An FPGA Implementation
of the Advanced Encryption Standard
with Support for Counter and Feedback Modes

James Steven Grabowski

A Thesis
in
The Department
of

The Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Information Systems Security) at
Concordia University
Montreal, Quebec, Canada

August 2007

© James Steven Grabowski, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34745-4
Our file Notre référence
ISBN: 978-0-494-34745-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

An FPGA Implementation of the Advanced Encryption Standard

with Support for Counter and Feedback Modes

James Steven Grabowski

The Advanced Encryption Standard (AES) is a symmetric key block cipher
approved by the National Institute of Standards and Technology (NIST). AES replaced
the Data Encryption Standard (DES) as a standard encryption algorithm within the United
States government. It is widely used in both software and hardware applications and
transactions.

Different confidentiality modes of operation allow a symmetric key block cipher
to provide additional data confidentiality by altering the output in respect to previously
processed input data. These modes include Cipher Block Chaining, Cipher Feedback,
Output Feedback and Counter modes. Electronic Codebook (ECB) mode does not
enhance the confidentiality of the original cipher.

This thesis presents an implementation of AES on a field-programmable gate
array (FPGA). The design improves upon similar implementations that only employ
ECB mode by supporting all five confidentiality modes of operation. The unified design
supports all applicable key sizes and offers competitive throughput and resource
utilization compared to designs lacking additional confidentiality modes. The design
occupies 7452 slices of a Xilinx Virtex-II Pro XC2VP50 and features a maximum clock

speed of 56.3MHz. Throughputs up to 480.427Mbps, 423.906 Mbps and 379.284 Mbps for

il

128-bit, 192-bit and 256-bit keys are produced for all five modes of operation. A
straightforward level of key agility allows encryption and decryption operations to
proceed uninterrupted at the expense of throughput. This feature is ideal when it is
necessary to change the key for each block of data. A physical hardware prototype of the

design is employed as further demonstration of the design’s functional abilities.

v

Acknowledgements

To my professor and supervisor Dr. Amr Youssef, thank you for encouraging my
interests in information security, for your guidance and infinite patience toward a full-
time student with full-time commitments. I hope that the end result lives up to your
expectations.

When 1 took my first course in VHDL, I couldn’t fully grasp how it would
translate into a real-world application. That didn’t change the fact that I enjoyed it
immensely. Many thanks to Ted Obuchowicz, M.Eng., Concordia’s resident VLSI/CAD
Specialist, and my friend. Without you I probably would not have chosen this route, nor
would I have all the devices I’ve used at my disposal. The late night classes may be gone,
but Keith is eternal.

To my friend Adam Szporer, B.Eng., and soon to be trapped writing
acknowledgements of his own, it has been a long trip. Thanks for sticking with me
through the years and experiencing the same highs and lows. The Fish will always be
around for another sequel.

To my love Jennifer Ricard, M.A., thank you for being there when times were
tough, for your encouragement and for being my second reader. Because of your
dedication, I can pretend it’s not my fault when someone finds a grammatical oversight.

Thank you, my family, for your support and for the phone calls. I hope you

enjoy everything that follows.

Table of Contents

LISt OF FIZUIES .evvivieiiiiiiieiiiieeniesinteteceasesaeas e ereesseatsstesaeseesssbassasnsensessesseeresreesesssesessessas ix
LiSt OF TADIES ..ottt Xii
LISt OF ACTOMYINS ..eovveiieiriniiiiiiiineeieniteetenie st e st ssesteessessnasiessesssesseesseessesseessesssessanssessenns xiv
Chapter 1 — INtrOQUCHIONo.veiiiiieieeeeecetect ettt e s e sbesresresresresre e 1
1.1 Types of Cryptographic AlgOTithimscocueeviereeiieniinienerieseeresriesesrereeeseeeneneeas |
1.2 The Advanced Encryption Standard..........ccccoevieemrreninineneninencneeeeeeeeesee e 3
1.3 Confidentiality MOGESecvevvierirerriniinenenenereensesisresesessssreessseseeseessessessessenses 3
1.4 Scope of the IMPIementationcceviveeeeinierieriiire s seesseree e s snes 4
Chapter 2 — Theoretical Backgroundccoccvvereniniiinieieninenenneeeceeeeseses e 5
2.1 Finite Field and Galois Mathematicsoccovviriieiiiiiiiinieciiccccrcrncee, 5
2.1.1 Addition and SUbTACTIONc..ecvireerieeieeeeeeee e e 6
2.1.2 MUltIPLICALION.viiuirrirrieinrinnisestese st rresres e e sre bt sbestaessnessesnnesneennes 6
2.1.3 Multiplication by ‘X’ — XHIecovevviviiiiiiiiiiiiii 7
2.1.4 Addition of Polynomials with Coefficients in GF 50 8
2.1.5 Multiplication of Polynomials with Coefficients in GF 05) J 9

2.2 Advanced Encryption Standardccceeeeveereenirrereneinenenscenieeienne e 10
B B 11 PP OPPRPPURRT 11
2.2.2 Keys and Key EXpansion.......c.ccecevivveniinciiniincnic s 12
I I8 2116 % o1 () s BT OO P P T O SR 15
2.2.4 DECTYPLION..ccuvrvrrirrierririiesie ettt re st eere sttt b st st sr s s bbb e rassra s 20

vi

2.3 Modes Of OPETationc.cvviveiiieriiiiniiiiiieereceeee ettt seessne e e srae s e seae e 26

23T ECB MOGE ...ttt ettt s eve sttt st se b e nne e s 26
232 CBC MOUE ..ottt sttt s et bt sae st ne st neas 27
2.3.3 CFB MOGE......ciiiiiitiiiniiiiniiiinerere ettt e sae b s b b sre s 29
2.3 4 OFB MO ..ottt sreiesissessasss s seesaesbessesbesseseesnes 31
235 CTRMOME ..ottt sae s s sae s 33
Chapter 3 — Core AES Implementationccecueveverrinriereneienssneeeiensensesnesseesesseeseens 35
3.1 TOP-LEVEL VIEW ..ottt et re e re e san e eneeeaneenes 35
3.2 Hardware COompPOnEnt VIEWccccvevierverierenienineriensnninseinereesessesessissssnsesesnesaenseens 36
3.2.1 PREPROC COmpPoOnent........ccccvveevirieninieninnineneneesneniessesesssessessesssesssenss 39
322 KEYEXP COMPONENLciiiirriiiierireeirieireeieesseseessaeseseessressesssaesssesssnesnessnne 40
3.23 KEYSTR COMPONENLcceeiriiriieiiirieiieieieeieeeeireesieseesiesseseeseenesessassesseasesnes 42
3.2.4 ENCDEC COMPONENL.......ivcviriirieirieieriereensesieensrreseesesssessessssssesesssassssssesnes 43
3.2.5 POSTPROC COMPONENL......corririirrrireerereeniesieeriesnessensenssessessesssesssesasssesaenns 49
Chapter 4 — Confidentiality MOdes........cccruvireririeieinieiceresene et eecesee s 50
4.1 TOP-LEVEl VIEWeoiiiiiiiiiiiiriiiiinci ettt st s s e s eee e enee e 50
4.2 Hardware COmPONENt VIEWcceiiiririianieiinienieneenesrnniesseeseesseensesaessessessesssens 52
4.2.1 IVREG COMPONENL...cc.ooviiriiiiiiiiiiiiiiiceeieseeieresiesresreevessessensnsesseessessonans 54
4.2.2 PREPROC COMPONENLc.ecoiiiiiriiitiiiiniieienieneneesesrnesieesiesaessseesnssssessesssesses 55
4.2.3 POSTPROC COMPONENL....cccveirreerrerrienreenreerirreerennrresseesseesessseesssnssrressesseseens 56
Chapter 5 — Hardware Implementation..........c.ccociiiiiiininiiniiii i 59
5.1 Key Expansion VerifiCation..........ccocceevrveeeveiverinnreninieniecceesreseenee e eseeenessmeenns 59
5.2 AES Round Verification (ECB Verification)cccoceervervrereneenieenieesinensinesnneenne 61

vii

5.3 Verification of Other Modes 0f OPeration..........c.ccevvurveiririericerienrenineneerneneeseees 64

5.4 ReSOUICE ULILISALION.c.cveuriiireiininirisiietsi ettt es s 68
5.5 Timing Behaviour and Throughputc.cccocveviiniivnninrcenreee e 69
5.5.1 Processing with a New 128-bit KeY.......cocevvrverrnnenininieniniineciecnieveesee e 70
5.5.2 Processing with a Previously Expanded 128-bit Key.......c.ccccverrercrnienivnennnnne. 72
5.5.3 Processing with a New 192-bit Key......cccccovevieimerninernieneeieenrenneneeneeneens 74
5.5.4 Processing with a Previously Expanded 192-bit Key.......c.cccoeevrrevrieecreiirennnen. 75
5.5.5 Processing with a New 256-bit KEY.......ccccevvrvmmrninnineninrene e 76
5.5.6 Processing with a Previously Expanded 256-bit Key........ccccevvvvvevinvvnecrnnnnns 77

5.6 Comparison to SImilar WOrksccccovvveririrniniiniinininenenenese e seesnsennennens 78
5.7 Prototype Implementation.......c.ccccvviiiirieiinieniceneninientcenenese e ccresieessenaes 82
Chapter 6 — Conclusion and Future Workcccceevvieimnnniieniccrcceeeee e eseesee s 88
RELEIEIICES ...ttt bbbt enes 90

viii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:

Figure 14:

List of Figures

AES Encryption Round FUNCtion..........ccevvivecinicrineeneeecnreseeseseseeneseenes 11
AES Decryption Round FUnCtion...........cccceeveneriniennininenenenineneeeeseseenes 11
State Byte Ordering (4X4 MatriX)coccevvuerieeneennenresnieeseesinecrnreenneseeessseennes 11
State Byte Ordering (4x4 Matrix; Row-Column)..........ccccceeviveivieenieniecieennen, 12
Key Expansion Pseudo-Codecccvvvviiriiiiiniiniinienninnennircrenieeere e sresnnesveennes 13
ROtWOTd OpPerationccceevieniririiniiieneniienieninenreseestesmcesseeseessnesseenesseesnes 14
SUDWOIA OPEration......cccvrvverieriiereeriereeniierienrsesesresseesseseensessseseensesneessesnens 15
Encryption PSEUdo-Code.........covverieeeeciiirieie e 16
SubBytes OPEration.......cccvviiviiiiiiiiiiiiiiiiiiiiiiesesrs e e snes 17

ShiftROWS OPETrationcccvevieeiiieeiesieceeseestesereeeresree e esessresseessesrsesseesaesnes 19
Decryption Pseudo-Code..........ccoviiiiiniiiiiiiiiniiinnen 21
InvShiftRoOWs Operation.........cccoecviriiininiiininnce 22
INVSUbBYteS OPErationccovvcueriereniecrieenininieieneceenine e sne s e 23

ECB Mode (Encryption and Decryption).........ccccceeevceeirereenierenreeenireennnnenns 26

Figure 15: CBC Mode (ENCIyption)coeerereririniniecniiecsiesneene s sienesnessesnonesaeneos 28
Figure 16: CBC Mode (Decryption)cccceeriiieniininniiiecnicnenniniesississssoasesne e 28
Figure 17: CFB Mode (ENCryption)........ccccereeeiienieniiinninneiiniininiireenesessnessneseenens 30
Figure 18: CFB Mode (DeCIYPLiOn)eevereereereinienieniineenieiesieerenninesncsne b snesinesasonis 30
Figure 19: OFB Mode (ENCTYPLON) ..oc.ecvvirvieiiireieiiiieii e sns e e 32
Figure 20: OFB Mode (DeCTyption)cccveveriiniinininiiiinniniiiienenesssieseeneenensneeneennes 32

ix

Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32;
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:

Figure 43:

CTR Mode (ENCIYPLON) ..vvivriieriiieiieeesreesiieeeieesraesernesseceseesnressrneesnneesaes 33
CTR MoOde (DECTYPLION) ..evverririeeririienierrenneeiestenaereesseesseesesseessaesseessessesseens 34
Hardware Component Flowchart (VHDL Code, AES Only)......cccoeevevvereenanen. 38
PREPROC Component (AES Only)coocovvviiriiiniecnieeinnrinesnieseesennnennnes 39
KEYEXP Component (Normal Rounds)c.ccvceeurevririnenenineneninnenneneen, 41
ENCDEC Component (Encryption / SubBytes & ShiftRows) 44
ENCDEC Component (XTIme)ccecevrereieeiiiieerieeevinreresreerereessreeesssseesnrereses 45
ENCDEC Component (Encryption / MixColumns).........cocceeerrevrenrerrenrenrennens 45
ENCDEC Component (Decryption / InvShiftRows & InvSubBytes)............. 47
ENCDEC Component (Decryption / InvColumns).........cccocevvervvervennnenieerieninnns 48
Hardware Component Flowchart (VHDL Code, Complete).........occevevenrennee. 53
IVREG COMPONENL ...coveviieirieirerieniteirtciresisessensessesseesiaesressessesssesseessesseseens 54
PREPROC Component (COmMPLELE) ...ccerreerrrrerririeenrerienisreneeeseeeenesessennens 55
POSTPROC Component (CBC Post-Processing)........ccceeveeeererverencrenenenens 57
POSTPROC Component (CFB Post-Processing)ccocevveveerveeevreeesiereeneens 58
Timing Diagram for AES-CBC Encryption with a New 128-bit Key 72
Timing Diagram for AES-CBC Encryption with an Expanded 128-bit Key.. 74
Timing Diagram for AES-CFB Decryption with a New 192-bit Key 75
Timing Diagram for AES-CFB Decryption with an Expanded 192-bit Key.. 76
Timing Diagram for AES-OFB Encryption with a New 256-bit Key 77
Timing Diagram for AES-OFB Encryption with an Expanded 256-bit Key .. 78

Xilinx HW-AFX-FF1152-300 Prototype Board & Virtex-II Pro XC2VP50.. 83

Rotary Switch Assembly (KeyIn and Dataln Bus)ccoccevveneiicninniniene. 84

Figure 44: Output Assembly (Block 1 and 3)..........
Figure 45: Output and Operation/Enable Assembly

Figure 46: Complete Prototype Assembly...............

X1

...

...

...

List of Tables

Table 1: RCON AITAYccoiviiieiieinieiieecenieteestcesiesiesesiessenesessessesnesesressesessessesesseseesessensons 15
Table 2: AES S-DOX c..cciiiririiieeneeeciriintetnie et se e sse et sse e sae s b sresee s srenseresrons 18
Table 3: INVEISE S-DOXcoiiriiiiiririciirecrr et etere e 24
Table 4: Core Implementation POITS..........cocceoirminieiniiniiiienieeeeeseeeeeereee e 35
Table 5: Major Hardware COMPONENLS..........coveveererieienieriienreeeeereereseesres e resersesssnons 37
Table 6: Additional Implementation POItS.........ccccecvrvvirineineesnnnneeeeeiessene e esennes 50
Table 7: New and Updated Major Hardware Components..............oceevevevvevereeevnernnnenas 52
Table 8: AES Key Expansion (128-bit) — Fourty-four 32-bit Subkeyscccccceveruennenn, 60
Table 9: AES Key Expansion (192-bit) ~ Fifty-two 32-bit Subkeys..........cc.cccvvvvrvernnenn. 60
Table 10: AES Key Expansion (256-bit) — Sixty 32-bit Subkeysccceevvvereirieecriirnnne 61
Table 11: AES ECB Encryption (128-Dit).....cccceveriiviiinennirinieroreninnreenessssnsessnsssennns 61
Table 12: AES ECB Decryption (128-Dit).......cccevurvirrurruerverenreerisrnrneesiesrenesesseneeesessenns 62
Table 13: AES ECB Encryption (192-Dit).....cccccviiiiiiiriirierenreeieeeieiesreerenre e e eveeneene 62
Table 14: AES ECB Decryption (192-Dit)....c.ccccuiviuiiieeiiieceeieccree et sreene e 63
Table 15: AES ECB Encryption (256-Dit)ccccevverviiniiniinieiinenienieneoniesnensessnessensenns 63
Table 16: AES ECB Encryption (256-Dit)ccceceviiireniiiniirenrieneenesiveniennesnseseenesnseseens 64
Table 17: CBC Mode Encryption (128-bit, 4 BIOCKS).....ccecrverieniriienirieiieneenieenveneens 64
Table 18: CBC Mode Decryption (128-bit, 4 BIOCKS).....ccceveeririinieririrrininiineniesneninens 65
Table 19: CFB128 Mode Encryption (192-bit, 4 BIOCKS) ...coovvrviivviniierniiiirenineeeicenieenns 65
Table 20: CFB128 Mode Decryption (192-bit, 4 BIOCKS) ...coovevvvviciiirieeieciereenircriene 66

Xii

Table 21: OFB Mode Encryption (256-bit, 4 BIOCKS)cevvrirriirivrererieieineiensessennensens 66

Table 22: OFB Mode Decryption (256-bit, 4 BIOCKS).......cc.ccvevevrinierereerernririereesnenrnnnerenes 67
Table 23: CTR Mode Encryption (128-bit, 4 BIOCKS)cccovverirriinrirenirerineinieensiencane 67
Table 24: CTR Mode Decryption (128-bit, 4 BIOCKS)......cccecrvrieriirrrrereeneeceseene e 68
Table 25: Hardware ResoUrce SUMMATYccvecirveeiireerinrereeereereeeseeereereeeesessesessnnens 69
Table 26: Comparison of AES Hardware Implementationscccceeveeerreveerererererennnn 79

xiii

AES
BRAM
CBC
CFB
CTR
DES
DIP
ECB
FIPS
FPGA
GCLK
GF
I0B
ISE

v
JTAG
LUT
Mbps

MHz

List of Acronyms

Advanced Encryption Standard
Block RAM

Cipher Block Chaining

Cipher Feedback

Counter

Data Encryption Standard

Dual In-line Package

Electronic Codebook

Federal Information Processing Standards
Field-Programmable Gate Array
Global Clock

Galois Field

Input/Output Block

Integrated Software Environment
Initialisation Vector

Joint Test Action Group

Lookup Table

Megabits per second

Megahertz

X1iv

MUX

NIST

ns

OFB

PCB

SP

Rcon

USB

VHDL

VHSIC

VLSI

XOR

Multiplexer

National Institute of Standards and Technology
Nanoseconds

Output Feedback

Printed Circuit Board

Special Publication

Round Constant

Universal Serial Bus

VHSIC Hardware Description Language
Very High-Speed Integrated Circuit
Very-Large-Scale Integration

Exclusive Or

XV

Chapter 1

Introduction

Cryptography is the study of mathematical techniques which support
confidentiality, data integrity, entity authentication and data origin authentication [11].
The word cryptography in contemporary use often refers to data encryption. Encryption
is the masking of data using ciphers. A basic cipher is a set of mathematical functions
which produce an output value from an input value and a key. A key is an input to a
cipher that behaves as a variable of the cipher’s mathematical functions.

An example of a basic (insecure) cipher is the shift cipher. A shift cipher will
shift the value of an input up or down a fixed amount. The fixed amount is a shift
cipher’s key. For example, if the entire number space for data values is the ten integers
from 0 to 9, and an individual wants to encrypt the data values 3-5-9-0-4 with a key of 3,

the output of the cipher will be 6-8-2-3-7.

1.1 Types of Cryptographic Algorithms

Cryptographic algorithms are generally divided into two categories, asymmetric
(public key) and symmetric. Diffie and Hellman [12] were the first to publicly propose
asymmetric, or public key algorithms. Each entity that transfers data in a public key

system is assigned a pair of keys, a private key and a public key. The entity keeps their

private key secret and makes their public key available to other entities. A message
encrypted with an entity’s public key may be decrypted with their private key and vice
versa. For example, Alice can send Bob a message that only Bob can read by encrypting
the message with Bob’s public key. The message can only be decrypted with Bob’s
private key, and only Bob possesses this private key. Similarly, Bob can send Alice a
message that only Alice can read by encrypting the message with Alice’s public key.
Information encrypted by a key pair is compromised only if the secrecy of a pair’s private
key is compromised. Public key encryption systems typically require more calculations
(and time) than symmetric key systems. Well-known examples of asymmetric algorithms
include the Diffie-Hellman cipher by Diffie and Hellman [12] and the RSA cipher by
Rivest, Shamir and Adleman [13].

Symmetric key algorithms normally require the same key for both encryption and
decryption operations. All entities that exchange data in a symmetric key system require
access to this key. Information encrypted by a key is compromised if the key is
compromised. Symmetric key systems are generally faster than public key systems and
are ideal for encrypting large volumes of data in small amounts of time. These systems
include block ciphers, which perform cryptographic operations on fixed input block sizes,
or stream ciphers, which combine plaintext with values from the cipher’s state.
Symmetric key systems generally accommodate alternating keys more easily than public
key systems. Well-known examples of symmetric key algorithms include the Data
Encryption Standard (DES) cipher [14], the Blowfish cipher by Schneier [15] and the

Advanced Encryption Standard (AES) cipher [1].

1.2 The Advanced Encryption Standard

AES originated not as a definitive cryptographic algorithm but as a search for a
new cryptographic standard. The National Institute of Standards and Technology (NIST)
posted a request for comments in January 1997 regarding the selection of a replacement
for DES [16]. This was followed up in September 1997 with a request for draft
submissions for AES [17]. The minimum requirement was a symmetric key block cipher
that supported encryption of 128-bit data blocks using 128-bit, 192-bit or 256-bit keys.
Fifteen algorithm submissions were presented at the First AES Conference in August
1998 [18]. Five of the fifteen algorithms were selected as finalists: MARS [19], RC6
[20], Rijndael [21], Serpent [22] and Twofish [23]. Technical analysis of the five
finalists was presented at the Third AES Conference in April 2000 [24]. NIST selected a
subset of the Rijndael algorithm as the new standard in October 2000 [25]. The standard
was ratified in Federal Information Processing Standards Publication 197 (FIPS 197) in

November 2001 [1].

1.3 Confidentiality Modes

Several mechanisms exist which improve data confidentiality for symmetric key
ciphers. A block cipher typically exhibits a one-to-one relationship between its input and
output. The same input block and same key will always produce the same output
regardless of the location of an input block in a message. Confidentiality modes allow a
block cipher to provide additional data confidentiality by altering the output in respect to
previously processed input data. The five fundamental confidentiality modes of

operation published by NIST in Special Publication (SP) 800-38A are Electronic

Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output
Feedback (OFB) and Counter (CTR) [2]. Each mode consists of alternative pre-cipher

and post-cipher processing algorithms.

1.4 Scope of the Implementation

This dissertation provides a hardware-based solution that combines the full AES
standard with user-configurable data confidentiality capabilities. The design improves
upon similar implementations that only employ ECB mode by supporting all five
confidentiality modes of operation. The additional modes achieve improved data
confidentiality by masking the encrypted data in respect to previously encrypted input
data. The unified design supports all applicable key sizes and offers competitive
throughput and resource utilization compared to designs lacking additional
confidentiality modes.

The findings of this dissertation are detailed in four main chapters. Chapter 2
explains the theoretical concepts of AES and the five modes of operation in detail. A
brief introduction to Galois field mathematics relevant to AES [1] provides a basis for
several AES mathematical manipulations. Chapter 3 outlines this design’s hardware
implementation of AES through the relationship of the major hardware components
constructed in VHSIC Hardware Description Language (VHDL). Chapter 4 builds upon
Chapter 3 by enhancing the design with the five confidentiality modes for all AES key
sizes and operations. Chapter 5 verifies the correctness of the design using well-
publicised test vectors, explores the design’s performance, simulation and practical

behaviour, and presents a physical prototype implementation.

Chapter 2

Theoretical Background

The implementation of AES in this design is based on the algorithm outlined in
FIPS 197 [1]. Likewise the implementation of the five confidentiality modes of operation
is based on the algorithms presented in SP 800-38A [2]. This chapter first presents a
brief outline of finite field and Galois mathematics to clarify some of the more complex
mathematical manipulations in the AES algorithm. Detailed descriptions of the AES

algorithm and an explanation of the five confidentiality modes of operation follow.

2.1 Finite Field and Galois Mathematics

A finite field, also referred to as a Galois field (GF), contains a finite number of
elements [26]. The number of elements in a given GF is equal to p' for any prime
number p and any integer i greater than or equal to /. Certain AES mathematical
manipulations occur in GF(ZS) which by definition contains 256 elements. Byfes are
regarded as elements of GF(2°) since they have 256 distinct values. Galois mathematics
allows addition and multiplication using a different rule set than standard addition and

multiplication.

2.1.1 Addition and Subtraction

The addition of two elements in a GF is performed by adding the coefficients of
an element’s corresponding polynomials and taking the result modulo 2. This is more
simply represented as a XOR operation between the two elements. Subtraction is an
identical operation to addition due to the nature of the XOR operation. An example using

the elements {FA4} and {B4} follows.

K +xf v+ xR xR = X X+ x)
(11111010} ® {10110100} = {01001110}
(FA} ® {B4) = {4E}

2.1.2 Multiplication

Multiplication in GF(2°) is equivalent to the multiplication of polynomials
modulo a polynomial of the eighth degree whose divisors are only / and itself. The AES

implementation uses the following irreducible polynomial.

mx)=x*+x*+x> +x+1

This polynomial can be expressed in hexadecimal notation as {07}{1b}. An
example of modulo multiplication follows, demonstrating how {57)e{83}={cl}.
Reduction by mod m(x) causes the resulting binary polynomial to have a degree less than

eight and can be represented as a byte.

@ +x +xFx+ D Fx+1) xS A x+

x+xt Hxt x4+l

= xR+ xC e x4

XA A A+ At Imod(xf Fxt + X Fx+ D =x" +x8 +1

The multiplicative inverse 57 (x) of any nonzero polynomial b(x) whose degree is
less than eight can be expressed as the modulo reduction of a polynomial a(x) by m(x)

where a(x) eb(x) mod m(x) = 1.

b~ (x) = a(x)mod m(x)

2.1.3 Multiplication by ‘X’ — xtime

A byte can be represented as a binary polynomial b(x) whose degree is seven or
less. Multiplying b(x) by x ({02} in hexadecimal representation) produces the following

polynomial.

3 7 6 5 4 3 2
byx” +bx" +bsx” +b,x° +byx” +b,x” +bx" +byx

Reducing this polynomial by mod m(x) results in xeb(x). If b7 is 0, the polynomial
is already reduced, but if b7 is /, the reduced form is obtained by XORing the polynomial
with m(x). Multiplication by x can be further expressed as the XOR of {15} with the left
shift of b(x); x is represented as {02} and m(x) as {01}{1b} in hexadecimal notation. This

operation is referred to as the xtime function [1].

xtime({Byte}) = {b,b;b,b,b,b,b,0} ® {15}

Higher powers of x can be represented by additional applications of xtime.

{Byte} @ {02} = {Byte} ® x = xtime({Byte})

{Byte} {04} = {Byte} ® x* = xtime(xtime({Byte}))

{Byte} » {08} = {Byte} o x° = xtime(xtime(xtime({Byte})))

{Byte} o {10} = {Byte} ¢ x* = xtime(xtime(xtime(xtime({Byte}))))

Such results can determine the multiplication of any two values in GF(2°). An

example, {ID} = {10} P{08} P{04} D{01}, follows.

{Byte} s {1D} {Byte} o ({10} ® {08} @ {04} ® {01})
{Byte} @ xtime(xtime(xtime(xtime({Byte})))) ®

time(xtime(xtime({Byte}))) @ xtime(xtime{Byte}))

i

2.1.4 Addition of Polynomials with Coefficients in GF(2°)

A four-term polynomial a(x) has coefficients where each value /a3, a, a;, ag/ has
a value of a finite field element in GF(2%). Each value is one byte, and four bytes
together form one word. The addition of a(x) and a second four-term polynomial b(x)

with the same properties as a(x) can be expressed as follows.

a(x)+b(x)=(a, @ b3)x3 +(a, @b, Yx* + (a,@b)x+(a, Db,)

The XOR of the a and b terms in the above equations then follows the rules set

out in Chapter 2.1.1.

2.1.5 Multiplication of Polynomials with Coefficients in GF(2°)

c(x) is produced by the multiplication of two four-term polynomials a(x) and b(x).
This is written as a(x)eb(x) = c(x). c(x) is first expanded to give the following formula

and coefficients.

c(x)=cex® +egx® +o,xt +eyxd v e xt +ox+ e
co,=a,*b,
c,=a,*b @a,eb, Da, eb,
c,=a, b, Da,eb
cs=a,9b,Da, eb,
c,=a,eb,®a b Da,eb,

cs=a,®h,
c;=a,9b,@a,eb Da eb,Da,eb,

The result c(x) is a seven-term polynomial. This ¢(x) must be reduced modulo a
polynomial of degree four to become a word. This 4™ degree polynomial is (x*+1) for
AES.

A four-term polynomial d(x) is the modulo product of a(x) and b(x) and is written

with the following coefficients.

d(x)=d,x’ +d,x* +dx+d,

dy =(a, b)) ®(a, ¢b)®(a, *b,)B(a, *b,)
dy =(a, b)) ®(a,*b)D(a,*b,)D(a, *b,)
d, =(a,*b,)®(a,b)D(a,*b,)®D(a,*d,)
dy=(a;¢b,)®(a, ¢b)®(a, ¢b,)D(a,*b,)

The above equation can be represented as the following matrix if the polynomial

a(x) is fixed.

Q
o
Q
S
Q
w
Q
N
R
o
o

d, %4 4 a3 4 b,
d, a, a a, a|b,
d, a; a, a a,| b

The polynomial (x*+1) is not irreducible in GF(2®) and as such multiplication by
a fixed a(x) is not necessarily invertible. A specific a(x) that does have an inverse is

defined for AES as follows.

a(x) = {03}x’ + {01}x* + {01} x + {02}
a™(x) = {0b}x’ + {0d}x* + {09}x + {Oe}

The resulting simplification of the modulo product formulas are ideal for the
MixColumns and InvMixColumns of AES and are further explained in Chapters 2.2.3.4

and 2.2.4.4.

2.2 Advanced Encryption Standard

The Advanced Encryption Standard is a block cipher derived from the Rijndael
algorithm. Both algorithms support the use of 128-bit, 192-bit and 256-bit keys. AES
supports 128-bit block sizes while Rijndael also supports 192-bit and 256-bit block sizes.
AES involves two major components, key expansion and encryption/decryption of a data
block, or state, over a series of rounds. Each round consists of a series of four operations
collectively called the round function. Figures 1 and 2 show the round functions for

encryption and decryption respectively.

10

SubBytest} ¥ ShiftRows{) B MixColumns() » AddRourdKey()
Figure 1: AES Encryption Round Function
InvShiftRows() # InvSubByes() #» AddRoundKey() # InviixColumns()

Figure 2: AES Decryption Round Function

Chapter 2.2.1 first describes the functionality of a state. Chapter 2.2.2 outlines the
key expansion procedure. Chapters 2.2.3 and 2.2.4 explain the above encryption and

decryption round functions in greater detail.

2.2.1 States

The 16 individual bytes composing the data block are referred to as a state. The
state is processed during each round’s encryption or decryption calculations. Figure 3

shows the ordering of the state bytes as identified with numbers 1-16.

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

Figure 3: State Byte Ordering (4x4 Matrix)

Figure 4 shows the byte ordering as referred to using row and column indices.

11

5(0,0) [S(0,1) | S(0,2) | S(0,3)
S(1,0) | S(1,) | S(1,2) | S(1,3)
$(2,0) [S2,D) | 82,2) [5(2,3)
$G3,0 [S3.1) | $3.2) | 8G3,3)

Figure 4: State Byte Ordering (4x4 Matrix; Row-Column)

2.2.2 Keys and Key Expansion

The key used for encryption or decryption may be 128-bits, 192-bits or 256-bits in
size. The required number of rounds (iterations of the encryption/decryption round
function) is 10, 12 and 14 for the respective key sizes. Both encryption and decryption
processes require an initial round key of identical size to the state being processed plus
one round key for each round. Therefore the original key is expanded to (# of rounds +
1) 128-bit keys. This is 11, 13 or 15 keys of 128-bits each, or alternatively 44, 52 or 60
words of 32-bits each.

Figure 5 shows the pseudo-code for the key expansion process. Nk is the number
of 32-bit words in the key, Nb is the number of 32-bit words used in a cipher block

(always 4 for AES) and Nr is the number of rounds for the associated key size.

12

KeyExpansion (byte key[4*Nk], word w[Nb* (Nr+l)], Nk)
begin
word temp

i=0

while (i < Nk)
w[i] = word(key[4*i], key[4*i+l], key[4*i+2], key[4*i+3])
i = i+l

end while

i = Nk

while (i < Nb * (Nr+l)]

end

end while

temp = wli-1]
if (i mod Nk = 0)

temp = SubWord (RotWord(temp)) xor Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)

temp = SubWord (temp)

end if
wl[i] = w[i-Nk] xor temp
i=41i+1

Figure 5: Key Expansion Pseudo-Code [1]

The expanded key is constructed as follows:

1.

The original key forms the beginning of the expanded key (4, 6 or eight 32-bit
words for the three respective key sizes), indexed as subkeys 0-3, 0-5 or 0-7
respectively.
For all remaining indices of the expanded key (4-43, 6-51 or 8-59 for the three
respective key sizes), store the most recently calculated subkey from the expanded
key.
a. Ifthe index is a multiple of the number of words in the original key, obtain
the quotient of the index and the number of words in the original key.
Perform a RotWord and SubWord operation on the stored word and XOR

it with the Rcon of the quotient.

13

b. Otherwise if the original key is 256-bits and the current index is 12, 20, 28,
36, 44 or 52, only perform a SubWord operation on the stored word.
3. XOR the result of Step 2 with the subkey of the expanded key that is one original
key length prior to the current index. The final value is the most current subkey
in the expanded key. Increment the index by 1.

4. Repeat steps 2 and 3 until the entire expanded key has been calculated.

2.2.2.1 RotWord Operation. The RotWord operation mentioned in Step 2a of
Chapter 2.2.2 rotates the first byte of a 32-bit word from the beginning of the word to its

end. Figure 6 demonstrates RotWord on a 32-bit word subdivided into four bytes.

(before RotWord)

| Wo ’ Wi | w2 [W3 l
(after RotWord)

| had! l W2 | W3 | Wo]

Figure 6: RotWord Operation

2.2.2.2 SubWord Operation. The SubWord operation mentioned in Steps 2a
and 2b of Chapter 2.2.2 performs an S-box substitution on the four separate bytes of a 32-
bit word and returns a 32-bit word with the four results ordered in the same relative
positions. Figure 7 demonstrates SubWord on a 32-bit word subdivided into four bytes.
Chapter 2.2.3.2 provides more information about S-box substitution. One S-box is
capable of operating on one byte of data at a time. Four S-boxes are required to perform

SubWord as a parallel operation.

14

(before SubWord)

L owo | w1 | wp | ws |
(after SubWord)

| sbox(wo) | sbox(w)) | sbox(wy) | sbox(ws) |

Figure 7: SubWord Operation

2.2.2.3 Reon. The Rcon mentioned in Step 2a of Chapter 2.2.2 refers to a round

constant array. Table 1 shows the values of this array.

Table 1: Rcon Array

Index Value (Hex)
1 01
2 02
3 04
4 08
5 10
6 20
7 40
8 80
9 1B
10 36

2.2.3 Encryption

Encryption may begin once the original key is at least partially expanded.

Encryption consists of 10, 12 or 14 rounds depending on whether a 128-bit, 192-bit or

256-bit key is used. Figure 8 shows pseudo-code for the encryption algorithm.

15

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb¥* (Nr+l)])
begin
byte state[4,Nb]

state = in
AddRoundKey (state, w[0, Nb-1]) // See Sec. 5.1.4

for round = 1 step 1 to Nr-1
SubBytes (state) // See Sec. 5.1.1
ShiftRows (state) // See Sec. 5.1.2
MixColumns (state) // See Sec. 5.1.3
AddRoundKey (state, w[round*Nb, (round+l)*Nb-1])
end for

SubBytes (state)
ShiftRows (state)
AddRoundKey (state, w[Nr*Nb, (Nr+l)*Nb-1])

out = state
end

Figure 8: Encryption Pseudo-Code [1]

The following steps summarise the encryption process:
1. Store the original 128-bit block of data as the state.
2. Perform AddRoundKey on the state using the first round key from the expanded
key.
3. For each subsequent round excluding the final round:
a. Perform SubBytes on the state.
b. Perform ShiftRows on the state.
c. Perform MixColumns on the state.
d. Perform AddRoundKey on the state using the next available round key
from the expanded key.
4. Repeat Step 3 for the final round, excluding the MixColumns transformation. The

final state is the encrypted output of the AES cipher.

16

2.2.3.1 AddRoundKey Operation. The AddRoundKey operation mentioned in
Steps 2 and 3d of Chapter 2.2.3 is a bitwise XOR operation of the given round key and

the state, effectively adding the round key to the state.

2.2.3.2 SubBytes Operation. The SubBytes operation mentioned in Step 3a of
Chapter 2.2.3 performs an S-box substitution on the 16 separate bytes of the 128-bit state.
SubBytes returns a new 128-bit state with the 16 results ordered in the same relative
positions. Figure 9 demonstrates SubBytes on a 128-bit state. One S-box is capable of
operating on one byte of data at a time. Sixteen S-boxes are required to perform

SubBytes as a parallel operation.

5(0,0) [8(0,1) [5(0,2) | 5(0,3) $°(0,0) [S°(0,1) [$°(0,2) [S°(0,3)
2(1,0) SALD SAD TSI | 5 g po > (SO TSAD [0 [S(3)
2,0) | s2,D) [8(2.2) [5(2,3) 2,02 822 S(23)
5(3,0) | S3,1) | S(3,2) | S(3.,3) $3,0[$°G.1) [8°3G,2) [5°(3.3)

Figure 9: SubBytes Operation

The S-box is a 256 byte table where the hexadecimal values of the input value
reference the position in the table. For example, if the input value is {57} in hexadecimal,
then the x coordinate of the table is J, the y coordinate of the table is 7 and the result is an
output value of {5b}. The S-box is constructed by taking the multiplicative inverse in
GF(2®) (mapping {00} to itself) and applying the following affine transformation over

GF(2). b is the i" bit of a byte, and ¢ is the i bit of a byte ¢ with the value {63}.

. ,
b',=b® b(i+4)mod8 D b(i+5)mod8 ® b(i+6)mod8 ® b(i+7)mod8 D¢, »0<i<38

17

Table 2 {1] shows the AES S-box.

Table 2: AES S-box [1]

Byte
XY)

Bits 3-0 (Y)

6

7

8

9

77

Tb

6b

of

c5

30

01

67

2b

fe

d7

ab

76

c9

7d

59

47

f0

ad

d4

a2

af

ad

72

93

26

3f

7

CcC

34

as

es

f1

71

dg

31

15

23

c3

96

05

9a

07

12

80

e2

eb

27

b2

75

2c

6e

Sa

a0

52

3b

dé

b3

29

e3

2f

84

00

ed

fc

bl

5b

6a

cb

be

39

4a

4c

58

cf

aa

4d

33

85

45

9

02

7f

50

3¢

9f

al

40

8f

9d

38

f5

be

b6

da

21

10

ff

d2

13

€C

97

44

17

c4

a7

Te

3d

64

5d

19

73

4f

2a

90

88

46

ce

b8

14

de

Se

0b

db

3a

Oa

06

24

Sc

c2

d3

ac

62

91

95

ed

79

37

6d

ds

4de

a9

6¢

56

4

ca

65

7a

ac

08

25

2e

ab

b4

co

el

dd

74

1f

4b

bd

8b

8a

b5

66

03

f6

Oe

61

35

57

b9

86

cl

1d

O¢

98

11

d9

8e

94

9b

le

87

e9

CC

55

28

df

Bits 7-4 (X)
e Qe (TS (ORI NIE WIS

89

0d

e6

42

68

41

99

2d

0f

b0

34

bb

16

2.2.3.3 ShiftRows Operation. The ShiftRows operation mentioned in Step 3b of
Chapter 2.2.3 performs a forward cyclical shift on each row of the state by 0, I, 2 or 3
bytes for the first, second, third and fourth rows respectively. Figure 10 demonstrates

ShiftRows using both the numbering notation and the row/column notation for depicting

the state.

18

1 5 9 13 1 5 9 13
2 6 10 14 . 6 10 | 14 2
3 7 11 [s | 7 Retation > 513 7
4 8 12 16 16 4 8 12

5(0,0) | S(0,1) | S(0.2) | S(0,3) S(0,0) [S(0,1) | (0,2) [S(0,3)

S(L0) | S(L,) | S(1,2) | S(1,3) . S(LD) [S8(1,2) [8(1,3) | 8(1,0)

S(2.0) [S [S22) [s@3) | = Rowtion > re o Ts(23) [5(2.0) [S2.1)

53,0) | SG3.1) | S3,2) | $3,3) 5(3,3) | S3,0) | SG3,1) | S(3,2)

Figure 10: ShiftRows Operation

2.2.3.4 MixColumns Operation. The MixColumns operation mentioned in Step
3¢ of Chapter 2.2.3 multiplies each column of the state modulo (x*+1) over GF(2®) with
the polynomial a(x) from Chapter 2.1.5. The new column of the state is presented as the

following matrix multiplication.

sl T02 03 01 017 5o,
s'e | |01 02 03 01]s,

she| |01 01 02 03]s,
sy, | 103 01 01 02]s,

0<c<N,

This is reduced to the following calculations per column as an expression of

logical XOR operations [1].

8', = ({02} 05,) @ ({03} 5,) D ({01} o5,) D ({01} ®55,)
she= ({01} 05,)@ ({02} 05,)@ ({03} 05,) D ({01} ®5;,)
§'2. = ({01} 05,)@ ({01} @5,) D ({02} 05,) D ({03} 55,)
5% = ({03} 05,)@ ({01} o5,) D ({01} #5,,) D ({02} e 5,)

19

Multiplication over GF(2°) can be simplified as an expression of simpler logic
functions. Multiplication by {01} over GF(2%) by definition is multiplication by 1. All
terms denoted as (701} *s,.) can be replaced by (5,.¢).

The function xtime in Chapter 2.1.3 shows the multiplication of {02} over GF(2°).
A version of xtime targeting bit operations in hardware is presented by Zhang and Parhi
[3]. {02}X can be expressed as the following (X is represented by an 8-bit value (a;, ag,

ds, dg, Az, Az, dj, ao))‘

{02} e a = a,a,a,a,a,a,a,0 @ 000a,a,0a,a,

Multiplication by {03} over GF(2°) can be calculated as the XOR of the value of

{01} and {02}. This is depicted as follows.

{03}ea=({01}ea)D ({02}ea)=a® ({02} ea)

MixColumns can be developed in a format suitable for the target platform using

the above methods for calculating {02} and {03}.

2.2.4 Decryption

Decryption begins once the original key is at least partially expanded. AES
decryption is the inverse of AES encryption. Decryption consists of 10, 12 or 14 rounds
depending on whether a 128-bit, 192-bit or 256-bit key is used. Figure 11 shows pseudo-

code for decryption.

20

InvCipher (byte in[4*Nb], byte out[4*Nb], word w[Nb* (Nr+l)])
begin

end

byte state[4,Nb]
state = in
AddRoundKey (state, w[Nr*Nb, (Nr+l)*Nb-1]) // See Sec. 5.1.4

for round = Nr-1 step -1 downto 1
InvShiftRows (state) // See Sec. 5.3.1
InvSubBytes (state) // See Sec. 5.3.2
AddRoundKey (state, w[round*Nb, (round+l)*Nb-1])
InvMixColumns (state) // See Sec. 5.3.3

end for

InvShiftRows (state)
InvSubBytes (state)
AddRoundKey (state, w[0, Nb-1])

out = state

Figure 11: Decryption Pseudo-Code [1]

The following steps summarise decryption:

L.

2.

Store the original 128-bit block of data as the state.
Perform AddRoundKey on the state using the last round key from the expanded
key.
For each subsequent round excluding the final round:
a. Perform InvShiftRows on the state.
b. Perform InvSubBytes on the state.
¢. Perform AddRoundKey on the state using the preceding round key from
the expanded key.

d. Perform InvMixColumns on the state.

4, Repeat Step 3 for the final round, excluding the InvMixColumns transformation.

The final state is the decrypted output of the AES cipher.

21

2.2.4.1 AddRoundKey Operation. The AddRoundKey operation mentioned in
Steps 2 and 3c of Chapter 2.2.4 is a bitwise XOR operation of the given round key and
the state, effectively adding the round key to the state. There is no difference between

AddRoundKey in encryption and decryption.

2.2.4.2 InvShiftRows Operation. The InvShiftRows operation mentioned in
Step 3a of Chapter 2.2.4 performs a reverse cyclical shift on each row of the state by 0, 1,
2 or 3 bytes for the first, second third and fourth rows respectively. Figure 12
demonstrates InvShiftRows using both the numbering notation and the row/column

notation for depicting the state.

1 5 9 13 1 5 9 13
2 6 10 14 . 14 2 6 10
3 7 1 15| Rotation > — 15 3 7
4 8 2 16 8 16 4

S(0,0) | S(0,1) | 8(0,2) | S(0,3) S(0,0) | S(0,1) | S(0,2) | S(0,3)

S(L,0) | S(LD) | 8(1,2) | S(1,3) . S(1,3) | S(1,0) | S(1,1) | S(1,2)

S2.0) [S S22 [saay | = Rowtion > =g Ts@3) | 820) | S

5(3,0) | SG.1) | 5(3,2) | 8(3,3) SG,D [8(3,2) | S3.3) | 8(3,0)

Figure 12: InvShiftRows Operation

2.2.4.3 InvSubBytes Operation. The InvSubBytes operation mentioned in Step
3b of Chapter 2.2.4 performs an Inverse S-box substitution on the 16 separate bytes of the
128-bit state. InvSubBytes returns a new 128-bit state with the 16 results ordered in the

same relative positions. Figure 13 demonstrates InvSubBytes on a 128-bit state. One

22

inverse S-box is capable of operating on one byte of data at a time. Sixteen inverse S-

boxes are required to perform InvSubBytes as a parallel operation.

S(0,0) [S(0,1) [S(0,2) | S(0.3) $°(0,0) [$°(0,1) [$°(0,2) [$7(0,3)
SO [SADTSA.2) [| 5 160y » [SLO[SAD[$02) [S(1L3)
S(2,0) | S2,1) [8(2,2) [8(2,3) S0 [seD 522503
S(3,0) | S3.1) | '8(3,2) | S3.,3) $’G,0) [S’G.D [8°3G.2) [$°3.,3)

Figure 13: InvSubBytes Operation

The inverse S-box is a 256 byte table where the hexadecimal values of the input
value reference the position in the table. For example, if the input value is {57} in
hexadecimal, then the x coordinate of the table is J, the y coordinate of the table is 7 and
the result is an output value of {da}. For the inverse S-box, the inverse of the affine
transformation in Chapter 2.2.3.2 is applied and then the multiplicative inverse in GF(2°)

is performed. Table 3 shows the inverse S-box [1].

23

Table 3: Inverse S-box [1]

Byte
XY)

Bits 3-0 (Y)

6

7

8

9

52

09

6a

ds

30

36

as

38

bf

40

9¢

81

Ol

d7

7c

e3

39

82

9b

2f

ff

87

34

8e

44

c4

de

e9

54

7b

94

32

a6

c2

23

3d

€C

4c

0b

42

fa

08

2e

al

66

28

d9

24

b2

76

5b

49

6d

8b

dl

72

f6

64

86

68

98

16

a4

a4

CcC

5d

65

b6

6¢c

70

48

50

fd

ed

b9

da

Se

15

57

a7

&d

9d

90

dg

ab

00

8c

bc

d3

Oa

f7

e4

05

b8

b3

45

do

2¢

8f

ca

3f

of

02

cl

af

03

01

13

8a

3a

91

11

41

41

67

dc

ca

97

2

CcC

b4

eb

96

ac

74

22

e7

ad

35

85

e2

9

e8

75

df

47

fl

la

71

1d

29

cS

89

6f

b7

Oc

aa

18

be

fc

56

3e

4b

d2

79

20

9a

db

fe

78

cd

5a

1f

dd

a8

33

88

07

c7

31

bl

12

59

27

80

€C

60

51

7f

a9

19

b5

4a

0d

2d

e5

9f

93

a0

el

3b

4d

ac

2a

f5

b0

c8

eb

3¢

83

53

99

Bits 7-4 (X)
-l Qe (TN ISR I[N N]|R [RN -D

17

2b

04

Te

ba

77

dé

26

el

69

63

35

21

Oc

2.2.4.4 InvMixColumns Operation. The InvMixColumns operation mentioned
in Step 4d of Chapter 2.2.4 multiplies each column of the state modulo (x’+1) over
GF(2®) with the inverse of the polynomial in MixColumns, a”/(x), from Chapter 2.1.5.

The new column of the state is presented as the following matrix multiplication.

S| [0e 0b 0d 097 Soe
e | |09 Oe 06 0d| s,
sh.| |0d 09 Oe 0b|s,,
S'B,c 06 0d 09 Qe S5,
0<c<N, (N, =4)

This is reduced to the following calculations per column [1].

24

S'0.c = ({0} 050,) ® ({00} 05,) ® ({0d} @5,) ® ({09} ®5,)
$'e = ({09} 050,) © ({0c} @5,) © ({0} 05, ,.) ® ({0} ®5;,)
$',e = ({0d} 05,) D ({09} 05, .) @ ({0} @5,) D ({0b} »5,)
s'. = ({0b} 05,) @ ({0d} @5,) ({09} 05,,) D ({0} ®5,,)

Multiplication over GF(ZS) can again be simplified as an expression of simpler
logic functions. {0/} and {02} were calculated in Chapter 2.2.3.4. {04} is calculated as

the xtime of {02} and {08} is calculated as the xzime of {04} as per the following.

{04} ea= {02}a,{02}a,{02}a,{02}a, {02}a, {02}a, {02}a,0 ®
000{02}a, {02}a, 0{02}a, {02}a,

{08} ea = {04}a,{04}a, {04}a, {04}a, {04}a, {04}a, {04}a,0
000{04}a, {04}a, 0{04}a, {04}a,

{03} was calculated as the addition (bitwise XOR) of {02} and {01} in Chapter

2.2.3.4. This method is used to calculate {09}, {0b}, {0d} and {0e}.

{09} ea=({08ea)® ({01} ea)=({08}ea)Da
{0b} e a = ({09} ea)® ({02} eaq)

{0d} ea= ({09} ea)® ({04} eq)

{0c} e a = ({08} e a) D ({04} e a) @ ({02} ® a)

InvMixColumns can be developed in a format suitable for the target platform

using these methods for calculating {09}, {0b}, {0d} and {0e}.

25

2.3 Modes of Operation

There are five primary modes of operation defined by SP 800-38A [2] for use
with symmetric key block ciphers to provide data confidentiality. These modes are ECB,

CBC, CFB, OFB and CTR.

2.3.1 ECB Mode

ECB mode [2] consists of a direct one-to-one relationship between plaintext and
ciphertext. For example, if wordl encrypted by a key results in word2, then word2
decrypted by that same key results in wordl. Each block of data is operated on
independently. The cipher function is applied to a block of plaintext to produce a block
of ciphertext and the inverse cipher function is applied to a block of ciphertext to produce
a block of plaintext. Figure 14 displays the dataflow for encryption and decryption

operations in ECB mode.

Plaintext Ciphertext
i
Bymmetric Symmetric
Cipher Cipher
y
Cipheraxt Plaintest

Figure 14: ECB Mode (Encryption and Decryption) [2]

26

This mode has the advantage of allowing for parallel computation of multiple data
blocks as there is no dependency on the order in which the data is computed. This
mode’s drawback is its one-to-one correlation between ciphertext and plaintext. This

consistent relationship may be undesirable in certain applications.

2.3.2 CBC Mode

CBC mode [2] combines the plaintext block with a previous ciphertext block of a
CBC calculation. This mode requires the preceding block’s ciphertext be calculated to
determine the subsequent block’s ciphertext, effectively chaining the calculation from
one block to the next. Unlike ECB mode, there is no one-to-one correlation between
plaintext and ciphertext blocks since the result of a CBC calculation depends on the
previous ciphertext value in addition to the current input value. The first calculation in
the chain requires a non-secret but unpredictable initialisation vector (IV) in place of a
ciphertext block.

Encryption steps in CBC mode XOR together the plaintext and previous step’s
ciphertext block and input the result into the cipher function. Decryption steps XOR
together the previous step’s ciphertext block and the output of the inverse cipher function.
Figures 15 and 16 show the dataflow for CBC mode encryption and decryption

respectively.

27

Plalntext Plaintext Plaintext
{Block 1) {Block 2} (Block n}
inltialization N N ;
Vector gy 7 ;‘“‘”‘“““‘69
k. ; 4
g
i
i
Symmetric Symmetric 3 Symmetric
Cipher Ciphaer i Cipher
[Encryption Moda] [Encryption Made] 1 | [Enoryplion Mode]
:
!
h 4 k 4
Cipheriaxt Cipheriext Ciphertext
{Bloek 1) {Block 2) {Block n)
Figure 15: CBC Mode (Encryption) [2]
Cipherext Ciphertext Ciphertext
{Block 1) (Black 2) {Block n)
G
L r H
i
i
§
Symmetric Symunetric § Symmetric
Cipher Cipher H Cipher
[Decryption Made] [Brecryption Mode) ; [Pecryption hMode}
i
i
i
b 4 4 H b
iniialization O TN [E
Vector N K 9
L k4
Plaintext Plaintext Plaintext
{Block 1) (Block 2} {Black ri)

Figure 16: CBC Mode (Decryption) [2]

This mode does not feature the potentially undesirable property of a one-to-one
correspondence between plaintext and ciphertext. However, it is not possible to encrypt
in parallel due to the chaining property of the encryption process. Decryption can still be
performed in parallel presuming the availability of the entire ciphertext stream.

28

2.3.3 CFB Mode

CFB mode [2] requires the feedback of a calculated ciphertext block as the input
to the next calculation. This mode requires calculating the preceding block’s ciphertext
to determine the subsequent block’s ciphertext as with CBC mode. The first calculation
requires a non-secret but unpredictable IV in place of a ciphertext block. The block size
of the input has & bits.

CFB mode encryption XORs together the s most significant bits of the cipher
function output with the corresponding s bits of the plaintext to produce s bits of
ciphertext output. The remaining b-s bits of the input are then concatenated with the s
bits of ciphertext to produce the next input block. The procedure is repeated until all
corresponding s bit segments of the plaintext have been processed. CFB mode
decryption XORs together the s most significant bits of the inverse cipher function output
with the corresponding s bits of the ciphertext to produce s bits of plaintext output. The
remaining b-s bits of the input are then concatenated with the s bits of plaintext to
produce the next input block. The procedure is repeated until all corresponding s bit
segments of the ciphertext have been processed. Figures 17 and 18 show the dataflow for

CFB mode encryption and decryption respectively.

29

Initiatization

Figure 18: CFB Mode (Decryption) [2]

Vactar
* A x
{b-s | s-bits} Input ; (b5 | sbitg} Inputs
Symeneiric Symrmwtric j Symmelric
Cipher Cipher J Cipher
[Encryption Moda)] [Encryption tode} z [Encryption Mode]
(s-tits} Output | ! {s-bits) Output
Plalntext JanY Plaintext Faay ; Plalrtext ™
(Block 1) haN {Block 2} R g i (Block n) Y
{s-hits) (5-bits) i {s-hits)
)
Cipherext Ciphertest | | Ciphertext
(Block 1) {Block 2y {Block n)
{s-bits) {s-bits) (s-bits}
Figure 17: CFB Mode (Encryption) [2]
Ciphertext Clphertext Ciphertext
(Block 1) {Block 2) (Block)
(s-bits} (s-bits} {s-bits)
Initialization - s s s e e s e X s o e e e e
Vector “;
H
i
i
i
i
9 ¥ 4
{b-5 | s-bits) Inputs (b5 | s-bils) inputs
Symrnalric Symimatric Syrornatric
Clphar Cipher Cipher
[Decryption Mode] fDacryption Mode) [Decryption Mode]
{s-hits) Cutpuat (s-bits} Output {s-bits) Quiput
4
Pan) an >
{1 laww} &
Plaintext Plaintext Plaintext
Block 1) {Bikock 2) {Black)
{s-bits} {s-bits} {s-bits}

1-bit, 8-bit, 64-bit and 128-bit CFB modes are all listed in SP 800-38A [2].

Theoretically, any symmetric cipher processing data of b bytes can operate in a CFB

mode of s bits where s evenly divides b. For the purposes of this design’s hardware

implementation, s is a constant 128 bits. In this encryption scenario the entire 128-bit

block of plaintext is XORed with the entire cipher function output, producing a 128-bit
block of ciphertext to serve as the next input block. The same scenario applies to
decryption. The entire 128-bit block of ciphertext is XORed with the entire inverse
cipher function output, producing a 128-bit block of plaintext.

This mode is similar to CBC in that it does not feature the potentially undesirable
property of a one-to-one ratio between plaintext and ciphertext. Encryption cannot take
place in parallel. Decryption can be performed in parallel presuming the availability of

the entire ciphertext stream.

2.3.4 OFB Mode

OFB mode [2] requires the output of the forward cipher function for the input of
the next calculation. This mode requires calculating the preceding block’s ciphertext to
determine the subsequent block’s ciphertext as with CBC and CFB modes. The first
calculation requires the IV as an input block. The IV must be a unique nonce for each
key used, otherwise it is possible to compromise data confidentiality.

Encryption and decryption steps in OFB mode are identical, the only difference
being the application of plaintext or ciphertext. The output of the forward cipher function
is XORed together with the plaintext to produce a ciphertext block for encryption.
Similarly, for decryption the output of the forward cipher function is XORed together
with the ciphertext to produce a plaintext block. In both cases the output of the forward
cipher function also serves as the input of the subsequent calculation. Figures 19 and 20

show the dataflow for OFB mode encryption and decryption respectively.

31

Initialization
Vector

¥ S ¥
i
i
SByremelric Symmetric i Symmetric
ipher Cipher ¢ Cipher
{Encryption Moda) [Encryption Mode]] [Encryption Mode]
i
4
|
[o e i
Plaintext TN Plaintext Fany Plaintext 7T
Block 1) G {Block 2} 37 {Bilock n) &
X
Ciphertext Ciphertaxt Ciphertext
(Block 1) {Block 2) (Black n)
Figure 19: OFB Mode (Encryption) [2]
Initialization
Vector
¥ o L K 4
}
i
SByrmemeiric Symmetric ; Symmaelric
Cipher Cipher i Cipher
Encrypion Mode] {Enaryption Mode] i [Enctyption Mode]
i
i
i
wwwwww H
Ciphernext Ty Ciphertext /'"\ Cipheriext LTy
{Biock 1) 3 {Block 2} Ny {Block n) 37
Plaintext Plaintext Plaintext
(Black 1) (Block 2) (Block n)

Figure 20: OFB Mode (Decryption) [2]

The same IV supplied with the same key will result in the same forward cipher
function outputs for each data block. Encryption and decryption may be performed in
parallel if the IV is known and the forward cipher function outputs are calculated in

advance. The inverse cipher function is not used in the decryption stage.

32

2.3.5 CTR Mode

CTR mode [2], similar to OFB mode, only uses the forward cipher function. The
IV is replaced by a series of input blocks, called counters. These counters must be
distinct for each message block. These counters must also be distinct for all messages for
a specific key to preserve data confidentiality.

Encryption and decryption steps in CTR mode are identical, the only difference
being the application of plaintext or ciphertext. The output of the forward cipher function
is XORed together with the plaintext to produce a ciphertext block for encryption.
Similarly, for decryption the output of the forward cipher function is XORed together
with the ciphertext to produce a plaintext block. In both cases the input of the cipher
function consists of unique counters. Identical counters should only be used for the
corresponding encryption and decryption stages. Figures 21 and 22 show the dataflow

for CTR mode encryption and decryption respectively.

Cyuarstesr Counter Counter
(0} 1) {+m)
k4 .
Symanetric Symmedric Symmetric
Clpher Cipher [Clpher
[Enctyption Mode] [Ercryption Mode] [Encryption Mode]
Plaintext 7T Plaintaxt N f[‘\ Plaintext /"\
(Block 1) e g {Block 2} N (Block n) 3
A
Cipheriext Ciphertext Cipheriext
(Block 1} {Block 2) (Block n)

Figure 21: CTR Mode (Encryption) [2]

33

Figure 22: CTR Mode (Decryption) [2]

Courter Countar Counter
L] +1) {+11)
¥ h.
Symmetric Symmetric Symmetric
Ciphet Cipher | Cipher
[Encrygion Mods) [Encryption Mode) [Encrypion Mode)
Cipherext EN Ciphertext EN Ciphertext =S
(Block 1) e {Block 2) Ry (Block n) 7
k. 4
Plaintext Plaintext Plaintext
Block 1) {Block 2) (Block n)

The same counter supplied with the same key will result in the same forward

cipher function outputs for each data block. A counter value from an encryption

calculation should only be reused with the same key for the corresponding decryption

calculation. Encryption and decryption may be performed in parallel if the counters are

known and the forward cipher function outputs are calculated in advance.

The counter function has been made a simple incremental function for the

purposes of this design’s hardware implementation. Once an initial counter value is

supplied the remainder of the counter values are automatically calculated at each stage.

34

Chapter 3

Core AES Implementation

The core AES implementation is written in VHDL. An overview of the core AES
implementation and a description of its major hardware components follow. The chapter
first presents a top-level view with a description of how an external user or device
interacts with the implementation. This is supplemented with a summary of the

implementation’s major hardware components and an expanded description of each.

3.1 Top-Level View

The core AES device consists of seven input and two output ports. All inputs and

outputs are parallel, comprising a total of 519 bits. Table 4 lists the ports.

Table 4: Core Implementation Ports

Signal Bits Type Description
CLK 1 In Clock signal; internal processes wake up and ‘
calculations are performed when this signal is high.
Dataln 128 In | 128-bit data block bus.
Keyln 256 In | 256-bit key block bus (128/192/256-bit sizes).
KeySize 2 In | 2-bit input; 3 selectable key sizes.
Enc/Dec 1 In | 1-bit input; selectable encryption/decryption.
NewKey 1 In | 1-bit input; selectable key expansion operation.
Enable 1 In | 1-bit input; processing enable.
DataOut 128 Out | 128-bit ciphertext block bus.
1-bit data strobe alerts external devices that a new
OutputReady ! Out ciphertext block has stabilised on the DataQut bus.

35

The device is operated via the following procedure:

1.

2.

Attach an independently functioning clock to the CLK output.

Set the Enc/Dec input to 0 for an encryption operation and / for a decryption
operation.

Set the NewKey input to 0 for AES processing only and / to expand a new key in
addition to AES processing.

Set the KeySize input to 00 or 01 for a 128-bit key, 10 for a 192-bit key or 1/ for a
256-bit key. This input value is irrelevant when NewKey is set to 0.

Supply a 256-bit value to the Keyln bus. Bits 1-128 are used for calculations of
all key sizes. Bits 129-192 are also used for 192-bit and 256-bit key sizes. Bits
193-256 are used for 256-bit keys only. This input value is irrelevant when
NewKey is set to 0.

Supply a 128-bit value to the Dataln bus.

Trigger the Enable input. The device produces a signal at the DataQut bus
corresponding to the stored input values. The signal QutputReady is high for one
clock cycle at the same time a new stable value appears at DataOut. This
operation cannot be interrupted until it has been completed. Changing the input

values during this process has no effect on the operation.

3.2 Hardware Component View

The design is separated into five major hardware components. Table 5

summarises these components. The remainder of the chapter expands on each of these

hardware components.

36

Table 5: Major Hardware Components

Name Description .

PREPROC Buffers and stores Enable, Enc/Dec, Dataln, KeyIn, KeySize and
NewKey signals. Signals stored by PREPROC are used by the other
hardware components for an AES processing cycle.

KEYEXP Performs key expansion based on the KeySize and Keyln signals
stored by PREPROC. This component is only active when a / is
stored for NewKey.

KEYSTR Contains the expanded subkeys produced by KEYEXP. The contents
of KEYSTR are updated only when a / is stored for NewKey.

ENCDEC Performs the encryption/decryption operation based on the Dataln

signal stored by PREPROC and the stored expanded key contained in
KEYSTR. The resultis a 128-bit vector.

POSTPROC Outputs DataQOut and sets QutputReady high during the same clock
cycle.

Figure 23 shows the relationship between the hardware components as written in
VHDL. At this abstraction level there are six logical constructs which correspond to the
five major hardware components. These are TRIGGER and VALUES (PREPROC),
EXPANSION (KEYEXP), MEMORY (KEYSTR), ENDEC (ENCDEC) and OUTPUT

(POSTPROC).

37

)

&

§
z?l%f%

BT AqeD & .

3 5507 GO SEIVA {084
Aoy a3 " -
330U AIBR _ e ¥ Anyes
. Foud 82§ A oEa >
“ xesa{id Lt o E&x .
- - S5 g)
% 1 * o 50e [o

i

3
§’B§

@ o

¥ _so, "
EIRAT0IS L RS

L _||ﬂA ”wv K

wp Ery i, O3 Aeud

Ay may Wl AqeUE > ECSECE:

ams i — .Mu_

A3y

HIBUT S o)

Figure 23: Hardware Component Flowchart (VHDL Code, AES Only)
38

A central control unit is not listed among either the major hardware components
or the VHDL constructs. This is because the major hardware components are each
responsible for signalling and micro-managing other components as to when they may
operate and what functions they may perform. Therefore, the role of a central control
unit is a distributed function of this design. Discussion of any control constructs is

intentionally simplified.

3.2.1 PREPROC Component

The PREPROC hardware component buffers and stores the Enable, Enc/Dec,
Dataln, Keyln, KeySize and NewKey signals. The component consists of registers that
buffer the value of these signals every clock cycle. The buffered values are referred to in
the diagrams as Buffered signals, the currently stable input signals. The PREPROC
component uses the buffered signals, as opposed to directly accessing the inputs, to avoid
signal glitches caused by unstable or rapidly changing inputs.

Figure 24 shows PREPROC’s hardware design for manipulating Buffered signals.

A I
% i BuiferedNewey
BuffersdEnciDec BulferedDatain ButferedKeyla SELECY
BuffersdEnable
1-bit 128-hit 256-bit 2-bit 1-bit Combinational
Register Register Register Register Register Logie
[[[- [

|
StoradEncDec StoreciDataln : Siz y KayBytes

I ! | T

Figure 24: PREPROC Component (AES Only)

39

The majority of signals stored by PREPROC are referred to in the diagrams as the
Stored signals, the stable input signals that have been selected for AES processing.
While the Enc/Dec, Dataln and NewKey values are stored in a straightforward manner,
the remaining signals require additional processing.

The stored KeySize depends on whether a new key has been stored or the
previously expanded key has been retained. The previous key size, recorded by the
KEYEXP component, is stored for KeySize if 0 is buffered for NewKey. The buffered
Keyln is disregarded in this case. The buffered KeySize and Keyln are stored if [is
buffered for NewKey. The value KeyBytes is calculated based on the output of the MUX.
KeyBytes corresponds to the number of bytes in the input key, either four (128-bit), six
(192-bit) or eight (256-bit). This values is used by the KEYEXP and KEYSTR

components.

3.2.2 KEYEXP Component

The KEYEXP hardware component performs key expansion based on the KeySize
and Keyln signals stored by PREPROC. This component is only active when a [is
stored for NewKey. One 32-bit subkey is created per clock cycle, requiring 44 clock
cycles for a 128-bit key, 52 clock cycles for a 192-bit key and 60 clock cycles for a 256-
bit key.

The first portion of the expanded key is a copy of the original key. The relevant
bits of the stored Keyln are temporarily stored in 32-bit increments. Each subkey in turn
is stored by the KEYSTR component. Figure 25 shows KEYEXP’s hardware design for

all rounds after the original key has been copied.

40

Combinational

HayBy A;U Logic
(") 3 Excfosive and
Prisitizad Oufpuls)
1% Modulo = §
27 Madduka = 4
{KayBytes = 8)

I Any other resul:

e stz he s A Enabled)

Enadie2

|sceoxi ls—aox| Is-sox] [S-Boxl

e s — [Sy g — [magp—

Counter |_ :
“n

23-] 18 wre /&\ i 31-‘24 I

N '

|

|

i

|

|

AR

| SR UV — |

32-bit
Register

!
NewExpandedSubkey
b

Figure 25: KEYEXP Component (Normal Rounds)

For each key expansion round, the previous subkey and the subkey one KeyBytes
length away from the current subkey are read. The key expansion algorithm varies based
on the value of KeyBytes and the modulus of the current subkey index and KeyByfes.
Three mutually exclusive paths accommodate this in hardware. If the resulting modulo
operation is 0 the first enable signal is active, otherwise if the resulting modulo operation
is 4 for a 256-bit key (KeyBytes is 8) the second enable signal is active. If both these
conditions fail the third enable signal is active.

The first and second paths separate the previous subkey into four 8-bit units that

are each processed by an S-box.

41

The first path concatenates the 8-bit outputs of each S-box in the order of bits 23-
16, 15-8, 7-0 and 31-24. This value is XORed with the Rcon value and the subkey one
KeyBytes length away from the current subkey. The counter attached to the Rcon look-
up table (LUT) is the LUT’s index and increments each time the first enable signal
changes from low to high.

The second path concatenates the 8-bit outputs of each S-box in their original
order. This value is XORed with the subkey one KeyBytes length away from the current
subkey.

The third path concatenates the previous subkey and the subkey one KeyBytes
length away from the current subkey.

KEYEXP records the value of the stored key for the next AES processing cycle in
the event NewKey is stored low. This storage is not explicitly depicted in the above

figure.

3.2.3 KEYSTR Component

The KEYSTR hardware component contains the expanded subkeys produced by
KEYEXP. The contents of KEYSTR are updated only when a / is stored for NewKey.
Figure 32 shows KEYSTR’s hardware design. The component consists of 60 registers of
32-bits each. The first 44 are used for an expanded 128-bit key. The next eight are also
used for an expanded 192-bit key and the remaining eight are also used for an expanded
256-bit key. Each register is updated with a corresponding subkey after that subkey is

calculated by KEYEXP.

42

3.2.4 ENCDEC Component

The ENCDEC hardware component performs the encryption/decryption operation
based on the Dataln signal stored by PREPROC and the stored expanded key contained
in KEYSTR. The result is a 128-bit vector. The encryption round function follows the
pattern of SubBytes(), ShiftRows(), MixColumns() and AddRoundKey(). The decryption
round function follows the pattern of InvShiftRows(), InvSubBytes(), AddRoundKey()
and InvMixColumns(). First, the hardware required for initialising the state and the
hardware required for the major components of an encryption round are presented.
Second, the hardware required for initialising the state and the hardware required for the

major components of a decryption round are presented.

3.2.4.1 Encryption Operation. The first four subkeys of the expanded key are
concatenated and XORed with the stored Dataln, producing the initial State. The
encryption round function performs all calculations starting from the initial State.

The encryption round function is divided into three hardware components: a
SubBytes/ShiftRows unit, a MixColumns unit and an AddRoundKey unit. The output of
AddRoundKey is the new State and is the input for the next iteration of the round
function. The round function iterates 10 times for a 128-bit key, 12 times for a 192-bit
key and 14 times for a 256-bit key. Figure 26 shows ENCDEC’s SubBytes/ShiftRows

encryption unit.

43

State

|

| : b ®) k 1 { h i i 5 1
o iR & & 4

]]
Ak L L i A ok A
1 S-box ‘ |S»box l I S-box] f $-box l !S-box i [S«box | IS‘box { l S-box I | S-box { {S-box l [S-box | ES«box 1 |vaox] lS~box 1 } S-box ’ l S-box I

i !
7 12

&

Intsrim$taiot

Figure 26: ENCDEC Component (Encryption / SubBytes & ShiftRows)

The functionality of the SubBytes and ShiftRows operations are merged into a
single hardware unit. This takes advantage of the reversible property of SubBytes and
ShiftRows. The State is separated into sixteen 8-bit units and reordered as in Chapter
2.2.3.3. Each unit is applied to an S-box that generates a corresponding value. The
resulting values are concatenated together producing an interim state. This completes the
SubBytes and ShiftRows operations of the round function. This hardware unit is active
for all rounds.

Figure 27 shows ENCDEC’s XTime function as presented by Zhang and Parhi [3].
The XTime function was presented in Chapter 2.1.3 and greatly simplifies the
MixColumns and InvMixColumns GF operations. Any appearances of X7ime blocks
hereon can be replaced by this implementation. Figure 28 shows ENCDEC’s

MixColumns encryption unit.

44

X7 | x6 | x5 [x4 | x3] x2 | x1 | x0

LS

X6 1 x5 x4 1 x3 I x21x1 | x0O]| O

s JOOT HHT YOURT KT 8

or

wr()

Figure 27: ENCDEC Component (XTime)

S00 §01.0) | | s | $Go)

Figure 28: ENCDEC Component (Encryption / MixColumns)

The MixColumns unit is based off an implementation proposal by Zhang and
Parhi [3]. The interim state is separated into four 32-bit words corresponding to the four
columns of the state. Each column in turn is separated into four 8-bit subwords. An
XTime unit is applied to the initial subword to produce {02)X. A subword’s {02}X and

the original subword are XORed to produce {03}X. {03}X, {02}X, {01}X and {01}X

45

values are XORed together as in Chapter 2.2.3.4 to produce the transformed subwords.
This is repeated for the other three columns of the state. The transformed subwords are
concatenated together producing a second interim state value. This completes the
MixColumns operation of the round function. This hardware unit is active for all but the
final round.

The AddRoundKey unit is similar to the initialisation unit. The second interim
state is XORed with the next four unprocessed subkeys of the expanded key, producing
the new State. This completes the AddRoundKey operation of the round function, and
the current round. This hardware unit is active for all rounds. The State produced in the

final round is the AES ciphertext value for the expanded key and stored Dataln.

3.2.4.2 Decryption Operation. The last four subkeys of the expanded key are
concatenated and XORed with the stored Dataln, producing the initial State. The

decryption round function performs all calculations starting from the initial State.

The decryption round function is divided into three hardware components: an
InvShiftRows/InvSubBytes unit, an AddRoundKey unit and an InvMixColumns unit.
The output of InvMixColumns is the new Stare and is the input to the next iteration of the
round function. The round function iterates 10 times for a 128-bit key, 12 times for a
192-bit key and 14 times for a 256-bit key.

Figure 29 shows ENCDEC’s InvShiftRows/InvSubBytes decryption unit.

46

|

Stete

L

T i

& 5 é 1 T] i I 1

3 1€ 13 4

I,
Tnv lnv
$-box $- bux
[

K o—]
-

i
inv
S-box
!

N)
Ty
S-box
[

Trw
8-box

N
v
S-box
i

Ir;v
S-box
|

Inv
$- box

Inv lnv
&box S

nv Inv mv
S box S S- box

|nv Inv Inv
$- bcx 8- box S-box

&

interimStatet
4

Figure 29: ENCDEC Component (Decryption / InvShiftRows & InvSubBytes)

The functionality of the InvShiftRows and InvSubBytes operations are merged
into a single hardware unit as with SubBytes and ShiftRows. The State is separated into
sixteen 8-bit units and reordered as in Chapter 2.2.4.2. Each unit is applied to an inverse
S-box that generates a corresponding value. The resulting values are concatenated
together producing an interim state. This completes the InvSubBytes and InvShiftRows
operations of the round function. This hardware unit is active for all rounds.

The AddRoundKey unit is similar to the initialisation unit. The interim state is
XORed with the next group of the last four unprocessed subkeys of the expanded key,
producing a second interim state. This completes the AddRoundKey operation of the
round function. This hardware unit is active for all rounds. The interim state produced in
the final round is the AES ciphertext value for the expanded key and stored Dataln. The
InvMixColumns operation is bypassed.

Figure 30 shows ENCDEC’s InvMixColumns decryption unit.

47

128-bit
Register

1
St
i

Figure 30: ENCDEC Component (Decryption / InvColumns)

The InvMixColumns unit is based off an implementation proposal by Zhang and
Parhi [3]. The second interim state is separated into four 32-bit words corresponding to
the four columns of the state. Each column in turn is separated into four 8-bit subwords.
An XTime unit is applied once, twice and thrice to produce a subword’s {02}X, {04} X and
{08}X. A subword’s {09}X, {0b}X, {0d}X and {0e}X are produced by XORing
corresponding combinations of the subword and its {02}X, {04}X and {08}X. {09}X,
{0b}X, {0d}X and {0e}X are XORed together as in Chapter 2.2.4.4 to produce the

transformed subwords. This is repeated for the other three columns of the state. The

48

transformed subwords are concatenated together producing the new State. This
completes the InvMixColumns operation of the round function. This hardware unit is

active for all but the final round.

3.2.5 POSTPROC Component

The POSTPROC hardware component outputs DataOut and sets OutputReady
high during the same clock cycle. The component consists of a 128-bit register and a 1-
bit register corresponding to DataQut and OQutputReady respectively. The final value of
State is supplied to a 128-bit register when the ENCDEC component completes an
encryption or decryption operation. Simultaneously, a high signal is driven to the 1-bit
register. Each register stores its respective signal, producing DataOut and QutputReady
respectively. After one clock cycle a low signal is driven to the 1-bit register. This value

is stored, producing a low QutputReady.

49

Chapter 4

Confidentiality Modes

ECB is an inherent part of basic AES operation. Several modifications to the base
design are required to add support for CBC, CFB, OFB and CTR operating modes. The
overall system requires four additional bits of input versus the base AES implementation.
One new major hardware component is added and two existing components are modified.
The chapter first presents a top-level view with a description of how an external user or
device interacts with the updated implementation. This is supplemented with a summary
of the implementation’s additional and modified major hardware components and an

expanded description of each.

4.1 Top-Level View

The complete AES device with five modes consists of nine input and two output

ports. All inputs and outputs are parallel, comprising a total of 523 bits. Table 6 lists the

additional ports.
Table 6: Additional Implementation Ports
Signal Bits Type Description
Mode 3 In 3-bit input; 5 selectable operating modes.
LoadlV 1 In 1-bit input; selectable [V storage / regular
operation.

50

The device operates in a fundamentally identical manner to the base AES design:

1.

2.

Attach an independently functioning clock to the CLK output.

Set the Enc/Dec input to 0 for an encryption operation and / for a decryption

operation.

. Set the NewKey input to 0 for AES/mode processing only and / to expand a new

key in addition to AES/mode processing.
Set the KeySize input to 00 or 0! for a 128-bit key, 10 for a 192-bit key and /! for
a 256-bit key. This input value is irrelevant when NewKey is set to 0.
Supply a 256-bit value to the Keyln bus. Bits 1-128 are used for calculations of
all key sizes. Bits 129-192 are also used for 192-bit and 256-bit key sizes. Bits
193-256 are used for 256-bit keys only. This input value is irrelevant when
NewKey is set to 0.
Supply a 128-bit value to the Dataln bus.
Set the Mode input to 000 for ECB mode, 001 for CBC mode, 070 for CFB mode,
011 for OFB mode or /xx for CTR mode (where x can be 0 or [).
Set the LoadlV input to 0 for regular operation and / for storing an IV from the
Dataln bus input.
Trigger the Enable input.
a. The device sets the IV as the stored Dataln if the stored LoadlV is 1.
b. Otherwise if the stored LoadIV is 0 the device produces a signal at the
DataOut bus corresponding to the stored input values. The signal
OutputReady is high for one clock cycle at the same time a new stable

value appears at DataOut. This operation cannot be interrupted until it has

51

been completed. Changing the input values during this process has no

effect on the operation.

4.2 Hardware Component View

The complete design is separated into six major hardware components. One

component is added and adjustments are made to two existing components. Table 7

summarises the additional and adjusted components. The remainder of the chapter

expands on each of these hardware components.

Table 7: New and Updated Major Hardware Components

Name Description

IVREG Stores either a user-supplied or calculated IV,

PREPROC Buffers and stores Enable, Enc/Dec, Dataln, KeyIn, KeySize,
NewKey, Mode and LoadlV signals. Pre-processes values required for
modes other than ECB. Signals stored by PREPROC are used by the
other hardware components for an AES processing cycle.

POSTPROC Post-processes values required for modes other than ECB. Calculates

and outputs DataOut and sets QuiputReady high during the same
clock cycle.

Figure 31 shows the relationship between all hardware components as written in

VHDL. At this abstraction level there are seven logical constructs which correspond to

the six major hardware components. These constructs are identical to the base design

with the addition of IV (IVREG).

52

)

YUYV
JgLLL
ol vk e

M

AL

LR

g

:

Figure 31: Hardware Component Flowchart (VHDL Code, Complete)

53

The role of a central control unit remains a distributed function of this design.

Discussion of any control constructs is intentionally simplified.

4.2.1 IVREG Component

The IVREG hardware component stores either a user-supplied or calculated IV.

Figure 32 shows IVREG’s hardware design.

BuHferedDataln

—=--

|
1 |

————————Busfferedl ondiy.
SEnabl D“"‘% :

I
e 10 S C B GBS TY ;

- ——

Calw&]memv

Figure 32: IVREG Component

The component consists of combinational logic that determines which of two
values are assigned to the internal /V bus. The user stores the buffered Dataln when the
buffered LoadlV and Enable signals are high. Alternatively, the updated POSTPROC
component calculates a new IV corresponding to the mode of operation, and notifies
IVREG when this value is ready. This calculated IV is stored on the /7 bus when the

notification signal is high and either condition for storing the buffered Dataln is not met.

54

Storing the buffered Daraln is disabled during key expansion, encryption/decryption or

output procedures.

4.2.2 PREPROC Component

The PREPROC hardware component buffers and stores the Enable, Enc/Dec,
Dataln, Keyln, KeySize, NewKey, Mode and LoadIV signals. The component is
functionally identical to the implementation in Chapter 3.2.1. An additional 3-bit and 1-
bit register are added to buffer the Mode and LoadIV inputs. LoadIV is used exclusively
by the IVREG component.

PREPROC also pre-processes values required for modes other than ECB. Figure

33 shows PREPROC’s updated hardware design for manipulating Buffered signals,

Pr&vimn‘%(sys&ze Bu!isreaé(w?:im s
o 1
BufferedDitislo BulferedKeyin SELECT Gufferediode W
BufteradEnatie
Combinational
J/ Logic
128-bit 256-bit 2-bit 1-bit Combinational 3-bit MefiofDasaln
Register Register Register Register Logic Register (128t
i tiot
— o b —— [iy
(. | N Keybiyl |
Siorodatain i l y l Wi t[{s‘f“ sxmejmw« S
[

Figure 33: PREPROC Component (Complete)

The component contains additional combinational logic and a new 3-bit register.
The Mode value is stored in a straightforward manner. There is a distinction between the

stored Dataln and the data block created by pre-processing and supplied to ENCDEC.

55

This is important for all modes except ECB which manipulate the input block before
processing. Likewise the stored Enc/Dec and the operation supplied to ENCDEC are
differentiated. This is used by CFB, OFB and CTR modes which always perform an
encryption operation during AES processing, but have different post-processing
procedures based on the original Enc/Dec.

The behaviour of the combinational logic differs based on the buffered Mode and
Enc/Dec. The buffered Dataln is stored when the buffered Mode corresponds to ECB
mode, or alternatively CBC mode and the buffered Enc/Dec is set to decryption. The
XOR of the buffered Dataln and the value on the IV bus are stored as the input data to
ENCDEC when the buffered Mode corresponds to CBC mode and the buffered Enc/Dec
is set to encryption. The value on the IV bus is stored as the input data to ENCDEC and
encryption is enforced when the buffered Mode corresponds to CFB, OFB and CTR

modes.

4.2.3 POSTPROC Component

The POSTPROC hardware component post-processes values required for modes
other than ECB. It calculates and outputs DataOut and sets OutputReady high during the
same clock cycle.

Production of DataOut and OQutputReady is similar to that in Chapter 3.2.5, only
the State value received from ENCDEC is post-processed to create the correct ciphertext
for the stored Mode. POSTPROC also calculates an IV, based on the stored Mode, that is

read and stored by IVREG when the encryption key is retained.

56

ECB mode is identical to the base AES implementation and results in no
alteration of the Stafe value. The calculated IV is set to 0 since IV is not used during any
ECB pre-processing or post-processing.

Figure 34 shows the post-processing logic for CBC mode.

—r-Galouintedi—

SEL

——FinalStag—
StoredEnc/Dec

e
StaredDataln —:E)D

Figure 34: POSTPROC Component (CBC Post-Processing)

State is assigned to the calculated IV and directly supplied to DataQut when
encryption is stored as the Enc/Dec value for CBC mode. This result is significantly
different following a decryption operation. The value supplied to DataOut is the XOR of
the State and the IV bus, and the stored Daraln is becomes the calculated V.

Figure 35 shows the post-processing logic for CFB mode.

57

F——CakulatediV—
SEL W._sﬁ'*\
F“MICN '

StoredEnc/Den

StoredDataln

Figure 35: POSTPROC Component (CFB Post-Processing)

The value supplied to DataOut in all CBC configurations is the XOR of the State
and the stored Dataln. The calculated IV is identical to the value supplied to DataOut
after an encryption operation, and is equivalent to the stored Dataln after a decryption
operation.

OFB and CTR mode post-processing functions are less complex as their
behaviour is identical whether the stored Enc/Dec corresponds to encryption or
decryption. The value supplied to DataOut is the XOR of the State and the stored Dataln
for both OFB and CTR modes. The calculated IV is identical to the State in OFB mode

and is the value on the /7 bus incremented by / in CTR mode.

58

Chapter 5

Hardware Implementation

The targeted hardware platform was the Xilinx Virtex-II Pro XC2VP50-7FF1152
using Xilinx ISE 8.1i as the Synthesis, Translation, Mapping, Place & Route and
Program File Generation tool. Simulations were conducted in Mentor Graphics
ModelSim SE using the Post-Place & Route simulation model generated from the VHDL
code. This ensures performance representative of the actual FPGA.

The chapter first presents the simulation results from key expansion. The
simulation results of AES encryption and decryption in ECB mode follow, including
interim state values. The chapter next presents the simulation results of AES encryption
and decryption for CBC, CFB, OFB and CTR modes. A summary of the hardware
resources allocated after synthesis, timing diagrams based on simulation inputs and a
summary of the actual throughput performance of the design follow. The chapter ends by
comparing the performance of this design to similar published designs, and detailing a

working hardware prototype built to support and test the design.

5.1 Key Expansion Verification

Table 8 lists the 32-bit subkeys generated in simulation during the expansion of a

128-bit key. The 44 subkeys are sequentially ordered from 59 to 16.

59

Table 8: AES Key Expansion (128-bit) — Fourty-four 32-bit Subkeys

Key: 2b7¢151628aed2a6abf7158809cf4f3c
Subkey # Subkey # Subkey # Subkey
59 2b7¢1516 48 7359f67f 37 caf2b8bc 26 b58dbad2
58 28aed2ab 47 3d80477d 36 111915be 25 312bf560
57 abf71588 46 4716fe3e 35 6d88a37a 24 7£8d292f
56 09cf4f3c 45 1€237e44 34 110b3efd 23 ac7766f3
55 a0fafel7 44 6d7a883b 33 dbf98641 22 19fadc21
54 88542cbl 43 efd4a541 32 ca0093fd 21 28d12941
53 23a33939 42 a8525b7f 31 4e54{70e 20 575¢006e
52 2a6¢7605 41 b671253b 30 5£5£c913 19 d01419a8
51 f2¢29512 40 db0bad00 29 84a641b2 18 c9ee2589
50 7a96b943 39 d4d1c6f8 28 4eabdc4f 17 €13f0cc8
49 5935807a 38 7¢839d87 27 ead27321 16 b6630cab

Table 9 lists the 32-bit subkeys generated in simulation during the expansion of a

192-bit key. The 52 subkeys are sequentially ordered from 59 to 8.

Table 9: AES Key Expansion (192-bit) — Fifty-two 32-bit Subkeys

Key: 8¢73b0f7da0e6452¢810£f32b809079e562f8ead2522¢6b7b
Subkey # Subkey # Subkey # Subkey
59 8e73b0f7 46 69b54118 33 27193943 20 458¢553¢
58 da0e6452 45 85a74796 32 6a94f767 19 a7el1466¢
57 c810f32B 44 €925381fd 31 c0a69407 18 9411f1df
56 809079¢5 43 e75fad44 30 d19dadel 17 821£750a
55 6218ead2 42 bb095386 29 ecl1786¢b 16 ad07d753
54 522c6b7B 41 485af057 28 6fa64971 15 ca400538
53 fe0c91f7 40 2lefbld4f 27 4857032 14 8fcc5006
52 2402f5a5 39 a448f6d9 26 22¢b8755 13 282d166a
51 ecl12068e 38 4d6dce24 25 e26d1352 12 bc3ce7bs
50 6¢827f6b 37 aa326360 24 33f0b7b3 11 €¢98bal6f
49 0e7a95b9 36 113b30e6 23 40beeb28 10 448c773¢
48 5c56fec2 35 a25e7ed5 22 2f18a259 9 8ecc7204
47 4db7b4bd 34 83blcf9a 21 6747d26b 8 01002202

Table 10 lists the 32-bit subkeys generated in simulation during the expansion of

a 256-bit key. The 60 subkeys are sequentially ordered from 59 to 0.

60

Table 10: AES Key Expansion (256-bit) — Sixty 32-bit Subkeys

Key: 603deb1015ca71be2b73aef0857d77811352¢073b6108d72d9810a30914dff4

Subkey # Subkey # Subkey # Subkey
59 603deb10 44 b75d5b9a 29 268c3ba7 14 2e2f31d7
58 15ca7lbe 43 d59aecb8 28 09e04214 13 7eOaflfa

57 2b73aef0 42 5bf3¢917 27 68007bac 12 27¢f73¢3
56 857d7781 41 fee94248 26 b2df3316 11 749¢47ab
55 1£352¢07 40 de8ebe96 25 96€939¢4 10 18501dda
54 3b6108d7 39 b5a9328a 24 6¢518d80 9 e2757e4f
33 2d9810a3 38 2678a647 23 c814e204 8 7401905a
52 0914dff4 37 98312229 22 76a9fb8a 7 cafaaae3

51 9ba35411 36 2f6¢79b3 21 5025¢02d 6 ¢4d59b34
50 8e6925af 35 812c81ad 20 59¢58239 5 9adfbace
49 a51a8bsf 34 dadf48ba 19 del36967 4 bd10190d
48 2067fcde 33 24360af2 18 6¢ccSa7l 3 fe4890d1
47 a8b09¢cla 32 fab8b464 17 fa256395 2 €6188d0b
46 93d194cd 31 98¢5bfc9 16 9674¢el5 1 046df344
45 be49846¢ 30 bebd198e 15 5886¢aSd 0 706¢631e

All values are consistent with the results of the key expansion vectors in FIPS 197

[1].

5.2 AES Round Verification (ECB Verification)

The final round corresponds to the system’s output. Round 0 corresponds to the
initialised state for all AES rounds. Table 11 lists the round values calculated in

simulation during encryption in ECB mode with a 128-bit key.

Table 11: AES ECB Encryption (128-bit)

Data: 00112233445566778899aabbccddeeft
Key: 000102030405060708090a0b0c0d0e0f
Round Subkey Round Subkey

0 00102030405060708090a0b0c0d0e0f0 6 c62fe109f75eedc3cc79395d8419¢f5d
1 89d810e8855ace682d1843d8cb128fc4 7 d1876c0f79¢4300ab45594add66f41f
2 4915598f55¢5d7a0daca94fal{f0a63{7 8 fde3bad205e5d0d73547964ef1fe3 711
3 fa636a2825b339c940668a3157244d17 9 bd6e7c¢3df2b5779¢0b61216e8b10b689
4 247240236966b3fa6ed2753288425b6c | 10/END | 69¢4e0d86a7b0430d8cdb78070b4c55a
5 c81677bc9b7ac93b25027992b0261996

61

Table 12 lists the round values calculated in simulation during decryption in ECB

mode with a 128-bit key.

Table 12: AES ECB Decryption (128-bit)

Data: 69¢4e0d86a7b0430d8cdb78070b4cS5a
Key: 000102030405060708090a0b0c0d0e0f
Round Subkey Round Subkey

0 Tad5fda789ef4e272bcal 00b3d9ff59f 6 2d6d7ef03£33e334093602ddSbib12¢7
1 54d990a16ba09ab596bbf40eal 11702 7 3bd922681c74fb735767cbe0c0590e2d
2 3e1c22c0b6fcbf768da85067f6170495 8 a7bela6997ad739bd8c9cadS1£618b61
3 b458124c68b68a014b99182e5f15554¢ 9 6353e08c0960e104cd70b751bacad0e7
4 e8dab6901477d4653ff7f5e2e747dd4f | 10/END | 00112233445566778899aabbccddeeff
5 36339d50{9b539269f2¢092dc4406d23

Table 13 lists the round values calculated in simulation during encryption in ECB

mode with a 192-bit key.

Table 13: AES ECB Encryption (192-bit)

Data: 00112233445566778899aabbccddeeff
Key: 000102030405060708090a0b0c0d0e0f1011121314151617
Round Subkey Round Subkey

0 00102030405060708090a0b0c0d0e0f0 7 0c0370d00c01e622166b8accd6db3ale
1 4£63760643¢0aa85aff8¢9d041fa0de4 8 7255dad30fb80310e00d6c6b40d0527¢
2 cb02818¢17d2af9c622a64428bb25fd7 9 2906b254968af4e9b4bdb2d2f0c44336
3 f75¢7778a327c8ed8cfebfcla6c37f53 10 88ec930ef5e7e4bbcc32f4¢906d29414
4 22£1c916a81474416496119¢64ae2532 11 afb73eeblcd1b85162280f27fb20d585
5 80121e0776fd1d8a8d8¢31bc965d1fee | 12/END | dda97cad864cdfe06eaf70a0ec0d7191
6 671eflfd4e2ale03dfdcblef3d789b30

Table 14 lists the round values calculated in simulation during decryption in ECB

mode with a 192-bit key.

62

Table 14: AES ECB Decryption (192-bit)

Data: dda97ca4864cdfe06eaf70a0ec0d7191
Key: 000102030405060708090a0b0c0d0e0£1011121314151617
Round Subkey Round Subkey

0 793¢76979¢3403e9aab7b2d10fa%ccc 7 93faal23¢2903f4743e4dd83431692de
1 ¢494bffae62322ab4bb5dcde6fce69dd 8 68cc08ed0abbd2bc642ef555244ae878
2 d37€3705907a1a208d1¢371e8c6fbibs 9 1fb5430ef0accf64aal70cde3d77792¢
3 406¢501076d70066e17057¢a09fc7b7f 10 84e1dd691a41d76£7923389783fbac70
4 fe7¢7e71fe7f807047b95193£67b8e4b 11 6353e08c0960e104cd70b751bacad0e7
5 85¢5¢8042f8614549ebcal 76277272df | 12/END | 00112233445566778899aabbccddeeff
6 ¢d54¢7283864¢0c55d4¢727€90¢9a465

Table 15 lists the round values calculated in simulation during encryption in ECB

mode with a 256-bit key.

Table 15: AES ECB Encryption (256-bit)

Data: 00112233445566778899aabbccddeeff
Key: 000102030405060708090a0b0c0d0e0f101112131415161718191alblcldlelf

Round Subkey Round Subkey
00112233445566778899aabbccddeeff 8 52a858395fd28d7d05¢1238868f3b9c5
4163760643e0aa85efa7213201a4e705 9 4a824851¢57e7e47643de50c2af3e8c9
1859fbc28al¢00a078ed8aadc4216109 10 ¢14907f6ca3b3aa070e9aa313b52b5ec
975¢66¢1¢b9f3fa8a93a28df8eel0f63 11 5f9c¢6abfbac634aa50409fa766677653
1¢05£271a417¢04£f921¢5¢104701554 12 5166049543539503141b86¢401922521
¢357aael1b45b7b0a2¢7bd28a8dc99fa 13 627bceb9999d5aaac945ecf42356da5
7f074143cb4e243ec10¢815d8375d54¢ | 14/END | 8ea2b7ca516745bfeafc49904b496089
d653a4696¢ca0bc0f5acaab5db96c5e7d

Nl |k —~O

Table 16 lists the round values calculated in simulation during decryption in ECB

mode with a 256-bit key.

63

Table 16: AES ECB Encryption (256-bit)

Data: 8ea2b7ca516745bfeafc49904b496089
Key: 000102030405060708090a0b0c0d0e0f101112131415161718191alblcldlelf
Round Subkey Round Subkey

0 aaSece06ec6e3c56dde68bac2621bebf 8 2e6e7a2dafcoecf83a86ace7c25ba934
1 dled44£d1a0f3f2afa4ff27b7¢332a69 9 9¢f02620491d592399518984f26be 178
2 cfb4dbedf4093808538502ac33del85¢ 10 88db34fb11807678d3f833¢2194a75%
3 78¢2acce741ed5425100c5e0e23b80c7 11 ad9¢7e017e55¢f25bc150fe01cch6395
4 d613d9dda6279bd1430d52a0e51313fe 12 84¢1fd6b1a5¢946fdf4938977ctbac23
5 beb50aa6eff856126b0d6aff45¢25dc4 13 6353e08¢0960e104c¢d70b751bacad0e7
6 16e062f150745819be50497656ed654c | 14/END | 0011223344556677889%aabbceddeeff
7 d2210c¢2911fe031a789d83b2ecc5364¢

All values are consistent with the results of the AES-128 vectors in FIPS 197 [1].

5.3 Verification of Other Modes of Operation

Table 17 lists the input, AES input, AES output and final output values calculated

in simulation during encryption in CBC mode with a 128-bit key over a data stream of

four blocks.

Table 17: CBC Mode Encryption (128-bit, 4 Blocks)

IV: 000102030405060708090a0b0c0d0e0f

Key: 2b7¢151628aed2a6abf7158809cf4{3¢

Block

Input

AES In

AES Out

Output

6bclbee22e409196
€93d7e117393172a

6bcObcel12a459991
€134741a7f9¢1925

7649abac8119b246
cee98e¢9b12e¢9197d

7649abac8119b246
cee98e9b12¢9197d

ae2d8a571e03ac9¢
9eb76fac45af8e51

d86421fb9flaleda
505¢e1375746972¢

5086cb9b507219¢ee
95db113a917678b2

5086cb9b507219¢ee
95db113a917678b2

30c81cd6a35ced 11
e5fbcl191a0as52ef

604ed7ddf32efdff
7020d0238b7c2a5d

73bed6bBe3c1743b
7116e69€22229516

73bed6b8e3c1743b
7116€69¢22229516

16912445df4f9b17
ad2b417be66¢3710

85211f2fd3c8eef2c
dc3da7e5c44ea206

3fflcaal 681fac09
120eca307586¢la7

3fflcaal681fac09
120eca307586¢1a7

Table 18 lists the input, AES input, AES output and final output values calculated

in simulation during decryption in CBC mode with a 128-bit key over a data stream of

four blocks.

64

Table 18: CBC Mode Decryption (128-bit, 4 Blocks)

IV: 00010203040506070809020b0c0d0e0f
Key: 2b7e151628aed2a6abf7158809cf4f3c

Block

Input

AES In

AES Out

Qutput

7649abac8119b246
cee98e9b12e¢9197d

7649abac8119b246
cee98e9b12e9197d

6bcObee12a459991
€134741a7f9e1925

6bclbee22e¢409196
€93d7e117393172a

5086¢cb9b507219¢e
95db113a917678b2

5086¢b9b507219¢e
95db113a917678b2

d86421fb9flaleda
505ee1375746972¢

ae2dB8aS71e03ac9c
9eb76fac45af8e51

73bed6b8e3c1743b
7116e69€22229516

73bed6b8e3c1743b
7116€69€22229516

604ed7ddf32efdff
7020d0238b7c2a5d

30c81cd46a35cedl1
eSfbcl1191a0a52ef

3fflcaal681fac09
120eca307586¢la7

3fflcaal681fac09
120eca307586ela7

8521f2fd3c8eef2c
dc3da7e5c44ea206

f6912445df4f9b17
ad2b417be66¢c3710

Table 19 lists the input, AES input, AES output and final output values calculated
in simulation during encryption in CFB128 mode with a 192-bit key over a data stream of

four blocks.

Table 19: CFB128 Mode Encryption (192-bit, 4 Blocks)

IV: 000102030405060708090a0b0c0d0e0f
Key: 8¢73b0f7da0e6452c810f32b809079¢562f8ead2522c6b7b

Block

Input

AES In

AES Out

Output

6bclbee22e409196
€93d7¢117393172a

0001020304050607
08090a0b0c0d0e0f

a609b38df3b1133d
ddff2718ba09565¢

cdc80d6fddf18cab
34¢25909¢99a4174

ae2d8a571e03ac9c¢
9eb76fac45af8e51

cdc80de6fddf18cab
34¢25909¢99a4174

¢9¢3£5289f149abd
08ad44dc52b2b32b

67ce7f7181173621
961a2b70171d3d7a

30c81c46a35ced11
e5fbcl1191a0a52ef

67ce7f781173621
961a2b70171d3d7a

1ed6965b76¢76¢ca0
2d1dcef404£09626

2¢1e8aldd59b88b1
c8e60fedlefacdc9

f6912445df419b17
ad2b417be66c3710

2elealdd59b88bl
c8e60fedlefacdc9

36¢0bbd976ccd4b7
ef85ceclbe273eef

c05f9f9ca9834fa0
42ae8fba584b09ff

Table 20 lists the input, AES input, AES output and final output values calculated
in simulation during decryption in CFB128 mode with a 192-bit key over a data stream of

four blocks.

65

Table 20: CFB128 Mode Decryption (192-bit, 4 Blocks)

IV: 000102030405060708090a0b0c0d0e0f
Key: 8¢73b0f7da0e6452c810£32b809079¢5628e¢ad2522c6b7b

Block

Input

AES In

AES Out

Output

cdc80d6fddf18cab
34¢25909¢99a4174

0001020304050607
08090a0b0c0d0e0f

a609b38df3b1133d
ddff2718ba09565¢

6bclbee22e409196
€93d7e117393172a

67ce7f7181173621
961a2b70171d3d7a

cdc80do6fddf18cab
34¢25909¢99a4174

¢9e3f5289f149abd
08ad44dc52b2b32b

ac2d8a571e03ac9c
9eb76fac45af8e51

2ele8aldd59b88bl
c8e60fedlefacdco

67ce7f7{81173621
961a2b70171d3d7a

1ed6965b76¢76cal
2d1dcef404109626

30c81cd6a35ced !l
e5fbc1191a0aS2ef

¢05919¢ca9834fa0
42ae8fba584b09ff

2eleBaldd59b88bl
c8e60fedlefacdc9

36¢0bbd976ccd4b7
ef85ceclbe273eef

f692445df4{9b17
ad2b417be66c3710

Table 21 lists the input, AES input, AES output and final output values calculated
in simulation during encryption in OFB mode with a 256-bit key over a data stream of

four blocks.

Table 21: OFB Mode Encryption (256-bit, 4 Blocks)

1V: 000102030405060708090a0b0c0d0e0f
Key: 603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4
Block Input AES In AES Out Output
1 6bclbee22e409f96 | 0001020304050607 | b7bf3a5df43989dd | dc7e84bfda79164b
€93d7e117393172a | 08090a0b0c0d0e0f | 97f0fa97ebce2fda 7ecd8486985d3860
) ae2d8a571e03ac9¢ | b7bf3a5df43989dd | elc656305ed1a7a6 | 4febdc6740d20b3a
9eb76fac45af8e51 97f0fa97ebce2f4a 563805746fe03edc | c88f6ad82a4fb08d
3 30c81c46a35ced1l | elc656305edla7a6 | 41635be625b48afc | 71ab47a086e86eed
e5fbcl1191a0a52ef | 563805746fc03edc | 1666dd42a09d96e7 | £39d1¢5bba97¢408
4 16912445df4f9b17 | 41635be625b48afc | f7b93058b8bcelff | 0126141d67£37be8
ad2b417be66¢3710 | 1666dd42a09d96e7 | fead1bf0012¢d394 | 538f5a8be740e484

Table 22 lists the input, AES input, AES output and final output values calculated
in simulation during decryption in OFB mode with a 256-bit key over a data stream of

four blocks.

66

Table 22: OFB Mode Decryption (256-bit, 4 Blocks)

IV: 000102030405060708090a0b0c0d0e0f
Key: 603deb1015ca71be2b73aef0857d77811f352c¢073b6108d72d9810a30914dff4
Block Input AES In AES Out Output
1 dc7¢84bfda79164b | 0001020304050607 | b7bf3a5df43989dd | 6bclbee22e409196
7ecd8486985d3860 | 08090a0b0c0d0e0f | 97f0fa97ebce2f4a €93d7e117393172a
2 4febdc6740d20b3a | b7bf3a5df43989dd elc656305edla7a6 | ae2d8a571e03ac9c
c88f6ad82a4fb08d | 97f0fa97ebce2fda 563805746fe03edc | 9ebT6fac45af8e51
3 71ab47a086¢86¢eed | €1c656305ed1a7a6 | 41635be625b48afc | 30c81c46a35ced11
f39d1c5bba97¢408 | 563805746fc03edec | 1666dd42a09d96e7 | e5fbcl191a0as52ef
4 0126141d67f37be8 | 41635be625b48afc | £7b93058b8beeOff | f692445df419b17
538f5a8be740e484 1666dd42a09d96e7 | fead1bf0012¢d394 ad2b417be66¢3710

Table 23 lists the input, AES input, AES output and final output values calculated
in simulation during encryption in CTR mode with a 128-bit key over a data stream of

four blocks.

Table 23: CTR Mode Encryption (128-bit, 4 Blocks)

IV: f0f1£2f3f4f5f617f8f9fafbfcfdfeff
Key: 2b7e151628aed2a6abf7158809cf4f3c

Block

Input

AES In

AES Out

Output

6bclbee22e409f96
€93d7e117393172a

fof1£23f4£5f617
f8f9fafbfcfdfeff

ec8cdf7398607¢b0
f2d21675¢ea%aled

874d6191b620e326
1bef6864990dbéce

ae2d8as571e03ac9c
9eb76fac45af8e51

fOf1£2£3f4£5£6£7
89 fafbfcfdff00

362b7¢3¢67735163
18a077d7fc5073ae

9806f66b7970fdff
8617187bbIfffdff

30c81c46a35¢ced 11
eSfbc1191a0aS2ef

fOf1£2f3£4£51617
f819fafbfcfdff0l

6a2cc3787889374f
beb4c81bl 7babed4

Saeddf3edbd5d3se
5b4109020db03eab

£6912445df419b17
ad2b417be66¢3710

fOf1£2£3f4£5£6£7
f8{0fafbfcfdff02

€89¢399ff0f198¢c6
d40a31db156cabfe

1e031dda2fbe03d1
792170a0f3009¢cee

Table 24 lists the input, AES input, AES output and final output values calculated

in simulation during decryption in CTR mode with a 128-bit key over a data stream of

four blocks.

67

Table 24: CTR Mode Decryption (128-bit, 4 Blocks)

IV: f0f1£2£3f4f5f6f7{8 9 fafbfcfdfeff

Key: 2b7el151628aed2a6abf7158809¢f4{3¢c

Block

Input

AES In

AES Out

Output

874d61910620e326
1bef6864990dbéce

fof1£2£3f4£5f617
8f9fafbfctdfeff

ec8cdf7398607cb0
f2d21675¢a%aled

6bclbec22e409196
€93d7e117393172a

9806f66b7970fdff
8617187bbofffdff

fOf1£2£3f4£5£6{7
f8f9fafbfcfdff00

362b7¢3¢67735163
18a077d7fc5073ae

ae2dB8a571e03ac9c
9eb76fac45af8e51

Saed4df3edbd5d3se
5b4109020db03eab

fOf1£2£3f4£5f617
f8f9fafbfcfdff0l

6a2cc3787889374f
beb4c81b17babc44

30c81c46a35cedl1
e5fbcl1191a0as2ef

1e031dda2fbe03d1
792170a0£3009cee

101234151617
f819fafbfcfdff02

€89¢399ff0f198¢c6
d40a31dbl56cabfe

£6912445d£419b17
ad2b417be66¢3710

All values are consistent with the results of the corresponding vectors for AES-

128 for CBC and CTR, AES-192 for CFB and AES-256 for OFB in SP 800-38A [2].

5.4 Resource Utilisation

Synthesis of the VHDL design in Xilinx ISE resulted in the design consuming
approximately 30% of the XC2VP50’s available resources. The VHDL code is written to
support targeting additional hardware platforms in the future. Xilinx-specific VHDL
constructs are generally avoided to support future development. This has the side-effect
of foregoing certain specialised Xilinx hardware characteristics such as BlockRAM.
Other specialised features of the XC2VP50, such as embedded PowerPC 405 processors

and RocketlO transceivers, are irrelevant to this design.

Table 25 summarises actual hardware resource consumption.

68

Table 25: Hardware Resource Summary

Category Used | Total Available | % Used
Slice Flip-Flops 4045 47232 8%
4-input LUTs 10266 47232 21%
Slices 7452 23616 31%
In/Out (I0OBs) 523 692 75%
GCLKs 1 16 6%

Flip-Flops and LUTs can be regarded as components available on slices. Multiple
slice Flip-Flops and LUTs can be allocated on a given slice. The Slices value offers the
most relative comparison of resource usage to other Xilinx designs. 10Bs are the in/out
pins required to interact with the device. This design favours parallel operation and
loading multiple external data sources simultaneously. Since the key and the data block
can be loaded at the same time a large number of IOBs are required. This number is
greater versus a design that does not allow concurrent loading of multiple data sources, or
that streams data over a serial bus.

The design is further estimated to be the equivalent of 121,526 logic gates.

5.5 Timing Behaviour and Throughput

Initial synthesis values estimate a minimum period of 7.497ns corresponding to a
maximum clock frequency of 133.382MHz. However, the “place and route” timing
constraints limit the minimum supported clock period to 17.762ns, corresponding to a
maximum clock frequency of 56.3MHz. This frequency was used for comparative and
simulation testing purposes since it reflects the prospective physical implementation. A
50MHz clock, corresponding to a period of 20us, is used to produce easily read timing

simulation graphs.

69

Simulations show there is approximately 100#ns from the time the device is active
until it can begin accepting inputs. Inputs and external enable signals applied before this
time have no effect on the internal operation of the device.

The number of clock cycles and the resulting throughput varies considerably
depending on the key size and whether or not the key must be expanded. The system
takes the same amount of time to complete regardless of the operation type
(encryption/decryption) or the operating mode (ECB/CBC/CFB/OFB/CTR). A
description of observable signal manipulations for each key size follows for the cases

where the key is new or the key was previously expanded.

5.5.1 Processing with a New 128-bit Key

A total of 62 clock cycles are needed after the input values are stored before the
system can accept new inputs. The following list summarises the major events that occur
on each clock edge:

* 1% Edge: Inputs are buffered by the PREPROC component. If Enable is high

then processing follows on the next clock cycle.

. 2 Edge: PREPROC stores the buffered values and pre-processes them based

on Mode and Enc/Dec. Alternatively the IVREG component updates the IV
bus. PREPROC stores no further values until POSTPROC completes.

» 3" Edge: KEYEXP initialises the expanded key index.

= 4™ Edge: The 0" subkey is calculated. KEYSTR is enabled.

» 5™ Edge: The 1% subkey is calculated. The 0™ subkey is stored by KEYSTR.

» 47" Bdge: The 43™ subkey is calculated; the 42™ subkey is stored by

KEYSTR. KEYEXP will not calculate any other subkeys.

70

» 48" Edge: The 43 subkey is stored by memory. KEYSTR will not store any
other subkeys.

= 49" Edge: ENCDEC initialises the round index.

= 50™ Edge: The 0™ round value is calculated; this corresponds to the
initialisation of State.

= 60" Edge: The 10™ round value is calculated. ENCDEC will not perform any
further AES calculations.

» 61% Edge: POSTPROC post-processes the last State calculated by ENCDEC.
DataOut is stored with the result of post-processing and QuiputReady is set
high. A high OutputReady indicates the user may supply new inputs to the
system. The PREPROC component receives an enable signal indicating it
may store new inputs it buffers after the next clock edge.

= 62" Edge: POSTPROC sets OutputReady low. No further output signal
updates occur until a new data block has been processed. The IVREG
component updates the 7V bus with the calculated IV produced during the 61
clock edge. If the buffered Enable is high at the time of the 62™ clock edge,

this clock cycle corresponds behaviourally to the 1% clock edge.

Figure 36 shows the timing diagram corresponding to CBC encryption with a new

128-bit key. This corresponds to the encryption of the first block in Table 17,

71

— User inputs
4 ..es_v03/ses_snabls
4 _../aes_v03/new_key
45 sim:/aes_v03/iv_store
2 sim:/aes_v03/0p

Edr sim:/aes_v03/met

E-% im/ass_v03/key_size

@ sim:/aes_v03/key
£ sim:/aes_v03/data

oo -~

o

oot

00

2B7E151628AE D2ABABF 7158809CF 4F 3C0
AE2D84571E03ACICIEBTEFACASAFBEST

AR

- M
. fl
A i
. T ——
u.... Ofal 1010
D]

~ Intemat
...temp_initial_vectar
&€ im:/aes_v03/el_input
..aes_v03/start_data
G- sim/aes_v03/state
B ..es_v03/final_state
w-% ../calc_initial_vector

000102030405060708030A0BGCODOEOF

GBCIBEE22E 408F96EI3DTET173331724
6BCOBCET24453391L134741A7FIE 1825
76439ABACB113B246CEEIBESB12E91970
7649ABACB119B246CEE 9BESB12E9197D
7649ABACS113B246CEEIBEIB12E9197D

— Outputs
@& sim:/aes_v03/out_final
4 ...aes_v03/out_ready

7649ABACS119B246CEESBEIB12ES197D
1

X... UEBC1BEEZ2E 403

Now

5460000ps | '

Start

130 nsh

1220000 ps:

Figure 36: Timing Diagram for AES-CBC Encryption with a New 128-bit Key

The time elapsed between the 1% and 62 clock cycles corresponds to 61 total

clock cycles.

Based on a 56.3MHz clock and 128-bit block size, the maximum

throughput for 128-bit key rounds that require key expansion is 118.138 Mbps.

5.5.2 Processing with a Previously Expanded 128-bit Key

A total of 16 clock cycles are needed after the input values are stored before the

system can accept new inputs. The following list summarises the major events that occur

on each clock edge:

» 1% Edge: Inputs are buffered by the PREPROC component. If Enable is high

then processing follows on the next clock cycle.

= 2" Edge: PREPROC stores the buffered values and pre-processes them based

on Mode and Enc/Dec. Alternatively the IVREG component updates the IV

bus. PREPROC stores no further values until POSTPROC completes.

» 3" Edge: ENCDEC initialises the round index.

72

= 4t Edge: The 0" round value is calculated; this corresponds to the
initialisation of State.

= 14™ Edge: The 10™ round value is calculated. ENCDEC will not perform any
further AES calculations.

= 15" Edge: POSTPROC post-processes the last Stare calculated by ENCDEC.
DataOut is stored with the result of post-processing and QuiputReady is set
high. A high OutputReady indicates the user may supply new inputs to the
system. The PREPROC component receives an enable signal indicating it
may store new inputs it buffers after the next clock edge.

= 16" Edge: POSTPROC sets QutputReady low. No further output signal
updates occur until a new data block has been processed. The IVREG
component updates the /¥ bus with the calculated IV produced during the 15™
clock edge. If the buffered Enable is high at the time of the 16™ clock edge,

this clock cycle corresponds behaviourally to the 1* clock edge.
Figure 37 shows the timing diagram corresponding to CBC encryption with a

previously expanded 128-bit key. This corresponds to the encryption of the second block

in Table 17.

73

<4 E ot 8 Y A T O I I A [
— User [nputs
£ ..es_v03/aes_enable |1 T [R
4 . /aes_v03/new_key 10 ™
1

A sim:/aes_v03/iv_store
£ sim:/aes_v03/op
sim: faes_y03/met
4§ im/aes_v03/key_size
B4 sim:/aes_v03/key
B4 sim/aes_v03/data

=]

om
00

2B7E151628AE D2A6ABF7168809CF4F3COYB7E

00010203040506070809040B0C0DOEOF

& &

{018

{10

— Intemal
-4 ..temp_initial_vector
im:/aes_v03/tef_input
4 ...aes_v03/start_data
E- sim:/aes_v03/state
E4 ...es_v03/final_state
...Jeale_initial_vector

7643ABACE119B246CEEIBEIB1ES197D
AE2DBAS71E03ACICIEB7EFACA5AFBEST
DEE421FBIFIATEDASOSEE1375746972C
5086CBIB507213EE35DB113A317678B2
5086CB9B507219EE350B1134317678B2
5086CBIBS0721SEESEDB113431 767882

[O00T0203040506070803.
BBCTBEE 22E 405F I6ETIDT]
[CECOBCE T ZAd5g09TE T 3472

— Qutputs
@4 sim:/aes_v03/out_final
4 ...aes_v03/out_ready

5086CBIB507219EES50B113491767882
1

00000000000000000. .. {7648ABA

(1. J0..J0.JC. J7e43ARACETTIR
DN OREF2
O0000G0000000000... {763 8ARA

SEB08CT 4 00000000000003A000000 00006000000 [BE7EOFTAGEE ..
A0S TF QAL BIPACRATOES] YOI CDCBODBFDDFL..

., 7649ABACBTT0B246CECOBEOBI2EI00 15" JOODTOZ030405.
E g [JCDCR0DE.

00010203

Now

5460000ps {77

FEaedd thetiadlesant

Start

1350000 ps

1350 ns;

EEEIECELAEEEEEED
s

TESCO p

300000 ps

1650 ns

Figure 37: Timing Diagram for AES-CBC Encryption with an Expanded 128-bit Key

The time elapsed between the 1% and 16™ clock cycles corresponds to 15 total

clock cycles.

Based on a 56.3MHz clock and 128-bit block size, the maximum

throughput for 128-bit key rounds that don’t require key expansion is 480.427Mbps.

5.5.3 Processing with a New 192-bit Key

A total of 72 clock cycles are needed after the input values are stored before the

system can accept new inputs. The major events are identical to those in Chapter 5.5.1,
only key expansion takes an additional eight clock cycles and round processing takes an
additional two clock cycles. Figure 38 shows the timing diagram corresponding to

CFB128 decryption with a new 192-bit key. This corresponds to the decryption of the

first block in Table 20.

74

— Usei Inputs

L A e A AR R AR AR OV A Ay

4 .es v03aesenable 1 Q1 i

4 ./aes_v03/new_key O m

4 sim:/aes_v03/iv_store |0 i

£ sim:/aes_v03/op 1 f
-G sim/ses_v03/met 010 i1} 10
@4 im:/ass_v03/key_size J10 00
sim: /aes_v03/key 8E 73B0F7DADE6452C810F 32B803073E 567
% sim/aes_v03/data B7CEVF7F8117362186142870171D3D7A il 0DEEDD 4174 fLEZFIFS.

—= |ntemal

E£ ..temp_initial_vector {000102030405060708030A0B0C0DDEGF A 1405t E] DOEOF [wiuTefzIn}o] i AN
B¢ im:/aes_v03/ref_input | CDCBODGFDDF18CAB34C25509C9944174 4 0 4174 NB/CETEIF...
% ..aes v03/start_data §00010203040505070903040B0CODOECF . ICODOEOF ACDEBODG...
B sim/aes_v03/state JABO3B3IDF3IB1133DDDFF2718BA09565E BORECE 1 i Mot

4 ..es_v03/final_state |AGO9B3BDF3R1133DDDFF2718BAQS5E5E 4 i 0721 JEEJO0B113AT1 767882 JA50SB38DF3 .
B4 ../calc_initial_vector |CDCBODEFDDF18CAB34C25909C9344174 [T 4 507219EESHDB113491767682 [oli] -

— COutputs

sim: /aes_v03/out_final] EBC1BEE22E409F9BEI3D7E 1173931724 [T ACHT.. SB507. 5D B 13451 2z 1

4 ..aes_v03/out_ready |1 4] il

Now 80000ps | ' e | e S
Start 1670000 ps 1670 ris} 1420000 ps
SO0 3090 ns

Figure 38: Timing Diagram for AES-CFB Decryption with a New 192-bit Key

The time elapsed between the 1% and 72™ clock cycles corresponds to 71 total
clock cycles. Based on a 56.3MHz clock and 128-bit block size, the maximum

throughput for 192-bit key rounds that require key expansion is 101.499Mbps.

5.5.4 Processing with a Previously Expanded 192-bit Key

A total of 18 clock cycles are needed after the input values are stored before the
system can accept new inputs. The major events are identical to those in Chapter 5.5.2,
only round processing takes an additional two clock cycles. Figure 39 shows the timing
diagram corresponding to CFB128 decryption with a previously expanded 192-bit key.

This corresponds to the decryption of the second block in Table 20.

75

— User Inputs

€ ..es_v03/aes_snable
£ ., /aes_v03/new_key
& sim:/aes_v03/iv_store
& sim:/aes_v03/0p
E sim/aes_v03/met
o im/aes_v03/key_size
- sim/aes_v03/key
» sim:/aes_v03/data

9 A e O 0 A O O O O

1 T
0 ™

1 A9

1 |

010 1ot

10 il
8E73B0F7DACE 6452C810F 32880807 3E663 0F32B8030739E 562F8EAD 2522C6E 78 0000000600000000 Je03DERTOTS.

000102030405060708030A08 0CODOEOF

CEZF7FBTT 73621961 APB70T/1D3D 74,

10

- Intemnal
B% ..temp_initial_vector
E-4p im:/aes_v03/ref_input
...aes_v03/start_data
@4 sim:/aes_v0/state
@4 ...es_v03/final_state
- ... fcalc_initial_vector

CDCBODEFDDF18CAB34C25303C93A4174
67CE7F7F81173621961A2870171D3074
CDCB0DEFDDF18CAB34C25909C9944174
CSE3F5209F1494BD0SAD44DCE2B2B328
CIE3F5289F149ABD 08AD44DC528 28328
B7CE7F7FB1173621961A2B70171D3D74

— Qutputs
-4 sim:/aes_v03/out_final
4 ...aes_v03/out_ready

AE2D8AS71E03ACSCIE B76FACAGAFBEST
1

DCBODEFDDI BCAB3ACI5309CI9AdT 78

16, JOOOT0203.

4. JB7CE(F 781 173621961A2B701 71DID7A

R G

3. JCOCBODEFDDFTBCAR3AC25909C I8 4174

COE3F54aBIF1 08,

JE7CE7F7PRI17362..

Naw

5460000ps |’

Start

3090000 ps

40000 b

3090 nah

IR

T
Hilns

BEoz by bbes bt tl

340000 ps

3430 ns

Figure 39: Timing Diagram for AES-CFB Decryption with an Expanded 192-bit Key

The time elapsed between the 1 and 18" clock cycles corresponds to 17 total

clock cycles.

throughput for 192-bit key rounds that preserve their key is 423.906 Mbps.

Based on a 56.3MHz clock and 128-bit block size, the maximum

5.5.5 Processing with a New 256-bit Key

A total of 82 clock cycles are needed after the input values are stored before the

system can accept new inputs. The major events are identical to those in Chapter 5.5.1,

only key expansion takes an additional sixteen clock cycles and round processing takes

an additional four clock cycles. Figure 40 shows the timing diagram corresponding to

OFB encryption with a new 256-bit key. This corresponds to the encryption of the first

block in Table 21.

76

% ..es_v03/aes_snable
£ ...Jaes_v03/new_key
& sim:/aes_v03/iv_store
& sim./aes_v03/0p
sim:/aes_v03/met
B4 im/aes_v03/key_size
im: /aes_v03/key
sim: /aes_v03/data

IR

— Internal
-4 ...temp_initial_vector
-4 im:aes_v03/ref_input
...aes_v03/start_data
im:/aes_v03/state
% ..es_v03/final_state
B¢ ../calc_initial_vector

0 iRl fl

0

i} 11

0 M

on il

1 il

G03DEB1015CA71BE2B734EF0B57D 77811 TIF. T0A30GTADET 4
AE2DBAS71E03ACSCIEBTEFACASAFBES] 2E 400 S6E 3D 7E 11730931 72A. YAEZDBASTIEAAL. . |
B7BF2ASDF43983DDI7FOFASTEBCE 2F 44 | Y OT0T 02030405060 70E000A0B UCODOE OF JB7BF3ARDF4338T... |
AE2DBAST1E03ACICIE B7EFACASAFSEST || IEBCTREE Z2E403F SEE SIDVE 1173931 728

B7BF3ASDF43989DDS7FOFASTEBCE 2F 44

JAEZDBAS/TEDIA .|

E1CB56305ED1A7A6563805746FE03EDC

E1C656305ED1A7A8563805746FEQSEDC

E1CB56305ED147A6563805746FEQIEDC

— Outputs
sim:/aes_v037out_final
4 ..aes_v03/oul_ready

4FEBDCE740D20B3ACBBFEADB244FB0OBD
1

Now

5460000 ps

Poioos o1 b

Il ns 4 us A5G0 ms Hus L
Start 3450000 ps {3450 ns} 2000000 ps
SARO00 pr: 5450 s

Figure 40: Timing Diagram for AES-OFB Encryption with a New 256-bit Key

The time elapsed between the 1% and 82" clock cycles corresponds to 81 total

clock cycles.

Based on a 56.3MHz clock and 128-bit block size, the maximum

throughput for 256-bit key rounds that require key expansion is 88.968 Mbps.

5.5.6 Processing with a Previously Expanded 256-bit Key

A total of 20 clock cycles are needed after the input values are stored before the

system can accept new inputs. The major events are identical to those in Chapter 5.5.2,

only round processing takes an additional four clock cycles. Figure 41 shows the timing

diagram corresponding to OFB encryption with a previously expanded 256-bit key. This

corresponds to the encryption of the second block in Table 21.

77

— User [nputs
€ ..es_v03/ses_enable
4 . /aes_v03/mew_key
4 sim:/aes_v03/iv_store
& sim./aes_v03/cp

e sim/aes_v03/met

% im/aes_v03/key_size

@4 sim:/aes_v03/key

E4 sim/aes_v03/data

aEatuniaiaininiaininiainSaNa et in e inNuNe Rat

o oo

=]

o1

A
603DEB1015CA71BE2B73AEF0857D77811
AE2DBAS71E03ACICIEBTEFACABAFBEST

|

BBCTBEEZ2E40... A

— Internal
E~% ..temp_initial_vector
4 im/ass_v03/ef_input
€ ..aes_v03/start_data
EfE sim:/aes_v03/state
...es_v03/final_state
...Jeale_initial_vector

B7BF3ASDF43989DD97FOFASTEBCE2F4A
AE2D8AG71E03ACICIEB7EFACABAFBEST
B7BF3ASDF43983DDI7FOFASTEBCE2F4A
E1C656305ED1A7AG563805746FEN3EDT
E1C656305ED1A7AE563806746FEQ3EDC
E1C656305E D 1A7AG563805746FEOEDC

O
T I

i
.

311..JB7B

— Outputs

% sim:/aes_v03/out_final

£ ..aes_v03/out_ready

4FEBDCE740D20B3ACBRFEADE244FBOSD
1

2DEARTIE.. [DCAEDIR

b
~

287 2REFQER 7D 77811 F 352C073BET08D 72D 38104 303T4DFFE

IEEE

Now

5460000 ps

N e T

Start

Figure 41: Timing Diagram for AES-OFB Encryption with an Expanded 256-bit Key

The time elapsed between the 1% and 20™ clock cycles corresponds to 19 total

clock cycles.

5070000 ps

EARONN

Based on a 56.3MHz clock and 128-bit block size, the maximum

200 ne
5070 ns} 38000C ps

I L XD

throughput for 256-bit key rounds that preserve their key is 379.284Mbps.

5.6 Comparison to Similar Works

Table 26 compares other FPGA designs of various specialties to the design

presented in this thesis.

78

Table 26: Comparison of AES Hardware Implementations

. Clock . Through-
Ref. Function Hardware (MHz) Slices | BRAMSs put (Mbps)
AES-128 Xilinx
[4] EnDe XCV2000E 342 5677 80 4121
Xilinx
5 AES-128 XCVE00-6 71.8 9406 0 9184
En Xilinx .
XCV1000.6 | 1253 | 11014 0 16032
AES-128/192/256 Xilinx 10K
[6] En/De XC2850 310 Gaes” | © 370
Xilinx
7] AES-128 XC3S50-4 713 163 3 208
En/De Xilinx
XCIVA0-E 123 146 3 358
[8] AEg;llzg XC2V1000-5 | 15921 | 1122 8 1940.9
AES-128 2703
/Do 1963 | [UTs" 44 1197
AES-192 2710
[9] Do XC2VP100 | 170.9 | [Tip" 44 876
AEEE/'§§6 178.6 L%};:w 44 778
*T
Rijndael 23?*2
128/192/256 Data 3
[10] | 15¢/192/256 Key XC2V8000 65 8378 4 *fgg_bit
En/De
data only
480.427:‘
AES-128/192/256 423.906*2
En/De 379.284"
This ECB/CBC/ XC2VP50-7 | 56.3 7452 0 .
CFB/OFB/ 118.1 38*4
CTR Modes 101.499 5
88.968"°

*] = 128-bit key, *2 = 192-bit key, *3 = 256-bit key,
*4 = 128-bit key + Expansion, *5 = 192-bit key + Expansion, *6 = 256-bit key + Expansion

*7 = Alternate unit of resource consumption.

The bulk of proposed designs focus on AES-128 specialisation. In the case of

Rodriguez-Henriquez et al [4] large throughput is possible with a design consuming 76%

79

of the slices in this design, however it also uses a very large number of BRAMsS, a Xilinx-
specific component with non-trivial cost. Similarly the designs presented by Zhang and
Parhi [5] display exceptional throughput but are limited to AES-128 encryption only and
require significant slice resources.

Hernandez et al [6] present an AES design supporting all key sizes and requiring
a low-cost device and significantly few resources. The throughput is lower than this
design’s but at approximately one tenth of the size. However, it requires a clock nearly
10 times the speed of this design’s to produce its rated throughput. The design by
Rouvroy et al [7] is also aimed at the low-cost market; its slice consumption is only 2%
that of this design. This comes at the expense of lower throughput and fewer key
selections than Henandez et al’s [6].

Sever et al [8] provide another limited AES-128 encryption design with
approximately half the throughput of Rodriguez-Henriquez et al [4], however its size is
also significantly reduced (albeit using 8 BRAMs). This design is a bridge between the
high throughput designs of Rodriguez et a/ [4] and Zhang and Parhi [5] and the low area
designs of Hernandez et al [6] and Rouvroy et al [7].

The designs presented by Brokalakis ez a/ [9] and Lu and Lockwood [10] provide
the most suitable comparison to this design in terms of the hardware they are built on and
the capabilities they feature. Brokalakis ef al’s design [9] is a subset of a larger IPsec
design. The hardware device they use is a higher capacity version of the one used in this
design. Their consumption of LUTs is 25% of what this design uses with throughput
roughly twice that of this design. Their design also requires a clock speed three to four

times faster than this design’s to produce their throughput. Furthermore it requires 44

80

BRAMSs which as mentioned earlier are not a trivial resource and account for significant
additional area occupied on the device. Additionally their AES cores are not integrated.
A separate design is used for each of AES-128, AES-192 and AES-256 as opposed to this
design’s unified approach.

Lu and Lockwood’s design [10] is a full-fledged implementation of the Rijndael
algorithm of which AES is a subset. AES supports 128-bits data inputs versus Rijndael’s
support of 128-bit, 192-bit and 256-bit data inputs. That being said the performance of
Lu and Lockwood [10] is very close to that of our design. It uses an incrementally faster
clock to maintain incrementally faster throughputs for 128-bit data blocks. This comes at
an expense of more than 900 additional slices and the use of 4 BRAMs. Removal of the
Rijndael additions from this design would likely bring the design size on par with this
design. In turn it may potentially support a smaller critical path and higher clock speed.

None of the designs above supply non-core AES features. The design presented
in this thesis is the only design of these to fully incorporate the five modes of operation,
feedback or otherwise, as opposed to relying on an external system. In addition this
design incorporates key agility at the cost of throughput as per Chapters 5.5.1, 5.5.3 and
5.5.5. The user may change the key for any data block. If the user permanently enables
the NewKey input, the expansion algorithm will be active for each block of data,
effectively recalculating the cryptographic key for all data processed. The user controls
the rate at which new keys are processed and expanded keys are preserved through the

user selectable NewKey input.

81

5.7 Prototype Implementation

A prototype unit was constructed, allowing an entity to supply the full array of
inputs to the FPGA. This ensures the final place-and-routed design is fully functional
outside of simulations. The design was altered with the addition of thirty-two 4-to-7
decoding units that display the output signals in a human-readable format.

The prototype unit is divided into four main components. The core of the
prototype is a Xilinx HW-AFX-FF1152-300 Prototype Board. This board provides
complete access to the bulk of a FF1152 package’s pins through breakout headers. The
board is capable of generating the appropriate voltages for the FPGA’s power and input
needs through an external power supply. Sockets designed for clock crystals and
differential clock inputs are also supplied and pre-connected to the appropriate pins
through the PCB trace. Several methods exist for connecting the board to an external
system for on the fly programming including Joint Test Action Group (JTAG). The
board also has two PROMs whose capacity is capable of storing the program file for a
Xilinx XC2VP20. As this design utilises a XC2VP50 it is necessary to program the
device from a computer through the JTAG interface. In keeping with the maximum
clock frequency of the design, a SOMHz clock crystal is connected to the board which in
turn is connected to the appropriate pin of the FPGA. No 56.3MHz clock was available

for testing. Figure 42 shows the HW-AFX-FF1152-300 assembly.

82

Figure 42: Xilinx HW-AFX-FF1152-300 Prototype Board & Virtex-II Pro XC2VP50

83

The second component is a 3M solderless breadboard featuring 96 Grayhill Series
94H 16-position rotary switches. These switches are arranged in six rows of 16 switches.
Each switch corresponds to one hexadecimal character, outputting four signals
corresponding to the binary value of that character. The first two rows of switches total
32 hexadecimal characters and are connected to the 128 inputs representing the data bus.
The second two rows of switches total an additional 32 hexadecimal characters and are
connected to the first 128 inputs representing the key bus. The fifth row of switches
represents the additional values needed by a 192-bit key and are connected to the
subsequent 64 inputs of the key bus. The sixth and final row of switches represents the
additional values needed by a 256-bit key and are connected to the remaining 64 inputs of

the key bus. Figure 43 shows the rotary switch assembly.

Figure 43: Rotary Switch Assembly (KeylIn and Dataln Bus)

84

The third component is a set of two smaller 3M solderless breadboards featuring
16 Lumex LDD-C512RI dual digit seven-segment displays. The 32 digits correspond to
the 32 hexadecimal outputs (32x4-bit) of DataOut. 1t is necessary to decode each 4-bit
value to 7-bits to be human-readable on the seven-segment displays. Additional code is
added to the design to incorporate this feature for the purposes of this prototype unit only.
It is also possible to run the unaltered design on the prototype unit. However, the average
human cannot readily distinguish the 32 hexadecimal values of 128-bit separate LED
outputs by sight. In using this additional multiplexer module the number of IOBs
increases from 523 to 619. The eighth LED of a seven-segment display, representing a
decimal point, is connected to the OutputReady terminal. Figure 44 shows two of the

output assembly’s four blocks, corresponding to 16 hexadecimal values.

Figure 44: Output Assembly (Block 1 and 3)

85

The final component is a Grayhill Series 78 10-position DIP switch and an Omron
B3] tactile switch. The tactile switch is connected to the Enable input terminal. Of the
remaining 10 switches, two switches are connected to the KeySize terminals, one switch
is connected to the Enc/Dec terminal, three switches are connected to the Mode terminal,
one switch is connected to the NewKey terminal and one switch is connected to the
LoadlV terminal. The remaining two switches are unused. Figure 45 shows the

DIP/tactile switch assembly.

Figure 45: Output and Operation/Enable Assembly

86

The program file must be downloaded to the FPGA via the JTAG interface. This
is accomplished using an appropriate JTAG USB interface and Xilinx iMPACT, a part of
the ISE suite. Once downloaded, the user sets the hardware switches to correspond to
any set of input values and presses the tactile switch to produce the corresponding output.
This is functionally identical to the design interacting with an external hardware system
providing inputs. The only difference is the human will be significantly slower at
changing the inputs.

All outputs produced by this prototype have been consistent with simulation
values and any values produced by the AES or mode algorithms. Figure 46 shows the

complete prototype assembly.

Figure 46: Complete Prototype Assembly

87

Chapter 6

Conclusion and Future Work

A VLSI implementation of AES supporting improved data confidentiality versus
traditional FPGA designs was presented and functionally demonstrated on a simulation
and practical level. The implementation was first designed in VHDL featuring the core
aspects of AES including support for 128-bit, 192-bit and 256-bit key sizes with a fixed
128-bit block size and a key expansion module. The encryption or decryption key can be
changed at the user’s discretion for any block of data without interrupting the encryption
or decryption operation. This provided a straightforward level of key agility. This design
was enhanced with support for CBC, CFB, OFB and CTR confidentiality modes of
operation in addition to the standard ECB mode. The targeted hardware platform was the
Xilinx Virtex-II Pro FPGA XC2VP50. With a maximum clock speed of 56.3MHz, this
design reached throughputs of 480.427Mbps, 423.906 Mbps and 379.284 Mbps for 128-bit,
192-bit and 256-bit keys respectively for all five modes of operation where the key had
already been expanded. The throughput of the design was highly competitive while
offering data confidentiality capabilities not found in contending offerings, overall
providing a balanced variety of attractive features. A prototype hardware model was

built and tested as a demonstration of the design’s functional abilities.

88

Future revisions of this design would focus on three primary improvements. First,
there is a sizable increase in the time the AES algorithm requires to encrypt/decrypt when
key expansion is involved. Additional key agility research would greatly benefit the
design since the design already integrates key expansion as part of an
encryption/decryption operation. Second, despite the design’s substantial throughput the
clock speed is limited to 56.3MHz due to its critical path of 17.792ns. Additional
increases in throughput would be attainable by adjusting the algorithms in this design to
decrease the critical path, thus increasing the permissible clock speed. Alternatively,
adjusting the algorithms to perform additional operations within the same clock cycle
would reduce the number of clock cycles and overall time required for an operation,
presuming the critical path is not increased as a result. Finally, the design currently uses
7452 slices of a Xilinx XC2VP50 FPGA. This design’s size may not be feasible for low-
cost applications. This design’s focus is not on small-area applications. Regardless,
reducing the physical size of the design would assist it in targeting additional hardware
platforms. It would be necessary to ensure this does not conflict with improvement of the
performance and critical path. This module would be the first target for design review
since the storage mechanism for the expanded key has been designed with a general

hardware platform in mind.

89

References

(1]

(2]

[3]

(6]

(7]

(8]

[%]

Federal Information Processing Standards Publication 197, Specification for
the Advanced Encryption Standard (AES), National Institute of Standards and
Technology, November 2001.

M. Dworkin, NIST Special Publication 800-384, Recommendation for Block
Cipher Modes of Operation - Methods and Techniques, National Institute of
Standards and Technology, December 2001.

X. Zhang, K. K. Parhi, "Implementation approaches for the Advanced
Encryption Standard algorithm", IEEFE Circuits and Systems Magazine, Vol 2,
Iss 4, Fourth Quarter 2002, pp. 24-46.

F. Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, "4.2 Gbit/s single-chip
FPGA implementation of AES algorithm", IEE Electronics Letters, Vol 39,
Iss 15, 24 July 2003, pp. 1115-1116.

X. Zhang, KXK. Parhi, "High-speed VLSI architectures for the AES
algorithm", IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol 12, Iss 9, September 2004, pp. 957-967.

O.J. Herandez, T. Sodon, M. Adel, "Low-cost advanced encryption standard
(AES) VLSI architecture: a minimalist bit-serial approach", Proceedings of
the IEEE SoutheastCon 2005, 8-10 April 2005, pp. 121-125.

G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, J.-D. Legat, "Compact and
efficient encryption/decryption module for FPGA implementation of the AES
Rijndael very well suited for small embedded applications", Proceedings of
the International Conference on Information Technology: Coding and
Computing 2004, Vol 2, 2004, pp. 583-587.

R. Sever, A.N. Ismailglu, Y.C. Tekmen, M. Askar, B. Okcan, "A high speed
FPGA implementation of the Rijndael algorithm", Euromicro Symposium on
Digital System Design 2004, 31 August - 3 September 2004, pp. 358-362.

A. Brokalakis, A.P. Kakarountas, C.E. Goutis, "A high-throughput area
efficient FPGA implementation of AES-128 Encryption", IEEE Workshop on
Signal Processing Systems Design and Implementation 2005, 2-4 November
2005, pp. 116-121.

90

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Lu, J. Lockwood, "IPSec Implementation on Xilinx Virtex-II Pro FPGA
and Its Application", Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium 2005, 4-8 April 2005, pp. 158b-158b.

AlJ. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996, p. 4.

W. Diffie, M. Hellman, “Multiuser cryptographic techniques”, Proceedings
of the AFIPS National Computer Conference 1976, Vol 45, 7-10 June 1976,
pp. 109-112.

R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, Communications of the ACM
1978, Vol 21 Num 2, 1978, pp. 120-126.

Federal Information Processing Standards Publication 46-3, Data
Encryption Standard (DES), National Institute of Standards and Technology,
October 1999.

B. Schneier, “Description of a New Variable-Length Key, 64-Bit Block
Cipher (Blowfish)”, Fast Software Encryption, Cambridge Security
Workshop Proceedings (December 1993), Springer-Verlag, 1994, pp. 191-
204.

National Institute of Standards and Technology, “Announcing a Development
of a Federal Information Processing Standard for Advanced Encryption
Standard”, Federal Register: January 2, 1997, http://csrc.nist.gov/
CryptoToolkit/aes/pre-roundl/aes_9701.txt (as of 20 June 2007).

National Institute of Standards and Technology, “Announcing Request for
Candidate Algorithm Nominations for the Advanced Encryption Standard
(AES)”, Federal Register: September 12, 1997, http://csrc.nist.gov/
CryptoToolkit/aes/pre-round1/aes_9709.htm (as of 20 June 2007).

E. Roback, M. Dworkin, “First Advanced Encryption Standard (AES)
Candidate Conference Report”, Journal of Research of the National Institute
of Standards and Technology, Vol 103 Num 1, January-February 1999, pp.
97-105.

IBM Corporation, MARS — a candidate cipher for AES, 22 September 1999,
http://www.research.ibm.com/security/mars.pdf (as of 20 June 2007).

R.L. Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin, The RC6™ Block Cipher,
20 August 1998, ftp:/ftp.rsasecurity.com/pub/rsalabs/rc6/rc6v11.pdf (as of 20
June 2007).

91

[21]

[22]

[23]

[24]

[25]

[26]

J.Daemen, V.Rijmen, AES Proposal: Rijndael, 3 September 1999,
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf (as of 20 June 2007).

R.Anderson, E.Biham, L.Knudsen, Serpent: A Proposal for the Advanced
Encryption Standard, 1999, http://www.cl.cam.ac.uk/~rjal4/Papers/
serpent.pdf (as of 20 June 2007).

B.Schneier, J.Kelsey, D.Whiting, D.Wagner, C.Hall, N.Ferguson, Twofish: A
128-Bit Block Cipher, 15 June 1998, http://www.schneier.com/paper-twofish-
paper.pdf (as of 20 June 2007).

AlJ. Elbirt, W. Yip, B. Chetwynd, C. Paar, “An FPGA Implementation and
Performance Evaluation of the AES Block Cipher Candidate Algorithm
Finalists”, The Third Advanced Encryption Standard Candidate Conference,
13-14 April 2000, pp. 13-27.

National Institute of Standards and Technology, Commerce Department
Announces Winner of Global Information Security Competition, 2 October
2000, http://www.nist.gov/public_affairs/releases/g00-176.htm (as of 20 June
2007).

R. Lidl, H. Niederreiter, “Finite Fields”, Encyclopedia of Mathematics and its
Applications, Vol 20, Addison-Wesley, 1983.

92

