REFACTORING USE CASE MODELS

KEXING RUI

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF DOCTOR OF PHILOSOPHY
Concorpia UNIVERSITY

MonNTrEAL, QUEBEC, CANADA

AUGUST 2007
© KEXING RUI, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-31138-7
Our file Notre référence
ISBN: 978-0-494-31138-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Refactoring Use Case Models

KEXING RUI, Ph.D.
Concordia University, 2007

Use cases are promising vehicles for specifying requirements. However, obtaining well-organized
use case models is difficult during software evolution. The thesis proposes to address the issue by
refactoring use case models. Refactoring is a program transformation approach for iterative software
development. Its concept is introduced to use case models in Cascaded Refactoring.

The thesis introduces major research involved in refactoring use case models. It defines a use case
metamodel to formalize use cases. The three-level metamodel covers the environment or context of
a use case model, the structure of use cases in terms of episodes, and the event or message passing
details of a scenario. The thesis presents a process algebra semantics for the use case model. The
episode semantics is provided from the literature. The semantics of a single use case is defined in
terms of the episode model. The semantics of the use case model is defined in terms of the individual
use cases and their relationships. The thesis identifies a list of properties that need to be preserved
during refactoring. It defines fifty-three use case refactorings, which are described using a template
covering the refactoring description, arguments, preconditions, postconditions and verification of
behavior preservation. The thesis also introduces a tool for use case modeling and refactoring. The
tool helps validate the use case metamodel and refactorings on two case studies, which demonstrate
that refactoring use case models is feasible and practical. Based on these case studies, the thesis

discusses the nature of use case evolution and provides some guidelines for the refactoring process.

iii

To the memory of my mother, for her love, vision and dedication.

iv

Acknowledgments

I would like to thank my supervisor, Dr. Greg Butler, for his support, guidance, patience, kindness,
and constant encouragement during my studies. I learned a lot from our regular meetings and from
other feedbacks he gave to me.

Many thanks to team members in our research group, Wei Yu, Jian Xu and Renhong Luo, for
their fantastic contributions to this research.

I wish to especially thank my wife, LiJuan Liu, for her support through my studies and for loving

me whatever [am.

Contents

1 Introduction

I.1 Motivation e e e e e e e e e e e
1.2 OVerview o e e e e e e e e e e e e e e e e e
1.3 Contributions e e e e e e e e e e e e

2 Related Work

2.1 Source Code Refactoring e
2.2 Requirements Engineering withUse Cases
2.3 Model Transformations e
24 Model Semanticso e e
24.1 Background on Underlying Theories
242 Message SequenceCharts 0oL
243 Statecharts e
244 Activity Diagrams e e e e e
245 SequenceDiagrams. o e
246 UseCases v v v i i i e e e e e
2.5 A Process Algebra for Basic Message Sequence Charts
25.1 Process AlgebraPA, L oo
2.5.2 Process AlgebraPAgysc . - . - . . o oo oo e
253 Semantics L. Lo e e e

3 Refactoring Use Case Models

3.1 UseCaseMetamodel
311 OVerview o e e e e e e e e e e e e
3.1.2 Environmental Entity Relationships
313 EpisodeModel e
3.14 EventModelo
315 Discussion . . o. e e e e e e e e e e e
3.2 AProcess AlgebraSemantics o e

vi

3.2.1 UseCaseSemantiCsS « . v v v v v i e e e e e e e e e 46

3.2.2 Semantics of the Use Case Model 48
3.3 Properties and Behavior Preservation 0L, 55
34 UseCaseRefactorings i 57
3.4.1 Listof Use Case Refactorings 57
3.4.2 Notations and Functions for Defining Use Case Refactorings 61
343 RefactoringTemplate 67
A Tool for Use Case Modeling and Refactoring 70
4.1 Drawlets Framework 70
4.2 SystemOVEIrviewo e e e 71
4.2.1 Definition Subsystem o 72
422 Refactoring SUDSYSIEIN i e e 73
4.3 DataStructure and Storage 74
43.1 EnvironmentLayer 74
43.2 Structure Layer 76
433 EventLayer. e 77
4.4 System Framework Design 77
441 UseCaseTool iy 78
442 GoalTool e e 84
443 EpisodeTool e 86
444 EventTool 87
45 Summary e e e e e e 89
Case Studies 90
5.1 Video Store System (VSS) 90
5.1.1 System Description L e 90
5.1.2 VSSInitial UseCaseModel 92
5.1.3 Refactoring the VSSUse Case Model 95
5.2 Automatic Teller Machine (ATM) i it i i i 102
5.2.1 Requirements of the ATM System 102
5.2.2 Creating an Initial Use Case Model 104
5.2.3 Evolving the Initial Model with Refactorings and Extensions 106
5.3 EvaluationConclusions L 112
53.1 ToolEvaluation 112
5.3.2 Validation of Use Case Refactorings 114
5.3.3 TheRefactoring Process 114

vii

6 Conclusion and Future Work

6.1 Conclusion e e e e e e

6.2 Contributions e e e e e e e

6.3 Future Work e e e
BIBLIOGRAPHY

APPENDIX: SPECIFICATION OF USE CASE REFACTORINGS

A. Refactorings at the EnvironmentLevel
A.1 Create an Environmental Entity
A.2 Delete an Environmental Entity
A.3 Change an Environmental Entity
A.4 Compose an Environmental Entity
A.5 Decompose an Environmental Entity
A.6 Move an Environmental Entity
B. Refactorings at the Structure Level oo oL
B.lCreateaStructural Entity
B2DeleteaStructural Entity o o oo
B.3 Change a Structural Entity
B.4 Compose a Structural Entity
B.5 Decompose a Structural Entity
B.6MoveaStructural Entity L o
B.7Converta Structural Entity oL
C.Refactorings at the Event Level,
ClCreateanEvent
C2DeleteanEvent oo
C3ChangeanEvent e

viii

118
118
120
123

124

List of Figures

18
19
20
21
22
23
24
25
26
27
28

Concept Relations and Levels of Abstraction fREG99] 15
Example: Basic Message Sequence Chart 31
UseCaseMetamodel 34
Metamodel for the Use Case Relationship 36
Metamodel for the Actor Relationship 37
Metamodel for the Task Relationship 38
Metamodel for the Goal Relationship 38
Episode Metamodel 39
Event Metamodel e 43
Example: Generalization Relationship 51
Example: Mapping for the Generalization Relationship 51
Example: Inclusion Relationship 52
Example: Mapping for the Inclusion Relationship 53
Example: Extension Relationship. 54
Example: Mapping for the Extension Relationship 54
Example: Usecase_Inclusion_Generation Refactoring - Part (a) 68
Example: Usecase_Inclusion_Generation Refactoring -Part () 69
Class Diagram for the Intended Use of Drawlets Fundamental Roles 71
A Screen ShotoftheTool 72
System Architecture of the Tool [XUO4] 73
Use Case Diagram of the Refactoring Subsystem 74
Example: XML Representation of Use Caseand Actor 75
Example: XML Representation of Relationship at the Environment Layer 76
Example: XML Representation at the Structure Layer 77
Example: XML Representation at the EventLayer 78
Class Diagram of Use Case Tool [XUO4] 78
Class Diagram of Object Definition Module [XU04] 79
Class Diagram of EntityBase 80

ix

29
30
31
32
33
34
35
36

37
38
39
40
41
42
43

45
46
47
48
49
50

Class Diagram of EntityBaseTool 81

Class Diagram of RelationBase 81
Class Diagram of RelationBaseTool 82
Class diagram of Refactoring Module [XUO4] 84
Class Diagram of XML Parser [XUO4] 85
Class Diagram of Goal Module [XUO04] 85
Class Diagram of Episode Tool [XU0O4] 86
Class Diagram of Event Module [XUO4] 88
VSS Initial Use Case Model [YUO4] i 93
VSS Case Study: After Step 1 [YUO4] o o 96
VSS Case Study: Step 2 - Usecase_Inclusion_Generation Refactoring [YUO4] 97
VSS Case Study: After Step2 e 98
VSS Case Study: After Step4 [YUO4] oo 99
VSS Case Study: After Step S[YUO4]o o 100
VSS Final Use Case model [YUO4] 102
ATM Initial UseCase Model 105
Primitive Events in the Episode “Enter and Validate PIN” 106
ATM Case Study: After Step 1 108
ATM Case Study: After Step2 e 109
ATM Case Study: After Step4 e 110
ATM Case Study: After Step5 111
ATMFinal Use Case Model 113

List of Tables

1 Source Code Refactorings 10
2 Comparison of Use Case Relationships 45
3 Implemented Refactorings at the EnvironmentLevel 83

Implemented Refactorings at the Structure Level 87
5 Implemented Refactorings at the EventLevel 88

xi

Chapter 1

Introduction

1.1 Motivation

“The hardest single part of building a software system is deciding what to build. No other part of
the conceptual work is as difficult as establishing the detailed technical requirements, including all
the interfaces to people, to machines, and to other software systems. No part of the work so cripples
the resulting systems if done wrong. No other part is more difficult to rectify later” [BRO87]. The
Standish Group [STA] has published annual “Chaos” reports on project failure and success factors
since 1994 based on the analysis of tens of thousands of projects. According to the group, over
30 percent of the pain factors were strongly related to requirements issues, which include lack of
definition and traceability on requirements.

Software requirements engineering is the process of determining what is to be produced in a soft-
ware system. It identifies stakeholders and their needs, and documents these in an appropriate form
for analysis, communication, and subsequent implementation. It is hard to identify real requirements
reflecting the verified needs of users for a particular system or capability. The requirements need to
be filtered by a process of clarification of their meaning and identification of other aspects that need
to be considered. Identifying the real requirements requires an interactive and iterative requirements
process, supported by effective practices, processes, mechanisms, methods, techniques, and tools.

Main activities in requirements engineering are [NUS00]:

e eliciting requirements

modeling and analysing requirements
e communicating requirements

e agreeing requirements

evolving requirements

The elicitation of requirements is most often regarded as the first step in the requirements engi-
neering process. Requirements are not out there to be collected simply by asking questions. Infor-
mation gathered during requirements elicitation often has to be interpreted, analysed, modeled and
validated. Requirements elicitation needs to find out what problem needs to be solved. It identifies
system boundaries. During requirements elicitation, it is critical to identify stakeholders, which in-
clude customers or clients, developers, and users. Goals define the objectives a system must meet. In
goal-oriented requirements elicitation [DAR93], high-level goals are refined into lower-level goals. It
is a continuing activity as development proceeds. Goal-oriented requirements elicitation focuses on
the problem domain and the needs of the stakeholders, rather than on possible solutions. Sometimes
it is difficult for users to articulate their requirements. A requirement engineer can turn to eliciting
tasks users currently perform and those that they might want to perform [JOH92].

Modeling is a fundamental activity in requirements engineering. It constructs abstract descrip-
tions that are amenable to interpretation. Modeling requirements provides the opportunity to analyse
them. Modeling approaches are categorized into: enterprise modeling, data modeling, behavioral
modeling, domain modeling, and modeling non-functional requirements.

In addition to discovering and specifying requirements, requirements engineering is also a process
of facilitating effective communication of these requirements among different stakeholders. There
are a variety of formal, semi-formal, and informal languages suggested for requirements documenta-
tion [DAV93] [WIE96]. It is crucial to write requirements in a form that is readable and traceable in
order to manage their evolution over time. Requirements traceability is the ability to follow the life
of a requirement in both forward and backward direction. It provides a rationale for requirements
and is the basis for analysing the consequences and impact of change.

As requirements are elicited and modeled, it can be a problem to achieve agreement with all
stakeholders. Inspection and formal analysis tend to focus on the coherence of the requirements de-
scription. There are two essential difficulties in agreeing and validating requirements. One concerns
the question of truth and what is knowable. The other concerns reaching agreement among different
stakeholders with conflicting goals. These difficulties are compounded by some contextual issues,
including contractual and procurement issues.

Managing change is a fundamental activity in requirements engineering [BOH96]. Successful
software systems always evolve. Typical changes to requirements specifications include adding
or deleting requirements, and fixing errors. New requirements are added for changing stakeholder
needs, or added because they were initially missed. Requirements are deleted to forestall costs and
schedule overruns, or satisfy changing stakeholder needs. It is a major challenge to manage inconsis-
tency in requirements specification as they evolve [GHE98]. Managing changing requirements is not
just a process of managing documentation, it is also a process of addressing changes through contin-
uing requirements elicitation and risk evaluation. In software engineering, changes on program code

lead to a loss of structure and maintainability [BENOO]. Similarly, requirements changes can impact

the understandability and maintainability of requirements specification.

Use case modeling is a specific technique for requirements engineering. The use case model is
a model that describes the functional behavior of the system in terms of use cases. It consists of all
the actors of the system and all the use cases by which actors interact with the system. Ivar Jacobson
is regarded as the inventor of use cases. He defines use case as follows [JAC92]: “a use case is a
specific way of using the system by using some part of the functionality. A use case constitutes a
complete course of interaction that takes place between an actor and the system”.

Use cases appeal to the average participant and emphasize the fulfillment of real goals of the end
user. They are used to put related requirements together and to describe requirements in a cohesive
context. Use cases improve requirements definition and increase user involvement. Now they are
widely used in requirement gathering and domain analysis. Use cases are promising vehicles for
eliciting, specifying and validating requirements. They provide an effective way to clarify software
requirements between the developers and the clients [PRE92] [COC97]. Use case modeling is a
very popular way of constructing the requirement model. Use case models are also used to guide
scenario-based design and validation and to manage projects [CAR95] [SUT98].

The thesis describes the approach of refactoring use case models to improve their understand-
ability, maintainability, changeability and reusability. Refactoring is a program transformation ap-
proach for iterative software development. William Opdyke coins the term “refactoring” to stand for
the program restructuring operation that preserves the program behavior for object-oriented appli-
cations [OPD92]. Martin Fowler et al. provide guidelines for the refactoring process and explain
principles and best practices of program refactorings [FOW99]. An extensive survey of existing
research in software refactoring is available in [MENS(04].

The concept of refactoring use case models is initially introduced in cascaded refactoring [BUTO1].
Lugang Xu proposes the cascaded refactoring methodology [XUO06]. Framework development is
viewed as framework evolution, which consists of framework refactoring followed by framework
extension. A framework is specified by a set of models: feature model, use case model, architectural
model, design model, and source code. Framework refactoring is achieved by a set of refactorings
cascaded from the feature model, to use case model, architectural model, design model, and source
code. Lugang Xu specifies about eight use case refactorings.

The thesis broadens the research in refactoring use case models from the framework development
to a more general setting. It describes the approach of applying refactorings to use case models
systematically. The purpose of the research is to provide a toolkit for reorganizing requirements. It
does not intend to evaluate the quality of the use case model. There is some related work to address
the quality issue. Alistair Cockburn illustrates how to write quality use cases [COCO1]. Adolph et
al. identify about three dozen patterns to evaluate use cases [ADOO03]. These patterns provide the
observable signs of quality that successful projects tend to exhibit. They can be used as “diagnostics”

for judging the quality of use cases. Adolph et al. also indentify some bad smells of the use case

model. One of the bad smells is the excessive length of a use case. Another bad smell is that use
cases are fragmented and fail to address a complete single goal.

Use case models can be changed by refinement, extension/enrichment, and refactoring. Gen-
erally, refinement is the process of deriving an implementation from a specification and verifying
the correctness of the derivation. The implementation exhibits those behaviors that are allowed by
the specification. Use case models can be refined by introducing more detailed behaviors for use
cases. Refined behaviors conforms to those behaviors allowed in the previous use case model. Ex-
tension/enrichment is the process of adding new behaviors to use case models. It changes the behav-
ior of the system. Refactoring is the process of changing the structure of use case models without
affecting the observable behavior.

The scope of the thesis only covers refactoring. Refactoring makes extension easier but it does
not affect the refinement of use case models. Suppose use case model M; is a refinement of use case
model My, M is the use case model after applying refactorings to My, and M is the use case model

after applying refactorings to M;. Use case model M; must be a refinement of use case model M.

1.2 Overview

Use cases are not formalized. Different people use them differently. The thesis defines a use case
metamodel, which formalizes use case syntax and terminology. The metamodel describes related
entities that are used to represent the behavior of the use case model. It can be viewed from three
different levels: environment level, structure level and event level. At the environment level, a use
case is related to external entities. At the structure level, the internal structure of a use case is
described in terms of episodes. At the event level, individual events are characterized.

In order to verify behavior preservation of use case refactorings, use case semantics has to be
defined. However, there is no standardized use case semantics. The thesis presents a semantics
for reasoning behavior preservation using process algebra. Use case semantics is defined as the
execution of the use case. The semantics of the use case model is defined as the set of possible
executions of all use cases within the model. Hence concurrency is not concerned in the thesis. Since
an episode can be described using a Basic Message Sequence Chart [AND97] and the semantics of a
Basic Message Sequence Chart can be defined using process algebra [MAUW94], we choose process
algebra to define use case semantics for convenience. We do not need the full power of process
algebra to specify the set of event traces in the use case model. The thesis uses process algebras
PA gysc IMAUWO94] to define the episode semantics. We summarize PApysc in Section 2.5. Process
algebra provides a natural mapping for the sequence of events in the use case model. Relationships
between events are mapped into binary operators in process algebra directly. The semantics of a
use case is defined in terms of the process algebra semantics of the episode model. Each use case

corresponds to a process algebra term which defines what happens when the use case is executed.

4

The semantics of the use case model is defined as the alternation of the process algebra terms of all
use cases which can be executed.

The thesis identifies eight invariants required to preserve the behavior of the use case model.
They represent properties that have to be preserved during refactorings. These invariants ensure that
the use case model after refactorings is syntactically correct and semantically equivalent.

Based on the use case metamodel, the use case semantics, and these invariants, fifty-three use
case refactorings are defined in detail. A template is designed to specify each use case refactoring
in terms of the refactoring description, arguments, preconditions, postconditions and verification of
behavior preservation.

In order to evaluate these refactorings, a use case modeling and refactoring tool is developed.
Three master students join my research group to implement the tool: Jian Xu [XU04], Wei Yu [YU0O4]
and Renhong Luo. Furthermore, Jian Xu and Wei Yu carry out some case studies to validate use case
refactorings with the tool support. I lead the group and guide their work.

The tool can be used to build the use case model based on the above use case metamodel. The
model can be evolved using use case refactorings with the tool support. This helps to verify the use
case metamodel and refactorings. Two case studies are introduced in the thesis, which validate the
tool and refactorings. It is demonstrated that refactoring use case models is feasible and practical.
Finally, the thesis analyses the refactoring process. It discusses the nature of use case evolution and

provides some guidelines on the refactoring process.

The rest of the thesis is organized as follows.

Chapter 2 introduces related background information. This work is originated from the source
code refactoring. This chapter starts by illustrating the refactoring concept and its major milestones.
It introduces background information on use case modeling. It summarizes some related work on
model transformations. Since use case refactorings need to preserve the behavior of the use case
model, it raises the question of how to define the semantics of the model. This chapter surveys cur-
rent approaches used to define semantics for Message Sequence Charts (MSCs), statecharts, activity
diagrams, sequence diagrams and use cases. It also summarizes the approach of defining the se-
mantics of Basic Message Sequence Charts using process algebra PAgysc [MAUW94] because the
process algebra semantics defined in Chapter 3 for the use case model is based on this approach.

Chapter 3 describes in detail our work on refactoring use case models. A three-level use case
metamodel is defined to formalize use cases. It covers the environment or context of a use case
model, the structure of use cases, and the event or message passing details of a scenario. This meta-
model supports requirements engineering and software engineering. In order to verify the behavior
preserving property of the individual use case refactoring, a process algebra semantics is introduced
to define the use case model. A list of invariant properties of the model are identified in order for

refactorings to preserve the behavior of the use case model. This chapter also presents a template to

describe use case refactorings. It gives an overview of the use case refactorings. A brief description
is given for some refactorings. The detailed definition of all refactorings is presented in Appendix.

Chapter 4 describes the implementation of a use case modeling and refactoring tool. The tool is
developed based on DrawLets, which is a two-dimensional graphics framework for building graphics
applications. This chapter introduces the Definition subsystem and Refactoring subsystem, and de-
scribes data structures and storage, which are based on the three-level metamodel. It illustrates four
major modules: use case tool, goal tool, episode tool and event tool.

Chapter 5 presents two case studies for validating the tool and use case refactorings. One is the
Automatic Teller Machine (ATM) and the other is the Video Store System (VSS). These case studies
show the power of refactorings during the use case evolution. They are analysed in terms of three
aspects: evaluation of the tool, validation of use case refactorings, and the refactoring process. These
are illustrated within evaluation conclusions of this chapter.

Chapter 6 concludes the thesis by answering some important research questions. It describes
contributions of this research by comparing with some related work. This chapter also discusses

limitations and future work.

1.3 Contributions

Major contributions made in this research are:

1. A three-level use case metamode] with a hierarchical structure.

This metamodel represents a new perspective in use case formalization. It covers the environment
or context of a use case model, the structure of use cases in terms of episodes, and the event or
message passing details of a scenario. The metamodel supports requirements engineering and
software engineering. It defines different use case relationships and the actor relationship. It
introduces the concept of episode model and episode tree, which describe not only primitive

episodes but also their relationships. Similarly, it also introduces the event model and event tree.

2. A process algebra semantics for the use case model.

The semantics of a single episode is specified by a process algebra PAgysc. The semantics of a
single use case is specified through the episode model. Then the semantics of a use case model
is defined based on use case relationships and the episode model of each use case. This process

algebra semantics makes it possible to verify the behavior preservation of the use case refactoring.

3. Alist of fifty-three use case refactorings.

The thesis defines fifty-three refactorings using a template. Each refactoring is described in terms

of the refactoring description, arguments, preconditions, postconditions, and the verification of

the behavior preservation. These refactorings provide various transformation capabilities includ-
ing generalization of use cases and actors, decomposition of use cases and episodes, and compo-
sition of use case relationships and episode relationships. They are very useful and effective for

reorganizing use case models.

. A use case modeling and refactoring tool.

This tool provides an integrated environment for creating a use case model based on the above
use case metamodel and for refactoring this use case model. It facilitates the refactoring process.

It allows to check refactoring preconditions and to apply the refactoring automatically.

. Validation of the use case refactorings with the tool support using two case studies.

These case studies demonstrate that it is feasible and practical to evolve the use case model starting
with a simple model and to improve the structure of the more complex use case model by refac-
torings. The thesis investigates the evolution process of use case models. It provides guidelines

on the refactoring process.

Chapter 2

Related Work

This chapter introduces related work on source code refactoring, requirements engineering with use
cases, and model transformations. It also surveys current approaches used to define the semantics for
Message Sequence Charts (MSCs), statecharts, activity diagrams, sequence diagrams and use cases.
It reviews process algebras PA, and PA gy5c used to define the semantics of Basic Message Sequence
Charts in detail because they are used to define the process algebra semantics for the use case model

in Chapter 3.

2.1 Source Code Refactoring

A refactoring is a change made to the internal structure of a software component to make it easier
to understand and cheaper to modify, without changing the observable behavior of that software
component [FOW99].

William F. Opdyke’s PhD thesis [OPD92] is the first serious publication in refactorings. Inspired
by the work of Banerjee and Kim for object-oriented database schema evolutions [BAN87], he fo-
cuses on automatic support for program restructuring (refactoring) to the object-oriented program.
In his PhD thesis, he identifies seven invariants required to preserve the behavior of C++ programs.
When refactoring may violate an invariant, enabling conditions are added to ensure that the invariant

is preserved. The seven invariants are as follows:

e Unique Superclass: It supports only single inheritance systems, without cycles in the inheri-
tance graph. A class must always have at most one direct superclass and its superclass must

not also be one of its subclasses.

e Distinct Class Names: Each class must have a unique name. The scope of each class is the

entire program.

o Distinct Member Names: All member variables and functions within a class must have distinct

names. It allows a member function in a superclass to be overridden in a subclass.

o Inherited Member Variables Not Redefined: A member variable inherited from a superclass

cannot be redefined in any of its subclasses.

e Compatible Signatures in Member Function Redefinition: If a member function defined in a
superclass is redefined in a subclass, this function must be virtual so that it can be overridden

in subclasses. The signature of this function must be compatible with the one in subclasses.

o Type-Safe Assignments: The type of each expression assigned to a variable must be an instance

of the variable’s defined type or an instance of one of its subtypes.

e Semantically Equivalent References and Operations: The versions of the program before and
after a refactoring must produce semantically equivalent references and operations. Semantic
equivalence is defined as: the resulting set of output values must be the same if the program is
called twice (once before and once after a refactoring) with the same set of inputs. This allows

for several important changes that do not affect equivalence:

— Expressions can be simplified and dead code removed.
~ Variables, functions and classes can be added if they are unreferenced.

— The type of a variable can be changed by a refactoring, as long as each operation

referenced on the variable is defined equivalently for its new type.

— References to a variable and function defined in one class can be replaced by

references to an equivalent variable or function defined in another class.

In his thesis he defines twenty-six low level refactorings. They are grouped into five categories.
These refactorings are listed in Table 1.

Each refactoring has some preconditions. Because these small refactorings are correct under
certain preconditions, large changes that are composed solely of small refactorings must be correct.
Therefore, refactoring can support software design and evolution by restructuring a program in a way
that allows other changes to be made more easily. Complicated changes to a program can require
both refactorings and additions.

With these low level refactorings, he defines three high level refactorings, which are more ab-

stract. These high level refactorings are:

o Refactoring to generalize: creating an abstract superclass

o Refactoring to specialize: subclassing, and simplifying conditionals

Table 1: Source Code Refactorings

Category Refactoring Name

(a) create_empty_class
Creating a program entity | (b) create_member_variable
(¢) create_member_function

(a) delete_unreferenced class
Deleting a program entity | (b) delete_unreferenced variable
(c) delete_member_functions

(a) change_class name

(b) change _variable name

(c) change_member_function name

(d) change_type

(e) change_access_control_mode

(f) add_function_argument

(g) delete_function_argument

(h) reorder_function arguments

(i) add_function_body

(j) delete_function_body

(k) convert_instance_
variable_to pointer

(1) convert_variable_references._
to_function_calls

(m) replace._statement_list_
with_function_call

(n) inline_function_call

(0) change_superclass

Changing a program entity

(a) move_member_variable_
to_superclasses

(b) move_member_variable_
to_subclasses

Moving a member variable

(a) abstract_access_to_
member_variable
Intermediate level (b) convert_code_segment_
(composite) refactorings to_function
(c) move_class

10

e Refactoring to capture aggregation and components

Based on Opdyke’s research, Lance Tokuda goes further to evolve object-oriented designs with
refactorings [TOK99]. His research shows that all three kinds of design evolution, which are schema
transformations, design pattern microarchitectures, and the hot-spot-driven-approach, are automat-
able with refactorings.

Schema transformations perform many of the simple edits encountered when evolving class dia-
grams. They can be used alone or in combination to evolve object-oriented designs. The schema for
an object-oriented database management system (OODBMS) looks like a class diagram of an object-
oriented application. Among nineteen object-oriented database schema transformations, twelve trans-
formations were implemented as automated refactorings by Tokuda.

As with database schema transformations, he shows refactorings to directly implement certain
design patterns from [GAM95]. Six patterns are automatable as refactorings: Command, Composite,
Decorator, Factory Method, Iterator and Singleton.

A number of patterns can be viewed as automatable program transformations applied to an evolv-
ing design. At least seven patterns from [GAM9S5] can be viewed as a program transformation, which
are: Abstract Factory, Adapter, Bridge, Builder, Strategy, Template Method and Visitor.

The hot-spot-driven-approach provides a comprehensive method for evolving designs to manage
changes in both data and functionality. Meta patterns can be added to evolve designs. Most of
them can be viewed as transformations from a simpler design. Refactorings automate the transition
between designs granting designers the freedom to create simple frameworks and add patterns as
needed when hot-spots are identified.

To make refactoring more practical, Donald Bradley Roberts develops a commercial-grade tool,
the Refactoring Browser for smalltalk. In his PhD thesis [DON99], he illustrates ways to make a
refactoring tool both fast and reliable so that it is more useful.

First of all, he extends the definition of refactoring presented by William F. Opdyke by adding
postconditions, which are assertions that a program must satisfy for the refactoring to be applied.
Postconditions describe how the assertions are transformed by the refactoring and they can be used
for several purposes: to reduce the amount of analysis that later refactorings must perform, to derive
preconditions of composite refactorings, and to calculate dependencies between refactorings. These
techniques can be used in a refactoring tool to support undo, user-defined composite refactorings,
and multi-user refactoring.

He also defines a method to calculate the preconditions for composite refactorings. Each atomic
refactoring within the composite has its own preconditions that must be true for the refactoring to be
legal. Given a sequence of refactorings that make up a composite refactoring, it would be nice to be
able to derive the preconditions for the composite refactoring from the individual refactorings that it

comprises.

11

In addition, he defines the dependency between refactorings based on commutativity. Large
design changes can be composed of a sequence of smaller, more primitive refactorings. Since each
step is a refactoring, the entire composition is also a refactoring. This composition property is very
powerful in that it allows us to define and automate simpler, low-level refactorings, and then compose
them into larger, complex refactorings. However, although the refactorings were initially specified in
a sequence, they do not necessarily have to be performed in that sequence. Therefore, it is important
to determine which refactorings must occur before other refactorings. Donald Roberts defines the
formula for calculating the conditions under which any two refactorings may commute.

Further, he implements a set of applications that use the dependency information calculated from

a chain of refactorings. Three of these applications are as follows:

¢ Undo: Undoing a refactoring in the middle of the chain of refactorings requires undoing some
refactorings that were performed later in the chain. He uses the dependency information to

determine which refactorings must be undone in the chain.

o Parallelizing Refactorings: Given a chain of refactorings, he uses the dependency information
to determine which sets of refactorings within the chain can be performed in parallel, and

which ones must be performed sequentially.

e Merging Refactorings in Multiuser Programming Environments: He uses the dependency in-
formation to determine if two chains of refactorings created by different programmers conflict.
If two chains of refactorings do conflict, he uses the dependency information to find subse-

quences from the front of each chain that do not conflict with each other.

Finally, he develops a scheme for using dynamically obtained information to perform refactor-
ings, which can eliminate expensive static analysis by deferring the analysis to runtime.

Compared with Donald Roberts, Martin Fowler focuses on another direction, the refactoring
process, to make refactoring more practical. With contributions of Kent Beck, John Brant, William
F. Opdyke, and Donald Roberts, Martin Fowler publishes a book [FOW99], Refactoring: Improving
the Design of Existing Code, which explains the principles and best practices of refactorings. It also
provides a guideline for the refactoring process: where to start refactorings, when to start, when to
stop. The core of the book is a comprehensive catalog of refactorings. Each refactoring illustrates
the motivation and mechanics of a proven code transformation.

Extreme Programming(XP) [BECK99] is a methodology developed by Kent Beck whose central
idea is that you work on one use case at a time and only design the software to handle the use case
that you are working on. If a particular use case does not fit well into the design, refactor the design
until the use case can be implemented in a reasonable manner. One of the key aspects of XP is
continual and aggressive refactoring. XP increases the visibility of refactoring source code within

the community.

12

Currently there are many refactoring tools available for some popular languages. For exam-
ple, Eclipse [ECLIPSE] is a Java IDE that provides strong support to refactoring Java programs.
JRefactory [JREF] is a plug-in for JBuilder, NetBeans, and Elixir IDEs. JBuilder [BORL] and JDe-
veloper [ORAC] support refactorings on Java programs. Refactor! Pro [DEVE] is a general NET
refactoring tool that supports both C# and Visual Basic programs. Ref++ [IDEA] is a visual studio

add-in that provides refactoring support for C++ programs.

2.2 Requirements Engineering with Use Cases

Use cases are promising vehicles for eliciting, specifying and validating requirements. Ivar Jacobson
is regarded as the inventor of use cases. He defines use case as follows [JAC92]: “a use case is a
specific way of using the system by using some part of the functionality. A use case constitutes a
complete course of interaction that takes place between an actor and the system”.

Although this definition is brief, broad, and imprecise, his introduction of use cases immediately
improves the situation that requirement documents often have a poor fit with both business reengi-
neering and implementation. Use cases are now widely used in requirement gathering and domain
analysis. Currently, there are various approaches to describe and formalize use cases. They represent
different perspectives on use case modeling.

Jacobson, Griss, and Jonsson provide a thorough methodology addressing architectural, process,
and organizational aspects of software reuse [JAC94]. They propose requirement gathering through
use scenarios, first captured informally, then expressed more formally in a use case model. The
use case model is considered as the starting point for the test model. Each execution of a use case
described as a scenario will correspond to one test case. They pay considerable attention to com-
ponent systems and variability mechanisms. Variability in component systems occurs at variation
points and utilizes one of three mechanisms: inheritance, configuration, and parameterization. Ja-
cobson et al. introduce an approach toward improving use case modeling by fortifying it with aspect
orientation [JACOS5].

Cockburn proposes to structure use cases with goals [COC97]. He identifies four dimensions to
use case descriptions: purpose, content, plurality, and structure. Each of these dimensions has an
enumerated domain value. Purpose can be either for user stories or requirements. Content can be
either contradicting, consistent prose, or formal content. Plurality is either 1 or multiple. Structure
can be unstructured, semi-formal, or formal structure. He introduces a theory based on a small model
of communication, distinguishing *“goals” as a key element of use cases. His approach is defined as
requirements, consistent prose, multiple scenario, and semi formal structure, which is the same as
Jacobson’s approach. Cockburn provides guidelines on how to write quality use cases [COCO1].
Complementary to Cockburn’s work, Adolph et al. provide guidelines and patterns to evaluate use
cases [ADOO3].

13

Buhr develops Use Case Maps (UCMs) as a visual notation for comprehending and develop-
ing the architecture for emergent behavior in large, complex, self modifying systems [BUHR98].
UCMs are a two dimensional map of cause-effect chains from points of stimuli through the system to
points where responses are observed. UCMs consist of three primary constructs. Responsibilities are
represented as dots, with the responsibility described by active natural language phrases. Causality
is represented as a path that connects the dots, with start and end points that have associated pre-
and post-conditions. Components are represented as simple boxes with associated responsibilities.
UCMs can be refined through decomposition and partitioned by factoring.

The Unified Modeling Language (UML) [UML20] is a standardized specification language to
model object-oriented systems. There are three prominent parts of a system’s model: functional
model, object model, and dynamic model. The functional model showcases the functionality of the
system from the user’s point of view. It includes use case diagrams. The object model showcases
the structure and substructure of the system using objects, attributes, operations, and relationships.
It includes class diagrams. The dynamic model showcases the internal behavior of the system. It
includes sequence diagrams, activity diagrams, and state machine diagrams. UML’s definition for
use case has shifted from Jacobson’s original emphasis on use to a more “system-centric” view-
point. According to UML: “a use case is the specification of sequences of actions, including variant
sequences and error sequences, that a system, subsystem, or class can perform by interacting with
outside actors”.

The Rational Unified Process (RUP) [KRUO3] is a guide for how to effectively use the UML.
The RUP is a software engineering process. It provides a disciplined approach to assigning tasks and
responsibilities within a development organization. It enhances team productivity by providing every
team member with easy access to a knowledge base with guidelines, templates and tool mentors for
all critical development activities. The knowledge base allows development teams to gain the full
benefits of the UML. The RUP is supported by tools, which automate large parts of the process.

The OPEN Modeling Language (OML) [FIR98] is a competing notation to the UML. It represents
the merger of three methodologies: SOMA [SEL97], MOSES [SEL93], and Firesmith [SELL97]. A
key principle behind OML is the notion of tasks and techniques. A task may be accomplished by
one or more appropriate techniques. In OML, the relationship between a use case and a scenario
is described in several ways as a specialization of a use case, an instance of a use case, and as a
component of a use case. A use case links with objects via a participation association. OML also
defines a specific category of scenario relationships, which are precedes, invokes and uses. In OML,
capturing user requirements involves the use of task scripts, which are supported by a task-action
grammar that consists of Subject - Verb - Direct Object - Preposition - Indirect Object (SVDPI).
These task scripts can be organized into composition, classification and usage structures.

Regnell investigates the role of use case modeling in requirements engineering and its relation

to system verification and validation [REG99]. As shown in Figure 1, his approach utilizes three

14

levels for use case modeling. It allows a hierarchical structure and enables graphical representa-
tion at different abstraction levels. At the environment level, the use case is related to the entities
external to intended system. At the structure level, the internal structure of a use case is revealed to-
gether with its different variants and parts. The event level represents a lower abstraction level where
the individual events are characterized. He introduces the process of Usage-Oriented Requirements
Engineering, which is an extension of use case driven analysis, and the Synthesized Usage Model
resulting from this process. He investigates the possibility of integrating the two disciplines of use
case modeling and statistical usage testing and discusses how they can be integrated to form a seam-
less transition from requirements models to test models for reliability certification. Two approaches,
which are transformation and extension, are proposed for the integration of the use case model and

the operational profile model.

is-a has
l User } lActar% -1 Goal

Environment {r participates-in

satisties
describes-usage-of
Level [Use Case]- geof

r’s-a realisation-of

has—
Sce nario consists-of
gtruclture defines defines

eve
(]E;}:sode] I Precond I l Postcond
CONSISts-o

consists-of is-a.,
Event
[Fven]

Figure 1: Concept Relations and Levels of Abstraction [REG99]

2.3 Model Transformations

Refactoring use case models is an example of model transformations. This section introduces some
related work on model transformations. It helps understand the context of refactoring by investigating
current approaches used in use case models as well as other models.

Marco Boger et al. illustrate how refactorings can be directly defined on the level of models rather
than on code [BOGO02]. They discuss which refactoring fits better to a UML representation. They

describe static structure refactorings, state machine refactorings and activity graph refactorings. In

15

static structure refactorings, some source code refactorings can be applied to class diagrams directly.
Since UML is a two-dimensional and graphical representation, consequences of refactorings can be
overviewed better. Some source code refactorings, like the replacement of inheritance by delega-
tion or the extraction of a common interface from a set of classes, are more apparent on a model
level. In state machine refactorings, they introduce Merge States refactoring, Decompose Sequen-
tial, Composite State refactoring, Form Composite State refactoring and Sequentialize Concurrent,
Composite State refactoring. In activity graph refactorings, they introduce Make Actions Concurrent
refactoring and Sequentialize Concurrent Actions refactoring. They focus on the automatic detection
of conflicts. Conflicts are grouped into warnings and errors. While warnings indicate that a refactor-
ing might cause a side effect, errors show damages caused to the model. They illustrate how these
refactorings are implemented in a refactoring browser.

Gerson Sunyé et al. [SUNYO1] define refactorings for UML class diagrams and statecharts.
Refactorings on class diagrams are summarized in five basic operations: addition, removal, move,

generalization and specialization of modeling elements. These operations are defined as follows.

e The Addition of features (attributes and methods) and associations to a class can be done when
the new feature (or association) does not have the same signature as any other features owned

by the class or by its parents.

e The Removal of associations and features can only be done when these elements are not refer-

enced in the whole model.

e The Move is used to transfer a method from a class to another, and create a forwarder method

in the former.

e The Generalization refactoring can be applied to elements owned by classes, such as attributes,
methods, operations, association ends and statecharts. It consists in the integration of two or

more elements into a single one which is transfered to a common superclass.

o The Specialization refactoring is the exact opposite of Generalization. It consists in sending

an element to all direct subclasses of its owner.

In the case of statecharts, they introduce the following refactorings: Fold Incoming / Outgoing
Actions, Unfold Entry/Exit Action, Group States, Fold Outgoing Transitions, Unfold Outgoing Tran-
sition, Move State into Composite, Move State out of Composite.

They formalize refactorings using the Object Constraint Language (OCL) [UML99] at the meta-
model level to specify behavior-preserving transformations. However, since the abstract syntax of the
OCL is not precisely specified, they are not able to analyse the contents of a constraint and use this
information to improve the definition of some OCL-based refactorings. They are unable to formalize

the relation between the class (structural) and statechart (behavioral) diagrams.

16

Robert France et al. propose a metamodeling approach to pattern-based model refactoring [FRAQ3].
They develop metamodels called transformation specification that characterize families of transfor-
mations. These metamodels are used to check transformations for conformance. The design models
are expressed in the UML. They define a pattern specification which includes problem specification,
solution specification and transformation specification. Problem specification is a precise specifica-
tion of the family of UML design problems that the pattern addresses. Solution specification is a
precise specification of the UML designs representing solutions of the pattern. Transformation spec-
ification is a specification of problem-to-solution transformations. The whole specifications can be
viewed as defining UML metamodel specializations. To apply refactorings to a design model using
a selected design pattern, the design model needs to be checked against the pattern problem specifi-
cation to determine if the chosen design pattern can be applied to the source model. If the condition
is satisfied, the transformation steps can be developed using the transformation language defined by
the transformation specification at the metamodel level. A target model can be produced by applying
the transformations to the source model.

They also provide tool support to automate the process of applying pattern-based transformations.
This helps to reduce the effort of consistently and correctly realizing patterns across a design. The
tool provides two interfaces. One is for evolving and manipulating the UML metamodel. The other
is for creating, manipulating and evolving UML models using patterns.

Paolo Bottoni et al. describe software refactorings by distributed graph transformation [BOT03].
Source code and diagrams are abstracted to graphs. They use explicit flow graphs for source code and
UML metamodel for diagrams. Overlapping in common elements is expressed by interface graphs.
They propose to coordinate refactorings over different UML diagrams by hierarchical distributed
graph transformation. They use the following UML diagrams: class diagrams, sequence diagrams,
and state machine diagrams.

Pieter Van Gorp et al. investigate ways to maintain the consistency between the model and the
code while one of them gets refactored [GORP03]. They introduce a list of design criteria that should

be met by any UML version to support refactorings. These criteria are summarized as follows.

e Integration with Code Smell Detectors: Code smells indicates problematic code fragments
that should be refactored. In order to automatically suggest refactorings based on a set of
detected code smells, the metamodel should be adequate for describing such code smells and

exchanging them with a detector.

¢ Consistency Maintenance between Model and Code: Source-consistent refactoring on UML
models is only feasible if the UML metamodel is sufficiently expressive to capture the effects

of refactorings on the underlying sources.

e Minimal Additions: The UML specification describes two extension mechanisms, one being

the “lightweight” profile mechanism, the other being the “heavyweight” Meta-Object Facility

17

(MOF) [UML99] approach. The profile mechanism is restricted to adding attributes and con-
straints to existing model elements, whereas MOF allows the addition of new model elements.
The more lightweight the extension, the easier it is for existing tools to accommodate them

into their repository, hence it is better to keep the extension as minimal as possible.

e Maximal Effect: By careful selection of the places where the metamodel is extended, it is

possible that a minimal extension has maximal effect.

e Backward Compatibility: When extending or reusing an existing model element, changes to
the semantics should be avoided. Such conservative extensions guarantee that all existing UML

models remain valid.

o For all Common Object-Oriented Languages: One of the key benefits of the UML metamodel
is that it abstracts away language syntax without loosing the basic Object-Oriented constructs
(classes, methods and attributes, etc.). When extending this core, the balance should be kept

between achieving enough precision for refactoring and maintaining language independence.

They argue that the UML 1.4 metamodel is inadequate for maintaining the consistency between
a refactored design model and the corresponding program code. They propose a UML 1.4 extension
called GrammyUML using OCL expressions. GrammyUML consists of heavyweight extensions,
lightweight extensions and Well-Formedness Rules. In heavyweight extensions, they propose eight
additive and language-independent extensions to the UML 1.4 metamodel which form the foundation

of GrammyUML. These extensions are listed as follows:

1. Relate a Method to its contained statements, i.e. to ActionSequence.

2. Add LocalVariable as a specialization of ModelElement.

3. Relate a LocalVariable to its type, i.e. to Classifier.

4. Relate a LocalVariable to its surrounding scope, i.e. to ActionSequence.
5. Relate an Action to its actual arguments, i.e. to Argument.

6. Refine the value attribute of Argument to the valueRefinement association-end of type Mod-

elElement.
7. Add SingleTargetAction as a specialization of Action.

8. Refine the target attribute of SingleTargetAction to the targetRefinement association end of type
ModelElement.

18

They introduce the concept of refactoring contract, which consists of three sets of constraints
per refactoring: precondition, postcondition and the code smells. They illustrate how refactoring
pre- and post-conditions can be specified in OCL using two sample refactorings: Pull Up Method
and Extract Method. They describe how OCL refactoring contracts can be used to compose primitive
refactorings and how GrammyUML enables them to collect metrics data from inside the method body
and describe the code smells.

John McGregor et al. develop use case assortment for the requirement analysis phase of frame-
work development [MIL99]. This approach combines a set of modeling heuristics with an analysis
technique to identify commonality and variability among use cases within the use case model. To
reflect the commonality/variability analysis, the use case model is factored by introducing abstract
use cases and abstract actors, and rearranging responsibilities.

Inspired by the use case assortment approach, the concept of refactoring use case models is
proposed in Cascaded Refactoring [BUTO01] [XUO06]. Cascaded Refactoring is a hybrid approach
for the development and evolution of application frameworks. It combines the modeling aspects of
top-down domain engineering approaches and the iterative, refactoring approaches of the bottom-up

object-oriented community. The set of models used in Cascaded Refactoring are:

¢ a feature model organizing common and variable features;

e a use case model of requirements including variation points;

an architectural design with hotspots;

a design showing collaborations and the overlapping of roles from design patterns onto the

hotspots; and

the source code, with classes, hooks, and templates.

In Cascaded Refactoring, refactoring is viewed as an issue-driven activity. The restructuring of
one model determines constraints on the restructuring of other models via the traceability and trace

maps. The trace maps are:

e the trace map from the capability feature model to the use case model;

the trace map from the operating environment feature model to the architectural model;

the trace map from the domain technology feature model to the design model;

the trace map from the implementation feature model to the source code;

the trace map from the use case model to the architectural model;

19

¢ the trace map from the use case model to the design model;
s the trace map from the architectural model to the design model; and

o the trace map from the design model to the source code.

Although some use case refactorings are given in Cascaded Refactoring, detailed refactorings are

not investigated within this approach.

2.4 Model Semantics

In order to refactor use case models, the semantics of use cases has to be defined. This section
investigates current approaches used to define semantics for different models, not necessarily for use
case models. It helps understand and justify the use case semantics defined in Section 3.2.1.

Current approaches on model semantics are mostly based on automaton theory, process algebra
and Petri nets. This section starts by introducing the background information on these underlying
theories. Then it describes the related work on defining the semantics for Message Sequence Charts
(MSCs), statecharts, activity diagrams, sequence diagrams and use cases. Finally it introduces a pro-
cess algebra for Basic Message Sequence Charts in detail as this is a basis for the use case semantics

in the thesis.

24.1 Background on Underlying Theories

This section surveys automaton theory, process algebra and Petri nets respectively. It describes the
background information on automaton theory and process algebra in detail while briefing Petri nets.

The use case semantics in the thesis is based on process algebra.

Automaton Theory

An automaton is a mathematical model for a finite state machine [HOPO1]. A finite state machine
is a machine that proceeds through a series of states according to a transition function (can be seen
as a table) that tells the automaton which state to go to next given a current state and a current input
symbol. The input is read symbol by symbol, until it is consumed completely (think of it as a tape
with a word written on it, that is read by a reading head of the automaton; the head moves forward
over the tape, reading one symbol at a time). Once the input is depleted, the automaton is said to have
stopped. Depending on the state in which the automaton stops, it is said that the automaton accepts
or not the input. If it landed in an accept state, then the automaton accepts the word. If, on the other
hand, it lands on a non-accept state, the word is rejected. The set of all the words accepted by an

automaton is called the language accepted by the automaton.

20

Turing machines are the most general automata. They consist of a finite set of states and an infinite
tape which contains the input and is used to read and write symbols during the computation. Since
Turing machines can leave symbols on their tape at the end of the computation, they can be viewed
as computing functions: the partial recursive functions. Despite the simplicity of these automata, any
algorithm that can be implemented on a computer can be modeled by some Turing machine.

The behavior of a system is the total of events or actions that a system can perform, the order in
which they can be executed and maybe other aspects of this execution such as timing or probabilities.
Always, we describe certain aspects of behavior, disregarding other aspects, so we are considering
an abstraction or idealization of the real behavior. Rather, we can say that we have an observation
of behavior, and an action is the chosen unit of observation. The simplest model of behavior is to
see behavior as an input/output function. This model is instrumental in the development of (finite
state) automata theory. In automata theory, a process is modeled as an automaton. An automaton has
a number of states and a number of transitions, going from one state to another state. A transition
denotes the execution of an (elementary) action, the basic unit of behavior. Besides, there is an initial
state (sometimes, more than one) and a number of final states. A behavior is a run, i.e. a path from

initial state to final state.

Process Algebra

The term process algebra is used in different meanings. J. C. M. Baeten surveys the history of pro-
cess algebra and gives the following definition: “process algebra is the study of pertinent equational
theories with their models, while the wider field that also includes the study of transition systems
and related structures, ways to define them and equivalences on them will be called process the-
ory” [BAE(Q4].

The history of process algebra can be traced back to the early seventies. In 1970, we can distin-
guish three main styles of formal reasoning about computer programs, focusing on giving semantics

(meaning) to programming languages.

e Operational Semantics: A computer program is modeled as an execution of an abstract ma-
chine. A state of such a machine is a valuation of variables, a transition between states is an

elementary program instruction. Pioneer of this field is McCarthy [MCC63].

e Denotational Semantics: More abstract than operational semantics, computer programs are

usually modeled by a function transforming input into output. Most well-known are Scott and
Strachey [SCO71}.

e Axiomatic Semantics: Here, emphasis is put on proof methods proving programs correct. Cen-
tral notions are program assertions, proof triples consisting of precondition, program statement
and postcondition, and invariants. Pioneers are Floyd [FLO67] and Hoare [HOA69].

21

However, it turns out that it is difficult to give semantics to programs containing a parallel operator
using the methods of denotational, operational or axiomatic semantics. There are two paradigm
shifts that need to be made before a theory of parallel programs in terms of a process algebra can
be developed. Firstly, the idea of a behavior as an input/output function needed to be abandoned.
A program could still be modeled as an automaton, but the notion of language equivalence is no
longer appropriate. This is because the interaction a process has between input and output influences
the outcome, disrupting functional behavior. Secondly, the notion of global variables needs to be
overcome. Using global variables, a state of a modeling automaton is given as a valuation of the
program variables, that is, a state is determined by the values of the variables. The independent
execution of parallel processes makes it difficult or impossible to determine the values of global
variables at a given moment.

Beki& contributes basic ingredients to the emergence of process algebra [BEK71] [BEK84]. He
defines a denotational semantics for parallel composition.

Robin Milner is the central person in the history of process algebra. He develops his process
theory CCS (Calculus of Communicating Systems) [MIL80]. He formulates the semantics of parallel
composition within the framework of denotational semantics using transducers. He considers the
problems caused by non-terminating programs, with side effects, and non-determinism. He defines
operations for sequential composition, alternative composition and parallel composition. He presents
the equational laws as truths about his chosen semantical domain, rather than considering the laws
as primary, and investigating the range of models that they have. David Park contributes it with the
formulation of bisimulation [PARKS81].

Tony Hoare is a very important contributor to the development of process algebra. He defines the
language CSP (Communicating Sequential Processes) [HOA78]. He completely gets rid of global
variables and adopts the message passing paradigm of communication. His paper [HOA78] inspired
Milner to treat message passing in CCS in the same way.

Jan Bergstra and Jan Willem Klop use the phrase of “process algebra” for the first time [BER82].
It is quoted here:

A process algebra over a set of atomic actions A is a structure A = (A, +, -, ||, a;(i€l))
where A is a set containing A, the a; are constant symbols corresponding to the a; € A,
and + (union), (concatenation or composition, left out in the axioms), | (left merge)
satisfy for all X, y, z € A and a € A the following axioms:

PAlx+y=y+x

PA2x+(y+z)=x+y)+z

PA3x+x=x

PA4 (xy)z = x(yz)

PAS(x+y)z=xz +yz

22

PA6 (x + y)|lz=x|z + Y|z

PA7 ax|ly = a(x|ly + y[|x)
PA8 ally = ay

In their paper, process algebra is defined with alternative, sequential and parallel composition,
but without communication. This process algebra PA is extended with communication to yield the
theory ACP (Algebra of Communicating Processes) [BER84].

Currently, there are a lot of work and applications realized in the three most well-known process
algebras CCS, CSP and ACP. CCS is the first with a complete theory. CSP has a least distinguish-
ing equational theory. More than the other two, ACP emphasizes the algebraic aspect: there is an
equational theory with a range of semantical models. ACP also has a more general communication
scheme: communication is combined with abstraction in CCS while it is combined with restriction
in CSP.

There are a number of important developments after the formulation of the basic process algebras
CCS, CSP and ACP. Strong bisimulation and weak bisimulation become the central notion of equiv-
alence in process theory. As an alternative to weak bisimulation, branching bisimulation is proposed
in [GLA96]. In between bisimulation and trace equivalence there is a whole lattice of other equiv-
alences [GLAO1]. For process algebra based on partial order semantics, see [BESTO1]. Structural
operational semantics (SOS) becomes the dominant way of providing a model for a process algebra.
It is standard practice to provide a new operation with SOS rules, even before an equational charac-
terization is attempted. There are many results based on the formats of these rules. An overview can
be found in [ACEOQ1].

Petri Nets

Petri nets are devised by Carl Adam Petri as a tool for modeling and analyzing processes [PET62].
A Petri net consists of places and transitions. Places can contain tokens. The structure of a Petri
net is fixed. The state of a Petri net is indicated by the distribution of tokens amongst its places. A
transition may only fire if it is enabled. This occurs when there is at least one token at each of its
input places. The transitions are then, as it were, “loaded”: ready to fire. A transition may fire from
the moment it is enabled. As it fires, one token is removed from each input place and one token added
to each output place. In other words, as it fires a transition consumes tokens from the input place and
produces tokens for the output place.

Petri nets enable processes to be described graphically. They also have a strong mathematical
basis and they are entirely formalized. Therefore, it is often possible to make strong statements about
the properties of the process being modeled. There are also several analysis techniques and tools
available which can be applied to analyse a given Petri net. Currently, the model proposed by Carl

Adam Petri is expanded upon in many different ways. The three most important types of extension

23

are: the color extension, the time extension and the hierarchical extension. With these extensions, it

is possible to model complex processes in an accessible way.

2.4.2 Message Sequence Charts

Message Sequence Charts (MSCs) [MSC96] is a graphical and textual language for description and
specification of interaction between entities of a communicating system. MSCs can be used for re-
quirement specification, interface specification, simulation and validation, test case specification and
documentation. The core language of Message Sequence Charts is called Basic Message Sequence
Charts. A Basic Message Sequence Chart is a finite collection of instances. An instance is an abstract
entity on which message outputs, message inputs and local actions may be specified. An instance
is denoted by a vertical axis. The time along each axis is running from top to bottom. The events
specified on an instance are totally ordered in time; no notion of global time is assumed. No two
events on an instance are executed at the same time. An instance is labeled with a name, the instance
name. This name is placed above the axis representing the instance. A local action is denoted by a
box on the axis with the action text placed in it. A message between two instances is represented by
an arrow which starts at the sending instance and ends at the receiving instance. A message is split
into a message output and a message input. A message sent by an instance to the environment is
represented by an arrow from the sending instance to the exterior of the Message Sequence Chart. A
message received from the environment is represented by an arrow from the exterior of the Message
Sequence Chart to the receiving instance. A message may be labeled with a parameter list. The
parameter list is denoted between brackets after the message name.

The language is standardized in the standard ITU-T Z.120 of the International Telecommunica-
tion Union [MSC96]. The standard describes an abstract syntax, a graphical syntax and a textual
syntax of the language. The semantics of MSCs is given via a translation originally developed by
S. Mauw and M. A. Reniers in [MAUW94]. It transforms the textual representation of MSCs into a
process algebra. Section 2.5 introduces their approach in detail.

There are also other ways to define formal semantics for MSCs. J. Grabowski et al. define
a formal MSC semantics based on Petri nets [GRA93]. They introduce a special class of Petri
nets, the so-called labeled occurrence nets. The translation of MSCs into labeled occurrence nets
is defined. Based on this, they provide a semantics for MSC composition and decomposition. Ste-
fan Heymer [HEYO0O] develops a non-interleaving semantics based on Petri net components for
MSC’96 [MSC96] and MSC-2000 [MSCO00].

Bengt Jonsson et al. present an execution semantics for a significant of the MSC-2000 stan-
dard [JONO1]. The semantics has the form of an Abstract Execution Machine, which can either
accept or to generate sequences of events that are consistent with a given MSC. In comparison with

Petri net semantics, it gives a more direct semantics without translation to an intermediate formalism.

24

Peter B. Ladkin et al. propose an approach based on finite automata [LAD92] [LAD95]. For-
mally, a single MSC can be interpreted as a graph with two sorts of edges. The nodes represent
communication events, e.g. message sending and message consumption. This graph can be inter-
preted as a global state transition graph, containing all possible global states specified by the MSC.
It corresponds to an automaton without explicitly defined end states.

R. Alur et al. define a semantics for MSC based on partial order methods [ALUR96]. They use

semantics definitions that correspond to the visual order of events.

2.4.3 Statecharts

Statecharts is a visual language for specifying the behavior of reactive system [HA87]. The language
extends the notation of finite-state machines with concepts of (i) hierarchy, so that one may speak
of a state as having sub-states, (ii) concurrency, thereby allowing the definition of systems having
simultaneously active subsystems, and (iii) priority, so that one may express that certain system
activities have precedence over others. Statecharts is popular among engineers as a design notation
for embedded systems.

The survey [BEEK94] lists twenty different statecharts semantics. The first formal semantics
appeared in [HARS87]. A. Pnueli et al. [PNU91] and C. Huizing [HUI91] [HUIZ91] discuss which
properties statecharts should have and how to design a semantics to obtain them. The first composi-
tional semantics is given in [HOO92].

G. Liittgen et al. present a process algebraic approach to define a compositional semantics for
Statecharts [LUT99]. They define a simple process algebra called Statecharts Process Language
(SPL), which is expressive enough for encoding Statecharts in a structure-preserving and semantics-
preserving manner. They also establish that the behavioral equivalence bisimulation, when applied
to SPL, preserves Statecharts semantics.

A.C. Uselton et al. also focus on achieving a compositional semantics for Statecharts by referring
to process algebras [USE94] [USEL94]. They provide a translation of statecharts into a process
algebra with state refinement [USE93], a new operator for capturing hierarchy in concurrent systems.
The semantics of a statechart is then given by the Labeled Transition System (LTS) of its translation,
as defined by the process algebra’s structural operational semantics (SOS). The faithfulness of the
translation is demonstrated showing that the respective LTSs of a statechart automaton A and its
corresponding process algebra term ¢4 are isomorphic. R. Eshuis et al. [ESHOO] propose a formal
real-time semantics for UML statecharts aimed at the requirements level. This semantics is based
on the Labeled Transition System (LTS). It is an adaptation of the statemate statechart semantics,
with local variables, real time, identifier addressing, point-to-point communication, synchronous
communication and dynamic object creation and deletion.

E. Mikk et al. [MIKK97] give a formal semantics definition for statecharts as implemented in

25

statemate and described in [HAR96]. They use the Z notation [SPI92] rather than “standard math-
ematics” to formalize statecharts semantics. This allows to structure the definition of the formal

semantics and to use tools like type-checkers.

2.44 Activity Diagrams

UML activity diagrams are special cases of UML state diagrams, which in turn are graphical rep-
resentations of state machines. The state machine formalism as defined in the UML is a variant of
Harel’s statecharts [HAR96].

The issue of defining a precise semantics of UML is the subject of intensive investigations. Un-
fortunately, within this stream of research, activity diagrams have received relatively little attention.
There are some efforts attempting to fill this gap. E. Borger et al. define an algebra semantics of
the core constructs of activity diagrams [BOR0O]. However, they do not deal with features such
as synchronization states, dynamic invocation and deferred events. In this regard, the formalization
given in [ESHOI1] is more complete. Based on the statemate semantics of statecharts [HAR96], this
formalization covers all activity diagrams constructs (except synchronization states and swimlanes),
and considers issues such as data manipulation. The authors however do not formalize syntactical
constraints such as the well-formedness rules linking forks with joins, which are essential to avoid
some deadlocking situations.

Gehrke et al. [GEH98] give a semantics by mapping activity diagrams into Petri nets. Their
semantics does not deal with data or time. It does not model the environment. H. Storrle defines a
denotational semantics for activity diagram based on Petri nets [ST03]. This semantics excludes data
type annotations and all features based on them, but includes all kinds of control flow, including non

well-formed concurrency and, particularly, procedure calling.

2.4.5 Sequence Diagrams

The UML sequence diagram is a variant of Message Sequence Charts. It is extended with constructs
for the creation and deletion of objects as well as for synchronous and asynchronous communication.
In UML 2.0 [UML20}, some features of MSCs are integrated into UML sequence diagrams. UML
2.0 interactions and MSC-2000 [MSCO0] are very similar [HAUOS].

H. Storrle [STOO03] define a straightforward denotational semantics of interactions in the new
UML 2.0 standard. The semantics closely follows the new standard in that it defines a partial order
semantics for plain interactions, embedded in a trace semantics of CombinedFragments. He also
defines a Petri net semantics for the sequence diagram [ST0O99].

X.Lietal. define a formal semantics of the UML sequence diagram [LI04]. They provide formal
semantic models for sequence diagrams directly and then provide the combination of the different

models for consistency checking. The static semantics of the sequence diagram is defined as the

26

conjunction of all its messages in the structure tree. The dynamic semantics is defined in terms of
the state transitions that are carried out by the method invocations in the diagram. When a message
is executed, it must be consistent with system state, i.e., object diagram and the state diagrams of
its related objects. The semantics captures the consistency between sequence diagrams with class

diagrams and state diagrams.

2.4.6 Use Cases

Ivar Jacobson’s work has clearly the greatest influence on defining use cases and establishing the
boundaries of what constitutes a use case formalism. He discusses formalizing use case modeling and
suggests two directions for further development of use cases [JAC9S5]. The first direction addresses
process and human related concerns. The other addresses model and language related concerns.
He provides descriptions for several use case formalisms. The basic use case consists of structured
English description which includes alternative and exceptional behavior. Specific scenarios may also
be developed for use during development to explain different perspectives of use. Static descriptions
for each actor class and each use case class may also be provided. The second formalism is a class
association. These include the use case uses and extends stereotypes and actor inheritance hierarchies.
The third type is an interaction diagram, which shows the different paths that the conversation will
follow including iteration, repetition, branching, and parallelism. Preconditions and postconditions,
such as that the user is logged on to the system, may also be specified. The fourth type is a contract,
which specifies an objects interface in detail. Actors may provide a contract that involves multiple
use cases. Conversely, a use case may provide a contract that multiple actors use. The fifth formalism
type is a state-transition diagram in which a stimulus from an actor will cause the use case to leave
its current state and perform a transaction. Each transaction is associated with preconditions and
postconditions.

The survey [HURY97] lists thirty-one different approaches for describing and formalizing use cases
and twenty-six related works that have an indirect bearing on use case formalisms. It also provides a
comparison of the approaches with respect to their focus and representation formats.

In spite of the inclusion of many formalisms into the UML specification, detailed mappings of
use cases to other modeling constructs that implement these use cases, and the elaboration of use
cases for requirements gathering and domain analysis is ambiguous. There is no formally defined
use case semantics.

Most of the recent work in the use case field pertains to use cases in UML. K. G. van den Berg et
al. present a control-flow semantics of use cases using flowgraphs [BERG99]. The control-flow for
five kinds of use cases is analysed: for common use cases, variant use cases, component use cases,
specialized use cases and for ordered use cases. Perdita Stevens uses a Labeled Transition System

(LTS) to formally interpret use cases as sequences of actions in [STVO01]. H. Ledang et al. propose

27

an approach to translate use case to B specifications [LED02]. In [BUT97], a specification of use
cases in the Z notaion [SPI92] is given. The focus is on understanding use cases, not on instrument-
ing them for the specification in combination with the Z notation. Grieskamp et al. formalize use
cases using the Z notation [GRIOO]. They extend this work and specify use cases in Abstract State
Machine Language [GRIO1]. Dranidis et al. [DRAO3] propose the specification of use cases with
X-machines [EIL74]. They present a method for transforming use case text into its corresponding

X-machine model. Hassine et al. define an operational semantics for use case maps [HASOS5].

2.5 A Process Algebra for Basic Message Sequence Charts

As mentioned in Section 2.4.2, Message Sequence Charts are standardized. The semantics of MSCs
is given via a translation originally developed by S. Mauw and M. A. Reniers in [MAUW94]. This
section introduces process algebras that they use to specify Basic Message Sequence Charts. This
helps understand the use case semantics defined in Section 3.2, which is based on these process

algebras.

2.5.1 Process Algebra PA,

Process algebra PA, is an algebraic theory describing process behavior [BAE90] [BER84]. It is given
by a signature }’p, defining the processes and a set of equations Ep,, defining the equality relation
on these processes. This section gives the signature 3, and the set of equations Ep,, . It describes

the semantics of Basic Message Sequence Charts using an example.

The Signature of PA,

A signature Y’ is a set of constant and function symbols. For every function symbol in the signature
its arity is specified. The terms associated to a signature Y, and a set of variables V are defined as

follows.

Let Y’ be a signature and let V be a set of variables. Terms over signature Y with variables form

V are defined inductively by:

l.veV
2. if ¢ € }; is a constant symbol, then c is a term.

3. if f €) is an n-ary (n > 1) function symbol and ¢, - - - ,t,, are terms, then f(¢;, - - ,t,) is a term.

The signature Ep4, consists of:

28

1. the special constants ¢ and €
2. the set of unspecified constants A
3. the unary operator +/

4. the binary operators +, -, ||, ||

The special constants § denotes the process that has stopped executing actions and cannot pro-
ceed. This constant is called deadlock. The special constant € denotes the process that is only capable
of terminating successfully. It is called the empty process.

The elements of the set of unspecified constants A are called atomic actions. These are the
smallest processes in the description. This set is considered a parameter of the theory.

The binary operators + and - are called the alternative and sequential composition. The alterna-
tive composition of the processes x and y is the process that either executes process x or y but not
both. The sequential composition of the processes x and y is the process that first executes process x,
and upon completion thereof starts with the execution of process y.

The binary operator || is called the free merge. The free merge of the processes x and y is the
process that executes the processes x and y in parallel. For a finite set D = {d,, -- -, d,}, the notation
llecpP(d) is an abbreviation for P(d;) || --- || P(d,). If D = 0 then {lzepP(d) = €. For the definition
of the merge, two auxiliary operators are used. The termination operator +/ applied to a process x
signals whether or not the process x has an option to terminate immediately. The binary operator ||
is called the left merge. The left merge of the processes x and y is the process that first has to execute
an atomic action from process x, and upon completion thereof executes the remainder of process x

and process y in parallel.

The Equations of PA,

The set of equations Ep4, of PA, specifies which processes are considered equal. An equation is of
the form ¢, = t,, where t,, t, € T (Eps,, V). Fora € A U {6} and x, y, z € V, the equations of PA, are

given as follows:

Al: x+y=y+x

A2: (x+Y)+z=x+(@+2)
A3:x+x=x

Ad: (x+y) - z=x-2+y-Z
AS:(x-y)-z=x-(y-2)

A6: x+d6=x
AT:6-x=6
A8: x-e=x

29

A% e-x=x

™ML xlly=x[[y+y[x+ V& - vO)

TM2: e[x=6

™3:a-x||y=a-(xly)

™4 (x+y) |z=x]lz+Yy |z

TEL: {(e) = ¢

TE2: \(a-x)=6

TE3: vV (x+y) =V (x) + V (3)

Axioms A1-A9 are well known. The axioms TE1-TE3 express that a process x has an option to
terminate immediately if v/(x)=g, and that y/(x)=6 otherwise. In itself the termination operator is not
very interesting, but in defining the free merge this operator is needed to express the case in which
both processes x and y are incapable of executing an atomic action. Axiom TM1 expresses that the
free merge of the two processes x and y is their interleaving. This is expressed in the three summands.

The first two state that x and y may start executing. The third summand expresses that if both x and

y have an option to terminate, their merge has this option too.

2.5.2 Process Algebra PAgsc

The process algebra PApysc is defined in [MAUW94]. It extends PA. by specifying the set of atomic

actions and by introducing the auxiliary operator A,,.

Atomic Actions

There are different atomic actions in Basic Message Sequence Charts, which are listed below:

e The execution of an action aid by instance i: action(i, aid)

The sending of a message m by instance s to instance r : out(s, r,m)

The sending of a message m by instance s to the environment: out(s, env, m)

e The receiving of a message m by instance r from instance s : in(s, r,m)

The receiving of a message m by instance r from the environment: in(env, r, m)

State Operator 1,

A Basic Message Sequence Chart specifies a finite set of instances communicating by sending and
receiving messages. A message is divided into an output and an input. The correspondence between

message outputs and message inputs is defined uniquely by message name identification.

30

The operator Aj is introduced to enable only those execution paths respecting the following
constraint: a message output cannot be executed before the corresponding message input has been

executed. The operator Ay, is an instance of the state operator in [BAES0].

2.5.3 Semantics

The general idea is that the semantics of a Basic Message Sequence Chart is the free merge of the
semantics of its constituent instances. The state operator A, is used to rule out all interleavings where
a message output is preceded by the corresponding message input. For example, Figure 2 shows an
example of a Basic Message Sequence Chart. It consists of two instances: a; and a,, which exchange

two messages: i and j.

11158

Figure 2: Example: Basic Message Sequence Chart

The semantics of instance a; is out(ay, az, i)-in(ay, ai, j). The semantics of instance a; is in(ay, az, i)-

out(ay, a1, j). The semantics of this Basic Message Sequence Chart is as follows.
/lM(Out(al, az, i)) in(aZ’ a, j) ” in(ab as, l)) out(a29 a, j))

After some calculations, it appears some unwanted execution traces where the message output
comes before its message input. The 1), operator is applied to remove all these unwanted traces. As

a result, the semantics of this Basic Message Sequence Chart equals to:

Out(al’ as, l) ° in(al’ asz, l) : Out(aZ’ a,]) ‘ in(aZ’ a, j)

31

Chapter 3
Refactoring Use Case Models

This chapter describes the core work of refactoring use case models. Section 3.1 defines a use case
metamodel, which formalizes use cases and defines related terminologies. Section 3.2 defines a
process algebra semantics for the use case model. This semantics makes it possible to compare the
behavior of the use case model in a formal manner. Section 3.3 introduces eight invariants required
to preserve the behavior of the use case model. This is essential for verifying the behavior preserving
property of use case refactorings. Section 3.4 presents the list of use case refactorings briefly. It

presents a template for defining each use case refactoring.

3.1 Use Case Metamodel

Different people are using use cases differently. Use cases are the medium to model user requirements
for requirements engineering. They are used to guide the design of communicating objects to satisfy
functional requirements for software engineers. Although UML attempts to formalize use cases,
there is still a lot to argue about the use and semantics of use cases.

This section defines a use case metamodel, which represents a new perspective on the use case
formalization. This metamodel is a basis for refactoring use case models within the thesis because it
provides the specification of use case terminologies.

The rest of this section is organized as follows. Section 3.1.1 provides an overview on the use
case metamodel. It gives the definition for elements at different levels: environment level, structure
level and event level. Section 3.1.2 defines relationships at the environmental level, which include the
use case relationship, actor relationship, task relationship and goal relationship. Section 3.1.3 defines
the episode model, which specifies the behavior of the use case at the structure level. Section 3.1.4
defines the event model, which specifies the episode behavior. Section 3.1.5 discusses this use case

metamodel.

32

3.1.1 Opverview

Figure 3 shows an overview of the use case metamodel defined in this research. It is intended to
provide support to requirements engineering and software engineering. This metamodel incorporates
Regnell’s use case specification [REG99] as well as other people’s work in use case modeling. The
use case model mainly consists of actors, use cases and related episodes and events. This metamodel
introduces the concept of goal to support the goal-oriented requirements engineering and the concept
of task to support the task-oriented requirements engineering.

This metamodel can be viewed from different levels. At the environment level, the use case is
related to entities external to the intended system. At the structure level, the internal structure of a
use case is revealed together with its different variants and parts. The event level represents a lower
abstraction level where individual events are characterized. Elements within this metamodel for each

level are defined as follows.

¢ Environment Level: The key elements are use case, service, user, actor, goal and task.

A use case is a system usage scenario characteristic of a specific actor. A use case models a
usage situation where one or more services of the target system are used by one or more users
with the aim to accomplish one or more goals. A use case may either model a successful or an
unsuccessful accomplishment of goals. A use case is used to define the behavior of a system
without revealing the entity’s internal structure. Each use case specifies a sequence of activities

that the entity can perform, interact with actors of the entity.

A use case can be concrete or abstract. A concrete use case is a use case that can be instantiated.
An abstract use case is a use case that cannot be instantiated on its own. It is only meaningful

to describe the behavior which is common to other use cases.

An actor is a specific role played by a system user, and represents a category of users that
demonstrate similar behavior when using the system. It may be considered as playing a sepa-

rate role with regard to each use case with which it communicates.

An actor can be concrete or abstract. A concrete actor is an actor that can be instantiated. An
abstract actor is an actor that cannot be instantiated. It represents a role that no user can play
directly. It must be inherited by other concrete actors. An abstract actor is used to capture the

common characteristics between those concrete actors.

A user is regarded as an instance of an actor. The user can be human beings, and other external
systems or devices communicating with the system. One user may appear as several instances

of different actors depending on the context.

A service is a package of functional entities (features) offered to the users in order to satisfy

one or more goals that the users have.

33

Fulfiis

B

Parameter

Figure 3: Use Case Metamodel

34

1.7
Task
1.r
Has
1.7
, Instanciates * Has . .
User Actor Goal
* * 1 ,.Q
Participates-in Participates-in Satisfies
- 1.7
* Describes -
................ UseCase Serdce
, r 1= . 1%
Envaronmgnt Level O '
_____________ r‘-T—-'HW——'—TWh-'-'“”‘-'—"‘ .--‘r-;-,----,,---_--._.-_-__...-_..-_..--,-----
<zinstanceOfs»
e g1 Has 101
Scenario Episodehodel Context
7 = {17
. | Defines - |Defines
CompositeEpisode ™ Precondition Fostcondition
1.:
PrimitiveEpisode [Episode
s L Ep Structure Level
1
Pseudo-Episode 0.1
.e’\ — E
L5 vent Level
[EventMods!
i ! ¢ 5} -
ExtensionPoint InclusionPoint -
Event
PN
AN
] i5-3 15-8 is-a
Stimulus Response Action
SR s
]

Goals are objectives that users have when using services of a target system. Goals are often

used to categorize users into actors.

Task describes what the user will do with the software system.

e Structure Level: The key elements are scenario, episode and context.

A scenario is a specific and bound realization of a use case described as a sequence of a finite

number of events with linear time order.

A use case may be divided into coherent parts, called episodes. These coherent episodes reveal
the internal structure of a use case, and describe the functionalities of a use case. The same

episode can occur in different use cases.

An episode can be concrete or abstract. A concrete episode is a coherent part in the concrete
use case. An abstract episode represents the common behavior among different episodes. It
does not occur in any use case directly. There can be a generalization relationship between an
abstract episode and a concrete episode. The generalization relationship implies that the child
episode contains all the attributes, sequences of behavior defined in the parent episode. The

child episode may also add new behavior sequences.

A use case may have a context, which demarcates the scope of the use case and defines its
preconditions and postconditions. A precondition is the property of the environment and the
target system that needs to be fulfilled in order to invoke the use case. A precondition describes
the state or status of the systemn before a use case executes. A postcondition is the property of
the environment and the target system at use case termination. A postcondition describes the

status of the system as a result of the use case completing.

o Event Level: The key element is the event.

An event is the specification of a significant occurrence that has a location in time and space.
The difference between an event and an episode is that an event takes no duration whereas an

episode does.

There are three types of events: stimulus, response and action. A stimulus is the message from
users to the target system. A response is the message from the target system to users. An action
is the target system intrinsic event which is atomic in the sense that there is no communication
between the target system and users that participate in the use case. The stimulus and response

can take parameters, which carry data to and from the target system.

3.1.2 Environmental Entity Relationships

This section describes relationships at the environmental level, which includes the use case relation-

ship, actor relationship, task relationship and goal relationship. The meaning of each relationship is

35

defined in detail.

Use Case Relationship

The metamodel for the use case relationship is shown in Figure 4. There are six use case relationships:

inclusion, extension, generalization, similarity, equivalence, and precedence.

inclusion extension generalization

V

Use Case
Relation ship
| |
precedence sitnilarity equivalence

Figure 4: Metamodel for the Use Case Relationship

An inclusion relationship between two use cases means that the behavior defined in the target use
case is included at one location in the sequence of behavior performed by an instance of the base use
case. It specifies that one use case explicitly incorporates the behavior of another at the given point.
This given point is called the inclusion point. When one use case instance reaches the inclusion point,
it performs all the behavior described by the included use case and then continues according to its
original use case. One use case may be included in several other use cases and one use case may
include several other use cases. The included use case may not be dependent on the base use case.
In that sense the included use case represents encapsulated behavior which may easily be reused in
several use cases. Moreover, the base use case may only be dependent on the results of performing
the included behavior and not on the structure, like attributes and associations, of the included use
case.

An extension relationship between two use cases specifies that one use case extends the behavior
of another at the given extension point. One use case extends another by introducing alternative or
exceptional processes. It defines that instances of a use case may be augmented with some addi-
tional behavior defined in an extending use case. The extension relationship contains a condition and

references a sequence of extension points in the target use case.

36

A generalization relationship between two use cases implies that the child use case contains all
the attributes, sequences of behavior, and inclusion/extension points defined in the parent use case,
and participates in all relationships of the parent use case. The child use case may also add new
behavior sequences.

A similarity relationship between two use cases defines that one use case corresponds to or is
similar to or resembles another in some unspecified ways. Similarity is a relationship often noted
early in use case modeling. It provides a way to carry forward insight about relationships among use
case even when the exact nature of the relationship is not yet clear.

An equivalence relationship between two use cases defines that one use case is equivalent to
another, that is, serves as an alias. Equivalence flags those cases where a single definition can cover
what are, from the user’s perspective, two or more different intensions. It makes it easier to validate
the model with users and customers while also assuring that only one design will be developed.

A precedence relationship between two use cases defines that one use case is sequenced (ap-

pended) to the behavior of the preceding use case.

Actor Relationship

The metamodel for the actor relationship is shown in Figure 5. It defines the generalization rela-
tionship between actors. Two or more actors may have commonalities, i.e. communicate with the
same set of use cases in the same way. The commonality is expressed with generalizations to another
(possibly abstract) actor, which models the common role(s). This means that the child actor will be
able to play the same roles as the parent actor, i.e. communicate with the same set of use cases, as
the parent actor. If the parent actor interacts with the use case directly, both the parent actor and the

child actor are concrete actors.

Actor

Relationship <:] generalisation

Figure 5: Metamodel for the Actor Relationship

Task Relationship

The metamodel for the task relationship is shown in Figure 6. There are two task relationships:
inclusion and generalization.
An inclusion relationship between two tasks defines that one task contains another task, which

is a subtask. One subtask may be included in several other tasks and one task may include several

37

Task

Relstionship

inc lusion

gnemlimtion

Figure 6: Metamodel for the Task Relationship

other subtasks. Two or more tasks may have commonalities, i.e. contain the same set of subtasks.

This commonality is expressed with the generalization to another task, which models the common

task(s).

Goal Relationship

The metamodel for the goal relationship is shown in Figure 7. Similar to task relationships, there are

two goal relationships: inclusion and generalization.

Goal

Relatiorship

A

Inc ision

generalization

Figure 7: Metamodel for the Goal Relationship

An inclusion relationship between two goals defines that one goal may contain another goal,
which is a subgoal. One subgoal may be included in several other goals and one goal may include
several subgoals. Two or more goals may have commonalities, i.e. contain the same set of subgoals.

This commonality is expressed with the generalization to another goal, which models the common

goal(s).

38

3.1.3 Episode Model
Episode Metamodel

The behavior of a use case is described in an episode model. Since an abstract episode does not
occur in any use case directly, only a concrete episode can participate in the episode model directly.

The episode metamodel is defined as shown in Figure 8.

UseCase
1
0.1

Episodehlodel

’)’\ *
NS

CompositeEpizode

PrimitiveEpisade 1.7 Episode

Peeudo-Episods
7

i

&
| |

ExtensionPoint InclusionFoint

Figure 8: Episode Metamodel

Concrete episodes can be divided into different categories. An episode can be a primitive, com-
posite, or pseudo-episode. An episode that defines the basic activity for implementing the behavior of
ause case is considered as a primitive episode. An episode with operators to define a complex activity
is considered as a composite episode. There are different operators: sequence, alternation, iteration
and parallel. One composite episode can relate to other composite episodes or primitive episodes
through these operators. The concept of pseudo-episode is introduced in this research to indicate
an insertion point for the inclusion relationship or an extension point for the extension relationship
between use cases.

These episodes are described further as follows:

o Primitive Episode: a basic episode. It is the fundamental element in an episode model.

¢ Sequence Episode: a composite episode. Its child episodes are executed one-by-one in the

time order. A sequence episode is used to describe sequential activities in a use case.

39

o Alternation Episode: a composite episode. Depending on the condition, only one of its child
episodes is selected to be executed. The condition is defined in the alternation episode. An

alternation episode is used to describe the alternative course in a use case.

e Iteration Episode: a composite episode. Its child episodes are executed multiple times ac-
cording to the specified parameter. An iteration episode is used to describe repetitive activities

in a use case. The number of repetitions is specified by giving a number or an interval.

e Parallel Episode: a composite episode. There is no time order constraint for its child episodes.
In other words, these episodes can be executed in any order. A parallel episode is used to

describe the parallel activities in a use case.

o Pseudo-Episode: a special episode. It is used to indicate the inclusion point or extension point
in the base use case when an inclusion or extension relationship exists between the base use

case and the related use case.

In order to represent the inherited episode, the thesis introduces the concept of episode place-
holder. An episode placeholder is the alias of an inherited episode. It participates in the episode
model, but it depends on the generalization relationship with the parent use case. If the generaliza-

tion relationship is removed, the episode placeholder is removed correspondingly.

Episode Tree

In this research, an episode tree is defined as a graphical representation of the episode model using
a tree structure. A parent node in the tree represents a composite episode. A leaf node in the tree
represents a primitive episode. The type of a parent node can be sequence, alternation, iteration, or
parallel, which implies the episode relationship among its child nodes.

By adopting the tree structure, it is very convenient to represent the relationship between a com-
posite episode and related primitive episodes. It is especially convenient to build the tree structure in
Java when the use case modeling and refactoring tool is developed. As an example, the episode tree

of use case “Withdraw” in the ATM (Automatic Teller Machine) system is shown as follows.

Episode tree for use case “Withdraw”

EQ: (sequence)
El: Insert and validate the bank card
E2: Enter and validate PIN
E3: Select the bank account
E4: Enter the amount
ES5: (alternation) ATM processes the withdrawal request
ES5.1: (sequence) bank permits the operation

E5.1.1: Customer gets cash

40

ES.1.2: ATM updates the account balance
E5.2: Bank denies the operation
E6: ATM ejects the bank card

As shown above, EQ is a sequence composite episode. It has six child episodes: El1, E2, E3, E4,
ES, and E6. These episodes are executed sequentially. ES is an alternation episode. Either ES.1
or E5.2 is executed. ES.1 is a sequence composite episode. The episode composition and decom-
position within the episode tree not only make a use case more understandable, but also improve
the reusability of the use case model. Moreover, an episode model can be easily translated into an

indented textual notation as shown above by a depth-first traversal of the tree.

Well-formedness Rules

In this research, the UML Object Constraint Language (OCL) [UML20] is used to define constraints
in the episode metamodel shown in Figure 8. Well-formedness rules for this metamodel are described

as follows.

Context UseCase inv A use case can be refined using an episode model. A concrete use case
always has an episode model. An abstract use case does not always have an episode model.
Self.EpisodeModel->size() = 0 or
Self.EpisodeModel->size() = 1

Context EpisodeModel inv An episode model can be represented as a tree. Only one composite
episode serves as the root of the episode tree.

self. Episode. CompositeEpisode.alllnstances-> isUnique(e | e.isRoot = true)

An episode model refines only one use case.
self.UseCase->size() = 1

Context Episode inv An episode is specified as a primitive episode, composite episode, or pseudo-
episode in an episode model.

self.EpisodeModel.oclType.elements

(forAll(m | m.stereotype = PrimitiveEpisode

or m.stereotype = CompositeEpisode

or m.stereotype = Pseudo-Episode))

Context CompositeEpisode inv There is only one episode tree for an episode model. The root is

a composite episode.

41

self.alllnstances->isUnique(e | e.isRoot = true)

A composite episode is a root node in an episode tree if and only if its parent is empty.

self.parent->isEmpty implies self.isRoot = true

There are four kinds of operators in a composite episode: sequence, alternation, iteration and
parallel.

self.operator.type: enum { sequence, alternation, iteration, parallel }

A composite episode consists of one or more composite episodes, primitive episodes, or pseudo-
episodes.

let ¢ = self.child

c(forAll (ce | ce.typeOfEpisode = CompositeEpisode

or ce.typeOfEpisode = PrimitiveEpisode

or ce.typeOfEpisode = Pseudo-Episode)

Context PrimitiveEpisode inv The name of PrimitiveEpisode cannot be empty.

not self.name = *’

The name of PrimitiveEpisode must be unique.

self.alllnstance->forAll(pl, p2 | pl.name = p2.name implies pl = p2)

Context Pseudo-Episode inv The name of Pseudo-Episode cannot be empty.

not self.name = *’

The name of Pseudo-Episode must be unique.

self.alllnstance->forAll(pl, p2 | pl.name = p2.name implies pl = p2)

3.1.4 Event Model

The behavior of an episode is described in an event model. An event metamodel is defined as shown
in Figure 9. Similar to the episode model, there are also different operators: sequence, alternation,

iteration and parallel, which are described further as follows:

e Sequence Operator: It is used to describe the sequential event trace. It specifies that events

are executed one-by-one in the time order.

42

Episode
1

3.1
Eventhodsl
-
Event
15-3 i5-3 15-3
Stimulus Response Action

ey
{v1s {h1r

-

Parameter

Figure 9: Event Metamodel

s Alternation Operator: It is used when a choice can be made between groups of events.

e Iteration Operator: It is used when a sequence of events should be repeated. The number of

repetitions is specified by giving a number or an interval.
o Parallel Operator: It is used when events are executed synchronously.

Based on these operators, an event tree can be constructed as a graphical representation of the
event model. It uses a tree structure, which is similar to how the episode tree is created. The difference
is that the episode tree uses composite episodes to relate different episodes while the event tree uses
the above operators to relate different events. As an alternative, a basic MSC can also be used to
represent the event model graphically.

In order to represent the inherited event, the thesis introduces the concept of event placeholder.
An event placeholder is the alias of an inherited event. It participates in the event model, but it
depends on the generalization relationship with the parent episode. If the generalization relationship

is removed, the event placeholder is removed correspondingly.

3.1.5 Discussion

As the first step in refactoring use case models, use cases have to be formalized. This use case meta-

model defines the use case specification using a three-level structure. It defines terminologies used in

43

the use case model. While it is controversial to argue how use cases should be formalized, this meta-
model is defined to address different needs in requirements engineering and software engineering.

This metamodel is based on Regnell’s use case model [REG99], which is a basis for requirements
engineering. This model utilizes three levels for use case modeling. It allows a hierarchical structure
and enables graphical representation at different abstraction levels. Different levels are related to
each other. This makes it possible to integrate the two disciplines of use case modeling and statistical
usage testing to form a seamless transition from requirements models to test models for reliability
certification. The event level describes detailed interaction between the system and actors, which is
essential for design, implementation and testing. This satisfies needs for software engineering.

Based on Regnell’s model, the structure level is refined by introducing the episode model and
episode tree within this research. This helps manage and present the use case internal structure
effectively. Based on the episode model, the use case model can be restructured by manipulating
episodes among different use cases.

The concept of task is introduced in this use case metamodel to support the task-oriented require-
ments engineering. Task-oriented approaches are typically used in user interface design. The process
of gathering and understanding data about the tasks is called task analysis. The first publication about
task analysis was probably “Hierarchical Task Analysis (HTA)” [ANNG67]. In HTA, tasks are defined
as activities that people do to reach a goal. HTA is the foundation for many other methods. Task
analysis has been developed gradually since then. Task models are the “product” of the entire task
analysis activity. A hierarchical task model is created by breaking the task into increasingly detailed
task elements. In this metalmodel, two relationships between tasks are defined, which are “inclusion”
and “generalization”.

Tasks and goals are related to each other. In this metamodel, the concept of goal is introduced to
support the goal-driven requirements engineering [DAR93} [ANT97] [COC97]. Similar to task rela-
tionships, two relationships between goals are defined, which are “inclusion” and “generalization”.

In this metamodel, a comprehensive set of use case relationships are defined. As shown in Table 2,
this metamodel covers use case relationships as described for Objectory [JAC92], SOMA [SEL97],
OML [FIR98] and UML (v2.0) [UML20]. Among these relationships, the “uses” relationship is
semantically equivalent to the “includes” relationship. The “usage”, “composition” and “invokes”
relationships can be expressed by the “includes” relationship. Since both “specialization” and *“gen-
eralization” relationships aim at a hierarchical structure with inheritance, only one of them is kept
within this metamodel. Besides these relationships, the “similarity” relationship is added because it
provides a way to carry forward insight about relationships among use cases when the exact nature
of the relationship is not yet clear. The “equivalence” relationship is added because it can be very

useful when a single definition covers two or more different intentions from the user’s perspective.

Table 2: Comparison of Use Case Relationships

Objectory SOMA OML UML
Jacobson Graham Firesmith Rational
Use Case uses usage invokes includes
Relationship | extends composition | precedes extends
specialization generalization

3.2 A Process Algebra Semantics

Use cases are used differently by different people. There is no agreed use case semantics. In this
research, we need to define a use case semantics to verify behavior preservation of use case refac-
torings. The thesis presents an execution semantics of use case. Use case semantics is defined as
the execution of the use case. The semantics of the use case model is defined as the set of possible
executions of all use cases within the model. In essence, the behavior of the use case model is the
set of event traces. It is difficult to define use case semantics simply based on the environment level.
Detailed sequences of events in the use case are only specified in its structure level and event level.

Process algebra PAgysc [MAUW94] can be used to define the episode semantics. Section 2.5
shows how the semantics of a Basic Message Sequence Chart can be defined by process algebra
PAgusc. An episode can be represented by a Basic Message Sequence Chart. Andersson et al.
illustrate how to formalize use cases through Message Sequence Charts [AND97]. They define the
use case model in a layered manner, which is the basis of the three-level structure used in the use
case metamodel within the thesis. Different layers provide different information and have different
degrees of details. There are three levels in their model: system level, structure level and basic level.
Each level consists of a set of diagrams describing the functionality of the system. The system level
expresses the functional view of the system. It describes the full collection of actors, use cases and
reuse. The structure level describes the use case behavior without going into details. The basic level
shows the detailed interaction between the system and the actors. It corresponds to the event level
in the use case metamodel defined in the thesis. The graphical notation of this approach is based on
Message Sequence Charts (MSCs). They add some additional syntax to the MSC standard.

Since process algebra PAgysc is already available for us to use, we choose process algebra to
define use case semantics for convenience. We do not need the full power of process algebra. We
only use it to specify the set of event traces in the use case model. Concurrency is not concerned
in the thesis. Process algebra provides a natural mapping for the sequence of events in the use case
model. Relationships between events are mapped into binary operators in process algebra directly.
Sequence operator in the event model, for example, is translated into sequential composition operator
in process algebra.

Based on the episode semantics defined by process algebra PAgysc, the semantics of a use case

45

is defined in terms of the process algebra semantics of the episode model. Each use case corresponds
to a process algebra term which defines what happens when the use case is executed. The semantics
of the use case model is defined as the alternation of the process algebra terms of all use cases which
can be executed.

This section introduces the process algebra semantics for the use case model. Section 3.2.1
defines the semantics for the single use case. It analyses different episode relationships. It also
discusses the semantics of the incomplete use case. Section 3.2.2 defines the semantics of the use

case model. It analyses different use case relationships.

3.2.1 Use Case Semantics

The use case semantics is the interaction between use case and its actors. Detailed interactions
between use cases and actors can be specified at the event level. An episode can be represented
by a Basic Message Sequence Chart, which illustrates these interactions. The semantics of a Basic
Message Sequence Chart can be defined by a process algebra term using PA gpsc [MAUW94]. Since
a use case consists of a set of episodes and its behavior is represented by its episode model, the
semantics of a single use case can be defined. The following section illustrates how the semantics of
a single use case can be specified based on different episode relationships. It also illustrates how to

deal with the incomplete use case.

Semantics of a Use Case

Given a concrete use case U, it consists of a finite set of primitive episodes {e;, - - - , €,}. The episode
model of use case U can be defined based on these episodes and their relationships. The episode
model can be represented by an episode tree. Let composite episode E be the root node of this
episode tree, Pg be the process algebra term of episode E. The semantics Sy of use case U can be
represented by Pg, which describes the process of the whole use case U.

Let{P,,, -, P, }beasetof process algebra terms corresponding to primitive episodes {e;, - - - , €,}.
Process algebra term Pg can be represented by {P,,,- - - , P, } based on episode relationships. This is

analysed below in detail.

(1) n = 1: There is only one primitive episode: {e;}. Obviously, process algebra term Pg equals to
process algebra term P,,.

(2) n = 2: There are only two primitive episodes: {e}, e2}. Depending on the relationship between e,

and e, process algebra term Pg can be defined as follows:
e Pp =P, - P, if there is a sequence relationship between episodes e; and e, e; precedes to e;.
e Py =P, + P,, if there is an alternation relationship between episodes e; and e;.

46

e P = (P, - P,) ", where i is the interval or the number of repetitions, if there is an iteration

relationship between episodes e; and e,) precedes to e;.
e P =P, || P, if there is a parallel relationship between episodes e and e>.

(3) n > 2: A composite episode can be used to represent two episodes based on their relationships.
If this composing process is applied recursively, the episode model of the use case U can be
represented by two composite episodes: {E|, E,}. So process algebra term Py can be defined by

process algebra terms of {E}, E,} using the approach above (n = 2).

For example, based on the episode model presented for the use case “Withdraw” in Section 3.1.3,

the semantics of this use case can be represented by:

PWithdraw = PE] ° PE2 ‘ PE3) PE4 : ((PEj,l_l " PE5_1_2) + PEs‘z) . PE5

Incomplete Use Case

A use case can be incomplete, which means that the information at the structure level and event level
is not be fully defined. This is very common in practice due to various reasons. For example, the
requirement is not clear enough, or people do not intend to specify too much details. In order to
handle this issue, the whole use case is modeled as a single episode, which is represented by the
root node of the episode tree. This is essentially the anonymous entity identified only by name and
representing “Any”, the top, most general behavior. Then the structure of the use case can be refined
stepwise.

As an example, let us revisit the episode model of use case “Withdraw” in Section 3.1.3. The
semantics of this use case is defined as follows depending on how much structural information is

specified.

¢ Primitive episodes are not specified: the whole use case is modeled as a single episode Ey. So

the semantics of this use case is represented by Pg,.

o All episodes are specified except Es: the following episodes are defined: E,, E,, E3, E4, and
E¢. The episode E; is not fully defined. It represents the most general behavior on processing

the withdrawal request. In this stage, the semantics of this use case is defined as:
PWithdraw:PEl 'PEZ'PE3'PE4'PE5'PE5

¢ Episode E; is refined by defining episodes Es; and Es5. The episode Es; needs to be refined
further, so it represents the general behavior that bank permits the operation. In this stage, the

semantics of this use case is defined as:
PWithdraw=PE1 'PEZ'PEg 'PE4'(PE5_1 +PE§,2)'PE6

47

The above approach allows stepwise refinement of the use case. The episode model must conform
to well-formedness rules defined in Section 3.1.3. If the relationship of an episode with other episodes
in the use case is unknown, this episode cannot be used to construct the episode model.

Similarly, when the event model of an episode is not defined, the process algebra term of this
episode represents its most general behavior. In the above example, Pg, represents the most general

behavior of the episode E;.

3.2.2 Semantics of the Use Case Model

The semantics for a use case model deals primarily with the concepts of actor, use case, and episode
as the tool and the refactorings mainly treat these core concepts. The metamodel is cast more broadly
to indicate how tasks, goals, and services might be handled in the future. The semantics for the event
level is provided from the literature in order to support the future refinement of use cases models at
the event level.

A use case model consists of a set of actors, a set of use cases, and the related episodes (and
implicitly the related event models). The key semantics is the semantics of a use case defined above
in terms of the process algebra semantics of the episode model. Each use case corresponds to a
process algebra term which defines what happens when the use case is executed. The semantics of
the use case model is defined as the set of possible executions, that is, the alternation of the terms P,,
over all use cases u which can be executed.

Note that we distinguish between abstract use cases and concrete use cases. Abstract use cases
can never be instantiated in their own right, so are never executed. They contribute to the definition
of the semantics of concrete use cases. Concrete use cases can be instantiated and executed.

So, the semantics of a use case model is the alternation of P, for all concrete use cases u. Since
merging independent use cases u; and u; gives a use case u with term P, = P, + P,,, we wish to
view a use case model as a collection of independent concrete use cases. Hence below we discuss
the impact of the use case relationships on defining this set of independent concrete use cases.

For convenience, we define the semantics of an actor to be the semantics of the set of use cases
for which it is the primary actor, that is, for which it initiates the execution.

The process algebra term P, is defined as the term corresponding to the episode model of the use
case u. The episode model is a composite episode representing episode tree of operators, subtrees,
and leafs. The episode operators translate naturally to operators in the process algebra. The semantics
is aterm P,(e, ey, ..., €,) defined over the primitive episodes in the episode model.

The episode model is augmented by pseudo-episodes and placeholders. The pseudo-episodes
represent inclusion points and exclusion points. The placeholders represent the episode which is

inherited from the parent use case by a child use case when using the generalization relationship

48

between use cases. The parent episode model is also an episode tree with a corresponding process al-
gebra term. These pseudo-episodes and placeholders can be represented by process algebra variables,
which in turn can be substituted for by the appropriate term of the process algebra.

For example, suppose u is a use case with an inclusion point. Then the process algebra term for
u involves a free variable / corresponding to the inclusion point, so the term is P,(I). If the included
use case u; has process algebra term ¢ = P,,, then the execution of the use case u is described as
P,(1/1).

For example, suppose « is a use case with an exclusion point. Then the process algebra term for u
involves a free variable X corresponding to the exclusion point, so the term is P,(X). If the extending
use case u; has process algebra term ¢t = P, , then the execution of the use case u is described as
P,(X/s) where s = t + € because the execution of the extension is optional, and the empty term €
represents the “skip” episode which does nothing.

Note that each inclusion point and extension point occurs in only one place in the episode model,
hence there is only one occurrence of the corresponding free variable in the process algebra term.
Contrary to this, the placeholder for generalization can occur in one or more places in the episode
model, and so substitution of the term ¢ representing the parent episode model for the variable V
representing the placeholder in the term P,(V) for the episode model of the child use case u may
occur in more than one position.

The model semantics S), can be defined based on related use case relationships. The meaning of
use case relationships is analysed here at the episode level. To simplify the illustration, this analysis
only deals with the situation where use case model M contains only two use cases: | and u,. For the
use case model containing more than two use cases, its semantics can be defined in a similar manner
because two use cases can be mapped into one use case recursively within the use case model.

Suppose use cases u; and u, interact with the same actor. Let P,, be the process algebra term of
use case u;, P,, be the process algebra term of use case u,. Use cases u; and u, are mapped into a
single use case u. Let P, be the process algebra term of use case u. The following section analyses
the semantics of a use case model with two use cases u; and u, by discussing the semantics of the
two use cases when there is one relationship between them. It analyses independent use cases first,
the deals with the relationships of generalization, inclusion, extension, precedence, similarity, and

equivalence.

(1). No Relationship

Suppose use cases u; and u, are concrete use cases and there is no use case relationship between
them, they can be mapped into a single use case # which consists of the “or” of their respective
episode models.

So the semantics S » is:

49

Su=P,=P, +P,

(2). Generalization

As described in Section 3.1.2, a generalization relationship between two use cases implies that the
child use case contains all the sequences of behavior, including extension/inclusion points defined in
the parent use case, and participates in all relations of the parent use case.

Suppose that use case u, is the parent of use case u;. Let P, (V) be the semantics of u; with the
free variable V representing the placeholder for the inherited episode model from u,. Let t = P,, be
the semantics of the inherited episode model from u;.

We can assume that 1, is a concrete use case, otherwise we have at most a single use case (the
parent) that can be executed — and nothing to analyse. There are two cases to consider: when the
parent u, is an abstract use case, and when it is a concrete use case.

When u, is an abstract use case, there is only one use case that can be executed, namely the child
u;. Then

Su = Pu(V/D)

When the parent u, is a concrete use case, then the system can execute either u; or u,, so the
semantics is:

Su=P,(VI)+P,,

which is the same as P, for a use case u that has an episode model consisting of the alternation of
the episode model of u; and the episode model of u; with the placeholder replaced by u;’s episode
tree.

For example, in Figure 10, the use case “Do Transaction” is an abstract use case. It is the parent
of the use case “Withdraw”. When they are mapped into a single use case, episode E;, E; and E; in
use case “Do Transaction” are mapped to use case “Withdraw” based on their corresponding episode

placeholders. Figure 11 shows the episode model for the single use case after mapping.

(3). Inclusion

As described in Section 3.1.2, an inclusion relationship between two use cases specifies that one use
case explicitly incorporates the behavior of another at the inclusion point. When one use case instance
reaches the inclusion point, it performs the behavior of the included use case and then continues.

Suppose that use case u; includes use case u,. Let P, (I) be the semantics of u; with the free
variable I representing the pseudo-episode for the included episode model from u,. Let ¢t = P,, be
the semantics of the included episode model of u,.

We can assume that 4, is a concrete use case, otherwise we have at most a single use case u; that
can be executed — and nothing to analyse. There are two cases to consider: when u; is an abstract

use case, and when it is a concrete use case.

50

e e,

e e

- e,
,/

{

o .
i
X
. .

, | .
Do Transaction)

\\““'ww‘.,_,_ ‘*:::M://" ’
e \
T {sequence}
- E1: Insert and validate the bank card
E2: Enter and validate PIN
E3: Select the bank account
e
Withdraw
{sequence}

E1: Insert and validate the bank card {(inherited)
E2: Enter and validate PIN {inherited}
E3: Select the bank account {inherited)
E4: Enter the amount
ES: {alternation) ATM processes the withdrawal request
E3.1: {sequence) bank permits the operation
E3.1.1: Customer gets cash
E5.1.2: ATM updates the account balance
E35.2: Bank denies the operation
E6: ATM ejects the bank card

Figure 10: Example: Generalization Relationship

(sequence)
El: Insert and validate the bank card
E2: Enter and validate PIN
E3: Select the bank account
E4: Enter the amount
E5: (alternation) ATM processes the withdrawal request
E5.1: (sequence) bank permits the operation
E5.1.1: Customer gets cash
ES.1.2: ATM updates the account balance
ES5.2: Bank denies the operation
E6: ATM ejects the bank card

Figure 11: Example: Mapping for the Generalization Relationship

51

When u; is an abstract use case, there is only one use case that can be executed, namely u;. Then

Su=Pad/)

When the parent u, is a concrete use case, then the system can execute either u; or u;, so the
semantics is:

Su=P,I/0)+P,

which is the same as P, for a use case u that has an episode model consisting of the alternation
of the episode model of u, and the episode model of u; with the pseudo-episode replaced by u,’s
episode tree.

For example, in Figure 12, the use case “Withdraw” includes the use case “PIN Validation”. Use
case “PIN Validation” is an abstract use case. When they are mapped into a single use case, episode
E, and its primitive episodes in use case “PIN Validation” are inserted into the inclusion point (£;)
in use case “Withdraw” directly. Figure 13 shows the episode model for the single use case after
mapping.

o
o s

o

(PINValidation)

e

e

.} \\\

S,

... | {sequence} E2: Enter and validate PIN
E2.1: Enter PIN
<<inclusion>> 2.2: Validate PIN

Rt

e

(Withdraw

o,

s e -

{sequence)
El: Insert and validate the bank card
E2: Enter and validate PIN {inclusion}
E3; Select the bank accoum
E4: Enter the amount
ES: (alternation)} ATM processes the withdrawal request
E3.1: {sequence) bank permits the operation
ES.1.1: Customer gets cash
ES.1.2: ATM updates the account balance
ES.2: Bank denies the operation
E6: ATM ejects the bank card

Figure 12: Example: Inclusion Relationship

52

(sequence)
E1: Insert and validate the bank card
E2: (sequence) Enter and validate PIN
E2.1: Enter PIN
E2.2: Validate PIN
E3: Select the bank account
E4: Enter the amount
ES: (alternation) ATM processes the withdrawal request
ES.1: (sequence) bank permits the operation
E5.1.1: Customer gets cash
F15.1.2: ATM updates the account balance
E5.2: Bank denies the operation
E6: ATM ejects the bank card

Figure 13: Example: Mapping for the Inclusion Relationship

(4). Extension

As described in Section 3.1.2, an extension relationship between two use cases specifies that one
use case extends the behavior of another at the given extension point. One use case extends another
by introducing alternative or exceptional processes. The extension relationship is typically used in
exceptional circumstances.

Suppose that use case u; is extended by use case u,. Let P, (X) be the semantics of u; with the
free variable X representing the pseudo-episode for the extending episode model from u,. Lett = P,
be the semantics of the extending episode model of u,. Let s = ¢ + €.

We can assume that u; is a concrete use case, otherwise we have at most a single use case u, that
can be executed — and nothing to analyse. There are two cases to consider: when u; is an abstract
use case, and when it is a concrete use case.

When u; is an abstract use case, there is only one use case that can be executed, namely u;. Then

Su =P, (X/s)

When the parent u; is a concrete use case, then the system can execute either u; or u;, so the
semantics is:

Su=P,(X/s)+ P,

which is the same as P, for a use case u that has an episode model consisting of the alternation
of the episode model of u, and the episode model of u; with the pseudo-episode replaced by the
alternation of “skip” and the episode tree of u,.

For example, in Figure 14, the use case “Resume PIN Entry” extends the use case “Withdraw”.
When they are mapped into a single use case, episode E, and its child episodes in use case “Resume
PIN Entry” are inserted into the extension point (E;) in use case “Withdraw” directly. Figure 15

shows the episode model for the single use case after mapping.

53

/7 Resume

%

. PINEntty 7

\ {sequence) E2: Enter and validate PIN
. . E2.1: Enter PIN
<=extension>> E2.2: (alternation) Validate PIN
E2.2.1 valid PIN: proceed to the next step
N E2.2.1 invalid PIN: resume E2 until the third time
T e
(Withdraw
\\\
{sequence }

E1: Insert and validate the bank card
E2: Enter and validate PIN (extension}
E3: Select the bank account
E4: Enter the amount
ES: (alternation) ATM processes the withdrawal request
ES.1: (sequence) bank permits the operation
ES.1.1: Customer gets cash
E5.1.2: ATM updates the account balance
E3$.2: Bank denies the operation
E6: ATM gjects the bank card

Figure 14: Example: Extension Relationship

(sequence)
E1: Insert and validate the bank card
E2: (sequence) Enter and validate PIN
E2.1: Enter PIN
E2.2: (alternation) Validate PIN
E2.2.1 valid PIN: proceed to the next step
E2.2.1 invalid PIN: resume E2 until the third time
E3: Select the bank account
E4: Enter the amount
E5: (alternation) ATM processes the withdrawal request
ES5.1: (sequence) bank permits the operation
E5.1.1: Customer gets cash
ES.1.2: ATM updates the account balance
E5.2: Bank denies the operation
E6: ATM ejects the bank card

Figure 15: Example: Mapping for the Extension Relationship

54

(5). Precedence

Suppose there is a precedence relationship between use case u; and u,. Use case u; precedes to u;.

When u, is concrete and u, is abstract then the semantics S 4 is:
Su=P, =P, -P,
When u; is concrete too, then semantics S y is:
Su=P,=(Py P,)+P,

Let E, be the episode model of 1, and E; the episode model of ;. This is the same semantics as a
use case u where the episode model is S equencel E|, E,] in the first case, and Alternation[S equence[E;

, E3], E;] in the second case.

(6). Similarity

Suppose there is a similarity relationship between use cases u; and u,. Let E; be the episode model
of u; and E; the episode model of u,. It means that there is some association between use cases, but
the association is not further specified.

We treat this case as if 4, and u, were independent:
SM:P,,=PM1 +Pu2

where u is a use case with episode model Alternation[E,, E,].

(7). Equivalence

Suppose there is an equivalence relationship between use cases u; and up. Let E; be the episode
model of u; and E, the episode model of u,. The equivalence relationship requires that E, and E; be

semantically equivalent, so P,, = P,,. Hence,
Sy=P,=P, =P,=P, +P,

where u is a use case with episode model Alternation[E, E,] which simplifies to E;.

3.3 Properties and Behavior Preservation

As introduced in Section 2.1, Opdyke identifies seven invariants required to preserve the behavior
of C++ program. When a refactoring tends to violate an invariant, enabling conditions are added to
ensure that the invariant is preserved.

Similarly, eight invariants are identified in this research to preserve the behavior of the use case

model built from the metamodel in Section 3.1.

55

. Unique Parent: It supports only single inheritance systems, without cycles in the inheritance.
Therefore, a use case, actor, goal, task, and episode must always have at most one direct parent

and its parent must not also be one of its children.

. Distinct Environmental Entity Name: Each entity at the environment level must have a
unique name, which includes use case, actor, user, task, service, and goal. The scope of each

entity is the entire use case model.

. Distinct Episode Name: Each episode must have a unique name. This allows the same episode
to be reused among different use cases within the same use case model. It avoids redundant

definition for the same episode.

. Distinct Event Name: Each event must have a unique name. This allows the same event to
be reused among different episodes within the same use case model. It avoids the redundant

definition for the same event.

. Inherited Episode/Event not Redefined: An episode inherited from the parent use case can-
not be redefined in any of its child use cases. Child use cases may contain an episode place-
holder for this episode. Similarly, an event inherited from a parent episode cannot be redefined

in any of its child episodes. Child episodes may contain an event placeholder for this event.

. Equivalent References to Goals: If the goal model is defined in the use case model, the
association relationship between goals and concrete actors, services must be preserved. This
ensures the consistency between the goal model and the core use case model (the interaction

between use cases and actors).

. Equivalent References to Tasks: If the task model is defined in the use case model, the
association relationship between tasks and users, services must be preserved. This ensures the
consistency between the task model and the core use case model (the interaction between use

cases and actors).

. Semantically Equivalence: The use case model before and after a refactoring must be seman-
tically equivalent. The semantics of the use case model is the interaction between use cases and

actors within the model. This allows for several useful changes that do not affect equivalence:

o Use case, actor, user, service, goal, task, episode and event can be added or removed if

they are isolated from the rest elements in the use case model.
¢ Redundant use case, actor, and episode can be removed to simplify the use case model.

e Use case, actor, user, service, goal, task, episode, and event can be given a new name.

56

In the refactoring definition, the behavior preservation is argued in terms of these syntactic and
semantic properties of the use case model. To simplify the illustration of the refactoring definition,
the thesis assumes that the whole system is modeled as a single service except for three refactor-
ings: Create_Empty_Service, Delete_Unreferenced Service, and Change_Service_Name. A service is
a package of functional entities (features) offered to the users in order to satisfy one or more goals
that the users have. It does not affect the interaction between actors and use cases. Therefore, this

simplification does not affect the correctness of the refactoring definition.

3.4 Use Case Refactorings

This section presents an overview on use case refactorings. There are fifty-three refactorings in total,
including thirty-eight at the environment level, twelve at the structure level, and three at the event
level. These refactorings are designed to be simple so that it is easier to show that they are behavior
preserving. For completeness, the definition of each refactoring details its description, arguments,
preconditions, postconditions and argues that it is behavior preserving. Since this information pro-
vides a level of detail beyond what may be of interest to some readers, it is presented in the Appendix.

This section also presents a refactoring template and illustrates it using a refactoring example.

3.4.1 List of Use Case Refactorings

The complete list of use case refactorings is showed as follows. These refactorings are organized

according to different levels. There are different categories at each level.

A. Refactorings at the Environment Level

A.1 Create an Environmental Entity: This category contains refactorings to create new environ-

mental entities: use case, actor, user, service, goal and task.

A.l.1 Create_Empty_Usecase
A.1.2 Create_Empty_Actor
A.1.3 Create_Empty_User
A.1.4 Create_Empty_Service
A.1.5 Create_Empty_Goal

A.1.6 Create_Empty_Task

57

A.2 Delete an Environmental Entity: This category contains refactorings to delete unreferenced

environmental entities: use case, actor, user, service, goal and task.

A.2.1 Delete_Unreferenced_Usecase
A.2.2 Delete_Unreferenced_Actor
A.2.3 Delete _Unreferenced_User
A.2.4 Delete_Unreferenced_Service
A.2.5 Delete_Unreferenced_Goal

A.2.6 Delete_Unreferenced_Task

A.3 Change an Environmental Entity: This category contains refactorings to change the name

for environmental entities: use case, actor, user, service, goal and task.

A.3.1 Change_Usecase_Name
A.3.2 Change Actor_Name
A.3.3 Change_User_Name
A.3.4 Change_Service_Name
A.3.5 Change_Goal_Name

A.3.6 Change _Task_Name

A.4 Compose an Environmental Entity: This category contains refactorings to compose use cases

and actors with different relationships. Each refactoring below is listed with a brief description.

A.4.1 Change_Parent_Usecase: change the parent of a use case to another one.
A.4.2 Change_Parent _Actor: change the parent of an actor to another one.

A.4.3 Usecase_Generalization_Merger: merge two use cases with the generalization relationship

into one use case.

A.4.4 Usecase_Inclusion_Merger: merge two use cases with the inclusion relationship into one use

casc.

A.4.5 Usecase_Extension_Merger: merge two use cases with the extension relationship into one use

case.

58

A.4.6 Usecase_Precedence_Merger: merge two use cases with the precedence relationship into one

use case.

A.4.7 Usecase_Equivalence_Generation: generate an equivalence relationship between two use

cases if they are equivalent.

A.4.8 Reuse_Usecase: keep only one use case and remove the other when two use cases are equiva-

lent.
A.4.9 Merge_Usecases: merge two use cases into one use case.
A.4.10 Generalize_Usecases: generate a parent use case for a list of use cases.
A.4.11 Merge_Actors: merge two actors into one actor.

A.4.12 Generalize_Actors: generate a parent actor for a list of actors.

A.5 Decompose an Environmental Entity: This category contains refactorings to decompose use

cases and actors. Each refactoring below is listed with a brief description.

A.5.1 Split_Usecase: split one use case into two use cases and there is no use case relationship

between these two use cases.

A.5.2 Usecase_Generalization_Generation: split one use case into two use cases and generate a

generalization relationship between these two use cases.

A.5.3 Usecase_Inclusion_Generation: split one use case into two use cases and generate an inclusion

relationship between these two use cases.

A.5.4 Usecase_Extension_Generation: split one use case into two use cases and generate an exten-

sion relationship between these two use cases.

A.5.5 Usecase_Precedence_Generation: split one use case into two use cases and generate a prece-

dence relationship between these two use cases.
A.5.6 Split_Actor: split one actor into two actors.

A.5.7 Actor_Generalization_Generation: split one actor into two actors and generate a generaliza-

tion relationship between these two actors.

A.6 Move an Environmental Entity: This category contains a refactoring that moves a goal from

child actors to their parent actor.
A.6.1 Move_Goal_To_Parent_Actor

59

B. Refactorings at the Structure Level

B.1 Create a Structural Entity: This category contains a refactoring to create a new episode.

B.1.1 Create_Empty_Episode

B.2 Delete a Structural Entity: This category contains a refactoring to delete an unreferenced

episode.

B.2.1 Delete_Unreferenced _Episode
B.3 Change a Structural Entity: This category contains a refactoring to change the name of an

episode.

B.3.1 Change_Episode Name

B.4 Compose a Structural Entity: This category contains refactorings to compose a primitive

episode with different episode relationships. Each refactoring below is listed with a brief description.

B.4.1 Episode _Sequence_Merger: merge two primitive episodes with the sequence relationship into

one primitive episode.

B.4.2 Episode_Alternation_Merger: merge two primitive episodes with the alternation relationship

into one primitive episode.

B.4.3 Episode_Parallel Merger: merge two primitive episodes with the parallel relationship into

one primitive episode.

B.4.4 Generalize_Episodes: generate a parent episode for a list of episodes.

B.5 Decompose a Structural Entity: This category contains refactorings to decompose a primitive
episode and generate different episode relationships. Each refactoring below is listed with a brief

description.

B.5.1 Episode_Sequence_Generation: split one primitive episode into two episodes and generate a

sequence relationship between these two episodes.

B.5.2 Episode_Alternation_Generation: split one primitive episode into two episodes and generate

an alternation relationship between these two episodes.

B.5.3 Episode_Parallel_Generation: split one primitive episode into two episodes and generate a

parallel relationship between these two episodes.

60

B.6 Move a Structural Entity: This category contains a refactoring that moves an episode from

child use cases to their parent use case.

B.6.1 Move_Episode_To_Parent _Usecase
B.7 Convert a Structural Entity: This category contains a refactoring to convert an episode into
a use case.

B.7.1 Convert_Episode_To_Usecase

C. Refactorings at the Event Level

C.1 Create an Event: This category contains a refactoring to create a new event.

C.1.1 Create_Unreferenced_Event

C.2 Delete an Event: This category contains a refactoring to delete an unreferenced event.

C.2.1 Delete_Unreferenced_Event

C.3 Change an Event: This category contains a refactoring to change the name of an event.

C.3.1 Change_Event Name

3.4.2 Notations and Functions for Defining Use Case Refactorings

This section introduces a list of notations and functions used to define use case refactorings. At-
tributes are referenced using a dot notation. For example, all actors within the use case model is
referenced by Model.actors. This section only lists those attributes used for defining use case refac-
torings. The post state is expressed by prime (’). For example, Model’ is the use case model after the
refactoring where Model is the use case model before the refactoring.

Notations for Defining Use Case Refactorings

1. {}: the empty set.

2. environmental entity: It refers to actor, use case, goal, task, user, and service.

3. element: It refers to environmental entity, episode and event.

4. referenced/unreferenced: If the element v is referenced by the element a, the element v can be
accessed in a by a.v. If the element v is unreferenced by the element a, v cannot be accessed in a

by the dot notation directly.

61

5. association relationship: If the actor interacts with the use case directly, there is an association

relationship between the actor and the use case.

6. use: It refers that the actor communicates with the use case when there is the association relation-

ship between the actor and the use case.

7. Model: the use case model conformed to the use case metamodel defined in Section 3.1. It has

the following attributes:

(1).
(2).
3).
.
(5).
(6).
.
(8).

usecases: the set of use cases in the use case model.
actors: the set of actors in the use case model.
users: the set of users in the use case model.

tasks: the set of tasks in the use case model.

goals: the set of goals in the use case model.
services: the set of services in the use case model.
episodes: the set of episodes in the use case model.

events: the set of events in the use case model.

8. use case: It has the following attributes:

().

@

3).

.

5).
(6).

.

®).

name: the name of the use case. The type of the name is string.

type: the type of the use case. The set of types is {abstract,concrete}, which refer to the

abstract use case and concrete use case respectively.

episodes: the set of episodes in the use case. The episode can be primitive episode, composite
episode or pseudo-episode. These episodes are episodes participating in the episode model
of the use case. They do not include inherited episodes, which are represented by the episode

placeholder in the use case.

inheritedEpisodes: the set of episodes that are inherited from the parent use case. The

episode can be primitive episode, composite episode or pseudo-episode.
actors: the set of actors in the use case model that interact with the use case directly.

usecases: the set of use cases in the use case model that have use case relationships with the

use case.

parentUsecase: the direct parent use case. One use case can have multiple parent use cases,

but it can have only one direct parent.

rootEpisode: the root episode for the root node of the episode tree. One use case has at most

one root episode.

62

10.

11.

12.

9.

episodeTree: the episode tree of the use case.

actor: It has the following attributes:

(1).
).

3.

).
).
(6).
().

(8).

name: the name of the actor. The type of the name is string.

type: the type of the actor. The set of types is {abstract, concrete}, which refer to the abstract

actor and concrete actor respectively.

actors: the set of actors in the use case model that have the direct actor relationship with the

actor.

users: the set of users in the use case model that are instances of the actor.
goals: the set of goals of the actor.

usecases: the set of use cases that interact with the actor directly.

inheritedUsecases: the set of use cases that have the explicitly specified association relation-
ship with parent actors of the actor. The actor inherits these association relationships from

parent actors.

parentActor: the direct parent actor. One actor can have multiple parent actors, but it can

have only one direct parent.

user: It has the following attributes:

(1).
(2).
Q).
(4).

name: the name of the user. The type is string.
actors: the set of actors in the use case model that the user is the instance of.
tasks: the set of tasks in the use case model that the user has.

usecases: the set of use cases that the user participates in.

service: it has the following attributes:

(1).
).
3).
4).

name: the name of the service. The type of the name is string.
usecases: the set of use cases in the use case model that describes the service.
tasks: the set of tasks in the use case model that fulfills the service.

goals: the set of goals in the use case model that satisfies the service.

task: It has the following attributes:

(1).
2).

name: the name of the task. The type of the name is string.

users: the set of users in the use case model that have the task.

63

13.

14.

15.

16.

17.

(3). tasks: the set of tasks in the use case model that have the generalization relationship or

inclusion relationship with the task.
goal: It has the following attributes:

(1). name: the name of the goal. The type of the name is string.
(2). actors: the set of actors in the use case model that have the goal.
(3). services: the set of services in the use case model that the goal is satisfied to.

(4). goals: the set of goals in the use case model that have the generalization relationship or
inclusion relationship with the goal.

episode: It has the following attributes:

(1). name: the name of the episode. The type of the name is string.

(2). type: the type of the episode. The set of types is { Primitive Episode, Sequence Episode,
Alternation Episode, Iteration Episode, Parallel Episode, Pseudo-Episode }.

(3). usecases: the set of use cases that have the episode.

(4). episodes: the set of episodes that directly interact with the episode.
(5). events: the set of events that the episode has.

(6). parentEpisode: the parent of the episode.

(7). eventTree: the event tree of the episode.
event: It has the following attributes:

(1). name: the name of the event. The type of the name is string.
(2). type: the type of the event. The set of types is { Stimulus, Response, Action }.
(3). episodes: the set of episodes that have the event.

(4). events: the set of events that directly interact with the event.
episode tree: It has the following attribute:

(1). episodes: the set of episodes that occur in the episode tree.
event tree: It has the following attribute:

(1). events: the set of events that occur in the event tree.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Precedence [u;, u;]: where u; and u, are use cases. This notation refers that there is a precedence

relationship between use case u; and u,. Use case u; precedes to use case u;.

Inclusion [u;,u;]: where u; and u, are use cases. This notation refers that there is an inclusion

relationship between use case u; and u;. Use case u; includes use case us.

Extension [1;, 1;]: where u; and u, are use cases. This notation refers that there is an extension

relationship between use case u; and u;. Use case u, extends use case u;.

Equivalence [u;, u;]: where u; and u, are use cases. This notation refers that there is an equiva-

lence relationship between use case u; and u,.

Sequence [¢;, ¢;]: where ¢; and e, are episodes. This notation refers that there is a sequence

relationship between episode e, and ¢,. Episode e, follows episode ¢; immediately.

Alternation [e;, e;]: where ¢ and e, are episodes. This notation refers that there is an alternation

relationship between episode ¢; and e;.

Parallel [¢, ¢;]: where e, and e, are episodes. This notation refers that there is a parallel rela-

tionship between episode ¢, and e,.

Pseudo [«]: where u is the use case. This notation refers to the pseudo-episode indicating the

inclusion point or extension point. Use case u is the included use case or extending use case.

Placeholder [x]: where x is an episode or an event. This notation refers to the episode placeholder

or event placeholder for x.
P,: the process algebra term of x where x can be a use case, episode or event.

T'[e]: the episode tree of the episode e where e is an episode or a list of episodes with operators:
sequence (), alternation (+), parallel (), iteration ((x)' where x is an iteration episode and i is
the number of repetitions or an interval). This notation refers to an episode tree or episode subtree.
For example, T[e; - e,] represents an episode subtree with episode e, and e,. There is a sequence

relationship between episode e, and e,. Episode e, follows e, immediately.

T[v]: the event tree of the event v where v is an event or a list of events with operators: sequence
(), alternation (+), parallel (|)), iteration ((x)' where x is an event or a list of events with operators
and i is the number of repetitions or an interval). This notation refers to an event tree or event
subtree. For example, T[v; - v,] represents an event tree or event subtree with event v; and v;.

There is a sequence relationship between event v, and v,. Event v, follows v, immediately.

65

Functions for Defining Use Case Refactorings

1.

10.

11.

12.

DeleteUnreferencedEpisode(e): where e is an unreferenced episode. This function applies refac-

toring Delete_Unreferenced_Episode to the episode e.

. DeleteUnreferencedUser(x): where u is an unreferenced user. This function applies refactoring

Delete_Unreferenced_User to the user u.

. DeleteUnreferencedGoal(g): where g is an unreferenced goal. This function applies refactoring

Delete_Unreferenced_Goal to the goal g.

DeleteUnreferencedTask(?): where ¢ is an unreferenced task. This function applies refactoring
Delete_Unreferenced Task to the task t.

. SubstituteEpisode(e;, e;): where ¢, and e, are episodes in the use case model. This function

substitutes every occurrence of the episode e; in the use case model with e;.

SubstituteEpisodeWithPlaceholder(x, €): where e is an episode in the use case u. This function
substitutes every occurrence of the episode e in the episode tree of the use case u with Place-
holder [e].

SubstitutePlaceholder WithEpisode(u, Placeholder [e]): where Placeholder [e] is an episode
placeholder in the use case . This function substitutes every occurrence of Placeholder [e] with

the corresponding episode e in the episode tree of the use case u.

SubstituteEpisodeWithPseudo(uy, ¢, Pseudo [u;]): where e is an episode in the use case u;.
This function establishes an inclusion relationship between use cases u; and u,. The use case u,
includes the use case u,. This function substitutes the episode e in the episode tree of the use case

u; with the pseudo-episode Pseudo [u;,].

SubstituteEpisodeTreeInUsecase(u, T;,7,): where u is a use case, T, and T is the episode
tree or episode subtree in the use case u. This function substitutes every occurrence of 7 in the

episode tree of the use case u with 7.

DeleteEpisodeTreeInUsecase(u, 7)): where u is a use case, T is the episode subtree in the use

case u. This function deletes every occurrence of 7 in the episode tree of the use case u.

SubstituteEventWithPlaceholder(e, v): where v is an event in the episode e. This function sub-

stitutes every occurrence of the event v in the event tree of the episode e with Placeholder [v].

IsEpisodeSubTree(T, r): where T is the episode tree of a use case and ¢ is an episode tree. This

function returns true if ¢ is an episode subtree of the episode tree T. Otherwise, it returns false.

66

13. IsEventSubTree(T,t): where E is the event tree of an episode and ¢ is an event tree. This function

returns true if 7 is an event subtree of the event tree T'. Otherwise, it returns false.

3.4.3 Refactoring Template

A template is designed to define each use case refactoring. It is described below:

e Description: It presents an overview of the refactoring, including the motivation and how the

refactoring works.

o Arguments: It lists input arguments of the refactoring.

Preconditions: It specifies conditions that must be satisfied before the refactoring can be ap-

plied. All preconditions must be met.

e Postconditions: It specifies the final state of the use case model after the refactoring is applied.

All postconditions must be met.

Verification: It discusses preconditions and postconditions in terms of the behavior preserva-

tion. It verifies if the refactoring preserves the behavior of the use case model.

As an example, Figure 16 and Figure 17 show how the Usecase_Inclusion_Generation refactoring

is defined using this template.

67

Description: This refactoring splits one use case into two and generates an inclusion
relationship between these two use cases. When the episode model of a use case is
too complicated, it is preferable to split the episode tree. After the refactoring, a new
use case is created with an episode subtree of the original use case. The original use
case includes the new use case. This refactoring helps manage the use case granularity,
reduce the redundancy, and improve the understandability of the use case model.

Arguments: use case U, the episode tree T of the use case U, the episode subtree #; for
creating the new use case, string newUsecaseName.

Preconditions:

(a). The episode subtree f; is a subtree of T'.

U € Model.usecases A U.episodeTree = T A IsEpisodeSubTree(T,t,)

(b). The name of the new use case does not clash with an already existing use case
within the use case model.

VYusecase € Model.usecases, usecase.name # newlU secaseName.

Postconditions:

(a). An abstract use case U is created with the name of newUsecaseName. The episode
tree of the new use case U, is the episode subtree ¢;. The use case U includes the
new use case U,.

U, ¢ Model.usecases A U, € Model .usecases
A Uy.type = abstract A U,.episodeTree = t; A Inclusion{U, U]

(b). The episode tree #; is substituted by a pseudo-episode in the episode tree 7. The
pseudo-episode indicates the inclusion point for the inclusion relationship between
use cases U and U;.

SubstituteEpisodeT reelnU secase(U, t,, T[Pseudo|U]])

Figure 16: Example: Usecase_Inclusion_Generation Refactoring - Part (a)

68

Verification: Conversely to the Usecase_Inclusion_Merger refactoring, this refactoring
splits one use case into two and generates an inclusion relationship between these two
use cases. The semantics of the inclusion relationship is analysed in Section 3.2.2.
The new use case U, is an abstract use case. It cannot be instantiated on its own. The
use case U’ includes the behavior of the new use case U, at the inclusion point. The
interaction between the use case U and related actors is preserved. Therefore, this
refactoring is a behavior preserving transformation.

Precondition (a) is obvious. Precondition (b) ensures distinct environmental entity
name (invariant two in Section 3.3).

Postcondition (a) ensures that the new use case U, is an abstract use case. Therefore,
the behavior of the use case model with use cases U’ and U; can be verified based on
the interaction between the use case U’ and related actors. Postcondition (b) ensures
that the episode tree T is adjusted properly after the refactoring by replacing the episode
subtree 1, with the inclusion point.

Figure 17: Example: Usecase_Inclusion_Generation Refactoring - Part (b)

69

Chapter 4

A Tool for Use Case Modeling and

Refactoring

One of important goals of this research is to demonstrate that refactoring use case models is feasible
and practical. As part of this research, we develop a tool for use case modeling and refactoring. The
tool enables us to build the use case model based on the metamodel defined in Section 3.1. We can
evolve the model by applying use case refactorings under the tool support. The tool allows us to test
many of our refactoring ideas. It gives us an insight into the nature of the use case evolution and how
and when to apply refactorings.

The tool is developed with three master students: Jian Xu, Wei Yu and Renhong Luo. Some work
is described in their master theses [XU04] [YUO4]. Basically, Jian Xu mainly works on the environ-
ment level. He also integrates different functional modules together. Wei Yu focuses on the structure
level and event level. She defines the episode model and some use case refactorings. Renhong Luo
works on the goal module, which includes goal definition, data display and refactoring supporting
module. I manage the whole project and supervise the team. I provide them with detailed definitions
of use case refactorings. We work closely to design the system and to implement refactorings. For

the completeness of the thesis, I introduce the tool as a whole system here.

4.1 Drawlets Framework

Drawlets [ROLE] is a two-dimensional graphics framework written in Java for building graphical
applications. Figure 18 shows the class diagram for the intended use of Drawlets fundamental roles.
DrawingCanvas contains the drawing and fool components. The drawing component holds figures
and listeners. The tool component allows user to interact with figures to modify their attributes: size,
location, etc. A special selection tool can select multiple figures and modify all of them.

Drawlets supports many shapes: lines, freehand lines, triangles, rectangles, rounded rectangles,

pentagons, polygons, ellipses, text boxes, etc. Each figure has a separate drawing tool.

70

Handle

4.2 System Overview

71

interfacs interface
Relativelocator Hovablelocator
i 3
haze :;“7
'
1 intexrface § .-
= Locator .
o interfacs
— e lovarors PolvaonFi "
interface o..iflocater
, Paintable {pozsible}
= interface {
. o $ - L
w {pogsiblal ____&mm 2. intertace loeators
Y FLYLE | e LineFigure | ~"°%"
me:m:af:& . f& .
- . ‘_
DrawingStyle fiqures
interface
i Se eQfFiqures
A
interface selections
Eventiandley ; interfacs interface
. E2m . ,
Sl IF Y anvas Drawving
T Teel drawing em—
£y
L‘N - "
e inverface 1 lhandles

Figure 18: Class Diagram for the Intended Use of Drawlets Fundamental Roles

In this refactoring tool, we extend the Drawlets framework to define elements at the environment
level. Drawlets allows us to build the tool quickly and it provides the flexibility for further modifica-
tions and extensions. For elements at the structure level and event level, we use tree and list structures

to show episodes and events instead of graphical elements provided by Drawlets.

Figure 19 shows a screen shot of the current refactoring tool. The use case model at the environment
level is shown at the top-left. The structure of each use case is shown in “Episode Tree” windows
respectively. The “Episodes Table” window displays a unique list of current episodes.

The tool is an MDI (Multiple Document Interface) application. The key functionality of the tool

i UMIRS - Use Case Model Refactoring Systent e wiBx
MetaMadel - Windou - Helpg

Diagean {Untitled)

stomer inserts bank Land
roes enters Pl cnude

¥ Fin ard H -
%} Epitods for usecase Cesomt ¢ 1

v

s inserts Bark curd

mgrentas P code

wystern ugdates bank
hrer gels recepd

8

o

D ATM rroachinie oot

{ Chick 1o defisie contixt

Figure 19: A Screen Shot of the Tool

is to build the use case model and then apply use case refactorings to evolve it. Figure 20 shows the
system architecture. Basically, the tool is built based on the Drawlets framework. The use case model
is saved as XML files. There is separate module for each level as defined in the use case metamodel.

The system can be divided into two subsystems: Definition subsystem and Refactoring subsys-

tem.

4.2.1 Definition Subsystem

The Definition subsystem is used to define the use case model. The use case model is constructed
based on the metamodel in Section 3.1. The definition data is stored in the XML format. The
environment level is shown in graphics elements supported by Drawlets while the other two levels
are shown using tree and list structures. Elements at the environment level, such as use case and

actor, are extended from the basic shapes defined in the Drawlets framework.

72

~~=Rofactoring Tool Metamodel Module Layer

i,-»«S%mcxum Lavel

Refaciorig

GLi

Tres Model

f,wEmimnman: Level {m Use Case e,

{f [Retactoring

mmogeed .
Gt
et et
é“;ri‘;vl:‘:‘ Dafindion

\.

By mmmomsn,

- Eert e Emﬂiw\

: Refactoring

&

v

F Y

¥

1 ouw Event
ﬁ Trew Mods! Defirition
i
~Erveronenent Level _ Goal- m—
I SO
. .
5_» Refacioring
$ Gut Goal
m Fraw Model Definition

rmRef;x:zm;:g Tool Framework Layer

:

JUnit Framework

£

-
—

Drasdels Framesnrk

XU, Parser

- Betactonng Teol | Melamodel Data Layer m—tww«—-\
I

Evenl Lovel

™

Environment
Lavel Dats

N

Strucline
Lot D

Dats

Figure 20: System Architecture of the Tool [XU04]

4.2.2 Refactoring Subsystem

The Refactoring subsystem is responsible for applying refactorings to the use case model. It checks
preconditions of the refactoring automatically. The refactoring can only be applied when all the
preconditions are met. Figure 21 shows the use case diagram for this subsystem. The Model Designer

uses this subsystem to evolve the use case model by refactorings. These refactorings are divided into

three levels: the environment level , the structure level and the event level.

73

Model
Designer

Use Case Model Refactoring Tool

e ”‘""—-b’""“hu..\
- Envirgnment s

L Level Refactoring
x"x

p—

i e
A7 Structure Level T,

V'X\"‘e‘
“ 7 Event Level
! Refacroring

-

Figure 21: Use Case Diagram of the Refactoring Subsystem

4.3 Data Structure and Storage

The use case model is stored in the XML format. A separate file is used to store the use case layer,

episode layer and event layer respectively.

4.3.1 Environment Layer

At the environment layer, there are five entities: Model, Actor, Usecase, Relationship and Supple-

mentary entity. Figure 22 shows an example of XML representation of use case and actor. Figure 23

shows an example of XML representation of their relationships.

(1). A Model entity contains the model information and defines the possible sub-entity types in the

2).

3).

4).

An Actor entity contains the actor information: name, communicating use cases, parent actors,
etc. The id attribute of an Actor entity is its identity. Other attributes: x, y, width and height, are

used by the use case editor to store the position and size of the actor figure.

A Usecase entity stores the use case information. Each Usecase entity has an identification
attribute id. Other attributes are used by the use case editor, just like those in the Actor entity.

An EpisodelD attribute stores the information of the referenced episode.

A Relationship entity defines the relationship between two use cases, two actors or a use case

and an actor. There are seven relationships defined at this level: association, generalization,

74

- <Usecases>
- <Usecase id="1">
<Name>0pen Door</Name:>
<Coordinate x="216" y="99" />
<Size width="142" height="63" />
<Description />
<EpisodelD>1</EpisodelD>
</Usecase>
- «Usecase id="2">
<Name>Maintenance</Name>
<Coordinate x="216" y="191" />
<Size width="142" height="70" />
<Description />
<EpisodelD>2<«/EpisodelD>
<fUsecase>
</Usecases>
- <Actors>
- <Actor id="3">
<Name>Employee</Name>
<Coordinate x="92" y="145" />
<Size width="99" height="86" />
<Description />
<UseriD»3</UserlD>
</Actor>
- <Actor id="4">
<Name>Administrator</Name>
<Coordinate x="414" y="145" />
<Size width="99" height="86" />
«<Description />
<UserID>4</UserID>
</Actor>
</Actors>

Figure 22: Example: XML Representation of Use Case and Actor

75

- <Relationship>
- <Assgciation>

- <Actor-Usecase>
<ActorRef>10</ActarRef>
<UsecaseRef>12</UsecaseRef>

</Actor-Usecase»

- <Actor-Usecasex>
<actorRef>10</ActorRef>
<UsecaseRef>13</UsecaseRef>

</Actar-Usecase>

- <Actor-Usecase>»
<ActorRef>11</ActorRef>
<UsecaseRef>13</UsecaseRef>

</Actor-Usecase»
</Assaciation>
- «Generalization>

- <Actor-Actor>
<ActarRefl>10</ActarRefl>
<ActorRef2>14</ActorRef2>

</Actor-Actor>

- <Actor-Actor>
<ActarRefl>11</ActorRefl>
<ActorRef2>14</ActorRef2>

</Actor-Actor>

</Generalization>

</Relationship>

Figure 23: Example: XML Representation of Relationship at the Environment Layer

inclusion, extension, similarity, equivalence and precedence. The ActorRef and UsecaseRef

attributes refer to the id value of the corresponding actor and use case.

(5). The Supplementary entity is introduced from the UML semantics. It is divided into three cate-

gories: system bound, service bound and text label.

4.3.2 Structure Layer

At the structure level, episode, subepisodes and subepisode are defined. Figure 24 shows an example

of XML representation at the structure layer.

(1). Episode is related to the use case. A use case can contain multiple episodes. There are three
categories of episode: primitive, composite and pseudo-episode. The primitive episode can
be shared among use cases and is unique in the use case model. There are four categories of

composite episode: sequence, parallel, alternation and iteration.

(2). Subepisodes is used when composite episode is defined. It consists of subepisode.

76

- <«UseCase ID="1" PreCondition="" Context="" PostCondition=

IIII>

<Episode name="1" type="Sequence Episode">
- «SubEpisodes>
<SubEpisode>Grant Access</SubEpisode>
</SubEpisodes>
</Episode>
<Episode name="Grant Access" type="Atomic Episode" />

</UseCase>
- <UseCase ID="2" PreCondition="" Context="" PostCondition="">

<Episode name="2" type="Sequence Episode">
- <SubEpisodes>
<SubEpisode>Main Menu</SubEpisode>
</SubEpisodes>
</Episode>
<Episode name="Main Menu" type="Alternation Episode">
- <SubEpisodes>
<SubEpisode>Register</SubEpisode>
<SubEpisode>Produce Log</SubEpisode>
</SubEpisodes>
</Episode>
<Episode name="Register" type="Sequence Episode">
- <SubEpisodes>
<SubEpisode>Draw New Card and Register Card</SubEpisode>
<SubEpisode>Draw Card and Enter New Code</SubEpisode>
</SubEpisodes>
</Episode>
<Episode name="Produce Log" type="Alternation Episode">
<Episode name="Draw New Card and Register Card" type="Atomic Episode" />
<Episode name="Draw Card and Enter New Code" type="Atomic Episode" />
«<Episode name="User Log" type="Atomic Episode" />
<Episode name="System Log" type="Atomic Episode" />
<Episode name="Door Log" type="Atomic Episode" />

</UseCase>

Figure 24: Example: XML Representation at the Structure Layer

(3). Subepisode is included in the subepisodes, which can be primitive or composite episode.

4.3.3 Event Layer

At the event level, stimulus, action and response are defined as PrimitiveEvent. Figure 25 shows an
example of XML representation at the event layer.

4.4 System Framework Design

The whole system can be divided into four major components: use case tool, goal tool, episode tool

and event tool. This section describes each component in detail.

77

- <EventModel>
<PrimitiveEvent Name="Display Message" Type="Response" />
<PrimitiveEvent Name="Input Code" Type="Stimulus" />
<PrimitiveEvent Name="Validate Code" Type="Action" />
</EventModel>

Figure 25: Example: XML Representation at the Event Layer

4.4.1 Use Case Tool

Use Case Tool is designed for defining the use case model using use case, actor, user, goal and
service. Figure 26 shows the class diagram of this component. The frame package is inherited from
the Drawlets framework. The object package is used to define the entities and load/save data from/to
XML files. The refactoring package implements use case refactorings. It also contains the unit

testing program.

refactoring object
+T$ Refacraring AliTests definitions
+UsecaseRefactoringAction xmiparser
+UsecaseRefactoringUtility
+TC Refactoring UtilityTest

+TC Refactoring ActionTest

fame
extensions

operations

gtilities
+UsecaseMainFrameAction
+UsecaseMainFrame

Figure 26: Class Diagram of Use Case Tool [XU04]

There are four major modules within Use Case Tool, which are Drawlets Extension, Object Defi-

nition, Refactoring and XML Parser. These modules are described in detail as follows.

Drawlets Extension

In Drawlets Extension module, the Drawlets framework is extended in the following ways.

78

(1). The frame is extended to support the MDI interface. The tool is implemented as an MDI appli-

cation, which allows all the layers to appear in the same frame.

(2). The frame is extended to support loading and saving data. We also define our own toolbar and

palette.

(3). The definition of object is extended in order to add new objects: use case, actor, service, etc. We

also add some new modules for use case, episode, event, goal and task.

(4). Figure and DrawingCanvas are the most important interfaces in Drawlets. The figure interface
is implemented for all entities like actor, use case, etc. so that these entities can be added to the
figure container without any further operations. DrawingCanvas is implemented as the figure

container in order to keep all the entities at runtime.

Object Definition

Object Definition module provides capabilities to define the use case model at the environment level,
which includes use case, actor, relationship, service, etc. It also provides features to navigate from
the use case to its structure level and from the actor to the goal model.

Figure 27 shows the class diagram of the Object Definition module. There are two parts in each
object. One is the definition part, which records attributes of the object. The other is the operation
part, which provides ways to create object, draw object and change object attributes. There are two
types of objects: Entity where EntityBase and EntityBaseTool are the base classes, and Relation
where RelationBase and RelationBaseTool are the base classes. These base classes are introduced
further below.

RecranglteTool

AdornedlineTool EntityBaseTool

RelatinnBaseTool

S
2

‘mter’face o
GbiecrProperty Toof

Hecrangleshape ObjectProperties B
EntityBase 2 adornediine
= RelationBase

Figure 27: Class Diagram of Object Definition Module [XU04]

79

(a).

).

(c).

EntityBase

EntityBase is the base class for the following objects: Actor, ServiceBound, SystemBound and
UseCase. Figure 28 shows its class diagram. EntityBase is extended from RectangleShape in
Drawlets. It defines a collection of entity properties. We implement the way to draw an entity

and specify values for entity properties in its sub classes.

Regrangledhape
Entitylase

pEA T oo,
PFA R
{;’
(xl, ?)) .
7 % oy
/ \
;)
J(’ \:
7 i{» >
Actlor % Usetase
\

SesviceBound SysremBound

Figure 28: Class Diagram of EntityBase

EntityBaseTool

EntityBaseTool is the base class for ActorTool, ServiceBoundTool, SystemBoundTool and Use-
CaseTool. Figure 29 shows its class diagram. EntityBaseTool is extended from RectangleTool
in Drawlets. It defines how to access properties of an entity. In its sub classes, we define how to

create a new entity and how to respond to external events either from mouse or from keyboard.

RelationBase

RelationBase is the base class for relation objects: Generalization, Extension, Similarity, Equiv-
alence, Association, Precedence and Inclusion. Figure 30 shows its class diagram. RelationBase
is extended from AdornedLine in Drawlets. It defines relation properties and locations of a con-
nection line between two entities. In its sub classes, we define how to draw the connection line

with specified text.

80

liseCaseTool ActorTool
T
ServiceBound Toal |
i ; SystemBound Yool
R - E (.i,» —— -
Yo i ol
RecrangieT ool
EntityRaseTool

Figure 29: Class Diagram of EntityBaseTool

Adornedline
RelationBase

-
.
-
.
‘\‘\._'
Inclusion
\ \‘
kY N,
L .
\ Y
Y A
kY .,
Y Precedence
3
‘\\
Yy
’\‘;'

ObjectProperties]
//'
.f’ g
»”’ '
- - "‘(
ks
- <
Generalization ya
f})‘(
& N
. i
Extension ;
/
Simitarity

tquivalence Association

Figure 30: Class Diagram of RelationBase

81

(d). RelationBaseTool

RelationBaseTool is the base class for GeneralizationTool, ExtensionTool, SimilarityTool, Equiv-
alenceTool, AssociationTool, PrecedenceTool and InclusionTool. Figure 31 shows its class di-
agram. RelationBaseTool is extended from AdornedLineTool in Drawlets. It defines how to
access relation properties and how to check whether a relation can be created or not between
two entities. For example, only Association relation is allowed between an Acfor and a Use-

Case. Its sub classes specify how to create a relation between two selected entities.

TnclesionTool} [Similarity Tool} [PrecedénceTool

Generalizationtool} © /
: f EguivalenceTool

ExtensionTool] - i v \
. L / o AssociationTool

. . ~
S Y TT TN a e o
Y \,!{ (F P e

Aad orr}eéime‘fﬁai
RelationBaseTool

Figure 31: Class Diagram of RelationBaseTool

Refactoring

The Refactoring module implements a list of use case refactorings at the environment level. As
shown in Table 3, there are thirty-eight refactorings implemented in this module. These refactorings
are grouped into six categories: Create an Environmental Entity, Delete an Environmental Entity,
Change an Environmental Entity, Compose an Environmental Entity, Decompose an Environmental
Entity, Move an Environmental Entity.

The Refactoring module communicates with the structure level and event level to validate con-
ditions of each refactoring. If conditions are met, it updates the use case model according to the

refactoring specification in Appendix.

82

Table 3: Implemented Refactorings at the Environment Level

Category

Refactoring Name

Create an Environmental Entity

Create_Empty Usecase
Create Empty_Actor
Create_Empty User
Create_Empty_Service
Create_Empty_Goal
Create_Empty_Task

Delete an Environmental Entity

Delete_Unreferenced_Usecase
Delete_Unreferenced_Actor
Delete_Unreferenced_User
Delete_Unreferenced_Service
Delete Unreferenced_Goal
Delete_Unreferenced_Task

Change an Environmental Entity

Change _Usecase_Name
Change_Actor Name
Change User _Name
Change_Service_Name
Change_Goal Name
Change_Task_Name

Compose an Environmental Entity

Change Parent_Usecase
Change_Parent_Actor
Usecase_Generalization Merger
Usecase_Inclusion Merger
Usecase_Extension Merger
Usecase_Precedence Merger
Usecase_Equivalence_Generation
Reuse_ Usecase

Merge_Usecases

Generalize Usecases
Merge_Actors
Generalize_Actors

Decompose an Environmental Entity

Split_Usecase
Usecase_Generalization_Generation
Usecase_Inclusion_Generation
Usecase_Extension_Generation
Usecase_Precedence_Generation
Split_Actor
Actor_Generalization_Generation

Move an Environmental Entity

Move_Goal_To_Parent_Actor

83

Figure 32 shows the class diagram of the Refactoring module. Basically, use case refactorings
are implemented in two classes: UsecaseRefactoringAction and UsecaseRefactoringUtility. Use-
caseRefactoringAction defines conditions for use case refactorings at the environment level. Use-
caseRefactoringUtility is used to apply refactorings to the use case model. It also provides interfaces
to the structure level and event level so that the entity information at the environment level can be

accessed.

UsecaseRefactoring Utihity UsecaseRefactoring Action
; A %
sunit framework TestCase Junitframewark TestCase
TC Refacioring UtiityTest TC Refactoring ActionTest

et framework TesrCase
TS Refactoring AllTests

Figure 32: Class diagram of Refactoring Module [XU04]

Based on JUnit, JUnit TestCases is defined in the Refactoring module. It enables us to test
refactorings automatically within the JUnit framework application. This is especially useful when

the refactoring implementation needs to be changed frequently.

XML Parser

The XML Parser module is used to load/save information for the use case model from/to XML
files. Figure 33 shows its class diagram. XMLProcessor parses the XML file and translates the XML
structure into the use case model. It also calls related modules to create entities or relationships within
the model. The XML DTD is defined so that the XML file can be validated by XMLProcessor. The
XMLGenerator interface is implemented to save the DTD and the model information into the XML
file.

4.4.2 Goal Tool

This component includes the following modules: goal definition, data display and refactoring. Fig-
ure 34 shows its class diagram. In the goal model, goals can be defined and saved through the
graphical interface. Goals are related to actors. When refactorings are applied to actors, related goals

are checked to validate if conditions are satisfied.

84

interface
XXM Receiver

e

Xisecasemodel Recorvar

AP
’xlﬁlﬁrﬁcessof" e e

intgrrace
XXM Generator

'\Ef'

H

T

UsecaseModel DTD UsecaseModel Docstart

UseraseModsl Data

interace

xisecaseModelElement Container

xUsecaseModeitiement

xSaxPaiser xUsecasemModel

Figure 33: Class Diagram of XML Parser [XU04]

DetaultMurableTreeNode
Treeddodel i tener

GoalXMiWriter GoalXMiReader

UsecaseRefactaringFrame

Frame

UsecaseRefactaringApp

GoalNode =
4 é& o Goalitem
Goallist . } T
Jintgrnaibrame %
Goalinternalframe Thalog T
AddExistGoalDialag Goalﬁditg)xz?:s?

Figure 34: Class Diagram of Goal Module [XU04]

85

4.4.3 Episode Tool

This component includes the following modules: episode definition, context/precondition/ postcon-
dition definition, data displaying, data reading/writing and refactoring. Figure 35 shows its class
diagram. The episode model is defined in the object package. Episodes are displayed using tree and
table structures. The xml package is used to read/write XML files. Refactorings at the structure level
are defined in the refactoringRule package. The information for the episode model is shown in the
frame, which is defined in the frame package. There are also some supporting packages: dialog,

popupMenu and action.

fefacioring Rule rame action
+EpisodeRefactoringRule +Episodeinternalframe
+UseraselpisodeRefactoring
+ieneralizationRelaredAction

ahject gialog
+EpisodeForalitUsecase +imponipisodebialog
+FileMame +Eoisgdebdabialog
+EpisodeFuridsecase +EpisudebdntDigloglistensr
+EpisodeType +Episodelnternalframelistener
+HReferenceRecard +Contextfuaiog
EpisodeForaliiUsecasebackup

+EpisodeGicbalvarible
+PrimitiveEpisodeRecord

+Episode

+ontext

+XMLTreeltructure table tree
+Tablelarter +Treelnitialize
+TableMap EpisodeTresModelListener
+EpisodeTablieModel +EpisodeTreeNode

EpisudeTresCellRenderer
xmi

+EpisodeXMLEile

popupMenu
+FrameTablePopupMenulistener
+FrameTablePopupMenudction
+FrameTreePapupMensy
FrameFapu pAfeny
+FrameTreePopupMeniilistener
+FrameTsblePopupMenu

Figure 35: Class Diagram of Episode Tool [XU04]

This component is designed to define the structure of the use case in detail. In the episode model,
users can define context, precondition and postcondition of use case. They can add primitive and
composite episodes. Episodes can be shared among different episode models.

The feature is provided to navigate to other levels from the structure level within the use case
model. The only way to enter into the episode layer is to select a use case in the use case layer.
Similarly, the event layer can be accessed by selecting an episode in the episode layer. The episode
layer is synchronized with the use case layer and event layer.

86

The Refactoring module within this component implements twelve use case refactorings at the
structure level. As shown in Table 4, these refactorings are grouped into seven categories: Create
a Structural Entity, Delete a Structural Entity, Change a Structural Entity, Compose a Structural
Entity, Decompose a Structural Entity, Move a Structural Entity, and Convert a Structural Entity.

Table 4: Implemented Refactorings at the Structure Level

Category Refactoring Name

Create a Structural Entity Create_Empty_Episode
Delete a Structural Entity Delete_Unreferenced_Episode
Change a Structural Entity Change _Episode_Name
Episode_Sequence Merger
Episode_Alternation_Merger
Episode_Parallel Merger
Generalize_Episodes
Episode_Sequence_Generation
Decompose a Structural Entity | Episode_Alternation_Generation
Episode_Parallel_Generation

Move a Structural Entity Move_Episode_To_Parent _Usecase
Convert a Structural Entity | Convert_Episode_To_Usecase

Compose a Structural Entity

4.4.4 Event Tool

This component includes the following modules: event definition, data displaying, data reading/writing
and refactoring. Figure 36 shows its class diagram. Similar to the episode layer, the object package
is used to define the event model. It also uses tree and table structures to display events and the event
model. The xml package is used for reading/writing XML files. Refactorings at the event level are
defined in the refactoringRule package. Information for the event model is shown in the frame, which
is defined in the frame package. There are also some supporting packages: dialog, popupMenu and
action.

This component supports the synchronization between the event layer and other layers. Events
are shared by all the episodes in the use case model. This component provides the capability to
navigate from the event level to the structure level, and then to the environment level within the use
case model.

The Refactoring module within this component implements three use case refactorings at the
event level. As shown in Table 5, these refactorings are grouped into three categories: Create an

Event, Delete an Event, and Change an Event.

87

refactoring Rule

Object

+EventGlobalvariable
+EventForAllEpisode
+olobalvarible
+MyEvent

+FileMName
+EventForEpisode
+XMLT reeStructure
+ReferenceRecord
+MyEvemiType

xmi

+EventiMLFie

frame action
+EventinternalFrame
tree tabile

EventTreeCellRenderer
+Treelnitialize
+EventTreeMode

EventTreeModellistener

+TableSorer
+MyTableModel
+TahleMap

dialog

+MyEditDialog
+MyEditDialoglistener

+Episodeinternalframelistener

popupMenu

+FrameTreePopupMenulistener

+FrameTablePopupMenyu
FramePaopwphleny

+FrameTablePopupMenulistener

+FrameTreePopupMenu

Figure 36: Class Diagram of Event Module [XU04]

Table 5: Implemented Refactorings at the Event Level

Category

Refactoring Name

Create an Event

Create_Unreferenced_Event

Delete an Event

Delete_Unreferenced_Event

Change an Event

Change_Event_Name

88

4.5 Summary

The use case modeling and refactoring tool is implemented based on the use case metamodel. As a

modeling tool, it brings many benefits to the use case model.

e Understandability: The use case model can be specified with much more details than the one in
UML. It helps users to understand the system requirement better. While the environment level
gives an overview of the requirement, the structure level illustrates the structure of each use
case. The event level provides more detailed information. Therefore, a use case model can be
built with the tool to specify system requirements in detail. These requirements are organized

in an easily understandable way.

e Reusability: Once the episode and event are defined, they can be reused within the use case
model. This prevents redundant definition for the same episode or event. It helps reuse existing

work.

e Changeability: The tool facilitates modifications to the use case model by providing supporting

features.

e Traceability: The tool provides a mechanism to trace related information across different levels
in the use case model conveniently. For example, for a given episode, we can get all of its

events, and related use cases that it is involved.

As a use case refactoring tool, it implements fifty-three use case refactorings. These refactorings
are at different levels and are divided into different categories. With these refactorings, we can
restructure the use case model to further improve its understandability, reusability, changeability and
traceability. The tool ensures that conditions for the refactoring are met before changing the model.
With the tool support, use case models can be refactored efficiently and automatically. The tool
avoids errors inherent in the manual process of restructuring the use case model. After applying use

case refactorings, the tool ensures that models at different levels are synchronized.

89

Chapter S

Case Studies

After the refactoring tool is built, we carry out some case studies to evaluate the tool, validate use case
refactorings and understand the whole refactoring process. These case studies are initially conducted
with two master students: Jian Xu mainly works on the Automatic Teller Machine (ATM) [XU04]
while Wei Yu focuses on the Video Store System (VSS)[YUO4]. However, I carry out these case
studies again with revised steps. This chapter introduces these case studies with some new perspec-
tives. To put these case studies in the context, the thesis introduces some background information. It
explains how these case studies are designed and what are the experimental results. In Section 5.1, it
describes how the structure of a relatively more complex use case model is improved by refactoring
step by step. In Section 5.2, it introduces how the use case model is created incrementally with use
case refactorings starting from a simple model. The thesis presents evaluation results of these case
studies in Section 5.3. For the sake of conciseness, some episode models are omitted in the ATM

case study within Section 5.2.

5.1 Video Store System (VSS)

In this case study, we build a relatively complex use case model based on requirements of the Video
Store System. Then we improve the structure of this model using refactorings. This section illustrates

the whole process.

5.1.1 System Description

The Video Store System (VSS) is a computer-based business management system. The purpose of
the VSS is to facilitate the staff to manage renting movies, video games and related equipments for a
small chain of stores scattered throughout the city. The system manages the inventory of rental items,

keeps track of all transactions, rental history and status of each customer member.

90

Basic Requirements

The system provides the following features:

¢ Inventory Management: The inventory is updated upon purchasing and receiving videotapes,
games or equipments. The inventory is maintained by the store manager or someone autho-
rized. Each store maintains its own inventory. The inventory can be searched, but cannot be

updated by other stores.

¢ Customer Maintenance: The detailed information on customers is maintained by the store
manager or someone authorized. The customer is assigned a membership card and a password
for web access once the prerequisite is met. The VSS system also issues the dependent mem-
bership for the child. Dependent members must be associated with a primary member. All
stores share a common list of customer members so that the customer membership is valid in

all stores once established.

e Rental Service: Customers may rent videotapes, video games, and equipments through a store
staff. The system verifies the customer membership, checks conditions, and records transaction
details. Various rental conditions are applied to a child dependent member on what and how

long the child can rent.

e Reservation Service: The VSS provides the reservation service. Customers may reserve
videotapes, video games, and equipments for a specific date. Staff receives an reminder of

such reservation on the screen when the item becomes available.

o Inquiry Service: The staff is able to search for movie titles on behalf of customers. If the item

is not found in the store, it is possible to search other stores.

e Web Service: The VSS system provides the web access service. Customers can login at the
website of the video store using their own membership card and password. Then they can

search and reserve items including videotapes, games and equipments.

Actor Characteristics

The primary actor of the VSS is the video store staff. Customers of the video store access the VSS

web service module through the internet. There are four actors in the system as follows:

o Manager Staff: manager or owner of the video store. Manager staff can use all features pro-
vided by the VSS, including the inventory management, customer maintenance, video rentals,

video reservation, video return, video inquiries and promotion service.

91

e Staff: a regular employee, who is the primary actor of the system. Staff members use the
majority of the functionality provided by the VSS, including video rentals, video reservation,

video return and video inquiries.

e Customer: anyone who is registered as a primary member of the VSS. Customers interact with
the system directly only when they perform web-reservation or web-search. The Staff member

or Manager Staff performs all the other services of the VSS on behalf of customers.

s Dependent Customer: any child under 18 years old who is registered as a dependent mem-
ber of a primary member. Dependent customers interact with the system directly only when
they perform the web-reservation or web-search. The dependent customer depends on the
corresponding primary customer. They use the same account for payment. Rental items are
accumulated within the primary member and his/her dependent member. The Staff member
or Manager Staff actor performs all the other services of the VSS on behalf of dependent cus-

tomers.

5.1.2 VSS Initial Use Case Model

Based on requirements described above, we define actors, use cases, and use case relationships.
Figure 37 shows the use case model at the environment level. Tt defines four actors as described in
Section 5.1.1: Staff, Manager Staff, Customer and Dependent Customer. There are twelve use cases
within this use case model.

Figure 37 only gives an overview of the use case model. The detailed system behavior is not
illustrated. To show the internal structure of each use case, a list of episode models are presented as

follows using episode trees.

Episode model for the use case “Video Rental”

(sequence)

1 Input the membership information

2 Input the video item information

3 (alternation) Check if the video item is available
3.1 Yes: register the new video loan
3.2 No: show the unavailable message

Episode model for the use case “Video Return”

(sequence)

1 Input the membership information

2 Input the video item information

3 Remove the corresponding loan on this video item

4 Calculate the rental fee

5 (alternation) Check if there is a reservation on this item
5.1 Yes: send the reminder message to the customer reserving this item
5.2 No: print out the receipt for the rental fee

92

AT video Rental

P Add Customsr
e /*??
- \ /

-~ -) . /’
e e et £ w %, :
e e Video Retum ~ ., S
e S 7 Detete Customer
P \\\ 7
oy i o \\\ e
\E_/ E:':___Mw —— \”‘"“‘*mm‘\““\\\\ (:) ;/// W‘”M‘“,ww:,’
- e W e N L
7 &4\ T ideo Res P Update Customer
st T TN T
Htat e < i
Manager Staﬁ\\\
NN
Video Inguiry \\ . Add Video
AN M
£ \\ Y
e . N
/,‘ o, _—) - \\
b - -7 \Qgﬁa*e Video
N T ONED VIR Uity st
waiﬁlzxer P \
fd e o
i
,
f/ RS
Diependent Web Video Resene Delete Wideo
Custamer

Figure 37: VSS Initial Use Case Model [YUO4]

Episode model for the use case ““Video Reserve”
(sequence)
1 Input the membership information
2 Identify the video item information
3 (alternation) Check if the reservation condition on this item is satisfied

3.1 Yes: place a new reservation on this item
3.2 No: show the unavailable message

Episode model for the use case ‘“Video Inquiry”

(sequence)

1 (user) Input the search criteria
2 Search the video item
3 Return the search result

Episode model for the use case “Add Customer”
(sequence)

1 Input the registration information for the customer
2 Search for the customer
3 (alternation) Check if the customer already exists in the database
3.1 Yes: return the existing message
3.2 No: (sequence) issue the card for the customer
3.2.1 Add the customer with corresponding information to the system
3.2.2 Generate the membership card to the customer

93

3.2.3 Return the successful message

Episode model for the use case “Update Customer”

(sequence)
1 Input the membership information
2 Search for the customer
3 (alternation) Check if the customer already exists in the database
3.1 Yes: (sequence) update customer’s information
3.1.1 Input the necessary information for the customer
3.1.2 Update the database
3.1.3 Return the successful message
3.2 No: return the error message

Episode model for the use case “Delete Customer”

(sequence)
1 Input the membership information
2 Search for the customer
3 (alternation) Check if the customer already exists in the database
3.1 Yes: (sequence) delete the customer
3.1.1 Delete the customer from the database
3.1.2 Return the successful message
3.2 No: return the error message

Episode model for the use case “Add Video”

(sequence)
1 Input the video item information
2 Search the video item
3 (alternation) Check if the video item already exists
3.1 Yes: return the message that the video item already exists
3.2 No: (sequence) add the video item

3.2.1 Add video item to the database
3.2.2 Return the successful message

Episode model for the use case ‘“Update Video”

(sequence)

1 Input the video item information
2 Search the video item
3 (alternation) Check if the video item already exists
3.1 Yes: (sequence) update the related information on this video item
3.1.1 Input the information for the video item
3.1.2 Update the database
3.1.3 Return the successful message
3.2 No: return the unavailable message

Episode model for the use case “Delete Video”
(sequence)

1 Input the video item information
2 Search the video item

94

3 (alternation) Check if the video item already exists
3.1 Yes: (sequence) delete the video item

3.1.1 Delete the item from the database
3.1.2 Return the successful message
3.2 No: return the unavailable message

Episode model for the use case “Web Video Inquiry”’

(sequence)
1 (user) Login to the website
2 (user) Input the search criteria
3 Search the video item
4 Return the search result

Episode model for the use case “Web Video Reserve”

(sequence)

1 (user) Login to the website

2 Input the video title

3 (alternation) Check if the reservation condition on this item is satisfied
3.1 Yes: place a new reservation on this item
3.2 No: show the unavailable message

5.1.3 Refactoring the VSS Use Case Model

Based on the internal structure of each use case defined in Section 5.1.2, it is apparent that it is neces-
sary to restructure the use case model to improve its understandability, reusability and maintainabil-
ity. This section illustrates detailed refactoring steps to achieve these improvements and motivations

behind of each step.

Step 1: Use the Change_Parent Actor refactoring to establish generalization relationships be-
tween actor “Staff”’ and “Manager Staff”’, “Customer” and “Dependent Customer”.

From the use case model shown in Figure 37, we can see that the actor “Manager Staff” participates in
all use cases that the actor “Staff” participates in. There is an inherent generalization relationship be-
tween these two actor. Therefore, the Change_Parent_Actor refactoring is used to set the actor “Staff”
as the parent of the actor “Manager Staff”. Similarly, the actor “Dependent Customer” participates
in the same set of use cases that the actor “Customer” participates in. From actor characteristics
defined in Section 5.1.1, it will be more nature to set the actor “Customer” as the parent of the actor
“Dependent Customer”. This is also achieved by applying the Change_Parent_Actor refactoring.
Figure 38 shows the VSS use case model after these refactorings. The actor “Manager Staff”
inherits association relationships to use cases “Video Rental”, “Video Return”, “Video Inquiry” and

“Video Reserve” from its parent actor “Staff”. Similarly, the actor “Dependent Customer™ inherits

95

association relationships to use cases “Web Video Inquiry” and “Web Video Reserve” from its parent

actor “Customer”.

N \ i

Video Rental T N Add Customer

/J
e ’
7
Video Inquity’
sy f
LA N
e \\\;\\ o Manager b{aﬁ\ . ’
Customer S e Vides Resens NN
N T N Add Video
£ N . s, e
T ™, N : ‘\: s
<Yeb video Ingury \«\
» S “Update Video
E Y . . \‘«2
/ \\ o .. ”:\
Dependent
Customer Web Video Resene

Delete Video

Figure 38: VSS Case Study: After Step 1 [YUO4]

Step 2: Use the Usecase_Inclusion_Generation refactoring to break up the use case “Web Video
Inquiry” into the new use case “Web Video Inquiry” and the new use case “Video Search”.
The new use case “Web Video Inquiry”’ includes the use case “Video Search”. Then the Use-
case_Equivalence_Generation refactoring is applied to make the use case “Video Search” equiv-

alent to the use case “Video Inquiry”.

In Section 5.1.2, we present episode models for use cases “Web Video Inquiry” and “Video Inquiry”.

For the purpose of convenience, they are listed here again.

Episode model for the use case “Web Video Inquiry”

(sequence)
1 (user) Login to the website
2 (user) Input the search criteria
3 Search the video item
4 Return the search result

96

Episode model for the use case “Video Inquiry”

(sequence)
1 (user) Input the search criteria

2 Search the video item
3 Return the search result

As shown above, the episode tree of the use case “Video Inquiry” is a subtree of the episode
tree of the use case “Web Video Inquiry”. We can use refactorings to reduce such redundancy and
improve the reusability.

Firstly, We use the Usecase_Inclusion_Generation refactoring to break up the use case “Web

Video Inquiry” into two use cases as shown in Figure 39.

<<include>>

Web Video inquiry Video Search

Figure 39: VSS Case Study: Step 2 - Usecase_Inclusion_Generation Refactoring [YU04]

After applying the Usecase_Inclusion_Generation refactoring, a new use case “Video Search”
is created. Its episode tree is the same as the one for the use case “Video Inquiry”. The new use
case “Web Video Inquiry” includes the use case “Video Search”. The inclusion point *“video search”
is added into the use case “Web Video Inquiry”. The new use case “Web Video Inquiry” includes
the use case “Video Search” at this point. Since it includes the episode tree of the use case “Video
Search”, the corresponding episode subtree is removed from the new use case “Web Video Inquiry”
to avoid the redundancy. The episode model for the use case “Web Video Inquiry” after the Use-

case_Inclusion_Generation refactoring is shown as follows.

Revised Episode Model for the Use Case “Web Video Inquiry”

(sequence)

1 (user) Login to the website
2 Video search (inclusion)

Secondly, We apply the Usecase _Equivalence_Generation refactoring to use cases “Video Search”
and *“Video Inquiry” because they have the equivalent episode model. Figure 40 shows their relation-
ship after applying the Usecase_Equivalence_Generation refactoring.

Step 3: Use the Reuse_Usecase refactoring to remove the use case “Video Search”.

As shown in Step 2, use cases “Video Inquiry” and “Video Search” are equivalent. To reduce the

redundancy further, we can remove one of them from the use case model without changing the

97

- <<equivalence>> _
Video Search Video inquiry

Figure 40: VSS Case Study: After Step 2

behavior of the use case model. However, we cannot simply remove one of these two use cases
directly because the use case “Video Inquiry” is used by the actor “Staff” while the use case “Video
Search” is included by the use case “Web Video Inquiry”. We have to restructure the use case model
first before removing one of them safely. This can be achieved by applying the Reuse_Usecase
refactoring. After this refactoring, the use case “Web Video Inquiry” includes the use case “Video
Inquiry” instead of “Video Search”. The representation of the episode model in the use case “Web
Video Inquiry” is changed. The inclusion point for this inclusion relationship refers to the use case

“Video Inquiry”. Its episode model after the refactoring is as follows:

Episode Model for the Use Case “Web Video Inquiry” after the Reuse_Usecase Refactoring

(sequence)
1 (user) Login to the website

2 Video inquiry (inclusion)
After applying the “Reuse_Usecase” refactoring, the use case “Video Search” is deleted from the

use case model.

Step 4: Use the Generalize_Usecases refactoring to create the use case “Video Maintenance”.

Use cases “Add Video”, “Delete Video” and “Update Video” are related to the video maintenance.
From episode models presented in Section 5.1.2, we can see that they share some common episodes.
Their episode tree structures are similar. It is preferable to restructure these use cases to remove
redundant episodes and illustrate the nature that they belong to the same family. We can apply
the Generalize_Usecases refactoring to achieve this improvement. Figure 41 shows the result after
refactoring these use cases.

The Generalize_Usecases refactoring creates a new use case “Video Maintenance”. Common
episodes within use cases “Add Video”, “Delete Video” and “Update Video” are moved to this use

case. Its episode model is as follows:

Episode model for use case “Video Maintenance”

(sequence)
1 Input the video item information

98

T
s

Manager Staff

Yideo Maintenace

£ 3

o

Add Video

Delate Video Undate Video

Figure 41: VSS Case Study: After Step 4 [YUO04]

2 Search the video item
3 Check if the video item already exists

After applying the Generalize_Usecases refactoring, the use case “Video Maintenance” takes
over the relationship to the actor “Manager Staff” from its child use cases. Use cases “Add Video”,
“Delete Video” and “Update Video” inherit the relationship with this actor and episodes in use case

“Video Maintenance”. New episode models for these use cases are as follows:

Episode model for the use case “Add Video”

(sequence)
1 Input the video item information (inherited)
2 Search the video item (inherited)
3 (alternation) Check if the video item already exists (inherited)
3.1 Yes: return the message that the video item already exists
3.2 No: (sequence) add the video item
3.2.1 Add video item to the database
3.2.2 Return the successful message

Episode model for the use case “Update Video™

(sequence)
1 Input the video item information (inherited)
2 Search the video item (inherited)
3 (alternation) Check if the video item already exists (inherited)
3.1 Yes: (sequence) update the related information on this video item

3.1.1 Input the information for the video item
3.1.2 Update the database
3.1.3 Return the successful message

3.2 No: return the unavailable message

Episode model for the use case “Delete Video”

99

(sequence)

1 Input the video item information (inherited)

2 Search the video item (inherited)

3 (alternation) Check if the video item already exists (inherited)
3.1 Yes: (sequence) delete the video item

3.1.1 Delete the item from the database
3.1.2 Return the successful message
3.2 No: return the unavailable message

Step 5: Use the Generalize _Usecases refactoring to create the use case “Customer Mainte-

nance”.

Similar to the Step 4, use cases “Add Customer”, “Delete Customer” and “Update Customer” are
related to the customer maintenance. They share some common episodes and their episode tree
structures are similar. We can apply the Generalize_Usecases refactoring to group them into one

family. Figure 42 shows the result after refactoring these use cases.

Y
L~
¥ .
i
//\

. Custonyer Mamntenance
Manager Stat Customsr Maintenang

Update Customer Delste Customer Add Customer

Figure 42: VSS Case Study: After Step 5 [YUO4]

After applying the Generalize_Usecases refactoring, a new use case “Customer Maintenance” is
created. Common episodes within use cases “Add Customer”, “Delete Customer” and “Update Cus-
tomer” are moved to this use case. The use case “Customer Maintenance” takes over the relationship
to the actor “Manager Staff” from its child use cases. Use cases “Add Video”, “Delete Video” and
“Update Video” inherit the relationship with this actor and episodes in the use case “Customer Main-

tenance”. Episode models for these use cases are as follows:

Episode model for the use case “Customer Maintenance”

(sequence)

1 Search for the customer
2 Check if the customer already exists in the database

100

Episode model for the use case “Add Customer”

(sequence)

1 Input the registration information for the customer

2 Search for the customer (inherited)

3 (alternation) Check if the customer already exists in the database (inherited)
3.1 Yes: return the existing message
3.2 No: (sequence) issue the card for the customer

3.2.1 Add the customer with corresponding information to the system
3.2.2 Generate the membership card to the customer
3.2.3 Return the successful message

Episode model for the use case “Update Customer”

(sequence)

1 Input the membership information

2 Search for the customer (inherited)

3 (alternation) Check if the customer already exists in the database (inherited)
3.1 Yes: (sequence) update customer’s information

3.1.1 Input the necessary information for the customer
3.1.2 Update the database
3.1.3 Return the successful message

3.2 No: return the error message

Episode model for the use case “Delete Customer”

(sequence)

1 Input the membership information

2 Search for the customer (inherited)

3 (alternation) Check if the customer already exists in the database (inherited)
3.1 Yes: (sequence) delete the customer

3.1.1 Delete the customer from the database
3.1.2 Return the successful message
3.2 No: return the error message

After all these refactorings, we achieve a new use case model as shown in Figure 43. This
model is evolved from the initial model as shown in Figure 37. Compared with the initial model,
the final model reduces the redundancy by making the use case “Web Video Inquiry” to include
“Video Inquiry”, and creating parent use cases “Video Maintenance” and “Customer Maintenance”.
It illustrates requirements better by grouping use cases “Add Video”, “Delete Video”, “Update Video”
into the video maintenance category and grouping use cases “Add Customer”, “Delete Customer”,

“Update Customer” into the customer maintenance category.

101

=
R oy e igoe Rental

N
&

Yol Viden Resunm Video Rusere /\ ——

.

...... Vigdeo Retum

L <=Hiutey s
j’“\ o R o

aptiustomer Balnienancs

Customer Yiah Viden iy VRl MY e i

& i »

% i o

o n

| &

_,} /\ .

+ e

g Add Cusiomer Delete Custon Upaa stomes
s Mavages St dd Cusiomer Delete Customed Upcate Qustome

Depandent Cuslomer .

~.
L
i

Video Mantenance

Add v iden Uimiese Video Update Vides

Figure 43: VSS Final Use Case model [YU04]

5.2 Automatic Teller Machine (ATM)

This section illustrates how we build the use case model incrementally with use case refactorings and
extensions. We start from a simple model. Based on additional requirements, we improve the internal
structure of the use case model with use case refactorings, then we extend the model to include these

additional requirements.

5.2.1 Requirements of the ATM System

The Automatic Teller Machine (ATM) system is a classic example that is widely used in lots of
systems for testing and validating functionalities. It is investigated thoroughly and referenced very
often. The following description of the requirements for the ATM system is based on Professor

Russell C. Bjorks ATM Simulation example used in his course [BJO].

The ATM system provides the ability for banking customers to deposit, withdraw, and transfer
funds. It also allows them to inquire about account balances. The ATM system supports a network in-
cluding both hurnan cashiers and Automatic Teller Machines (ATMs) to be shared by a consortium of
banks. Each bank provides its own computers to maintain its own accounts and process transactions

against them. Cashier stations are owned by individual banks and communicate directly with their

102

own bank’s computers. Human cashiers enter the account and transaction data. Automatic teller ma-
chines communicate with a central computer which clears transactions with appropriate banks. An
automatic teller machine accepts a cash card, interacts with the user, communicates with the central
system to carry out the transaction, dispenses cash, and prints receipts. The system requires record
keeping and security provisions, the system must handle concurrent accesses. The banks will provide
their own software for their own computers.

The ATM is used by customers of a bank. Each customer has two accounts: a checking account
and a savings account. Each customer has a customer number and a Personal Identification Number
(PIN). Both must be typed to gain access to the accounts. Once they have gained access, the customer
can select an account (checking or savings). The balance of the selected account is displayed (initially
zero). Then the customer can deposit and withdraw money. The application terminates when the user
selects exit rather than an account.

The ATM serves one customer at a time. A customer will be required to insert an ATM card and
enter a Personal Identification Number (PIN) — both of which will be sent to the bank for validation
as part of each transaction. The customer will then be able to perform one or more transactions.
The card will be retained in the machine until the customer indicates that he/she desires no further
transactions, at which point it will be returned — except as noted below.

The ATM must be able to provide the following services to the customer:

1. A customer must be able to make a cash withdrawal from any suitable account linked to the
card, in multiples of $20.00. The approval must be obtained from the bank before cash is
dispensed.

2. A customer must be able to make a deposit to any account linked to the card, consisting of
cash and/or checks in an envelope. The customer will enter the amount of the deposit into the
ATM, subject to the manual verification when the envelope is removed from the machine by an

operator. Approval must be obtained from the bank before physically accepting the envelope.

3. A customer must be able to make a transfer of money between any two accounts linked to the

card.
4. A customer must be able to make a balance inquiry of any account linked to the card.

5. A customer must be able to abort a transaction in progress by pressing the Cancel key instead

of responding to a request from the machine.

The ATM communicates each transaction to the bank and obtains verification that it is allowed by
the bank. Ordinarily, a transaction will be considered complete by the bank once it has been approved.
In the case of a deposit, a second message will be sent to the bank indicating that the customer has

deposited the envelope. (If the customer fails to deposit the envelope within the timeout period, or

103

presses cancel instead, no second message will be sent to the bank and the deposit will not be credited
to the customer.)

If the bank determines that the customer’s PIN is invalid, the customer will be required to re-enter
the PIN before a transaction can proceed. If the customer is unable to successfully enter the PIN after
three attempts, the card will be permanently retained by the machine, and the customer will have to
contact the bank to get it back.

If a transaction fails for any reason other than an invalid PIN, the ATM will display an explanation
of the problem, and will then ask the customer whether he/she wants to do another transaction.

The ATM provides the customer with a printed receipt for each successful transaction, showing
the date, time, machine location, type of transaction, account(s), amount, and ending and available
balance(s) of the affected account (“to” account for transfers).

The ATM has a key-operated switch that allows an operator to start and stop the service to cus-
tomers. After turning the switch to the “on” position, the operator is required to verify and enter the
total cash on hand. The machine can only be turned off when it is not serving a customer. When the
switch is moved to the “off” position, the machine will be shut down so that the operator may remove
deposit envelopes and reload the machine with cash, blank receipts, etc.

The ATM also maintains an internal log of transactions to facilitate resolving ambiguities arising
from a hardware failure in the middle of a transaction. Entries will be made in the log when the ATM
is started up and shut down for each message sent to the Bank (along with the response back if one is
expected), for the dispensing of cash, and for the receiving of an envelope. Log entries may contain

card numbers and dollar amounts. But for the security reason it will never contain a PIN.

5.2.2 Creating an Initial Use Case Model

According to the requirements described above, we use the tool to define an initial use case model of

the ATM system in the following steps.

1. Create a new use case model. Add three use cases: “Withdraw”, “Deposit” and “Inquire” and one
actor “Customer”. The actor “Customer” uses these three use cases. Figure 44 shows the initial

model at the environment level.

2. Define goals for the actor “Customer”. There are three goals: “Withdraw cash”, “Deposit cash
or checks” and “Inquire the account balance”. Define the context for use cases “Withdraw”,

“Deposit” and “Inquire” with text description.

For example, the context of the use case “Deposit” is described as follows: a deposit transaction
requires the customer to choose the type of account (e.g. checking account) to deposit to from
the menu of possible accounts, and to type in an amount on the keyboard. The transaction is

initially sent to the bank to verify whether the ATM can accept a deposit from this customer to

104

Syslem ATM Gystem

e,

(/“% \
{ Withdraw)
- ‘V\wﬁ.

e

Lo

, -
A @D
SN -
Customer \

\%\

R p ff.w————ﬂ\@
(Inguire /}
'”K’»-____,__,.-e""/

Figure 44: ATM Initial Use Case Model

this account or not. If the transaction is approved, the machine accepts an envelope from the
customer containing cash and/or checks before it issues a receipt. Once the envelope is received,
a second message is sent to the bank to confirm that the bank can credit the customer’s account

— contingent on the manual verification of the deposit envelope contents by an operator later.

. Define episodes for use cases “Withdraw”, “Deposit” and “Inquire” respectively. Their episode

models are illustrated using episode trees as follows:

Episode model for the use case “Withdraw”

(sequence)
1 Insert and validate the bank card
2 Enter and validate PIN
3 Select the bank account
4 Enter the amount
5 (alternation) ATM processes the withdrawal request
5.1 (sequence) bank permits the operation
5.1.1 Customer gets cash
5.1.2 ATM updates the account balance
5.2 Bank denies the operation
6 ATM ejects the bank card

Episode model for the use case “Deposit”

(sequence)
1 Insert and validate the bank card
2 Enter and validate PIN
3 Select the bank account
4 Enter the amount

105

5 (alternation) ATM processes the deposit request
5.1 (sequence) bank permits the operation
5.1.1 Customer inserts the envelope
5.1.2 ATM updates the account balance
5.1.3 ATM prints the account information on the receipt
5.2 Bank denies the operation
6 ATM ejects the bank card

Episode model for the use case “Inquire”

(sequence)

1 Insert and validate the bank card

2 Enter and validate PIN

3 Select the bank account

4 (alternation) ATM processes the inquiry request
4.1 (sequence) bank permits the operation

4.1.1 ATM shows the account information on the screen
4.1.2 ATM prints the account information on the receipt
4.2 Bank denies the operation
6 ATM ejects the bank card

4. Define events for episodes above. Figure 45 shows a list of primitive events in episode “Enter and
Validate PIN”. As we can see, there are four events: “Display Message”, “Input Code”, “Time-

out”, “Validate Code”. These events have different types: “Response”, “Stimuli” and “Action”.

Since use case refactorings in the thesis are mainly at the environment level and structure level, in

this case study we skip details at the event level.

Primitive Events:

Name Type
Display Message Response
Input Code Stimuli
Timeowm Response
Validate Code Action

Figure 45: Primitive Events in the Episode “Enter and Validate PIN”

5.2.3 Evolving the Initial Model with Refactorings and Extensions

This section illustrates how the above simple initial model is evolved based on additional require-
ments. The evolution process involves use case refactorings which improve the structure of the use

case model, and extensions which introduce new requirements. We describe the process in several

106

major steps. We also introduce the motivation for each major step and related changes to the use case

model.

Step 1.

Step 2.

Add the “Do Transaction” use case and move shared episodes.

Motivation:

Use cases “Withdraw”, “Deposit” and “Inquire” are bank transactions. They share some
common episodes. It is preferable to create a parent use case “Do Transaction” to represent

this nature. We also create the “Operation” service to package these use cases.

Detailed steps:

(1) Use the Create _Empty_Service refactoring to create the service “Operation”.
(2) Move use cases “Withdraw”, “Deposit” and “Inquire” into the service “Operation”.

(3) Use the Generalize_Usecases refactoring to create a new use case “Do Transaction” in
the service “Operation”, set “Do Transaction” as the parent of use cases “Withdraw”,
“Deposit” and “Inquire”, and move common episodes in use cases “Withdraw”, “De-
posit” and “Inquire” to use case “Do Transaction”. These common episodes are: “Insert

and validate the bank card”, “Enter and validate PIN”, and “Select the bank account”.

Figure 46 shows the new use case model after adding the service “Operation” and the use

case “Do Transaction”.

Add the approval process.

Motivation:

The following requirement is added to the use case model: due to security reasons, it needs a
separate session for the customer’s operations. The customer has to input his PIN to validate
his identity within his session. The ATM system checks the PIN code to accomplish the
approval process. If the PIN code is not correct, the exception will be handled within a

transaction.

Detailed steps:

(1) Use the Create_Empty_Usecase refactoring to create use cases “Open Session”, “Do Ap-

proval Process” and “Process Invalid PIN”.
(2) Create the association between the actor “Customer” and the use case “Open Session”.

(3) Use the Create_Empty_Actor refactoring to create the actor “Bank”.

107

Step 3.

Step 4.

System AT Syslem

Service Dperalon

,MM\
{/Wiu'sdraw ‘;

o,

S o

g &
S Lad P .«\.,_\
s - . .
{f Depost gy Do Transachion "‘*‘g‘“’,
&NMW“”'“’“‘J } ;;_-\ “““““ »WM\M “ 4 K
o Customer

e
mm———

& T N
K e f’

e, g
o

Figure 46: ATM Case Study: After Step 1

(4) Create the association between the actor “Bank” and the use case “Do Transaction”.

(5) Remove the association between the actor “Customer” and the use case “Do Transac-
tion”.

(6) Remove associations between the actor “Customer” and use cases “Withdraw”, “De-

posit” and “Inquire”.

Most of these steps are extensions that introduce new requirements. Figure 47 shows the new

use case model after adding the approval process.

Define the structure level.

Motivation:

Define the structure information including episodes, preconditions, context and postcondi-

tions of new use cases “Open Session”, “Do Approval Process” and “Process Invalid PIN”.

Increase the reusability and remove the redundancy by making the use case “Open Session”
to include use cases “Do Approval Process” and “Do Transaction”, and making the use case

“Process Invalid PIN” to extend the use case “Do Transaction”.

Motivation:

108

Systern. ATM System
Semnce Oparabon
- MW"""“*“‘““"‘-NWV“
¢ P Approval Fiogess
R ™
et e A TP
e W
¢ Provess sl 9;&\}
i [———
v e i,
AN { OpereGession y
£ k. o
S—
Cusiorner
.j;{s
e .
e S
{ Do Transah —%"*f 5
- N
P
o ‘;«5 e, Bank
-~ !
- . T
¢ wathdraw O Soinguie Y
® 4 * ,)
5 ’ RS — S

Figure 47: ATM Case Study: After Step 2

After the above structure level is defined, it is apparent that there are some relationships
among use cases within the use case model. It is preferable for the use case model to reflect
these relationships because it increases the understandability and reusability of the use case

model.

Detailed steps:

(1) After examining episode models of use cases “Open Session” and “Do Transaction”, it
turns out that the episode tree of the use case “Do Transaction” is an episode subtree of
the use case “Open Session”. Therefore, an inclusion relationship is generated by making
the use case “Open Session” to include the use case “Do Transaction” using two refac-
torings. A temporary use case is created by applying the Usecase_Inclusion_Generation
refactoring to the use case “Open Session” so that this temporary use case is equivalent to
the use case “Do Transaction”. Then the Reuse_Usecase refactoring is applied to delete

this temporary use case.

(2) Similar to the above step, after examining episode models of use cases “Open Ses-

sion” and “Do Approval process”, it turns out that the episode tree of the use case “Do

109

Approval process” is an episode subtree of the use case “Open Session”. Therefore,
an inclusion relationship is generated by making the use case “Open Session” to in-
clude the use case “Do Approval process” using the Usecase_Inclusion_ Generation and

Reuse_Usecase refactorings.

(3) After examining episode models of use cases “Do Transaction” and “Process Invalid
PIN”, it turns out that the episode tree of the use case “Process Invalid PIN” is an episode
subtree of the use case “Do Transaction”. This episode subtree is an exceptional course.
Therefore, an extension relationship is generated by making the use case “Process Invalid
PIN” to extend the use case “Do Transaction” using two refactorings. A temporary use
case is created by applying the Usecase_Extension_Generation refactoring to the use case
“Do Transaction” so that this temporary use case is equivalent to the use case “Process
Invalid PIN”. Then the Reuse_Usecase refactoring is applied to delete this temporary use

case.

These steps are all completed by refactorings. Figure 48 shows the new use case model after

the above refactoring steps.

Syslarm ATH Systern

Seevice. Ooerahon

g) e
¢ Do Approest Froe
o L

“ww“w”}’g{“ -

oy,

i

= <lnpluder s

T o,

{ Process imeatid N

o

;:\
T

:"ﬂ M"‘*M.\M,N N
5 £
. b - /’
Sapstarres N) rxpsiang s
Cecippludgey
. 7
\ e [
W]
& D Transadtion AN
, # d
o g iz oo
P ™ "'g"«\ Hanx
P . o T e
PARYT: seng o . ™ 4 S = k
{ Withdaw 5 pepost Gy { Waure Y

Ry e i

Figure 48: ATM Case Study: After Step 4

Step 5. Add the use case “Transfer”.

110

Motivation:

Customers need to transfer funds between different accounts. We need to create a new use
case “Transfer”. It should support transactions. We also need to define its episodes, precon-

ditions, context, postconditions and events.

Detailed steps:

(1) Use the Create_Empty_Usecase refactoring to create the use case “Transfer”.
(2) Define preconditions, context and postconditions of the use case “Transfer”.

(3) Define episodes of the use case “Transfer”. Some episodes are already defined in the use

case “Transaction”.
(4) Define events of episodes in the use case “Transfer”,

(5) Use the Change_Parent_Usecase refactoring to set the use case “Do Transaction” as the

parent of the use case “Transfer”. Figure 49 shows the new use case model after this

refactoring.
Sysiera ATM Svatem
Sunvice Opsration
Do Bpprowal Piot pet™
S, e
s, ».x...!i:,.« il
[eintiudes>
) ————.
e) £ Process lrand PEE
:; Ny . i e, . N/'
PO b, i VST
p
Cstame _o¥artangs

Rank

[et
. o, s - -

¢ vatharas Y ¢ Deposit %y bpuite

R, o™ e,

S \.,,‘_MW.M»*'

Figure 49: ATM Case Study: After Step 5

Step 6. Add the service Maintenance.

111

Motivation:

The ATM system needs to be maintained by the operator from the bank. We create use
cases “Start System” and “Stop System” to represent this requirement. These use cases are
grouped into a new service “Maintenance”. We also define information at the structure and
event level including episodes, preconditions, context, postconditions and events. We add

the actor “Operator” to interact with these use cases.

Detailed steps:

(1) Use the Create_Empty_Usecase refactoring to create use cases “Start System” and “Stop

System”.

(2) Define episodes, preconditions, context and postconditions of use cases “Start System”

and “Stop System”.
(3) Define events of episodes in use cases “Start System” and “Stop System”.
(4) Use the Create_Empty_Actor refactoring to create the actor “Operator”.
(5) Define goals of the actor “Operator”.

(6) Create associations between the actor “Operator” and use cases “Start System”, “Stop

System”.
(7) Use the Create_Empty_Service refactoring to create the service ‘“Maintenance”.

(8) Move use cases “Start System” and “Stop System” into the service “Maintenance”.

Figure 50 shows the new use case model after the above changes. This is also the final use case

model of this case study.

5.3 Evaluation Conclusions

As mentioned at the beginning of this chapter, the purpose of these case studies is to evaluate the

use case modeling and refactoring tool, validate use case refactorings, and investigate the whole

refactoring process. This section analyses experimental results in detail.

5.3.1 Tool Evaluation

Modeling Functionalities

The tool provides functionalities to build use case models based on the use case metamodel defined

in Section 3.1. In both case studies, the use case model is defined in three levels using the tool. At

the environment level, use cases, actors, goals, services and related relationships are defined. At the

112

Syztery ATR Beslem

Serace Dpwration

ol e
¢ Do approval Process™
e ™
Feintiugess
T T ey T
; Cpen Session ¢ Process Invelid PN
.. i Y, ;
R S— St
. - =
~ ssdrohicte o gterids

e
-,

&

e SR,

o Iy
{ B Transachon

e o
P GO "é'— P,
o & %, .
S £ %

N,
-~ o
S el —— o

& s e v SO, >
{ Wilhdrew 5 Deposd 5 0 noae {/ Trargfer \':,
. v e, A %, F

< .
Mo, ™ s - ot o i, &
- . S—— S— S, >

s

Desics Mardanens

= e,
¢ Hatfystern

s

e S e

o e ———
o S,

T Gtop Systerm

Mo, -

i

et S

conveniently.

Figure 50: ATM Final Use Case Model

structure level, the context and episode model are defined. The episode model is shown as an episode
tree. Each episode is unique in the use case model. Once it is defined, it can be used by all use cases
within the model. At the event level, each event is unique in the use case model. Once it is defined,
it can be used by all episodes within the model. The event model is defined for some episodes, but
not for all of them. This is because use case refactorings in this research are mainly defined for the

environment level and structure level. The tool allows to navigate the use case across different levels

Refactoring Functionalities

In the VSS case study, there are seven refactoring steps involved, including five distinct use case
refactorings. In the ATM case study, there are seventeen refactoring steps involved, including eight
distinct use case refactorings. The tool checks preconditions of each refactoring step automatically.
It applies the refactoring to the use case model and makes sure that postconditions are met for each

refactoring. The tool performs these changes automatically. It satisfies basic needs in the refactoring

113

process. Admittedly, it will be nice if some of these refactoring steps can be executed in a batch

model using scripts or macros.

5.3.2 Validation of Use Case Refactorings
Ten use case refactorings are used in total within these two case studies. These ten refactorings are:

o Create_Empty_Usecase

o Create_Empty_Actor

o Create_Empty_Service

o Generalize_Usecases

o Usecase_Inclusion_Generation

o Usecase_Extension_Generation

o Usecase_Equivalence_Generation

® Reuse_Usecase

o Change_Parent_Usecase

o Change_Parent_Actor

After each refactoring step, the behavior of the use case model is doubly checked manually to
ensure the behavior preservation. In both case studies, all of these ten refactorings preserve the

behavior of the model.

5.3.3 The Refactoring Process
VSS Case Study

In the VSS case study, there are seven refactoring steps involved, which are:

e Use the Change_Parent_Actor refactoring to establish a generalization relationship between
actors “Staft” and “Manager Staff”.

e Use the Change_Parent_Actor refactoring to establish a generalization relationship between

actors “Customer” and “Dependent Customer”.

e Use the Usecase_Inclusion_Generation refactoring to break up the use case “Web Video In-

quiry” into new use cases “Web Video Inquiry” and “Video Search”.

114

Use the Usecase_Equivalence_Generation refactoring to make the use case “Video Search”

equivalent to the use case “Video Inquiry”.

Use the Reuse_Usecase refactoring to remove the use case “Video Search”.

Use the Generalize_Usecases refactoring to create the use case “Video Maintenance”.

Use the Generalize Usecases refactoring to create the use case “Customer Maintenance”.

After these refactoring steps, a new use case model is generated as shown in Figure 43. Compared
to the initial model as shown in Figure 37, the structure of the use case model is greatly improved. The
new use case model reduces the redundancy by making the use case “Web Video Inquiry” to include
“Video Inquiry”. It groups use cases “Add Video”, “Delete Video”, “Update Video” into the video
maintenance category and use cases “Add Customer”, “Delete Customer”, “Update Customer” into
the customer maintenance category. Thus the new use case model reveals the inherent nature of these
use cases. These refactoring steps improve the reusability, understandability and maintainability of

the use case model.

ATM Case Study

In the ATM case study, there are seventeen refactoring steps involved, which are:

e Use the Create_Empty_Service refactoring to create the service “Operation”.

e Use the Generalize_Usecases refactoring to create a new use case “Do Transaction” in the
service “Operation”, set “Do Transaction” as the parent of use cases “Withdraw”, “Deposit”
and “Inquire”, and move common episodes in use cases “Withdraw”, “Deposit” and “Inquire”

into the use case “Do Transaction”.

e Use the Create_Empty_Usecase refactoring to create use cases “Open Session”, “Do Approval

Process” and “Process Invalid PIN”.
o Use the Create_Empty_Actor refactoring to create the actor “Bank”.

o Apply the Usecase_Inclusion_Generation refactoring to the use case “Open Session” so that

the newly created temporary use case is equivalent to the use case “Do Transaction”.
o Use the Reuse_Usecase refactoring to delete the above temporary use case.

¢ Apply the Usecase_Inclusion_Generation refactoring to the use case “Open Session” so that

the newly created temporary use case is equivalent to the use case “Do Approval process”.

e Use the Reuse_Usecase refactoring to delete the above temporary use case.

115

Apply the Usecase_Extension_Generation refactoring to the use case “Do Transaction” so that

the newly created temporary use case is equivalent to the use case “Process Invalid PIN”.
Use the Reuse_Usecase refactoring to delete the above temporary use case.

Use the Create_Empty_Usecase refactoring to create the use case “Transfer”.

o Use the Change_Parent_Usecase refactoring to set the use case “Do Transaction” as the parent

of the use case “Transfer”.

o Use the Create_Empty_Usecase refactoring to create the use case “Start System”.

Use the Create_Empty_Usecase refactoring to create the use case “Stop System”.

Use the Create_Empty_Actor refactoring to create the actor “Operator”.

o Use the Create_Empty_Service refactoring to create the service “Maintenance”.

In this case study, the final use case model as shown in Figure 50 is created incrementally starting

from a simple model as shown in Figure 44. Starting with a simple use case model, we improve

the structure of the use case model by refactorings. Then new requirements are added into the use

case model. After adding new requirements, the structure of the use case model is changed, which

may bring needs to improve the structure by refactorings again. Thus the whole evolution process is

viewed as refactorings plus extensions.

Refactoring Guidelines

Generally, a use case model can be created incrementally in the follow steps:

(1).
Q).
3).
4).
(5).
(6).

).

Analyse the requirements and get a brief description.

Define use cases, actors and users.

Define goals of actors or tasks of users.

Define the structure information, including the episode, precondition and postcondition.
Define events of episodes.

Apply use case refactorings to improve the structure of the use case model so that additional

requirements can be added more easily.

Repeat Step (2) — Step (6) until the use case model meets all the requirements.

116

In practice, sometimes it may be hard to know when to apply use case refactorings. Here are

some general guidelines.

e Redundant Definitions: If the episode subtree is redundantly defined, it may be preferable to

apply refactoring to remove the redundancy.

Examples:
(1). VSS case study: The redundancy is removed by making the use case “Web Video Inquiry”
to include “Video Inquiry”.

(2). ATM case study: step 4 - make the use case “Open Session” to include use cases “Do
Approval Process” and “Do Transaction”, and make the use case “Process Invalid PIN” to

extend the use case “Do Transaction”.

o Hidden Generalization Relationship: If there is an inherent generalization relationship between
use cases or actors, it is preferable to apply refactorings to reveal the generalization relation-

ship explicitly.

Examples:
(1). VSS case study: It groups use cases “Add Video”, “Delete Video”, “Update Video” into
the video maintenance category and use cases “Add Customer”, “Delete Customer”, “Update

Customer” into the customer maintenance category.
(2). ATM case study: Step 1 - add the “Do Transaction” use case and move shared episodes.

(3). ATM case study: Step 5 - use the Change_Parent_Usecase refactoring to set the use case

“Do Transaction” as the parent of the use case ‘“Transfer”.

e Refactoring for New Requirements: It is quite often that refactorings are driven by new re-
quirements. If refactorings will make it easier to address new requirements, it is preferable to

apply them.

Examples:
(1). ATM case study: After adding the use case “Do Transaction” by refactorings, it is more

convenient to add the use case “Transfer” later.

Similar to the source code refactoring, there are times when you should not refactor at all. When
it is close to a deadline, the gain from refactoring would appear after the deadline and thus be too
late. The other time is when the model is such a mess that it is easier to start from scratch instead of

refactoring the existing model.

117

Chapter 6
Conclusion and Future Work

This chapter concludes the thesis by answering some fundamental research questions. It compares
this research with some related work and discusses major contributions of this research. It also

illustrates its limitations and discusses future work.

6.1 Conclusion

Some fundamental research questions have formed the basis of this work. This section answers these

questions by summarizing the work presented in the thesis.
Research Question 1: Is it necessary to restructure use case models?

The importance of the source code refactoring has been increasingly well understood. As more
and more mainstream commercial tools provide capabilities for refactorings, source code refactoring
has become part of many people’s routine work. Because refactoring use case models is a totally
new approach, it is not surprising that its necessity is questioned. However, the same motivation is
behind refactoring use case models as refactoring source code. During software evolution, require-
ments change. It is a challenge to update use case models consistently, especially for the large-scale
complex system. Restructuring use case models is an effective way to improve the understandability
and maintainability. In fact, as introduced in Section 2.3, there are many other research efforts on
how to transform models. As maintaining models becomes an increasingly time-consuming activity,

people will be more aware of the importance of these transformations.

Research Question 2: What does the behavior preservation mean when refactoring use case

models?

Compared to the source code refactoring, it is much more complicated to define and to verify the

behavior preservation in the use case refactoring. The program is executable. It is possible to check

118

if the output values remain the same when the program is called twice (once before and once after a
refactoring). For the use case refactoring, however, it is difficult and controversial to argue the issue
of behavior preservation. The presented work addresses this issue in several steps. Firstly, it defines
a use case metamodel. This metamodel forms a basis for the discussion of the behavior preservation
because it defines the meaning of use case entities and related relationships. The behavior of a use
case is defined by its episode model, that is, the behavior is not only defined by a set of episodes, but
how these episodes are related to each other to form the internal structure of the use case. Similarly,
the behavior of an episode is defined by its event model. Secondly, it introduces a process algebra
semantics for the use case model. The behavior of a use case can be defined by a process algebra
expression based on the episode model and event model. The behavior of a use case model is defined
in terms of the individual use cases and their relationships. Similar to the source code refactoring, the
presented work also defines invariants so that the refactored use case model is syntactically correct

and semantically equivalent to the model before refactoring.
Research Question 3: How are use case refactorings validated?

In the refactoring definition, each refactoring is verified against the definition of behavior preser-
vation. In order to validate use case refactorings, a use case modeling and refactoring tool is de-
veloped, which makes it possible to create the use case model based on the metamodel. The tool
also provides the automatic support for applying refactorings. Two case studies are used to further
validate use case refactorings. For each refactoring step in these case studies, the behavior of the use
case model before and after refactoring is compared to ensure that the refactoring does not change
the behavior. The behavior preserving property of each refactoring will become more convincing

when more and more case studies are conducted.
Research Question 4: Is refactoring use case models feasible and practical?

The thesis defines fifty-three use case refactorings. These refactorings can be used to com-
pose/decompose a use case, compose/decompose an episode, and to generalize use cases, actors
and episodes. These transformation operations are heavily used during the evolution of use case
models. For example, the size of each use case must not be too large. Otherwise, it is difficult to
understand. However, a too large collection of small use cases is also not desirable due to the lack of
overview. Refactorings on composing/decomposing a use case can avoid these undesired models.

Two case studies are carried out to evaluate some of these refactorings under the tool support.
In the ATM case study, the use case model is built incrementally with use case refactorings starting
from a simple model. This case study shows how use case refactorings can improve the structure
of the use case model so that new requirements can be added more easily. In the VSS case study, it

starts with a relatively more complex use case model. This case study shows how the structure can be

119

improved so that the use case model becomes more understandable and maintainable. The presented
work shows clearly that refactoring use case models is feasible and practical. It also provides some

guidelines on the refactoring process.

6.2 Contributions

This work makes the following major contributions. These contributions represent key milestones

within this research.
1. A three-level use case metamodel with a hierarchical structure.

This metamodel is defined to formalize use case terminologies. It is a foundation for describing
the behavior of the use case model. This metamodel is defined to address different needs in

requirements engineering and software engineering.

This metamodel is based on Regnell’s use case model [REGY9]. The three-level hierarchical
structure is borrowed from Regnell’s model. However, several major improvements are made in
this metamodel. Firstly, it defines use case relationships and actor relationships. This metamodel
covers use case relationships defined in Objectory [JAC92}, SOMA [SEL97], OML [FIR98] and
UML (v2.0) [UML20]. It defines the “generalization” relationship between actors so that their

commonalities can be modeled.

Secondly, it refines Regnell’s model at the structure level by introducing the episode model and
episode tree, which describe not only primitive episodes but also their relationships. This helps
manage and present the use case internal structure effectively. Based on the episode model, the use
case model can be restructured by manipulating episodes among different use cases. Similarly,

this metamodel also defines the event model and event tree.

Compared with the use case metamodel defined in the UML [UML20], this metamodel specifies
the use case behavior using a three-level hierarchical structure. While the environment level
presents a similar overview with the one in the UML, the structure level and event level define the
use case behavior in detail. Use cases in the UML are specified with the text description, which
makes the use case behavior vague. They are used to illustrate the functionality of the system from
the user’s point of view. The UML uses the dynamic model to reveal the internal behavior of the
system. The dynamic model includes sequence diagrams, activity diagrams, and state machine

diagrams. The UML does not have a formally defined semantics.

2. A process algebra semantics for the use case model.

120

Based on the use case metamodel, the thesis defines a process algebra semantics for the use case
model. Use case semantics is defined as the execution of the use case. The semantics of the use
case model is defined as the set of possible executions of all use cases within the model. The se-
mantics of a single episode is specified using process algebra PAgysc [MAUW94]. The semantics
of a single use case is defined in terms of the episode model, which describes a list of primitive
episodes as well as their relationships. The thesis analyses different use case relationships and
evaluates the behavior of the use case model. It handles the semantics issue by modeling the
whole system as a single use case. Use cases with different relationships are mapped into this
single use case so that the semantics of the use case model can be defined based on the episode
model. Thus the semantics of the use case model can be defined in terms of the individual use

cases and their relationships.

This semantics makes it possible to verify the behavior preservation of the use case refactoring.
It is the foundation for refactoring use case models. As some people in the industry transforms
use case models in their own ways, this semantics helps them understand related impact on the
behavior of the use case model. For example, John McGregor et al. develope use case assortment
for the requirement analysis phase of framework development [MIL.99]. This approach identifies
commonality and variability among use cases within the use case model. To reflect the com-
monality/variability analysis, the use case model is factored by introducing abstract use cases and
abstract actors to rearrange responsibilities. These transformation steps can be justified with the

presented process algebra semantics for the use case model.

There is some related work on defining use case semantics. Perdita Stevens uses a Labeled Tran-
sition System (LTS) to formally interpret use cases as sequences of actions in [STVO01]. Butler et
al. [BUT97] give a specification of use cases in the Z notaion [SP192]. The focus is on understand-
ing use cases, not on instrumenting them for the specification in combination with the Z notation.
Grieskamp et al. [GRI00] formalize use cases using the Z notation. They extend this work and
specify use cases in Abstract State Machine Language [GRIO1]. Dranidis et al. [DRA03] propose
the specification of use cases with X-machines [EIL74]. They present a method for transforming

use case text into its corresponding X-machine model.

. A list of fifty-three use case refactorings.

The thesis is the first literature to define a comprehensive list of use case refactorings. Although
the concept of refactoring use case models is proposed in Cascaded Refactoring [BUTO1] and
about eight use case refactorings is defined further in [XUQ6], it is hard to verify the behavior
preservation of these refactorings due to the lack of the use case semantics. The thesis defines

fifty-three refactorings using a template. Each refactoring is described in terms of the refactoring

121

description, arguments, preconditions, postconditions, and the verification of the behavior preser-
vation. These refactorings are divided into three levels: environment level, structure level, and

event level.

These refactorings provide various transformation capabilities including generalization of use
cases and actors, decomposition of use cases and episodes, and composition of use case rela-
tionships and episode relationships. These transformation operations are routine tasks performed
by people to reorganize the use case model. These refactorings are very useful and effective in

improving the structure of the use case model.

Compared with the source code refactoring [OPD92], the thesis uses a similar format to define use
case refactorings. Unlike the program, the use case model is not executable, It is more difficult
to verify the behavior preservation property of each use case refactoring. The thesis identifies

syntactic and semantic properties required to preserve the behavior of the use case model.

. A use case modeling and refactoring tool.

This tool provides an integrated environment for creating the use case model based on the above
use case metamodel and for refactoring the use case model. It facilitates the refactoring process.

It allows to check refactoring preconditions and to apply the refactoring automatically.

Source code refactorings are usually performed with tool support. The presented use case mod-
eling and refactoring tool enables that use case refactorings can be applied automatically. This

avoids the error-prone manual process and improves the efficiency of the refactoring process.

. Validation of use case refactorings with the tool support using two case studies.

These case studies demonstrate that it is feasible and practical to evolve the use case model start-
ing from a simple model and to improve the structure of the more complex use case model by
refactorings. The thesis investigates the evolution process of use case models. It provides some

guidelines on the refactoring process.

Compared with the source code refactoring, it is much more difficult to carry out case studies of
refactoring use case models in the industry. Use case refactorings are based on the presented use
case metamodel. However, this metamodel is not yet accepted by the industry. The thesis presents
two case studies to simulate two kinds of industrial projects. The ATM case study is used to
demonstrate how to build the use case model incrementally with refactorings and extensions. This

simulates the stage of constructing use case models. The VSS case study is used to demonstrate

122

how the structure of the more complex use case model can be improved by refactorings step by

step. This simulates the maintenance of use case models.

6.3 Future Work

There is much debate within the community on how to formalize use cases. The thesis attempts
to formalize use cases by defining a use case metamodel. A process algebra semantics is defined
based on this metamodel. This makes it possible to verify the behavior preserving property of each
refactoring. However, this formalization is still in its infancy. The metamodel may need to be changed
to satisfy different needs. For the purpose of simplicity, this semantics does not provide support for
all concepts. The precondition and postcondition of a use case, for example, are not covered in this
semantics.

In the metamodel, we introduce concepts of goal and task. However, the detailed application of
goal and task is not investigated in this research. This will be addressed in future research.

During the software evolution, the requirements may not be clear. The use case model may not be
fully specified. This makes it difficult to verify the behavior preservation of the use case refactoring.
The thesis defines a set of invariants that needs to be preserved during refactoring. Each refactoring
is verified against the behavior preservation in an informal way. Ideally, the correctness of each
refactoring should be formally proved.

In the thesis, some refactorings are defined in a restrictive way to ensure that the use case model
remains semantically equivalent across refactorings. For example, the Split_Usecase refactoring is
defined under the condition that the use case is not referenced by any other use case. However, the
behavior can be preserved under less restrictive conditions, which will permit some useful refactoring
operations. This issue is to be addressed in future research.

Refactoring use case models is a totally new approach in the community. Although the thesis
presents two case studies, there is still a lot to do. More case studies are needed to further validate
use case refactorings. While knowledge from the process of the source code refactoring is useful, the
use case refactoring process needs to be studied further. This will improve the understanding to the
whole process. Similar to source code refactorings, it is a continuous effort to discover new use case
refactorings.

The use case refactoring tool also needs further improvements. More refactorings should be
implemented. Some features in source code refactoring tools are very useful. For example, the tool
should provide the “undo” functionality to undo the use case refactoring. It should allow refactorings

to be executed in a batch mode using scripts or macros.

123

Bibliography

[ACEO1] L. Aceto, W. J. Fokkink and C. Verhoef. Structural Operational Semantics. Handbook of
Process Algebra, North-Holland, Amsterdam, p197-292, 2001.

[ADOO03] W. S. Adolph and P. Bramble. Patterns for Effective Use Cases. Addison Wesley, 2003.
ISBN: 0201721848.

[ALUR96] R. Alur, G. J. Holzmann and D. Peled. An Analyzer for Message Sequence Charts. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’96), volume 1055 of
Lecture Notes in Computer Science, p35-48, Passau, Germany, 1996. Springer Verlag.

[AND97] M. Andersson and J. Bergstrand. Formalizing Use Cases with Message Sequence Charts.
Master thesis, Department of Communication Systems at Lund Institute of Technology,
1997.

[ANNG67] J. Annett and K. Duncan. Task Analysis and Training Design. Occupational Psychology
41, p211-221, 1967.

[ANT97] A. 1. Anton. Goal Identification and Refinement in the Specification of Software-Based
Information Systems. PhD thesis, Georgia Institute of Technology, Atlanta, GA, June 1997.

[BAEO4] J. C. M. Baeten. A Brief History of Process Algebra. Rapport CSR 04-02, Vakgroep Infor-
matica, Technische Universiteit Eindhoven, 2004.

[BAE9O] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, Cambridge, 1990.

[BANS7] J. Banerjee and W. Kim. Semantics and Implementation of Schema Evolution in Object-
Oriented Databases. In Proceedings of the ACM SIGMOD Conference, 1987.

[BECK99] K. Beck. Extreme Programming Explained: Embracing Change. Addison Wesley, 1999.

[BEEK94] M. vonder Beek. A Comparison of Statechart Variants. In W.-P. de Roever H. Langmaack
and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, number

863 in Lecture Notes in Computer Science, p128-148. Springer Verlag, September 1994.

124

[BEK71] H. Beki¢. Towards a Mathematical Theory of Processes. Technical Report TR 25.125,
IBM Laboratory Vienna, 1971.

[BEK84] H. Beki¢. Programming Languages and Their Definition (Selected Papers edited by C.B.
Jones). Number 177 in LNCS. Springer Verlag, 1984.

[BENOO] K. H. Bennett and V. T. Rajlich. Software Maintenance and Evolution. ICSE *00: Proceed-
ings of the Conference on The Future of Software Engineering, p73-87. ACM Press, 2000.
ISBN: 1-58113-253-0.

[BERS82] J. A. Bergstra and J. W. Klop. Fixed Point Semantics in Process Algebra. Technical Report
IW 208, Mathematical Centre, Amsterdam, 1982.

[BER84] J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Communication. Informa-
tion and Control, 60(1/3): p109-137, 1984.

[BERG99] K. G. van den Berg and A. J. H. Simons. Control-Flow Semantics of Use Cases in UML.
Information and Software Technology, 41(10), p651-659, 1999.

[BESTO1] E. Best, R. Devillers and M. Koutny. A Unified Model for Nets and Process Algebras.
Handbook of Process Algebra, North-Holland, Amsterdam, p945-1045, 2001.

[BJO] R.C. Bjork. ATM Simulation, Gordon College.
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/.

[BOGO2] M. Boger, T. Sturm and P. Fragemann. Refactoring Browser for UML. Proceedings 3rd
Int’1 Conf. on eXtreme Programming and Flexible Processes in Software Engineering, p77—
81, 2002.

[BOHO96] S. A. Bohner and R. S. Arnold. Sofitware Change Impact Analysis. IEEE Computer Society
Press, 1996.

[BOROO] E. Borger, A. Cavarra and E. Riccobene. An ASM Semantics for UML Activity Diagrams.
In Proceedings of the International Conference on Algebraic Methodology and Software
Technology (AMAST), Iowa City, 10, USA, May 2000. Springer Verlag.

[BORL] Borland. http://www.codegear.com/tabid/102/Default.aspx.

[BOTO03] P. Bottoni, F. Parisi-Presicce and G. Taentzer. Specifying Integrated Refactoring with Dis-
tributed Graph Transformations. In Proceedings of the Agtive Conference, 2003.

[BRO87] F. Brooks. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE Com-
puter, Vol. 20, No. 4, April, 1987.

125

[BUHR98] R. Buhr. Use Case Maps as Architectural Entities for Complex Systems. IEEE Transac-
tions on Software Engineering, 24(12), p1131-1155, 1998.

[BUTO1] G. Butler and L. Xu. Cascaded Refactoring for Framework Evolution. Proceedings of 2001
Symposium on Software Reusability. ACM Press, p51-57.

[BUT97] G. Butler, P. Grogono and F. Khendek. A Z Specification of Use Cases. In Proceedings
of the Asia-Pacific Software Engineering Conference and International Computer Science
Conference, p505-506. IEEE Computer Society Press, 1997,

[CAR95] J. M. Carroll. Scenario—Based Design: Envisioning Work and Technology in System De-
velopment. Wiley, New York, 1995.

[COCO1] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2001. ISBN: 0201702258.

[COCI7] A.Cockburn. Structuring Use Cases with Goals. Journal of Object Oriented Programming,
10(5) Sep. 97 and 10(7) Nov. 97.

[DAR93] A. Dardenne, A. Van Lamsweerde and S. Fickas. Goal-Directed Requirements Acquisi-
tion. Science of Computer Programming, 20(1-2), p3-50, April 1993.

[DAV93] A. Davis. Software Requirements: Objects, Functions and States. Prentice Hall PTR; 2
edition, 1993.

[DEVE] Developer Express. http://www.devexpress.com/Products/NET/IDETools/Refactor/.
[DON99] D. B. Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois, 1999.

[DRAQ3] D. Dranidis, K. Tigka and P. Kefalas. Formal Modelling of Use Cases with X-machines. In
Proceedings of South-East European Workshop on Formal Methods (SEEFM)’03, Novem-
ber 2003.

[ECLIPSE] Eclipse. http://www.eclipse.org/.
[EIL74] S. Eilenberg. Automata, Languages and Machines. Academic Press, New York, 1974.

[ESHOO] R. Eshuis and R. Wieringa. Requirements Level Semantics for UML Statecharts. Formal
Methods for Open Object-Based Distributed Systems IV, p121-140. Kluwer Academic Pub-
lishers, 2000.

[ESHO1] R. Eshuis and R. Wieringa. A Formal Semantics for UML Activity Diagrams — Formalis-
ing Workflow Models. Technical Report CTIT-01-04, University of Twente, Department of
Computer Science, 2001.

126

{FIR98] D. G. Firesmith, B. Henderson-Sellers and 1. Graham. OPEN Modeling Language (OML)
Reference Manual. Cambridge University Press, New York, 1998. ISBN: 0521648238.

[FLO67] R. W. Floyd. Assigning Meanings to Programs. Proceedings Symposium in Applied Math-
ematics, Mathematical Aspects of Computer Science, p19-32, AMS, 1967.

[FOW97] M. Fowler. Analysis Patterns: Reusable Object Models. Addison Wesley, 1997. ISBN:
0201895420.

[FOW99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999.

[FRAOQ3] R. France, S. Ghosh, E. Song and D. K. Kim. A Metamodeling Approach to Pattern-Based
Model Refactoring. IEEE Software, Special Issue on Model Driven Development, Vol.20,
No.5, p52-58, September/October 2003.

[GAMY5] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, Massachusetts, 1995.

[GEH98] T. Gehrke, U. Goltz and H. Wehrheim. The Dynamic Models of UML: Towards a Seman-
tics and its Application in the Development Process. Hildesheimer Informatik-Bericht 11/98,
1998.

[GHE98] C. Ghezzi and B. Nuseibeh. Managing Inconsistency in Software Development. Transac-
tions on Software Engineering, 24(11): p906-907, 1998.

[GLAOI1] R. J. van Glabbeek. The Linear Time — Branching Time Spectrum I: The Semantics of
Concrete, Sequential Processes. Handbook of Process Algebra, North-Holland, Amsterdam,
p3-100, 2001.

[GLA96] R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43:p555-600, 1996.

[GORPO3] P. V. Gorp, H. Stenten, T. Mens and S. Demeyer. Towards Automating Source — Consis-
tent UML Refactorings. Proceedings. UML 2003.

[GRA93] J. Grabowski, P. Graubmann and E. Rudolph. Towards a Petri Net Based Semantics Def-
inition for Message Sequence Charts. In Proceedings of the Sixth SDL Forum, p179-190,
Darmstadt, 1993. Amster-dam, North-Holland.

[GRIOO] W. Grieskamp and M. Lepper. Using Use Cases in Executable Z. In IEEE Conference on
Formal Engineering Methods, p111-120, 2000.

127

[GRIO1] W. Grieskamp, M. Lepper and W. Schulte. Testable Use Cases in the Abstract State Ma-
chine Language. In Proceedings of the Second Asia-Pacific Conference on Quality Software,
2001.

[HA87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Pro-
gramming, 8: p231-274, 1987.

[HARS87] D. Harel, A. Pnueli, J. P. Schmidt and R. Sherman. On the Formal Semantics of State-
charts. In Proceedings 2nd IEEE Symposium on Logic in Computer Science, p56—64. IEEE
Press, 1987.

[HAR96] D. Harel and A. Naamad. The STATEMATE Semantics of StateCharts. ACM Transactions
on Software Engineering, 5(4): p293-333, 1996.

[HASOS] I. Hassine, J. Rilling and R. Dssouli. An Abstract Operational Semantics for Use Case
Maps. In Proceedings of Requirement Engineering 2005 (13th IEEE International Require-
ment Engineering Conference), Paris, France, September 2005. IEEE CS Press, p467-468.

[HAUO5] ©. Haugen. Comparing UML 2.0 Interactions and MSC-2000. Lecture Notes in Computer
Science, Volume 3319, p65-79, Springer Berlin, 2005.

[HEYO0O] S. Heymer. A Semantics for MSC Based on Petri Net Components. SAM 2000, 2nd Work-
shop on SDL and MSC, Col de Porte, Grenoble, France, June 26-28, 2000.

[HOA69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the
ACM, 12: p576-580, 1969.

[HOA78] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8): p666—6717, 1978.

[HOO92] J. J. M. Hooman, S. Ramesh and W-P. de Roever. A Compositional Axiomatization of
Statecharts. Theoretical Computer Science, 101: p289-335, 1992.

[HOPO1] J. E. Hopcroft, R. Motwani and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Second Edition, Addison Wesley, 2001.

[HUI91] C. Huizing. Semantics of Reactive Systems: Comparision and Full Abstraction. PhD thesis,
Technical University Eindhoven, 1991.

[HUIZ91] C. Huizing and W. P. de Roever. Introduction to Design Choices in the Semantics of
Statecharts. Information Processing Letters, 37: 205-213, February 1991.

[HURS7] R. R Hurlbut. A Survey of Approaches for Describing and Formalizing Use Cases.
http://www.iit.edu/ rhurlbut/xpt-tr-97-03.html.

128

[IDEA] Ideat Solutions. http://www.refpp.com/.

[JACO05] 1. Jacobson and P. W. Ng. Aspect—Oriented Software Development with Use Cases. Addison
Wesley, 2005.

[JAC92] 1. Jacobson, G. Booth, P. Jonsson and G. Overgaard. Object-Oriented Software Engineer-
ing: a Use-Case Driven Approach. Addison Wesley, 1992.

[JAC94] L. Jacobson, M. Ericsson and A. Jacobson. The Object Advantage: Business Process
Reengineering with Object Technology. ACM Press, 1994, ISBN: 0-201-42289-1.

[JAC95] 1. Jacobson. Modeling with Use Cases: Formalizing Use-Case Modeling. Journal of Object
Oriented Programming, June 1995, Vol. 8 No. 3.

[JAC99] 1. Jacobson, G. Booch and J. Rumbaugh. The Unified Software Development Process. Ad-
dison Wesley, Longman, 1999.

[JOH92] P. Johnson. Human—Computer Interaction: Psychology, Task Analysis and Software Engi-
neering. McGraw-Hill, London, 1992, ISBN: 0077072359.

[JONO1] B. Jonsson and G. Padilla. An Execution Semantics for MSC2000. 10th International SDL
Forum Copenhagen, Denmark, June 2001. Springer Verlag LNCS 2078.

[JREF] JRefactory. http://jrefactory.sourceforge.net/.

[KRUO3] P. Kruchten. The Rational Unified Process: An Introduction. Third Edition, Addison Wes-
ley, 2003.

[LAD92] P. B. Ladkin and S. Leue. An Analysis of Message Sequence Charts. Technical Report
IAM-92-013, University of Berne, 1992.

[LAD95] P. B. Ladkin and S. Leue. Interpreting Message Flow Graphs. Formal Aspects of Comput-
ing, 7(5): p473-509, 1995.

[LEDO2] H.Ledang and J. Souquiéres. Integration of UML and B Specification Techniques: System-
atic Transformation from OCL Expressions into B. APSEC, p495, 2002.

[LIO4] X. Li, Z. Liu and J. He. A Formal Semantics of UML Sequence Diagram. 15th Australian
Software Engineering Conference (ASWEC 2004), April 2004, Melbourne, Australia. Aus-
tralian Software Engineering Conference, IEEE Computer Society, 2004, ISBN: 0-7695-
2089-8.

129

[LUT99] G. Liittgen, M. von der Beeck and R. Cleaveland. Statecharts via Process Algebra. 10th
International Conference on Concurrency Theory (CONCUR ’99), volume 1664 of Lecture
Notes in Computer Science, p399-414, Eindhoven, The Netherlands, August 1999. Springer
Verlag.

[MAUWO94] S. Mauw and M. Reniers. An Algebraic Semantics of Basic Message Sequence Charts.
The Computer Journal, 37(4); p269-277, 1994.

[MCC63] J. McCarthy. A Basis for a Mathematical Theory of Computation. Computer Programming
and Formal Systems, p33-70. North-Holland, Amsterdam, 1963.

[MENSO04] T. Mens and T. Tourwé. A Survey of Software Refactoring. IEEE Transactions on Soft-
ware Engineering, Vol. 30, No. 2, February 2004, p126-139.

[METZO01] P. Metz, J. O’Brien and W. Weber. Against Use Case Interleaving. IEEE Computer So-
ciety — UML 2001 Conference. LNCS 2185, p472-486, Springer Verlag. Toronto, 2001.

[MIKK97] E. Mikk, Y. Lakhnech, C. Petersohn and M. Siegel. On Formal Semantics of Statecharts
as Supported by STATEMATE. In Second BCS-FACS Northern Formal Methods Workshop,
1997. Springer Verlag.

[MIL80] R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes in Com-
puter Science. Springer Verlag, 1980.

[MIL99] G. Miller, J. McGregor and M. Major. Capturing Framework Requirements, Building Ap-
plication Frameworks: Object-Oriented Foundations of Framework Design. M.E. Fayad,
D.C. Schmidt, and R.E. Johnson (eds), p309-324, John Wiley & Sons, NY, 1999. ISBN:
0471248754.

[MSCO00] ITU-T. Recommendation Z.120, Message Sequence Charts. Geneva, 1999.
[MSC92] ITU-T. Recommendation Z.120, Message Sequence Charts. Geneva, 1993.
[MSC96] ITU-T. Recommendation Z.120, Message Sequence Charts. Geneva, 1996.

[NUSOO] B. Nuseibeh and S. Easterbrook. Requirements Engineering: a Roadmap. ICSE *00: Pro-
ceedings of the Conference on The Future of Software Engineering, p35-46. ACM Press,
2000. ISBN: 1-58113-253-0.

[OPD92] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois,
1992.

[ORAC] Oracle. http://www.oracle.com/tools/jdev_home.html.

130

[PARK81] D. M. R. Park. Concurrency and Automata on Infinite Sequences. Proceedings 5th GI
Conference, number 104 in LNCS, p167-183. Springer Verlag, 1981.

[PET62] C. A. Petri. Kommunikation Mit Automaten. PhD thesis, Institut fuer Instrumentelle Math-
ematik, Bonn, 1962,

[PNU91] A. Pnueli and M. Shalev. What is in a Step: On the Semantics of Statecharts. In Pro-
ceedings Symposium on Theoretical Aspects of Computer Software, number 526 in Lecture

Notes in Computer Science, p244-264. Springer Verlag, 1991.

[PRE92] R. Pressman. Software Engineering: a Practitioner’s Approach. McGraw Hill, New York,
1992. ISBN: 0070508143.

[REG99] B. Regnell. Requirements Engineering with Use Cases — A Basis for Software Develop-
ment. PhD thesis, Lund University, 1999.

[RENO3] S.Ren, K. Rui and G. Butler. Refactoring the Scenario Specification: a Message Sequence
Chart Approach. Object-Oriented Information Systems, 9th International Conference, OOIS
2003, Geneva, Switzerland, 2003, Proceedings. Lecture Notes in Computer Science 2817,
Springer 2003, p294-298.

[RENO4] S. Ren, G. Butler, K. Rui, J. Xu, W. Yu and R. Luo. A Prototype Tool for Use Case Refac-
toring. Proceedings of the 6th International Conference on Enterprise Information Systems,
p173-178. Porto, Portugal, 2004.

[ROLE} RoleModel Software. Drawlets Framework.

http://www.rolemodelsoftware.com/drawlets/index.php.

[RUIO3] K. Rui and G. Butler. Refactoring Use Case Models: the Metamodel. Proceedings of the
Twenty-Sixth Australasian Computer Science Conference on Conference in Research and
Practice in Information Technology, Vol. 16, p301-308. Adelaide, Australia, 2003.

[RUIRO03] K. Rui, S. Ren and G. Butler. Refactoring Use Case Models: a Case Study. Proceedings
of the 5th International Conference on Enterprise Information Systems, p239-244. Angers,
France, 2003.

[SCO71] D.S. Scott and C. Strachey. Towards a Mathematical Semantics for Computer Languages.
Proceedings Symposium Computers and Automata, p19-46. Polytechnic Institute of Brook-
lyn Press, 1971.

[SEL93] B. Henderson-Sellers and J. M. Edwards. MOSES: an Overview. In Proceedings of the
Eleventh international Conference on Technology of Object-Oriented Languages and Sys-
tems, p5S61-571, 1993.

131

[SEL97] B. Henderson-Sellers, D. G. Firesmith and L. Graham. OML Metamodel: Relationships
and State Modeling. Journal of Object Oriented Programming, 10(1), p47-51, March/April,
1997.

[SELL97] B.Henderson-Sellers and D. G. Firesmith. Choosing between UML and OPEN. American
Programmer, 10(3), p15-23, 1997.

[SP192] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in

Computer Science, 2nd edition, 1992.
[STA] The Standish Group. http://www.tandishgroup.com.

[STO3] H. Storrle. Semantics of UML 2.0 Activities. http://www.pst.informatik.uni-
muenchen.de/personen/stoerrle/V/AD1-CtrlIFlow_VLHCCO04.pdf.

[STOO03] H. Storrle. Semantics of Interactions in UML 2.0. 2003 IEEE Symposium on Human Cen-
tric Computing Languages and Environments (HCC 2003), October 2003, Auckland, New
Zealand. IEEE Computer Society 2003, ISBN: 0-7803-8225-0.

[STO99] H. Storrle. A Petri-net Semantics for Sequence Diagrams. Formale Beschreibungstech-
niken fiir verteilte Systeme, 9. GI/ITG-Fachgespriach, Miinchen, 1999. Herbert Utz Verlag
1999, ISBN: 3-89675-918-3.

[STVO1] P. Stevens. On Use Cases and Their Relationships in the Unified Modelling Language.
Proceedings of the 4th International Conference on Fundamental Approaches to Software
Engineering, Genova, Italy, 2001. Springer LNCS 2029, ISBN: 3-540-41863-6, p140-155.

[SUNYO1] G. Sunyé, D. Pollet, Y. L. Traon and J.-M. Jézéquel. Refactoring UML Models. In Pro-
ceedings of UML 2001 Conference, Springer Verlag LNCS 2185, Toronto, Canada, October
2001, p138-148.

[SUT98] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha and D. Manuel. Supporting Scenario-Based
Requirements Engineering. IEEE Transactions on Software Engineering, vol. 24, issue 12,
(December), p1072-1088, 1998.

[TOK99] L. Tokuda. Evolving Object-Oriented Designs with Refactorings. PhD thesis, University
of Texas at Austin, 1999.

[UML20] OMG. Unified Modeling Language: Superstructure 2.0. 2003, OMG.

[UML99] J. Rumbaugh, I. Jacobson and G. Booch. The Unified Modeling Language Reference Man-
ual. Reading, MA: Addison Wesley, 1999.

132

[USE93] A. C. Uselton and S. A. Smolka. State Refinement in Process Algebra. In Proceedings of
the North American Process Algebra Workshop, Ithaca, New York, August 1993.

[USE94] A. C. Uselton and S. A. Smolka. A Compositional Semantics for Statecharts using Labeled
Transition Systems. In CONCUR °94, vol. 836 of LNCS, p2-17, 1994, Springer Verlag.

[USEL94] A.C. Uselton and S. A. Smolka. A Process Algebraic Semantics for Statecharts via State
Refinement. In Proceedings of IFIP Working Conference on Programming Concepts, Meth-
ods and Calculi (PROCOMET), p267-286, June 1994.

[VANO1] A. Van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. Invited
Paper for RE’01, 5th IEEE International Symposium on Requirements Engineering, p249-
263. Toronto, 2001.

[WIE96] R.J. Wieringa. Requirements Engineering: Frameworks for Understanding. John Wiley &
Sons Inc., 1996,

[XUO4] J. Xu. On Refactoring of Use Case Models. Master thesis, Concordia University, 2004.

[XU06] L. Xu. Cascaded Refactoring for Framework Development and Evolution. PhD thesis, Con-
cordia University, 2006.

[YUO4] W. Yu. Refactoring Use Case Models on Episodes. Master thesis, Concordia University,
2004.

133

APPENDIX: SPECIFICATION OF USE
CASE REFACTORINGS

This section presents the specification of use case refactorings. These refactorings are grouped into
three levels: environment level, structure level and event level. There are several categories at each
level. Each refactoring is described in detail according to the template defined in Section 3.4.3. The

refactoring is defined using notations and functions described in Section 3.4.2.

A. Refactorings at the Environment Level

A.1 Create an Environmental Entity

A.1.1 Create_Empty _Usecase

Description: create a new use case without any defined episode.
Arguments: string newUsecaseName.

Preconditions:

(a). The name of the new use case does not clash with an already existing use case within the model.

VYusecase € Model.usecases, usecase.name + newlU secaseName.
Postconditions:

(a). du € Model’.usecases A u ¢ Model.usecases A u.name = newUsecaseName

A u.episodes = {} A u.actors = {} A u.usecases = {}

Verification: The newly created use case does not have association relationship with any actor. It
does not have any defined episode. It does not interact with any actor. The behavior of the use case
model is not affected when this use case is added. The precondition ensures distinct environmental

entity name (invariant two in Section 3.3).

134

A.1.2 Create_ Empty_Actor

Description: create a new actor without any goal. It does not have any reference to other actors,

users, and use cases.
Arguments: string newActorName.

Preconditions:

(a). The name of the new actor does not clash with an already existing actor within the model.

Yactor € Model.actors, actor.name # newActorName.
Postconditions:

(a). da e Model'.actors A a ¢ Model.actors A a.name = newActorName A a.usecases = {} A a.goals

= {} A a.users = {} A a.actors = {}

Verification: When the new actor is created, it does not interact with any use case. It is isolated from
other actors, goals and users. Therefore, the behavior of the use case model does not change when
this new actor is added. The precondition ensures distinct environmental entity name (invariant two
in Section 3.3).

A.1.3 Create_Empty_User

Description: create a new user without any task for a given actor.

Arguments: actor A, string newUserName.

Preconditions:

(a). The name of the new user does not clash with an already existing user within the model.

Yuser € Model.users, user.name + newU serName.
Postconditions:

(a). dJue€ A’.users A u ¢ A.users A u.name = newUserName

A w.usecases = {} A u.tasks = {} A u.actors = {A}

Verification: Creating a new user for an actor does not change interactions between the actor and re-
lated use cases. It is isolated from the task. Therefore, it does not change the behavior of the use case

model. The precondition ensures distinct environmental entity name (invariant two in Section 3.3).

135

A.1.4 Create_Empty_Service
Description: create a new service in the use case model.
Arguments: string newServiceName.

Preconditions:

(a). The name of the new service does not clash with an already existing service within the model.

Vservice € Model.services, service.name # newS erviceName.
Postconditions:

(a). 3's € Model’.services A s € Model.services A s.name = newServiceName

A s.usecases = {} A u.goals = {} A u.tasks = {}

Verification: A service is a package of functional entities (features) offered to the users in order to
satisfy one or more goals that the users have. Since it is empty, it is isolated from use cases, goals and
tasks in the use case model. Adding an empty service does not change the behavior of the use case
model. The precondition ensures distinct environmental entity name (invariant two in Section 3.3).
A.1.5 Create_Empty_Goal

Description: create a new goal in the use case model.

Arguments: string newGoalName.

Preconditions:

(a). The name of the new goal does not clash with an already existing goal within the model.

Vgoal € Model.goals, goal.name # newGoalName.
Postconditions:

(a). d g€ Model'.goals A g ¢ Model.goals A g.name = newGoalName A g.actors = {}
A g.goals = {}

Verification: The new goal is isolated from existing goals and actors in the use case model. It does
not affect any interaction between actors and use cases. Therefore, this refactoring does not change
the behavior of the use case model. The precondition ensures distinct environmental entity name

(invariant two in Section 3.3).

136

A.1.6 Create_ Empty_Task
Description: create a new task in the use case model.
Arguments: string newTaskName.

Preconditions:

(a). The name of the new task does not clash with an already existing task within the model.

Ytask € Model.tasks, task.name # newT askName.
Postconditions:

(a). Jt e Model’.tasks A t ¢ Model.tasks A t.name = newTaskName A t.users = {}
A t.tasks = {}

Verification: The new task is isolated from existing tasks and users in the use case model. It does
not affect any interaction between actors and use cases. Therefore, this refactoring does not change
the behavior of the use case model. The precondition ensures distinct environmental entity name

(invariant two in Section 3.3).

A.2 Delete an Environmental Entity

A.2.1 Delete_Unreferenced_Usecase

Description: delete an unreferenced use case from the use case model.
Arguments: use case U.

Preconditions:

(a). The use case U is isolated from other use cases and actors.

U € Model.usecases A U.usecases = {} A U.actors = {}
Postconditions:

(a). The use case U is deleted from the use case model.

U ¢ Model .usecases

137

(b). The deletion is cascaded to the structure level. After the use case U is deleted from the use case
model, some episodes may be unreferenced. These episodes are deleted by applying refactoring

Delete_Unreferenced_Episode, which cascades the deletion to the event level.

(Ve € U.episodes A e.usecases = {}) = DeleteUnre ferencedE pisode(e).

Verification: Since the use case U is isolated from other use cases and actors, it does not affect
interactions between actors and use cases. Deleting it does not change the behavior of the use case

model.

A.2.2 Delete_Unreferenced_Actor

Description: delete an unreferenced actor from the use case model.
Arguments: actor A.

Preconditions:

(a). The actor A is isolated from other actors and use cases.

A € Model.actors A A.usecases = {} A A.actors = {}
Postconditions:

(a). The actor A is deleted from the use case model.

A ¢ Model .actors

(b). After the actor A is deleted from the use case model, some users may be unreferenced. These

users are deleted from the use case model by Delete_Unreferenced_User refactoring.

(Vu € A.users A u.actors = {}) = DeleteUnre ferencedU ser(u).

(c). After the actor A is deleted from the use case model, some goals may be unreferenced. These

goals are deleted from the use case model by Delete_Unreferenced_goal refactoring.

(Vg € A.goals A g.actors = {} A g.goals = {}) = DeleteUnre ferencedGoal(g).

Verification: Since the actor A is isolated from other actors and use cases, it does not participate in
interactions between actors and use cases. Therefore, deleting it does not change the behavior of the

use case model.

138

A.2.3 Delete_Unreferenced_User
Description: delete an unreferenced user from the use case model.
Arguments: user U.

Preconditions:

(a). The user U is not an instance of any actor in the use case model.

U € Model.users A U.actors = {}
Postconditions:

(a). The user U is deleted from the use case model.

U ¢ Model .users

(b). After the user U is deleted from the use case model, some tasks may become isolated from any

user. These tasks are deleted from the use case model by Delete_Unreferenced_Task refactoring.

(Vt € U.tasks A tusers = {} A t.tasks = {}) = DeleteUnreferencedT ask(r)

Verification: Since the user U is not an instance of any actor in the use case model, it does not affect
interactions between actors and use cases. Deleting it does not change the behavior of the use case

model.

A.2.4 Delete_Unreferenced_Service
Description: delete an unreferenced service from the use case model.
Arguments: service S.

Preconditions:

(a). There is no use case to describe the service S.

S € Model.services A S.usecases = {}

Postconditions:

139

(a). The service S is deleted from the use case model.

S ¢ Model .services

Verification: A service is a package of functional entities (features) offered to the users in order to
satisfy one or more goals that the users have. Since there is no use case to describe the service S,
it does not offer any behavior to the users. Deleting it does not change the behavior of the use case

model.

A.2.5 Delete_Unreferenced_Goal
Description: delete an unreferenced goal from the use case model.
Arguments: goal G.

Preconditions:

(a). The goal G is not referenced by any other goal or actor.

G € Model.goals A G.goals = {} A G.actors = {}
Postconditions:

(a). The goal G is deleted from the use case model.

G ¢ Model' .goals

Verification: Since the goal G does not have any relationship with other goals and it does not belong

to any actor, deleting it does not affect the consistency of the use case model.

A.2.6 Delete_Unreferenced_Task
Description: delete an unreferenced task from the use case model.
Arguments: task T.

Preconditions:

(a). The task T is not referenced by any other task or user.

T € Model.tasks A T .tasks = {} A T.users = {}

140

Postconditions:

(a). The task T is deleted from the use case model.

T ¢ Model .tasks

Verification: Since the task T does not have any relationship with other tasks and it does not belong

to any user, deleting it does not affect the consistency of the use case model.

A.3 Change an Environmental Entity

A.3.1 Change_Usecase_Name

Description: change the name of a use case within the use case model.
Arguments: use case U, string newUsecaseName.

Preconditions:

(a). U € Model.usecases

(b). The new use case name does not clash with an already existing use case within the use case
model.
Yusecase € Model.usecases, usecase.name # newlU secaseName.
Postconditions:
(a). U.name = newUsecaseName

Verification: Precondition (b) ensures distinct environmental entity name (invariant two in Sec-

tion 3.3). Changing the name of a use case does not change the behavior of the use case model.

A.3.2 Change_Actor_Name
Description: change the name of an actor within the use case model.
Arguments: actor A, string newActorName.

Preconditions:

(a). A € Model.actors

141

(b). The new actor name does not clash with an already existing actor within the use case model.

Yactor € Model.actors, actor.name # newActorName.
Postconditions:
(a). A.name = newActorName

Verification: Precondition (b) ensures distinct environmental entity name (invariant two in Sec-

tion 3.3). Changing the name of an actor does not change the behavior of the use case model.

A.3.3 Change_User_Name
Description: change the name of a user within the use case model.
Arguments: user U, string newUserName.

Preconditions:

(@). U € Model.users

{b). The new user name does not clash with an already existing user within the use case model.

Yuser € Model.users, user.name # newU serName.
Postconditions:
(a). U.name = newUserName

Verification: Precondition (b) ensures distinct environmental entity name (invariant two in Sec-

tion 3.3). Changing the name of a user does not change the behavior of the use case model.

A.3.4 Change_Service_Name
Description: change the name of a service within the use case model.
Arguments: service S, string newServiceName.

Preconditions:

(a). S € Model.services

142

(b). The new service name does not clash with an already existing service within the use case model.

Vservice € Model.services, service.name # newS erviceName.
Postconditions:
(a). S.name = newServiceName

Verification: Precondition (b) ensures distinct environmental entity name (invariant two in Sec-

tion 3.3). Changing the name of a service does not change the behavior of the use case model.

A.3.5 Change_Goal Name
Description: change the name of a goal within the use case model.
Arguments: goal G, string newGoalName.

Preconditions:

(a). G € Model.goals

(b). The new goal name does not clash with an already existing goal within the use case model.

Vgoal € Model.goals, goal.name # newGoalName.
Postconditions:
(a). G.name = newGoalName

Verification: Precondition (b) ensures distinct environmental entity name (invariant two in Sec-

tion 3.3). Changing the name of a goal does not change the behavior of the use case model.

A.3.6 Change_Task_Name
Description: change the name of a task within the use case model.
Arguments: task T, string newTaskName.

Preconditions:

(a). T € Model.tasks

143

(b). The new task name does not clash with an already existing task within the use case model.

Ytask € Model.tasks, task.name + newT askName.
Postconditions:
(a). T.name = newTaskName

Verification: Precondition (b) ensures distinct environmental entity name (invariant two in Sec-

tion 3.3). Changing the name of a task does not change the behavior of the use case model.

A.4 Compose an Environmental Entity

A.4.1 Change Parent_Usecase

Description: given a use case U, change its parent use case to use case U,.
Arguments: use case U, use case U,.

Preconditions:

(a). The use case U] is not the parent of any use case.

U, € Model.usecases A U, € Model.usecases A U, ¢ Uj.usecasesA

(Au € Model.usecases A u.parentUsecase = U))

(b). All episodes currently inherited in the use case U, will be identically inherited from the use case
U,.
U, .inheritedEpisodes C U,.episodes

(c). There does not exist such an episode E that exists in the use case U, but does not exist in the use

case U, or its parent use cases.

VE € U,.episodes, E € (U,.episodes U U\.inheritedE pisodes).
Postconditions:

(a). The use case U, becomes the parent of the use case Uj.

U,.parentUsecase = U,

144

Verification: Precondition (a) ensures that only the behavior of the use case U; may be affected.
There is no need to analyse other use cases. Precondition (b) ensures that the use case U, has all the
behavior in current parent use cases of the use case U;. Precondition (c) ensures that the use case U,
does not inherit any other behavior than the behavior in the use case U, and the behavior inherited
from its current parent use cases. Therefore, the behavior of the use case U is not changed after the
refactoring. In other words, this refactoring is a behavior preserving transformation.

A.4.2 Change_Parent_Actor

Description: given an actor Ay, change its parent actor to actor A,.

Arguments: actor A;, actor A;.

Preconditions:

(a). A; € Model.actors A A; € Model.actors A A,.actors = {}

(b). The actor A; has at most one parent actor. If the actor A has the parent actor, this parent actor
has the same set of goals with the actor A;. All use cases used by this parent actor are also used

by the actor A,.

AA,.parentActorv
(da = Ay.parentActor A (a.goals C Az.goals)

A (a.usecases C A,.usecases) A fa.parentActor)

(c). There does not exist such a use case U that is used by the actor A, but not used by the actor A;

or the parent actor of A;.

YU € A,.usecases, U € (A,.usecases U A,.inheritedU secases).
Postconditions:

(a). The actor A, becomes the parent of the actor A;.

A\.parentActor = A,

Verification: This refactoring changes the parent of the actor A;. Precondition (a) isolates the actor A,
from other actors. So A, does not have any relationship with the actor A;. Precondition (b) ensures

that the actor A, uses all use cases that are used by the parent of the actor A;. It also ensures that

145

references to the goal model are the same after the refactoring since the actor A, has the same set of
goals with the actor A;. Precondition (c) ensures that the actor A; does not participate in any other

use case than those used by the actor A, before the refactoring.

This refactoring preserves the interaction between actors and use cases. It ensures the same reference
to the goal model. Therefore, it is a behavior preserving transformation.
A 4.3 Usecase_Generalization Merger

Description: When there is a generalization relationship between two use cases and the parent use
case is an abstract use case, this refactoring can be used to merge the parent use case into its child
use case. After this refactoring, the parent use case and the generalization relationship between two
use cases are removed. This refactoring helps manage the use case granularity and maintain the

appropriate abstraction level of the use case.
Arguments: use case Uy, its parent use case U,.

Preconditions:

(a). There is a generalization relationship between use cases U; and U,. The use case U, is an

abstract use case. It is the parent use case of U;. The use case U; is a concrete use case.

U, € Model.usecases N U, € Model.usecases
A Uy.parentUsecase = Uy A U,.type = concrete

A U,.type = abstract

(b). The use case U, is not referenced by any other use case than U;.

Us.usecases = {U,}
Postconditions:

(a). The use case U, is merged into the use case U; by replacing the episode placeholder in U; with

the corresponding episode.

Ye € U,.episodes, S ubstitutePlaceholder WithE pisode(U , Placeholder [e]).

146

(b). The use case U, takes over the association relationship between the use case U, and related
actors. The generalization relationship between use cases U and U, is deleted. The use case U,

is deleted.

(Ya € U,.actors,a € Uj.actors)A

U, ¢ Model .usecases A (AU € Model .usecases,U = U,.parentU secase)

Verification: The semantics of the generalization relationship between use cases is discussed in Sec-
tion 3.2.2. Since the use case U, is an abstract use case, the use case U, can be merged into the
use case Uy based on episode placeholders within U;. The interaction between the use case U, and
related actors is not changed after the refactoring. This refactoring is a behavior preserving transfor-

mation.

Precondition (a) specifies the nature of use cases U, and U,. Precondition (b) isolates the use case

U, from other use cases than U;. This simplifies the refactoring definition.

Postcondition (a) ensures that the use case U; is merged into the use case U properly. Postcondition

(b) is obvious.

A.4.4 Usecase_Inclusion_Merger

Description: This refactoring merges the included use case into its base use case when there is an
inclusion relationship between these two use cases. After this refactoring, the inclusion relationship
is removed. The episode tree of the included use case is inserted into the base use case at the inclusion
point. This refactoring helps manage the use case granularity and maintain the appropriate abstraction

level of the use case.
Arguments: the base use case Uj, the included use case U,.
Preconditions:

(a). There is an inclusion relationship between use cases U, and U,. The use case U includes the
use case U,. The use case U is a concrete use case. The use case U, is an abstract use case. It

is not referenced by any other use case than U,.

U, € Model.usecases A\ U, € Model.usecases
A Inclusion [Uy, U,] A U, .type = concrete

A U,.type = abstract A Ujy.usecases = {U}

147

Postconditions:

(a). The use case U, is merged into the use case U by inserting the episode tree of the use case U at
the inclusion point. Let e be the pseudo-episode indicating the inclusion point of this inclusion

relationship.

SubstituteE pisodeTreelnUsecase(U,, T[e], Uy.episodeT ree)

(b). The inclusion relationship between use cases U; and U, is deleted. The use case U, is deleted.

U, ¢ Model .usecases

Verification: The semantics of the inclusion relationship between use cases is analysed in Sec-
tion 3.2.2. Merging the included use case into its base use case does not change the behavior of

the use case model.

Precondition (a) ensures that the use case U, can be removed after the refactoring because it is an

abstract use case and not referenced by any other use case.

Postcondition (a) ensures that the use case U, is merged into the use case U; properly. Postcondition

(b) is obvious.

A.4.5 Usecase_Extension_Merger

Description: This refactoring merges the extending use case into its base use case when there is an
extension relationship between these two use cases. After this refactoring, the extension relationship
is removed. The episode tree of the extending use case is inserted into the base use case at the
extension point. This refactoring helps manage the use case granularity and maintain the appropriate

abstraction level of the use case.
Arguments: the base use case U, the extending use case Us.

Preconditions:

(a). There is an extension relationship between use cases U; and U,. The use case U, extends the
use case U;. The use case U, is a concrete use case. The use case U, is an abstract use case. It

is not referenced by any other use case than U,.

148

U, € Model.usecases A U, € Model.usecases
A Extension [U,, U] A U,.type = concrete

A Us.type = abstract A U,.usecases = {U,}

Postconditions:

(a). The use case U, is merged into the use case U, by inserting the episode tree of the use case U, at
the extension point. Let e be the pseudo-episode indicating the extension point of this extension

relationship.

S ubstituteE pisodeT reelnU secase(U1, T [e], Us.episodeTree)

(b). The extension relationship between use cases U; and U, is deleted. The use case U, is deleted.

U, ¢ Model’ .usecases

Verification: The semantics of the extension relationship between use cases is analysed in Sec-
tion 3.2.2. Merging the extending use case into its base use case does not change the behavior of

the use case model.

Precondition (a) ensures that the use case U, can be removed after the refactoring because it is an

abstract use case and not referenced by any other use case.

Postcondition (a) ensures that the use case U, is merged into the use case U; properly. Postcondition
(b) is obvious.
A.4.6 Usecase Precedence Merger

Description: This refactoring merges two use cases into one use case when there is a precedence
relationship between these two use cases. After this refactoring, the precedence relationship is re-
moved. The episode tree of the preceding use case is adjusted by adding the episode tree of the other.
This refactoring helps manage the use case granularity and maintain the appropriate abstraction level

of the use case.
Arguments: the preceding use case U1, use case Us.

Preconditions:

149

(a). There is a precedence relationship between use cases U; and U,. The use case U, precedes to
the use case U,. The use case U] is a concrete use case. The use case U is an abstract use case.

It is not referenced by any other use case than Uj.

U, € Model.usecases A U, € Model.usecases
A Precedence (U, U;] A Uy.type = concrete

A Us.type = abstract A Up.usecases = {U,}

Postconditions:

(a). The use case U, is merged into U, by adjusting the episode tree of the use case U;. A sequence
composite episode is created as the root node of the new episode tree of the use case U;. The
original episode tree of the use case U; becomes its first sub episode tree. The episode tree of

the use case U, becomes its second sub episode tree.

3E ¢ Model.episodes \ E € Model .episodes
A Uj.episodeTree = T[E] A T[E] = T[U,.rootEpisode - U,.rootE pisode]

(b). The precedence relationship between use cases U, and U, is deleted. The use case U, is deleted.

U, ¢ Model .usecases

Verification: The semantics of the precedence relationship between use cases is analysed in Sec-
tion 3.2.2. Before the refactoring, the process algebra term for use cases U; and U, is Py, - Py,. After
the refactoring, the use case U, is merged into the use case U, Py, = Py, rootkpisode * P, rootEpisodes

which equals to Py, - Py,. Therefore, this refactoring is a behavior preserving transformation.

Precondition (a) ensures that the use case U, can be removed after the refactoring because it is an

abstract use case and not referenced by any other use case.

Postcondition (a) ensures that the use case U, is merged into the use case U, properly by adjusting
the episode tree. Postcondition (b) is obvious.
A.4.7 Usecase_Equivalence_Generation

Description: When two use cases are equivalent in behavior, two refactorings can be applied. One is

the Usecase_Equivalence_Generation refactoring. The other is the Reuse_Usecase refactoring. The

150

Usecase_Equivalence_Generation refactoring establishes an equivalence relationship between two
use cases if both have the equivalent episode model. This refactoring helps specify the use case

relationship explicitly so that the use case model is more understandable.
Arguments: use case Uy, use case U,.

Preconditions:

(a). The episode model of the use case U is equivalent to the episode model of the use case U,.

P Uy = P Us
Postconditions:

(a). An equivalence relationship is established between use cases U; and U,.

AEquivalence [U,, U]

Verification: If two use cases are equivalent in behavior, it means that both use cases have the equiv-
alent episode model. The episode model can be specified by process algebra. If both episode models
can be specified using the same process algebra term, they are equivalent. Both episode trees are
not necessarily identical. Two different episode trees can have the same semantics. For example, the
episode trees T'[e; - (e; + e3)] and T'{e; - e, + €1 - 3] have different tree structures, but the semantics

of the episode model is the same: p,, - (P, + Pey) = Pe; * Pe, + Pe, * Pes-

The semantics of the equivalence relationship is analysed in Section 3.2.2. Since use cases U, and
U, have the same semantics, specifying the equivalence relationship explicitly between them does

not change the behavior of the use case model.

A.4.8 Reuse_Usecase

Description: When two use cases are equivalent in behavior, two refactorings can be applied. One is
the Usecase_Equivalence_Generation refactoring. The other is the Reuse_Usecase refactoring. The
Reuse_Usecase refactoring keeps only one of these two use cases and removes the other. The kept
use case takes over all references on the removed use case. This refactoring helps improve the use

case reusability by removing the redundant use case.
Arguments: use case Uy, use case Us.

Preconditions:

151

(a). The episode model of the use case U, is equivalent to the episode model of the use case U,.

P Uy = P U,
Postconditions:

(a). The use case U, takes over all references to the use case U,.

(VU € U,.usecases AU # U, U € Uy.usecases)A\
(YA € U,.actors, A € Uj.actors)A

(Vu € Us.users,u € U,.users)

(b). The use case U, is deleted from the use case model.

U, ¢ Model’ .usecases

Verification: If two use cases are equivalent in behavior, it means that both use cases have the equiv-
alent episode model. The episode model can be specified by process algebra. If both episode models
can be specified using the same process algebra term, they are equivalent. Both episode trees are
not necessarily identical. Two different episode trees can have the same semantics. For example, the
episode trees T'[e; - (e2 + e3)] and T'le; - e; + €] - €3] have different tree structures, but the semantics

of the episode model is the same: p,, - (Pe, + Dey) = Pe, * Pes + Pey * Pes-

Since use cases U; and U, are equivalent, removing the use case U, and keeping only the use case
U, does not change the behavior of the use case model. Precondition (a) specifies that both use cases
have the equivalent episode model using the process algebra term. Postcondition (a) ensures that the
use case model is consistent after the refactoring by updating related references to the use case U,.

Postcondition (b) is obvious.

A.4.9 Merge_Usecases

Description: When two use cases are independent to each other and both use cases are used by the
same set of actors, one use case can be merged into the other without affecting the behavior of the use
case model. This refactoring keeps one of these two use cases and removes the other. This refactoring

helps manage the use case granularity and avoid fragment use cases.
Arguments: use case U, use case Uj.

Preconditions:

152

(a). Use cases U| and U, are concrete use cases. They are not referenced by any use case.

U, € Model.usecases A U, € Model.usecases
A U, .type = concrete A U,.type = concrete

A Ui.usecases = {} A Uy.usecases = {}

(b). Use cases U; and U, are used by the same set of actors.

U,.actors = Us,.actors
Postconditions:

(a). The use case U, is merged into the use case U, by adjusting the episode tree of the use case
U,. An alternation composite episode is created as the root node of the new episode tree of the
use case U/;. The original episode tree of U; and the episode tree of U, become its direct sub

episode trees.

AE ¢ Model.episodes N E € Model .episodes
A Ul.episodeTree = TIE] A T[E] = T[U,.rootE pisode + U,.rootE pisode]

(b). The use case U, is deleted.

U, ¢ Model .usecases

Verification: As described in Section 3.2.2, two concrete use cases can be mapped into one use case
which consists of the “or” of their respective episode models if both use cases are independent to

each other. This refactoring is a behavior preserving transformation.

Precondition (a) specifies that use cases U; and U, are isolated from other use cases. This ensures
that merging both use cases does not affect the behavior of other use cases. For example, if there
is another use case U including the use case U;, undesirable behavior will be introduced into the
use case U as the result of merging the use case U, into U;. Precondition (b) ensures that both use
cases are used by the same set of actors. Otherwise, the merged use case is used by actors associated
with both use cases U; and U,. The interaction between the merged use case and related actors at

the environmental level will become less clear. This reduces the understandability of the merged use

153

case.

Postcondition (a) ensures that the use case U, is merged into the use case U properly. Postcondition
(b) is obvious.
A.4.10 Generalize_Usecases

Description: This refactoring generalizes use cases when two or more use cases have a common
episode subtree. After the refactoring, an abstract use case is created as the parent of these use cases.
The common episode subtree is moved into this new use case. This refactoring helps reduce the

redundancy of the use case model and improve the reusability.

Arguments: a set of use cases {U;, Uy, -, U,}, a common episode subtree ¢, string newUsecase-

Name.

Preconditions:

(a). Use cases {U;, Us,--- ,U,} are used by the same set of actors. They have a common episode

subtree .
Yu e (U, Uy, - ,U,Lu € Model.usecasesA
u.actors = Uj.actorsh
u.type = concrete/
IsEpisodeS ubTree(u.episodeT ree, t)
(b). There is no use case relationship among Use cases {U,, U,,--- , U,}. These use cases are not

referenced by any other use case.

Yue{U,,U,,---,U,}, uusecases = {}.

(c). The name of the new use case does not clash with an already existing use case within the use

case model.

VYusecase € Model.usecases, usecase.name # newl secaseName.

Postconditions:

154

(a). A new use case U is created with the name of newUsecaseName. The use case U is an abstract
use case. It is the parent of use cases {U;, Us, - -- , Uy,}. The episode tree of the use case U is the

episode subtree .

AU ¢ Model.usecases A U € Model .usecases
A U.name = newlU secaseName A U.type = abstract
A (Vusecase € {Uy, Ua, - -+ , U,}, usecase.parentUsecase = U)

A U.episodeTree =t

(b). In use cases {U,, Us,--- , U,}, episodes occurring in the episode subtree ¢ are replaced by corre-

sponding episode placeholders.

Ye € tepisodes ANu € (U, Uy, - ,U,},
SubstituteE pisodeWithPlaceholder(u, e).

Verification: The generalization relationship means that the child use case contains all the attributes
and behavior sequence defined in the parent use case, and participates in all relationships of the parent
use case. The semantics of the generalization relationship is analysed in Section 3.2.2. This refac-
toring creates the parent use case U for use cases {U}, U,, - - - , U,} and moves the common episode
subtree ¢ to U. The use case U is an abstract use case. It cannot be instantiated on its own. Since
the common episode subtree £ is inherited in use cases {U;, Us, - - - , U,}, the behavior of the use case

model is preserved.

Precondition (a) ensures that use cases {U;, Us, - - - , U,} have the common episode subtree . Each
use case has the same set of actors. According to the semantics of the generalization relationship,
moving the episode subtree 7 to the parent use case does not change the behavior of these use cases.
Precondition (b) ensures that use cases {U,, Us,---, U,} are isolated. Refactoring these use cases
does not affect the behavior of other use cases. Precondition (c) ensures distinct environmental entity

name (invariant two in Section 3.3).
Postcondition (a) is obvious. It ensures that the new use case U is an abstract use case. Postcondition

(b) ensures that episodes in the episode subtree 7 are replaced by corresponding placeholders properly

in use cases (Uy, Ua, - - , Uy}

155

A.4.11 Merge_Actors

Description: Two actors can be merged into one actor without affecting the behavior of the use
case model. This refactoring keeps one actor and removes the other. The kept actor takes over all

references to the removed actor. This refactoring helps manage actors.
Arguments: actor U,, actor Uj,.

Preconditions:

(a). Actors A; and A; are not referenced by any other actor, but the actor A, can be the parent actor
OfA1 .

Ay € Model.actors N A, € Model.actors
A Aj.actors C {Ay}
A Aj.actors C {A1}

A (Ar.actors = {} V A|.parentActor = A;)

Postconditions:

(a). The actor A, is merged into the actor A|: goals in the actor A, are moved into the actor A;; users

of A, become users of the actor A;; use cases used by the actor A, are used by the actor A;.

(Vg € Ay.goals, g € Ay.goals)N
(Vu € Ar.users,u € A.users)A

(VU € Ay.usecases, U € Ay.usecases)

(b). The actor A, is deleted.

A, & Model .actors

Verification: Merging two actors into one actor does not change interactions between actors and use

cases. This refactoring is a behavior preserving transformation.

Precondition (a) ensures that actors A; and A, are isolated from other actors. Otherwise, merging the

actor A, to A; may affect other actors.

156

According to the use case metamodel defined in Section 3.1, the actor can be referenced by the actor,
use case, user or goal. Postcondition (a) ensures that references to the use case, user and goal in the
actor A, are taken over by the actor A;. This is very important for the behavior preservation. For
example, if the association relationship between the actor A and related use cases is not taken over
by Ai, the interaction between the actor A, and related use cases is lost. Thus the behavior of the use
case model is changed. Postcondition (b) is obvious. The actor A; is an unreferenced actor after the

refactoring. It should be deleted from the use case model.

A.4.12 Generalize_Actors

Description: When two or more actors use a common set of use cases and have a common set of
goals, this refactoring can be used to create a new actor A as the parent of these actors. The actor
A uses the above common set of use cases. The common goals are moved into the actor A. This
refactoring helps reduce the redundancy of the actor definition and improve the reusability of the use

case model.

Arguments: a set of actors {A[,A,,--- ,A,}, a common set of use cases {U;, Us,--- , U,}, a common

set of goals {G}, G, - - , G}, string newActorName.

Preconditions:

(a). Actors {A,A,, -+ ,A,} use a common set of use cases {U;, Us, - -- , U,} and have a common set
of goals {Gl’ G29 T Gn}

Nue {U,U,y,---,U,},u € Model.usecases)A
(Vg € {G1,Ga, -+ ,Gpl,g € Model.goals)A
(Va e {A,A,,--- ,A,},a € Model.actorsA
({Uy, Ua, -+, Uy} C a.usecases)A

(G1,Ga, -+ ,G,} C a.goals))

(b). There is no actor relationship among actors {4, A,, -+ - , A,}. These actors are not referenced by

any other actor.

Yae{A, Ay, -+ ALl a.actors = {}.

(c). The name of the new actor does not clash with an already existing actor within the use case

model.

157

Yactor € Model.actors, actor.name # newActorName.
Postconditions:

(a). A new actor A is created under the name of newActorName. The actor A is the parent of actors

{A1,A,, - -- ,A,). It has the association relationship with use cases {U;, Us, - - - , U,}.

JA ¢ Model.actors A A € Model .actors
A A.name = newActorName
A (Yactor € {A}, Ay, - -+ , A}, actor.parentActor = A)

A A.usecases = (U, U,, -+, Uy}

(b). Association relationships between use cases {U;, U,,---,U,} and actors {A},A;,--- ,A,} are

removed. Actors {A;,A,, -, A,} inherit these association relationships from the parent actor A.

Ya e {AI9A2, T ,An}aﬂu € {Ul’ UZ,' Y Un}

AU € a.usecases.

(¢). Common goals {G,G», - ,G,} are removed from actors {A[,A», - - - , A,} and moved to the new
actor A.

Vg € {G1,Gs, -+ ,GLlg € A.goals
A (Bactor € {A1, Az, -+, Ay)

A g € actor.goals).

Verification: The generalization relationship between actors means that the child actor contains all
the attributes and behavior sequences defined in the parent actor, and participates in all relationships
of the parent actor. The new actor A represents common roles played by actors {A}, A, - ,A,}.
It does not add any new interaction between actors and use cases. Actors {A[,A,, - ,A,} inherit
association relationships between the actor A and use cases {U;, U, --- ,U,}. All the interactions

between actors and use cases are preserved. This refactoring is a behavior preserving transformation.

Precondition (a) is obvious. It represents common roles played by actors {A;, A,,--- ,A,}. Precon-

dition (b) ensures that actors {A;, A,,--- ,A,} are isolated from other actors so that the new actor A

158

does not affect other actors. Precondition (c) ensures distinct environmental entity name (invariant

two in Section 3.3).

Postcondition (a) is obvious. Postcondition (b) adjusts association relationships between actors and
use cases. Postcondition (c) moves common goals from actors {A;, A,, - - ,A,} to the new actor A.

This removes the redundancy and improves the understandability of the use case model.

A.5 Decompose an Environmental Entity
A.5.1 Split_Usecase

Description: This refactoring splits one use case into two use cases. An episode subtree in the original

use case is moved into the new use case. This refactoring helps manage the use case granularity.

Arguments: use case U, the episode tree T of the use case U, the episode subtree ¢, for creating the

new use case, string newUsecaseName.

Preconditions:

(a). The episode subtree ¢, is a subtree of T'.

U € Model.usecases A U.episodeTree =T A IsEpisodeSubTree(T,)

(b). The use case U is not referenced by any other use case.

U.usecases = {}

(c). The root node of the episode tree T is an alternation composite episode. The episode tree T has

two direct episode subtrees. The episode tree ¢#; is one of its direct episode subtrees.

U.rootEpisode.type = AlternationE pisode
A dey € U.episodes A de, € U.episodes

A T[el] =u AT =Tle + e;]

(d). The name of the new use case does not clash with an already existing use case within the use

case model.

VYusecase € Model.usecases, usecase.name + newl secaseName.

159

Postconditions:

(a). A new use case U, is created with the name of newUsecaseName. The episode tree of use case

U, is the episode subtree 1;.

AU, ¢ Model.usecases A U; € Model .usecases A Uy.episodeTree = 1,

(b). The new use case U is used by all actors that have the association relationship with the use case

U. There is no use case relationship between use cases U and U] .

U,.actors = U.actors A Uy.usecases = {)

(c). In the use case U, the episode tree T is changed into 7’ by removing the episode subtree #; from
T.

de, € U.episodes A Je, € U.episodes
A ey & U'.episodes A e; € U'.episodes
ATlel =t AT =Tle; + &3]

AT =Tle} A U'.episodeTree =T’

Verification: Conversely to the Merge_Usecases refactoring, this refactoring splits one use case into
two use cases. The new use case U, has no use case relationship with the split use case U’. Before
the refactoring, Py = P,, + P,,. After the refactoring, the process algebra term for the use case model
containing use cases U, and U’ is: Py, + Py = P,, + P,,. Therefore, the behavior of the use case

model is preserved.

Precondition (a) is obvious. Precondition (b) ensures that the use case U has no use case relationship
with other use cases so that splitting U does not affect the behavior of other use cases. Precondition
(c) specifies the pattern of the episode tree of the use case U. The root episode of the use case U has
to be an alternation composite episode. Otherwise, there may exist the use case relationship between
the use case U’ and the new use case U,. Precondition (d) ensures distinct environmental entity name

(invariant two in Section 3.3).

Postcondition (a) and (b) are obvious. Postcondition (c) ensures that the episode tree T is adjusted

properly after the refactoring. The episode subtree #; has to be removed from the episode tree T'.

160

A.5.2 Usecase_Generalization_Generation

Description: This refactoring splits one use case into two and generates a generalization relationship
between these two use cases. After this refactoring, a new use case is created as the parent of the other
use case. One of its episode subtrees is moved to the new use case. This refactoring helps manage
the use case granularity. It can be seen as a special case of the Generalize_Usecases refactoring when

the set of use cases contains only one use case.

Arguments: use case U, the episode tree T of the use case U, the episode subtree ¢; for creating the

new use case, string newUsecaseName.

Preconditions:

(a). The episode tree 1, is a subtree of T.

U € Model.usecases A U.episodeTree = T A IsEpisodeSubTree(T,t;)

(b). The use case U is not referenced by any other use case.

U.usecases = {}
(c). The name of the new use case does not clash with an already existing use case within the use
case model.
Yusecase € Model.usecases, usecase.name # newlU secaseName.

Postconditions:

(a). A new use case U, is created with the name of newUsecaseName. The episode tree of the use
case U] is the episode tree t,. The use case U is an abstract use case. It is the parent of the use

case U.

U, ¢ Model.usecases A Uy € Model .usecases A U,.type = abstract

A Uj.episodeTree = t; A U.parentUsecase = U,

(b). In the use case U, episodes occurring in the episode subtree #; are replaced by corresponding
episode placeholders.

Ve € ty.episodes, S ubstitute E pisodeWithPlaceholder(U,).

161

Verification: Conversely to the Usecase_Generalization_Merger refactoring, this refactoring splits
one use case into two and generates a generalization relationship between these two use cases. The
semantics of the generalization relationship is analysed in Section 3.2.2. The new use case U is an
abstract actor. It cannot be instantiated on its own. The use case U inherits the episode subtree t;
from the use case U;. The interaction between actors and the use case U is preserved. Therefore, this

refactoring is a behavior preserving transformation.

Precondition (a) is obvious. Precondition (b) ensures that the use case U has no use case relationship
with other use cases so that splitting U does not affect the behavior of other use cases. Precondition

(c) ensures distinct environmental entity name (invariant two in Section 3.3).

Postcondition (a) is obvious. Postcondition (b) ensures that episodes in the episode subtree ¢, are
replaced by corresponding episode placeholders properly.
A.5.3 Usecase_Inclusion_Generation

Description: This refactoring splits one use case into two and generates an inclusion relationship
between these two use cases. When the episode model of a use case is too complicated, it is preferable
to split the episode tree. After the refactoring, a new use case is created with an episode subtree of
the original use case. The original use case includes the new use case. This refactoring helps manage
the use case granularity, reduce the redundancy, and improve the understandability of the use case

model.

Arguments: use case U, the episode tree T of the use case U, the episode subtree t; for creating the

new use case, string newUsecaseName.

Preconditions:

(a). The episode subtree #, is a subtree of T'.

U € Model.usecases A U.episodeTree = T A IsEpisodeSubTree(T, 1)

(b). The name of the new use case does not clash with an already existing use case within the use

case model.

Yusecase € Model.usecases, usecase.name + newlU secaseName.

Postconditions:

162

(a). An abstract use case U is created with the name of newUsecaseName. The episode tree of the

new use case U, is the episode subtree t;. The use case U includes the new use case U;.

AU, ¢ Model.usecases A U, € Model .usecases

A U, .type = abstract A U;.episodeTree = t| A Inclusion[U, U]

(b). The episode tree ¢, is substituted by a pseudo-episode in the episode tree 7. The pseudo-episode

indicates the inclusion point for the inclusion relationship between use cases U and U;.

SubstituteE pisodeT reelnU secase(U, t;, T| Pseudo[U1]])

Verification: Conversely to the Usecase_Inclusion_Merger refactoring, this refactoring splits one use
case into two and generates an inclusion relationship between these two use cases. The semantics of
the inclusion relationship is analysed in Section 3.2.2. The new use case U, is an abstract use case. It
cannot be instantiated on its own. The use case U’ includes the behavior of the new use case U, at the
inclusion point. The interaction between the use case U and related actors is preserved. Therefore,

this refactoring is a behavior preserving transformation.

Precondition (a) is obvious. Precondition (b) ensures distinct environmental entity name (invariant

two in Section 3.3).

Postcondition (a) ensures that the new use case U, is an abstract use case. Therefore, the behavior
of the use case model with use cases U’ and U, can be verified based on the interaction between the
use case U’ and related actors. Postcondition (b) ensures that the episode tree T is adjusted properly

after the refactoring by replacing the episode subtree ¢, with the inclusion point.

A.5.4 Usecase_Extension_Generation

Description: This refactoring splits one use case into two and generates an extension relationship
between these two use cases. When the episode subtree for an exceptional or alternative course is
too complicated, it is preferable to split the episode tree of the use case. After the refactoring, a new
use case is created with the episode subtree representing the exceptional or alternative course. The
new use case extends the original use case. This refactoring helps manage the use case granularity,

reduce the redundancy, and improve the understandability of the use case model.

Arguments: use case U, the episode tree T of the use case U, the episode subtree #, representing the

exceptional or alternative course, string newUsecaseName.

Preconditions:

163

(a). The episode subtree #; is a subtree of 7. It represents an exceptional or alternative course.

U € Model.usecases A U.episodeTree = T A IsEpisodeSubTree(T,t)
A ey € U.episodes A ey € U.episodes A e, € U.episodes
A eg.type = AlternationE pisode A Tleg]l = Tley + ex] A ey # e

AT[ell =1

(b). The name of the new use case does not clash with an already existing use case within the use

case model.

Yusecase € Model.usecases, usecase.name + newlU secaseName.
Postconditions:

(a). An abstract use case U, is created with the name of newUsecaseName. The episode tree of the

use case U] is the episode subtree £;. The use case U; extends the use case U.

AU, ¢ Model.usecases A U, € Model .usecases

A U,.type = abstract A U,.episodeTree = t| A Extension|U, U]

(b). The episode tree 7; is substituted by a pseudo-episode in the episode tree 7. The pseudo-episode

indicates the extension point for the extension relationship between use cases U and U,.

SubstituteE pisodeT reelnU secase(U, t;, T[Pseudo[U;]})

Verification: Conversely to the Usecase_Extension_Merger refactoring, this refactoring splits one use
case into two and generates an extension relationship between these two use cases. The semantics of
the extension relationship is analysed in Section 3.2.2. The new use case U, is an abstract use case.
It cannot be instantiated on its own. The new use case U; extends the use case U at the extension
point. The interaction between actors and the use case U is preserved. Therefore, this refactoring is

a behavior preserving transformation.
Precondition (a) ensures that the episode subtree ¢, represents an exceptional or alternative course in

the use case U so that ¢; can be moved to the extending use case U;. Precondition (b) ensures distinct

environmental entity name (invariant two in Section 3.3).

164

Postcondition (a) ensures that the new use case U; is an abstract use case. Therefore, the behavior
of the use case model with use cases U’ and U, can be verified based on the interaction between the
use case U’ and related actors. Postcondition (b) ensures that the episode tree T is adjusted properly

after the refactoring by replacing the episode subtree #; with the extension point.

A.5.5 Usecase_Precedence_Generation

Description: This refactoring splits one use case into two and generates a precedence relationship be-
tween these two use cases. When an episode subtree is always performed at the end of the execution
and the subtree is complicated, it is preferable to move this subtree to a new use case. A precedence
relationship is established to specify the time order between the original use case and the new use
case. This refactoring helps manage the use case granularity, reduce the redundancy, and improve

the understandability of the use case model.

Arguments: use case U, the episode tree T of the use case U, the episode subtree ¢, for creating the

new use case, string newUsecaseName.

Preconditions:

(a). The use case U is not referenced by any other use case.

U € Model.usecases A U.usecases = {}

(b). The episode subtree ¢, is a subtree of 7. The episode subtree ¢, is always performed at the end.

U.episodeTree = T A IsEpisodeSubTree(T,t)
A deg € U.episodes A de, € U.episodes A ey # €,
AT =Tleg-e] At = Tle]

(c). The name of the new use case does not clash with an already existing use case within the use

case model.

Yusecase € Model.usecases, usecase.name #+ newlU secaseName.
Postconditions:

(a). An abstract use case U, is created with the name of newUsecaseName. The episode tree of the

use case U] is the episode subtree ;. The use case U precedes to the use case U;.

165

AU, ¢ Model.usecases A U; € Model’ .usecases

A Uyype = abstract A U,.episodeTree = t; A Precedence|U, U]

(b). The episode subtree ¢, is removed from the episode tree 7.

DeleteE pisodeT reelnU secase(U, t,)

Verification: Conversely to the Usecase_Precedence _Merger refactoring, this refactoring splits one
use case into two and generates a precedence relationship between these two use cases. The seman-
tics of the precedence relationship is analysed in Section 3.2.2. The new use case U, is an abstract
use case. It cannot be instantiated on its own. The new use case U is always performed after the use
case U. The interaction between actors and the use case U is preserved. Therefore, this refactoring

is a behavior preserving transformation.

Precondition (a) ensures that the use case U has no use case relationship with other use cases. Other-
wise, splitting it may affect the behavior of other use cases. Precondition (b) ensures that the episode
subtree ¢, is always performed at the end in the use case U. Otherwise, the precedence relationship
cannot be created between use cases U and U,. Precondition (c) ensures distinct environmental entity

name (invariant two in Section 3.3).

Postcondition (a) ensures that the new use case U, is an abstract use case. Therefore, the behavior of
the use case model with use cases U’ and U, can be verified based on the interaction between the use
case U’ and related actors. Postcondition (b) ensures that the episode tree T is adjusted by removing
the episode subtree ¢, after the refactoring.

A.5.6 Split_Actor

Description: This refactoring splits one actor into two actors. After the refactoring, a new actor is
created. The new actor has a subset of goals that the original actor has. The new actor takes over some
roles that the original actor plays. This refactoring helps manage the actor granularity. It improves

the understandability and reusability of the use case model.
Arguments: actor A, a set of goals {G,G,, - -- , G,} for creating the new actor, string newActorName.

Preconditions:

(a). The set of goals {G1,G,,- - ,G,} is a subset of goals of the actor A.

166

A € Model.actors A ({Gy, G, -+ ,G,} C A.goals)

(b). The actor A interacts with one use case in the use case model. The actor A has only one user.

(AU € Model.usecases, A.usecases = {U})

A (Quser € Model.users, A.user = {user})

(c). The actor A has no actor relationship with any other actor.

AA.actors = {}

(d). The name of the new actor does not clash with an already existing actor within the use case

model.
Yactor € Model.actors, actor.name # newActorName.
Postconditions:
(a). Anew actor A is created with the name of newActorName. The actor A, has goals {G, G, -- ,G,}.

The actor A; does not have the actor relationship with the actor A’. It interacts with the use case

that the actor A interacts with.

A, & Model.actors A A| € Model .actors
ANAigoals = {G,Gs, - ,G,} A Ayactor = {}

A Aj.usecases = A.usecases N\ Aj.users = A.users

(b). The actor A’ does not have any goal in goals {G,G3, - - - ,G,}.

Vg € {G1,Gy, -+ ,Gn}, g ¢ A’ goals.

Verification: This refactoring splits one actor into two actors. The new actor A; interacts with the
same use case U that the actor A interacts with. The interaction between the actor A and the use case
U is preserved by the interaction between the actor A’ and the use case U and the interaction between

the actor A; and the use case U. Thus this refactoring is a behavior preserving transformation.

167

Precondition (a) ensures that the set of goals {G|, G, - - ,G,} is a subset of goals of the actor A. So
the new actor A, represents some of roles played by the actor A. Precondition (b) ensures that the
actor A interacts with only one use case. The actor A has only one user. This simplifies the definition
of this refactoring. Precondition (c) ensures that the use case A does not have the actor relationship
with any other actor. Otherwise, splitting it may affect the behavior of other actors. Precondition (d)

ensures distinct environmental entity name (invariant two in Section 3.3).

Postcondition (a) ensures that the new actor A, is created properly. Postcondition (b) ensures that the

actor A is adjusted by removing goals {G,G>, - ,Gp}.

A.5.7 Actor_Generalization_Generation

Description: This refactoring splits one actor into two actors and generates a generalization relation-
ship between these two actors. After the refactoring, a new abstract actor is created. A set of goals
representing the general behavior of the original actor is moved to the new actor. This refactoring

helps improve the understandability and reusability of the use case model.

Arguments: actor A, goals {G1, G, - - ,G,} for creating the new actor, string newActorName.

Preconditions:

(a). Goals {G,, G, - ,G,} represents the general behavior of the actor A. It is a subset of goals of
the actor A.

A € Model.actors A ({G1,Ga,- - ,G,} C A.goals)

(b). The actor A does not have the parent actor.

Yactor € Model.actors, actor # A.parentActor.

(c). The name of the new actor does not clash with an already existing actor within the use case

model.

Yactor € Model.actors, actor.name # newActorName.

Postconditions:

(a). A new abstract actor A, is created with the name of newActorName. The actor A; is the parent
of the actor A. The actor A; has goals {G|,G>, - - ,G,}. The actor A does not have any goal in
goals {G1, Gy, - -+ , Gy}

168

A, € Model.actors A A; € Model .actors

A Ay.type = abstract A\ A’ .parentActor = A,
AAy.goals = {G1,Ga,- - ,Gy)

AN(Vg €{G,Gy,--- ,G,), 8 ¢ A’ goals)

Verification: This refactoring splits one actor into two and generates a generalization relationship
between these two actors. The new actor A, is an abstract actor. The interaction between the actor
A and use cases is preserved. Since the actor A’ inherits goals {G1,G», - - - ,G,} from the actor A;,
the actor A’ has the same set of goals with the actor A. Therefore, this refactoring is a behavior

preserving transformation.

Precondition (a) is obvious. The actor A represents the general role of the actor A. This is expressed
by goals {G1,G», - - - , G,}. Precondition (b) ensures unique parent (invariant one in Section 3.3). Pre-

condition (c) ensures distinct environmental entity name (invariant two in Section 3.3).

Postcondition (a) ensures that the new actor A, is created properly. It is an abstract actor. The actor
Aj has goals {G{,G,,--- ,G,}. The actor A inherits these goals from A;. Thus the actor A; can be

reused by other actors during the evolution of the use case model.

A.6 Move an Environmental Entity
A.6.1 Move_Goal_To_Parent_Actor

Description: This refactoring moves a goal from child actor(s) to its parent actor. It helps improve

the understandability and reusability of the actor.

Arguments: actor A, the set of its child actors {ay, a,, - -, a,}, goal g to be moved from child actors
to actor A.

Preconditions:

(a). The actor A is an abstract actor. It does not have the goal g. The actor A is the parent of actors

{aly a, -, an}-

A € Model.actors A A.type = abstract

A(Va € {ay,az,--- ,a,},a € Model.actors A a.parentActor = A)

169

(b). The actor A is not referenced by any other actor than {a;, ay, - -+, @}

A.actors = {ay,az," -+ ,a,)

(c). Every actor in {ay, ay, - - -, a,} has the goal g.

Ya € {ai,az, - ,a.}, g € a.goals.

Postconditions:
(a). The goal g is removed from actors {a;, ay, - - -, a,} and moved to the actor A.
(va € {al’ az,: -, an}’ 4 3 a'goals)
A g € A.goals
Verification: This refactoring moves a goal from child actors {a;,a,- - ,a,} to the parent actor A.

After the refactoring, child actors inherit the goal g from the actor A. The relationship between the

goal model and these child actors is preserved.

Preconditions (a) and (c) are obvious. Precondition (b) ensures that the actor A and its child actors

are isolated from other actors. Otherwise, moving the goal g may affect other actors.

170

B. Refactorings at the Structure Level

B.1 Create a Structural Entity
B.1.1 Create_Empty_Episode

Description: create a new episode without any defined event. The new episode is isolated from other

episodes.
Arguments: string newEpisodeName

Preconditions:

(a). The name of the new episode does not clash with an already existing episode within the use case

model.

Vepisode € Model.episodes, episode.name # newE pisodeName.
Postconditions:

(a). The new episode is empty and is isolated from other episodes.

de € Model .episodes A e ¢ Model.episodes A e.name = newE pisodeName

A e.episodes = {} A e.events = {}

Verification: Since the new episode is isolated from other episodes, it does not participate in the
interaction between use cases and actors. Therefore, this refactoring does not change the behavior of

the use case model. Precondition (a) ensures distinct episode name (invariant three in Section 3.3).

B.2 Delete a Structural Entity

B.2.1 Delete_Unreferenced_Episode

Description: delete an unreferenced episode from the use case model.
Arguments: episode E.

Preconditions:

(a). The episode E is not referenced by any use case or any other episode.

E € Model.episodes N E.usecases = {} A E.episodes = {}

171

Postconditions:

(a). The episode E is deleted from the use case model.

E ¢ Model .episodes
(b). The deletion is cascaded to the event level. After the episode E is deleted from the use case
model, some events may be unreferenced. These events are deleted.
Vv € E.events A v.episodes = {E},v ¢ Model .events.

Verification: Since the episode E is isolated from use cases and other episodes, it does not participate
in the interaction between use cases and actors. Deleting it does not change the behavior of the use

case model.

B.3 Change a Structural Entity

B.3.1 Change_Episode Name

Description: change the name of an episode in the use case model.
Arguments: episode E, newEpisodeName

Preconditions:

(a). E € Model.episodes

(b). The new episode name does not clash with an already existing episode within the use case model.

Vepisode € Model.episodes, episode.name # newE pisodeName.
Postconditions:

(a). Episode E is given a new name (newEpisodeName).

E .name = newE pisodeName

Verification: Precondition (a) is obvious. Precondition (b) ensures distinct episode name (invariant
three in Section 3.3). Changing the name of an episode does not change the behavior of the use case

model.

172

B.4 Compose a Structural Entity
B.4.1 Episode_Sequence_Merger

Description: When there is a sequence relationship between two primitive episodes, this refactoring
can be used to merge them into a new primitive episode. It helps manage the episode granularity and

improve the use case internal structure.
Arguments: primitive episode E|, primitive episode E,, string newEpisodeName.

Preconditions:

(a). There is a sequence relationship between episodes E| and E,. E, follows E| immediately.

E| € Model.episodes A E, € Model.episodes
A E\.type = PrimitiveEpisode A E,.type = PrimitiveE pisode
A Sequence [E, E,]

(b). The name of the new episode does not clash with an already existing episode within the use case

model.

Vepisode € Model.episodes, episode.name # newE pisodeName.
Postconditions:

(a). The new primitive episode is created by merging episodes E; and E, together.

JE ¢ Model.episodes A E € Model .episodes
A E.name = newEpisodeName A E.type = PrimitiveEpisode
AT[E]=TIE, - E5]

(b). All occurrences with the sequence relationship between E, and E, in the use case model are

replaced by the new episode E.

Yu € Model.usecases, S ubstituteE pisodeTreelnU secase(u, T[E, - E,}, T[E}).

173

(c). After the above step, if episodes E; and E, are not referenced by any use case, they are deleted

from the use case model.

(E,.usecases = {} = E,; ¢ Model .episodes)A

(E,.usecases = {} = E, ¢ Model .episodes)

Verification: According to the definition of the sequence relationship between episodes in Sec-
tion 3.1.3, it is apparent that this refactoring is a behavior preserving transformation. The process

algebra term of the new primitive episode E equals to the one of episodes E; and E;: Pg = Pg, - Pg,.

Precondition (a) specifies the sequence relationship between episodes £, and E,. Precondition (b)

ensures distinct episode name (invariant three in Section 3.3).

Postcondition (a) specifies the episode model of the new episode. The new episode has exactly
the same behavior as the combination of episode E; and E,. Postcondition (b) ensures that this
refactoring is applied to all occurrences consistently where there is a sequence relationship between
episodes E; and E;. If only one of episodes ;| and E; is used by a certain use case, this refactoring is
not applicable in this particular case. After the refactoring, unreferenced episodes should be removed.

This is specified in Postcondition (c).

B.4.2 Episode_Alternation_Merger

Description: When there is an alternation relationship between two primitive episodes, this refactor-
ing can be used to merge them into a new primitive episode. It helps manage the episode granularity

and improve the use case internal structure.
Arguments: episode E|, episode E,, string newEpisodeName.

Preconditions:

(a). There is an alternation relationship between episodes E; and E;.

E, € Model.episodes A E, € Model.episodes
A Ei.type = PrimitiveEpisode A E;.type = PrimitiveE pisode

A Alternation [E,, E,]

(b). The name of the new episode does not clash with an already existing episode within the use case

model.

174

Yepisode € Model.episodes, episode.name # newEpisodeName.
Postconditions:

(a). The new primitive episode E is created by merging episodes E| and E, together.

3E ¢ Model.episodes N E € Model .episodes
A E.name = newEpisodeName A E.type = PrimitiveE pisode
ATI[E] =TI[E; + E;]

(b). All occurrences with the alternation relationship between episodes E; and E; in the use case

model are replaced by the new episode E.

Yu € Model.usecases, S ubstituteE pisodeTreelnUsecase(u, T|E| + E,], T[E]).

(c). After the above step, if episodes E; and E, are not referenced by any use case, they are deleted

from the use case model.

(Ey.usecases = {} = E| ¢ Model .episodes)A
(Ey.usecases = {} = E, ¢ Model' .episodes)

Verification: According to the definition of the alternation relationship between episodes in Sec-
tion 3.1.3, it is apparent that this refactoring is a behavior preserving transformation. The process

algebra term of the new primitive episode E equals to the one of episodes E, and E,: Pg = Pg, + Pg,.

Precondition (a) specifies the relationship between episodes E; and E>. Precondition (b) ensures en-

sures distinct episode name (invariant three in Section 3.3).

Postcondition (a) specifies the episode model of the new episode. The new episode has exactly
the same behavior as the combination of episode £, and E,. Postcondition (b) ensures that this
refactoring applies to all occurrences consistently where there is an alternation relationship between
episodes E; and E;. If only one of E; and E; is used by a certain use case, this refactoring is not
applicable in this particular case. After the refactoring, unreferenced episodes should be removed.

This is specified in Postcondition (c).

175

B.4.3 Episode_Parallel Merger

Description: When there is a parallel relationship between two episodes, this refactoring can be used
to merge them into a new primitive episode. It helps manage the episode granularity and improve the

use case internal structure.
Arguments: episode E, episode F,, string newEpisodeName.
Preconditions:

(a). There is a parallel relationship between episodes E; and E».

E|, € Model.episodes A E; € Model.episodes
A E\.type = PrimitiveE pisode A E.type = PrimitiveE pisode
A Parallel [E,, E,]

(b). The name of the new episode does not clash with an already existing episode within the use case

model.

Vepisode € Model.episodes, episode.name # newE pisodeName.

Postconditions:

(a). The new primitive episode E is created by merging episodes E| and E; together.

AF ¢ Model.episodes N\ E € Model .episodes
A E.name = newEpisodeName A E.type = PrimitiveE pisode
ATIET=TIE, || E2]
(b). All occurrences with the parallel relationship between episodes E; and E; in the use case model

are replaced by the new episode E.

VYu € Model.usecases, S ubstituteE pisodeTreelnUsecase(u, T|E, || E;], T[E]).

(c). After the above step, if episode E| and E, are not referenced by any use case, they are deleted
from the use case model.

(E\.usecases = {} > E; ¢ Model' .episodes)A

(Ej.usecases = {} = E, ¢ Model .episodes)

176

Verification: According to the definition of the parallel relationship between episodes in Section 3.1.3,
it is apparent that this refactoring is a behavior preserving transformation. The process algebra term

of the new primitive episode E equals to the one of episode E; and E;: Pg = Pg, || Pg,.

Precondition (a) specifies the relationship between episodes E; and E,. Precondition (b) ensures en-

sures distinct episode name (invariant three in Section 3.3).

Postcondition (a) specifies the episode model of the new episode. The new episode has exactly
the same behavior as the combination of episode E; and E;. Postcondition (b) ensures that this
refactoring applies to all occurrences consistently where there is a parallel relationship between
episodes E, and E;. If only one of E; and E, is used by a certain use case, this refactoring is not
applicable in this particular case. After the refactoring, unreferenced episodes should be removed.

This is specified in Postcondition (c).

B.4.4 Generalize Episodes

Description: The Generalize Episodes refactoring is suggested when two or more episodes have a
common event subtree. After this refactoring, an abstract episode is created as the parent of these
episodes. The common event subtree is moved into the new parent episode. This refactoring helps

reduce the redundancy and improve the reusability.

Arguments: a set of episodes {E}, E,, - - - , E,}, a common event subtree ¢, string newEpisodeName.
Preconditions:
(a). Episodes {E;, E»,-- - , E,} have a common event subtree 7.

VE € {E|,Es, - ,E,}, E € Model.episodes N [sEventSubTree(E.eventTree,t).

(b). Episodes {E|, E, - - - , E,} do not have any existing parent episode.

YE € {E\,E;,--- ,E,}, AE.parentE pisode.

(c). The name of the new episode does not clash with an already existing episode within the use case

model.

Vepisode € Model.episodes, episode.name # newE pisodeName.

Postconditions:

177

(a). A new abstract episode E is created with the name of newEpisodeName. It becomes the parent

of episodes {E,, E,, - - - , E,}. The event tree of E is the subtree ¢.

AE ¢ Model.episodes A E € Model .episodes N\ E.name = newEpisodeName
A E.type = abstract A E.eventTree =t

A(Vee({E\,E,,---,E,},e.parentEpisode = E)

(b). In episodes {E1, E,, - - - , E,}, events occurring in the event subtree ¢ are replaced by correspond-

ing event placeholders.

Yv € tevents AVe € {E|,E,,--- , E,},SubstituteEventWithPlaceholder(e, v).

Verification: This refactoring reuses the common behavior by moving up the common event sequence
to the parent episode. Since the same event sequence is inherited in child episodes, the behavior of

the use case model is preserved.

Precondition (a) ensures that episodes {E|, E», - - - , E,,} have a common event subtree. Precondition
(b) avoids multiple inheritances. This ensures unique parent (invariant one in Section 3.3). Precon-

dition (c) ensures distinct episode name (invariant three in Section 3.3).

Postcondition (a) ensures that an abstract episode is created. This episode does not participate in the
episode tree directly. Instead, its child episodes inherit its behavior and form the episode tree. Post-
condition (b) ensures that related events are replaced by corresponding event placeholders properly

in child episodes.

B.S Decompose a Structural Entity
B.5.1 Episode_Sequence_Generation

Description: This refactoring splits one primitive episode into two primitive episodes and gener-
ates a sequence relationship between these two episodes. When the event model of an episode is
too complicated, it is preferable to split the event tree. After this refactoring, a new sequence com-
posite episode is created to replace the original episode. This refactoring helps reduce the episode

granularity and improve the understandability.

Arguments: primitive episode E, its event subtrees 7| and T, string newEpisodeNamel, string

newEpisodeName?2.

Preconditions:

178

(a). E € Model.episodes A E.type = PrimitiveE pisode A
newFEpisodeNamel # newEpisodeName2

(b). The event tree of E can be represented by T; and T with the sequence relationship.

AxAdyAE.eventTree=T[x-YIANT[x] =T ATyl =T,

(c). The name of new episodes does not clash with an already existing episode within the use case

model.

Vepisode € Model.episodes, episode.name # newEpisodeNamel A

episode.name * newEpisodeName?2.

Postconditions:

(a). New episodes E; and E, are created with the event subtrees T; and T, respectively.

E| ¢ Model.episodes A E| € Model' .episodes A E|.name = newE pisodeNamel A
E, ¢ Model .episodes A E, € Model .episodes A Ey.name = newE pisodeName2A
E\.type = PrimitiveEpisode A E».type = PrimitiveE pisodeA

E,.eventTree =T, AN E;.eventTree = T,

(b). The episode E is replaced by a sequence composite episode, which contains episodes E; and E;.

E, follows E; immediately.

AE’ € Model .episodes A E’.type = S equenceE pisode
ATI[E'] = TIE, - E\]
A SubstituteE pisode(E, E")

Verification: Conversely to the Episode_Sequence_Merger refactoring, this refactoring splits one
primitive episode into two primitive episodes and generates a sequence relationship between these
two episodes. According to the definition of the sequence relationship between episodes in Sec-
tion 3.1.3, it is apparent that this refactoring is a behavior preserving transformation. After this

refactoring, both new primitive episodes can be merged back so that the original primitive episode is

179

restored.

Precondition (a) is obvious. Precondition (b) specifies the pattern of the event tree of the original

episode E. Precondition (c) ensures distinct episode name (invariant three in Section 3.3).

Postcondition (a) ensures that new primitive episodes are created with event subtrees specified in
arguments. So new primitive episodes have the equivalent behavior as the original primitive episode.
Postcondition (b) ensures that the original primitive episode E is replaced by a sequence composite
episode E’, which is composed of new primitive episodes. All occurrences of the episode E must be
replaced. Therefore, the episode E is restructured and the change is applied to the use case model

consistently.

B.5.2 Episode_Alternation _Generation

Description: This refactoring splits one primitive episode into two primitive episodes and gener-
ates an alternation relationship between these two primitive episodes. When the event model of an
episode is too complicated, it is preferable to split the event tree. After this refactoring, a new alter-
nation composite episode is created to replace the original episode. This refactoring helps reduce the

episode granularity and improve the understandability.

Arguments: primitive episode E, its event subtrees 7| and 75, string newEpisodeNamel, string

newEpisodeName?2.

Preconditions:

(a). E € Model.episodes A E.type = PrimitiveE pisode A

newEpisodeNamel # newE pisodeName?2

(b). The event tree of E can be represented by 7 and T, with the alternation relationship.

Ax Ay A E.eventTree =T[x+y]AT[x] =T AT[y] =T

(c). The name of new episodes does not clash with an already existing episode within the use case

model.

Vepisode € Model.episodes, episode.name # newE pisodeNamel A

episode.name # newE pisodeName?2.

Postconditions:

180

(a). Episodes E| and E; are created with event subtrees T; and T, respectively.

E| ¢ Model.episodes A E| € Model’ .episodes N E|.name = newE pisodeNamel A
E, ¢ Model .episodes A E; € Model’ .episodes A E,.name = newE pisodeName2A
E.type = PrimitiveEpisode A E,.type = PrimitiveE pisode

E .eventTree = T\ A E;.eventTree =T,

(b). The episode E is replaced by an alternation composite episode, which contains episodes E; and
E,.

AE’ € Model .episodes A E’ .type = AlternationE pisode
AT[E]l =T[E, + E4]
A S ubstituteE pisode(E, E")

Verification: Conversely to the Episode_Alternation_Merger refactoring, this refactoring splits one
primitive episode into two primitive episodes and generates an alternation relationship between these
primitive episodes. According to the definition of the alternation relationship between episodes in
Section 3.1.3, it is apparent that this refactoring is a behavior preserving transformation. After this
refactoring, both new primitive episodes can be merged back so that the original primitive episode is

restored.

Precondition (a) is obvious. Precondition (b) specifies the pattemn of the event tree of the original

episode E. Precondition (c) ensures distinct episode name (invariant three in Section 3.3).

Postcondition (a) ensures that new primitive episodes are created with event subtrees specified in
arguments. So new primitive episodes have the equivalent behavior as the original primitive episode.
Postcondition (b) ensures that the original primitive episode E is replaced by an alternation compos-
ite episode E’, which is composed of new primitive episodes. All occurrences of the episode E must
be replaced. Therefore, the episode E is restructured and the change is applied to the use case model

consistently.

B.5.3 Episode Parallel_Generation

Description: This refactoring splits one primitive episode into two primitive episodes and generates a
parallel relationship between these two episodes. When the event model of an episode is too compli-

cated, it is preferable to split the event tree. After this refactoring, a new parallel composite episode

181

is created to replace the original episode. This refactoring helps reduce the episode granularity and

improve the understandability.

Arguments: primitive episode E, its event subtrees T, and 7>, string newEpisodeNamel, string

newEpisodeName?2.

Preconditions:

(a). E € Model.episodes A E.type = PrimitiveE pisode A

newEpisodeNamel # newE pisodeName2

(b). The event tree of E can be represented by 7| and T, with the parallel relationship.

Ax A3y A EeventTree =T[x || YIAT[x] =T, ATyl =T,

(c). The name of new episodes does not clash with an already existing episode within the use case

model.

Yepisode € Model.episodes, episode.name # newEpisodeNamel A

episode.name ¥ newEpisodeName?2.

Postconditions:

(a). Episodes E; and E; are created with event subtrees T} and T respectively.

E| ¢ Model.episodes A E\ € Model .episodes N E\.name = newE pisodeNamel A
E> ¢ Model .episodes A E; € Model' .episodes A E;.name = newE pisodeName2 A
E,.type = PrimitiveEpisode A E,.type = PrimitiveE pisode A

E .eventTree = T\ A Ey.eventTree = T,

(b). The episode E is replaced by a parallel composite episode, which contains episodes E; and E,.

3E’ € Model .episodes A E’.type = ParallelE pisode
ATIE1=TIE| | Ei]
A SubstituteE pisode(E, E")

182

Verification: Conversely to the Episode_Parallel_Merger refactoring, this refactoring splits one prim-
itive episode into two primitive episodes and generates a parallel relationship between these two
primitive episodes. According to the definition of the parallel relationship between episodes in Sec-
tion 3.1.3, it is apparent that this refactoring is a behavior preserving transformation. After this
refactoring, both new primitive episodes can be merged back so that the original primitive episode is

restored.

Precondition (a) is obvious. Precondition (b) specifies the pattern of the event tree of the original

episode E. Precondition (c) ensures distinct episode name (invariant three in Section 3.3).

Postcondition (a) ensures that new primitive episodes are created with event subtrees specified in
arguments. So new primitive episodes have the equivalent behavior as the original primitive episode.
Postcondition (b) ensures that the original primitive episode E is replaced by a parallel composite
episode E’, which is composed of new primitive episodes. All occurrences of the episode E must be
replaced. Therefore, the episode F is restructured and the change is applied to the use case model

consistently.

B.6 Move a Structural Entity
B.6.1 Move_Episode_To_Parent_Usecase

Description: This refactoring moves an episode from child use cases to the parent use case. It helps

improve the use case reusability and understandability.

Arguments: use case U, its child use cases {u;, uy, - - -, u,}, a common episode e to be moved.
Preconditions:
(a). U € Model.usecases A (Nu € {uy, uz, - - ,u,}, u € Model.usecases)

(b). The use case U is an abstract use case in the use case model.

U.type = abstract

(c). The use case U is the parent of use cases {u;, u, - -, u,}. It does not have any other child use
case.
Auel{u,up, - u.} A u.parentUsecase # U)A
(Au ¢ {uy, us,- - -, u,} A u.parentUsecase = U)

183

(d). The episode e is a common episode within use cases {u;, ua, - - -, Uy}.

Bu € {u,uz, -+ ,uy} A e ¢ uepisodes
Postconditions:

(a). The episode e is moved to the use case U. In use cases {u;, uy, - - -, u,}, the episode e is replaced

by an episode placeholder.

ec U A(NVue{u,us,--- ,u}, SubstituteE pisodeWithPlaceholder(u, e)).

Verification: This refactoring moves a common episode from child use cases to the parent use case.
Since this common episode is inherited in child use cases after the refactoring, the behavior of the

use case model is preserved.

B.7 Convert a Structural Entity
B.7.1 Convert_Episode_To_Usecase

Description: When an episode is too complicated, some refactorings can be used to split it into
two episodes. The Convert_Episode_to_Usecase refactoring, however, reduces the complexity using
another approach. It converts the entire episode into a new use case. This refactoring helps reduce

the use case granularity and improve the understandability.
Arguments: original use case U, episode e to be converted, string newUsecaseName.

Preconditions:

(a). The use case U contains the episode e. The episode e is not referenced by any other use case.

U € Model.usecases A e € U.episodes A e.usecases = {U}

(b). The name of the new use case does not clash with an already existing use case within the use

case model.

Yusecase € Model.usecases, usecase.name + newl secaseName.

(c). One of the following conditions is satisfied.

184

(c1). The episode e is in the normal execution path and it is executed at the beginning or at the

end.

dx A p, # € A (U.episodeTree = Tle - x] vV U.episodeTree = T[x - €])

(c2). The episode e is in the normal execution path and it is not executed at the beginning or at

the end, the use case U includes the new use case.
AxAIyAp.#eAp, #€AUepisodeTree =T[x-e-y]
(c3). The parent node of the episode is an alternation composite episode located at the root
node of the episode tree.
dx A (U.episodeTree = Tle + x])

Postconditions:

(a). A new use case U is created with the name of newUsecaseName. The episode ¢ is moved into

this use case.

AU, ¢ Model.usecases A Uy € Model .usecases

A U,.type = abstract A Uy.name = newlU secaseName A e € Uj.episodes

(b). Depending on which condition defined in Precondition (c) is met, a different relationship is
generated between the use case U and the new use case U;. Different situations are analysed as

follows in the order of conditions defined in Precondition (c).

(cl). If the episode e is in the normal execution path and it is executed at the beginning or at the

end, a precedence relationship is created.

U.episodeTree = Tle - x] = Precedence[U,, U] A Uy.actors = U.actors
A U,.type = abstract.
U.episodeTree = T[x - e] = Precedence[U, U] A U,.actors = U.actors

A Uy.type = abstract.

185

(c2). If the episode e is in the normal execution path and it is not executed at the beginning or

at the end, the use case U includes the new use case U].

U, .type = abstract A Inclusion [U, U]
A SubstituteE pisodeWithPseudo(U, e, Pseudo [U,])

(c3). If the parent node of the episode e is an alternation composite episode located at the root

node of the episode tree, the new use case U is independent to the use case U’.

U, ¢ U'.usecases A e ¢ U’ .episodes A Uy.actors = U’ .actors

Verification: The semantics of the use case relationship is analysed in Section 3.2.1. After this refac-
toring, these two use cases can be merged back so that the original use case is restored. Therefore, it

is a behavior preserving transformation.

Precondition (a) isolates the use case U from other use cases. This is necessary because some be-
havior is moved to the new use case. The behavior of other use cases may be changed if they have
references to the original use case U. Precondition (b) ensures distinct episode name (invariant three

in Section 3.3).

Postcondition (a) specifies how the new use case is created. Postcondition (b) specifies how the rela-
tionship between the use case U’ and the new use case U should be generated. If the relationship is
not generated properly, merging two use cases back will not be able to restore the original state. The

behavior of the use case model may be changed.

186

C. Refactorings at the Event Level

C.1 Create an Event

C.1.1 Create_Unreferenced_Event

Description: create a new event without participating in any event model.
Arguments: string newEventName.

Preconditions:

(a). The name of the new event does not clash with an already existing event within the use case

model.

VYevent € Model.events, event.name # newEventName.
Postconditions:

(a). The new event is created. It is isolated from other events in the use case model.

de € Model .events A e ¢ Model.events A e.name = newEventName A e.events = {}

Verification: Precondition (a) ensures distinct event name (invariant four in Section 3.3). Since the
new event is isolated from other events, it does not affect the behavior of the use case model. This

refactoring is a behavior preserving transformation.

C.2 Delete an Event

C.2.1 Delete_Unreferenced_Event

Description: delete an unreferenced event from the use case model.
Arguments: event v.

Preconditions:

(a). The event v is not referenced by any episode.

v € Model.events A v.episodes = {}

Postconditions:

187

(a). The event v is deleted from the use case model.

v ¢ Model .events

Verification: Since the event v does not participate in the event model of any episode, it does not
affect the interaction between actors and use cases. In other words, it does not affect the behavior of

the use case model. Deleting it is a behavior preserving transformation.

C.3 Change an Event

C.3.1 Change_Event_Name

Description; change the name of an event within the use case model.
Arguments: event v, string newEventName

Preconditions:

(a). v € Model.events

(b). The new event name does not clash with an already existing event within the use case model.

Yevent € Model.events, event.name # newEventName.
Postconditions:

(a). The event v is given a new name (newEventName).

e.name = newEventName

Verification: Precondition (a) ensures distinct event name (invariant four in Section 3.3). Changing

the name of an event does not change the behavior of the use case model.

188

