time of forming the network topology. If this metric is
considered, when a node has been in a router role for a while, the protocol should increase
its estimated routing cost so that its nearby nodes will have a chance to be router nodes.

This way, the energy consumption by all nodes will be balanced, which should prolong

the network life.

3.3.1 Routing cost formula

Based on the above reasons, we propose a new routing cost metric used in DAR based on
three variables: hop count, local link quality, and energy. In DAR, each node locally
broadcasts its hop count and energy consumed, to its neighbors. This node is then a Parent
Candidate to its neighbors. Each of its neighbors calculates its routing cost according to
the following formula. Let P, P, ... P, be the Parent Candidates of a node v. Then, the
routing cost for v via Parent Candidate P; is denoted R, (P;) and is given by the following

equation:

36

Where:

R.(P) =H(P) +a*(p*L,(P)+(I-B) *E(P))

Rv (P i): the total routing cost from node v to a selected base station through this

Parent Candidate P..

H, (P ,) the hop count of this Parent Candidate P;. The range of this value is from

0 (a base node) to 15 in our simulation.
L, (P i): the loss rate of radio link between this node v and the specific Parent

Candidate P;. This value is calculated using the WMEWMA algorithm and is
represented as a percentage of packet loss. The value range is from 0% (perfect
radio link) to 100% (unreachable). The common practice is to set a threshold for
the loss rate and if the radio link is too weak, the link is not to be used for routing.
We set the threshold to be 80%, that is, if the loss rate is larger than 80%, this link

is not considered.

E (P ,) the energy that has been consumed by this Parent Candidate. This value

is in the range of 0% (new battery) and 99% (unusable battery).

Ol: tuning parameter to control the weight distribution between the hop count and

a combined measure of link quality and energy consumption in the final routing

cost. The value of itis 0, 1, 2, ... etc.

. ﬂ : tuning parameter to control the weight distribution between link quality and

energy consumption. The value is in the range of 0% to 100%.

37

When the tuning parameter o is 0, the above DAR routing cost is the same as the

traditional pure hop count-based algorithms.

When the tuning parameter a is not 0, evaluation of link quality and energy consumption

is enabled in the calculation of the final routing cost. From the above value ranges, when
o is 1, we get the value range of the DAR routing cost R, (P)) :

Minimum(R, (Py)) = H(P,), in which case the radio link is perfect and the battery
is new.

Maximum(R, (P;)) = H(P;) + 1, in which case the radio link quality is the
threshold value and the battery is almost completely used up.

Note that R, (P,) is always <H(P,) + 1

This routing cost metric is designed so as to let the routing cost be mainly based on hop
count. Using hop count as the main routing metric has the advantage of forming a loop-
free tree topology quickly and the network tends to have a lower average hop count. If
a=1, the maximum value of DAR routing cost is less than H+1 so that a router that has
lower hop count value will always have a lower routing cost. The other two variables
radio link quality and energy consumed are used to let the nodes with the same hop count
values be chosen as routers fairly and evenly. The purpose of this design is to maximize
the network lifetime. By using values of a>1, we enable the choice of longer, better

quality paths over shorter, lower-quality ones.

38

The variable E (energy consumed) represents the willingness of a node to act as a router
according to its energy consumed. The energy consumed by a node is modeled by its

radio activities because a major part of energy consumption is radio transmission.

The tuning parameter B is designed to distribute the weight between the link quality and
energy consumption. When § is 0%, link quality is not counted in the routing cost
evaluation, and, when B is 100%, energy consumption is not counted in the routing cost
evaluation. Various values of o and P have to be evaluated to find the optimal
configuration to let the network achieve the best performance according to the metrics

desired in the application.

3.3.2 Choice of tuning parameters

In this thesis, we are interested in both increasing the network lifetime and well as
increasing the data delivery rate. Choosing a=0 gives a pure hop count based protocol
(called HC from now on). However, while the networks generated by the HC protocol
have shorter routing paths and longer network lifetime, the data delivery rate is very low.
The reason is that the HC protocol prefers parent candidates closer to base stations and it
does not consider the link quality of the routing paths. On the other hand, the MT protocol
always chooses nearby parent candidates with high level of link quality. Thus, the routing
paths are longer but the delivery rate is high. Longer routing paths make the nodes near
the base station heavily loaded and this makes the network lifetime short. It is clear that if
we want to design a better algorithm, the merits from both the HC and MT protocols have

to be combined.

39

When the parameter a is large enough, a node with higher hop count and lower loss rate
has the possibility to have a lower final routing cost than a node that has lower hop count
and higher loss rate. Of course, in this situation, the protocol is no longer hop count based.
Assuming that a difference in link quality of / is enough to overcome the advantage of a

routing path shorter by % hops, in a network with » nodes, the value of o should therefore

be chosen as

o>

h
(B*1)
Note that 4 should probably be a function of the size n of the network. In a small
network, a difference at most one hop between two routing paths may be considered in
choosing a larger path over a shorter path. But in a longer network, it may be more
acceptable to choose a path that is even 3 hops longer in the interest of a higher data

delivery rate. The exact values of / and /4 will be determined experimentally, as shown in

Chapter 7.

3.4 Adding and Removing Base Stations

Base stations are the target nodes of our anycast routing protocol. The MT protocol was
working with only one base station. HAR protocol does not deal with the issue of
dynamically adding or removing base stations. One of the goals of our protocol DAR is to
allow base stations to be added and removed any time and the network topology will be
changed automatically. Supported by this capability, the user can power up/down a base
station for maintenance without service interruption. Mobile base stations that make

periodic stops can also be supported by this capability.

40

3.4.1 Network address allocation

Like most protocols for current wireless sensor networks, our protocol uses simple
numeric numbers as addresses for all sensor nodes and base stations. For simplicity, DAR
allocates one base station address for every fixed number (let it be N) of sensor nodes. So,
the addresses of 0, N, 2N, 3N, etc. are allocated to base stations. Other addresses are for

sensor nodes.

3.4.2 Protocol running on base station

When a base station device is powered on, it first checks its network address. If the
address is a base station address, it executes the base station algorithm. For a base station,
its hop count and routing cost are fixed to the minimum value of 0. The algorithm

executed continuously by the base station is:
e Broadcast periodically: hop count =0, energy consumed = 0.
e Constantly listen on the wireless receiving port.

o If any sensor packet is received over the air, forward it to the local data collecting

port.

There will be other programs listening on the local data collecting port to store and

process the sensor data.

When a base station is powered down, the algorithm running on sensor nodes will detect

the disappearance of the base station after a while and start to look for a new base station.

41

3.5 Adding and Removing Sensor Nodes
3.5.1 Initialization

When a sensor node is turned on, it will execute an initialization routine and then try to

find a nearby node as its parent to join an existing tree.

The initialization process is as follows:
e Set its hop count to infinity (-1 in our simulation).
e Read battery meter.
e Set its parent to NULL.
e C(Clear neighbor table.

e Start a Periodic Transmission Timer.

3.5.2 Hop count and energy usage broadcast

The purpose of the Periodic Transmission Timer is to broadcast the node’s hop count and
energy consumed to the nodes nearby so that they can calculate the link quality between
them and this node. The broadcast here is a local broadcast, not a flooding, since the
message is not forwarded by any node that heard it. So the Periodic Transmission Timer
executes the following task:

e Broadcast the hop count and energy consumed periodically to nearby nodes.

3.5.3 Neighborhood management

Upon receiving any packet over the air, the source address is examined to determine

whether the node is a known neighbor or not. A known neighbor is a nearby node that has

42

already been recorded in the neighborhood table. In a dense sensor node deployment
application, a node may be able to receive from many nodes. However, only a small
number of them can be kept in the neighborhood table since sensor nodes have limited
size of memory. When the neighborhood table is full, the node with worst link quality
metric will be removed from the table. The neighborhood management module executes
the following protocol:
Examine the source address
If (the source node is not in the neighborhood table)
If (the neighborhood table is not full yet)
Insert the source node to the neighborhood table
Else
Find the node with the maximal routing cost in the neighborhood table
Replace this node with the new node
Else the source node is already in the neighborhood table
Calculate the local radio link quality to this node

Calculate the total routing cost using the DAR algorithm

3.5.4 Parent selection

Once in a while, a parent selection algorithm is executed to choose a node in the
neighborhood table to be the parent for routing sensor data. To allow the routing cost
estimation algorithm to calculate a relatively stable link quality of its neighbors, the
parent selection interval must be much larger than the interval of routing cost broadcast.
In other words, the parent selection algorithm is running at a slower rate than the link

quality estimation algorithm. Only the neighbor nodes with local link quality higher than

43

a certain threshold are considered candidate parents. The node with the lowest routing
cost among the candidate parents is chosen as the parent. When a parent is selected, all
sensor readings will be sent to this parent periodically. Upon receiving a sensor reading
packet, the parent node will forward it to its own parent and eventually the data reaches a

base station.

As we stated before, when the parameter o is larger than 1, the protocol is not hop count
based. In this case, it is possible that the protocol creates routing loops. To deal with this
issue, a loop detection and break mechanism is employed: whenever a node receives a
data packet originated from itself (this means a loop is formed), it invalidates its current

parent and selects a new one.

3.5.5 Dealing with node removal

A sensor node may run out of battery, and a base station may be turned off for
maintenance. Its neighbor nodes must have the ability to deal with this dynamically. Since
the DAR algorithm is monitoring the link quality periodically, if a node is powered down,
its neighbors no longer hear the routing cost broadcast from it. Thus, its link quality
records in its neighbor’s neighborhood table will be degraded over time and eventually be
considered dead. If the removed node is a leaf in the tree topology, its neighbors do not
need to do anything besides degrading its link quality. If the removed node is an
intermediate router in the tree topology, its children will be downgrading its link quality
and new parents will be chosen when its link quality drops to not be the best one in its

children’s neighborhood tables.

44

There exists a situation that a node cannot find a proper new parent when its current
parent was powered off. For example, a node may discover, on losing its parent, that all of
its other neighbors are its children. In this case, the node will change its routing cost to
infinite. Over time, its children will downgrade its link quality and choose other nodes as
their parents. After that, the node will be able to choose one of its original children to be

its new parent.

3.6 Summary

In this chapter, we presented our routing protocol DAR and the rationale behind our
proposal. The DAR protocol consists of an innovative routing cost estimation algorithm,
the base station addition/removal protocol, and the sensor nodes addition/removal

protocol. The following table shows the comparison of features of DAR and other

protocols:
AODV | SARP | ABS | HAR | MT | DAR
Suitable for WSN No Yes Yes Yes Yes | Yes
Possible to add/remove sensors N/A No No Yes Yes | Yes
Multiple bases N/A Yes No Yes |No | Yes
Possible to add/remove bases N/A Yes No No No Yes
Proactive or reactive React. | React. | Pro. Pro. Pro. | Pro.

Table 1: DAR features compared to that of other protocols

45

4 Design and Implementation

After the proposal of our protocol, we seek to implement it on both a simulation
environment and real sensor hardware platform to test our work. In this chapter, we
survey several development environments available for wireless sensor network

development. Then we choose the proper toolset to design and implement our protocol.

4.1 Wireless Sensor Network Hardware

Over the last few years, several types of wireless sensor nodes, or motes, have been
developed by the University of California at Berkeley. These motes are now widely used
in both research institutes and industry. A mote is a battery powered device with very
small physical size but integrates a micro processor, Flash ROM, RAM, EEPROM,
sensors, a radio, an antenna, and a programming interface all together. The power
consumption of a mote is very low and the memory size of a mote is very small. The

following table lists the motes available when this thesis was started:

Mote Dot Mica Mica2 MicaZ Telos TelosB
(Tmote)

Year 2000 2001 2002 2004 2004 2005

CPU ATmegal63 | ATmegal03 | ATmegal28 | ATmegal28 | MSP430 MSP430

ROM 16 128 128 128 60 48

(KB)

RAM 1 4 4 4 2 10

(KB)

Radio TR1000 CC1000 CC2420, IEEE 802.15.4 compliant

Table 2: Berkeley Motes

Among the above motes, the TelosB is the newest and the most attractive. This mote has a

marketing name Tmote Sky designated by its producer Moteiv Corporation [2].

46

According to [2], “Tmote Sky is the next-generation mote platform for extremely low
power, high data-rate, sensor network applications designed with the dual goal of fault
tolerance and development ease. Tmote Sky boasts the largest on-chip RAM size (10kB)
of any mote, the first IEEE 802.15.4 radio, and an integrated on-board antenna providing
up to 125 meter range. Tmote Sky offers a number of integrated peripherals including a
12-bit ADC and DAC, Timer, 12C, SPI, and UART bus protocols, and a performance
boosting DMA controller. Tmote Sky offers a robust solution with hardware protected
external flash (IMb in size), applications may be wirelessly programmed to the Tmote
Sky module. In the event of a malfunctioning program, the module loads a protected
image from flash. Toward development ease, Tmote Sky provides an easy-to-use USB

protocol for programming, debugging and data collection.”

The Tmote Sky mote also has a low price tag at about USD110 each. It was selected to be

our sensor node for this research. About 40 of them were purchased by the Department of

Computer Science. The following figures show the Tmote Sky hardware:

47

) Humidity
Photosynthotically Temperature
#Active Radiation Sensor
Sensor {optional)

User Reset '
Button Button (opli a) Total Solar

Radiation : :
Sensor G- axpansion) 10-pin expansion
i connecor connector
USB Transmit LED / 5
LISH : ay

Caonnector

Internal

5
,,/
USH Receive LED ;
LEDS | Microconirolier ng‘i_?ﬁ SMA
JTAG Digital switch ~ 12d© Antenna
connector isolating USB from Connector
microcontrolier (aptional)

Figure 4.01: Tmote Sky mote front side [2]

Texas instrurnents

MSP430 F1 ?{” 48.bit silicon
microcontrolier sen}al D

Zepiny BVE
connecior

; . ST Code
Flash {2kB) wsciliator Flash {{MB)

Figure 4.02: Tmote Sky mote back side [2]

48

Figure 4.03: The Tmote Sky motes used in this research

4.2 Operating Systems and Programming Languages for WSN

An operating system is the most important systems software in a system. It provides a
framework to manage hardware effectively and supports concurrency operations and
provides a uniform programming interface. There exist many traditional embedded RTOS
(real-time operating systems) long before operating systems specifically for wireless
sensor networks are available. Commonly seen RTOSes such as ulTRON, pSOS,
VxWorks, UC/OS, etc., require memory footprints larger than the Tmote Sky mote can
provide. Currently, to the best of our knowledge, there are four operating systems
specifically designed for sensor nodes: TinyOS, Contiki, NutOS, and AmbientRT. Among
them, TinyOS [1] and Contiki [40] support the Tmote Sky mote. For our research, the

TinyOS is chosen as the operating system because it is the most commonly used one.

49

4.21 TinyOS and NesC

TinyOS is an operating system specifically developed for running applications in the tiny
size sensor nodes. This open-source project was started at the University of California,
Berkeley a few years ago and is still under active development. It has become the most

commonly used operating system for wireless sensor networks [39].

TinyOS is tightly coupled with a programming language NesC (Networked Embedded
Systems C) and most of the features of the operating system are implemented by the
unique features of the NesC. NesC is an extension of C and it is specifically designed for
networked embedded systems programming. Programming in NesC is a two-step process:
first, individual function blocks called modules are developed with well-defined
interfaces; then these modules are assembled together by a configuration to generate a
monolithic application and this step is called wiring. By separating the building process
into two steps, the development of individual modules becomes very independent of each

other. Developers can simply use different configurations to re-use existing modules.

A module is either a functionality user or a provider and they communicate with each
other through an interface An interface specifies the commands that have to be
implemented by a provider module and specifies the events that have to be implemented

by a user module. The NesC wiring glues modules to make a TinyOS application [1].

50

application sensing application

X’ 1A F A

routing Routing Layer
T I A 3

;Méssagihg Layer . \

messaging

packet Radio Packet

b

byte Laadio byte (MAC)

Y Ty

photo Temp SWw

3 ¥ b A, ey

bit | RFM clocks ADC |i2c HW

Figure 4.04: A sample TinyOS application wiring graph [24]

When designing the overall structure of the DAR protocol, we followed the convention of
NesC and other good practices to separate the modules and configurations. Our work is
made smoother thanks to the large user base and plenty of sample applications especially
the SurgeTelos that existed in TinyOS (though they are not well documented). This is the

snapshot of the code to implement the DAR protocol module:

includes AM;
includes DarMultiHop;

module DarSelectM
{
provides
{
interface StdControl;
interface DarRouteSelect;
interface RouteControl;

uses

51

interface Leds;
interface Timer;

implementation

typedef struct RPEstEntry
uintlé t id;
} __attribute _ ((packed)) RPEstEntry;

TOS Msg routeMsg;
bool gfSendRouteBusy;

uint8 t findEntry (uintlé t id)
{
uint8 t i = ¢;
for (i = (; 1 < ROUTE _TABLE SIZE; 1+4+)
if ((NeighborThl[i].flags &
NBRFLAG VALID)
&& NeighborTbl[i].id == id)
{ return i;
}
}
return ROUTE INVALID;

The following is the snapshot of the code to implement the configuration to use the DAR
protocol module:

includes DarMultiHop;,

I

configuration DarRouter |

provides f{
interface StdControl;
interface Receive[uint8 t id];

uses {
interface ReceiveMsg[uint8 t id];

bl

4

52

implementation f{

components MultiHopEngineM, DarSelectM,
GenericCommPromiscuous as Comm, QueuedSend,
TimerC, LedsC;

ReceiveMsg = MultiHopEngineM;

MultiHopEngineM. SubControl =->
QueuedSend. StdControl;
MultiHopEngineM. SubControl =->
DarSelectM. StdControl;
MultiHopEngineM.RouteSelectCntl ->
DarSelectM.RouteControl;
MultiHopEngineM.DarRouteSelect =->
DarSelectM.DarRouteSelect;

MultiHopEngineM. SendMsg => QueuedSend. SendMsg;
DarSelectM.Timer ->
TimerC.Timer [unique ("Timer")] ;

B

From the above code, we can see that the NesC language’s unique feature is
modularization. NesC compiler is actually a translator, not a compiler, as it translates all
NesC application source files and necessary libraries to an ordinary C file. Then, this C

file is compiled by the standard and widely available gcc.

NesC is a new programming language, existing development IDEs do not recognize its
syntax. This may make developers frustrated since most of them are used to the rich
features provided by modern IDEs including syntax coloring, auto code-completion, etc,.
To relieve this pain, a TinyOS plugin [42] has been developed for the popular Eclipse

IDE to provide those features.

53

TinyOS has an event-driven kernel because a sensor network application is naturally
event-driven for sensor event processing [23]. It supports two levels of concurrency: tasks
and events. A task is similar to the concept of task in a traditional RTOS and it is for
executing non real-time computation in FIFO style without preempting each other. An
event is to handle a real-time interrupt coming from low-level hardware. Events are
naturally asynchronous and have higher priorities over the tasks, thus they can interrupt
the execution of tasks. This simple concurrency model of TinyOS allows high event-
handling throughput while keeping the overhead significantly lower than in the traditional

thread-based approaches [39].

TinyOS is a free and open-source software. Its source code is in CVS (Concurrent
Version System) reversion control system hosted on Sourceforge [3]. The details of

TinyOS internals are systematically described in [23].

4.2.2 Contiki

Contiki is also a widely used operating system for sensor networks and other embedded
devices. According to [40], “Contiki is an open source, highly portable, multi-tasking
operating system for memory-constrained networked embedded systems written by Adam
Dunkels at the Networked Embedded Systems group at the Swedish Institute of Computer
Science. Contiki is designed for embedded systems with small amounts of memory. A
typical Contiki configuration is 2 kilobytes of RAM and 40 kilobytes of ROM. Contiki
consists of an event-driven kernel on top of which application programs are dynamically
loaded and unloaded at runtime. Contiki processes use light-weight protothreads that

provide a linear, thread-like programming style on top of the event-driven kernel. Contiki

54

also supports per-process optional preemptive multi-threading, interprocess
communication using message passing through events, as well as an optional GUI
subsystem with either direct graphic support for locally connected terminals or networked

virtual display with VNC or over Telnet.”

The programming language used in Contiki is C. Usually the memory footprint for the

same application in Contiki is slightly larger than that in TinyOS [39].

4.3 Simulators for Wireless Sensor Networks

A simulator is a very useful tool in any research area. It enables a developer to verify
algorithms and protocols before they are actually running on real hardware. Developing
protocols in a simulator is also easier because a simulator provides a way to study the
system implementation in a controlled environment, explores system configurations that
are difficult to physically construct, and observes interactions that are difficult to capture
in a real-life system [41]. Another benefit of simulation is that it enables developers to
simulate the execution of the protocols with a very large number of units which may not

available in real deployment.

431 TOSSIM

TOSSIM (TinyOS SIMulator) [41] is a simulator specifically designed for simulating
motes running TinyOS. Tossim is used in our research because it can execute the same
code (source code level compatible) written for TinyOS motes, which is a tremendous

advantage.

55

TOSSIM simulates the TinyOS behavior by re-implementing the lowest part of the
TinyOS functionality on a Personal Computer environment (Unix and Cygwin systems).
It compiles the exact same application source code for TinyOS into a binary executable
on Unix, thus the developers do not to write different code for the simulator and the real
hardware. Hardware interrupts in TinyOS are simulated by discrete simulator events in
TOSSIM. The simulator captures the behavior of the radio in bit level which is in a very
fine grain. TOSSIM also provides a rich toolchain running on the PC host to help the
developers to debug the TinyOS applications. The major part of the TOSSIM

functionality is implemented in JAVA and Python.

4.3.2 NS-2 Simulator

Before special simulators specifically for sensor networks were available, the popular
generic network simulator NS-2 (Network Simulator version 2) [6] was widely used in all
kinds of network research areas including LLAN, Internet, MANET, and WSN (with
special extensions). NS-2 provides rich support for simulation of TCP, routing, and
multicast protocols over wired and wireless networks [6]. Some routing protocols we

surveyed previously, such as SARP and HAR, are implemented and simulated in this

simulator.

The programming language used in NS-2 for implementing protocols is C++. A simple
script language TCL is used to configure and interact with the C++ implemented modules.
User implemented function modules are integrated to be part of the NS-2 simulator and

the resulting simulator in a sense is a TCL script interpreter for executing user provided

56

TCL scripts. The NS-2 simulator is supported by various systems including Linux, Unix,

and Windows.

4.4 Reversion Control System

Any non-trivial software development will benefit from putting the source code under a
reversion control system. Before selecting a specific reversion control system, we want
the reversion control system to have the following features:

e Free and open-source.

e Widely used and supported.

e Supports reversion history, tags, and branches.

e Multiple developers can work on the same files concurrently (non-locking mode).

e Supports merges.

e Supports Internet based repositories.

Based on the above criteria, we determined that CVS and Subversion [4] are our
candidates. CVS is the most widely used reversion control system nowadays. TinyOS is
hosted on Sourceforge’s CVS system. The Subversion is a relatively new system that was
developed initially intended to replace CVS. Whether it achieved this goal or not is left to
be debated. Since it uses the approach of database-based repository to organize the

reversion files, it is not totally backward compatible with CVS, which uses separate text

files.

The Sourceforge web site provides free CVS and Subversion hosting for open-source

software development. We tested both the CVS and Subversion systems on Sourceforge

57

and found that using Subversion is more smooth and straightforward on Sourceforge. So
we selected the Subversion to be the reversion control system for our research. All of our
work is then tracked by this system on the Sourceforge site. The code is available to the
general public and anyone at anytime can retrieve it from anywhere through Internet

accCess.

4.5 Architecture

We designed and implemented the DAR protocol. At the same time, we also implemented
a demo application named DARapp to use the DAR protocol. The DARapp application
uses the network constructed by DAR to send messages to the base stations. The

relationship of the components is as in the following diagram.

DARapp application

:

MultiHop Engine “—> DAR topology
Interface generator

!

Communication Interface

!

Radio

Figure 4.05: Architecture of DAR and DARapp

The DARapp application linked with DAR and TinyOS library will be the final

executable. All motes including base station nodes and sensor nodes are loaded with the

58

same binary image. A mote executes base station or sensor node protocol according to its
network address. The outline of the program is like this:

If (network address is base station address)

Run base station protocol
Else
Run sensor node protocol

There are two reasons that we chose to use the same binary image for both base station

and sensor node:
1. TOSSIM requires that all nodes execute the same program.

2. Loading the same image to motes hardware is easier.

4.6 Summary

In this chapter, we surveyed the tools suitable for developing sensor network applications.

We designed and implemented our protocol using the selected tool set.

59

5 Experiments in a Simulation Environment

After the implementation, first we need to verify the correctness of our protocol in the
simulator TOSSIM. There are two reasons we use a simulator here: 1) Debugging and
verifying algorithms and protocols are easier in a controlled, reproducible environment

provided by a simulator; 2) We want to simulate more motes than we actually have.

5.1 Topology Display Tool

The primary goal of the simulation is to find out whether the DAR protocol generates the
network topology as we designed. The TOSSIM simulator itself does not provide any
means to display network topology, instead it provides a flexible GUI framework in
which plugins can be added by users to implement desired functionality. The GUI
framework in TOSSIM is called TinyViz, which is a Java visualization environment.
“Users can write new plugins, which TinyViz can dynamically load. A simple event bus
sits in the center of TinyViz; simulator messages sent to TinyViz appear as events, which
any plugin can respond to. For example, when a mote transmits a packet in TOSSIM, the
simulator sends a packet send message to TinyViz, which generates a packet send event
and broadcasts it on the event bus. A networking plugin can listen for packet send events
and update TinyViz node state and draw an animation of the communication. Plugins can
be dynamically registered and deregistered, which correspondingly connect and
disconnect the plugin from the event bus. A plugin hears all events sent to the event bus,
but individually decides whether to do anything in response to a specific event; this keeps

the event bus simple, instead of having a content-specific subscription mechanism.” [41]

60

Following TinyViz plugin’s convention, we designed and implemented a plugin named
DarTopoPlugin in Java to display the network topology generated by the DAR protocol.
The main data structure in the plugin is an array holding each mote’s parent address. The
plugin learns each mote’s parent by monitoring and analyzing the messages sent by the
DARapp application. In DARapp, the message is always sent from a child to a parent.
Whenever this type of message is received from TinyViz’s event bus, we extract the
source and destination addresses and update the source mote’s parent address record
accordingly. Then, we draw an arrow from the source (child) node to the destination

(parent) node. Thus, the network topology is visually presented on the TinyViz panel.

Figure 5.01: DAR topology plugin in TinyViz

61

5.2 Radio Model

Besides implementing a topology display tool, we also need to determine the layout, and
most importantly, the radio model of the simulated nodes before the simulation can be
actually started. In TOSSIM, the radio model is used to represent the radio link quality

(the loss rate) between each pair of motes.

According to [41], there exist two radio models in TOSSIM: simple and lossy. In the
“simple” radio model, all nodes can hear from each other and any bit transmitted is
assumed received without error. Although there is no receiving error caused by radio
transmission, there is still a chance that nodes receive corrupted packets because more
than one node can start transmitting at the same time. In that situation, every node hears
the overlap of the signals. The simple model is useful for testing single-hop protocols and

TinyOS components for correctness.

In the “lossy” radio model, the radio link between any pair of nodes is lossy and there is a
loss rate associated with this lossy radio link. The value of the loss rate is in the range
from 0% to 100%, representing the probability a bit sent by the source node will be
corrupted when the destination node hears it. For example, if the loss rate value is 0.05,
any bit transmitted will be having a 5% chance of being received corrupted. In TOSSIM,
the lossy radio model only considers interference and corruption. The environmental
noise is not taken into consideration. In real life situations, the noise will affect the

transmission error probability as well.

62

To simulate a multi-hop protocol execution, the lossy radio model must be used. TOSSIM
has a Java utility (net.tinyos.sim.LossyBuilder) to generate a lossy radio model from the
physical layout of motes. This utility models loss rates observed empirically in the
experiments performed in [37]. In TOSSIM, each mote is assumed to have an effective
transmission radius of 50 feet, with the transmission error rate increasing with distance

from the center.

For this research, we used 49 motes in a layout of 7 by 7 grid with a grid space of 22 feet.
Grid space is the horizontal and vertical distance between two neighboring nodes. As
mentioned earlier, there is a tool provided in the simulator for building a radio model. The
typical lossy rate (using the node 0 as an example) as given in the text file output by the
tool is:

0:1:0.0

0:2:0.5

0:7:0.029419

0:8:0.024351

0:9:0.5

0:14:0.5

0:15:0.5
In this example, packets sent from node 0 to node 1 will be received with 0% loss rate and
packets sent from node 0 to node 2 will be received with 50% loss rate. If the loss rate
value between a pair of nodes is not given in the output file, the loss rate is 100% between

them. In the above example, the loss rate from node 0 to node 3 is not shown; this means

that node 3 can not hear from node 0 at all.

63

The physical layout of node 0 and its neighbors in the 7x7 grid is illustrated in Figure

5.02:

ﬁﬂ
%N

T e <
14’5: 15

Figure 5.02: Node 0 and its neighbors

Among those 49 motes, nodes 0, 20, and 40 are set to be base stations in the simulation.

(Nodes 20 and 40 are not neighbors of node 0 and are therefore not shown in Figure 5.02)

5.3 Execution Result

Using the above radio model and the DAR topology display tool, we run the simulation
and observe the process of the anycast tree creation. The formation of anycast trees started
after a few seconds of estimating routing costs and is shown in Figures 5.03, 5.04, and
5.05. Figure 5.04 shows more and more motes joining the anycast trees gradually. Figure

5.05 shows the final topology; all motes are in the anycast trees.

64

CTieWiz

GRie. Layout | Blogins

b st s
L 3 8 B v g e
¥ P oE vopop o

$ % vov v g

L Blenitation paused

Figure 5.03: The formation of anycast trees. Nodes 0, 20 and 40 are base stations

S finy¥iz

Zien Thre 1l 0tses . Dalay (:}“““’W"”"‘MW"' Dirvs

Simulaﬁon‘pausea :

S R e B e S S S = i

Figure 5.04: Motes joining the anycast trees

65

Tiny¥iz

File Layout Plugins

.ulsj!'ga:ii paussd

Figure 5.05: Final topology
Over time, the topology will change slightly due to the following two reasons:
e The routing cost metric will change following the motes’ energy consumption
over time.

e The random nature of TOSSIM radio transmission simulation.

Figure 5.06 shows a topology change that occurred due to a routing cost change.

66

S Simuilation paused

Figure 5.06: Topology change following routing cost change

5.4 Adding/Removing Base Stations

So far, we have simulated the execution in a static network. All base stations and sensor
nodes are turned on at the same time and no node failure occurred. To simulate
adding/removing base stations or sensor nodes, we need to use the Tython [48] scripting

interface provided by TOSSIM.

Tython (TinyOS Python) provides a Python console to users for interacting with the

TinyViz GUI through a scripting interface. Tython is based on Jython and Jython in turn

67

is a Java implementation of the Python programming language. Tython combines the
features of Java and Python and thus enables users to import Java classes within Python.
Since most PC side tools in TinyOS and TOSSIM are written in Java, users can access
those tools from the interactive Tython interface to control TOSSIM simulator execution.
The control of motes in TOSSIM is exposed by the “simcore” module in Tython [48]. So,
after importing this module to Tython, we can turn on/off any mote in TOSSIM to

simulate the adding/removing base station or sensor node.

Figures 5.07 and 5.08 show the toplogy resulting from turning off, in turn, base station 0,

and 20 respectively, and Figure 5.09 shows the topology resulting from turning on all

base stations again.

Figure 5.07: Topology after base station node 0 is turned off

68

v iny?iz

Bl Lapoit Plugine B SimTime: tasmRee

- Simulation paused

Figure 5.08: Topology after base station node 20 is also turned off

Siin Time:

Sinvalation paused

Figure 5.09: Topology after all base stations are turned back on

69

5.5 Adding/Removing Motes

The same method used in turning on/off base station is used to turn on/off sensor nodes.
When the nodes 11 (a router node) and 28 (a leaf node) are turned off, the topology
changed to the one shown in Figure 5.10. If we turn on the sensor nodes again, they will

Join the anycast trees after a while, as shown in Figure 5.11.

Fie Lavout Plugins

Simulation paused

Figure 5.10: Topology after sensor nodes are removed

70

File Lavout Pluging | SimTime 19487000 Db

Eimuiman padéed :

Figure 5.11: Topology after adding new sensor nodes and the base stations

5.6 Summary

In this chapter, we executed the DARapp application in TOSSIM to test the correctness of
the underlying DAR routing protocol. To completely validate the correctness of the
protocol in all possible situations is difficult due to the nature of the randomness of the
scheduler of the simulator. Even in a simple purely hop count based protocol, a node can
be blocked from hearing from its neighbors with shorter paths for a while. When this
happens, the node will choose a neighbor with a longer path to be its parent. A more
thorough approach is to track the states of the network and all individual nodes in the
entire executing process. Thus the problem is in the field of snapshotting and analyzing

the global states in distributed systems. This is outside the scope of this thesis.

71

6 Experiments on Real Hardware

Many protocols implemented and tested in a pure simulation environment look sound but
fail to act as expected after porting to real hardware [44]. The reason behind this issue
usually is that a simulator cannot provide an exact environment compared to real life
hardware. Thus the flaws in protocol or implementation can not be discovered in the
simulator. For this reason, we believe experimenting with real hardware is the ultimate

validation of a protocol and its implementation.

6.1 Hardware Setup

The Tmote Sky motes are the hardware on which we run our test. Base stations and
sensor nodes are the same mote hardware and all motes also are programmed with the
same program code. A mote executes base station or sensor node protocol according to its

network address.

Sensor nodes communicate with each other and to the base station through wireless

802.15.4 radio.

Each base station mote is connected to an USB port of a Tmote Connect gateway. Tmote
Connect is a gateway for connecting Tmote Sky motes to a wired LAN. The motes
connected to the gateway can be remotely controlled (including the functionality of re-
programming, reset, reading serial data) through the gateway. Data from sensor nodes

received by base station node will be forwarded to the gateway through the USB port. The

72

Tmote Connect gateway runs a version of embedded Linux operating system. It forwards
the data received from its USB ports to network sockets to be accessed by host

applications (such as topology display tool) running on a PC.

Figure 6.01: Tmote Connect Gateway with two connected motes [2]

6.2 Topology Display Tool

Just like the topology display tool we develop in TOSSIM, a topology display tool is
needed here to monitor the topology generated by the DAR protocol as the primary goal
of the experiment is to find out whether the DAR protocol generates the network topology
as we expected. Fortunately there is already a tool named SurgeTelos written in Java in
TinyOS. It can talk to the gateway through a LAN and then display the sensor network

topology by analyzing data packets received by the base station.

73

Radio
SurgeTelos LAN Tmote USB Base

Topol 4—}
9p ology ————o i Connect —————— | Station Sensor
Display Nodes
Gateway Mote
Tool

Figure 6.02: System connection

6.3 Radio Transmission Range and Motes Layout

Before determining the layout of the motes, we need to find out the actual radio
transmission range of the motes in our test lab. Then, we can place the motes in a way
such that they form a multi-hop network. Otherwise if all motes can hear each other, they

will form a big single hop network.

We implemented a small utility program, similar to the example available in the TinyOS
tutorial [1], to measure effective radio transmission range. The program executes the
following code to send out a message every second and toggle an LED whenever a
message is received:
Forever
If (one second elapsed)
Send a message out of the radio. Toggle the Red LED

If{a message is received over the air)
Toggle the Blue LED

74

This program is then loaded into two motes. The motes’ Red LEDs will be blinking
constantly to indicate that the programs are running. When the two motes can hear each
other, their Blue LEDs should blink (changing color every second). Beyond a certain
distance, a mote will no longer be able to hear from the other mote, its Blue LED will stay
steady in a color. The actual radio transmission range is changing constantly due to the
nature of the environment and noise from other wireless devices such as 802.11 devices,
2.4G Hz cordless phones, and Bluetooth devices just to name a few. For this reason, at a
certain distance, a mote may be able to hear about 99% of the packets sent from the other

mote. We consider this distance to be the effective radio transmission range.

The CC2420 radio transceiver chip used in the Tmote Sky motes can be set to work with
transmission power ranging from 0 dBm (1 mw) to -25 dBm (0.003 mw). Setting up the

transmission power is done by modifying the compiler option CFLAGS [2].

Using the above utility program, we measured the transmission ranges with both the
maximum and the minimum transmission power. In the test, we found that in most cases,
the radio transmission range is asymmetric, that is, in certain distance, the mote A can
hear from the mote B, but the mote B can not hear from mote A. This table is the

measurement result of the average radio transmission range:

Tx Power Tx Range
0 dBm 58 feet
-25 dBm 3.2 feet

Table 3: Effective radio transmission range

75

Due to the limitation in the room size, we decided to use the minimum transmission
power -25 dBm in all of our motes. This way we can place the motes close to each other

and yet form a multi-hop network.

We used 12 motes placed in a 3 by 4 grid to conduct the test. The grid space is set to 1.5
feet. The node IDs for those motes are from number 0 to 10, and number 20. Among
them, the nodes 0 and 20 are base stations and the others are sensor nodes. Figures 6.03

and 6.04 show the layout of motes and the actual hardware devices in the test.

AN OGO
O O O O

O CIVAN

Figure 6.03: Physical layout of motes. Grid space of 1.5 feet.

76

Figure 6.04: Actual devices (motes and gateway) in the fest.

6.4 Execution Result

Like the execution in the simulator, the motes formed anycast trees successfully as we
expected. The topologies from the base station node 0’s view and base station node 20's

view are shown as Figures 6.05 and 6.06 respectively.

Figure 6.05: Topology rooted at base station 0.

77

Figure 6.06: Topology rooted at base station 20.

As in the TOSSIM simulator, over time, the routing cost estimation metric will change

and the topology will be changing accordingly.

6.5 Adding/Removing Base Stations and Motes

After a base station is powered down, the sensor nodes previously connected to it will
gradually join another tree. For example, when base station node 20 is turned off, the

network topology becomes a single tree rooted at base station node 0, as shown in Figure

6.07.

Figure 6.07: After base station node 20 is turned off.

78

When a router sensor node is powered off, its children gradually downgrade its link
quality and eventually select new parents automatically. Figure 6.08 shows the new

topology when the router node 7 is turned off.

Figure 6.08: Topology after router node 7 is turned off.
When node 7 was turned back on, and node 4 was turned off, the topology changed

accordingly as shown in Figure 6.09.

Figure 6.09: Topology afier router node 7 is back and node 4 is turned off.

79

When the base station node 20 is turned on again, some sensor nodes close to it will be
connecting to it again, and then the network topology changes to create two anycast trees

rooted at both base stations, as before.

6.6 Summary

In this chapter, we tested the DAR routing protocol in real sensor hardware. We tested
adding and removing base station and sensor nodes dynamically. The test results show
that the DAR protocol can correctly deal with the dynamic situations and worked as we
expected. For the same reason that we stated in Section 5.6, complete validation of the

correctness of the protocol is difficult and out of the scope of this thesis.

80

7 Performance Evaluation and Comparison

Many metrics exist for evaluating performance of routing protocols in sensor networks.

The commonly seen metrics include the following:

Network Lifetime is normally defined as the time when the first sensor node in a

network runs out of battery.

Delivery Rate means the percentage of successful packets delivered. The value is:

N(b
NES))— , in which N(b) is the total number of packets successfully received by

the base stations and N(s) is the total number of packets sent from the sensor
nodes. The higher the quality of routing path constructed by the underlying
protocol, the higher we can expect the data delivery rate to be.

Hop Count is the average number of hops in the paths between sensor nodes and
their chosen base stations. In a dynamic network, each node's hop count is
calculated by weighting hop counts with the corresponding time it stays in that
hop count status. Hop count by itself is not actually a performance metric, but it
determines another performance metric, that is, data delivery latency.

Data Delivery Latency is the time taken to route sensor data from their sender to
the target base stations. This metric is determined by the hop count. Lower hop

count value means smaller latency.

Different applications have different emphasis on performance metrics. Often, wireless

sensor networks are deployed in remote and hazardous areas. This makes changing

81

batteries or adding new nodes difficult, if not impossible. Thus, it is very desirable to have
a longer network lifetime. The main goal of the DAR protocol is to prolong network

lifetime and at the same time maintain a reasonably high data delivery rate.

The data delivery latency is an important performance metric for query-response reactive
type networks since user has to wait for the response coming back once a query is issued.
On the other hand, for the proactive data gathering networks, the data delivery latency is
not as significant because the latency only affects the arriving time of the first packet of
any sensor node. After the first packet arrives, the following packets will be arriving at a
constant rate no matter what the latency value is. Based on the above reasons, we will be

using the delivery rate and network lifetime as the performance metrics.

7.1 Methodology

The goal of the DAR protocol is to prolong network lifetime and at the same time
maintain a high data delivery rate. First, optimal values for DAR's parameters o and B are
determined. Then, the DAR protocol with the optimal parameters is compared with other
similar protocols. Of the other protocols surveyed in Chapter 2, the most suitable
candidates for performance comparison with DAR were MT and HC protocols [37, 13].
Their common feature is that they are all beacon-based proactive protocols. On the other
hand, HAR [11] is a message exchange-based protocol, requiring exchange of messages
to establish parent-child relationships, and ABS [12] has a two-tier architecture in which
only a subset of sensor nodes (aggregation nodes) act as routers.. For these reasons, we
compare the performance of DAR with MT and HC. The MT protocol is a single base

station protocol. Thus, to compare with it, the DAR protocol is set up to run with a single

82

base station configuration. The platform for the performance comparison is the TOSSIM

simulator.

7.2 Measuring network lifetime and data delivery rate

A simple energy consumption model is used to simulate the battery power drain: a
counter is increased for every radio activity (transmit or receive a packet). This simple
model is good enough because the sensor node operation is event driven and the energy
consumed by other components (such as CPU, etc.) is proportional to the power
consumed by the radio. The network lifetime here is defined as the first sensor node
running out of battery. When the first sensor node power consumption counter reaches a
predefined threshold value (in our current implementation, this value is 20,000), the
simulation is stopped and the simulation time is the network lifetime used in this

performance evaluation.

The data delivery rate is calculated by counting the total number of sensor data packets
received by the base station. The count is then divided by the total number of sensor data

packets expected.

7.3 Tuning the Parameters a and

As stated in Section 3.3.1, the formula for the routing cost in DAR is:

R.(P) = H(P) +a*(B*L.(P) + (I-) *E (P))

83

There are two tuning parameters o and . Before comparing DAR with other protocols,
we will first have to determine optimal values for the tuning parameters. Note that when
a 1s 0, the DAR protocol actually becomes the HC protocol. The following setup is used
to evaluate the DAR performance with different values of the tuning parameters :

e 25 (5x5), 49 (7x7), and 100 (10x10) sensor nodes are placed in a grid.

e Distance between neighboring nodes is 12 feet.

e One base station at the corner.

e Radio transmission range is 50 feet.

e Parametera: 1,2,3, ...

e Parameter f : 0% ...100%.

For each configuration, the simulations were run 50 times to get the average values of

performance metrics.

First, we set the parameter =1 and tried the parameter 3 with the values of {0, 0.25, 0.5,
0.75, 1.0}. We found that there is a significant performance change after the point 3=
0.75. So, we fine tuned the evaluation points of 8 to be {0, 0.25, 0.5, 0.75, 0.8, 0.85, 0.9,
0.95 1.0}. At the same time, we also found that setting the increasing step of the
parameter d as 1 is not significant enough to change the performance much. So, we set the
increasing step to be 2, thus the parameter a is chosen from the set {1, 3, 5, ... }. The best
value of B for other values of a were also studied. The experimental results are shown in
Appendix 5. In all cases, f=80% was seen to be the best value in term of providing the

best balance between network lifetime and delivery rate.

84

We found that there exist upper bounds for the parameter a and they are related to the
network size (see Figure 7.02). Let us define the upper bound of the parameter o for
network of size n as o'(n). Specifically, the upper bounds are 7, 9, and 13 for 5x5, 7x7,
and 10x10 networks respectively. After these bounds, changing the parameter @ no
longer has impact on the network performance. Figures 7.0/ and 7.02 summarize the

changes of the performance metrics following the two tuning parameters.

1000
975
950
925 -
00
875
850
825 |

Simulation seconds

800
775
750
725

Delivery percentage

Figure 7.01: Performance of DAR with different

85

Simulation seconds

1150
1125
1100
1075
1050
1025
1000
975
950
925
900
875
850
825
800
775

Delivery percentage

Figure 7.02: Performance of DAR with different o (f=0.8)

86

From the above charts, we can see that the network lifetime drops dramatically when the
parameter f is set to 100% in which case the energy consumption is not considered. The
turning point of the parameter § for the network lifetime is in the range of 0.75 to 0.85.
The data delivery rate increases when the parameter f is increasing. Considering the two
performance metrics, we think that f = 0.8 is the best configuration. On the other hand,
increasing the parameter a (up to o'(n)) will increase the delivery rate and decrease the
network lifetime. The reasons for this are discussed in Section 7.4. It is clear that
choosing the optimal value of the tunning parameters o depends on the specific
application. If network lifetime is the primary concern in the application, a should be set
to 1. To maintain both the network lifetime and the delivery rate high, the upper bounds

of the parameter o can be used.

7.4 Performance Comparison of DAR, HC, and MT

We tested the MT and HC protocols in the same environment. Figures 7.03 and 7.04
summarize the performance comparison of the three protocols. Compared to the MT
protocol, the DAR protocol increases the network lifetime significantly. The MT protocol
always has the highest data delivery rate at the cost of network lifetime. The HC protocol
has a pretty high network lifetime by creating network topologies with low hop counts.
The DAR protocol maintains a high data delivery rate, which is very close to that of MT,

and it also has a high network lifetime.

87

Simulation seconds

Delivery percentage

Figure 7.03: Performance comparison of DAR (p=0. 8), HC, and MT

5%5 7x7 10x10
Network size

75
72.5
70
67.5
65
62.5
60
57.5
55
525
50
475
45

5x5 7x7 10x10
Network size

88

Figure 7.04 illustrates average hop counts of the networks created by the three protocols.

Note that the figures of HC and DAR(e=1) are almost identical and thus their lines

overlapped.

Average hop count

5x5 7%7 10x10
Network size

Figure 7.04: Average hop counts of DAR ($=0.8), HC, and MT

7.5 Analysis of the Test Results

From the results of tuning parameters evaluation and performance comparison of the three
protocols, we can see that the characteristic of HC protocol is creating topologies with
shortest routing paths and the characteristic of MT protocol is creating topologies with
highest routing quality. The DAR protocol sits between them and has the advantage of
prolonging network lifetime significantly. On average, the hop count difference between
HC and MT protocols is about 1 in the 5x5 network and about 2 in the 10x10 network.

For the DAR protocol, increasing the tuning parameter o makes the protocol closer to the

89

MT protocol. The reason that there exist upper bounds for « is because when a is large
enough, related to the specific radio model employed in the simulation, all parent
candidates with higher hop counts and lower value of loss rate are chosen as parents

already. So, increasing a further has no impact any more. As stated in chapter 3,

h
06>W is the switching point. For 5x5 size network, when #=1, =7, and p=0.8,

we get >0.178. That means all parent candidates with a 17.8% higher link quality will be
selected as parent nodes even if their hop counts are larger. The same principle also
applies to the 7x7 and 10x10 size networks, just the thresholds of « are larger (9 and 13
respectively) since the hop count difference between HC and MT protocols are larger in

those bigger networks.

7.6 Impact of Multiple Base Stations

To understand the impact to the network performance by adding more base stations, we
run the DAR protocol with 2 (nodes 0 and 65 as bases) and 3 (nodes 0, 37, and 74 as

bases) base stations in the 10x10 network. The configuration of parameters are =0.8 and

o=13.

Figure 7.05 summarizes the performance difference when different numbers of base
stations are deployed. The results show that adding base stations can greatly improve
network performance. The greatest performance increase occurs when the second base
station is added to the network. Adding the third base station has less effect than adding

the second one.

90

1250
1200
1150
1100
1050
1000
950
900
850
800
750
700

Simulation seconds

1 2 3
Number of base stations

82.5
80
775
75
725
70
67.5
65
625
60
575
55
525
50

Delivery percentage

1 2 3
Number of base stations

Figure 7.05: Performance of DAR with 1, 2, and 3 base stations

7.7 Summary

We compared the performance between the networks created by the DAR, HC, and MT
protocols. The results demonstrate that DAR creates networks with longer lifetime and
high delivery rate. Also the impact on network performance of adding base stations is

studied. The experiments show that adding base stations is an effective way to improve

network performance.

91

8 Conclusion and Future Work

In this thesis, we surveyed the existing algorithms and protocols available for wireless
sensor networks and we proposed a new algorithm to estimate routing cost and a new
protocol to construct anycast topology proactively in wireless sensor networks.
Performance of the algorithm was extensively evaluated and the result demonstrates that
it can prolong network lifetime significantly and at the same time maintain a high data
delivery rate. The improvement in these two performance metrics is very desirable in
wireless sensor networks. The protocol was also implemented and tested on TelosB
motes. As part of our contribution to the wireless sensor network research community, we
made all of our work available to other researchers by publishing our code on an open
source Subversion hosting server. Thus, other researchers can reuse the code to develop

new algorithms and protocols.

Many challenges still remain before wireless sensor networks can be widely deployed in
all the possible application areas. Making progress in wireless sensor networks is a
surprisingly difficult job. This field involves many research topics including micro-
electronics, wireless communication, embedded operating systems, programming
languages, network protocols, and system integration. The topic of network protocols is
our main interest but not the only one. In this thesis, we studied topology formation and
multi-hop routing algorithms and made a contribution toward establishing a simple and
yet dynamic protocol suitable for data-gathering type wireless sensor networks. We

proposed the DAR protocol and demonstrated that it works on TinyOS based real

92

hardware. TinyOS is an embedded operating system, tiny in memory consumption.
Programming with it involves nesC, Java, and Python programming languages and

requires a thorough understanding of areas in both computer science and electrical

engineering.

Working with large numbers of sensor nodes is a difficult and labor-intensive work.
Programming the motes and then placing them in desired locations is time consuming. A
worthy direction of future work is to install the motes in desired locations in the lab
permanently and power them from the Tmote Connects gateways’ USB ports. Each
Tmote Connect device can connect two motes. Then all the gateways can be connected to
the department network and programming motes can be done remotely through the
gateways without physically reaching the motes. Another two advantages of this
installation scheme are: 1) Batteries are no longer needed since motes are powered
through USB ports. 2) Motes can be shared more efficiently and easily among different
research groups. Furthermore, a complete sensor information system can be set up similar

to Motelab [43].

In this research, we did not measure and compare the performance of various protocols on
real hardware because of the limitation on the available time. Conducting this kind of
measurement and comparison is a worthwhile future work though it is difficult and very
time consuming. Only through that sort of field experience can we understand sensor

networks more deeply.

93

Another possible future work is to study the performance impact with different placement
of base stations. In our current design, base stations are assigned according to their node
identity numbers and there is one base station is placed in the corner. If base stations are

placed strategically, it could increase the network performance as well.

At the time of this thesis is writing, a new version of TinyOS, TinyOS 2.0, has just been
released. TinyOS 2.0 is a significant step up from TinyOS 1.1, which is the one we used
in this thesis. It has a better internal structure and an improved programming interface. It

would be interesting to port the DAR protocol to TinyOS 2.0 in the future.

In conclusion, wireless sensor networks are still a new and challenging research area. In

the near future, we will see more and more development in both the hardware and

software sides to make the wireless sensor network an ubiquitous reality.

94

Bibliography

[1] TinyOS: http://www.tinvos.net

[2] MotelV: http://www.moteiv.com

[3] SourceForge: http://www.sf.net

[4] Subverion: http://subversion.tigris.org

[5] Cygwin: http://www.cvgwin.com

[6] NS-2: http://www.isi.edu/nsnam/ns/

[7] Chipcon: http://www.chipcon.com

[8] TT Semiconductors: http://www.ti.com

[9] Zigbee: http://www.zigbee.org

[10] Yingqi Xu Lee and W.C. Lee. Exploring spatial correlation for link quality
estimation in wireless sensor networks. Proceedings of the Fourth Annual IEEE
International Conference on Pervasive Computing and Communications (PERCOM’06),

pages 10-19, March 2006.

[11] Niwat Thepvilojanapong. HAR: Hierarchy-Based Anycast Routing Protocol
JorWireless Sensor Networks. Proceedings of the IEEE Symposium on Applications and
the Internet (SAINT 05), pages 204-212, 2005.

95

[12] Y. Thomas Hou. Optimal Base Station Selection for Anycast Routing in Wireless
Sensor Networks. IEEE Transactions on Vehicular Technology, volume 55, issue 3,

pages 813 — 821, May 2006.

[13] Congzhou Zhou. Localized Topology Generation Mechanisms for Wireless Sensor
Networks. IEEE Global Telecommunications Conference (GLOBECOM '03), volume 3,
pages 1269-1273, December 2003.

[14] Satoshi Doi. Design, Implementation and Evaluation of Routing Protocols for IPv6
Anycast Communication. Proceedings of the IEEE Nineteenth International Conference
on Advanced Information Networking and Applications (AINA’05), pages 833-838,
2005.

[15]J. Elson. EmStar: An Environment for Developing Wireless Embedded Systems
Software. Technical Report 9, Center for Embedded Networked Sensing, University of
California at Los Angeles, March 2003.

[16] Jianliang Zheng. A Comprehensive Performance Study of IEEE 802.15.4. Technical
Report, Samsung Advanced Institute of Technology, 2004. Available at
http://ees2cy.engr.ccny.cuny.edu/zheng/pub/file/wpan_press.pdf

[17] Tiago Camilo. IPv6 in Wireless Sensor Networks, a New Challenge. Research report
of Centre for Informatics and Systems of the University of Coimbra, Portugal, 2005.
Available at http://www.cisuc.uc.pt/view_pub.php?id_p=972

[18] Chenyang Lu. RAP: A Real-Time Communication Architecture for Large-Scale
Wireless Sensor Networks. Proceedings of Eighth IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 55-66, 2002.

[19] Paolo Santi. Topology Control in Wireless Ad Hoc and Sensor Networks. ACM
Computing Surveys, volume 37, issue 2, pages 164-194, June 2005.

96

[20] L.F. Akyildiz. Wireless sensor networks: a survey. IEEE Communication Magazine,
volume 40, issue 8, pages 102-114, 2002.

[21] Chalermek Intanagonwiwat. The Sink-based Anycast Routing Protocol for Ad Hoc
Wireless Sensor Networks. Technical Report 95-698, Computer Science Department,
University of Southern California, 2004. Available at
http://www.usc.edu/dept/cs/technical_reports.html.

[22] Joseph Polastre. Telos: Enabling Ultra-Low Power Wireless Research. Proceedings
of the Fourth IEEE International Symposium on Information Processing in Sensor

Networks (IPSN 2005), pages 364-369, 2005.

[23] Jason Lester Hill. System Architecture for Wireless Sensor Networks. Ph.D Thesis,
Department of Computer Science, University of California at Berkeley, 2003. Available
at http://www.jlhlabs.com/jhill_cs/jhill thesis.pdf

[24] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
architecture directions for networked sensors. Proceedings of the Ninth ACM
International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 93-104, 2000.

[25] Philip Levis. TinyOS and NesC Programming manual. Available at

http://www.tinyos.net
[26] David Curren. 4 Survey of Simulation in Sensor Networks. Research Report,
Department of Computer Science, State University of New York at Binghamton, 2004.

Available at http://www.cs.binghamton.edu/~kang/teaching/cs580s/david.pdf

[27] Anish Arora and Emre Ertin. Kansei: A High-Fidelity Sensing Testbed. IEEE
Internet Computing, volume 10, issue 2, pages 35-47. April 2006.

97

[28] Ian F. Akyildiz. Wireless sensor and actor networks: research challenges. Ad Hoc

Networks Journal, Elsevier, volume 2, issue 4, pages 351-367, October 2004.

[29] Holger Karl and Andreas Willig. 4 short survey of wireless sensor networks.
Technical Report, Telecommunication Networks Group, Technische Universitt Berlin,

2003. Available at http://www.tkn.tu-berlin.de/publications/papers/

[30] Alexander K. Deterministic boundary recognition and topology extraction for large
sensor networks. Proceedings of the Seventeenth annual ACM-SIAM Symposium on

Discrete Algorithm (SODA 06), pages 1000—1009, January 2006.

[31] A. L. Murphy. An Exercise in Formal Reasoning about Mobile Communications.
Proceedings of the Ninth IEEE International Workshop on Software Specifications and
Design, pages 25-33, April 1998.

[32] RFID WiKi: http://en.wikipedia.org/wiki/Radio_Frequency Identification

[33] IETF 6lowPan work group: http://tools.ietf.org/wg/6lowpan/

[34] The Greatduck Island project: http://www.greatduckisland net/index.php

[35] Charles Perkins and Elizabeth Royer. Ad hoc On-Demand Distance Vector Routing.
Proceedings of the Second IEEE Workshop on Mobile Computing Systems and
Applications, pages 90-100, 1999

[36] Sachin J Mujumdar. Prioritized Geographical Routing in Sensor Networks. Master
thesis, Department of Electrical Engineering, Vanderbilt University, Tennessee, 2004.

Available at http://www.isis.vanderbilt.edu/publications/archive

98

[37] Alec Woo, Terence Tong, and David Culler. Taming the underlying Challenges of
Reliable Multihop Routing in Sensor Networks. Proceedings of the First International
Conference on Embedded Networked Sensor Systems (SenSys’03), pages 14-27, 2003.

[38] Scott Weber. 4 Survey of Anycast in IPv6 Networks. IEEE Communications
Magazine, volume 42, issue 1, pages 127-132, January 2004.

[39] Can Basaran and Sebnem Baydere. Research Integration: Platform Survey. Critical
evaluation of platforms commonly used in embedded wisents research. Technical Report,

Embedded WiSeNts consortium, June 2006. Available at http://teachware.distlab.dk/58/

[40] Contiki Operating System: http://www.sics.se/contiki/

[41] Philip Levis. TOSSIM: Accurate and Scalable Simulation of Entire TinyOS
Applications. Proceedings of the First International Conference on Embedded Networked
Sensor Systems (Sensys03), pages 126—137, 2003.

[42] TinyOS Eclipse plugin: http://www.dcg.ethz.ch/~rschuler/

[43] Motelab at Harvard University: http://motelab.eecs.harvard.edu/

[44] Bor-rong Chen. Lessons Learned from Implementing Ad-Hoc Multicast Routing in
Sensor Networks. Technical Report TR-22-05, Division of Engineering and Applied
Sciences, Harvard University, November 2005. Available at

http://www.eecs.harvard.edu/~brchen/papers/tinyadmr-techrept05.pdf

[45] Werner Allen. Deploying a Wireless Sensor Network on an Active Volcano. IEEE
Internet Computing, volume 10, issue 2, pages 18-25, March 2006.

[46] IEEE802.15.4 Task Group: http://www.icee802.org/15/pub/TG4.html

99

[47] G. Tan. Self-organizing Bluetooth Scatternets. Master's thesis, Department of
Computer Science and Engineering, Massachusetts Institute of Technology, 2002.

Available at http://nms.lcs.mit.edu/papers/tan-ms-thesis.pdf

[48] Tython user manual: http://www.tinyos.net/tinyos-1.x/doc/tython/manual.html

[49] Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin. Directed
Diffusion for Wireless Sensor Networking. Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking (MobiCOM '00), pages 56-67,
August 2000.

[50] David Braginsky and Deborah Estrin. Rumor routing algorthim for sensor networks.
Proceedings of the First ACM international workshop on Wireless Sensor Networks and

Applications, pages 22-31, 2002.

[51] Stuart Kurkowski. MANET Simulation Studies: The Incredibles. Mobile Computing

and Communications Review, volume 9, issue 4, pages 50-61, October 2005.

[52] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor
Networks. Technical Report CSD-TR 02-0013, University of California at Los Angeles,
February 2002.

[53] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
Large-scale Network Discovery: Design Tradeoffs in Wireless Sensor Systems.

Proceedings of the Symposium on Operating Systems Principles (SOSP 2001), 2001.

[54] Crossbow Technology: http://www.xbow.com

100

Appendix

This appendix gives detailed step by step instructions of how to set up the TinyOS
development environment and then build/run the DAR protocol on the TOSSIM
simulator and the TelosB sensor motes. It assumes the host computer is running the
Windows XP operating system. Linux host can also be used, but the installation steps are

fragmented and the process involves many manual tweaks.

The complete simulation results of evaluating the tuning parameters are also attached in

this appendix.

l. Install TinyOS

The version of TinyOS used here is a special version of TinyOS 1.1.15 called Boomerang
version 2.0.4 distributed by Moteiv. It bundled TinyOS 1.1.15 with some Moteiv utilities

for TelosB motes. It also contains fixes to some installation issues found in the original

TinyOS 1.1.15.

Download Boomerang version 2.0.4 from http://www.moteiv.com and install it. This will

install everything we need including Cygwin and TinyOS 1.1.15 environment. The
installed directories are:

C:\cygwin\ — Cygwin environment

C:\cygwinlopt\msp430\ — Utilities for TI MSP430 based TelosB mote

C:\eygwin\opt\tinyos-1.x\ — TinyOS 1.1.15

101

Il. Install Subversion and retrieve DAR source code

The DAR source code is hosted on SourceForge and version controlled under
Subversion. To retrieve the DAR code, a Subversion client is needed. Download the

Subversion client TortoiseSVN from http.//tortoisesvn.tigris.org/ and install it.

After TortoiseSVN is installed, right click the folder C:\cygwinloptitinyos-1.x\ and select
“SVN Checkout”. Then, fill out the “URL of repository” field with

“https://svn.sourceforge.net/svnroot/anycastwsn/trunk” as illustrated by the following

diagram:

After the Checkout, the following directories/files should have been created:
C:\eygwin\opt\tinyos-1.x\tos\lib\Dar\ — DAR protocol source code, it became part of
TinyOS’s library

e DarMultiHop.h : Header file of DAR protocol

102

® DarRouter.nc : DAR protocol configuration

e DarSelectM.nc : DAR protocol module internal implementation

e MultiHopEngineM.nc : DAR protocol’s common interface implementation
C:\cygwin\opt\tinyos-1.x\tos\interfaces\ — TinyOS’s interface files are all in this directory

e DarRouteSelect.nc : Interface definition for DAR protocol

C:\cygwin\optitinyos-1.x\apps\DarApp\ — A demo application using DAR protocol to

send messages

o DarApp.h : Message header definition

e DarAppCmd h : Command message header definition

e DarApp.nc : Application configuration

e DarAppM.nc : Application module implementation

e Makefile : Makefile for building the application

o Lossy7722 : Lossy radio signal model for 7x7 nodes with distance 22 feet. This
file is created by using TinyOS tool “LossyBuilder”. The command line is “java
net.tinyos.sim.LossyBuilder —d 7 7 —s 22 -0 lossy7722”.

C:\cygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim\plugins\ — TOSSIM simulator plug-in

directory

o DarTopoPlugin.java:. A Java plug-in to display network topology created by

DAR protocol

The Java plug-in for DAR has to be compiled and added to the original TOSSIM plug-in

program. To do that, add a line “plugins/DarTopoPlugin.class” to the file

103

C:\eygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim\plugins\plugins.list and enter the

command “make” in the sim directory.

lll. DAR demo application in TOSSIM

To run the DAR demo application in TOSSIM simulator, follow the following steps:

a. Build the DAR demo application

e Open a Cygwin window
e Cd to /opt/tinyos-1.x/apps/DarApp

o Type “make pc”

This will build the application for the “pc” target, which can run in TOSSIM simulator.
The generated executable file is “main.exe” and it is placed in a newly created directory

“build\pc\”.

b. Run the DAR demo application

e Open a Cygwin window

e Cd to /opt/tinyos-1.x/apps/Dar App

. Type “export DBG=sim”. This will set up the demo application to only print out
debugging information related to simulation. Otherwise, the debugging messages
may be too much to be read easily.

o Type “build/pc/main.exe —gui —rf=lossy7722 49 to run the application using the

radio model specified in the file “Jossy7722” with total of 49 motes.

104

Now, the application will try to connect to TOSSIM GUI simulator as illustrated in the

following diagram:

buildspecsmain.exe —gui . —v»F=lossy?722 .49

IM: EEPROM system-inditialized.

nitializing lossy model from lossy??22.
euvent gueue dinitialized.
Random. seed is 23758
Initializing sockets
Created sevver socket listening on poprt 18584.
Created server socket listening on port 18585,
eventAcceptThread running.
Waiting for connection Ffrom GUI ...

commandReadThread »unning.

Since we have not started TOSSIM yet, it will wait there until we do the following to
start TOSSIM GUI:
e Open a new Cygwin window
e Type “java net.tinyos.sim.SimDriver -gui -nosf”. This will start the TOSSIM with
a graphic interface called TinyViz. The “-nosf” option tells TOSSIM that there is
no Serial Forwarder program running so that it must only communicate with local
application, which is our DAR demo application.

Now the TOSSIM is launched, we can click the green start button to start the simulation.

105

£ Ty ¥iz

Haituiine, DAR Tupstogs Dispiay

After TOSSIM is started, the Cygwin window used to launch TOSSIM will provide a

Tython (TinyOS Python) interface to accept interactive Python scripts from the user.

% Java net:itinyos.sim.SimDriver. ~gul -nos
WBtarting SimDriver...

Simulation randon seed 1998483095

Initializing simulator ohjects...

loading simulator plugins...

LCreating Tinyliz GUT ...

SimComm: TossinlnitEvent received €49 motes)... -dinitializing system.
‘SimComn: Pausing system for TossimInitEvent

Melcome to Tython. Type 2guit”’ to -exit.
JAESC ona line by itself .will: pause/resune the simulator.

222>

From this Tython interface, user can stop/resume the simulation, turn on/off nodes. The

turn on/off nodes feature is used to simulate motes joining/leaving the wireless sensor

network dynamically in real life situation.

106

e >>> from simcore import * —To control TOSSIM execution from Tython, the

“simcore” module has to be imported to Tython
o >>> gim.resume() — Resume the TOSSIM simulation process
o >>> gim.pause() — Pause the TOSSIM simulation process
e >>>motes[0].turnOff() — Turn off mote O

e >>> motes[0] turnOn() — Turn on mote 0

arting SimDriver...

Simulation random seed 667816215
nitializing simulator ohjects...

Loading similator plugins...
reating TinyWiz GUIL ...

BimGComm: TossimInitEvent received (49 motes)... initializing system. |

SimComm: ‘Pausing system for TossimlnitEvent

elcome to Tython. Type *guit? to exit.
ESC on a line by -itself will pause/resume the simulator.

j>}> from simcore dimport.
>¥¥ sim.resune{)
2PY simcresune(}
PR simcpausel)
333 motes[@l.turnOFEC)
. motes[BT. turnOndd

R A R S e R R R R R SRR i

et

IV. DAR demo application on motes hardware

Running the application on the real hardware motes involves many more steps compared

to running it in a simulator. This section outlines the detailed steps.

a. Build the DAR application for motes

e Open a Cygwin window

o Cd to /opt/tinyos-1.x/apps/DarApp

107

o Type “make tmote”

jS make ‘tmote

mkdir —p build/tmote 5
conpiling Darfipp to.a tmote hinary S
“pceo—o huild/tmotesmain cexe -0 K. . 2. bos liboBag —I2T21ib/Quene —IRT2Lib/ B d “Hall ~Wshad ~DDEF_TOS . AN_GROUF=8 :
x7d ~Wnesc-all ~tawget=tmote —~Fi ef ile<build-stnotesapp.c ~hoaprd= -DEC2420.DEF. RFPOUER=1 —Iopt/meteiv tossplatform/tn
iote ~lLsaptsmoteivs/tos/platfornsinotesutil/uartdetect —l/opt/mote1u/tos/platfnrm/mspQEB/adc “I'Jopt/moteiv/tos platformime:
p43B8/dac —IJoptsmote iv/tos platforn/nsp43B8/dmna -~ op ivstos/platf ~I7apt/moteivstosplatfovm msp

{438 timer. ~T/opt/mote iv/tosplatfarmnsp43B ~I/opt/motaivi/tes/Libr util/pool —l/upt/mote1u/tns{11b/ut11}hutton =1 foptdmot =,
eiv/tos/lib/util7n0ll ~I/optsmoteivstosskihzotil —~I optsmoteivstos Iib MultiloplQl —I/optymoteiv/tosslib netsync ~1/opts "
moteivstos/Tibrep —IXepts/noteivstos/ Lib/sp/ecc2420 ~l opt/moteivstos/Libr t imer: [7opt /moteivstos<libs/resource ~1 opt/mote ;. "
iv/tessrib/sched: =L opt. iv/tossiihsDel o iv/tes/Tib/Flashs8TH25F ~Isopt/moteivstos<Lib Flash ~I/optsmate e
HustossLih/Spran: ~L/opt/moteiv/tossinterfaces <1 /opts/moteiv/tos/1ih/CC2420Rad 0 -~ 1 /opt/mote iv/tos/systan <l Joptsmoteiv/t
ingas-1.x/t0s/1ib/CC2420Radio ~I /opt/noteiv tinyos—L.x tos<1ih/Drip —~Fnesc-scheduler=TinySchedulerC TinySchedulerC.TaskB:
asic.TaskBasic.TaskBasic. runTask.postTask ~Wl.~—seection—start= text=0x4890, —defsyn=_vesét_ vector__ =0x4888 —DLIB_ DELUGE .
—DDELUGE_NUM_IMAGES =6 —mdisable~humnl -IxzT/Xib-Del WL, i start=. text=0x4888., ~——defsyn=_reset_vector__ =0x4888 .
DIDENT. PROGRAM. HAME=X"DarApp "’ ~DIDENT _USER_ID=\"uLlX". ~DIDENE_HOSTNAME =X"pci\" -~ DIDENT . USER._HASH=05?73884c?9L ~DIDENT_UNI
X _TIME=B8x455522FbL —DIDENT_UTD_HASH=@x49152a6cL Darfpp.nc ~Im
soptimoteivstosszlibssp/GenericConmProniscuocus .nes3132: . varning ! ‘Huarning “GenericConmPromiscuons is deprecated. please uif
e GenerdicComm -instead’
conpiled Davfipp:to build/tmotesmain.exe
19666 bytes in HOM
2848 hytes in RaM
msp43B--objeopy —putput-target=ihex build tmotesmain.exe build tmotesmain._ikex
writing TOS: image

?}Hﬁﬂl reptceinpasione s Badiny

This will build the application for the tmote sky (TelosB) target, which can run in Tmote
Sky and TelosB motes. The generated target binary image file is “main.ihex” and it is

placed in a new created directory “build\tmote\”.

b. Load flash image to motes

Connect a Tmote Sky mote to a free USB port on the computer, the mote will be treated
by Windows Virtual Com Port driver as a serial port device (the COM port number is
automatically assigned). To verify that the mote is recognized by the computer, enter the

command “motelist”. The mote’s serial number should be printed out.

Then, enter the command “make tmote reinstall, x” (where x is the numeric network
address to be assigned to the mote) to program the mote. The Bootstrap Loader program
that resides in the mote will start to program the on-chip flash upon receiving the above

command. In the following example, the attached mote is assigned a network address 4.

108

g motelist
BerdalMum PortName Description

MAAFHMEUN. FCbM'? tmote: sky ,,,j

St Ppad seddey faenr il xnen /£ Ranfing.
make tnote -reinstall.4
Voptztinyos—1.x/tools/make/nep/set-mote~id ~~objcopy. nsp43@-obicopy ——objdunp msp43f-objdump —~tavget ihex build/tmates/m
ain. ibex buildstnptesmain. ihex.out—4 4
installing: tmote bootloader. with application. using bsli '

tmote-bsl . ~c aute.~—e —p Cisecyguinsopt/moteiv /tosslib/DelugerTO0SBoot /build/tmote/main.ihex —p’build/tmotesmain.ihex.oat—4;
—p ~—telosh :
sing mote 'M4RIMEUN on port. COMZ.
Mass evase.
i Lt image: CI/cygwinsopt mote i TibsDe Iuge/10SBoot sbuild/tmotenain. ihex. 1724 bytes.

Tnuoking BSL.

BSL -wersion 1.61. MCU device fd Flbc:

hanyging: te ‘28400 baud'.

rogram.
iProgramned 1774 bytes .
rogram image huild/tmotesmain.ibex.out~—4, 19666 bytes.
%l’rogram.
Programned 19698 bytes.
Reset
vzu ~f build/tmotes/main.oxe.out—4 build/tmote/nain.ihex.out-4

s Bnd Sepbox feseesfl wlapns SBanfipe

Repeat the above step to program all motes with different network addresses. Currently,
if a mote’s address is a multiple of 20, the DAR protocol treats it as a base station. So, in
the following example of trying out the DAR protocol with two base stations, we will
program a mote with address 0 to act as a base station, a mote with address 20 to act as
the second base station, and a few motes with address from 1 to 10 as normal sensor

nodes.

c. Set up Tmote Connect gateway for base stations

Tmote Connect gateway can be used in both DHCP-enabled network and Non-DHCP
network. In this example setup, the Tmote Connect gateway is assigned to a fixed IP
address 10.10.10.77 by DHCP server. Two motes acting as base stations are connected to
the two USB ports of the Tmote Connect gateway. Open a web browser to the gateway to
display the gateway and the base station motes’s status. The two base stations’ data will

be available on the gateway’s TCP port 9001 and 9002 respectively.

109

http:f10,10,30.77f

& i,

ST pediecs
Lonsuting
Applicationg

Wirsless Sensor Watwiarks

d. Run the DAR demo application on motes

Turn on the sensor motes and place them randomly with a distance about 80cm between

each other.

e. Build and run the SurgeTelos Java tool

A java tool called SurgeTelos in TinyOS is used to display the topology of the motes on a
PC. The following steps will recompile the tool from the source for Tmote Sky motes:

e Open a Cygwin window

e Cd to /opt/tinyos-1.x/tools/java/net/tinyos/surge/

e Enter “make clean”

e Enter “SURGE _PLATFORM=telos make”

110

EAlﬁpairfayt/&inywawia%/tmwﬁxxg&w¢fﬂe&fﬁ%nywa/x@vw@

%5 SURGE_PLATPORM=telos make)

HieiZoptrtinyos—1ix tools/javasnet/tinyas/surge

imig - java “target=telosh —I/opt/tinyes-1.x/tos”1ih C€C2426Raddio —Java-el =net . tinyes

:tns/.-/apps/SurgeTelos/Surge;h SurgeMsy —o SuprgeMsg. java

‘mig java starget=telosh -I/optstinyos+1.x/tos 1ibsCC2428Radin —jaua—classnane=net.tingos.surgf

x/toss .. appssSurgeTe los/SurgeCnd h SurgeCndMsy ~o SurgeCndMsyg.java

g

mig jave “target=telosh -l ept/tinyes—1.x/tos/1ibrCG2428Radio —java-classname=net . tinyos.surg

tos/. . tos/lib/Broadcast/Boast .h . BrastMsg o -BeastMsg.java
uwarning: Cannot determine AM type For. _BcastMsg
{Looking for definition of AM_ BCASTMSGY

nig java ~target=telosh ~Isopt/tinyes—-1.x/tes/1ib/CC2420Radin —~java—classname=net.tinyos.surg

L «“X/tesA . . 7tos/ib/MultilopkQl AMultiHop.h MaltibopMsg —o MultihopMsg.java

Javac: DisplavManager. java

“Note: Some input files use or-override a deprecated API.

‘Note: Recompile with -Nlint:zdeprecation For deétails.

ﬁ otes Some: input - files use unchecked op unsafe operations.

Mote: Recompile with ~Rlintiunchecked for détails.

makelll: Entering directory ‘optrtinyos—1l.x/tools/javasnet/tinyos/surgesevent’

;... soptstinyos—L.x/tools/javasnet /Lt invos /surgesevent:

‘makelll: Leaving directery ‘soptstinges-L.x/tools/javasneét tingos/surgesevent?

make [11: Entering divectory *Jopt/tinyes-1.x/teols/javasnet tinyos/surge/util”
wesfoptZtinyes—1L . x/toals/javasnet/tinyos /surges/util

javac ‘Hex.Jjava

make[11: Leaving directory ‘soptstinyes~L.x toolsAjavasnetstinyos/surge/util?

makel1): Entering directory 'Yoptitinyes—1.x tools/javasnet/tinyos/surgesPacketAnalyzer?
. ee Aopt/tinyos—1.xstoolss Javasnet /tinyos/surge s Packetinalyzer

make[11: Leaving directory sopt/tinyos—1l.x tools~javasnetstinvos/surge-PacketAnalyzer’
make [11: Entewring directory ’Joptstinges—1.x/tools/javasnets/tinves/surge/Dialog’

s Zoptstinyes=1 .x/tools/java/net /tinyos/surgeDialog

make [11: Leaving directory “opt/tinves-1.x7toelsjavasnet/tinyos/surgeNDialog*

bl Bored ?vgﬁitin9@$W§mxf%wwﬁ&féau«fne&fﬁinyuyﬁauvge

o

e i e

After the Java tool is ready, create two instances of it by running it in two different

Cygwin windows to display network topology:

e Open a Cygwin window

e Enter “MOTECOM=sf@10.10.10.77:9001 java net.tinyos.surge. MainClass Ox7d”

e Open another Cygwin window

e Enter “MOTECOM=sf@10.10.10.77:9002 java net.tinyos.surge. MainClass Ox7d”

Then, the Cygwin windows should look like:

111

o faptfﬁnyné«Lﬂfabps;

MOTECOM=sf@1P.16.10.77:9802 java net.tinyos.surge.MainClass Bx?d

Using AN
gtarting
eating
tarting
Creating
reating
eating

aking MainFrame visibleq.:
Decay thread running. ..
eady.

group 1D 125 (824>

mote listener...
mainFrame. ...

DisplayManager thread...

ObjectMaintainer ..
Locationfinalyzer...

SensovrAnalyzer...

And, the topology windows are like those:

D snd dnan

Biartveottaanidn nfalEanel

Bandsinsp

Sand wiakaup

Suid byavedn

112

Over time, the topology will change accordingly when new motes are discovered or when

old motes lose connections to the network.

V. Results of Performance Evaluation

This section gives the complete performance evaluation results of the DAR protocol's
tuning parameters a and 3 in network size of 5x5, 7x7, and 10x10. The value network

lifetime is in simulation seconds. The value of delivery rate is in percentage.

o=1:

Network lifetime
B 5x5 |7x7 |10x10

0] 11351064 913
0.25] 1135|1064 912
0.5/ 1134/1063 913
0.75| 11361063 910
0.8 1134}1062 908
0.85 1125/1053 902
0.9 1103/1028 887
0.95| 1072| 977 868
1 999 926 814

Delivery rate N
B 5x5 |[7x7 |10x10

0 57.5/ 516 46.7
0.25| 64.3/ 57.4] 516
0.5 65 59.6| 54.1
0.75/ 67.5/ 60.1 55.5
0.8 67.7)60.2] 558
0.85| 67.9| 60.4| 559
0.9 68| 60.6| 56.1
0.95/ 68.2| 60.7, 56.2
1 682 60.9f 56.3

113

o=3:

o=35:

Network lifetime

B 5x5 7x7 |10x10
0 1122 1049 898
0.25 1118|1039 893
0.5 1116|1040 892
0.75 1114, 1038 891
0.8 1114| 1038 891
0.85 1110, 1038 890
0.9 1094 1019 880
0.95 1073 1002 849
1 1033} 955 787
Delivery rate
B 5%5 7x7 |10x10
0 58.1| 54.5| 49.2
0.25 64.8| 59.5| 53.8
0.5 67.1 60.5] 55.9
0.75 67.9 61.3, 56.8
0.8 67.9 61.5/ 56.9
0.85 68| 61.5 57
0.9 68.1) 61.7| 57.1
0.95 68.2 61.8] 57.2
1 68.3, 62.1, 57.3
Network lifetime
B 5x5 7x7 10x10
0] 1075| 1003 867
0.25 1070, 998 862
0.5 1069, 997 861
0.75 1068 997 859
0.8 1067, 989 859
0.85 1055/ 984 853
0.9 1035 974 837
0.95 1008| 948 822
B 1 968/ 905 776

114

7

Delivery rate
B 5x5 7x7 |10x10
0 59.2 56.8 52.1
0.25 65.1 61.11 56.1
0.5 67.8 63.6/ 57.9
0.75 69 65| 587
0.8 69| 65.3| 58.8
0.85 69.1| 65.3] 58.9
L 0.9 69.2| 65.6! 59.1
0.95 69.4/ 65.6| 59.2
1 694659 59.2
Network lifetime
B 55 77 10x10
0 992 961 848
0.25 985/ 956 843
0.5 984 956 843
0.75 984, 954 842
0.8 982 954 842
0.85 975 950 839
0.9 969 925 827
0.95 958 904, 815
1 920/ 861 767
Delivery rate
B 5x5 7x7 |10x10
0 60.3] 57.3 54.1
0.25 66.8 62.6] 58.1
0.5 68.2| 65.9| 59.1
0.75 69.7 66.5| 60.5
0.8 69.8 66.8/ 60.9
0.85 69.8| 66.9] 60.9
0.9 70 67.1} 61.1
0.95 70.2| 67.1] 611
1 70.2 67.2) 61.1

115

o=11:

Network lifetime]
B 5x5 7x7 [10x10
0 992 927 831
0.25 985 923 828
0.5 984, 924 828
0.75 982| 922 826
0.8 9821 920 826
0.85 975 909 825
L 0.9 969 899 812
0.95 958 892 795
1 920 851 756
Delivery rate
B 5x5 7x7 10x10
0 60.3| 59.1| 55.1
0.25 66.8| 63.4, 58.2
B 0.5/ 682/659 604
0.75 69.7) 67.1] 617
0.8 69.8/ 67.4] 61.8
0.85 69.8 67.5| 61.8
0.9 70| 67.8] 619
0.95 70.2/ 67.9 62.1

70.2) 68 62.1

Network lifetime

B 5x5 7x7 |10x10

0 992 927 820

0.25 985 923 814

0.5 984 924 814

0.75 982 922 812

0.8 982 920 812

0.85 875 909 812

0.9 969| 899 808

0.95 958 892 801

1 920 851 752

116

o=13:

Delivery rate
B 5x5 7x7 |10x10
0 60.3] 59.1] 56.5
0.25 66.8/ 63.4 60.2
0.5 68.6/ 65.9] 61.7
0.75 69.7| 67.1 63
0.8 69.8 67.4) 63.2
0.85 69.8| 67.5| 63.3
0.9 70, 67.8| 63.3
0.95 70.2| 67.9 63.3
1 70.2) 68 634
Network lifetime
B 5x5 7x7 110x10
0 992 927 805
0.25 985 923 801
0.5 984 924 799
0.75 982 922 798
0.8 982 920 798
0.85 975 909 794
0.9 969 899 788
0.95 958 892 781
1 920/ 851 737
Delivery rate
B 5x5 7x7 10x10
0 60.3| 59.1 805
0.25 66.8| 63.4 801
0.5 68.6{ 65.9 799
0.75 69.7| 67.1 798
0.8 69.8 67.4 798
0.85 69.8 67.5 794
0.9 70 67.8 788
0.95 70.2| 67.9 781
1 70.2| 68 737

117

a=135;

Network lifetime
B 5x5 7x7 |10x10
0 992 927 805
0.25 985 923 801
0.5 984 924 799
0.75 982| 922 798
0.8 982/ 920 798
0.85 975 909 794
0.9 969 899 788
0.95 958 892 781
1 920 851 737
Delivery rate
B 5x5 7x7 10x10
0 60.3; 59.1 805
0.25 66.8 63.4 801
0.5 68.6| 65.9 799
0.75 69.7, 67.1 798
0.8 69.8| 67.4 798
0.85 69.8| 67.5 794
0.9 70| 67.8 788
0.95 70.2 67.9 781
1 70.2| 68 737

118

