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Abstract

Dynamic Deformation of Uniform Elastic Two-Layer Objects

Miao Song

This thesis presents a two-layer uniform facet elastic object for real-time simula-
tion based on physics modeling method. It describes the elastic object procedural
modeling algorithm with particle system from the simplest one-dimensional object,
to more complex two-dimensional and three-dimensional objects.

The double-layered elastic object consists of inner and outer elastic mass spring
surfaces and compressible internal pressure. The density of the inner layer can be
set different from the density of the outer layer; the motion of the inner layer can be
opposite to the motion of the outer layer. These special features, which cannot be
achieved by a single layered object, result in improved imitation of a soft body, such
as tissue’s liquidity non-uniform deformation. The construction of the double-layered
elastic object is closer to the real tissue’s physical structure.

The inertial behavior of the elastic object is well illustrated in environments with
gravity and collisions with walls, ceiling, and floor. The collision detection is defined
by elastic collision penalty method and the motion of the object is guided by the
Ordinary Differential Equation computation.

Users can interact with the modeled objects, deform them, and observe the re-

sponse to their action in real time.
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Chapter 1
Introduction

In our real physical world there exist not only rigid bodies but also soft bodies, such
as human and animal’s soft parts and tissue, and other non-living soft objects, such
as cloth, gel, liquid, and gas.

Soft body simulation, which is also known as deformable object simulation, is a
vast research topic and has a long history in computer graphics. It has been used
increasingly nowadays to improve the quality and efficiency in the new generation of
computer graphics for character animation, computer games, and surgical training,.
So far, various elastically deformable models have been developed and used for this
purpose.

In this chapter, we will introduce the concepts about deformable as well as elastic
objects. Moreover, we will explain how important this research is and its present

applications.

1.1 Definitions

1.1.1 Deformable Object

In engineering mechanics, “deformable object” refers to an object whose shape can
be changed due to an applied force, such as tensile (pulling), compressive (pushing),
bending, or tearing forces. The deformation can be categorized as the following,

depending on the types of material and the forces applied:

¢ Elastic deformation (small deformation) is reversible. The object shape is tem-

porarily deformed when tension is applied and it returns to its original shape

1



Soft Body Deformation

Plastic Deformation || Elastic Deformation || Fracture Deformation

Small Elastic Deformation Large Elastic Deformation

Tissue Animation Fluid Animation

Figure 1: Soft Body Deformation

when force is removed. An object made of rubber has a large elastic deforma-
tion range; silk cloth material has a moderate elastic deformation range; crystal

has almost no elastic deformation range.

e Plastic deformation (moderate deformation) is not reversible. The object shape
is deformed when tension is applied and its shape is partially returned to its
original form when the force is removed. Objects such as silver and gum, which
can be stretched at their original length, cannot completely restore their original

shapes after deformation.

e Fracture deformation (large deformation) is not reversible, but is different from
the plastic deformation. The object is permanently deformed when it is irre-
versibly bent, torn, or broken apart after the material has reached the end of the
elastic deformation ranges. All materials will experience fracture deformation

when sufficient force is applied.




1.1.2 Elastic Object

Elastic objects belong to a subset of soft body deformable objects. They are dy-
namic objects that change shape significantly and keep constant volume in response
to collision. They can be bent, stretched, and squeezed. Moreover, they restore their

previous shape after deformation. Elastic objects can be divided into two domains:

e Large elastic deformation, such as fluid deformation, which focuses on flows
through space. It tracks velocity and material properties at fixed points in

space.

e Small elastic deformation, such as tissue deformation, which uses particle sys-
tems to identify chunks of matter and track their position, acceleration, and

velocity.

Within this wide research range of soft body simulation, this work has focused on
small elastic deformable object simulation, such as tissue animation. Even though
there has been many valuable contribution related to this field, there are still many

difficulties in accomplishing to realistic and efficient deformable simulation.

1.2 Animation Techniques

This section introduces some basic concepts related to the elastic simulation, such as
the subject animation method. Animation relies on persistence of vision and refers
to a series motion illusions resulting from the display of static images in rapid-shown
succession. In traditional animation, squash and stretch are exaggerated for elastic
objects. In order to be efficient when working with many of single frame images
(or simply frames), inbetweening and cel animation [TJ84] have been introduced by
Disney for manual traditional animation. ‘

The rate of the animation refers to how many frames are displayed within a given
amount of time. If the rate is too low, which is lower than the brain visual retention,
the animation becomes jerky because the brain retains the empty frame from the
previous image to the next image.

A frame rate, which is the time between two updates of the display, describes the

update frequency. In computer games, frames are often discussed in terms of frames



per second (fps). The lower bound for smooth animation is between 22 to 30 frames
per second.

For many years’ research, computer-animation has been developed dramatically to
replace the amount of manual traditional animation. The techniques of key-framing,

morphing, and motion capture [HO99] have been widely used.

e Key-frame animation: is based on manual animation. It is a sequence of images
of the same object with its local transformations, e.g. values for translation,

rotation and scale, computed by interpolating between keyframes.

e Morphing: is a method usually used to estimate and generate a sequence of
frames between one object to the other object with same number of vertices.
Morphing is a good animation technique when using skeletal animation would

be too complex, e.g. facial animation.

e Motion capture: is the method that attaches sensors on actors bodies and
records the data for their movements and apply these data to a computer gen-

erated characters.

1.3 Elastic Animation

There are two different methods about elastic animation modeling, which depends on

the predefined simulation or simulation in real time.

Kinematic modeling predefines the positions and velocities of objects. It does not
concern what causes movement and how things get where they are in the first place
and only deals with the actual movement. For example, given that a ball’s initial
speed is 10 kilometers per hour on a perfect smooth plane, we can use kinematic

method to calculate how far it travels in two hours.

Dynamic modeling also termed as physically based modeling, is the study of
masses and forces that cause the kinematic quantities, such as acceleration, velocity,
and position, to change as time progresses. For example, when we know the ball’s
initial speed, we need to know how far it travels after an external force dynamically

applied to it.



For elastic object movement, the dynamic methods calculate how the soft body
behaves after external force applied dynamically. The animator does not need to spec-
ify the exact path of an object compared to using the kinematic modeling method.
The system predefines the initial condition of the elastic object, such as position
and gravity force. The animation of the object movement is updated each time step
based on the acceleration derived from Newton’s Laws of motion. The dynamic simu-
lation method is more advanced, easier to achieve the realistic motion than kinematic
method. Therefore, we will only represent dynamic simulation of elastic object in this

thesis.

1.4 Applications

Elastic modeling has been developed and used in several fields, including geomet-
ric modeling, computer vision, computational mathematics, physics engines, bio-

mechanics, engineering, character animation, and many other fields [GM97].

Character Animation There is much advanced animation modeling software,
which has advanced features for modeling, texturing, and lighting. However, for
modeling the simulation of elastic objects, 3D artists have to do it manually, frame-
by-frame because most of the current 3D software does not provide soft object sim-
ulation functionality. Artists have to use not only their drawing skills and intuition,
but also posses some knowledge of physics to make the objects behave as if they are
in the real world or close.

The techniques of the non-physically based modeling of the elastic object include
modeling the group of control points and changing their property parameters man-
ually frame-by-frame. The virtual objects will not convince audiences because no
natural laws of physics are applied. Moreover, key—frénie animation is an inefficient
way to model elastic objects without functionality provided by software. Hence, most
of 3D film animators have to ignore the movement details of soft objects.

The latest version of the most advanced animation tool, Maya, provides the Soft
Mod Deformer tool, which allows smooth sculpting of a group of objects [Wag07].
However, users need to have knowledge about how to use this complex software

in order to access this advanced functionality. Moreover, users can only animate



elastic object with Kinematic modeling method by setting values through the software

interface rather than interact with the object in real time.

Computer Games Compared to the fancy and lifelike character animation widely
used in 3D films, computer games are more concerned about computation efficiency
because users interact with the software in real time. As one might notice, the major-
ity of computer games do not portray the characters in detail, even with the mesh and
texture modeling. It is not likely that elastic simulation will be widely introduced to
computer games because existing elastic models usually require expensive calculation

and are inconvenient to use in real time simulation.

Surgical Training Surgeons benefit from the rapid development of computer graph-
ics and hardware techniques. The computer generated visual virtual environment
imitates the reality of medical operations and organ construction to fulfill the train-
ing purpose. This new application improves surgical outcomes and decreases the
research costs. However, the reality and accuracy of the software always require high-
end knowledge of physics, mathematic and heavy computation. It makes it difficult

for users to interact with virtual objects in real time.

1.5 Thesis Goal

The elastic object for dynamic simulation, which has been widely used, is the one
layer elastic surface with different content within. The soft objects can be squashed
and stretched according to external and internal forces applied on them. Its com-
putation depends on geometric modeling methods and physical equations. However,
this method is inefficient to imitate the behaviors of real human’s tissue because hu-
man’s or animal’s soft body does not consist of only one layer with either liquid or
air inside. Figure 2 from a biological research group demonstrates the complexity of
human tissue [McEO05]. A tissue is composed of epidermis, dermis, fat, fascia, and

muscle layer.

e The epidermis is skin’s outermost layer. It is responsible for the skin coloring

because it contains the skin’s pigment.



Figure 2: Human Tissue Layers

e The dermis, which is the layer that lies below the epidermis, consists entirely
of living cells. It provides the skin elasticity because this layer is composed of

bundles of fibers and small blood vessels.

o The fat, the fascia, and the muscle layer are hypodermis layer of skin. It is
an inner layer of and cushion for the skin. This subcutaneous tissue layer
varies throughout the body region and hormonal influence. The fat and muscle

increase the tension of the skin and protect the bones.

Soft tissues are multi-composite layers; therefore, one layer elastic object is not
accurate to model the kind of soft body exemplified by'human tissue. Moreover, it is
difficult to represent the object’s inertia caused by the internal material realistically
and its liquidity motion based on the various material densities.

In this thesis, we investigate a more accurate two-layer elastic object. The outer
layer of the elastic object represents the epidermis and the dermis layer of a real tissue.
The inner layer of this object corresponds to the hypodermis layers of skin. This two-
layer computer generated elastic object provides more accurate modeling method
based on the main feature of human tissue. Its deformation is based on the realistic
physical consistency of tissues and the laws of established physics. The objective
of this new model is to be convincing and to have distinct realism to the animated
scene by applying proper physics. The program should be easy in implementation,
convenient to re-use, and gives best elastic body behavior at the minimum cost rather
than model the absolute complex object with the exact accurate physical equations.

Users should be able to interact with the soft body in real-time and the collision

7



detection and response must be handled correctly.

1.6 Organization

This chapter starts with the introduction of elastic objects, their applications, some
basic concepts related to physical based deformable simulation, and the thesis goal.
Chapter 2 surveys and analyzes the existing elastic simulation system and its prob-
lems. Chapter 3 describes the modeling methodology of elastic objects in one-
dimension, two-dimension, and three-dimension. Physically-based modeling and sim-
ulation map a natural phenomena to a computer simulation program. There are
two basic processes in this mapping: mathematical modeling and numerical solu-
tion [Lin06]. Chapter 4 introduces mathematical modeling, which describes natural
phenomena by mathematical equations. Chapter 5 presents the dynamics numerical
equation of motion by using ODE (ordinary differential equation) associated with
our elastic simulation system, and discusses the complexity and improvement of the
different numerical time integrator of Euler, Midpoint, and Runge Kutta 4th order.
Chapter 6 presents the detailed design and implementation of the simulation system.
Chapter 7 shows our experimental results with the animation sequences of the elastic
object simulation and discusses the effects of changing the simulation parameters.
Chapter 8 gives the conclusion of our current system, summarizes our contributions
based on the existing elastic simulation models, a.nd’ analyzes the possible develop-

ment and related work in the future.



Chapter 2

Related Work and Background
Material

Research about modeling deformable objects in computer graphics field has been
going on for over 40 years and a wide variety techniques have been developed. In this
chapter, we will review the existing geometric approaches for modeling elastic objects.
These models are all based on physical laws. From the early elastic model, such
as particle model, mass-spring model, finite element model, to recent development
such as fluid based model, and pressure model, we briefly introduce their physically-
based modeling methods and compare these approaches with their advantages and

disadvantages.

2.1 Existing Elastic Object Models

Particle Model has been used by Reeves [Ree83] and to model the natural phe-
nomena such as fire, water, liquid as shown in Figure 3. Particles move under the
force field and constraint without interacting with each other.

The advantage of this particle model is that the method is easy to implement. It
is the earliest model to imitate the natural phenomena.

The disadvantage is that all the particles are independent and there are no forces
connecting the particles. Therefore, for some phenomena, such as springs and mass,

the method cannot achieve.
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Figure 3: Particle System

Deformable Surface was introduced first time by Terzopoulos et al. [TPBF87],
using finite difference for the integration of energy-based Lagrange equations based
on Hooke’s law.

It was very successful in creating and animating surfaces. However, this method
requires not only the discretization of the surfaces into spline patches, but also the
specification of local connectivity for spring mass systems. These involve a significant

amount of manual preprocessing before the surface model can be used.

Linear Mass Spring System has been widely used for modeling elastic objects
as shown in Figure 4. It is actually derived from the particle model; however, it
simplifies the modeling of the inter-particle connection by using flexible springs. Three
dimensional systems contain a finite set of masses connected by springs, which are
assumed to obey Hooke’s Law.

This method was first introduced by Terzopoulos [TJF89] to describe melting
effects. Particles, which are connected by springs, have an associated temperature as
one of their properties. The stiffness of the spring is dependent on the temperature of
the linked two particles. Increased temperature decreases the spring stiffness. When
the temperature reaches the melting point, the stiffness becomes zero.

The advantages of mass-spring model are that it is easy to construct and display

the simulation dynamically.

10



Figure 4: Mass-spring Model

The disadvantages are that such system restricts to only the objects with small
elastic deformation with approximation of the true physics, not for the objects that
require large elastic deformation, such as fluid. This method also has difficulties to
simulate the separation and fusion of a constant volume object. Moreover, the spring
stiffness is problematic. If the spring is too weak, for the closed shape model with only
simple springs to model the surface will be very easy to collapse. If we try to avoid
the collapse, we need to model with spring stiffer, and then we will have difficulty
to choose the elasticity because the object is nearly rigid. Another disadvantage is
that the mass spring system has less stability and requires the numerical integrator
to take small time steps [DW92] than FEM model.

Finite Element Method known as FEM Model [GM97], is the most accurate
physical model compared to other models. It treats deformable object as a contin-
uum, which means the solid bodies with mass and enefgy distributed all over the
object. This continuum model is derived from equations of continuum mechanics.
The whole model can be considered as the equilibrium of a general object subjected
to external forces. The deformation of the elastic object is a function of these forces
and the material property. The object will stop deformation and reach the equi-
librium state when the potential energy is minimized. The applied forces must be
converted to the associated force vectors and the mass and stiffness are computed by

numerically integrating over the object at each time step, so the re-evaluation of the

11



object deformation is necessary and requires heavy pre-processing time [GM97].

The advantage of FEM model is that it gives more realistic deformation result
than mass-spring system because the physics are more accurate.

The disadvantage is that the system lacks efficiency. Because the energy equation
will be used, the FEM is only efficient for the small deformation of the elastic object,
such as application to the plastic material, which has a small deformation range.
Alternatively, the object has less control elements needed to be computed, as in cloth
deformation. If we need to simulate the human soft body parts or facial animation,
the deformation rate is very high. It will be very difficult and sometimes impossible
to carry out the integration procedure over the entire body. Therefore, it has been
limited to apply in real-time system because of the heavy computational effort (usually

it is done off-line). Moreover, the implementation is complicated.

Fluid Based Model [DL02] consists of two components: an elastic surface and a
compressible fluid as shown in Figure 5. The surface is represented as a mass spring
system. The fluid is modeled using finite difference approximations to the Navier-
Stokes equations of fluid flow. Figure 5 describes how this model simulates the fluid
flows down a sink simulated. The inner layer is modeled by a particle system, which
is similar to real water molecules. Using the numerical methods, the motion of each
particle can be computed. In this example, the motion of the each particle is at the

center of the basin, and points down to the sink.

Figure 5: Fluid-Based Soft-Object Model

12



The fluid based model uses physically based modeling and it produces realistic
fluid animation. It illustrates the behavior of fluid in environments with gravity and
collisions with planes.

The disadvantage of this model is the heavy computation for both elastic surface

and density inside fluid. It also provides a solution to the constant volume problem.

Pressure Model was introduced by M. Matyka [Mat03, Mat04b, Mat04b]. It
simulates an elastic deformable object with a internal pressure based on the ideal gas
law as shown in Figure 6. The object volume is calculated approximately by bounding
box, shaped as sphere, cube, or ellipsoid. Another method to determine the object

volume is based on Gauss’s Theorem.

L ZAVAYAYS
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Figure 6: Pressure Soft Body Model

Advantage of this model is that it gives very convincing effects about elastic
property in real time simulation. The object behaves like a balloon filled only with
air.

However, it can not imitate more interesting effects, such as human tissue. It
can not achieve the effect of semi-liquid deformable object because the air pressure
density is uniform inside of the object, which is different from liquid with non-uniform

density. It is not accurate for describing the inertia of the semi-liquid object.

2.2 Summary of The Existing Models

Previous work on deformable object animation uses physically-based methods with
local and global deformations applied directly to the geometric models. Based on the

survey of the existing elastic models, we conclude their usage as the two types:
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o Interactive models are used when speed and low latency are most important and
physical accuracy is secondary. Typical examples include mass-spring models
and spline surfaces used as deformable models. These can satisfy the character

animation with exaggerated unrealistic deformation.

e Accurate models are chosen when physical accuracy is important in order to ac-
complish the surgical training purpose which requires the accurate tissue mod-
eling. The continuum simulation model, for instance, the most accurate model,
FEM, is not ideal for simulation requiring real time interaction and the object

undergoing large deformation.

In short, elastic object simulation is a dilemma of demanding accuracy and inter-

activity.
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Chapter 3

Procedural Modeling Methodology

3.1 Graphics Objects Modeling Methods

Polygonal Methods create geometric objects that can be described by their con-
vex planar polygonal surfaces. These methods are easy to describe the shapes of
mathematical objects rendered on graphics system. However, they are difficult to de-
scribe physical objects, such as cloud and fire, and their complex behaviors combined

with physical laws [Ang03].

Procedural Methods build natural phenomena, 3D models and textures in an
algorithmic manner and generate polygons only during the rendering process. The
details of the object modeling can be controlled upon vary requests. Meanwhile, these

methods are easy to combine computer graphics with physical laws [Ang03, Wik07].

3.2 Procedural Methods

We use procedural modeling methods in our elastic object simulation system. One
of the possible approaches to procedural modeling, a particle system, is designed to
model elastic objects as described in this section. This particle system is also capable
of describing the complex behaviors of elastic objects based on physical laws, such
as solving differential equations of thousands of particles on those elastic objects.
Another approach is language-based procedural method [Ang03], which generates

complex objects with simple programs.
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In order to model an elastic object, we need to study the following basic data struc-
tures, which are varied in one-dimensional, two-dimensional, and three-dimensional

modeling methods.

Particles are objects that have mass, position, velocity, and forces applied on them,
but have no spatial extent. Moreover, the differential position and velocity change

are two properties for these computation of each particle.

Springs are massless with natural length not equal to zero. They are the linkage
of particles. There must be at least one spring connects with two particles paired by

modeling algorithm.

Faces are the data type that consists of springs as the edges and particles as the

vertices.

3.3 1D

The techniques used in an one-dimensional object are presented here, which are ap-
plied subsequently to models in two and three dimensions. An one-dimensional object
with one end fixed as shown in Figure 7(a). The other end is interacted by users with

mouse as in Figure 7(b). The interacted force is restricted to one dimension.

——)
———
T ——
B —

(a) The Initial Spring Sys- (b) The Compressed Force (c) The Stretched Force is
tem is at Rest is Applied Applied

Figure 7: One Dimensional Elastic Object
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3.3.1 Geometric Data Type

Particle There are two mass particles P, and P; on a single spring SP;.

Spring In one-dimensional object, only one type of the spring, structural spring,
is introduced. Structural spring, is used to model the object shape, connected by
the two mass particles in this case. In Figure 7(a), the spring is at the initial state
of equilibrium. The natural length of the spring is I and the force f is zero. In
Figure 7(b), the spring is compressed by an external mouse force. The current spring
length I’ < [ and the spring force restores the elastic object to its equilibrium position
f > 0. When the spring is stretched out as shown in Figure 7(c), the current spring
length I’ > [ and the force of the spring f < 0.

3.3.2 Modeling Algorithm

e Stepl: Create two particles Py and P, with positions (zo, yo) and (z1,y;) shown

in Figure 8.

e Step2: Create a spring S; with these two particles as two ends Sp; and Sps.

Spring Index Particle Coordinates

sp1 | sp2 LS 4
1 0 1 < 0/ 0| 1
170 | 1

Figure 8: Data Structure for One-dimensional Object Representation

3.4 2D

In this section, we extend the one-dimensional elastic object to two dimensions. We
create two separated elastic circles, inner circle and outer circle. Both of them consist
of the same modeling structure as one-dimensional mass particles and springs. Then,

the two concentric circles, inner and outer, are connected by various springs to become
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one two-layered elastic object. However, the distinct features in two-dimensional
object have more types of springs presented and the air pressure inside the two-layer
close shape is calculated. The spring surface prevents infinite expansion of the air;

meanwhile the internal pressure avoids the surface collapsing.

3.4.1 Geometric Data Type

Two-dimensional object is made of three types of primitives, mass particles, springs,

and indexed triangular faces.

Particles are defined based on their coordinates related to x and y axes. Consider
a unit circle with twelve particles as an example shown in Figure 9. The spatial

position for each particle P; is (x;,y;) can be defined by the two equations:

AY

Figure 9: Two-dimensional Elastic Object with Single Layer

z(0) = cos(f + Ab)

y(0) = sin(0 + Af)

where

0° < 6 < 360°

A#f is a small angle stepping along 6

Springs In additional to the structural spring, which also exists in one-dimensional

object, there are two other types of springs, radius spring and shear spring.

o Structural springs: give the basic structure of inner circle and outer circle to

prevent neighboring particles from getting too close to one another as shown in
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(a) Structural Springs

(c) Shear Left Springs (d) Shear Right Springs

Figure 10: Four Types of Springs on a Two-dimensional Object

Figure 10(a). Linkage of each structural spring i is to connect with two particlesF;
and P;y; or P,_; and P,

Radius springs: are the springs connected from particles on inner circle to the
particle on the outer circle as part of the circle radius in order to prevent the
bending of the surface as shown in Figure 10(b). Linkage of each radius spring 3

is to connect with particle Pi""" and the particle P,

Shear springs: are springs connected from particles on inner circle to their diag-
onal neighbors on outer circle in order to avoid the surface fold over . Linkage of
each left shear spring i is to connect with particle P?***" diagonally and the par-
ticle P"7¢"; connect with particle P24¢" diagonally and the particle P/**¢" and
so on as shown in Figure 10(c). Linkage of each right shear spring i is to con-

nect with particle P?4¢" diagonally and the particle P!"""; connect with particle
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Pputer diagonally and the particle P77 and so on as shown in Figure 10(d).

Faces are the data structure for the only purpose of drawing and displaying a filled
object to a two-dimensional object. The triangular facets can be drawn separately

and visualized as a filled circle as shown in Figure 11.

Figure 11: Two-dimensional Elastic Object Facets

3.4.2 Modeling Algorithm

e Step 1: Define the number of particles as n = 12 in our example. Then, the

360° = 30 degrees.

step size is A = =5 =

e Step 2: Define the group of particles’ position on inner circle and the ones
on outer circle as shown in Figure 12. The first particle P, is at (cos,sin6)
where § = 0°, the second particle is at (cosf, sin8) where 6 = 6 + A = 30°...
By multiplying the inner and outer coordinates with a different radius value,
for example, Radiuspner = 1.5, and Radiusyuer = 2 to create two concentric

circles.

e Step 3: Add the structural springs Sy, S1, ...S11 to the inner circle according to
the spring index of inner particles as shown in Figure 12. The same method is
applied to outer structural springs on outer circle. The last spring, S1; in our
example, is composed of two particles P; and Py as two ends in order to make

a close shape.
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Structural Spring Index

Partiéle Coordinates

sp1 | sp2 X y
0 0 1 Q| cosO Sin0 |«
1 1 2 4 [cos30| sin30
2 2 3 2 |cos60| sin60
10, 10 11 10|cos300] sin300
1 11 0 @11 co0s330]sin330

Figure 12: Data Structure for Two-dimensional Object Representation 1

12 to add the

same number of radius springs according to the linkage of the inner and outer

e Step 4: Loop through the number of structural springs n

particles as shown in Figure 13.

inner Structural Spring Index

[ ] spl1 | sp2
0| 0 1
11 1 2
Radius Spring Index 21 2 3
sp1 | sp2 :
o o0 | o 100 10 | 11
1 1 1 11 11 0
2 2 2
E Outer Structural Spring index
10 10 10 spl sp2
1 11 11 0| © 1
1 1 2
2| 2 3
100 10 11
1" 1 0

Figure 13: Data Structure for Two-dimensional Object Representation 2

e Step 5: Loop through the number of structural springs to add the same number

of shear left springs and shear right springs according to the linkage of the inner
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and outer particles as shown in Figure 14.

Inner Structural Spring Index

sp1 | sp2
0 0 1
11 1 2
Shear Left Spring Ind
ear Lett Spring ‘ndex 2 2_ 3 | Shear Right Spring Index
sp1 | sp2 — sp1 | sp2
ol 0 1 10 10 | 1 5 e
1 1 2 1 11 0
2] 2 | 3 2 01
H Outer Structural Spring Index 2 3 2
10 10 | 11 sp1 | sp2 :
10
1 11 0 0, 0 1 v 101 :(1)
1] 1 2
2 2 3
10, 10 11
11 11 0

Figure 14: Data Structure for Two-dimensional Object Representation 3

3.5 3D

In this section, a more complicated three-dimensional elastic object is extended from
the two-dimensional object. In the two-dimensional model, the structural springs’
index is the most important key data structure to link up all the particles and reference
about the index of the particles. This spring linkage method will still work for the
model based on the non-uniform sphere geometric modeling method. However, in the
other geometric modeling method, the uniform sphere modeling, the faces’ index is
the key data structure of the linkage to other data structure, such as particles and
springs. The reason is because in the later geometric modeling method, each facet
on the object is used for subdivision of other facets in each iteration. Compared with
a two-dimensional object, the three-dimensional object consists the same types of

primitives, such as particles, springs, and faces, but extended to z axis.
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3.5.1 Non-Uniform Sphere
3.5.1.1 Geometric Data Type

One of the simplest non-uniform modeling methods to generate an approximate facet
sphere uses Polar to Cartesian Coordinates method. Consider § the angle on zy-
plane (around z-axis), known as the Azimuthal Coordinate. The angle ¢ is from
z-axis, known as the Polar Coordinate. If we fix # and draw curves as we change
¢, we get circles of constant longitude; if we fix ¢ and vary 6, we obtain circles of
constant latitude [Ang03].

Figure 15: Polar Cartesian Coordinates Non-uniform Sphere Generation

Particles The spherical coordinates for a particle ¢ can be defined by the three
equations:

z(0, $) = cosfsin @

y(0, ¢) = cosf cos ¢

2(6,¢) =sin¢

where

00 <=9 <= 360°

—90° <= ¢ <=90°

By stepping # and ¢ in small angles Af and A¢ between their bounds as the number
of slices and stacks, the particles are:

Py(zo, Yo, z0)= (sin € cos ¢, cos 8 cos ¢, sin ¢)

Py(z1,91,21)= (sinf cos(¢ + Ap), cos b cos(¢ + A¢),sin(¢ + Ag))
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Pa(z3, Yo, 22)= (sin(0 + AB) cos ¢, cos( + Ab) cos ¢, sin ¢)
Ps(x3,ys, 23)= (sin(@ + Af) cos(¢ + A¢), cos(6 + Af) cos(d + Ag), sin(¢ + Ag))

However, at the North and South Pole areas, we can only use triangles to present
because all lines of latitude are converged.

The particle at the North Pole area can be presented as:

P(z,y, z)= (sin(0 + Af) cos 90°, cos(d + Af) cos 90°, sin 90°)

The particle at the South Pole area can be presented as:

P(z,y,z)= (sin(f + Af) cos 90°, cos(# + Af) cos 90°, — sin 90°)

Springs There are also three types of springs in three-dimensional objects as we

described in two-dimensional objects, such as structural, radius, and shear springs.

Figure 16: Quadrilaterals and Triangles on Non-uniform Sphere

e Structural spring is still the basic data structure to form the shapes of inner and
outer spheres. Four particles define four springs as the proper order. Taking
the first four particles Py, P;, P, and P; as an example, the first four springs’s
are Sy = PyP,, S; = PP, So = P3Py, S3 = P, Fy shown in Figure 16. The
structural springs on two poles are also defined by the particles on poles as

proper order.
e Radius and shear springs, which connect inner and outer layers, follow the same

methods as in two-dimensional object.

Faces Any quadrilateral-facet on the body of sphere can be represented by four
springs: S;, Si+1, Si+2, and S;;3. Any triangular-facet on the poles can be represented

by three springs: S, Sj+1, and Sjta.
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3.5.1.2 Modeling Algorithm

e Step 1: Define the number of slices and stacks of a sphere, ngi.. = 10 and

Nstack = 10 in our example. Then, the step size is A8 = éilig‘l = 36° and
_ 180° _ 1q0
A¢ = 5 = 18°

e Step 2: Define the group of particles’ position on inner circle and the ones on
outer circle shown in Figure 17. By multiplying the inner and outer coordinates
with a different radius value, for example, Radiusipne, = 1.5, and Radiusoyzer =

2 to create two concentric spheres.

Quadrilateral Face Index Spring Index Particle Coordinates
fp1 | fp2 | fp3 | fp4 sp1 | sp2 X|ly |z
0 0 1 2 3 ol o 2 >0 -
1, 2 4 | 5 6 1 2 3 1

. 2| 3 1 2

: 3
Triangular Face Index 3 1 0 p

4 2 4
fp1 | fp2 | fp3 5 4 5 5

IR , _

: i

[+2

Figure 17: Data Structure for Three-dimensional Non-uniform Object Representation

e Step 3: Add the structural springs Sp, Si, ... to the inner circle according to
the spring index of inner particles as shown in Figure 17. The same method is

applied to outer structural springs on outer circle.

e Step 4: Loop through the number of structural springs to add the same number
of radius springs and shear springs according to the linkage of the inner and
outer particles as described in two-dimensional object modeling method, shown

in Figure 13 and Figure 14.
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3.5.2 Uniform Sphere

An important drawback of the non-uniform sphere model is that the faces vary in

both shape (some are triangles and some are quadrilaterals) and size.

3.5.2.1 Geometric Data Type

Surface refinement is a simple way for uniform modeling. It is started with a kernel
polyhedron, which is a regular polyhedron with faces that are equilateral triangles.
We have used an octahedron with bisecting each face at the same time recursively.
This method is a powerful technique for generating approximations to curves and

surfaces of a sphere to any desired level of accuracy.

(a) The Initial Octahe- (b) The Unit Facet (¢) The Unit Facet Sphere
dron Shape Sphere Object With One Object With Second Iter-
Iteration ation

Figure 18: Uniform Sphere Generation

Particles The algorithm starts with a regular octahedron shown in Figure 18(a).
The shape is composed of eight equilateral triangles, determined by six vertices,
Py(0,0,1), P(0,0,-1), P,(—1,-1,0), P5(1,—1,0), P4(1,1,0), and P5(—1,1,0). The
vertices of the kernel polyhedron are known to lie on the surface of a unit sphere
of radius r = 1. We fix the two vertices F, and P on z axis and normalize the

71-5 in order to make them lie on the unit sphere,

other five vertices by multiplying
centered at the origin. The six vertices after normalization are Py(0,0,1), P;(0,0,—1),

Py(—0.7,-0.7,0), P5(0.7,—0.7,0), P;(0.7,0.7,0), and Ps(—0.7,0.7,0).
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Faces We talk about faces before talking about springs because the face is the
key data structure for recursive subdivision and its index is referenced by spring
index. The first eight triangular faces defined by the six particles are fo = FPyP3 Py,
fi = BRyFs, fo = RPsP, fs = R P, fo = PIPPs, fs = PLPsPy, fo = PIPyF,
fr=PPBP.

Springs Each face is composed of three springs. Therefore, the first twelve springs
on the octahedron are Sy = PyPs, S; = P3Py, Sy = PPy, S3 = PyPs, Sy = PsPy,
Ss = PP, S¢ = PPy, S; = PP, Sg = PPy, S = PP;, Sig = P, Ps, and
S11 = BP;.

Subdivision We can subdivide a single triangular face of the kernel polyhedron by
projecting the midpoints pa, pb, pc of its three edges onto the surface of the sphere

as shown in Figure 19.

Figure 19: Subdivision of A Triangle By Bisecting Sides

This face is split into four faces by bisecting each edge. The four new triangles
are still in the same plane as the original triangle. We move the new vertices pa,
pb, pc to the unit sphere by normalizing each new vertices. The number of particles
increases by a factor of 2. The number of springs increases by a factor of 3. The
number of facets increases by a factor of 4. We subdivide another 7 triangles with
the same method. After subdividing the octahedron once, the number of particles
are 12, the number of triangular faces is 32, and the number of springs is 36. We can
repeat the subdivision process n times to generate successively closer approximations

to the sphere.
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3.5.2.2 Modeling Algorithm

e Step 1: Define a collection of particles to create a closed equilateral triangles
shape of the elastic object. Define an octahedron object as the initial object with

6 particles, 8 triangular faces, and 12 structural springs as shown in Figure 20.

Spring Index Triangular Face Index Particle Coordinates
sp1 | sp2 fp1 | fp2 | fp3 X |y | z
00 0 3 0, O 3 4 »0, 0 [ O | 1
1, 3 4 1 0 4 5 11 00 | 1
2 4 | o0 2 0 | 5 | 2 2[-0.7/-0.7] 0
3| 4 5 3, 0 2 3 3{0.7|-0.7, O
4| 5 0 4 1 4 3 4(0.7|10.7| O
5| & 2 5 1 5 4 5|-0.7/0.7| O
6 2 0 6 1 2 3
71 2 3 71 1 3 2
8 1 4
9| 1 3
10 1 5
1 2 1

Figure 20: Data Structure for Three-dimensional Uniform Object Representation
without Subdivision

e Step 2: Connect the particles with the structural springs according to the edge
order of the octahedron to make an inner layer of the three-dimensional object.

Each particle is separated equidistantly from its neighbors.
e Step 3: Check if there is need of subdivision to approach a more spherical object.

e Step 4: In the first subdivision, the object becomes 12 particles, 32 triangles, and
36 structural springs. The Figure 21 shows how new data can be inserted into a
collection of particles, faces, and springs after subdivision.Use the first triangle
as a concrete example. In the initial octahedron shape, find the midpoint of each
edge on Fy. Normalize the coordinates of these three new particles to make them
lie on the sphere. Push these three new particles tb the particle container. The
first face of the initial octahedron has three pointers that point to particles Fp,

P;, and P, as shown in Figure 20. After subdividing this triangle, it becomes
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Structural Spring Index  Triangular Face Index Particle Coordinates

spl  sp2 fp1 | fp2 | fp3 X |y |z
0, 6 7 0 6 7 8 |\ 0| O 0| 1
1 7 8 1. 0 4 5 l ) 0 1

6 8 . 2(-0.7|-0.7, O

.. 3/10.7 -0.7| O Bisector Coordinates
E 0 6 sl o 6 8 4(0.70.7| O X y z
13 8 0 9| 6 3 7 5|-0.7,0.7| 0 / pa
W 3 |6 0 7 4 | 8 6 .74 pb
15 3 7 7 - pc
16| 7 4 8 A7
17| 4 8

Figure 21: Data Structure for Three-dimensional Uniform Object Representation
with the Number of Subdivision n=1

four smaller triangles connected by the bisectors pa, pb, and pc. The three
new triangles are pushed onto container Faces. The middle triangle replaces
the original big triangle because the original triangle does not exist anymore.
The pointers on each face point to the correspondent particles as indicated in
Figure 21. New structural springs are added to Spring container correspondent
to new faces only if there is no such spring has existed yet. The subdivision of
the remaining faces follows the same method. More faces are approaching the

object to a unit facet sphere.

Step 5: Repeat Step 1 to 5 to create an outer layer with larger radius value

than the inner layer.

Step 6: Loop through the number of structural springs to add the same number

of radius springs according to the linkage of the inner and outer particles.

Step 7: Loop through the number of structural springs to add the same number
of shear left springs and shear right springs according to the linkage of the inner

and outer particles.
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3.5.3 Comparison of Non-uniform and Uniform Methods

The advantages of both methods are that they can be used to describe complex
behaviors combined with physical laws, such as elasticity. Additionally, the level of
detail (LoD) of the object can be adjusted depending on the proximity of the object
on the display to the human’s eye.

The disadvantage of the non-uniform sphere modeling method is that the facets
of the sphere do not have approximately equal size. The facets become smaller at
the poles and bigger at the “equator”. Therefore, the springs are shorter at the poles
and longer at the equator. The normal of each spring varies from equator and the
ones on the poles. Consequently, this non-uniform modeling method increases errors
in force computations for each particle.

The disadvantage of the uniform facet sphere generation algorithm is that it can
not generate surfaces of arbitrary resolution. It can be shown that at all levels of
recursion, particles at the kernel points are connected to four springs if the kernel
object is an octahedron (as shown in Figure 18(b)). In other cases, all the particles at
the kernel points are connected to five springs if the kernel object is an icosahedron
(20 faces); all the particles at the kernel points are connected to three springs if
the kernel object is a tetrahedron. All particles at recursively generated points are
connected to six springs. This will result the irregular surface stiffness and might
cause the non-spherical shape because the same pressure will displace the regions of
a surface about the kernel points further than the rest of the surface.

To solve this problem, the sum of the spring forces accumulated at a particle

can be normalized by multiplying a factor of where ngprings is the number of

Nsprings ’

springs connected to this particle. For example, if particle, is a kernel point, which
is connected to four springs and the sum of the spring forces is f,; and if particley,
which is the point generated from subdivision, connects to six springs and the sum
of the six spring forces is f. f, is multiplied by a factor of g and f, is multiplied by
a factor of .

Our simulation system ignores the described drawback resulting from the uniform
sphere modeling method. We find a set of air pressure and spring stiffness parameter
values at which the simulation is stable by trial and error. Thus, the difference of the
forces for every particle either connected to four springs or six springs is not addressed

in this work.
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Chapter 4

Physical Based Modeling
Methodology

A one-dimensional object model includes gravity force F9, user applied force F¢,
and collision force F¢ as external forces; linear structural spring force F* and spring

damping force F¢ as internal forces.

F=F+F"+F¢+F°+F° (1)

A two-dimensional object model is considered as a closed shape with air pressure
inside. Then, the air pressure F? is a new internal force exist in two-dimensional
object in addition to the common forces in one-dimensional object. Accumulation of
forces on a three-dimensional object is similar to forces applied on the two-dimensional
one. The only difference is that all forces on three-dimensional objects are extended

to axis z.

F=F+F'+F+F* 4+ FP 4 F° (2)

4.1 Gravity Force

Gravity force is a constant force at which the earth attracts objects based on their
masses. In most cases, the particle system does not include gravitation, but, in our
system, particle gravities represent object’s density. Users can set particle gravities

to a non-zero value. g is a constant scalar of the gravitational field.
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F? =mg (3)

4.2 Spring Hooke’s Force

Spring force is a linear force exerted by a compressed or stretched spring upon two
connected particles. The particles which compress or stretch a spring are always
acted upon by this spring force which restores them to their equilibrium positions.
It is calculated as following according to Hooke’s law, which describes the opposing

force exerted by a spring.

Fiy = —(llrz = 11l| =) ks (4)

where

r; is the first particle position,

ry is the second particle position,

7; is default length of the resting spring between the two particles,
ks is the stiffness of the spring,

when ||r2 — ry|| — 7, = 0, the spring is resting,

when ||ry — r1|| — 7 > 0, the spring is extending,

when ||r; — r1|| — 7, < 0, the spring is contracting.

We have discussed the type of structural spring in one-dimensional object. In
two and three dimensional object model, the same method applies on the other three
types of spring, such as radius springs, shear left springs, and shear right springs with
different spring stiffness and spring damping factor. So, the total Hooke’s spring force

is:

h . ! h h h
Ftotal - Fstructure + Fradius + Fshearle St + Fshearright (5)

4.3 Spring Damping Force

Spring damping force is also called viscous damping. It is opposite force of the Hook

spring force in order to simulate the natural damping and resist the motion. It is
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also opposite to the velocity of the moving mass particle and is proportional to the
velocity because the spring is not completely elastic and it absorbs some of the energy
and tends to decrease the velocity of the mass particle attached to it. It is needed
to simulate the natural damping due to the forces of friction. More importantly, it is

useful to enhance numerical stability and is required for the model to be physically

correct [BA97).

'n—I;
Fd = {Vo — V . s - k 6
12 ( 2 1) (|lr2—1‘1||> d ( )
where
(—Z—L”L::l”) is the direction of the spring,

vy and vy is the velocity of the two masses,

kg is spring damping coefficient.

When the two endpoints moving away from each other, the force imparted from the
damper will act against that motion; when the two endpoints moving toward each
other, the damper will act against the squeeze motion. The damper will always acts

against the motion. The total spring damping force is:

d _ d d d ) d
Ftotal - Fstructure + Fradius + Fshearle ft + Fshearrigh.t (7)

4.4 Drag Force

Drag force is the force when users interact with the elastic object through mouse. At
the moment users click the mouse, the simulation system finds the nearest particle
i to the current position of the mouse. If users drag this particle 4, the drag force
contributes to force of this nearest particle. The forces applied on rest particles are
effected by the new user applied force, which is passed through by springs.

We consider one end of the string connects to the mouse position and the other
end of the string connects to the nearest particle on the object. This string is elastic,
so it has all the spring’s properties, such as hook spring force and damping force. The

drag force can be presented as following:

r, —r;
F* = — (lltm — || = 7im) ksm + (Vin — Vi) - (M) Kam (8)
m 1
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where
r,, is the mouse position,
r; is the particle position nearest to mouse,
Iy is default length of the resting mouse spring,
ksm is the stiffness of the mouse spring,
Vv, is the velocity of the mouse represented as a mass
v; is the mass for the nearest particle,
kam is spring damping coefficient for the mouse spring.
F° is a momentary force for interacting with the elastic simulation system. This force
is accumulated to the current forces already applied on this nearest particle.
In a one-dimensional object simulation system, the nearest particle to mouse is
either Py or P;. In a two-dimensional and three-dimensional object system, the drag
force is only applied on the outer layer of the double layered object when user interacts

the object with mouse.

4.5 Air Pressure Force

In order to describe an elastic object more accurately, especially soft body of human
beings and animals, the calculation only about the elastic force on the object’s surface
is not enough. We add the flow pressure force inside of the elastic object to make the
object wobbly looking when it is deformed.

The pressure force will be calculated for every spring, then update each particle’s
direction. The pressure vector is always acting in a direction of normal vectors to
the surface, so the shape will not deform completely. If pressure is simulated without
also simulating the mass-spring system, the object will explode.

In Figure 22(a), the object is deformed from bottom because of the gravity force.
If there is no internal air pressure, the object will collapse unless the springs are hard
enough to avoid the failure. With the very hard springs, it is difficult to simulate
the reality of the elasticity. The real elastic object restores its shape as described in
Figure 22(b). The simplified version of the Ideal Gas Law [Mat03], also known as

Clausius Clapeyron Equation, is used to describe such effect:

PV = NRT (9)
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(a) The External Gravity Force (b) The Object Restores Its Shape
Is Applied Producing A Pressure With Internal Air Pressure Force
Wave

Figure 22: Double-layered Two-dimensional Elastic Object Filled With Air

where

P is the pressure value,

V is the volume of the object,
N is number of mols,

R is the gas constant,

T is the gas temperature. Therefore, the pressure force is:

F? = Pn (10)

where
F? is the pressure force vector,

n is the normal vector to the springs on the object.

_ NRT

F==

(11)

4.5.1 Volume

In order to find an estimate pressure inside of the object which will be applied to
particles later, we need to calculate the volume of the object. The approximation of

the volume is calculated with Gauss’ Theorem [Ker07]:
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V=//Lf(x,y,z)da:dydz(z}V=///vf(:c,y,z)dV (12)

where triple integrals of a function f(z,y,z) define a volume integral of an elastic
sphere. Moreover, triple integrals can be transformed into surface double integrals
over the boundary surface of a region if the three-dimensional object is closed shape

by divergence theorem [Ker07):

V=///VAFdV<=>S=//SFdS (13)

where

F is a vector field,

V is the object volume,

S is the object surface.

Double integrals over a plane region may be transformed into line integrals by Green’s

Theorem in the Plane:

//SAFdxdy@/LFdL (14)
where L is the object edge and dL is the length of the edge.

Therefore, a triple integrals function f(z,y, z) shown in Eq.12, which defines a
volume integral of an elastic sphere, can be transformed to line integrals as shown in
Eq.15.

Vz/LFdL (15)

We assume on the line, the vector field F = (z,0), the simplified integration of
body volume is [Mat03, Ker07):

i=NUMS-1 |
/ FdL= ) §(x1 — Xg) Ny dL (16)
L i=0

where

V' is the volume of the object,

(x; — x3) is the absolute difference of the line (represents spring here) of the start
and end particles at axis x,

n, is the normal vector to this line (spring) at axis x,

dL is the line’s (spring’s) length.
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4.5.2 Normals

Normals are unit vectors perpendicular to specified data structure, such as particle

(vertex psuedo-normals), spring (line), and face (polygonal facets) on the object.

e Particle normal, or vertex psuedo-normals, does not exist for vertices; however,
it can be considered as the average of the normals of the subtended neighbor
particles. To calculate the particle normal is to sum up the normals for each

face adjoining this particle, and then to normalize the sum.

e Spring (line) normal in two dimension is based on the two particles P, P, con-

nected on the spring. It is perpendicular to the spring itself.

e Face (plane) normal in three dimension is determined by right-hand rule, which
is perpendicular to its surface based on the any pair of springs on the surface.
The normal for a triangle surface composed with three particles Py, P, Ps is

computed as the vector cross product of the springs P, — P, and P, — Ps.

The usage of normal calculation method in our elastic object simulation system
is for analysis of the direction of the pressure force inside of the object. Only spring
normal is calculated here because all the internal and external forces will apply on

each spring, and the spring will define the particles’ force which connect onto it.

4.5.2.1 2D Normals

For the single spring Spring)s, the Cartesian coordinates for particle Py is (z1,¥1);
the Cartesian coordinates for particle P is (x3,y2). The normal to this spring is
the spring rotate 90° at axis z according to the space position. So, we can get the
components of the normal in x axis and y axis as following
z [ c0s90° — sin 90° Ty — Ty
[y’] ~ | sin90°  cos90° ] {yg—yl ]
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4.5.2.2 3D Normals

The calculation of the 3D normals of springs is important because it will define the
direction of the internal air pressure force, either compress the elastic object or expand
its volume. In theory, in three-dimensional simulation, the normal of a spring in the
space position is represented as an average of the normals of faces connected to it.
However, in our elastic object simulation system, we use a simplified estimated normal
based on the normal algorithm of the two-dimensional calculation discussed above.
Instead of rotating a line 90° at z axis to get its normal vector in two-dimension, the
estimated algorithm is rotating a line 90° at z axis, y axis, and x axis to get its normal

in three-dimension.

x/ [ cos90° —sin90° 0 0] [ cos90° 0 —sin90° 0
y' | | sin90° cos90° 0 0 0 1 0 0
2| | o 0 1 0]|/|sn9° 0 cos90° 0
1] | o0 o o1|| 0o 0o 0o 1
1 0 0 0 Tg — I
0 co0s90° sin90° 0 Y2 — Y1
0 —sin90° cos90° 0 29 — 21
0 0 0 1 1
Therefore,
X [ -z ]
Y1 | v-wn
21 | - (xg — 1)
L 1 . L 1 . m

We use a vector (1,0, 0) as an example to prove this algorithm, the normal vector for

this vector is:

z 0-0

v | 0-0 _

2| | -a-0| |-1
1| 1 1

This result is reasonably correct and believable despite of the fact that if vector

(1,0,0) lies in the zz-plane or lies in the zy-plane.
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However, it shows that this estimation algorithm has the limitation for some cases,

for example vector (0, 1,0), the normal vector is:

' 0-0 0
v | 1-0 1
21 | —0=0| |o
1 1 1

This result shows the normal vector is the vector itself, which is obviously wrong.
However, with this estimated algorithm, the simulation result appears enough realis-

tic; moreover, it requires less computational effort!.

4.6 Collision Force

If an object continues traveling under a force without colliding with other objects,
it will be very difficult to describe objects’ motion and elastic response in reality.
Collision force is the force to make object bounce away from the fixed interacting plane
when elastic object collision happens.There are two steps to describe the collision
effects: detection and reaction. Detect the elastic object if particles hit anything;

adjust their position by computing the impulse.

4.6.1 Collision Detection

Collision Detection is a geometric problem of determining if a moving object inter-
sected with other objects at some point between an initial and final configuration. In
our elastic object simulation system, we are concerned with the problem of determin-

ing if any of n particles collide with any of m solid planes.

Perfect Elastic Collision We take one particle collides with a plane shown in
Figure 23 as an example. We can detect this collision by inserting the particle position

into the plane equation:

P(z,y,z) =azx+by+cz+d (17)

10ur estimation only takes 3 additions vs. 12 multiplications and 6 additions for two cross
products and three more additions and divisions for the averaging.
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Figure 23: Particle Inelastic Collision and Impact

If P(z,vy,z) > 0, the particle is within the plane. If P(x,y, 2) = 0, the particle collides
with the plane. If P(z,y, z) < 0, the particle penetrates the plane. At each time step,
looping through all the particles on the object, each particle is checked if it is outside
of the interacting plane.

When the particle 7 collides with the plane, if there is a perfect elastic collision
as in Figure 23, the particle does not lose its energy, so its speed does not change.

However, its direction after the collision is in the direction of a perfect reflection.

F¢=2((P—P)-n)n— (P - P) (18)

where
Fe¢ is the the direction of a perfect reflection
n is the normal at the point of collision P’ and the previous position of particle P

P — P’ is the vector from the particle to the surface.

Damped Elastic Collision If there is a damped elastic collision, the particle can-
not penetrate the surface, and it cannot bounce from the surface because of the force
being applied to it, then we need to apply the damped elastic collision method. The
particle loses some of its energy when it collides with another object. The coefficient
of restitution of a particle is the friction of the normal velocity retained after the
collision. Therefore, the angle of reflection is computed as for the inelastic collision,

and the normal component of the velocity is reduced by the coefficient of restitution.
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4.6.2 Collision Response

Collision Response is a physics problem of determining the forces of the collision. In
elastic collision, elastic object should bounce away from the colliding plane and some

energy is lost in the collision response as described in the penalty method.

F¢ = —eF*° (19)
where e is elasticity of the collision and 0.0 < e < 1.0. At e = 0, the particle does
not bounce at all; e = 1, the particle bounces with no friction.

In an one-dimensional object, the boundaries are the walls and floors. In a two-
dimensional and three-dimensional object, the particles on the outer layer still follow
the same method and same pre-defined boundary as the one-dimensional object.
However, for the particles on the inner layer, the boundary is constrained to the

outer layer instead of the wall and floor.

4.7 Force Accumulation Algorithm

The following algorithm describes how different forces are accumulated and applied
to an elastic object. For a one-dimensional object, some steps will be skipped, for
example, there are no other types of spring computations except structural springs
because other types of springs only apply on two-layer 2D or 3D objects. Moreover,
there are no pressure force accumulation and volume computation because these steps

are only available for closed shape objects.

e Step 1: Loop through the number of particles to assign particles with mass value
m and compute gravity force F9. Gravity force, which is independently on each
particle, either depends on a constant force, or one or more of particle position,
particle velocity, and time [Wit97]. If the object is one-dimensional, the mass
of each particle can be different. If the object is two or three dimensional, the

mass of the particles on inner or outer layer can also be set differently.

e Step 2: Loop through the number of the structural springs to accumulate the

structural spring force.

e Step 3: Loop through the number of the radius springs to accumulate the radius

spring force.
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Step 4: Loop through the number of the shear springs to accumulate the shear

spring force.

Step 5: Initialize density as gas, liquid, or rubber inside of the body and in-
troduce some simple physics to describe it. In the current system, only air
pressure material is considered and only pressure equation will be used for this

extra force computation.
Step 6: Calculate volume of the inner layer and outer layer of the elastic object.

Step 7: Calculate the normals of springs on each triangular face to define the

pressure force direction.

Step 8: Calculate the force from the internal air pressure by multiplying the

force value by normal vector of the spring.
Step 9: Accumulate pressure force to each particle.

Step 10: If users apply the drag force, compute the user applied force and

accumulate this force to the dragged particle.

Step 11: Integrate the object’s momentum motion by calculating the derived
velocity and its new position for each particle. This step will be explained in

next chapter.

Step 12: Resolve collision detection and response and define the updated posi-

tion.
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Chapter 5

Numerical Integration
Methodology

Assume, after the elastic object simulation system creates an elastic object based on
the methodology described in Chapter 3 with its initial force state in Figure 24(a) as
described in Chapter 4, the system starts the simulation. The simulation system is
updated a finite number of times. The object is at the state in Figure 24(b) after 50

discrete time steps.

(a) Elastic Object at the Initial (b) Elastic Object at the Step 50
Step

Figure 24: Elastic Object at Different Time States

In each update, the accumulated impact forces on the object tell it how to change
the velocity for next step and result in a re-computation of the forces. The dynamic
force applied on this object may be the collision force when the object reaches the

boundary; or, the mouse dragging force when user interacts with the object. Overall,
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the shape deformation, a mapping of the positions of every particle in the original
object to those in the deformed body of this elastic object, is also computed in
real time. Therefore, it is important to study differential equations, which govern
dynamics and geometric representation of objects [Lin06] and tell us how the velocity
and displacement of the particles are integrated dynamically from the knowledge of

force applied onto them.

5.1 Differential Equations

Differential equations describe a relation between a function and one or more of its
derivatives. The order of the equation is the order of the highest derivative it con-
tains. The elastic object simulation system is associated with initial value problems
because it always seeks the particles’ velocity and position at next time step t + h
from their initial state at time ¢. We will concentrate on ODE (ordinary differential
equation), where all derivatives are with respect to single independent variable, often
representing time, such as position and velocity, during the derivate of the state at

discrete time steps [Ang03].

¥ =A(y,t) (20)

where

A is a function of y and ¢,

vy is a vector, which is the state of the system,
y' is a vector, which is y’s time derivative.

Suppose that we integrate the Eq.20 over a short time h

t+h
v+ -y®)= [ At (21)

where

h is the small stepsize of time,

y(t) is the initial state at the start point ¢,

y(t + h) is the value we need to find over time thereafter.
Thus

y(t +h) = y(t) + hA(y(H), 1) (22)

44



5.1.1 Explicit Euler Integrator

The simplest ODE integration method is Explicit Euler Integration method or For-
ward Euler method. It evaluates the forces at time ¢, compute derivatives A at the
state of ¢ by multiplying the interval h, and add it to the current state . Consider a

Taylor series expansion as in Eq.23:

! h2 " h3 "n hn any
V(e B) = 9(0)+ k(@) + 500+ 5 O+ (T ) e @)

Euler method retains only first derivative:

y(t+h) =y(t) + hy/'(t) + O(h?) (24)

<=

k1=A(y(t). t)

Figure 25: Euler Integrator

We split the series into elements, which we will later use in a re-usable manner
throughout integrator framework, where

ko which represents the first term in Eq.24, is the initial state

ko = y(t) (25)
k: which represents the second term in Eq.24, is the function to find the simplest

estimation, the Euler slope of the interval.

k=9 (t) = Ay().1) (26)
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Thus

y(t + h) = ko + hk; (27)

We can apply this method iteratively to compute further values at state t + 2h,
t + 3h,.... [BD03] This method is easy to implement; however, it is a low accuracy
prototype ODE. In Figure 25, we can see Euler method only calculates the derivative,
also called slope, at the beginning of the interval and adds it to the value at the initial

state; therefore, it is asymmetric and not stable. .

Pseudocode for Euler Method

Line 1: define A(y(t), t)

Line 2: initial values yO and tO

Line 3: stepsize h and number of steps n
Line 4: for i from 1 to n do

Line 5: k1 = A(y(t), t)

Line 6: y = y + hkil

Line 7: t =t +h

5.1.2 Midpoint Integrator

Compared to the Euler method, the one-sided estimate algorithm, midpoint integrator
is a symmetric estimate method with a higher per-step accuracy. It computes the
derivative at the center of the interval first, then computes the end of the interval.

The midpoint integrator, just like others, is based on the Taylor’s series. It retains

only first three derivative term:

Y+ ) = U(t) + () + Sy () + O(h) )

We split the series into elements again for explanation of the method, where

ko, which represents the first term in Eq.28, is the initial state at time .

ko = y(t) (29)

k, which represents the second term in Eq.28, is the function to find the the simplest

Euler slope of the interval at time ¢.
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k2=A(y(t+h),t+h)

k1+k2
2

ki=A(y(t), t)

Figure 26: Midpoint Integrator

k=9 (t) = A(y(t),?) (30)
ko is the function to find the the simplest Euler slope of the interval at time ¢ + h.

ke =19 (t+h)=A(y(t+h),t+h) (31)
Since the unknown (y + h) appears on the right side of Eq.32, in A(y(¢t +h),t+h) as

one of the arguments of function A, we can use the value obtained using the Euler
method in Eq.24.

Ayt +h),t+h) =~ A(y(t) + h(y(t),t),t + h) = A(y(t) + hEk1,t 4+ h) (32)

The midpoint integration technique obtains a more accurate estimate of the slope
than Euler’s technique. The following equation computes the integrand at the middle
of the interval of ¢ and ¢ + h shown in Figure 26. Thus,
ki +k

y(t+h)=k0+h12 2 (33)

Compared to Euler Method, Midpoint Method, also called the Runge-Kutta method

of order 2, goes from t to t + h, we must evaluate function A twice. By using Taylor’s

theorem to evaluate the per-step error, we would find that it is now O(h3). Therefore,

this method is more stable than Euler Method with same step size.
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Pseudocode for Midpoint Method

Line 1: define A(y(t), t)

Line 2: initial values yO and tO

Line 3: stepsize h and number of steps n
Line 4: for i from 1 to n do

Line 5: k1 = A(y(t), t)

Line 6: k2 = A(y(t+h), t+h)= A(y+hkl, t+h)
Line 7: y = y + h/2(k1+k2)

Line 8: t =t + h

5.1.3 Runge Kutta Fourth Order Integrator

Runge Kutta Fourth Order integrator evaluates the derivative four times. It is the

most accurate integrator that we describe compared to Euler and Midpoint.

y(t+h)

y(runge kutta 4th order)

k1=A(y(t), t) .

>
t t+h time

Figure 27: Runge Kutta 4th Order Integrator

The Runge Kutta Fourth integrator, is also based on the Taylor’s series. It retains

only first five derivative term with a local truncation error O(h%):

3 4

e+ 1) = 9(®) + by ) + Sy + By + By 0wy sy

ko = y(t) (35)
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k1 =y'(t) = Ay(2), 1) (36)

ks = A(y(t) + h%,t + g) (37)
ks = A(y(t) + h’-;%,t o) (38)
ks = A(y(t) + hks,t + h) (39)
y(t+R) = ko + %h(kl +2ky + 2k + ky) (40)

where

ko is the initial state

k1 is the slope at the left end of interval,

ko is the slope at the middle point using the Euler formula to go from ¢ to t + %,

k3 is the second approximation to the slope at the midpoint,

k4 is the slope at t + h using the Euler formula and the slope k3 to go from ¢ to
t+ h.

Pseudocode for Runge Kutta Fourth Order Method

Line 1: define A(y(t), t)

Line 2: initial values y0 and tO

Line 3: stepsize h and number of steps n
Line 4: for i from 1 to n do

Line 5: k1 = A(y(t), t)

Line 6: k2 = A(y+h/2(k1), t+h/2)

Line 7: k3 = A(y+h/2(k2), t+h/2)

Line 8: k4 = A(y+hk3, t+h)

Line 9: y = y + h/6(k1+2%k2+2%k3+k4)

Line 10: t =t + h
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5.2 Newton’s Laws

After the force accumulation on the object, it is important to find the acceleration a
in order to define the motion of objects in their next time step. The physical law that
governs the motion of objects is the Newton’s Second law. It states that the force F
is proportional to the time rate of change of its linear momentum. Momentum is the

product of mass m and velocity v.

Av

Velocity v is the integral of acceleration a with respect to the time ¢. Therefore,

integrating the acceleration gives us the new velocity v.
V= / adt (42)

Position r is the integral of velocity v with respect to the time ¢. Therefore,

integrating the velocity gives us the new position r.

r= /vdt (43)

Let’s take one particle on the object as an example and understand how the different

integrators work.

5.2.1 Newton’s Laws in Euler Integrator

Based on the Euler Integrator method shown in Eq.24, the new velocity and position

of a particle can be integrated follows.

Velocity can be represented as the following equation:

v(t+ h) = v(t) + hv'(2) (44)

vko Tepresents the first term in Eq.44, which is the initial velocity at time ¢

vko = V(t) (45)

vy represents the second term in Eq.44, which is the function to compute the deriva-

tive velocity in the period h
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v = hv'(t) = a(t)h

Position can be represented as the following equation
r(t + h) = r(t) + hr'(t)

Tro is the initial position at time ¢

Tro = I‘(t)

Tr1 is the function to find the travel position in the period h
Te1 = hr'(t) = v(t)h

5.2.2 Newton’s Laws in Midpoint Integrator

(46)

(47)

(48)

(49)

We apply the midpoint algorithm theory on the Newton’s law in order to achieve

higher accuracy in the the relationship between the velocity and the position according

the Eq.28.

Velocity can be represented as the following equation

2
h V”(t)

v(t+h) m V() +hV(E) + o

Uko is the initial velocity at state ¢

Vo = V(t)

vg1 is the function to compute the derivative velocity in the period h

v = V'(t) = a(t)h

Vg2 is the function to compute the derivative velocity in the period ¢ 4 A

v = V' (t+ h) = v(t) + a(t)h

Therefore, the new velocity of a particle is

Vg1 + Uka

V(t+h)=’l)k0+ 5

o1

(50)

(53)
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Position can be represented as the following equation

2

r(t+h) = r(t) + hr'(t) + %r”(t) (55)

Tko is the initial position at state ¢

Tro = T(t) (56)

k1 is the function to find the travel position in the period &

e =T (t) = v(t)h (57)

Tk2 is the function to find the travel position in the period ¢t + h

Tee =1'(t +h) =r(t) + v(t)h (58)
Therefore, the new position of a particle is

Tkl + Tk2

r(t+h) =1k + 5

(59)

5.2.3 Newton’s Laws in the Runge Kutta Fourth Order In-
tegrator
Based on the Runge Kutta Fourth Order method we have shown in Eq.28, the new

velocity and position of a particle can be integrated as following.

Velocity can be represented as the following equation

2 3 4

Ev,,(t) + h—V’”(t) + h—V"”(t) (60)

~ /
v(t+h) = v(t)+ hv'(t) + 30 1

Uko is the initial velocity at time ¢

vo = v(t) (61)

vk is the function to compute the derivative velocity in the period h

1 = a(t)h (62)

vgo is the function to compute the derivative velocity of the Euler integration in the

period h/2 based on the previous step
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v
Vg2 = Vgo + —-2’2- (63)

Vg3 is the function to compute the derivative velocity of the second approximation
based on the v in the period h/2

Uks = Vgo + ESE (64)

Uk4 IS the function to compute the final resulting velocity change of vz from vy

Uka = Uko + k3 (65)

Therefore, the new velocity of the particle is

1
v(t + h) = vk + Eh(vkl + 2vk2 + 2Uk3 + Vka) (66)

If we integrate the velocity vector over time, it gives us how the position vector

changed over this time.

Position can be represented as the following equation

h? h3 h4
r(t + h) =~ r(t) + hr'(t) + ﬁr”(t) + gr’”(t) + Ir’”’(lt) (67)

Txo is the initial position at time ¢

Tro = I‘(t) (68)

Tk1 is the function to find the travel position in the period A

T = V(t)h (69)

Tke 18 the function to find the travel position of the Euler integration in the period
h/2 based on the previous step
Tk1

v(t)h
Tk2=7'k0+7:r(t)+_(‘2)_

T3 1s the function to find the travel position of the second approximation based on
the 7o in the period h/2

(70)

.
ks = Tho + —;—2- (71)
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Tka is the function to find the travel position change of 743 from 7y

Tka = Tko + Tk3 (72)

Therefore, the new position of the particle is

1
r(t+h) = ro + gh(rkl +27k2 + 273 + Tha) (73)

5.3 Comparison of Three Integrators

5.3.1 Efficiency

For a given step size, Euler is more efficient because it requires only one derivative
evaluation per step. Mid Point requires about twice as much computation than the
Euler integrator because Mid Point uses two steps to calculate velocity and position
at the next time. Runge Kutta Fourth Order requires about four times as much
computation as Euler integrator because it use four steps to calculate the velocity
and position at the next time step [BD03]. For some configuration, if speed is the
priority, Euler integration is convenient to use, but at the expense of accuracy and
stability.

5.3.2 Accuracy

Smaller time steps means more stability and accuracy. But also means more com-
putation. If a given step size is h, error of Euler method is O(h?) as a first-order
method, error of midpoint is O(h?), and error of RK 4 is O(k®) [BD03].

e The Euler method is based on keep the first two terms of the Taylor series
expansion

N

y(t +h) = y(t) + hy/'(t) + O(h?) (74)

e An improved method which involves the second derivative is Midpoint method

as following \

y(t+h) =y(t) + /() + %T "(t) +O(h?) (75)

o4



e An improved method which involves the four derivative is Runge Kutta method
as following
2

Ye+h) =9(0) + () + (@) + B0 + By 00 (70)

5.3.3 Stability

With smaller step time value, such as 10 ms, the system integrated by any of the three
methods is stable. However, if we give the system a higher step time value, such as
50 or 100 ms, with same mass, damping coefficient, gravity acceleration, the elastic
object under Euler system will explode after a short period because its numerical
instability causes the mass to oscillate out of control; midpoint and Runge Kutta

Fourth Order integrator are more stable [BD03].
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Chapter 6
Design and Implementation

In this chapter, we will present the detailed design of the two-layer elastic object

physical based simulation system and its implementation.

6.1 Elastic Object Simulation System Design

In this section, an overview of the framework and the algorithm for the elastic simu-

lation system is given.

6.1.1 Domain Analysis-Based Modeling

Controller

Figure 28: Model-View-Controller

This elastic object simulation system has been designed and implemented accord-
ing to the well known architectural pattern, Model-View-Controller|[Wik07]. This pat-
tern is ideal for real time simulation because it simplifies the dynamic tasks handling

by separating data (Model) from user interface (View). Thus, the user’s interaction
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with the software does not impact the data handling; the data can be reorganized
without changing the user interface. The communication between the Model and
the View is done through another component: Controller. In our current simulation

system, the application has been split into these three separated components:

e Model is an application of object modeling. It stores the geometric modeling
methods of the elastic objects and the data of the objects themselves, such
as one-dimensional, two-dimensional, and three-dimensional elastic objects and

their associated data structure, such as vector, particles, springs, and faces.

e View is the screen presentation to render the Model and a user interface for
dynamical simulation. The view in my system is the GLUT window which
displays the elastic object and allows the user to use mouse and keyboard to

interact with the elastic object.

e Controller handles the processes and responds from the user interaction and
invokes the changes to the model. When the user interacts with the elastic
object through the GLUT window by dragging it with mouse, the controller
handles the new dragging force from the user interface, integrates the new force
to find out the change of the acceleration and velocity, and where the object
should move to in next display update. This is done through the series of

registered GLUT callback functions that prdcess the input from the user.

6.2 Elastic Object Simulation System Implemen-

tation

The system is implemented using OpenGL and the C++ programming language with
object oriented programming paradigm. Figure 29 describes structure of the software

based on the classes.

e The three data structures, such as particle, spring, and face compose an elastic

object.

o The elastic object types can be varied by the dimensionality: one-, two-, or

three-dimensional.
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Figure 29: Class Diagram
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e The types of integrators are also varied by their complexities, such as Euler,
Midpoint, and Runge-Kutta.

e An “Object” instance contains an instance of an “Integrator”. The relation-
ship between them is aggregation rather than a common composition because
when the elastic object is destroyed, the integrator object is not necessary de-

stroyed. The “Object” has an aggregation of the “Integrator” by containing

only a reference or pointer to the “Integrator”.

e The classes “Object”, “ViewSpace”, and “Integrator” are associated to each

other based the Model-View-Controller model.

o8




Let’s have a close view at each model and the related classes with their parameters

and member functions.

6.2.1 Design and Implementation of Data Types

Face

éPanticla  *fpl;
#Particle  *ip2;
¢Partticle  *fp3;
oSpring  *fst;
oSpring  “fs2;
o#Spring  *fs3;

SFace(Ap1 : Particle®, Ap2 : Particle*, Ap3 : Particle®)
:Face(Ap1 : Particle®, Ap2 : Particle*, Ap3 : Particle™, springs : vector<Spring*>&)
~Faca()

orestlen : float
ks : float
okd : float
¢Particle *sp1; Hype | <<enum>>
eParticle *sp2; K>———> spring_type
@Vector normal;

$Spring(P1 : Particle*, P2 ; Particle®, Ks : float = KS, Kd : float = KD)
$Spring() spring type,
*~Spring() structrual,

T “ radius, shear
¢Vector *r,

+2
Particle
Vector *v,

$Vector 'd'r;
oVector *dv,

&mass : float
oVector *f,

Particle(R : Vector, Mass : float)
SParticle()

*Particle(p : const Particled)
$~Patticle()

Figure 30: Face-Spring-Particle Class Diagram

The basic data structure is the object vector, which defines the the scalar value
with direction. For the second basic data structure, particle, whose properties, such
as position, velocity are made up of the object vector. The next higher data structure
is spring, which is defined by two particle objects. Face, which is the highest data

structure in this simulation system, is composed of three connected springs.

Particle In Figure 30, the particle class shows that each particle has mass mass,

position r, velocity v, derivative of position dr, derivative of velocity dv, and force
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vector f. Particle constructor sets up its properties with default values.

Spring As shown in Figure 30, the spring class, there are different types of springs
to construct the object, such as structural, radius, shear-left, and shear-right springs,
declared in the enum type spring_type and the defauit spring type is structural. *spl
is the head of the spring and points to a particle; xsp2 is the tail of the spring and
points to a particle. restLen is the spring length when it is in the resting state. ks
is Hooke’s spring constant and kd is the spring damping factor. The spring normal

vector will be calculated and needed in pressure force calculation.

Face In Figure 30, the face class shows that a face contains *fpl, *fp2, and *fp3
point to the first, the second, and the third particles as three of its vertices. It also
contains *fsl, *fs2, and *fs3 point to the first, second, and third spring as three
of its edges. There are two face constructors. The first one stores the information
of three vertices that point to three particles. It represents faces on two-dimensional
objects. The faces will only be needed at the display process.

Figure 31 represents another face constructor along with its algorithm implemen-
tation. It accepts three vertices on each face that point to the three particles, and
constructs a spring and stores the spring information into the spring vector. This
constructor is called by three-dimensional uniform modeling method. The index of
face is the key data structure for subdivision method in subroutine. The constructor
initializes the three springs based on the three particles. First spring contains particle
pl and p2; the second spring contains particle p2 and p3; the third spring contains
particle p3 and pl. A special care is taken not to duplicate existing springs (which
would result in incorrect behaviour of the model); therefore, we only allow the new
and non-existing springs to be saved in the spring vector. If the first spring already
exists with particles pl and p2, the new spring fsl will point to the existing spring.
Same method is applied on the second spring fs2 and third spring fs3. Otherwise,
the new spring will be pushed and saved into the spring vector. Please refer to the

actual code for the complete implementation.
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Face(Particle *Apl, Particle *Ap2, Particle *Ap3, vector<Spring+*> &springs)
: fp1(Apl), fp2(Ap2), fp3(ap3) {
fs1 = new Spring(Apl, Ap2); fs2 = new Spring(Ap2, Ap3); £s3 = new Spring(Ap3, Apl);
bool a = false, b = false, ¢ = false;
for(int o = 0; o < springs.size(); o++) {
if (springs[o]->spl == Apl && springsf[o]->sp2 == Ap2) {
delete fsl; fs1 = springs([o]; a = true;
}
if (springs[o]->spl == Ap2 && springs([o]->sp2 == Ap3) {
delete fs2; fs2 = springs[o]; b = true;
}
if(springs[o] ->spl == Ap3 && springs[o]->sp2 == Apl) {
delete fs3; fs3 = springs{o]; c = true;
}
}
if('a) springs.push_back(fs1);
if ('b) springs.push_back(fs2);
if('c) springs.push_back(fs3);

Figure 31: Special 3D Uniform Modeling Face Constructor

6.2.2 Design and Implementation of Components: Model

The class “Ob ject” is the base class for elastic object of any supported dimensionality.
It contains the most common data structure and properties of an elastic object. The
geometric complexity is increased according to the dimensions. The “Object1D”
inherits from the parent class “Object”, “Object2D” inherits from “Object1D”, and
“Object3D” inherits from “Object2D”. This type of inheritance hierarchy is in place
because when each dimensionality is added, the new object type depends on some
of the previous implementation and the new things that come with each additional
dimension. For example, 1D object has a notion of structural springs varying in a
single dimension; 2D takes the notion of structural springs and augments it with
radius and shear springs as well as the notion of pressure inside an enclosed object;
3D extends 2D by adding the notion of face subdivision and volume making object
more dynamic in terms of run-time number of vertices (to make it more or less smooth
depending on the trade off between quality and performance). All objects share the
same Update()/Draw() mechanism, which is used by the OpenGL state machine to
update all the vertices of an object in the Model and reflect the changes in the View

by drawing the deformations in real-time.
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Object
(tom SoftBodySimutation)
fenumPanicles : int
YonumSprings : int
¢closest_i : int Object1B
’Objemo giom SorBodySimulaton)
*~Object() ;
$GetNumberOfParticles() : int e F—— :.Ogﬁcl?go
$GatNumberOfSprings() sin ravjvo - veid
‘getlnla;ramr-(;y'p;(g;reat:of grator_type) : void Add_Structural_Spring(index : int, head : int, tail - int} : void|
pdate(deltaT : float, drag : bool = false, xDrag : float = 0, yDrag : float = D) : void (FSetObpct) - wid
‘Drawo : void N i A
SFindClossstPoint( : void) : void WSP""ES
F*SetParticles() : void ~—
P¥SetObject() : void veclor<Spring*>
?‘Add_Strucxural_Spring(mdex: int, head : int, tail : int) : void R\_’_'_’___:,(mm SoftDodySimulation)
: +outer_springs
/’ p % #integralorTypeN’d'm -
+inner_face
- ; / <<enum>> <<gnum>> /
intagrator_type dimensionality
mmr-face/{ / (from SoftB i i ((from SoftBodySimuiation) s

/ / # +radius_gprings
\ / ( +shear \springs_left

I I
/ integrator typs, object type,
EULER, 1D, 2D, and 3D
vector<Face™ MIDPOINT, RK4

trom SeftBodySimutationyf / +inney_points ﬂhear}p""gs"\’m
A
/ / Object3D Object2D
+outer_ppints (from SoftBodySimulation) §rom S otBodySimulaion)
piterations : int Popressure : foat = PRESSURE
\L / :_Obje_cﬂno :_Ohja_cﬂDo
vector<Particle™ ’DObJe':FaD% ‘DObJE_'ZD.g
(fom SoftBodySimulation ‘nraw() -void . raw( : ¥o L
eration{) : void setPrassurefpre : float) : inline void
Snonunitsphere() : void ®getPressure() : iniine foat
@ SstObject( : void) : void @ SetObject( : void) : void
@PAdd_Structural_Spring(index : int, h - int, t : int) : veid @PAdd_Structurd_Spring(index : irt, h: int, 1 int) : void
@ Add_Radius_Spring(index : int) : void @PAdd_Radius_Spring(index : inf) - void
Add_Shear_Spring(index : int) : void #Add_Shear_Springgndex : int, h < int, t : inf) : void
ctahedron() : void @PAdd_Faces(fl : int, 22:int, B : in®) : void

Figure 32: Model Object Class Diagram

Object Asshown in Figure 32, the object class, an elastic object contains a particle
object, a spring object, a face object, and an integrator object. The data structure
varies from inner to outer layers, for example, the pointers to the particles on the
inner layer and on the outer layer of the object are saved in different data vectors.
SetObject() constructs the geometric shape of the elastic object, which, in turn,
constructs the particles SetParticles() and connects the particles by the structural
springs via the Add_Structural_Spring() call. The enum type dimensionality has
one of the values (DIM1D, DIM2D, DIM3D) to determine the object’s dimension-
ality type: 1D, 2D, or 3D; the enum type integrator_type determines which type of
integrator the simulation system uses, Euler, Midpoint, or Runge Kutta Fourth Order
integrator. Such design allows extension to add new integrators and select existing

integrators at run-time. The variable closest; is the closest point on the outer layer

62



to mouse position and FindClosestPoint() is the function to find such a particle
(used in dragging force application when dragging the object across the simulation
window). The function Update() modifies the simulated object’s state (either each
time point when idle or application of the drag force by the user), and determines
the object’s overall forces, velocity, position in the next time step. Draw() visualizes

the object after each update.

void Idle() {
object1D.Update (DT, mousedown != 0, xMouse, yMouse);
object2D.Update (DT, mousedown != 0, xMouse, yMouse);
object3D.Update(DT, mousedown != 0, xMouse, yMouse);
glutPostRedisplay();

Figure 33: Idle() Model Updates

void Object::Update(float deltaT, bool drag, float xDrag, float yDrag) {
if (integrator == NULL) {
switch(integratorType) {
case EULER:
integrator = new EulerIntegrator (*this);
break;
case MIDPOINT:
integrator = new MidpointIntegrator{*this);
break;
case RK4:
integrator = new RungeKuttad4Integrator(*this);
break;
default:
assert (false);
return;
}
integrator->setDimension(dim) ;
}
integrator->integrate(deltaT, drag, xDrag, yDrag);
}

Figure 34: General Update() Function

In the main simulation, the Idle() function shown in Figure 33, elastic objects
update at every time step DT to tell the the system how the objects behave and the

change for their velocity and position. There are four parameters for Update() as

63



shown in Figure 34, the time step deltaT, if there exists user interaction drag = 0
by default, the mouse position on z and y axises (for dragging upon mouse release)
is at 0 by default. The general algorithm of the Update() presented, illustrates that
the most of the actual modifications are based on the dynamically selected integrator
and the dimensionality of the simulation object being integrated. If in the feature
a new integrator is added, this function has to be updated to account for it in the

framework.

1D Object In Figure 32, the “Object1D” class shows that an one-dimensional
object contains two particles and one spring. The type of particles is outer_points

and spring type is structural outer_springs.

2D Object In Figure 32, the “Object2D” class shows that an two-dimensional
object contains inner and outer layers. The type of particles is inner_points and
outer_points. The spring type is structural inner_springs and outer_springs; more-
over, there are another three new types of springs, radz'us_springs, shear_springs_left,
and shear_springs.right. The function Add_Structural_Spring() models the shape
of the inner circle by connecting inner_springs and the outer circle by connecting
the outer_springs separately. Add_Radius_Spring() adds the radius springs with the
inner point ¢ and outer point 7. Add_Shear_Spring() adds the left shear springs with
inner point 7 and outer point 7 + 1 and the right shear springs with inner point 7 + 1
and outer point 7. The variable pressure, which is an additional inner force compared

to “Object1D”, is at each spring along its normal.

3D Object In Figure 32, the “Object3D” class shows that a three-dimensional
object uses similar method as a two-dimensional object by extending the variables into
the z axis. However, there are two methods introduced to create a three-dimensional
object, such as nonunitsphere() and SetObject(), which uses iteration to define an
uniform sphere. The base shape for subdivision a sphere is defined in Octahedron()
and Iteration() computes the coordinates of the newly generated particles and springs

based on the level of detail, the variable Iterations.
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Integrator

¢dragExists : bool
&mDragX : float
#mDragY : float

®ntegrator{objectTolntegrate : Objectd,)
- integratar()
“integrate(deltaT : float, drag : bool = false, xDrag : float = 0, yDrag : float = 0) : void
®getDimension() ; dimensionality
$sctDimension(dim : dimensionality) : void
F¥ExternalForces() : void
F¥SpringForces() ; void
F¥PressureForces() : void
P*AccumulateForces() : void
P¥Derivatives( : float, : float) : void
F*CollisionDetection(i : int) : void
& CalculateSpringForces(springs : vector<Spring*>, i : int, special : bool = false) : void

s/ A

<<enum>> Eulerntegrator
dimensionality

$Eulerintegrator{object : Object8;)

‘~Eu|eﬂntegrator0
aerivatives(deltaT : float, k : float) : void
1(i : int, k : float, deltaT : float) : void
FOynew(i : int, k : float, deltaT : float) : void

&

Midpaintintegrator

Sidpointint egrat or{object : Object8)
$~Midpointintegrator()
%20 : int, k : float, deltaT : floaf) : void
POynew( : int, k: float, deltaT: floaf) : void

b

RungeKuttadIntegrator

“RungeKutt adintegrator(object : Object8)
*~RungeKuttadintegrator)

P46 : int, k: float, deltaT : float) : void
P¥3( : int, k: float, deltaT : floal) : void
F®ynew( : int, k: float, deltaT: floal) : void

Figure 35: Integrator Framework Class Diagram

6.2.3 Design and Implementation of Components: Controller

The types of integrators are varied by their complexities, such as Euler, Midpoint,
and Runge-Kutta. The common attributes and methods are defined in the parent
class “Integrator”, as shown in Figure 35. The subclasses “EulerIntegrator”, “Mid-
pointIntegrator”, and “RungeKuttalntegrator” inherit the super classes based on the
complexity. The Euler integrator is a basic building block for other integrators which

provides the first step of computation of k; in £1(). Midpoint integrator uses Euler’s
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k1() implementation and provides the 2nd step, ks iniplemented in k2(). Finally, the
RK4 integrator adds the last two refinement steps k3 (function £3()) and k4 (function
k4()) in addition to what Euler and midpoint have provided. Thus, RK4 implemen-
tation depends on the midpoint which, in turn, depends on the Euler integrator with

different parameters.

void Integrator::integrate(float deltaT, bool drag, float xDrag, float yDrag) {
dragExists = drag; mDragX = xDrag; mDragY = yDrag;
AccumulateForces() ;
Derivatives(deltaT, 1.0);

}

void Integrator::AccumulateForces() {
ExternalForces();
SpringForces () ;

switch(dim) {
case DIM1D:
break;

case DIM2D:

case DIM3D:
PressureForces();
break;

Figure 36: General integrate() and AccumulateF orces() Functions

In Figure 36 there is a general integrate() function (which is called from Object ::
Update()) and a general AccumulateForces() function, both of which play a vital role
in the integrator framework in this thesis. They illustrate the general algorithm of
integration applied to the Model’s data: first, the effect of all the forces is accumulated
(which includes external forces, such as gravity and drag, as well as forces induced
by springs and pressure); then, the integrator-specific derivation is performed to each
particle of an object. In the general “Integrator” the Derivatives() function is pure
virtual as is left to be overridden by the “EulerIntegrator”, “MidpointIntegrator”,
and “RungeKuttadIntegrator” concrete implementations. It is important to note
that the reverse forces are also accounted at the collision detection at the end of each
Derivatives() implementation. Another note worth mentioning is that the pressure

forces are not applicable in the 1D case as there is no enclosed object, which can

66



hold pressure in this cases. ExternalForces() checks for the existence of the mouse
drag force (from the user) as well as gravity and sums them up. SpringForces()
accumulates contributions for all spring types (a subject to dimensionality as well,

e.g. 1D case does not have radius or shear springs, only one structural spring).

6.2.4 Simulation Loop Sequence

The sequence diagram in Figure 37 describes the control-flow of the simulation se-
quence and logic of the elastic object simulation system. The following sequence of
steps describes all of the possible states of the elastic object as events occur in greater
detail. There we track the different states how the physical simulation loop works,
such as display of the objects, accumulation of forces, integration of forces, and so

on. In other words, this is the main algorithm of the entire simulation system.

e Step 1: “ViewSpace” initializes the virtual world and provides the user an
interactive environment. It provides the interface to allow user to drag the
object, or choose the parameters. For example, user can choose the object
type, one-dimensional, two-dimensional, or three-dimensional. User can choose
the integrator type, Euler, Midpoint, or Runge Kutta 4. User can set up the

springs’ stiffness, damping variable, and the pressure.

e Step 2: SetObject() function creates an elastic object based on the interface

variable set from Step 1.

e Step 3: SetParticles() function sets up the particles’ position and their other

initial properties, such as mass and velocity.

e Step 4: AddSprings() function connects particles with springs according to

their index.

o Step 5: AddFaces() connects the springs with faces based on proper index.

This step will be ignored if the object is one-dimensional.

e Step 6: SetIntegratorType() function tells the Controller which integrator users

select through the interface.

e Step 7: Update() updates the integrator’s time step.
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Figure 37: Simulation Loop Sequence Diagram

e Step 8: Integrate() contains two functions, AccumulateForces() and Derivatives().
It is based on all the object geometric information modeled and all the forces
information accumulated, to integrate over the time step to get new object

position and orientation.

e Step 9: AccumulateForces() state is to sum up the forces accumulated on each
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particle.

Step 10: GravityForce() is to accumulate gravity force based on the particles’

masses.

Step 11: MouseForce() is the external force from the interface when user inter-
acts with the object. It will be added or subtracted from the particles depends

on the force’s direction.

Step 12: SpringForce() is to accumulate internal force of the particles con-

nected by springs.

Step 13: PressureForce() is to accumulate the internal pressure acted on the

particles. For one-dimensional object, this state is omitted.

Step 14: Derivatives() does the real derivative computation of acceleration and
velocity in order to get new velocity and position of elastic objects based on the

integrator type defined by users.

v

Step 15: CollisionForce() is to check if the object ié out of boundaries after the
integration state. If the new position is outside of the boundary, then it will be
corrected and reset on the edge of the boundary. Moreover, the new collision
force will be added to the object.

Step 16: Draw() displays the object with new position, velocity, and deformed
shape.
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Chapter 7
Experimental Results

In this chapter, the one-dimensional, two-dimensional, and three-dimensional objects
are illustrated at different animation sequences, with different simulation parameters,

and by simulation with different numerical integration methods.

7.1 Animation Sequence

The screenshots in this section present the animation sequence of the one-dimensional,
two-dimensional, and three-dimensional objects when they are at the initial state, col-
liding with floor, bouncing back from the floor, responding to user’s external dragging,

and at the resting state.

7.1.1 1D

This simulation shows two masses connected with one spring. The one-dimensional
object moves in a three-dimensional environment, which consists of ceiling, walls, and
floor. Users can drag the mass with the mouse to change the object’s position and
direction. Figure 38(a) presents the initial state of the object; Figure 38(b) shows the
object collides with the floor when it drops with gravity force; Figure 38(c) displays
the collision response of the object based on the penalty method; Figure 38(d) shows
the moment when users drag the object; Figure 38(e) shows how the object reacts
on the external impact, such as mouse dragging force or bouncing force with walls;
Figure 38(f) displays the object resting on the floor after a while when there is no

interaction from the user.

70



(a) The initial state (b) Collide with floor (c) Bounce back from the floor

(d) Drag the object (e) Response to compact (f) The resting state

Figure 38: Animation Sequence of One Dimensional Elastic Object

7.1.2 2D

The simulation as shown in Figure 39(a) through Figure 39(f) is how a two-dimensional
object moves in a three-dimensional environment. This two-layer object consists of
10 particles and 10 structural springs on both inner and outer circles. Moreover, it
contains 10 radius springs, 10 shear left springs, and 10 shear right springs between
the inner and outer layers. If a two-dimensional 6bject with only one layer, or the
object has no pressure force within, the spring’s stiffness has to be a larger value than
without, then the object will not collapse. However; as shown in Figure 39(b), if the
spring stiffness is small enough, the object does not collapse, neither overlap with the

layers because of the stability of the two-layer structure.
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(a) The initial state

ERS I —,

(d) Drag the object (e) Response to compact (f) The resting state

Figure 39: Animation Sequence of Two Dimensional Elastic Object

7.1.3 3D

The simulation as shown in Figure 40(a) through Figure 40(f) is how a three-dimensional
uniform facet object moves in a three-dimensional environment. This two-layer ob-
ject, which is generated by subdividing an octahedron once, consists of 12 particles,
36 structural springs, and 32 faces, on both inner and outer spheres. Moreover,
the object also contains 36 radius springs, 36 shear left springs, and 36 shear right
springs between the inner and outer layers. Just like in two dimensions, the two-layer

structure gives the three-dimensional sphere more stability.
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(a) The initial state (b) Collide with floor (c¢) Bounce back from the floor

(d) Drag the object {(e) Response to compact (f) The resting state

Figure 40: Animation Sequence of Three Dimensional Elastic Object

7.2 Simulation Parameters

The parameters in the simulation such as mass, spring stiffness, and friction (damp-
ing) can be changed. One can drag the object mass with a mouse to change its

position. Effects of different simulation parameters are discussed.

7.2.1 Summary of the Adjustable Parameters

The parameters that influence the behavior of the simulated environment are sum-
marized below, with their default values. Most initial and default values were based
on the 2D case from [Mat03]; otherwise, the values are empirical and are partially

dependent on the hardware the simulation is executing on.

e KS = 800.0f where KS is structural spring stiffness constant. The larger this
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value is, the less elastic the object is and it is more resistant to the inner pressure
and deformation. The lesser this value is the more object is deformable and a

subject to break up if the inner pressure force is high.

e KD = 15.0f where KD is structural spring damping constant, opposite to the

spring retraction force. It denotes how fast the object is to resist its motion.

e RKS = 700.0f where RKS is radius and shear spring stiffness constant, similar

to KS, but for radius and shear springs as opposed to the structural springs.

e RKD = 50.0f where RKD is radius and shear spring damping constant, similar

to KD, but for radius and shear springs.

e MKS = 150.0f where MKS is the spring stiffness constant of the spring con-
nected with the mouse and the approximate nearest particle on the object.
This constitutes the elasticity of the “drag” spring connected to the mouse: the
lesser the value is, the more elastic it is, and the harder it is to drag the object

as a result.

e MKD = 25.0f where MKD is the damping constant of the spring connect with

the mouse and the approximate nearest point on the object.

e PRESSURE = 20.0f where PRESSURE is gas constant used in the ideal gas
equation mentioned earlier to determine the. pressure force inside the enclosed
object. If this constant is too high, and the combined spring stiffness for all the

spring types is low enough, the object can “blow up”.

e MASS = 1.0f where MASS is the mass for ‘each particle. The object can be
made heavier or lighter if this value is larger or smaller respectively, in order
to experiment with the gravity effects. Naturally, the heavier objects will be
more difficult to drag upwards in the simulation environment. Conversely, the
smaller-mass object can be dragged around with less effort given the rest of the

parameters remain constant.

7.2.2 Stability vs. Time Step

First, the figures in this section (Figure 41(a), Figure 41(b), and Figure 41(c)) show

the stability of the three integrators. We consider the integration time step parameter
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in these scenarios only, assuming all the other parameters (discussed later) are not
change for the described simulations. As shown in those figures, when the time
step is small, such as DT = 0.003!, three of the integrators behave well and the
object does not “blow up”. However, when one increases the time step by a factor
of 10 to DT = 0.03, the midpoint (see Figure 42(b)) and RK4 (see Figure 42(c))
integrators are still stable and the object integrated with Euler integrator “blows
up” as in Figure 42(a). Furthermore, when the time step is increased 10-fold more
to DT = 0.3, only the object integrated with RK4 (see Figure 43(c)) is stable and
another two objects integrated with Euler (Figure 43(a)) and Midpoint (Figure 43(b))

methods “blow up”.

(b) The object integrated with  (c) The object integrated with
Euler Method Midpoint Method RK4

Figure 41: Elastic Object at Timestep = 0.003

7.2.3 Efficiency and Accuracy

The more computational effort is required, the less efficient algorithm is. Likewise,
the more accurate algorithm is, the more compﬁtation effort it requires, the less
efficient it is. Thus, in our simulation system the most efficient and least accurate
integration method is Euler’s, followed by Midpoint (about twice as more accurate and
slower), followed by RK4 (four times slower than Euler’s and the most accurate of the
three). This can be illustrated in Figure 41(a), Figure 41(b), and Figure 41(c) running

concurrently with the same time step of 0.003, where one can see the simulation with

1This is an empirical value; dependent on the performance of the hardware.
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(a) The object integrated with (b} The object integrate(i with  (c) The object integrated with
Euler Method Midpoint Method RK4

Figure 42: Elastic Object at Timestep = 0.03

(a) The object integrated with ~ (b) The object integrated with  (c) The object integrated with
Euler Method Midpoint Method RK4 Method

Figure 43: Elastic Object at Timestep = 0.3

Euler’s method reaches the floor fastest and RK4 slowest. Of course, the efficiency of
the simulation and the accuracy of the shape and movement depends on the amount

of particles (and as a result, all kinds of springs) in the object.

7.3 Computational Errors

This section briefly summarizes the error accumulated in the application of the de-

scribed algorithms and their effects.

76



7.3.1 Collision Detection

We have applied the Penalty Method in our simulation system. This simple but inac-

curate algorithm causes the object to “stick”

on the collision surface when dragging
the object at the same time and it may become difficult to drag the object away for

a period of time.

7.3.2 Subdivision Method

The spherical shape is not perfect round because the number of springs associated to
each particle is not uniform. If one wants more quality subdivision has to be done
in more than one subdivision operation, but the simulation may rapidly become very
slow as the number of particles grow requiring a much greater computational effort,
which is suitable only for the high-end hardware if one wishes to do it in real-time.

In Figure 44 is an example of the two iterations of the subdivision.

Figure 44: Second Subdivision Iteration
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Chapter 8

Conclusion and Future Work

This chapter describes our contribution based on the existing elastic model and ana-

lyzes the possible development and related work in the future.

8.1 Contribution

The new model, two-layer elastic object with uniform-surfaces is a simple, efficient
approach to imitate the liquid effects of elastic object, such as human’s tissue and soft
body. Since the modeling and structure of the tissue kind elastic ob ject is closer to real
tissue than an one layer object, the level of realism has been increased. The images
in this chapter are screenshots from the elastic simulation system we have developed.
The modeling method and the density setting provides significant improvements on
the conflicts of accuracy and interactivity on previous models. The realism of the

results, such as liquid motion and inertia effects are also enhanced.

Procedural Modeling We have applied the procedural modeling method with
particle system to model elastic objects. From simple one-dimensional to most com-
plicated three-dimensional object, we introduced the modeling method for different
dimensional objects and related physics knowledge gradually. In the elastic object
simulation system, each particle has its local coordinate which is easy to be computed
at every time step. Moreover, this modeling method can efficiently control the level

of detail as required by graphics artists and computer hardware available. As shown
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in Figure 45(a) and Figure 45(b), this modeling method also most approximately ap-
proaches the ideal equal faces; therefore, the edges(éprings) on the faces and the forces
on each particle are approximately to be equal at initial state in order to minimize

the computation error caused by the object geometry.

(a) Two-dimensional Object (b) Three-dimensional Object

Figure 45: Uniform Shape Modeling

Density As shown in Figure 46(a) and Figure 46(b), the density is defined only
for each particle on the elastic surface and the internal density is represented by air
pressure physics equation. The weights of particles on inner and outer layer can be set
differently. For example, a balloon half filled with liquid, the bottom is heavier than
the top part because the density is at the bottom is liquid and top part is air. The
weights on inner layer can be set much heavier than outer layer. This special feature

gives us flexibilities to imitate different material effects with such simple model.

Inertia Inertia effect is a unique effect in two layer-elastic simulation system, which
can not be achieved with one-layer object. Figure ‘47(a) and Figure 47(b) show
the inertial movement of a two-dimensional and three-dimensional elastic object. In
Figure 47(a), the inner layer and the outer layer have the opposite internal force
drive them along axis x. Since the two layers are connected by springs, the inner
particles and outer particles have an extra force applied on them, interactive force
between inner and outer particles. And their movement, position, and acceleration

will be computed according to the contribution of this extra interactive force. This
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(a) Two-dimensional Object (b) Three-dimensional Object

Figure 46: Non-Uniform Density

interactive force does not exist in a single layer object. Figure 47(b) displays the
moment when the elastic object drops down onto the ground. The outer and inner
particles will fall with the object based on their gravity and springs force. Here, the
inertia for inner particle and outer particle are dependent not only on the force from
their own motion, the force from the neighbors on the same layer, but also from the
interaction on the other layer. This simulation system is more accurate to describe

the inertia property happened in the liquid object.

(a) Two-dimensional Object (b) Three-dimensional Object

Figure 47: Liquid Motion and Inertia
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Stability The two layered system is stable. Even without the internal pressure
force, the shape will not collapse because the two layers are connected by different
types of springs. The simulation system works well even with the very inaccurate
Euler integrator at large time step, which will result shape collapse or blow up on a
one-layer object with the same set of values. We have also implemented the higher

level integrators, such as Midpoint and Runga Kutta 4.

Re-usability The design of this simulation system is based on well-known software
design pattern. It decomposes the novel concepts into concrete small components.

The functions and classes are easy to be plugged and adapted into other program.

This elastic simulation model simplifies the physical modeling method with a group
of masses and springs. Also, the simulation is computed in real time based on the

numerical integration of the physical laws of dynamics.

8.2 Conclusion

We have developed a one-dimensional elastic object, a two-layer two-dimensional
elastic object, and extend it into three-dimensions. These models are all physically
based, making use of results from gravity and pressure forces and are implemented
with three types of integrations: Euler, Midpoint, and Runge Kutta Fourth Order.
The procedural uniform surface generation algorithm provides a convenient mecha-
nism for collision detection. It can generate convincing behaviors when the objects
collide with rigid floors or walls because all the particles are checked in every update
cycle. Moreover, the rendering is fast because graphics software and hardware renders

triangular facets very efficiently.

8.3 Future Work

Character Animation The functionality development of elastic simulation mod-

eling for 3D software design and implementation has emerged as a new challenge in
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computer graphics. One of the existing software with the elastic modeling function-
ality is Maya, which provides shape deformation, especially facial animation, for a
group of objects. It is more convenient than traditional frame animation. However,
the elastic object movement is not attached to skeleton animation. Furthermore, this

elastic simulation is not in real time.

A possible future work that can be done based on the elastic simulation is to define a
skeleton system and to map the mesh body onto it. The different parts of the body
can be defined as the different freedom of deformable based on the elasticity. For
example, the mesh is less elastic on the arms, legs; the mesh is more elastic on the
areas that consist fats, like breast, belly. The weight of the elastic property of the
muscles can be mapped and dynamically set according to the skeleton. The system

can be integrated into advanced animation software as a Plug-in.

Collision Detection between soft objects is a complex phenomenon, which has not
been widely developed in physics. In our current system, we are using the penalty
methods [MJ88], which do not generate the contact surface between the interacting
objects. This method uses the amount of inter-penetration for computing a force
which pushes the objects apart instead. Even thoﬁgh the result is fair enough based
on estimation, in reality, the contact surfaces should be generated rather than local
inter-penetrations. Especially, if we want to use computer animation to imitate organ
surgery and help surgeon practice as if interact with real objects, the penalty method
is no longer appropriate. There must be a more accurate algorithm to define the
collision between rigid body and soft body, or soft body to soft body. Our software

should be able to describe other soft body deformation, such as fractures.
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