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Abstract

Design of Two-Dimensional Digital Filters Having
Monotonic Amplitude-Frequency Responses Using
Darlington-type Gyrator Networks

Muhammad Tariqus Salam

A design of two-dimensional (2D) digital filter with monotonic amplitude-frequency
responses using Darlington-type gyrator networks by the application of Generalized
Bilinear Transformation is discussed. The proposed design provides the stable mono-
tonic amplitude-frequency responses and the desired cutoff frequency of the 2D digital
filters. This 2D recursive digital filter design includes 2D digital low-pass, high-pass,
band-pass and band-elimination filters.

The proposed design shows that the impedances of doubly terminated RLC net-
works are integrated into the Darlington-type gyrator networks and the coefficients
of the resultant 2D analog transfer functions are function of gyrator constant (g).
The behavior of the filter is changed not only for the values of resistance, capacitance
and inductance of the filter, but also for the value and sign of g. The proposed de-
sign uses the Generalized Bilinear Transformation to obtain the digital filter and it
provides six parameters to regulate in order to design the desired digital filters. The
several constraints are obtained for the monotonic amplitude-frequency responses of
the filters. The ranges of g of the each type filter are defined for attaining the mono-
tonic characteristics of the digital filter, because the g has control on the frequency
response of the filter.

A digital filter transformation method is proposed and the digital filters are trans-
formed by regulating the value or sign of g. A new realization of 2D digital polynomial
is given, which is suitable to ifnplement any 2D polynomial with finite order. The
performances of the designed 2D digital filters in the image processing applications
are discussed and significant improvements in the reconstructed images are obtained

by the filters.
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Chapter 1

Introduction

1.1 General

Two dimensional (2-D) Digital signal processing is a rapidly evolving field with grow-
ing applications in medical science, geographical science and environment, space and
robotic engineering [1]. For example, medical applications are concerned with pro-
cessing of chest X-Ray, cine angiogram, projection of frame axial tomography and
other medical images that occurs in radiology, nuclear magnetic resonance (NMR)
ultrasonic scanning and magnetic resonance imaging (MRI) etc. and the restoration
and enhancement of these images are done by 2D digital filters. Due to the increasing
requirements of this particular area, researchers have focused considerable attention

on the design and implementation of multidimensional filters and conduct research

on advanced and newly emerging topics.

1.2 Applications

Applications of 2D signal processing are described in the following.

1.2.1 High Definition Television

A large amount of research is being conducted now in the 2D filters because of in-
creased interest in High definition television. For example researchers have found
that a 2D Digital comb filter helps reducing video noise by comparing each horizon-

tal scanning line with the line above and below and with the corresponding line on
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the previous subsequent video frames. It can create higher picture clarity and re-
duce dot crawl by analyzing and correcting color transitions in the each video frame.
It can separate chrominance (color) from luminance (brightness) information in the
video signal for independent processing to improve picture resolution and minimize
distortion like- Magnavox 15MF605T HD flat panel LCD TV.

1.2.2 X-Ray Tomography

X-ray tomography is a series of projection images and generally it contains 2D data.
It is useful in the materials science, biology and biomedicine, microelectronics, geo-
graphical science etc. For analyzing a structure like bones, microchip etc, accurately

it is necessary to remove noise from the image data by 2D filters [2].

1.2.3 Seismic Signal Processing

2D filters play important roles to improve seismic discontinuity data for interpre-
tation. Reflected seismic wave can be obtained by recording earthquakes or large
explosions and analyzing the wave. Modern computer software can analyze digital
seismic data and can find out other earthquakes information. The physical structure
and composition of the interior of a planet seismic topology utilizes information ob-
tained by recording the arrival times of the seismic wave at different points on the
earth surface from a known epicenter [3]. It is possible to model the interior of the
earth using seismic data. That can show the boundary between earth’s core and
mantle as well as between the solid inner core and fluid outer core. In the seismic
reflection method, frequency of the ground surface is lower than the reflection from

the surface and the same can be removed by 2D fan filter having specific angle [4].

1.2.4 Sonar

Sonar image is important for an underwater vehicle, but it is also necessary to remove
geometric distortion and radiometric errors from the sonar image in order to analyze
the image and digital mosaicking. 2D low-pass filter is generally used to remove the
noise. During the data acquisition of sonar data, some noise comes with real data

because of vehicle instability or noise in the water. Such stripped noise can also be



removed by 2D filter and 2D low-pass filter is used to obtain smooth sonar image.
Forward-looking sonar data is obtained from an underwater vehicle where tracking
object of vehicle’s environment is an essential requirement of obstacles avoidance
systems. Vehicle is needed to track different obstacles including stationary object in
the sea bed and moving object in the water, like- marine animal and others underwater
vehicles. The number of targets and their locations are needed to be estimated from
the noisy measurements obtained from sonar data. Using low-pass filters, multiple

objects can be tracked by forward-looking sonar images [5].

1.2.5 Radio Astronomy

Radio waves can penetrate in the gas and dust in the space as well as the clouds
of the planetary atmospheres and pass through the terrestrial atmosphere with little
distortion [6]. So radio astronomers can obtain a much clearer image of the stars and
galaxies. But the levels of interference are billions of times stronger than the radio

astronomy signal. The effective technique to remove interference is filtering by 2D

low-pass filter.

1.2.6 2D image resizing

2D image resizing is an important issue for pixel oriented displays with variable in-
put formats. Low-resolution pictures look bad on high-resolution screens, especially
when only simple up-conversion method like pixel and line repletion or bilinear in-
terpolation are used. Even when applying separable polyphase up-conversion filters,
the problem of jagged lines (staircase) remains. For high-quality resizing with suit-

able post-filtering such as 2D low-pass filter can make the jagged lines smoothen

perfectly [7].

1.2.7 Image encoding

Pre-filtering is necessary for eflicient image encoding, specially when digital transmis-
sion and storage of image is needed and the amount of bits required is huge [8]. The
recent interest of efficient coding is in broadcast television and teleconferencing. In

the broadcasting tv, color video signal is needed to sample with high frequency and



after quantization we get high bit rate. Using different coding techniques, broadcast
quality system is constructed with less bit rate. In the teleconferencing, because of
less motion, more degradation can be tolerated and low bit rate can be achieved. In
the multi-spectral, efficient coding is necessary for storage and transmission of the
image. A large compression factor is needed for the high-resolution image to handle

and the degradation of data makes some difficulties [8].

1.2.8 Image restoration and enhancement

Image restoration work has been done using 2D filter, when artificial satellite takes
images of moon, Mars and other planets, various image degradations occur because
of random noise, interference, geographical distortion, field non-uniformity, contrast
loss and blurring etc., Another research is in image restoration because of image of

planets, stars are taken through the atmosphere and image becomes blurring due to

atmospheric turbulence [8].

1.3 Distinction between Finite Impulse Response

and Infinite Impulse Response filter

FIR filters have precisely (generalized) linear phase. 2D FIR filter can be character-

ized by the transfer function in the analog continuous time domain as

M N
Hy(s1,82) = ) Gmnsy's} (1.3.1)

m=0 n=0

or in the discrete time domain as

Mg Ng

Hy(z1,20) = ZZamnzf’”z;" (1.3.2)

m=0 n=0

Problems of stability of FIR filter do not occur because the impulse response
sequence is bounded and exists only for a finite time. High selectivity of prescribed
specification can be achieved by higher order of transfer function. In such condition
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the order of the filter would be quite high and implementation could be difficult. But
generally FIR filter are simple to implement. All DSP processors have architectures
that are suited to FIR filtering and moreover FIR filters suffer less from the effects
of finite word-length than those of IIR.

IIR filters are advantageous when different frequency-selective filters are designed.

IIR filters can be characterized by the transfer function in the analog domain as

o) = 5 o9
> =0 Ym0 GrnST'S3 (1.3.4)
Zf_—o ZJL:O 0455155
or in the discrete domain as
i) = B 10
> 0 omeg Gmn2y "2 " (1.3.6)

Zfido fio Qij2y zzz_ 7
The order of IIR filters can be found from the prescribed specifications in term of
appropriate functions for a given approximation (Butterworth, Chebyshev or elliptic
etc.). Simplicity of design procedure makes it easy to design IIR filter. However
ITIR could be unstable, so any IIR filter should ensure first that designed filter is
stable. Limitation in the frequency-selective filter that permits only the magnitude
response to be specified, sometimes prescribed phase-response or group delay response

is required, and in each case different algorithm is needed to design the filter.

1.4 Stability in Infinite Impulse Response Filter

Feedback mechanism is inherent in any IIR structure and feedback occurs when a
scaled version of the output is fedback to the input, and this is responsible for the
infinite number of impulse response. The output of IIR filter could depend on the
both previous inputs and outputs and this causes instability. One might argue that
mathematically the response can go on for ever, getting smaller and smaller, but in
the digital world below a certain level, the signal becomes zero. Stability of the IIR
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filters is not guaranteed as in the case of the FIR filter and tests have to be carried

out to ensure that the filter obtained by the approximation is stable.

1.5 Very Stricty Hurwitz Polynomial (VSHP) en-

sures stability

The design of 2D IIR filters is difficult due to the non-existence of the fundamental
theorem of algebra in the factorization of 2D polynomials into lower order polynomi-
als. Because of this problem, the testing for stability of a 2D IIR transfer function
requires a large number of computations. One way to ensure a 2D transfer function
is stable is if the denominator of the transfer function is satisfied to be a Very Strict
Hurwitz Polynomial (VSHP) [9] and that can ensure a transfer function that there
is no singularity in the right half of the biplane, which can make a system unstable.

Before proceeding further few definitions are given below:

H,(s1, s2) possesses the non-essential singularity of first kind at (s1, s2) = (e, B) if
D,(a,8) = 0and N,(e, B) # 0. So the denominator of transfer function may become

simultaneously zero at a specific sets of points, but not in their neighborhood.

H,(s1,s2) possesses the non-essential singularity of second kind at (s1, s3) = (e, )
if Dy(c, B) = 0 and Ny(e, B) = 0 . Both the numerator and denominator of transfer

function may become zero simultaneously at a given set of points.

Similarly in discrete time domain, Hy(21, 22) posses the non-essential singularity of
first kind at (21, 22) = (o, B) if Dy(a, f) = 0 and Ny(e, ) # 0.

Hy(z1, 2,) posses the non-essential singularity of second kind at (21, 2,) = (o, f) if
Dy(a, B) = 0 and Ny(e, B) = 0.

D,(s1,82) is known to be a strictly Hurwitz polynomial(SHP), if Ezzsll—sz)does not
possess any singularities in the right half of s, so-plane. Otherwise it will be unstable.
The define region which does not possess any singularity is given by-

{(s1,82)|Re[s1] > 0, Re[sa] > 0,]s1] < 00 and |s3] < oo}
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D,(s1, 82) is a Very Strictly Hurwitz Polynomial(VSHP), if 5- (s Dlersy d0€s not possess

any singularities in the region-
{(s1, s2)| Re[s1] > 0, Re[sz] > 0,]s1| < oo and |sg| < 00}

1.6 Properties of VSHP

Some of the important properties of VSHP [9] are discussed in the following.

1. A 2D transfer function does not possess any singularity in the closed right half

of the biplane, if and only if the denominator is VSHP.

2. Multiplication of two 2D functions is a VSHP, if and only if each of 2D functions
is individually VSHP.

3. A 2D function is VSHP and partial derivative of the function with the respect
of any variable will be VSHP.

4. A 2D VSHP polynomial can be represented a singleA variable polynomial con-
sidering the coeflicients function of other variable and each coefficients are SHP

in their own domain.

Example: A VSHP polynomial, D,(s1, s2) can be represented by,

81,82 ZE 52 1 (161)

=0
or

Dy(s1,83) = ZFi(sl)sé ' (1.6.2)

The polynomials E;(sz) and F;(s;) are SHPs in s, and s; respectively.

5. A 2D VSHP polynomial can be represented by a single variable polynomial
considering the coefficients of the function of the other variable and division of

two consecutive coeflicients is a minimum reactive positive real function in the

their own domain.



Example: The polynomials F;(s2) and F;(s;) are defined in the equation 1.6.1

and 1.6.2, and each of the functions E—E‘—(i"’—L and M are minimum reactive
i—1(s2) Fi_1(s1)

positive real functions in s, and s; respectively.

1.7 Generation of VSHP

VSHP can be generated using different properties of VSHPs. A few methods [9] are
discussed in the following to generate a VSHP.

1.7.1 Method I:

A SHP in 2 or n-variables can be generated from a k-variable physically realizable
network, because the input immittance (impedance or admittance) of the network
always represents an even or an odd part of a SHP in the corresponding number of
variables. In the following, some of the possibilities of generation of VSHP are shown.

(a) The starting network is a n-port gyrator terminated in n-variable reactances,
each of degree unity. The determinant of the immittance matrix yields an even or an
odd part of an n-variable Hurwitz polynomial. A SHP results by the addition of this
determinant to its derivatives with the respect to the n-variables. The resulting SHP

in n-variables can be converted to a 2-variable VSHP. A large number of possibilities

exist.

(b) Instead of taking the derivatives of the determinant of the terminated n-port

gyrator, by judicious choices of n-variables as positive real constants, VSHP can be

generated.
(c) A positive definite or positive semidefinite matrix is physically realizable. Con-

sider,

.Dn = A@Z)Atsl -+ BABtSQ + RFRt + G
- A181+3182+R1+G ] (171)



where A, B, R are lower triangular matrices; ¢, A, " are diagonal matrices and G

is a skew-symmetric matrix.
The matrices A, B and R can be upper-triangular. If all the components of

1, A, T are positive, Ay, By, R; are positive-definite matrices and they are physically
realizable. It can be realized even if some of the components of 1, A,I" are equal to
zero and in such a case Aj, By, R; become positive semi-definite matrices. If I" is a
null matrix, determinant of D, becomes a strictly even or strictly odd polynomial
depending on the value of n. In such case, by the use of derivatives a suitable VSHP

can be obtained.

1.7.2 Method 11

The desired VSHP can be generated from a simple VSHP,

D(s1,82) = a118182 + @1081 + o182 + oo (1.7.2)

For the reactance function obtained as
Py (s1, s2)

Gl(Sl, 32) = m (173)
_ 18152 + Goo (1.7.4)
G1051 + Qo182 o
applying the transformation,
b115182 + boo
s °iv2 T 700 1.7.5
' bios1 + bo1 52 ( )
(Where b1 > 0, b1 > 0, bo1 > 0 and boo > O)
one gets the function
Py(s1, 89

Gals1,50) = 5’;-(8—11;35 (1.7.6)

The resultant polynomial Ps(s1,s2) + @Q2(s1,82) is a VSHP. To obtain desired
degree of s; and s, the following transformation can be applied again.

C1181S2 + Coop (1.7.7)

Sg —
€101 + Cp152

(where ¢;; > 0, c10 > 0,co1 > 0 and ¢y > 0)
To obtain desire higher order of VSHP, these transformation can be repeated.
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1.7.3 Method III

In the case of product-separable denominators D,(s;).Ds(s2), it is necessary that
D,(s1) and Dy(s2) are SHPs in s; and s, respectively. Such denominator can be

generated by substituting s; = sy = s in the equation 1.7.2 or making either A; =0

or By = 0 in the equation 1.7.2.

1.8 Scope of the thesis

In the thesis, two new filter designs and filter transformation method are proposed for
2D recursive filter design which has variable monotonic magnitude characteristic. The
monotonic amplitude-frequency response of a filter can be achieved and in the case
transition bands are increased rapidly [10]. Most of the works of such area have done
in one dimensional domain, but vast area of signal processing applications are in two

dimension domain, so researchers have started to work on 2D filters with monotonic

frequency response.

Darlington-synthesis is an attractive technique for the realization of a driving-
point function. The extension of Darlington-synthesis for the realization of single-
variable positive real function’s to two-variable positive real function’s is described
in [11] and [12]. Darlington-type realization of two-variable driving-point impedance
of lossless two-port network is described and as an extension form of the theorem to
n-variable driving-point impedance is realized in [11]. In [13], necessary and sufficient
conditions for the realization of the classes of two-variable positive real function’s as
doubly-terminated lossless two-variable lossless ladder networks are obtained. In this
thesis, two filter structures are proposed from Darlingotn-synthesis [14] which are
doubly-terminated gyrator networks and impedances of the network are replaced by
doubly-terminated RLC networks whose response has monotonic characteristics. The
objective of this thesis is to obtain monotonic amplitude-frequency responses of the
doubly-terminated gyrator networks by regulating the value/sign of gyrator constant

and the parameters of the generalized bilinear transformation [15].

In Chapter 2, the doubly-terminated gyrator networks are introduced and trans-
fer functions of each filter are derived. For the frequency transformation and filter

- response modification, generalized bilinear transformation [15] is introduced and the
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relation between analog domain with digital domain as well as digital domain with
modified analog domain [16] are obtained. For the generation of VSHPs, second-order
filters are replaced with the impedances of the doubly terminated gyrator networks

and properties of the overall filters are outlined.

In Chapter 3, two methods are proposed for 1D and 2D low-pass filter design
and several numerical examples are illustrated. The 1D and 2D low-pass filter design
provides frequency responses containing monotonic amplitude-frequency response in
the pass-band [17]. Generalized bilinear transformation and the magnitude of gyrator
constant of the filter are used together to obtain desired digital filter response. In
the section 3.3, the proposed method is applied on the doubly terminated networks
when the impedances are replaced with different second order filters. A realization of

a second order two-dimensional filter is shown.

In Chapter 4, another design is proposed to design high-pass filter which has
monotonic amplitude-frequency response in the passband. In the section 4.2, the
method is applied to the doubly terminated networks when impedances are replaced
with different combinations of second order filters and corresponding high-pass fil-
ter responses are shown. Another important method is proposed for the frequency
transformation and the method ensures the monotonic amplitude-frequency response
and stability of resultant filter, if the original filter contains monotonic amplitude-
frequency response. In the section 4.4, the proposed method is applied to the doubly
terminated networks as before and low-pass to high-pass filter transformations as well

as band-pass to band-eliminated filter transformations are shown.

In Chapter 5, some applications of image processing are shown using the various
filters designed by the proposed method. The 2D low-pass filters are used for the
image restoration purposes. The 2D high-pass filters are used for the enhancement
purpose. The 2D band-pass and band-eliminated filters are used to attenuate some

frequencies from the Fourier transformation of the image.

Overall, some designs and methods are proposed for various kinds of filter design
and these methods are very useful in the case of image processing applications. For
the frequency transformation, the generalized bilinear transformation is used, as a

result, the proposed method is obtain more flexibilities in the transformation. Two
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methods are proposed to design analog and digital filters and a realization of the
digital filter is shown. A method is proposed for the digital filter transformation
and this method depends on the value/sign of gyrator constant and parameters of

generalized bilinear transformation.
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Chapter 2

Filter Structures

2.1 Introduction

Two filter structures are considered in this chapter for 2D digital recursive filters
design and both structures are taken from Darlington-synthesis [14]. The 2D digital
filters are designed by Darlington-type networks containing gyrators. Gyrator was
introduced as new network element in 1948 and an ideal gyrator has been shown as
passive component, non-reciprocal two port network [18]. A gyrator can convert an
impedance into its inverse and a gyrator is represented as an active device and a
gyrator with an inductor is replaced by a capacitor, a couple of operational amplifiers
and some resistors [19]. Coil with large inductance is needed in telecommunication
system and filter, but large inductances are hard to achieve in VLSI or modern small
electronic circuit. To overcome the problem, there is one solution which can be used
in many applications [20], and that is to simulate the behavior of coil using gyrator.
This is a very handy gadget to put large value inductors into very small package,
because the inductance value is proportional to the capacitance value [20].

In this chapter, the value and sign of gyrator constant (g) of the Darlington-type
gyrator networks are used to design the 2D digital filters. Transfer functions of the
networks are generated by replacing the impedances of the Darlington-type gyrator
networks with the doubly terminated RLC networks and the overall 2D analog transfer
functions are stable in analog domain, if the denominators of the transfer functions
are satisfied to be VSHPs (section 1.5).

Transfer functions of the doubly terminated gyrator networks are derived in section

2.2 and 2D VSHPs are generated by replacing impedances of the gyrator networks
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with second-order doubly terminated RLC networks (section 2.4). In this chapter,
second-order Butterworth and Gargour&Ramachandran filters [16] are considered
as doubly terminated RLC networks. Some properties of both doubly terminated
gyrator filters are pointed out in the section 2.5, when two impedances of the filters
are replaced by the doubly terminated RLC circuits (second-order Butterworth and
Gargour&Ramachandran filters).

Generalized bilinear transformation (GBT) [15] is applied to the overall analog
filter, and as a result the reactive components of the filter are changed to the de-
sired ones (equations (2.3.12) and (2.3.14)). For example, impedances of the gyrator
network are replaced by second-order doubly terminated Butterworth filters and gen-
eralized bilinear transformation is applied to the overall transfer function in order
to obtain the desired filter and the corresponding modified analog filter is obtained
by inverse bilinear transformation(equation(2.3.5)). In this case, the GBT modifies
the reactive properties of the Butterworth filter as shown in the section 2.3. Prop-
erties of the GBT on second-order Butterworth filter are described in detail in the
section 2.3.6. Stability of the designed filter is ensured [21] and also the monotonic
amplitude-frequency response in the pass-band of the desired filter. In this chapter,
it shows that a sufficient condition of the overall transfer function in order to ob-
tain monotonic response is that the denominator of the transfer function contains
roots where magnitude of the real-part is greater than or equal to the magnitude
of the imaginary-part. The same also hold for the transfer functions of the doubly

terminated RLC network.

2.2 Transfer Function

The transfer function of the doubly terminated gyrator networks which are taken

from Darlington synthesis [14] are derived in the following:

2.2.1 Transfer Function of filter 1 (Figure 2.1)

According to the principle of gyrator [22] in Figure 2.1(b), I, = gV} and I, = —gV,.
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T
(a)Two port gyrator network (b) Doubly terminated gyrator network

Figure 2.1: Filter 1

Two port circuit analysis in Figure 2.1(a) gives,

1 + g2Z1Z2

Zn = 7 (2.2.1)
iy = 2= 92;2;1922122 (2.2.2)
T = > +gZ;2;fZleZ (2.2.3)
Zoy = 1—%%% (2.2.4)

In Figure 2.1(b), IfR, =R = 1, the transfer function of the doubly terminated
network will be '

1 -+ ng -+ g2Z122

2.2.5
2+ 2y + g% 21 +2¢%2, 7, ( )

H,
2.2.2 Transfer Function of filter 2 (Figure 2.2)

According to the principles of the gyrator theory [22] in Figure 2.2(b), I, = gV} and
Iy = —gV,.
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(a)Two port gyrator network (b) Doubly terminated gyrator network

Figure 2.2: Filter 2

Two port circuit analysis in Figure 2.2(a) gives
Zy + Z3

Zyy = 2.2.6
YT N 22,75 + 927375 + 927174 ( : )
Z3— 971723 — 9232y — 921\ Zs
Tio = 2.2.7
BT 1Y 2207y + g2 220 + g2 21 Zs (2:27)
7 - Zs+ g2 Z3 + 9232y + 92,1 Zy (2.2.8)
21 1+ gQZlZg + gQZ3Z2 + 922122 o

Loy —
2T 1+ 922,25 + 22370 + 922, Zo
In Figure 2.2(b), If R, = R, = 1, the overall transfer function of doubly terminated
gyrator network will be

9ZaZis + gZ1Zs + 9212 + I3

= ZaZs t Z1Z5 + 21720+ 225+ Z1 + Za + 1+ 022575 + 9221 75 + 922(221 |
9.2.10

From this transfer function, it can be readily seen that if Z; and Z, are replaced by
doubly terminated RLC filters, it is essential to replace Z3 by a resistive component,

otherwise denominator of the transfer function will not satisfy to be the VSHPs which

H,

is proved in section 2.4.5. Even, Z3 is replaced by inductor or capacitor, denominator
of the resultant transfer function will not satisfy to be the VSHPs. In this thesis

Generalized Bilinear Transformation is applied to the stable overall analog transfer
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function to design desired digital filter as well as corresponding modified analog filter,

details are discussed in the bellow.

2.3 Generalized Bilinear Transformation (GBT)

Desired digital filter responses are obtained using generalized bilinear transformation.
The transformation is applied to a transfer function of an analog circuit and this
generalized bilinear transformation [16] modifies the analog circuit according to the
desired filter response. The generalized bilinear transformation in the case of one

dimension (1D) is shown bellow.

5= kz 1 Z)) (2.3.1)

where, s is Laplace domain parameter and z is discrete domain parameter. To

obtain a stable transfer function by applying this transformation, stability conditions

for k > 0 are:

la|<1 (2.3.2)
1b]< 1 (2.3.3)
ab <0 (2.3.4)

Different filter responses are achieved from an analog transfer function by varying
the values of &, a and b, such as low-pass, high-pass, band-pass and band-elimination
filter.

It has been seen that the effect of the GBT on a second-order Butterworth filter
provides a modified low-pass filter, when a is negative and b is positive; high-pass
filter is obtained when a is positive and b is negative; band-pass filter is obtain
when the transformation is the sum of low-pass and high-pass transformation and
band-elimination filter is the reciprocal of band-pass transformation. Modified ana-
log transfer function are obtained from discrete transfer function by applying inverse

bilinear transformation [23],

(2.3.5)




The relations between analog frequency and modified digital frequency are ob-
tained. Similarly the relation between modified analog frequency and digital fre-

quency is shown in below.

o - pite
)
o = k (cosw + a)(cosw + b) + (sinw)? + 1 * sinw(b — a) (2.3.6)

1+ b% + 2bcosw
where, w is digital frequency. Equating the imaginary terms from the above

equation, The following relation is obtained.

(b — a)stnw

1+ b2 + 2bcosw
where, 2 is analog frequency. The frequency relation is obtained from the modified

Q=k (2.3.7)

analog to digital domain by using inverse bilinear transformation [23], is in following.

z—1

z+1

(cosw — 1)(cosw + 1) + (sinw)? + 4 x 2sinw
_ (2.3.8)
2(1 + cosw)

Smod

Equating the imaginary terms from the above equation, The following relation is

obtained in between modified analog domain and modified digital domain.

2stnw
2(1 + cosw)
= tan(w/2) (2.3.9)

Qmad

where, 04 is the modified analog frequency. In the following, generalized bilin-
ear transformation is applied on second order Butterworth filter and designed various
kinds of filter, such as low-pass, high-pass, band-pass and band-elimination filter and
frequency mapping can be made in between original analog domain, modified digital
domain and modified analog domain using corresponding frequency relationships in
the equations (2.3.7) and (2.3.9). Applying the relationships, desired cutoff frequen-

cies are obtained which are shown in the following:
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Vin C ;;% IQ Vout

Figure 2.3: Second order Butterworth Low-pass filter.

2.3.1 Filters design using generalized bilinear transformation

A second order Butterworth transfer function can be realized as a doubly-terminated
RLC low-pass filter with cutoff frequency 1 radian/sec [24]. Circuit diagram of But-
terworth filter is shown in Figure 2.3. The transfer function is obtained as

1

2.3.10
LO(s®>+ %5+ 1) ( )

T(s) =
(2.3.11)

Where, L = 1.4142 and C = 0.7071.
The GBT is applied to the reactances of the circuit and the reactances are modified

depending on the parameters of the transformation and desired cutoff frequency can
be achieved using equation (2.3.7).
Z; = sL (2.3.12)

- (1+a)kL (sLk)(1 — a)
T T+ +A-0b)s A+ +(1—b)s (2.3.13)

Similarly admittance of capacitor is modified in the following way,

Yo = sC (2.3.14)
B (k + a)C (sC)(k - a)
(1 4b)+(1—=b)s  (1+b)+(1-b)s (2:3.15)
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Table 2.1: The parameters of Figure 2.4

Lk(1=a) Lk(1— LE(1+ — (1<%
Rspl = 1(_ba Lsp - 1(+b)a) RspZ = (1(+b;) Csp = (Cl(?,%f)
_ _(1+b) ) _ (1% — Ck(l-a
Rys1 = Ck(1+a) Lps = Ck(1+a) Bps2 = Ck(i-a) Cps = Titb)

10 Vout

+ _rrrn— )| RWERM +
p
C §

L,

Figure 2.4: The modified Butterworth Low-pass filter.

The modified filter is shown in Figure 2.4 and the components’ values are in Table

2.1.
Depending on the components’ value of the modified filter, desired frequency

response is obtained [16]. However, R,1, Lgp, Rys2 and Cp, could have negative values,
if and only a > k and physically, it is possible to have negative values of resistor and
capacitor [25]. Applying the proposed method, low-pass, high-pass, band-pass and

band-elimination filter design are shown in the following.

2.3.2 Low-pass filter design

Second order Butterworth filter is basically low pass filter having 1 rad/sec cutoff
frequency and the cutoff frequency can be changed applying the transformation and
the desired cutoff is achieved by varying the parameters’ value of the transformation.
The GBT is used to design a low-pass filter in the following:

s:kzig | (2.3.16)
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The limitations of the transformation depend on the stability criteria of modified
filter [15]. To obtain stable low-pass, stability conditions for k > 0 are-

—-1<a<0
0<b<l1
ab <0

Applying the GBT to be Butterworth filter, three types of low-pass filters are
designed. First low-pass filter is obtained replacing the inductor of Butterworth filter
to a parallel branch of a resistor and an inductor and the capacitor of the Butterworth
filter is replaced by a series branch of a resistor with a capacitor. Second low-pass
filter is obtained replacing the inductor of Butterworth filter to series combination of
a resistor and a inductor and capacitor of Butterworth filter is replaced by a parallel
branch of a resistor and a capacitor. Third low-pass filter is same as Butterworth

filter but parameters’ values are different.

Consider, ideal parameters’ values are unit magnitude of all parameters. In the
following tables the parameters of the transformation are varied one parameter at a

time keeping rest of the parameters to ideal values.

Tables 2.2, 2.3, 2.4 give various low-pass filter designs. In Table 2.2, parameters of
the GBT, k and a are kept constant and b is the variable. As a result, band-width of
the modified low-pass filter is decreased when b decreases. In Table 2.3, parameters
of the GBT, k and b are kept constant and o is variable. As a result, bandwidth of
the modified low-pass filter is increased when the magnitude of a decreases. In Table
2.4, parameters of the GBT, a and b are kept constant and £ is variable. As a result,

bandwidth of the modified low-pass filter is decreased when k increases.

Table 2.2: The low-Pass Filter designs corresponding to Figure 2.5

a b | Ry | Lsp | Bps | Cps | Transfer Function | Cutoff (rad/sec)
~1]08|10L | 10L [ L JWC ] _ L9 0.81
—1]05] 4L % 211? 33g sz+1.0(f;&_>i)j0.3972 0.58
~1101 2_(5))’1; 2_10{i lcg 320' s2+0.(<?;;21525.1645 0.32
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Lsp
Vuut

Cps

Figure 2.5: The modified low-pass filter when ’0’ is variable and the rest of the
parameters are constant.

Table 2.3: The low-Pass Filter designs corresponding to Figure2.6

a |b| Rs| L | Ry | Cp | Transfer Function | Cutoff (rad/sec)
T 9L | 10 | 9C - 1
~-08 )1 '1'%3 ;1? c E s2+1.793(1$s+1.4215 1.13
0511 % iy 40 4 52+2.55235+2.5175 1.38
—01 1 2L L} 207 1¢ 1 2
: 20 | 20 | 3C | 720 s214.2077s+6.0791

2.3.3 High-pass filter design

High-pass filter can be designed applying the GBT to the Butterworth filter and
in the modified circuit inductive reactance is replaced by capacitive reactance and

capacitive reactance is replaced by inductive reactance.

The GBT is used to design a high-pass filter in the following

(2 +a)

s=ke+)

(2.3.17)

The limitations of the transformation depend on the stability criteria of modified
filter. To obtain stable high-pass filter, the conditions for k > 0 are-

0<a<l1
-1<b6<0

ab< 0
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Figure 2.6: The modified low-pass filter when ’a’ is variable and the rest of the
parameters are constant.

Table 2.4: The low-Pass Filter designs corresponding to the Butterworth filter

k| L, C, | Transfer Function | Cutoff (rad/sec)
1[07071 | 14142 | 1.00
2| 14122 | 28981 | ey 0.51
3(2.1213 [ 42426 | —prmorm 0.34
4]2.8284 | 5.6568 | —mmmoEa 0.26

Applying the GBT to the Butterworth filter, three type of high-pass filters are
designed. First high-pass filter is obtained replacing inductor of Butterworth filter by
a parallel branch containing a resistor and a capacitor and the capacitor of Butter-
worth filter is replaced by a series branch of a resistor with an inductor. The second
high-pass filter is obtained replacing the inductor of Butterworth filter by a series
combination of a resistor and a capacitor and the capacitor of Butterworth filter is
replaced by a parallel branch of a resistor and an inductor. The third high-pass filter

is achieved by replacing an inductor by a capacitor and the capacitor by an inductor.

Similarly, in the following tables the parameters of the transformation are varied

one parameter at a time keeping the rest of the parameters to ideal values.

Tables 2.5, 2.6, 2.7 give various high-pass filter designs. In Table 2.5, parameters of
the GBT, k£ and a are kept constant and b is the variable. As a result, the bandwidth
of the high-pass filter is decreased when the magnitude of b decreases. In Table 2.6,
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Table 2.5: The high-Pass Filter designs corresponding to Figure 2.7

a| b | Ry | Csp | Rps | Lys | Transfer Function | Cutoff (rad/sec)
1 1 52
9 1 9 149s
1|-08]10L 1oL | 0C | 10C 37+1.’(7936s—)!;zl.4215 1.23
: 3 1 3 1+3s
1]1-05] 4L 4l iC | iC s2+2.(59523s+)g.5174 1.61
20L 11 9 11 +113
1]-01 9 | %20L | 20C | 20C 5244.20765+6.0789 2.01
Ry
— AN
+ —)l_— Rps +
Tsp
Vin 1O Vout
Lps

Figure 2.7: The modified High-pass filter when b’ is variable and the rest of the
parameters are constant.

parameters of the GBT, k and b are kept constant and a is variable. As a result,
band-width of the high-pass filter is increased when a decreases. In the Table 2.7,
parameters of the GBT, a and b are kept constant and k is variable. As a result,

bandwidth of the high-pass filter is increased when k increases.

2.3.4 Band-pass filter design

The GBT is used to design a band-pass filter by the following transformation:

(z+ay) % (z + a9)

82K1(z+bl)+ (2 1 by)

(2.3.18)

The transformation is a combination of the low-pass and the high-pass of the GBT
(section 2.3.2, 2.3.3). The limitations of the transformation depend on the stability
criteria of band-pass filter. To obtain stable band-pass filter, the conditions for K; > 0
and Ky > 0are -1 <a; <0,0<b; <1,4101 <0,0<a;<1,-1<b; <0,aby <0.
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Table 2.6: The high-Pass Filter designs corresponding to Figure 2.8

a | b |Ry| Cs|R,| L, | Transfer Function | Cutoff (rad/sec)
2
08| —1 156 61:2 lé')' % 52+1.261Zs+0.7035 0.89
05 —-1] % 3L | C | 3C szﬂ.0135823+0.3972 0.72
01} —1 2’031? T2IOE 5%-8* Tzl% 32+0.692823+0.1645 0.51
A A Y
+ R. <7t -+
Vin L, =R, >1 Voue

Figure 2.8: The modified High-pass filter when ’a’ is variable and the rest of the
parameters are constant.

Band-width of the modified band-pass filter can be changed to the desired value
and the center frequency can be moved choosing appropriate parameters’ values of

the transformadtion.

Applying the GBT to the Butterworth filter, two band-pass filters are achieved.
First band-pass filter is obtained by replacing the inductor of Butterworth filter to
series combination of a resistor, an inductor and a capacitor and the capacitor of
Butterworth filter is replaced by a parallel combination of a resistor, an inductor
and a capacitor. The second band-pass filter is obtained by replacing the inductor
of Butterworth filter to parallel combination of a resistor and an inductor and a
capacitor and the capacitor of Butterworth filter is replaced by a series combination

of a resistor, an inductor and a capacitor.
Consider, the ideal values of the parameters of the transformation are a; =
—1,b1 = 1,K1 = 1,0,2 = 1,b2 = —"1,K2 =1.

In Tables 2.8, 2.9 and 2.10, the parameters of the transformation are varied one
parameter at a time keeping the rest of the parameters to ideal values. They represent

the band-pass filter designs and W, is center frequency of band-pass filter (rad/sec)
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Table 2.7: The high-Pass Filter designs corresponding to Figure 2.9

k| C; L, | Transfer Function | Cutoff (rad/sec)
11414207071 | i 1.00 |
2107071 | 0.3536 | et 1.87
310471402357 | i 2.36
4103536 | 0.1768 | i 2.54

-+ ol +

Cs
Vin L, 1 Vout

Figure 2.9: The modified High-pass filter when ’k’ is variable and the rest of the
parameters are constant.

and BW is bandwidth of band-pass filter.

In Table 2.8, the parameters of the GBT, k; and b; are kept constant and a; is
variable. As a result, the bandwidth of the band-pass filter is increased when the
magnitude of a; or a; decreases. The center frequency of the filter is moved to
high frequency scale and low frequency scale when magnitude of a; and a, decrease

respectively. The parameters of Table 2.8 are given corresponding to band-pass filter

(Figure 2.10).

Table 2.8: The band-pass filter designs corresponding to Figure 2.10

i 017, RS LS Os Rp Lp Cp chn BW
1 -1 ]Jo| L | + oo ] CTJ105]11
105|231 2 22 %] 12125
1[-01]Z |22 £ 2] 2 28] 14 [1.75
5105 (2| L [ A 214 C 00 05
: 4 3L ¢ 3¢ . '
2101 || L |22 C] 08 ]100
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Table 2.9: The band-pass filter designs corresponding to Figure 2.11

i bz Rspl Lsp Rsp2 Csp -Rpsl Lps R1732 Cps chn BW
1105 | 4L | %] oo [ 7] 0 | 5| & [%]07] 05
101 [ZE T oo | L1 0 | 2 |5 [Z] 07 [055
205 o0 |[L 4L || & &[] 0 ] C [145] 09
2| -01] co [ L | B |2 2 |4 0 | C |1.65]1.05

Table 2.10: The band-pass filter design corresponding to Figure 2.10

i |K, [R | L, |C; | R, | L, | Cp | Ween | BW
1/ 2]0 20+ ]oo]| £ ]2C][0.75] 05
1{5]0[5L] 7 ]oo|=]5C]| 05 [ 0.2
2/ 2] 0] L |5]oo]ls]C |145]1.00
2|5 | 0| L |Z]ools5]C | 23 ]095

Ay

Ji

‘Iout

Figure 2.10: The band-pass filter when a; and k; change.
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Figure 2.11: The band-pass filter when b; changes.

In the parameters of the GBT in Table 2.9, k; and a; are kept constant and b;
is variable. As a result, the band-width of the band-pass filter is increased when
the magnitude of b; or b, decreases. The center frequency of the filter is moved to
low frequency scale and high frequency scale when magnitude of b; and b, decrease

respectively. Table 2.9 shows the elements’ values of the band-pass filter (Figure

2.11).

Table 2.10 represents another band-pass filter which has same filter structure of
Figure 2.10. In Table 2.10, the parameters of the GBT, a; and b; are kept constant
and k; is variable. As a result, the band-width of the bandpass filter is decreased when
the magnitude of K; or K, increases. The center frequency of the filter is moved to

low frequency scale and high frequency scale when magnitude of K; and K, increase

respectively.

2.3.5 Band-elimination filter design

The GBT is used to design a band-elimination filter by the following transformation:

1

= (z+a1) (z+a2)
K1y + Ka

(2.3.19)

S
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Table 2.11: The band-elimination filter designs corresponding to Figure 2.12

i]| ai [Ryp| Ly | Cop| Ros| Lps | Cps | Ween | BW
1| -1 oo | L |+ 0] & ] C |105][105
3 1 3
SECIE ARAE I AE IAREREE:
2105 (AL | Z [ 1 & 4 [ 00 1%
o[ 01 [ BB L e I os [ 14
. 9 11 L 20C C 11 . .

Table 2.12: The band-elimination filter designs corresponding to Figure 2,13

i bi | Rept | Lep | Rop2 | Csp | Bps1 | Lps | Bps2 | Cps | Cutoff Filter response

105 ] 0 | L] £ || 2 | 5] oo | C 055315 | Band-elimination
9L [ 20 20| _20

1{ 0.1 0 L 5 |37l 56 356 o | C 0.5 Low-pass

2]=05] £ [ 2] 0 | 1 [ oo | £ | & | 2 ]0.051.95 | Band-elimination

2]-01] % (2] 0 | + oo [ £ ] &8 |[TE] w=21 High-pass

This is the inverse transformation of the band-pass of GBT (section 2.3.4)and the

limitation of the transformation is similar to that of the band-pass transformation.

Applying the GBT to the Butterworth filter, two types of band-elimination filters
are achieved and the circuit diagrams are shown in Figures 2.12 and 2.13. The first
band-elimination filter is obtained by replacing the inductor of Butterworth filter by
a series combination of two parallel branches, one contains a resistor and inductor
and another contains a resistor and capacitor. The capacitor of Butterworth filter
is replaced by two parallel branches, one branch contains the series combination of
a resistor and an inductor and another contains a series connection of a resistor and
capacitor. The second band-elimination filter is obtained by replacing the inductor of
Butterworth filter by a parallel branch, one contains a series combination of resistor
with inductor and another contains a series of resistor with capacitor. The capacitor
of Butterworth filter is replaced by a series combination of two parallel branches,
one branch contains a resistor and an inductor and another contains a resistor and
capacitor.

Similar to the previous design, the parameters of the GBT are varied one param-

eter at a time keeping the rest of the parameters to the ideal values.

Tables 2.11, 2.12, 2.13 represent band-pass filter designs and W, is the center
frequency of band-pass filter (rad/sec) and BW is bandwidth of band-pass filter. In
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Table 2.13: The band-elimination filter designs corresponding to Figure 2.12

i [Ki|Rsp | Lsp | Cop | Rps | Lps | Cps | Ween | BW

12| L | 20| 2| CJ075]05

1/ 5] | L] 2 0] 2]Cclos 02

21 2 | 7%4 % 0 % gg 1.05 | 0.45

2 5 o0 E 7 0 rei I3 165 05
R Rept

+ — - ’ -
: ‘ 1 Qvout

Vm CSP LSP
| Cps

psl
- Lps _

Figure 2.12: The Band-elimination filter designs when a; and k; change.
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Vin 1 Q Vnut

Rpsl ~ Cps

Figure 2.13: The band-elimination filter designs when b; changes.

the Table 2.11, parameters of the GBT, k; and b; are kept constant and a; is variable.
As a result, the rejected-band width of the filter is increased when the magnitude
of a; or ay decreases. The center frequency of the rejected-band width is moved to
high frequency scale and low frequency scale when magnitude of a; and a, deceases
respectively. The parameters of the Table 2.11 are given corresponding to Figure

2.12.

In the parameters of the GBT in Table 2.12, k; and a; are kept constant and b; is
varied. As a result, the band-elimination filter is turned to low-pass and high-pass
filter when the magnitude of b; and b, decreases respectively. The parameters of the

Table 2.12 is corresponding to Figure 2.13.

In Table 2.13, the parameters of the GBT, a; and b; are kept constant and k; is
variable. As a result, the rejected-band width of the filter is decreased when K,
increases or K, decreases. The center frequency of the rejected band is moved to low
frequency scale and high frequency scale when magnitude of K; and K, increases
respectively. The parameters of the Table 2.13 are corresponding to Figure 2.12.

31



2.3.6 Properties of the GBT as applied to second-order But-

terworth low-pass filters

Generalized bilinear transformation is applied to a second order Butterworth filter
and the various designed filters are shown in sections 2.3.2, 2.3.3, 2.3.4 and 2.3.5.
Depending on the values of the parameters of the transformation, different filter
responses can be achieved. From the above discussion, some properties of the GBT
on second order Butterworth filter are figured out which are discussed below-

(a) Low pass filter: This is obtained by putting ’a’ as negative and ’b’ positive in

the Generalized Bilinear Transformation.
e Bandwidth of filter is decreased when b’ decreases.
¢ Bandwidth of filter is increased when ’a’ increases.
¢ Bandwidth of filter is decreased when 'k’ increases.

(b) High pass filter: This is obtained putting 'a’ is positive and ’b’ negative in the

Generalized Bilinear Transformation.
¢ Bandwidth of filter is increased when ’b’ increases.
e Bandwidth of filter is decreased when ’'a’ decreases.
¢ Bandwidth of filter is decreased when 'k’ increases.

(c) Band pass filter: The transformation of band pass filter is the combination of

the transformations of those used for low pass and high pass filters.
e Bandwidth of the filter is increased when the magnitude of ’a;’ or ’ay’ decreases.
e Bandwidth of the filter is decreased when the magnitude of ’b,’ or by’ decreases.
e Bandwidth of the filter is decreased when 'K’ or K3’ increases.

e Bandwidth of the filter is moved to high frequency when ’a;’ or ’b,’ decreases

or 'K’ increases.

bandwidth of the filter is moved to low frequency when ’as’ or ’b;’ decreases or

'K’ increases.
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(d) Band elimination filter: The transformation of the band-elimination filter is

the reciprocal of the transformation of band pass filter.
e Rejected bandwidth of the filter is increased when |a;| or |a;| decreases.
o Band-elimination filter turns to low pass filter when |b;| decreases.

e Band-elimination filter turns to high pass filter when |b;| decreases.

Rejected bandwidth starts decreasing and rejected band moves to low frequency

when 'K’ increases.

Rejected bandwidth starts decreasing and rejected band moves to high fre-

quency when 'K5’ increases.

2.4 Generation of VSHP by the gyrator networks

The stability is one of the main concerns in 2D filter design and a 2D transfer function
is guaranteed to be stable if the denominator of the transfer function is satisfied to
be Very Strict Hurwitz Polynomial (VSHP) [9] which can ensure that there is no
singularity in the right half of the biplane. To generate VSHPs from the doubly
terminated gyrator networks (Figures 2.1 and 2.2), two second order RLC filters are

replaced with the impedances of the gyrator filters. Details are discussed below:

2.4.1 VSHP generated from filter 1 using the Butterworth

polynomials

Second-order Butterworth filters are replaced by Z; and Z; in the transfer function of
filter 1, equation (2.2.5) to generate VSHP. In the transfer function Z; in terms of s;
and Z; in terms of s;. Impedance of the doubly terminated second-order Butterworth

filter is in the following.

LBCBS% + Lgs; +1
Zy = 2.4.1
! 1+0381 ( )
LBCBS% +L382+ 1
T = 2.4.2
2 1 +CB52 ( )

where, Lg = 1.4142 and Cg = 0.7071.
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The overall transfer function of filter 1 is obtained in 2D domain as

Napap(s1, 52) (2.4.3)

Hy1p2p (81, 52) = Dorpap (51, 52)
a ?

where,

I

{9°s3 + (¢°L5Cp + gLpCh)s2 + ¢°LCp + gLpCr}si
{9%s3L%Cp + (L3C% + g°L5Ch + gL3Ch)se

§°LpCh + L3C3 + gL3Ch}s1 + ¢°s5LsCh

(9°L3CE + gLE0% + LECY)ss + LpC + g°L3C%

gL%C% (2.4.4)

Naigap(s1,52)

+ 4+ o+ 4+

{2¢°s% + (2L%¢°Cp + LpC% + Lpg°C3)ss

3Lpg*Cp + LpCg}s: + {2¢9°s2L%Cr + (29°L%C%
LYg*C3 + L3C3 + 215C3) 80 + 3L%59°C% + LECE
2L%C3}s1 + {29%s2LpCr + (B3LACY + 213,4°C%
L3g°C3)sy + 3LEC% + 3L44°C%) (2.4.5)

D,1p2p(51, S2)

+ + 4+ o+

Equation (2.4.5) can be expressed as following.

Daip2p(81, 82) = A1psisi+Bipsiso+CipsisitDipsi+E psi+Fips1s3+Gipsi+Hipss+1p

(2.4.6)
where,

AlB = 292 (247)

Bip = 2L%¢°Cs+ LgC% + Lpg*C3 (2.4.8)

Cip = 2¢°L%Cp (2.4.9)

" Dip = 3Lpg°Cp+ LpCp (2.4.10)

Eig = ZQQLBOB (2.4.11)

Fip = 2¢°LEyC% + LY g*C3 + L3C3 + 21504 (2.4.12)

Gip = 3L%¢°C% + L3C% +21%03 (2.4.13)
Hip = 3L3C% +2L3¢°CE + L3 4%C3) (2.4.14)
Lip = 3L%C%+3L%9°C% (2.4.15)
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If s = 1 in equation (2.4.5), D,1p2p should be strictly Hurwitz polynomial in s;

domain.

‘DalBQD(Sly 1) = (Aip+ Bip+ D1p)s? + (Cip + Fip + G1p)s1 + (E1p + Hip + IiB)

= alBs% +bigs1 + B (2.4.16)
where,
ap = (AIB + Bip + DlB) (2.4.17)
bip = (Cip+ Fip+ Gig) | (2.4.18)
cip = (E13+HlB+I1B) (2.4.19)
—bipt+/(big—4a1pc1B)

Step 1: Roots of Dgypap(si, 1) are Tip(g) = T
For the all values of gyrator constant D,;pap(s1, 1) is strictly Hurwitz polynomial

in s; domain is shown in the Figure 2.14.

2~

1 4
=
£ o
= _14d. -

o |
~0.5 '
10
0
Real -1.5 —-10 Gyrator Constant, g

Figure 2.14: 3D plot of the roots of Dy1pap(s1,1) with respect of g.

Step 2: In the equation (2.4.6), substituting s; = jQ, s3 = jQs, where, 7 = v/—1.
The resultant equation (2.4.20) is arranged in the form of Inners [26] as follows.

Dai1pap(§91,5Q2) = Aip(Q2Q2) — Bip(Q23Q) — jC15(02) — D15(02) — E15(02)
— FlB(Qle) -+ leBﬂl + jHlBQQ -+ IlB : (2420)
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Equation (2.4.20) is expressed as following.

Daypop(j€,i%) = (41805 — D1p)Qf — (Fig) + (—E1s% + I) + j{(-Bip)N

+ (Gig — ClBQ%)Ql + H150} (2.4.21)
(=B1g%)  (—C189% + G1g) Hip 0
0 (—B18%2) (—=C189% + G1B) Hip
Dgip2p =
0 (A1502 — D1B) —(F1p22) (—E19% + I1B)
i (A150% — D1 5) ~(F18) (—E15Q% + I1) 0 |

Niypp = A18C1895 + (BipFip — A18G1s — CigD15)% + DipGip
(2.4.22)

Tipvg

5 —im ‘-“-“. o
o o Gyrator Constant, g

Figure 2.15: Plot of Tigya(g) vs g .

Let, TlBVQ(g) = (BlBFlB - AlBGlB — OlBDlB)- In the equation 2.4.22, it is
observed that A; > 0 for all the values of {23 and g, if Typv2(g) > 0 or ApCip0% +
DypG1p > Tipy2(9)Q2. Figure 2.15 shows that Tipy is always positive for all the

values of g.
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Step 3: Dg1pop is satisfied to be VSHP, which is shown in the following:

Da1BzD(81, 52) = AIBS%SS + 3138382 + 0135153 + DlBsf + ElBsg
+ Fipsiss + Gi1gs1 + Higsy + Iip (2423)
1 1 1 1 1
Dapap(—,82) = Aip—ss+ Bip—s2 +Cig—s3 + Dip— + Eips;
1
+ F13;32 + G1ps1 + Hipsy + Iip (2.4.24)
1
1 1 1 1 1
Da1B2D(317 —) = AlBsf-z“ + BlBS%'— + 01381——2- -+ DlBS? + ElB'—2
82 52 So 32 82
1 1
+ Flles_+Glle +HIBS— + I1p (2.4.25)
2 2
1 1 11 11 11 1 1
Dgpop(—,—) = Aip—— + Bip—5— +Cip—— + Dip— + E1p—
11 1 1
+ Fip——+Gip— + Hip—+ i (2.4.26)
81 82 St S2

So the denominator of the transfer function, H,;sp is generated from filterl using

second-order butterworth polynomials, that satisfies to be VSHP.

2.4.2 VSHP generated from filter 1 using Gargour&Ramachadran

polynomials

Zy and Zj in the transfer function of filter 1, equation(2.2.5) are replaced the Gar-
gour&Ramachadran filters by to generate VSHP. In equation(2.2.5) Z; and Z, are
expressed in term of s; and sy respectively.

. LGcc,*S% + Lgs; +1

2.4.2
T Cos, (2.4.27)

Z

. LGcg8% + LGsz +1

e (2.4.28)

2y
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For Gargour&Ramachadran filter, Lg = 2.103 and Cg = 0.3362.

The resultant transfer function is obtained in 2D domain as

Naig2p (81, 82) (2.4.20)

HalGZD(S]J 82) = D 1G2D(51 52)
a b

where,
Nagep(s1,82) = {9°s2 + (6°L&Cs + gLcCE)s2 + ¢°LeCe + 9LaCalst
+ {g*3LECq + (LgCE + ¢°LeCG + gL&CE)s
+ g*LLCEL + LECE + gLiCE}s1 + g°s5LaCa
+ (gPLALCE + gLACE + 1202 ) sy + LECE + ¢°L%CE
+ gL%C% (2.4.30)

{2¢%s2 + (2L%9°C + LaC + Lag*Cl)s2

3Lcg°Cq + LaCg)s? + {2¢%s2LECq + (29°LECE
L3,g°C3 + L3C3 + 215C%) sy + 3L g*C% + LEC2
2L4CE )} sy + {20252 L6Cq + (3LECE + 2L 6°Ch

+ I29%C3)sq + 3LLCY + 3L56°C3} (2.4.31)

I

D,16ap(s1, 52)

+ + +

The denominator of the transfer function, H,1gep can be expressed as below:

D,ig2p(s1, $2) = A182 24 Bigs2sy+Cigs185+Digsi+ Eigsy+Figsis2+Gigsi+Higsa+ e

(2.4.32)
where,

A = 2¢° (2.4.33)
Big = 2L%9°Co+ LCG + Lag’Ch (2.4.34)
Cie = 2¢°LgCo (2.4.35)
Dig = 3Lgg*Cs + LsCo (2.4.36)
Ei¢ = 2¢°LgCq (2.4.37)
Fig = 2¢°LLC% + L3g°C3 + LECE + 2L%CE (2.4.38)
Gig = 3LL¢°C%+ LLCE+2L%CE (2.4.39)
Hye = 3L%LC% 4 2L%¢°CE + LLg°CE) (2.4.40)
Le = 3L4C%+31%g°C% (2.4.41)
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Substituting s = 1 in Dgigop, it has shown that the resultant polynomial is

strictly Hurwitz polynomial in s; domain (Figure 2.16).

Dacap(s1,1) = (Aig + Big + Dig)s? + (Cig + Fig + Gig)s1 + (Big + Hig + Lic)

= a165° + bigs1 + cic (2.4.42)
where,
aie = (Ao + Big+ Dig) (2.4.43)
bie = (Cig+ Fig+ Gig) (2.4.44)
cg = (Big+ Hie+ Lig) (2.4.45)
Step 1: Roots of Dyi62p(s1,1) are Tig(g) = “hiety (21751GG_4a1GCIG).

Da1g2p(s1,1) is strictly Hurwitz polynomial in s; domain for all the values of g

(Figure 2.16).

Roots of the polynomial

1.5 T T T T T T

Imaginary
Q
T

-1 '-?1 -0.95 -0.9 —0.85 -0.8 —-0.v75 -0.7 —~0.65

Figure 2.16: The roots of Dy1gep(s1,1) for the different values of g.
Step 2: Similar to section 2.4.1, substituting s; = jQ;, 8o = jQQ in D,igap. The

resultant equation (2.4.46) is arranged in the form of Inners [26] as below:

Da1gap(3,70) = A16Q30% — jB160302 — jC160U 02 — D192 — E1602
— FigQ + jGi6fh + jH16Q + Lig (2.4.46)
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Daigop(58,70) = (41695 — D16) — (FigQ)Q + (—Fi6 + I1g)
+ J{(=Big) + (Gig — C16Q2) + HigQe}  (2.4.47)

(—Bi16%22) (=C1693 + G16) Hyq 0
0 (—Bicf) (—C162 + Gig) Hig
Dgigep =
0 (A169% — D1g) —(Fig) (—E169% + Iig)
i (4169% — D1g) —(Fi€) (—=E1692 + L) 0 |

Digp = A16C1690% + (BigFig — A16Gie — Cie¢Di16)% + Di16Gra
(2.4.48)

700
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100
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—4 -3 -2 -1 (o] 1 2 3 4
Gyrator Constant, g

Figure 2.17: Plot of Tigva(g) vs g .

Let, Tigv2(9) = (BicFic — AicGic — CigDig). From equation (2.4.48), it is
observed that A; > 0 for all the values of (2 and g, which is proved in Figure 2.17.
Hence it is shown that Tigyo always positive for the values of g.

Step 3: D, is satisfied the step 3 to be VSHP, which is shown in below:
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' 2.9 9 2 2 2
Dacgap(s1,s2) = Aigsiss + Bigsiss + Cigsiss + Digsi + Eigsy + Figsi1s:

+ Gigs1 + Higse + Lic (2.4.49)

1 1 1 1 1
DalGZD(g‘; S2) = AlG 32 + BlG 32 + C1G-—82 + Dig— 2 + Eygss + F10—82
1
+ Glel + Higso -I- Lig (2.4.50)
1 1 1 1 1 1
Dugap(s1, —) = Aigsi— + Bigsi— + Cigsi— + Digsi + Big— + Figs1—
52 32 So 32 32 S2
1
+ Gigsy + HlGS_ + hig (2.4.51)
2
1 1 11 11 11 1 1 11
Dacop(—,—) = A 2ot BlG_—' +C’10—-— + Dic— + Eic— 2 + Fig——
81 82 8152 5% 82 $1 81 82
1

1
+ Gig—+ Hig— + Iig (2.4.52)
51 52

H,169p is generated from filterl using second-order Gargour&Ramachandran poly-

nomials and the denominator of the transfer function, H,,42p is satisfied to be VSHP.

2.4.3 VSHP generated from filter 2 using the Butterworth

polynomials

Second-order Butterworth filters are used in the transfer function, equation (2.2.10)
to generate a VSHP and similarly, as in the previous sections 2.4.1 and 2.4.2, Z; and
Zs are replaced by the Butterworth filter and Z; is replaced by a resistive component

to satisfy VSHP. The overall transfer function.

LBCBS% + Lle +1
= 2.4.5¢
! 1 + Ole ( 4 3)
LBCBsg + Lgsy+1
o = ~ 2.4.54
2 1+ CBS2 ( 5 )
Z3 = 1Q(Resistive). (2.4.55)
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NaZB2D(317 5‘2)
2.4.56
Dyspap(s1, S2) ( )

Haopop (81, 82) =

{983+ (9L%Cp + gLpC%)ss + 2LpCpg}si
{(¢L%Cs + gLsC3)ss + (9LpCh + 29L3C3 + L3C3) s
29L3C5 + L3CE + gL5Ch}s1 + 2LCryss
(29L%5C% + L5C% + gLA3C%) sy + L4C% + 3gLEC%
(2.4.57)

i

Na2p2p (81, 52)

+ o+ +

{(g*+ 1)s3 + (LECp + LpChg* + 2LpC% + L3Cpg?)s,
3LpCp + 2LpCpg?}s? + {(L4Cp + LC%¢% 4+ 2LC%
L2Cpg®)s + (AL3CY + L*C% + L*C%g% + 3L*Cy
2L3C%g%) sy + L2C%g* + BL*CS + 3L3C%,
2L%C%g%}s1 + (3LCp + 2LCRg*)s2 + (L2C¥g?
5L2C3 + 3L3C% + 2L3C%g%)sy + 8L*C% + 3L2C%4°

(2.4.58)

DaZBZD(Sly 82)

+ o+ + 4+ o+

Let, the denominator of the transfer function, Hyp is obtained in 2D domain,

Da2pop(81,82) = Asps?si+Bopsiso+CopsisitDopsi+FEopsitFops1sy+Gopsi+Hapso+ g

(2.4.59)
where,
Ap = (¢°+1) (2.4.60)
Bog = (L*Cp+ LC3:¢* +2LC%E + L*Cpg?) (2.4.61)
Cyp = L*°Cp+ LC%¢* 4+ 2LC% + L*Cpg? (2.4.62)
Dyp = 3LCp+2LCpg* | (2.4.63)

Esg = (3LCp+2LCgpg?%) (2.4.64)
Fop = 4AL*CY+ L*Ch + L*C%¢° + 3L*Cy + 2L3CEg” (2.4.65)
Gop = L*C¥g*+ 5L*CE + 3L3C% + 2L°C%¢* - (2.4.66)
Hy,p = (L*C}g%+5L%C% + 3L3C% + 2L°C%g%) (2.4.67)
Lp = 8L°C% +3L*C%g? | (2.4.68)
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Substituting s; = 1 in the equation (2.4.59) and it has been shown in Figure 2.18

that the resultant polynomial, Dy2p2p(s1,1) is a strictly Hurwitz polynomial in s;

domain.
1 <
054
=
s
5 0 -
£

Real -1.5 -10 Gyrator Constant, g

Figure 2.18: The roots of D2pap(s1,1) for the different values of g.

Similar to equations (2.4.48), (2.4.46), (2.4.47) and (2.4.2), it has been shown that
Topva(g) = (BepFop — A2pGap — CapDag) is positive for the all values of g (Figure
2.19).

Similarly, from the equations (2.4.49), (2.4.50), (2.4.51) and (2.4.52), it can be
shown that the denominator of transfer function, Hyop2p(s1, S2) generated using the

Butterworth filters is satisfied to be VSHP.

2.4.4 'VSHP generated from filter 2 using Gargour&Ramachandran

polynomials

The second-order Gargour&Ramachandran filter is used in the transfer function,
equation (2.2.10) in order to generate VSHP. In this transfer function, Z; and Z,
are replaced by ’Gargour&Ramachandran’ filters and Z3 is replaced by a resistive
component (1), otherwise denominator of equation (2.2.10) will not satisfy to be

the VSHPs which is proven in section 2.4.5.
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Figure 2.19: Plot of Topy2(g) vs g -

It has seen that substitution s = 1 in the resultant transfer function ( Hysgep), the
denominator (Dgsog2p(s1, 1)) of Hyagep is strictly Hurwitz polynomial in s; domain,

which is shown in Figure 2.20.
Similar to equations (2.4.48), (2.4.46), (2.4.47) and (2.4.2), it has shown that

Trava(g) is positive for the all values of g.
Similar to equations (2.4.49), (2.4.50), (2.4.51) and (2.4.52), it has seen that de-
nominator of the transfer function, H,ogap(s1, S2) is generated using Gargour&Ramachandran

filters is satisfied to be VSHP.

2.4.5 Non VSHPs generated by filter 2

Second-order Butterworth filters are replaced by Z;, Z, and Z3 in the transfer function
of filter2 ( equation(2.2.5) ) as shown in equations (2.4.69), (2.4.70) and (2.4.71)

respectively.
LBOBS% + Lgs +1
Zy = 2.4.
1 T+ Cpsn (2.4.69)
LBCBsg + Lpsy+1
Zy = 4.
2 1+ CBSQ (2 4 70)
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Figure 2.20;: The roots of Dgagap(s1,1) for the different values of g.

7. — LBCBS%—I-LBSQ—I-l
. 3= 1+ CB82
The overall transfer function of filter2 is obtained in 2D domain,

(2.4.71)

Naxp (51, 52) (2.4.72)

Hawp(s1,52) = DanB(51,52)

where,

N.nvg = (g+0.753gs1)s3 + ((0.753 + 4.471g) + (4.235g + 0.506)s;

1.530gs7)s5 + ((2.118 + 8.353¢) + (9.176g + 1.529)s; + 4.235g57)s3
((2.235 + 7.412g) + (8.353g + 1.530)s; + 4.471gs?)s, + (1 + 3.176g)
(3.647g + 0.753)s; + 2.118gs? (2.4.73)

+ o+ 4+

1.035{((1 + ¢%) + (0.7044® + 0.704)s, ) s
((4.204g2 + 6.364) + (3.977g% + 5.568)s; + (1.364 + 1.3644%)s?)s3
((8.068¢2 + 14.773) + (13.636 + 8.5239%) 51 + (4.545 + 3.977¢%)s%) s>
((15.909 + 7.0456%) + (15.909 + 8.068¢%)s; + (5.682 + 4.204¢%)s%)s,
(3.0689% + 8.068) + (7.841 + 3.523¢%)s; + (2.045g° + 3.068)s7}

| (2.4.74)

Il

DynB

+ 4+ + 4+
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Figure 2.21: Plot of Togy2(g) vs g .

For simplicity, equation (2.4.74) can be expressed as following.

DQNB(Sl, 82) = ANBSPS‘LQl + BNBS% + ONBSZ + DN38183 + ENBS?SS + FNBS% -+ GNlesg
+ Hypsiss+ Iypsy + Jypsiss + Kypsisos + Lyps? + Myps, + Nyp

(2.4.75)
According to the section 2.4.1, step 3 is applied to the equation (2.4.75) and in

equation (2.4.78), Dyp becomes indeterminate when s; — 0, s, — 0. Hence Dyp
does not constitute a VSHP.

1 1 1 12
DGNB(s—, 82) = ANBES% -+ l?NBS;1 + CNBSZ + DNB;SS + ENB—S— Sg + FNBsg
T 1 1
1, 1, 1 1 1
+ GNB—S2+HNB—282+IN382+JNB~82+KNB—2—32+LNB—7
1
+ Myp—+ Nyp (2.4.76)
1 .
1 1 1 1 1 1 1
Ding(s1,—) = Anpsi— +Byp—+Cnp— + Dnpsi— + Engsi— + Fnp—
82 S2 52 82 52 : 52 53

1 1 1 1
GNB51_§ -+ HNBS?_i + [— + Jypsi— + KNBS%—- + LNBS?
85 83 82 S2 S2
MNle + NNB (2477)

46



1 1 11 1 1 11 11 1
Dong(—,—) = Anp—— +Byp—; +Cnp— + Dyp—— + Enp—— + Fnp—
S]_ 82 81 32 52 52 81 32 31 52 52
11 11 1 11 11 1
+ Gvnp—Z +Hvpz 5 +Inp—+JIvp—— +Knpm—+ Ly
1 .
+ Myp—+ Nyp (2.4.78)
1

Another example is considered for the generation of VSHP using filter2. The
Gargour&Ramachadran filters are replaced by Z;, Z, and Z3 in the transfer function
of filter 2 (equation(2.2.5)) as equations (2.4.79), (2.4.80) and (2.4.81).

. LGc’GS% + LGS1 +1

Z 11 Cost (2.4.79)
Zy = LGCGlsizi’jj? +1 (2.4.80)
L= LGCGfiE’;:j? +1 (2.4.81)
The overall transfer function of filter2 is obtained in 2D domain,
Hung(s1,82) = Naya (51, 52) (2.4.82)

Done(s1, S2)

where,

Nunvg = (g+0.35gs;)ss + ((0.5+ 7.083¢) + (4.167g + 0.167)s;
+ 0.708gs7)s5 + ((3 + 18.333g) + (16.667g + 1)s, + 4.167g5°)s2
+ (5+20g + (24.167g + 1.75)s; + 7.083gs3) sy + 2 4 6.25¢
+ (9.167g + 0.708)s; + 2.917¢gs? (2.4.83)

I

Dune ((1+ ¢*) + (0.35¢% + 0.35)s;)s5 + ((7.083¢% + 8.333)

(4.167g” + 4.583)s; + (0.692 + 0.692¢%)s7)s3 4 ((17.59° + 27.5)
(20 + 16.667g%)s; + (4.25 + 4.167g%)s?)s2 + ((36.667 + 18.333¢%)
(32.55; + 24.167g%)s; + (8.083 + 7.08392)52)5,(6.1679% + 16.667)
(

16.667 + 9.167g%)s; + (4.417 + 2.917¢%)s? (2.4.84)

+ + + +

47



Similar to the previous example , step 3 of the section 2.4.1 is applied to the
equation (2.4.84) and it has been found that Dyp does not constitute a VSHP..

From the above discussion, it is seen that Z; and Z, of filter2 are replaced by
doubly terminated RLC filters, it is essential to replace Z3 of filter2 by a resistive
component, otherwise denominator of the resultant transfer function of filter2 will not
satisfy to be the VSHPs. Even, if the Z3 is replaced by an inductor or a capacitor,
denominator of the resultant transfer function of filter2 will not satisfy to be the

VSHPs.

2.5 Properties of the doubly terminated gyrator

networks

From the above discussion, some properties of gyrator filterl, Figure 2.1 are briefly

described in bellow.
e Frequency response is independent of frequency when g = 1.
e Denominator of the gyrator filter is independent of the sign of g.

e Numerator of the filter is controlled by the values and sign of g, as a result

sharper slopes are obtained obtained by the negative values of g.

Filter is stable for (0 < |g| < 00).

Monotonic amplitude frequency response is obtained for the certain ranges of g,
if and only impedances are replaced by doubly terminated RLC network which

has monotonic amplitude frequency response.
Some properties of filter 2, Figure 2.2 are discussed in bellow.

e Denominator of the gyrator filter are independent of the sign of g.

e Numerator of the filter is controlled by the values and sign of g, as a result more

sharp slopes are obtained obtained by the negative values of g.

e Filter is stable for (0 < |g| < 00).
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e Monotonic amplitude frequency response is obtained for the certain ranges of g,

if and only impedances are replaced by doubly terminated RLC network which

has monotonic amplitude frequency response.

2.6 Summary and Discussion

In this chapter, two gyrator based filters are considered for the 2D digital filter design
which are taken from Darlington-synthesis. The impedances in the gyrator filters are
replaced by the doubly terminated RLC circuits in order to generate 2D stable transfer
function. In this thesis, the second-order Butterworth and Gargour&Ramachandran
filters are used as the doubly terminated RLC circuits and the both RLC filters have
monotonic frequency-amplitude responses. The GBT is applied to the second-order
Butterworth filter to obtain the desired digital filter. The inverse bilinear transfor-
mation is applied to the digital filter in order to obtain the corresponding modified
analog filter [16]. It has shown that depending on the values of the parameters of the
GBT, different kinds of filter responses are obtained, such as low-pass filters, high-
pass filters, band-pass filters and band-elimination filters filter. The desired cutoff
frequency and bandwidth of the filters are depend on the parameters of the GBT
(section 2.3). Properties of the GBT as applied to the second-order Butterworth
low-pass filter are discussed in section 2.3.6.

The 2D stable analog transfer functions are generated in section 2.4, where impedances
of the doubly terminated gyrator networks (Figures 2.1 and 2.2) are replaced by the
second-order RLC filters. As a result, the coefficients of the resultant transfer func-
tions are functions of g of the gyrator networks and the g provides a wide range to
obtain different kinds of filters. Properties of the doubly terminated gyrator networks

(Figures 2.1 and 2.2) are shown in section 2.5.
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Chapter 3

Proposed Design of Digital
Low-pass Filter

3.1 Introduction

Darlington synthesis has been introduced for the realization of a driving-point impedance
as lossless two-ports terminated in a resistance. The extensions of Darlington-synthesis
to two-variable positive real function have been accomplished [27] and Darlington-
type realization of two-variable driving-point impedance of lossless two-port network
has been described [11]. Necessary and sufficient conditions for the realization of
the classes of two-variable positive real function’s as doubly-terminated lossless two-
variable lossless ladder networks has been obtained [28] and stable 2D recursive filters
have been designed by generation of Very Strict Hurwitz Polynomial (VSHP) using
terminated n-port gyrator networks [29].

In [30], a 2D filter approximates the magnitude response which can be realized
and then cascading it by an all-pass 2D filter to equalize the resulting group delay.
A design technique of 2D recursive filters have been shown which met simultaneously
magnitude and group delay specifications [30], where, they have chosen a performance
index as a linear combination of three error functions for the magnitude and group
delays and minimized it iteratively by the Davidon-Fletcher and Powell method. Al-
though the technique has the advantage of always ensuring the filter stability, the
difficulties to be encountered are computational complexity and convergence [31].

Later, a 2D filter design as a linear programming problem has been proposed, where
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linear programming adjusts the real and imaginary parts in the filter transfer func-
tion. but, this tends to require relatively long computation time [32]. Also, a filter
design has been shown using the two specifications as the problem of minimizing the
total length of modified complex errors between an actual transfer function and the
desired prototype over the discrete set of frequency plane and minimized it by an
iterative procedure [33].

In this thesis, the 2D digital filters are designed by Darlington-type networks
containing gyrator component and impedances of the gyrator network are replaced
by doubly terminated RLC networks. The resultant 2D analog transfer function is
stable in analog domain, if the denominator of the transfer function is satisfied to be
VSHP (section 1.5). Section 2.4 has shown the generation of VSHPs using the doubly
terminated gyrator networks (Figures 2.1 and 2.2). In this chapter, two filter designs
are proposed for the 2D low-pass digital filter design. The proposed designs are:

1. Proposed Design - I (Regulating 'g’ magnitude).

2. Proposed Design - II (Controlled Transformation).

The proposed design - I is based on the values of gyrator constant (g) of the gyrator
network and various kinds of filter responses are obtained regulating the value/sign of
g. For example, impedances of a gyrator network are replaced by doubly terminated
RLC networks. As a consequence, the magnitude of ’g’ provides a wide variation to
‘change the filter responses; and depending on the the gyrator network and RLC filter
structures, low-pass, high-pass, band-pass and band-elimination filter responses can
be obtained. The proposed design-I ensures the stability of the digital filter (section
1.5); however, this design cannot ensure monotonic amplitude-frequency response in
the passband regions of the digital. To overcome the problem, another design is
proposed for 2D digital filter design which is called controlled transformation. The
GBT plays an important role for modifying the reactive components of the RLC filters

‘to the desired components. The desired filter responses are obtained by choosing
appropriate values of the parametefs of the GBT (section 2.3). .

The proposed design -1 sati'sﬁes“the stability conditions of the digital filter and
also ensures monotonic amplitudé—frequency response in the passband regions. A
mathematical closed form of a 1D low-pass filter with a monotonic amplitude char-

- acteristic is described in paper [17] and the mathematical closed form is extended to
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two dimensional case. The extension of the paper [17] is derived from an analog filter

and amplitude characteristic of an analog filter is expressed as

1
1+ 0, (2)

where, £ is analog frequency and o, (Q?) is a rational function of order n for Q2.

Aln(‘Q) - (3.1.1)

The amplitude characteristic equation (3.1.1) is low-pass filter with monotonic and

arbitrary flatness in the pass-band, if and only

do, (22)
M(R2) = >0 3.1.2
(@) =22 > (312
The condition for a flat characteristic in the pass-band is-
d* o, (92)

and the amplitude characteristic A4,(2) is said to have m-th order flatness. Also,

the slope at the cut-off frequency M is given by

do, (22)
dQ

The definition of monotonicity in the 2D amplitude-frequency response of second-

lo=1 = M (3.1.4)

order transfer function, H(sy, s) is in following [10]

8|H (01,0 _
o <0, =0 .15

M < 0,0, =0
Transfer function of a 2D analog low-pass filter can be expressed as following [10].

1
D(s1, s9)

= oo (3.1.6)

2' 2 il iz
Zilr:() Zig:O di1i281 52

Hal(sla 52) =

(3.1.7)

Substituting s; = jQ; and sy = j€ in the equation (3.1.6),7wheré, j = -1
~The following necessary conditions are obtained for monotonic amplitude-frequency
response of 2D analog filter: -
3|D(1,09)] _
S0 20,0 =0

2\D(n.02) (3.1.8)
——laﬂg g Z O,Ql =0
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Therefore, the following two equations are obtained from equations (3.1.4) and (3.1.8).

oy - D001

= 4d3,Q7 — ddaodoo + 2d3 > 0 (3.1.9)

M;(§2) = %@?ﬂ

= 4d%0% — 4dpady + 2d2, > 0 (3.1.10)
Transfer function of a 2D analog low-pass filter can be expressed [34] as below.

2 L
5 " i AN
Zi1=0 21;2220 diliZ 31il Séz

Substituting s; = j§; and sy = jQs in equation (3.1.11) and the necessary condi-

Ho(s1,82) =

tions of monotonic characteristic of equation (3.1.11) are obtained as below:

1

(% = 2(]1-‘/§ Uri(=Us; + \/m)) <0 (3.1.12)
1 2

(i + 2U1_\/§ Uys(—Us + /U2 — 4UyUs;)) < 0 (3.1.13)

1
2Uy;

1
(s + BT —2U(Uzi + 1/ U3, — 4U1Us;)) < 0 (3.1.15)
)

where, i = 1,2. when €y = 0 in the equation (3.1.11), Uy, Uy, and Usy define in
equations (3.1.12) to (3.1.15) as below:

Ui = (2naneodsy — 2n3gdaodog — nigdag + niedly) (3.1.16)
Un = (2n2,d% — 2n,d%;) (3.1.17)
U31 = (27’L(2)0d20d00 + ’I’L%Odgo - 2712()7100(130 — ngodfo) (3118)

When ©; = 0 in the equation (3.1.11), Ujs, Uss and Us, define as below.

U = (2n02h00d32 + ngadly — 2ndydoadeg — nfydZ,) (3.1.19)
Uy = (=2nGydiy + 2ngadio) - (3.1.20)
Uz = (—2npanoodyy + 2ndodeadoo + ngydge — mioday) .~ (3.1.21)
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Similarly, the transfer function of a 2D analog gyrator filter can be expressed as
below:
2 2 iy i
Zi1=o Zi2=0 Ngiria (g9)sy's% (3.1.22)
5 5 —— 1.
Zilzo 21;2:() dgiliZ (g)s';1 8222
where, the coefficients (n4:,:,(9) and dg,:,(g)) are function of g of the gyrator

filter.
Substituting s; = j{); and s; = j$s in equation(3.1.22) and the necessary condi-

Hag('sl; 82, g) =

tions of monotonic characteristics of equation (3.1.22) are obtained as below:

(@ = 5oV Vi Ve + [V — 4WiTa) < 0 (3.1.23)
14
1 /172
13
1 /
(Q; — G -2V (Vo + szz — 4V Vs)) < 0 (3.1.25)
13
1
(Ot o ~2ViVa+ V2~ Vi) < 0 (3.1.26)
17

where, i = 1,2. when Q, = 0 in the equation (3.1.22), V31, Va1 and V3, are function
of the g, which are defined in the equations (3.1.23) to (3.1.26) as below:

Vi = 2n490(9)700(9){dg20(9)}* — 2{ng20(9) } dg20(9) dgoo(9) — {ng10(9) }*{dg20(9)}*
+ {ng20(9)}*{dg10(9)}* (3.1.27)
Var = (2{ng20(9)}*{dgo0(9)}* — 2{ng00(9)}*{dg20(9)}*) | (3.1.28)
Var = 2{ngo0(g)} dy20(9)dgo0(g) + {ng10(9) }*{dg00(9)}* — 2n420(9)ng00(9){dg00(g)}
~ {ng00(9)}*{dg10(9)}? (3.1.29)

When 2; = 0 in the equation (3.1.22), V15, V2 and V3, are defined in the equation
(3.1.23) to (3.1.26) as below: '

Viz = 2n402(9)ng00(9){dg02(9)}* + {rg02(9)}*{dgo1(9)}* — 2{ng02(9) }*dg02(9)dgo0(9)

~ {ng01(9)}*{dgo2(9)}?) (3.1.30)
Vir = —2{ng00(9)}*{ds02(9)}* + 2{ngo2(9)}*{dgoo(9)}* . (313
Vaa = —2ng02(9)ng00(9){dgo0(9)}* + 2{ng00(9) }*dgo2(g)dgoo(g) + {ngo1(9)}*{dgoo(9)}*

— {ngo0(9)}*{dgor(9)}? | (3.1.32)
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The mathematical form of a monotonic amplitude characteristic [17] can be ex-
tended to 2D monotonic characteristics using a gyrator filter as below. Consider, the

amplitude characteristic of a 2D analog gyrator filter is

1
V1+Ba(F,93,9)
where, 8,(Q%,02,¢g) is a rational function of order n for 02, Q2 and g. The

amplitude characteristic equation (3.1.33) is a low-pass filter with monotonic and

Aon(Q1,, 9) (3.1.33)

arbitrary flatness in the pass-band, if

8B (92,0,

My(Q1,9) = REISALT) (851 9) >0 (3.1.34)
2

M;5(S2,9) = ______%A&;Zz, 9) >0 (3.1.35)

The proposed design-II (controlled transformation) uses the above conditions to
have monotonic characteristics in frequency responses of the digital filter. In this de-
sign, the GBT is applied to equations (3.1.12) to (3.1.15), (3.1.34), (3.1.35) and limits
of the parameters of the GBT are defined in order to obtain monotonic characteristics
in frequency responses of the filter. Details of the two proposed designs are discussed

in detail and design examples are given to illustrate the usefulness of the proposed

designs.

3.2 Proposed Design-1

Impedances of the doubly terminated gyrator network are replaced by the doubly
terminated RLC networks and stability of the resultant filter is satisfied (section 2.4).
The desired filter responses are obtained by regulating the value/sign of g and double
bilinear transformations are used to obtain the desired 2D digital filter response.
The block diagram of the proposed design-I is shown in Figure 3.16 and it shows
the value/sign of g plays an important role for the 2D digital filter design. Design

examples are given in the below to illustrate the usefulness of the proposed design.
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Figure 3.1: Proposed Design - 1 of Two-Dimensional Analog/Digital filter using
Darlington-type Gyrator Networks
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3.2.1 Filterl

Transfer function of filterl is derived in section 2.2 and stability criteria is defined in
the case of replacing the impedances of a doubly terminated gyrator network with dou-
bly terminated second-order Butterworth and Gargour&Ramachandran filters (sec-
tion 2.4). In this section, both 1D and 2D analog and digital filters are designed
using proposed design-I. Some properties of the gyrator filters have to be considered
before proceeding further, such as the denominator of the transfer function of filterl
is independent of the sign of g. However, the value of g can effect the magnitude
response of the filter and the numerator is dependent on both sign and value of g.
For example, impedances of a doubly terminated gyrator network is replaced by the
doubly terminated second-order Butterworth filters. As a result, the cutoff frequency
of the overall gyrator network is controlled by the value of g which is shown in the
Figure 3.2 and it is also shown that a low-pass filter is transformed to a high-pass filter
for the higher magnitude of g. However, both Figures 3.2 and 3.3 are not containing
monotonic characteristic.

For illustration, impedances of the doubly terminated gyrator network are re-
placed by the doubly terminated RLC networks (second-order Butterworth and Gar-
gour&Ramachandran filters)and different combination of the RLC network are placed
in the gyrator networks and for the simplicity, each circuit is classified, such as
impedances of filterl are replaced by the second-order Butterworth filter is called
case-I(filterl). Similarly, impedances of filterl are replaced by the second-order Gar-
gour&Ramachandran filters is called case-II(filterl) and impedances of filter] are re-
placed by the second-order Butterworth and Gargour&Ramachandran filters is called

case-1I1(filterl). Each case of filter design is discussed below.

3.2.2 1D case-I(filterl)

Second-order Butterworth filters are replaced with the impedances of the doubly
terminated gyrator filterl and it has seen that coefficients of the resultant analog

transfer function are functions of g of filterl. The analog filter is converted to the

desired digital filter by bilinear transformation.

The derived transfer function of filterl is
1+ 92y + 9% Z1 2

H
1 2+ Z1 + ¢2°Z1 + 29271 Z,

(3.2.1)
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Figure 3.2: Magnitude responses of filter 1 for the different values of g

The impedances (Z;, Z2) of the equation (3.2.1) are replaced by the impedances
of Butterworth filter (equation (2.4.69)) and the overall transfer function is obtained
as the following:

Hopip(s) = 2g%s* + (5.6g% + 1.49)s® + (1 + 49 + 89%)s% + (5.69° + 4.2g + 2.8)s + 2 + 29 + 29
a1B1DAS] = 4g25% 1 (132 + 1.4)83 + (6 + 2092)s2 + (1592 + 9.8)s + 6. + 642

(3.2.2)

The locations of poles and zeros of the gyrator filter are dependent on the value
and/or sign of g of the gyrator filter and it has been seen that the reactive behavior
of the gyrator filter is changed not only for the values of resistance, capacitance and
inductance of the filter, but also the value and sign of g. The system should have
the property of stability that for all bounded inputs, the output is bounded [23]. To
ensure the stability of 1D filter, poles should be in the left side of s-domain. Different

" types of monotonic responses in s-domain can be obtained by applying the proposed
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Figure 3.3: Magnitude responses of filter 1 for different values of g

filter design. It is observed that either negative real poles or complex conjugate
poles having the real part greater than the imaginary part in magnitude ensures
the monotonic characteristics in frequency response in the s-domain. Different filter
characteristics are obtained by changing the value of g. Frequency response of the
filter is inverted by regulating the value/sign of g. The locations of the poles and
zeros of the filter change with the increase of the value/sign of g are shown in the in
Figures 3.4 and 3.5.

Figures 3.2 and 3.3 have shown that increase of magnitude of g of the 1D analog
low-pass filter turns to 1D analog high-pass filter and same types of responses are
obtained for the negative value of g, because the denominator of the transfer function
is independent of g’s sign and the effect of the negative value of g on the numerator
provides sharper slopes in the frequency responses (Figures 3.2 and 3.3).

Table 3.1 shows that the roots of the denominator do not depend on the sign of g.
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Locations of the poles in 1D analog domain

15 ; _| T T T T
1t : */X .
—y a(
X.———""__) : .
051 -
T
o
o
2
g o 7
9
£
05 R
X
de— .
-1 : : \x .
i i ! I i i

-1.5
-1 -0.95 -0.9 -0.85 -08 -0.75 -0.7 -0.65

Real part

Figure 3.4: Poles locations of the case-I(filterl), g = 1.5 (x), g = 1.5(*), g = 2
(Hexagram), g = 3 (Pentagram), g = 20 (+).

So the locations of the poles are remain same for the positive and negative values of
g of the filter. The lower magnitude of g provides a low-pass filter and the low-pass
filter is changed to a high-pass filter by increasing the magnitude of g. It has found
that the overall frequency response of the transfer function becomes a constant, when
g = 1. However, the negative magnitudes of g effect on the zeros of the transfer
function and sharper slopes in the frequency responses are obtained.

Transfer function of case-I(filterl) (equation (3.2.2)) can represent to the form of

equation (3.1.2). Consider, in this case, equation (3.1.2) represents to M;p:(2) and
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Locations of zeros in 1D analog domain
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Figure 3.5: Zero locations of the case-I(filterl), g = -5 (<), g = -2(>), g = 0.1 (0),g
= 3 (square), g = 5 (diamond), g = 20(triangle).

Figure 3.6 shows that M;p;(£2) does not satisfy the monotonicity in the amplitude-
frequency responses of case-I(filterl). However, the GBT can bring monotonic char-
acteristic in frequency response of the filter by modifying the reactive components,

which are described in detail in the proposed design-II (controlled transformation)

section 3.3.

3.2.3 2D case-I(filterl)

The impedances of the doubly terminated gyrator filterl are replaced by second-order
Butterworth filters and the proposed design has used the properties of positive definite
matrices and their application in generating 2-variable VSHPs. The denominator of
the resultant analog transfer function is assigned to VSHP in 2D analog domain
which is guaranteed to generate stable 2D recursive filters and the double bilinear
transformations are applied to the 2D analog filter in order to obtain stable 2D digital
filter. The impedances (Z1, Z3) of the transfer function, equation (3.2.1) are replaced
by the impedance of Butterworth filters equations (2.4.69), (2.4.70) respectively and

the overall transfer function is given by
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Table 3.1: Locations of the poles of the 1D analog case-I(filterl) (equation 3.2.2).
g Roots of the Denominator

0.1 | —1.4371 £ 0.99977,—1.4447, —34.2188
1.5 | —0.6997 £1.0477¢, —0.9699 £ 0.6514:¢
2 —0.7173 £ 0.95852, —0.9179 4 0.68257
3 | —0.7556 £ 0.8626z, —0.8551 4 0.7323:
20 | —0.7089 4+ 0.7089:, —0.8826 £ 0.8470:

-0.1 | —1.4371 £0.9997:,—1.4447, —34.2188

-1.5 | —0.6997 & 1.0477:, —0.9699 + 0.65144
-2 | =0.7173 £+ 0.9585¢, —0.9179 £ 0.6825¢
-3 | —0.7556 4 0.86267, —0.8551 4 0.7323:
-20 | —0.7089 & 0.70897, —0.8826 + 0.84701

2+20°+29  V2(1+g+2¢%) 24° 1

[ 1 s &% } V2292 +29+1) 1+4¢g2+29 2v/2¢? 59

2¢° + 29 V2(2¢° +9)  29° 55

Haipop(s1,82) =

6g24+6  V2(3+5¢%) 4g° 1
(1os 8 || VA6 +4) 441022 427 || s
24692 V21 +54%) 4g° s2

(3.2.3)

It is seen that the 2D analog transfer function satisfies the stability criteria (1.5)
for the positive and negative values of g (—oo < g < 00), but this transfer function
(equation (3.2.3)) does not satisfy the constrains of having the monotonic charac-
teristics (equations (3.1.34), (3.1.35)), unless the second-order Butterworth filter is
changed to a suitable the corresponding modified circuit.

Amplitude characteristic of the transfer function of case-I(filter1) (equation (3.2.3))
derives and similar to equations (3.1.34) and (3.1.35), Myp:1(€4, 9) and Msp1(Q2, 9)
of transfer function (equation (3.2.3)) are obtained. Figure 3.8 shows that the mono-
tonicity in the amplitude-frequency responses of case-I(filterl) do not satisfy.

Figure 3.7 shows the frequency responses of the filter and the responses do not have
the monotonic characteristics. This problem can overcome using proposed design-II

(controlled transformation).
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Figure 3.6: 1D analog Case-I(filterl) not satisfying monotonic characteristics.

3.2.4 1D case-II(filterl)

Impedances of the transfer function, equation (3.2.1) are replaced by the impedance of

Gargour&Ramachandran filters equation (2.4.79) and the resultant transfer function
is stable, which is proved in Table 3.2. |

o “ () = 0.5(g%s* 4 (0.47g + 6g%)s® + (0.23 + 2.8 + 11.7¢%)s® + (1.3 + 59 + 8.49%)s + 2(1 + g + g%))
alGIDAS) = g%s* +(0.24 + 6.19¢%)s3 + (1.6 + 13¢?)s* + (3.8 + 10.8¢%)s + 3 + 3¢ '

| ‘ (3.2.4)
Figure 3.10 shows the amplitude-frequency responses of 1D analog case-II(filter1)

with increasing of g of the gyrator network. Table 3.2 shows that the roots of the
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Figure 3.7: 3D magnitude plots of the 2D digital case-I(filter 1) filters

Table 3.2: Stability analysis of the 1D analog case-II(filterl) (Higip(s)).

g

Roots of Denominator

0.1

—1.9781 £ 0.6494¢, —3.0452, —22.9608

0.25

—2.1562 £+ 0.8631%, —2.8391 + 1.18164¢

1.5

—2.3416 £ 0.10977, —0.8045 £ 0.3762¢

2

—2.3373 £ 0.07627, —0.7857 £ 0.26184

3

—2.3341 £ 0.0359¢, —0.7724 £ 0.12352

-0.1

—1.9781 £ 0.6494¢, —3.0452, —22.9608

-0.25

—2.1562 £ 0.86317, —2.8391 + 1.1816%

~2.3416 £ 0.1097%, —0.8045 £ 0.37621

—2.3373 £ 0.0762¢, —0.7857 £ 0.26183

—2.3341 £ 0.0359¢, —0.7724 4= 0.12351¢
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Figure 3.8: 2D Case-I(filterl) not satisfying monotonic characteristics, where,
M4Bl (Ql,g) (Diamond) and M5B1(927g) (Circle).

denominator do not depend on the sign of g of the filter, as a result, poles are remained
same as for the positive and negative values of g and the lower magnitude of g provides
low-pass filter, but when the magnitude of g starts to increase, a 1D low-pass filter is

changed to a 1D band-pass filter.

3.2.5 2D case-II(filterl)

Impedances of the transfer function, equation (3.2.1) are replaced by the impedance
of Gargour&Ramachandran filters equations (2.4.79), (2.4.80) respectively and it has

been observed in the resultant transfer function that g of the filter has less control on

one dimension than another dimension (Figure 3.11).
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The overall transfer function is obtained in 2D analog domain as

Ha62p(81,83) = 0.48

2.1+ 21g2+21g 42¢°+.71g+.71 156 [ 1
[1 5 s%] 42¢° + T1+429 234910 +159 3.1¢2 | | s
1.5¢% + 1.5¢g 3.1 + .50¢ g || s
3.0+3.0g 1.0+4.4¢> 1.4g% | [ 1
[1 . sﬂ 28 +6.4g2 92+964% 3¢ || s
| 212 +.72 2443282 @2 s |
(3.2.5)

66



Magnitude response of 1D analog filter
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Figure 3.10: Magnitude responses of 1D case-II(filterl) for negative values of g

Figure 3.11 shows that difficulties are obtained for the specified filter design by the
proposed design-1. However, the amplitude-frequency response of the filter is satisfied
the monotonic characteristic, when | g |< 0.1. But the monotonic characteristic is

disappeared, when the magnitude of g is started to increase.

3.2.6 1D case-1TI(filterl)

The impedances of the transfer function, equation (3.2.1) are replaced by the impedance

of Gargour&Ramachandran and Butterworth filter and overall transfer function sat-

isfies the stability condition.
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Figure 3.11: 3D magnitude plots of the 2D digital case-II(filterl) filters

g%s* 4 (4.399% + 0.7071g)s® + (6.629% + 3.1g + 0.34)s%> + (5g® + 49+ 1.4)s + 1.4(1 + g)

Hagpip(s) = 9255+ (0.35 + 4.792)s% + (8.29% + 1.9)s2 + (742 + 3.46)s + 2.12(1 + ¢2)
(3.2.6)

Similarly, it is seen that the roots of the denominator of H;pq satisfy the stability
condition. The bandwidth of the designed 1D low-pass filter is starts to increase and

transformed to 1D high-pass filter with the increase of g’s magnitude.

3.2.7 2D case-III(filterl)

The impedances of the transfer function (equation (3.2.1)) are replaced by the impedance
of Gargour&Ramachandran filter (equation (2.4.79)) and Butterworth (equation (2.4.70))
filter. The resultant transfer function of 2D case-II(filterl) satisfies the stability cri-

teria (section 2.4). _
The overall 2D analog transfer function of the case-II(filter1) is
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2
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It is observed that filter responses are changed with the increasing of g and the
overall filter does not contain monotonic characteristics in the amplitude-frequency
response. In order to overcome the problem, another design (section 3.3) is proposed

which provides monotonic characteristics in the amplitude-frequency response of the

desired filter.

3.2.8 Filter2

Transfer function of filter2 has been derived in the section 2.2 and in order to en-
sure the stability criteria in 2D domain, the two impedances of filter2 are replaced
by second-order Butterworth and/or Gargour&Ramachandran filters and the third
impendence is replaced by a resistive component, because otherwise the denominator
of the transfer function will not satisfy the VSHPs (section 2.4.5). It is observed
that the numerator of the transfer function depends on the value and sign of g of
the gyrator filter. However, the denominator of the transfer function is indepen-
dent of the sign of g. For illustration, different combinations of the RLC circuits are
placed in the gyrator filter2 and for simplicity, each circuit is classified, such as the
impedances of filter2 are replaced by the second-order Buttervvorth filters are called
case-I(filter2). Similarly, the impedances of filter2 are replaced by the second-order
Gargour&Ramachandran filters are called case-II(filter2) and impedances of filter2
are replaced by the second-order Butterworth and Gargour&Ramachandran filters
are called case-11I(filter2). Each case of the filter design is described by using the
proposed design-I. ‘ | ‘
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3.2.9 1D case-I(filter2)

The impedances of the filter2 (equation (2.2.10)) are replaced by the impedances of
second-order Butterworth filters (equation (2.4.69)) and third impedance is replaced
by resistive component (unit value) and the overall transfer function of the case-
I(filter2) satisfies the stability condition for the different magnitudes of g which is

shown in the Table 3.3. The overall transfer function of case-I(filter2) is
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Figure 3.12: Magnitude responses of the case-I(filter2)

I (s) = gst +4.2gs® + (8g +0.5)s% + (Tg + 1.4)s + 3g + 1
wp (1+ g2)s* + (4.292 + 5.6)s3 + (13.5 + 8¢2)s2 + (72 + 15.5)s + 8 + 3¢2
(3.2.8)
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Table 3.3: The locations of poles of the case-I(filter2) (Haepip(s)) in 1D analog
domain.

g Locations of the poles of Hop1p(s)
0.1 | —1.0589 £ 0.9347¢, —1.7625 £ 0.9374:
0.3 | —1.0451 4= 0.9294%, —1.7249 3 0.95054¢
0.5 | —1.0195 +0.91887, —1.6675 £ 0.9674:
1.5 | —0.8558 £ 0.82964¢, —1.4831 £ 0.99764

2 | —0.8073 £ 0.7948¢, —1.4554 £+ 0.9992¢

5 —0.7273 £0.7267i, —1.4212 £ 1.00¢

Figure 3.12 shows that the amplitude-frequency responses of the 1D analog low-
pass filter with the increase of g and opposite types of responses are obtained for the
negative value of g. Table 3.3 ensures the stability of the 1D filter and it has been
shown that poles are in the left side of s-domain and complex poles should be in

complex conjugate pair.

3.2.10 2D case-I(filter2)

The major concern of 2D filter design is stability and the stability of filter2 is ensured
when the third impendence is resistive and the rest of the two impedances of filter2
are replaced by second-order Butterworth filters (section 2.4.5). Numerator of the
resulting transfer function depends on the value and sign of g. However, the denom-
inator is independent of the sign of g. Impedances Z; and Z, are replaced by the
impedances of Butterworth filter, equations (2.4.69) and (2.4.70) corresponding to s;
and sy domain and Z3 is independent of frequency. The overall transfer function of

the 2D analog case-I(filter2) is shown below:

6g+2 0.68+88g 289 |[ 1
[ 1 s 82 ] 68+88g 1294022 34g || s
2.8¢g 3.4¢ g s2

16.+6.0g 16.+88¢% 44+28¢% | [ 1

HazBQD(Sl, 32) =

[1 5 53] 16+88¢2 122415 3.402+3.9 || s

4442842 34¢°+39 2+1 52
(3.2.9)
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3D magnitude plot
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Figure 3.13: 3D magnitude responses of the case

Figure 3.13 shows the frequency responses of the filter and the responses do not

have satisfy the constrains of having the monotonic characteristics (equations (3.1.34,

3.1.35)).

1D case-II(filter2)

3.2.11

The impedances of the filter2 (equation (2.2.10)) are replaced by the impedances of

Gargour&Ramachandran filters (equation (2.4.79))

and third impedance is replaced

by resistive component

(unit value). The overall transfer function of case-II(filter2)

is given by

29+ 1.3)s +6g +2

_ )s 18
(g% +1)st 4 (6.99% + 7.8)s% + (17.392 + 23.7)s% + (23.7 + 18.2¢%)s + 16 + 642

(

2

gs* +6.9gs% + (17.3g + 0.2

Ha’gmb(s)

(3.2.10)
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Magnitude Response of 1D analog filter
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Figure 3.14: Magnitude responses of the case-II(filter2)

Table 3.4 has shown that the transfer function of case-II(filter2), Hog(s) satisfies
the stability condition for the different values of g. Figure 3.14 has shown that
amplitude-frequency responses of the 1D analog low-pass filter with the increase of g

and opposite types of the responses are obtained for the negative values of g..

3.2.12 2D case-II(filter2)

In the filter2, two impedances (Z; and Z5) are replaced by the Gargour&Ramachandran
filters' (equations (2.4.79) and (2.4.80)) and for the stability purpose, third impedance

is replaced by resistive parameter (section 2.4.5). The overall transfer function is-
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Table 3.4: Stability tests of the 1D analog case-II(filter2)(Hyeg1p)-
g ‘Poles of Hag(s)
0.1 | —1.3368, —2.1107, —2.1970 £ 0.9000:
0.3 | —1.2986, —2.1304, —2.1717 £ 0.8775:
0.5 | —1.2317, —2.1628, —2.1331 £ 0.8405:
1.5 | —0.8731 —2.3013, —2.009 =+ 0.69461
2 | —0.7791, —2.3302, —1.9904 + 0.6679¢
5 | —0.6306, —2.3710, —1.9674 4 0.6327:

shown below:

6g + 2 0.68+88g 28=xg 1

(15 8 ] 0.68+88g 12g+.22 349 || s
2.8¢ 3.4g g s2

16.+6.0g%2 16.+88¢2 4.4+28¢2 ][ 1

Hazaw(sl, 32) =

(1 s sg] 16.+8.8¢g7 12¢°+15 3492439 | | s

44+28¢% 34¢2+39 @2+1 || o2
(3.2.11)

3D magnitude responses of case-II(filter2) are shown in Figure 3.15.

3.2.13 1D case-III(filter2)

The impedances of the transfer function (equation (2.2.10)) are replaced by the
impedances of Gargouré&Ramachandran and Butterworth filter and similarly, it is
seen that the roots of denominator of the resultant transfer function satisfy the sta-
bility condition. Bandwidth of the designed 1D low-pass filter starts to increase and
transformed to 1D band-pass filter with the increase of g’s magnitude and opposite

types of frequency responses are obtained for the negative value of g.

3.2.14 2D case-III(filter2)

The impedances of the transfer function (equation (2.2.10)) are replaced by the
impedances of Gargour&Ramachandran filter (equation (2.4.79)) and Butterworth
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3D magnitude plot
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Figure 3.15: 3D magnitude responses of the case-II(filter2)

filter (equation (2.4.70)). For the stability purpose, third impedance of filter2 is re-
placed by resistive parameter (section 2.4.5). It has been seen that the resultant
transfer function of 2D case-II(filterl) satisfies the stability criteria. It is observed
that the filter responses of the transfer function are changed with the increasing
of g and difficulties are encountered to achieve the monotonic characteristics in the
amplitude-frequency response of the desired filter. In order to-overcome the problem,
another design (section 3.3) is proposed which provides monotonic characteristics in
the amplitude-frequency response of the desired filter. ‘

Overall, proposed design-I provides simpler techniques of digital filter design by
choosing the appropriate doubly terminated RLC networks which are replaced by the
impedances of the gyrator network. It is seen that the proposed design-I is applied
to the both gyrator networks to design the 2D digital low-pass filter design. Also, the

value of g of the gyrator network is kept in the lower range, because the frequency
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responses are very sensitive to the magnitude of g. However, in most of the cases,
the design-I has not given the monotonic characteristics in the amplitude-frequency
response of the digital filter. In the following section 3.3, another filter design is

proposed which can overcome the design problems created by proposed design-I.

3.3 Proposed Design-11

Impedances of the doubly terminated gyrator network are replaced by the impedances
of doubly terminated RLC networks and the stability of the resultant analog filter is
satisfied (section 2.4). The GBT is applied to the transfer function of the resultant
analog filter in order to obtain the corresponding digital filter responses and some
constrains have to be given to obtain the monotonic amplitude characteristic in the
pass-band regions.

The desired filter response is obtained by regulating the value and sign of g as well
as the parameters of the GBT and some constrains (equations (3.1.12) to (3.1.15),
(3.1.34) and (3.1.35)) are followed in order to obtain the monotonic characteristics in

the pass-band regions.
The generalized bilinear transformation [15] in the case of 2D is shown below:

where i =1,2,

To ensure stability, the conditions to be satisfied are: k; > 0, | a; [< 1, | b |< 1
and a;b; < 0

The desired digital filters are obtained from the analog transfer function by varying
the values of k;, a; and b;, such as low-pass, high-pass, band-pass and band-elimination
filter. It is seen that a digital low-pass filter is obtained from filter 1 and filter 2 when
k; >0, =1 < a; <« 0and 0 <« b, <1 and the overall filter satisfies monotonic
characteristics. The following relations are derived from the equations (2.3.7), (3.1.9)

and (3.1.10) in order to achieve the monotonic amplitude-frequency response in pass-

band region.
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(bl - al)sinﬂl 2 4d20d00 - Zd%o

>0
1+ (b1)2 + 2bicos§ 4(13%0 -

Me(Q1,0) = {k
(3.3.2)

(bg - ag)sinﬂz 2 4d02d00 - 2d31

>0 3.3.
1+ (b2)2 + 2b200892 40%2 - ( 3 3)

M;(0,Q%) = {k

Similar to the equations (3.1.12) to (3.1.15), (3.1.34) and (3.1.35), the limits of
the parameters of the GBT can be defined to achieve the monotonic characteristic in
amplitude-frequency response of a filter. The corresponding modified analog transfer
function can be obtained from the discrete transfer function by applying the inverse

bilinear transformation (equation (3.3.4)).

(1 + Si)

=y (3.3.4)

Zi =

where i = 1,2.

The resultant filter has the bandwidth and the cutoff frequency, which are con-
trolled by the parameters of the GBT and g of the gyrator network. This design
gives freedom of choice to select any type of stable analog circuit in order design the
desired digital filter. In the following, the purposed design is applied on filterl and
filter2 and illustrate the usefulness of the design.

3.3.1 Filterl

Previous design (proposed design-I) has shown that the impedances of filterl are
replaced by the impedances of doubly terminated RLC filters (second-order Butter-
worth and Gargour&Ramachandran filter) and overall filter may or may not satisfy
the condition for monotonic characteristic in the amplitude-frequency response. But
the proposed design-II provides the guaranteed monotonic amplitude-frequency re-
sponse of the designed filter. Figures 3.2, 3.8 have shown that the overall filter

responses of the case-I(filter) do not contain monotonic characteristic. However, the

~proposed design-II gives opportunity to obtain the monotonic characteristic from any

types of analog filters.
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Figure 3.8 shows that the case-I(filterl) does not contain the monotonic charac-
teristic. But the proposed design-II can design the specified digital filter with the
monotonic characteristic in the amplitude-frequency response. Figure 3.17 shows
that the frequency response of the modified case-I(filterl) possesses the monotonic
characteristic by applying the proposed design-II. In Figure 3.17, ¢ = 0.001 and the
parameters of the GBT are a; = —0.2, b, = 0.8 and k; = 1.

g = 0.001 g=10.01
3 T T 3 T T
25 25
g 2 a
< <
S 15 s
o @
o o
° gL
0.5 05
0 0.5 1 15 2 25 3 35 0 05 1 15 2 25 3 35
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& o 08
¢ 1 g
£ dos
5] &)
ost 047
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Figure 3.17: The modified case-I(filterl) satisfies the monotonic characteristic, when
g = 0.001.

According to the proposed design-I, the impedances of the filterl are replaced by
the impedances of different combinations of the Butterworth and Gargour&Ramachandran
filters. The coefficients of the overall analog transfer function (filterl) are dependent’
on the value and sign of g. The coefficients of the denominator of equation(3.2.1)
are independent of the sign of g and the amplitude-frequency response of the filter

1 is constant for ¢ = 1. Finally, the bilinear transformation is applied in order to
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obtain the desired 2D digital filter. However, the proposed method-II uses the GBT
instead of using the bilinear transformation. Proposed design-II are described in the

following and design examples are given to illustrate the usefulness of the proposed

design.

3.3.2 2D case-I(filterl)

The impedances of filterl are replaced by the impedances of second-order Butterworth
filters and the GBT is applied to the overall transfer function (equation (3.2.3)).
Appropriate parameters of the GBT provide the desired 2D digital low-pass filter.
For example, a 2D digital low-pass filter (¢ = 0.001) is designed when the parameters
of the GBT are a; = —-0.2, b, = 0.8 and k; = 3. The 3D magnitude plot and
contour plot of the 2D digital low-pass filter are shown in Figures 3.18 (a) and (b)
respectively. According to equations (3.1.34), (3.1.35), the response of case-I(filtel)
has satisfied the monotonic characteristics (0f2p12/02; > 0) in the pass-band region.
Figures 3.18 (c) and (d) show that the case-I(filterl) satisfies the monotonicity in the
amplitude-frequency response.

Table 3.5 gives the ranges of k; for the certain values of g, a; and b;, that satisfies
the condition of monotonic characteristics in the amplitude-frequency responses of
case-1 (filter1).

Table 3.5: The ranges of k; satisfy the monotonic characteristics in the amplitude-
frequency response of case-I(filterl)

g a; | b k;
0.001 [ -0.9 109 (0.09>k; >0
0.001 | -09(05| 04>Fk; >0
0.001 { —0.509| 205> Fk; >0
0.001 | -05}05} 10>k; >0
0.001 { —0.5 { 0.1 { Not Possible

This 2D digital low-pass filter is turned into 2D digital high-pass filter with the

increase in this value of g.
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Figure 3.18: The 2D digital low-pass filter (case-I(filterl)) when g = 0.001, (a)3D
magnitude plot, (b) contour plot, (c) and (d) the case-I(filterl) satisfies the monotonic
characteristic. '

3.3.3 2D case-II(filterl)

The impedances of filterl are replaced by the impedances of second-order Gargour&
Ramachandran filters and the GBT is applied to the overall transfer function (equa-
tion (3.2.5)). As a result, 2D digital low-pass filter is obtained for the appropriate
parameters of the GBT and g of the gyrator network. The parameters of the GBT
and g have control on the bandwidth of the designed 2D digital low-pass filter.
Figures 3.19 (a) and (b) show the 3D magnitude plot and contour plot of the 2D
digital low-pass filter respectively, when ¢ = 0.001, ¢ = —0.1, 6 = 0.7 and £ = 1.
According to equations (3.1.34), (3.1.35), the response of case-II(filtel) has satisfied
the monotonic characteristics (802g12/0€2; > 0) in the pass-band region. Figures 3.19
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Figure 3.19: The 2D digital low-pass filter (case-II(filterl)) when g = 0.001, (a)3D
magnitude plot, (b) contour plot, (c¢) and (d) the case-II(filterl) satisfies the mono-

tonic characteristic.

(c) and (d) show that the case-II(filterl) satisfies the monotonicity in the amplitude-
frequency response. Table 3.6 gives the ranges of k; for the certain values of g, a; and
b;, that satisfies the condition of monotonic characteristics in the amplitude-frequency

responses of case-1I (filterl).

3.3.4 2D case-III(filterl)

In this case, the impedances of second-order Butterworth and Gargour&Ramachandran
filters are replaced by the impedances of the filterl in order to design the 2D low-pass
filter. In the section 3.2, It has seen that the low-pass filters are obtained for the lower
values of g in equation (3.2.7). However, the proposed design-1I provides the others

parameters of the GBT to control the amplitude-frequency response of the filter.
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Table 3.6: The ranges of k; satisfy the monotonic characteristics in the frequency
response of case-II(filterl)

g a; b; k;
0.001| -09|09| 82>k >0
0001 —-09|05]| 15>k >0
0.001 ] -0.5109( 95>k >0
0.001 | -05]05| 1>k >0
0.001 | —0.5 | 0.1 | Not Possible

Table 3.7: The ranges of &; allow to obtain monotonic characteristics in frequency
response of the case-III(filter1)

g a; b; k;
0.001| -09|09| 01>k >0
0.001 | —0.5|109]|100>k; >0
0.001|-09]105|09>k >0
0.001 | —0.5(05| 05>k >0

Figures 3.20 (a) and (b) show the 3D magnitude plot and contour plot of the
2D digital low-pass filter respectively, when ¢ = 0.001, a = —0.2, b = 0.9 and
k = 10. According to equations (3.1.34), (3.1.35), the response of case-II(filtel) has
satisfied the monotonic characteristics (0f2¢p12/05% > 0) in the pass-band region.
Figures 3.20 (c) and (d) show that the case-III(filterl) satisfies the monotonicity in
the amplitude-frequency response. Table 3.7 gives the ranges of k; for the values of g,
a; and b; in order to obtain the monotonic characteristics in the amplitude-frequency

responses of the case-III (filterl).

3.3.5 Filter2

Filter2 contains three impedances and for the stability purpose (section 2.4.5), third
impedance of filter2 is replaced by a resistive component and the remaining of the
two impedances are replaced by the impedances of doubly-terminated RLC filters
(second-order Butterworth and Gargour&Ramachandran filter). It has determined
that the denominator of the resultant 2D analog transfer function is VSHP (section
2.4)and the coefficients of the denominator are dependent on values of g of filter2.
Finally, the GBT is applied to the 2D analog transfér function in order to obtain the
desired 2D digital low-pass filter. |
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Figure 3.20: The 2D digital low-pass filter (case-III(filterl)) when g = 0.001, (a)3D
magnitude plot, (b) contour plot, (c) and (d) the case-III(filterl) satisfies the mono-

tonic characteristic.

3.3.6 2D case-I(filter2)

Two impedances (Z; and Zs) of filter2 are replaced by the impedances of second-order
Butterworth filters and the third impedance (Z3) of filter2 is replaced by a resistive
component. The GBT is applied to the analog transfer function (equation (3.2.9))
and the digital transfer function (equation (3.3.5)) of the case-I(filter2) is obtained,
when q; = -0.2, b; = 0.9, k; = 10. It is seen that the effect of parameters of the GBT

is less for the lower values of g.
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Figure 3.21: The 2D digital low-pass filter (case-I(filter2)) when g = 0.001, (a)3D
magnitude plot, (b) contour plot, (c) and (d) the case-I(filter2) satisfies the monotonic

characteristic.
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Figure 3.22: The case-I(filter2) satisfies the monotonic characteristics for the different
values of g.

Figures 3.21 (a) and (b) show the 3D magnitude plot and contour plot of the 2D
digital low-pass filter respectively, when g = 0.001. According to equations (3.1.34),
(3.1.35), the response of case-II(filtel) has satisfied the monotonic characteristics
(8B2p20/02; > 0) in the pass-band region. Figures 3.21 (c¢) and (d) show that the
case-I(filter2) satisfies the monotonicity in the amplitude-frequency response. Figure
3.22 has shown the monotonic characteristics of case-I(filter2) for different values of
g. Table 3.8 gives the ranges of k; for the values of g, a; and b; in order to obtain the

monotonic characteristics in the amplitude-frequency responses of the case-1 (filter2).

3.3.7 2D case-II(filter2)

Two impedances of filter2 are replaced by the impedances of Gargour&Ramachandran
filters and third impedance of filter2 is replaced by a resistive component. The GBT
(a = —0.1, b= 0.9, and k = 0.5) is applied to the resultant analog transfer function
(equation (3.2.11)) and obtained digital transfer function, equation (3.3.6) provides
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Table 3.8: The ranges of k; provide monotonic characteristics in the frequency re-
sponse of case-I(filter2)

g a; bz k)z
001|-09[09102>k >0
001 }{-09]05]|07>Fk >0
001} —-05109] 4>k >0
001 -05105| 2>k >0
0.01 { —0.1 | 0.1 | Not possible

the variable magnitude response with the monotonic characteristics.

[ 1T ]
045+ 1.2¢g 3.8¢+1.1 0.67+4 3g 1

1 z 22 38g+11 129+27 9.1g+16 29
1

0.67+3¢g 91g+16 1+4+74g 22

Hypog(21,22) = - s
0.25 +0.087¢2 0.73 +0.28¢2 0.51+0.22¢% | | 1

13.64[ 1 z%] 0.73+0.28¢%2 0.87¢>+2  1.5+0.67g> 2

0.51 +0.22¢g° 1.54+0.67¢g> 1+ 0.544> 22
"(3.3.6)

Table 3.9: The ranges of k; for the monotonic characteristic in the amplitude-
frequency response of case-II(filter2).
g a; | b k;

001 {-09]109{02>k,>0
0.01 | -09(0506>k >0
001{-05(09| 3>k >0
0.01|—-05[05] 2>k >0
0.01 | —0.1 { 0.1 | Not possible

Figures 3.23 (a) and (b) show the 3D magnitude plot and contour plot of the 2D
digital low-pass filter respectively, when g = 0.01. According to equations (3.1‘.34),
(3.1.35), the response of case-II(filtel) has satisfied the monotonic characteristics
(0822200 > 0) in the pass-band region. Figures 3.23 (c) and (d) show that the
case-I(filter2) satisfies the monotonicity in the amplitude-frequency response. Table

3.9 gives the ranges of k; for the values of g, ¢; and b; in order to obtain the monotonic
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Figure 3.23: The 2D digital low-pass filter (case-II(filter2)) when g = 0.01, (a)3D mag-
nitude plot, (b) contour plot, (¢) and (d) the case-II(filter2) satisfies the monotonic

characteristic.

characteristics in the amplitude-frequency responses of the case-II (filter2).

3.3.8 2D case-III(filter2)

The two impedances of filter2 are replaced by the impedances of doubly termi-
nated second-order Butterworth and Gargour&Ramachandran filters and the third
impedance is replaced by a resistive element. The GBT (a = —0.3,b = 0.9, and k = 3)
is applied to the resultant analog transfer function and obtained digital transfer func-

tion (equation(3.3.7)) provides the variable magnitude response with the monotonic

characteristics.
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Table 3.10: The range of k; for the monotonic characteristic in the amplitude-
frequency response of case-III(filter2)

g a; | b k;
0.01]-09]09|02>k >0
001 -09105|05>k >0
001 |-05]09(32>k>0
001}{-05{05| 1>k;>0
0.01 | —0.1 | 0.1 | Not possible

Figures 3.24 (a) and (b) show the 3D magnitude plot and contour plot of the 2D
digital low-pass filter respectively, when g = 0.001. According to equations (3.1.34),
(3.1.35), the response of case-II(filtel) has satisfied the monotonic characteristics
(0Bagpa2/08 > 0) in the pass-band region. Figures 3.24 (c) and (d) show that the
case-I(filter2) satisfies the monotonicity in the amplitude-frequency response. Table
3.10 gives the ranges of k; for the values of g, a; and b; in order to obtain the monotonic

characteristics in the amplitude-frequency responses of the case-III (filter2).

3.4 Comparisons of the proposed designs

The two proposed filter designs are efficient in terms of computational cost, but the
proposed design-11 has better performance than the proposed design-I. The proposed
design-I has more control on the bandwidth as well as the cutoff frequency of the 2D
digital filter by regulating the single parameter (g) (sections 3.2 and 3.3). However,
most of the design-I has failed to obtain monotonic characteristics in amplitude-
frequency response of the digital filter. This problem is overcome by the proposed
design-II (section 3.3). In the proposed design-II, impedances of the doubly termi-
nated gyrator network are replaced by the doubly terminated RLC networks and the
GBT is applied to the resultant analog transfer function in order to obtain the desired
digital filter. The GBT ensures the monotonic characteristics in the pass-band regions
of the digital filter. But, neither designs gives inherently stable filter nor monotonic
characteristics in frequency responses. The magnitude of g of the gyrator network is
kept in such ranges that denominator of the resultant transfer function is satisfied

to be VSHPs and also satisfied constraints of monotonic characteristics (sections 3.2

and 3.3).
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The proposed design-I provides more simple technique of digital filter design, only
by choosing the appropriate doubly terminated RLC networks which are replaced by
the impedances of the gyrator network. It is seen that proposed design-I is applied
to the both gyrator networks to design the 2D digital low-pass filter design and g
of the gyrator network is kept in lower range, because frequency responses are very
sensitive to the the magnitude of g. However, proposed design-II allows to regulate
seven parameters (six parameters of the GBT and g of the gyrator network) for digital
filter design. As a result, other parameters allow us to choose the higher magnitudes
of g in order to obtain a 2D digital low-pass filter. Bandwidths and cutoff frequencies

of the desired filter are obtained by varying the seven parameters.

Comparing the two sections 3.2 and 3.3, it has seen that the proposed design-II
is obviously better than the proposed design-I. However, the proposed design-I takes
less computational cost than the design-II and it does not change the original analog
filter structure to obtain the desire digital filter. But, proposed design-II modifies the
original analog filter to the corresponding modified analog filter in order to obtain

the desired 2D digital low-pass filter.

3.5 Summary and Discussion

The main purpose of the proposed designs are presented in this chapter is to provide an
efficient design of 2D digital low-pass filter having monotonic amplitude-frequency re-
sponse in pass-band region. Some constraints (equations (3.1.12) to (3.1.15), (3.1.34)
and (3.1.35)) are defined on coefficients of the analog transfer function for attaining
monotonic characteristics in amplitude-frequency response of the filter and it has seen
the coefficients of the 2D analog transfer function are function of g of the gyrator filter.
As aresult, the constraints of the monotonic characteristic in the amplitude-frequency

response are depend on the g.

The proposed filter design-I (section 3.2) is applied to a Darlington-type gyrator
networks, where impedances of the gyrator filter are replaced by the doubly ter-
minated RLC filters to obtain stable 2D analog transfer functions. As a result, the

coeflicients of the transfer function are function of g of the gyrator filter and frequency
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responses of the analog filter are varied by the value/sign of g. The corresponding dig-
ital filters are obtained using the double bilinear transformations. However, proposed
design-I has failed to obtain the monotonic characteristics in amplitude-frequency re-
sponse of the digital filter, because g of the gyrator filter cannot control equally on the
both dimensions of filter response. In order to obtain monotonic amplitude-frequency

response in pass-band region of a filter, another filter design is proposed.

The proposed filter design-II (section 3.3) is applied to stable analog transfer
functions. The stable analog transfers functions are generated by using Darlington-
type gyrator networks. Doubly terminated RLC filters are replaced by impedances of
the gyrator filterl and filter2 in order to obtain the stable analog transfer functions.
The proposed design-II uses the GBT, that is one of the powerful tool to design a
digital filter. The GBT is applied to the analog transfer function and it modifies the
reactive parameters of the analog filter in order to obtain the desired digital filter
with monotonic amplitude-frequency response. Some constraints equations (3.1.12)
to (3.1.15), (3.1.34) and (3.1.35) are defined on the design to achieve the monotonic

characteristics in the filter response.

For illustration of the proposed designs, doubly terminated second-order Butter-
worth filters are replaced in the both impedances of the gyrator filterl and the desired
filter responses are obtained by regulating g of filterl. Similarly, doubly terminated
second-order Gargour&Ramachandran filters are replaced by the both impedances
and the desired frequency responses are obtained by regulating ’g’ of filterl. The
combination of Butterworth and Gargour&Ramachandran filter are also used in the
gyrator filterl and the desired frequency responses are obtained. Same steps are
followed in the case of gyrator filter2, but for the stability concern of filter2, one
impedance of gyrator filter2 is considered as resistive component (section 2.4.5). In
section 3.3, the GBT is applied to the resultant analog transfer functions in order to
obtain the desired 2D digital low-pass filter, however, appropriate value/sign of g of
the gyrator network and parameters of the GBT have chosen to satisfy monotonic
characteristics in amplitude-frequency responses of the designed filter. A comparison
“of the sections 3.2 and 3.3 has shown in section 3.4 and it has proven that design-II

overcomes all the design problems of design-I.
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Chapter 4

Proposed Filter Design and Digital
Filter Transformation

4.1 Introduction

The previous chapter has shown the proposed designs for the 2D IIR digital low-pass
filter and the proposed design-II. The stability and monotonic amplitude-frequency
response in the passband region of the desired filter are ensured. The proposed low-
pass filter design is accomplished by two steps. First, the impedances of the doubly
terminated gyrator filter are replaced by the doubly terminated second-order RLC
filters. As a result, the magnitude of gyrator constant (g) of the gyrator filter has
control on the amplitude-frequency response. In the second step, the GBT is applied
to the resultant 2D analog filter to obtain the desired 2D digital filter response which
satisfies the monotonic constraints (equations (3.3.2), (3.3.3), (3.1.12) to (3.1.15),
(3.1.34) and (3.1.35)) in the passband regions.

This chapter considers the proposed filter design of the 2D IIR high-pass, band-
pass and band-elimination filters and the proposed digital filter transformation method.
Two designs of the 2D digital low-pass filter have been proposed in the previous chap-
ter and the proposed design-II has been shown to be more powerful than the proposed
design-I, because the design-II can overcome the problems generated by the proposed
design-I. This entire chapter presents the 2D digital filter design of high-pass, band-
pass and band-elimination filters by the proposed design-II. The procedure of the
proposed 2D high-pass filter design is quite similar to the proposed 2D digital low-

pass filter design (section 3.3). However, the value and sign of g of the gyrator
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networks and the values of parameters of the GBT are changed as required. The
band-pass and band-elimination filters are obtained from a 2D analog low-pass or
high-pass filter using a transformation (equation (4.3.2)) which is derived from the
GBTs.

The locations of poles and zeros of a doubly terminated gyrator filter depends on
the value and/or sign of g [35] and the proposed digital filter transformation method
is based on the value and/or sign of g of a doubly terminated gyrator filter. The
digital filter transformation has been done in two ways, such as considering the value
of g and considering the sign of g. The constraints of the digital filter transformation
imposed on the filters are outlined and details of the method are discussed in section
4.4, This thesis considers two doubly terminated gyrator filters (Figures 2.1 and 2.2)
and the impedances of both the filters are replaced by the doubly terminated RLC
filters. As a result, the magnitude of g of the gyrator network has control on the

frequency responses of the resultant filter.

From the properties of filterl (section 2.5), it is shown that the amplitude-frequency
response of filterl has a constant magnitude when g = 1. It is also seen that the
impedances of the gyrator filter are replaced by the RLC filters and each of the RLC
filters is represented by s; and s, domain respectively. As a result, the magnitude
of g in the resultant 2D analog transfer function does not have control equally on
the both dimensions of frequency response. In order to overcome this problem, each
impedances is replaced by two cascaded connection of the RLC filters and each RLC
filter is represented by s; and s; domain respectively. In such a case, it is seen that
the magnitude of g can control both the dimensions equally. It is also shown that
the 2D digital low-pass filters are obtained in the ranges of 0 < g < 0.03 (approxi-
mate) and the 2D digital high-pass filters are obtained in the range of 0.99 > g > 0.1
and co > g > 1 (approximate). However, the impedances of the gyrator filter2 has
been replaced by the doubly terminated RLC filters and each of the RLC filters is
represented by s; and s; domain respectively. The magnitude responses of the re-
sultant 2D analog transfer function are controlled in the both dimensions equally by
the magnitude of g of filter2. Approximately, the inverted filter responses of filter2
are obtained in between the range of 1 < g <ooand —oo0 > g > —1. Basically, the
value or sign of g of the filter can change the total reactive property of the filter and

inverts the magnitude responses of the filter to the opposite.
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The magnitude responses and the inverted magnitude responses of the filters (sec-
tion 4.4) are studied carefully and it is seen that the amplitude variation of the
response is in between 0.9 to 1. Even though, the designed magnitude response of
the filter has less variation in the amplitude, it has been used in the image process-
ing applications and comparative improvement is achieved for the image restoration
and enhancement purposes, but the computational time is longer than the other fil-
ters [10]. Considering this problem, each of the impedances of the gyrator filter is
replaced by the doubly terminated higher-order RLC filters and each of the RLC
filters can be represented by cascading of two or more second-order RLC filters. As a
result, the inverted magnitude responses of the gyrator filters are varied in between
0.2 to 1. Details of the digital filter design are discussed below and for simplicity in
this thesis, the sections 3.3.2, 3.3.3 and 3.3.4 are called as case 1, case II and case I11
and these cases are also followed in filter2 (sections 3.3.6, 3.3.7 and 3.3.8).

4.2 Proposed Design of High-pass filter

The impedances of the doubly terminated gyrator network are replaced by the second-
order RLC networks and the GBT is applied to the resultant analog transfer func-
tion. As a result, the desired 2D digital high-pass filter is obtained by regulating the
value/sign of g and the parameters of the GBT. The proposed filter design ensures the
monotonic characteristics in the amplitude-frequency responses of the 2D digital high-
pass filter. The conditions of monotonic characteristics in the amplitude-frequency
responses of the 2D digital high-pass filter can be defined by using the equations
(3.3.2), (3.3.3), (3.1.12) to (3.1.15), (3.1.34) and (3.1.35) and the conditions of the

monotonic characteristics are shown in below:

9B.(9%,0, 9)
—_— L 2.
S S 0 (4.2.1)

06(0,93, 9)
2P "0 9) o _
5o, <0 (4.2.2)

The proposed 2D digital high-pass filter design is discussed in the following and de-
sign examples are also given to illustrate the usefulness of the proposed desigh. For il-

lustration in this thesis, the second-order Butterworth filter and Gargour&Ramachandran
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filters are used as the doubly terminated RLC networks and filterl and filter2 (Figures

2.1 and 2.2) are used as the doubly terminated gyrator networks.

The impedances of filter]l are replaced by the second-order RLC filters and the
magnitude of g of filterl cannot control amplitude-frequency responses of the resultant
analog filter equally in the both dimensions. In order to overcome this problem, each
of the impedances of the doubly terminated gyrator network are replaced by the
two cascaded doubly terminated RLC networks and each of the RLC networks are
represented s; and s; domain. The rest of the procedure of the 2D digital high-
pass filter design is quite similar to the 2D digital low-pass filter design (section 3.3).
However, the value or sign of g or the values or signs of parameters of the GBT are
changed to design a 2D digital high-pass filter. Bandwidth of the digital high-pass
filter is controlled by the magnitude g and the parameters of the GBT. As a result,
the proposed filter design provides significate amount of flexibility for the digital
filter design and ensures guaranteed monotonic amplitude-frequency response of the
designed 2D digital high-pass filter.

Similar to the design of low-pass filter (section 3.3), the GBT is applied to the
transfer function of filterl (equation (3.2.3)). The resultant digital filter response
satisfies the constraints equations (4.2:1), (4.2.2). The inverse bilinear transformation
is applied to the digital filter in order to obtain the corresponding modified analog
filter [16] and Figure ?? shows that the corresponding filter satisfies the monotonic
characteristics. In Figure 4.1, b; and k; regulate the response keeping the value of g,
constant and in Figure 7?7, the value of a; and k; regulate the response keeping the
values of b; constant.

It is seen that the 2D digital high-pass filter satisfies the monotonic characteristics
in the amplitude-frequency response, for various values of parameters of the GBT
when g =-0.5. Table 4.1 shows the ranges of g of the case-I (filterl) for the certain
values of parameters of the GBT, where the 2D digital high-pass filter does not satisfy
monotonic amplitude-frequency response in pass-band region (equations (4.2.1) and
(4.2.2)). Avoiding those ranges of g of filterl, the 2D digital high-pass filter response
is obtained in Figure 4.2(a) and this filter satisfies the monotonic characteristic as
shown in Figure 4.4(a). In Figures 4.2(a) and 4.4(a), g = -0.5 and parameters of the
GBT are a; = —0.9,a, = —0.9,b; = 0.1,b, = 0.1, k; = 10, k> = 10.

In Figure 4.2 (b), the 2D digital high-pass filter is designed similar to the 2D
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Figure 4.1: The 2D high-pass filters (case-I(filterl)) satisfy the monotonic character-
istics, (a) b; and k; regulate, (b)when qa; and k; regulate.

Table 4.1: The ranges of g of the case-I (filterl), where the 2D digital high-pass filter
does not contain monotonic characteristic in the amplitude-frequency response.

a; b | ks g
010111 03>¢9g>0
010145 01>¢9g>0
01101110 005>9g>0
05105 1 0.7>9g>0
0.5{05}| 5 04>¢9g2>0
-05[05[10] 018>¢g>0
09109 1 00> |g| >0
09109} 5 |46>9g>—1.5
09109110 1>g9>-0.67

digital low-pass filter design (section 3.3.3), only the sign of g is reversed and the
values of parameters of the GBT are changed to suitable values as required. Basically,
Figure 4.2(b) is the inverted amplitude-frequency response of Figure 3.19. The GBT
(a; = —0.9,a3 = —0.9,b; = 0.1,b = 0.1, k; = 10, ko = 10) is applied to the transfer
function of case II (filterl) and the overall 2D digital high-pass filter satisfies the
* monotonic characteristic (Figure 4.4(b)). It is seen that the bandwidth of this filter
_is controlled by g of filterl and the parameters of the GBT.

In Figure 4.2(c), the 2D digital high-pass filter of case-III (filterl) with the mono-
tonic characteristics in the amplitude-frequency responses is shown. In this case, the

impedances of filterl are replaced by the second-order Gargour&Ramachandran and
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Butterworth filters. The GBT (a; = —0.9,a2 = —0.9,8; = 0.1,b, = 0.1, %, =5,k =
5) is applied to the resultant transfer function of case III (filterl). The overall 2D
digital high-pass filter satisfies the monotonic characteristic (Figure 4.4(c)).

The impedances of doubly terminated gyrator filter2 are replaced by the second-
order RLC filters and because of the stability criteria, the third impedance of the
filter2 is replaced by a resistive element which is proved in the sections 2.4.3, 2.4.4
and 2.4.5. It is seen in the resultant transfer function that the magnitude of g of
filter2 can control the amplitude-frequency response of the 2D high-pass filter equally
in the both dimensions.

The proposed 2D digital high-pass filter design is similar to the proposed 2D
digital low-pass filter design (section 3.3). However, in the case of 2D digital high-
pass filter design, the value/sign of g of filter2 and/or the values of parameters of
the GBT have changed. Bandwidth of the 2D high-pass filter is controlled by the g
and parameters of the GBT. The proposed design ensures the monotonic amplitude-
frequency response of the desired 2D digital high-pass filter. In the case-I (filter2),
the impedances of doubly terminated gyrator filter is replaced by the second-order
Butterworth filters and the GBT is applied to the resultant analog transfer function.
As a result, the 2D digital high-pass filter satisfies monotonic amplitude-frequency
response for the certain ranges of g of filter2 and these ranges of g are depend on
the values of parameters of the GBT. For example, if parameters of the GBT are
a; = —0.9, b = 0.1 and k; = 1, the ranges of g are defined as 4.1 > g > 0.32
and —oo > ¢ > —0.08 in order to obtain monotonic characteristic in the magnitude
response of the 2D digital high-pass filter (case-I (filter2)) (Figure 4.3).

Figures 4.3 (a) and (b) satisfy the monotonic characteristic, when the values of
g are -1 and 4 respectively. However, Figures 4.3 (c) and (d) do not satisfy the
monotonic characteristics, when the values of g are -0.07 and 0.1 respectively.

Table 4.2 gives the ranges of g, when case-I (filter2) does not satisfy the monotonic
amplitude-frequency response in pass-band region of the 2D digital high-pass filter,
while the values of parameters of the GBT are constant.

In Figure 4.2 (d), the 2D digital high-pass filter response is obtained by applying
the GBT to equation (3.2.9) and regulating the value of g of filter2 so that the
overall frequency response satisfies the monotonic characteristics (Figure 4.4(d)). The

bandwidth of the digital high-pass filter is controlled by the g and parameters of the
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Figure 4.3: The design of digital 2D high-pass filter (case-I(filter2)), when a; = —0.9,
b; = 0.1 and k; = 1. (a) the case-I(filter2) possesses the monotonic characteristics for
g = -1, (b) the case-I(filter2) possesses the monotonic characteristics for g = 4, (c)
the case-I(filter2) does not possess the monotonic characteristics for g = -0.07, (d)
the case-I(filter2) does not possess the monotonic characteristics for g = 0.1.

GBT.

In Figure 4.2 (e), the 2D digital high-pass magnitude response is obtained using the
second-order Gargour&Ramachandran filters in the filter2 and the GBT is applied to
the resultant transfer function. The values of parameters of the GBT and g of filter2
are chosen such a way that the overall frequency response satisfies the monotonic
characteristics (Figure 4.4(e)).

In the filter2, the two impedances of filter2 are replaced by the Butterworth and
Gdrgour&Ramachandran filters and third impedance is replaced by resistive element.

The GBT is applied to the resultant filter and the reactive parameters of the filter
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Table 4.2: The ranges of g, when case-I (filter2) does not satisfy the monotonic
amplitude-frequency response in pass-band region of the 2D digital high-pass filter,
while the values of parameters of the GBT are constant.
a; by | ki g

011011 o0 >g>36,04>g9>-0.1
-0.1101] 5 00>g>8,02>g>-001
-0.1 01|10 | o0 >g>13,0.08>g>-0.005
05105 1 c0o>g>3205>g>-01
05055 | co>g>48,03>g>—-004
0505 (10| 00>g>7,02>¢9>-0.04
091091 oo > |g] >0

091091 5 oco>g>3205>¢9>-0.1
0909|110 oc0o>g>34,041>¢9 > —-0.09

are modified (similar to section 2.3) as required. As s result, the overall amplitude-

frequency response (Figure 4.2(f)) has the monotonic characteristics (Figure 4.4(f)).

From the above discussion, it is observed that the different combinations of the
doubly terminated gyrator filters and the second-order Butterworth and Gargour &
Ramachandran filters provide the 2D digital low-pass and high-pass filter. But, the
band-pass and band-elimination filter can be obtained by choosing the appropriate
doubly terminated RLC filters.

It is seen that the impedances of the doubly terminated gyrator filter2 are replaced
by the doubly terminated RLC networks which is represented by s; and s, domain
respectively. As a result, the frequency responses of the resultant analog transfer
function are controlled by g equally in both dimensions. The GBT is applied to
the analog transfer function and the overall digital transfer function provides stable
monotonic amplitude-frequency responses of the 2D digital high-pass filters (Figure
4.2(d) - (f)).

4.3 Proposed Design of Band-pass and Band-elimination

filter

The proposed design of digital band-pass and band-elimination filter is started with
a stable 2D analog filter. At first, the stable 2D analog filter is transformed to a
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2D digital low-pass or high-pass filter by the GBT (sections 3.3 and 4.2) and the
corresponding modified 2D analog low-pass or high-pass is obtained by the inverse
bilinear transformation. The modified 2D analog filter is transformed to band-pass or
band-elimination filter by the summation of two GBTs (equation (4.3.1)) [36]. The
overall transformation from the stable 2D analog filter to the 2D analog band-pass or
band-elimination filter is shown in the equation (4.3.2). The first term in equation
(4.3.1) is the original bilinear transformation that transforms the normalized analog
low-pass to the discrete low-pass, and the second term transforms the normalized low-
pass to the digital high-pass [37]. Block diagram of the proposed design of band-pass
and band-elimination filter is shown in Figure 4.5.

Figure 4.5 shows that a stable analog transfer function is transformed to a digital
transfer function by the GBT. The digital transfer function is converted to the mod-
ified analog transfer function by the double inverse bilinear transformations and the

modified analog transfer function to the desired digital transfer function by equation

(4.3.1).

zi— 1 Z¢+1
k;
zi+1+ -1

. = (aikir — ki )kiS? + (=1 — a;)kiSi + (askia — kio)ks
v (_kil + blkll)Sf + (—-1 — bZ)S,L + b;kio — ki
Where i =1,2 and s; is laplace domain parameter of original circuit, s} is laplace do-

(4.3.2)

main parameter of the modified analog low-pass or high-pass filter and S; is laplace
domain parameter of the modified band-pass or band-elimination filter. In the equa-
tion (4.3.2), a;, b; and k; are same as in the equation (3.3.1), which ensures the
monotonic characteristic of the filter in the pass-band region, %f is defined as the
center frequency of the filter and E%I is defined as the bandwidth of the filter. The
proposed design ensures the stable 2D digital band-pass and band-elimination filter
having monotonic characteristics in frequency responses.

The design is started with a stable 2D analog transfer function and the stable
transfer functions are generated as in the section 2.4. The GBT is applied to the
analog transfer function in order to obtain the 2D digital low-pass or high-pass filter
(sections 3.3 and 4.2) and the corresponding modified analog filters are obtained by
the inverse bilinear transformation (section 3.3). The equation (4.3.1) is applied to

the modified analog filter in order to obtain the 2D digital band-pass filter (Figure4.6).
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Figure 4.5: Block diagram of the the proposed design of a digital band-pass and
band-elimination filter

The bandwidth and center frequencies of the 2D digital band-pass filter can be varied
by -k—:-; and le_f respectively and the overall bandpass filter has the monotonic char-
acteristics in the pass-band region. Similarly, the proposed design is applied on the
designed filters (sections 3.3.2, 3.3.3, 3.3.4, 3.3.6, 3.3.7 and 3.3.8) and the correspond-

ing 2D digital band-pass filters are shown in Figure 4.7.

Table 4.3: The values of parameters are used to design the 2D band-pass filter (figure
4.7)

Filter g a; bz kz kil kiZ
Case-1(Filterl) | 0.01 | -0.5]0.5|10]0.15 | 0.15
Case-I1(Filterl) | 0.01 [-0.9 |0.1| 5 | 0.15 | 0.35
Case-I11(Filter1) | 0.01 | -0.5 | 0.1 | 10 | 0.25 | 0.15
Case-1(Filter2) | 0.01 | -0.9] 0.1 |10 0.25 | 0.2
Case-TI(Filter2) | 0.01 |-0.9|0.1| 2 | 0.05]| 0.2
Case-111(Filter2) | 0.01 | -0.9 | 0.5 | 10| 0.1 | 0.1

The procedure of the band-elimination filter design is similar to the band-pass
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Figure 4.6: 3D magnitude plot and contour plot of the 2D digital Band-pass filter,
case-I(filter1)

filter design. However, the band-pass filter is transformed to band-elimination filter
by changing the value and/or sign of g of the band-pass filter.

Table 4.4 gives the values of parameters used to design the 2D digital band-
elimination filters (Figure 4.8). It is observed that the monotonic characteristics in
the pass-band region of the band-elimination filter are maintained by regulating the
values of a;, b, k;, but in most of the cases, the values of parameters are kept constant
as the 2D digital band-pass filters (Table 4.3). The values and sign of g of the band-
pass filter filter are changed in order to obtain the opposite filter response and k;1, k;o

control the center frequencies and bandwidths of the 2D band-elimination filter.

4.4 Proposed Digital Filter Transformation

A digital IIR filter design is started from a continuous-time filter and it is modified
to another continuous-time filter which is transformed into discrete-time filter (sec-
tion 4.3). From the previous discussion, the two steps are performed for the digital

filter design. First, the frequency transformation is applied to the normalized analog
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Table 4.4: The values of parameters are used to design the 2D band-elimination filters
(Figures 4.8)

Filter 4.8 g a; bz k)z kil kiz
Case-I(Filterl) |-0.5]-0.5({01| 2 | 0.1 | 0.1
Case-11(Filterl) | -05]-0.9]01] 5 | 0.15 | 0.35
Case-I11(Filterl) | -0.5 | 0.9 0.1 10| 0.3 | 0.5
Case-I(Filter2) |-0.5|-0.9{0.1[10(0.25| 0.2
Case-I1(Filter2) |-0.5]-09 |01 2 [0.05] 0.2
Case-T11(Filter2) | 05 |-0.9 | 0.5 ] 10| 0.1 | 0.1

low-pass transfer function to obtain the modified analog low-pass transfer function.
Second, the bilinear transformation is used to obtain the desired digital filter. Re-
cently, it has been shown that Pascal matrix allows the design of digital filters from
a continuous-time prototype and frequency transformations of analog transfer func-
tion is also done by matrix operation [38]. It has been proven that this digital filter
design technique is better than the method of digital low-pass and high-pass filter
design [37]. The method [37] has shown that Pascal matrix allows the transformation
of a normalized analog transfer function from a low-pass to low-pass and high-pass
discrete transfer function. Another method [36] is proposed after two years and it is
shown that Pascal matrix also can be used to transform the normalized analog trans-
fer function from low-pass to band-pass discrete transfer function. However, these
methods are difficult to use in the case of transforming a normalized analog transfer
function to a higher-order filter [38]. To overcome the problems, a transformation
method is proposed in this thesis which is based on the GBT and the value/sign of
gyrator constant (g) of a doubly terminated gyrator network.

The proposed method of the digital filter transformation is shown in the figure
4.9 and it is observed that the band-pass to band-elimination filter or the low-pass to
high-pass filter or vice-versa transformation is obtained by regulating the value and/or
sign of g. However, the low-pass to band-pass or the high-pass to band-elimination
filter or vice versa transformation is obtained by regulating g and the parameters of
the GBT as shown in equations (4.3.1) and (4.3.2). A detailed description of method

is discussed in the following.

108



Digital Band-
Blinination Fiter
A Geenalzed Binear

Transformation
&g

Dighl B

Generalized Bilinear
Transformation

Digital High-pass
Filter

Digital Low-pass
Filter

Figure 4.9: Block diagram of the Digital Filter Transformation.

4.4.1 Low-pass filter to High-pass filter Transformation

The digital filter transformation of a 2D digital low-pass to a 2D digital high-pass
filter and vice-versa are proposed in two different ways. A detailed discussion provides
the following.

It is seen that the magnitudes of g of a doubly terminated gyrator filter can
change the amplitude-frequency responses of the filter (sections 4.2, 4.3, 3.2, 3.3.)
and in addition, it is shown that the change of g is transformed a digital low-pass
filter to a digital high-pass filter. The amplitude-frequency responses of the filterl
(sections 3.3.2, 3.3.3, 3.3.2) are studied carefully, when the value of g is changed to
higher values. Approximately, it is determined that the 2D digital low-pass filters
are obtained for 0 < g < 0.03 and the 2D digital high-pass filters are obtained for
0.99 > g > 0.1 and oo > ¢ > 1. But the amplitude-frequency response of the filterl
is constant for g = 1. | /

According to the proposed digital 2D low-pass filter design, the impedances of
the gyrator filter] are replaced by the second-order Butterworth filters and the GBT
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(a; = —0.9,b; = 0.1,k; = 1) is applied to the overall 2D analog transfer function
to get the 2D digital low-pass filter. The frequency response of the digital filter is
dependent on the value of g and Figure 4.10 shows the transformation of filter from
the 2D digital low-pass filter to the 2D digital high-pass filter by varying g of the
gyrator network.

Figures 4.10 (a) and (b) show frequency response of the 2D digital low-pass and the
corresponding 2D digital high-pass filter respectively. The proposed method has used
different values of g in the doubly terminated gyrator filterl for the transformation
of the filters. Similarly, the proposed method is applied to case-II (filterl) for the
digital filter transformation. The magnitude response of the 2D digital low-pass
filter (Figure 4.10 (c)) is transformed to the 2D digital high-pass filter (Figure 4.10
(d)). Another frequency response of the 2D digital low-pass filter (Figure 4.10 (e))
is designed using the second-order Butterworth and Gargour&Ramachandran filters
in the gyrator filterl (section 3.3.3) and the proposed filter transformation method
is applied to the low-pass filter to obtain the 2D digital high-pass filter (Figure 4.10
(9)).

In order to explain the filter transformation, a thorough studied has been carried
out on the reactive behavior of the gyrator filter and it is found that the reactive
behavior is changed not only for the parameters of the gyrator filter, but also for the
value and sign of g.

It has been seen that the total reactive property of the gyrator circuit is changed
using opposite sign of g [19]. As a result, the low-pass filter transforms to the high-
pass filter by changing the sign of g of the gyrator filter. The amplitude-frequency
responses of the sections 3.2, 3.3, 4.2, 4.3 are studied and it is shown that the inverted
filter responses of the corresponding sections can be obtained for the opposite sign of
g. Some examples are provided in Figure 4.11.

In Figure 4.11, the 3D magnitude responses of the several 2D digital low-pass
filters are given and each of the low-pass magnitude responses is transformed to the
digital high-pass magnitude responses. Figures 4.11 (a) and (b) show the frequency
response of the 2D digital low-pass filter when g =10 and the corresponding 2D digital
high-pass filter when g = -10 respectively. The proposed method is applied to the
case-1I (filter2) for the digital filter transformation and the magnitude response of the
2D digital low-pass filter (Figure 4.11 (c)) when g = 8 is transformed to the 2D digital
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high-pass filter when g = - 8 (Figure 4.11 (d)). Another 2D digital low-pass filter
(Figure 4.11 (e)) is obtained from the case-III(filter2) when g = 9 and this low-pass
filter is transformed to the 2D digital high-pass filter when g = - 9 (Figure 4.11 (f)).

4.4.2 Band-pass filter to Band-elimination filter Transforma-

tion

The proposed design of 2D digital Band-pass filter and Band-elimination filter is
applied to an analog doubly terminated gyrator filter, when then impedances of the
gyrator filter are replaced by the doubly terminated RLC networks. As a result, g
of the filter gives flexibility to obtain the desired bandwidths and center frequencies
of the filter. The amplitude-frequency responses of section 4.3 are studied and it is
observed that the corresponding inverted filter response can be obtained not only
changing the parameters of the gyrator filter, but also for the value and sign of g of
the filter.

Figure 4.12 shows the digital filter transformation from the band-pass to band-
elimination filter and in this case, the effect of the values of g of the filter is considered
for the filter transformation. It is also seen that the sign of g of the filter is another

factor of the filter transformation (Figure 4.13).

The 2D digital band-pass filter responses (Figures 4.12 (a), (c) and (e)) are ob-
tained from case-I(filterl), case-II(filterl) and case-III(filterl) respectively. The digi-
tal filters are transformed to the 2D digital band-elimination filter (Figures 4.12 (b),
(d) and (f)) for the values of g of the filterl.

Table 4.5: The values of parameters are used for the 2D digital filter transformation
from the band-pass to band-elimination filter (figures 4.12)

Figure | a; | b | ki | ki | kio | ko1 | koo
(a)-(b) | -0.5{0.1] 2 }0.25| 0.2 {0.25]0.2
(c)-(d) [-0.9105| 1 |{0.55]0.020.55|0.2
(e)-(f) [-0.9]01] 1] 06 | 05 ] 06 |05

Table 4.5 gives the values of parameters are used for the 2D digital filter trans-
formations from the digital band-pass to the digital band-elimination filters (Figure

412). -
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The 2D digital band-pass filter responses (Figures 4.13 (a), (¢) and (e)) are ob-
tained from case-I(filter2), case-II(filter2) and case-III(filter2) respectively. These
digital band-pass filters are transformed to the 2D digital band-elimination filters
(Figures 4.13 (b), (d) and (f)) by changing the sign of g of the filter2.

From the above discussion, It is seen that all the filter responses satisfy the stability
conditions and the monotonic characteristics. To ensure the stability criteria in 2D
domain, the two impedances of the doubly terminated gyrator filterl are replaced by
the second-order RCL filters and the denominator of the resultant transfer function
is satisfied to be a VSHP (section 2.4). However, in the case of doubly terminated
gyrator filter2, the two impedances of the gyrator filter2 are replaced by the second-
order RCL filters and the third impendence is replaced by a resistive component;
otherwise the denominator of the resultant transfer function will not be a VSHP
(section 2.4.5). The GBT is applied to the overall 2D analog transfer function. As
a result, in the digital domain, the frequency responses of the filters are scaled by
the value of g and parameters of the GBT. It is also observed that k;1, k;2 control the
center frequencies and bandwidths of the 2D digital band-pass and band-elimination
filter.

In the proposed design-I, the double bilinear transformation is applied to the
analog transfer function to obtain the digital transfer function. As a result, frequency
distortion of the digital filters has been found in high frequencies. In order to overcome

this problem, two methods are proposed in the following.

4.5 Frequency Prewarping

The Double bilinear transformations are an efficient technique for obtaining the 2D
digital filter. The digital frequency response is expected to be the as of 2D analog
counterpart; however the relation between analog and digital frequencies is non-linear,
as a result distortion is introduced in high frequencies of digital domain which is
commonly known as frequency warping effect [23]. The derived digital filter has the
same number of pass-bands in each dimension as of the analog filter, but the center
frequencies and bandwidths of higher frequency pass-bands tend to be reduced dis-
proportionately in both dimensions of digital domain. Numbers of author have shown

that the frequency warping can be reduced in one-dimensional filter design [39], [40].
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But in the case of two-dimensions, no technique has been proposed until now and
moreover, the 2D IIR filter design is more complicated than the 1D filter design,
because of the difficulty to control stability of the 2D IIR filter. However, some
approaches [41], [42], [43] have been shown in the design of 2D digital filters and
those approaches have failed to meet the prescribed specifications at higher frequen-
cies of the 2D digital filter, because double bilinear transformations have failed to
provide linear relationship in between higher ranges of analog frequencies and digital

frequencies and as a result, the difficulties happen in the various applications.

The objective of this section is to analyzes the problem of frequency warping in
the case of two-dimensional frequency responses of the filter and propose two methods
to reduce the frequency warping of 2D analog to digital filter conversion. In the first
method, frequency prewarping is performed by means of the GBT and in the second
method, prewarping is carried out by approximating the 2D analog gyrator filter via
an optimization or 2D frequency scaling of the analog transfer function to reduce
frequency warping. Finally, both methods are applied together in order to obtain the
desired 2D digital filter responses.

In method-I, the GBTs are applied to a stable 2D analog filter in order to ob-
tain the prescribed cutoff frequencies of the 2D digital filter and all the parameters
(as, b, k;) of the GBT are varied to obtain the desired digital filter responses. The
method-I ensures the stability and the monotonic amplitude response of the designed
2D digital filter [10] and flexibility in the filter design is achieved for the elimination
of warping effect of a low-pass, high-pass, band-pass and band-elimination filter. The
relation in between the analog frequencies and the digital frequencies has established
(equation (2.3.7)) in chapter 2 and the frequency mappings in between two domains
are studied for different values of a;, b; and k; in order to reduce the frequency warping
effect. It is found that for linear relationship in between analog frequency responses
and digital frequency responses are dependent on the values of a;, b; and &; and those
values are determined from the equation (2.3.7).

For illustration, a 2D analog low-pass transfer function (equation (4.5.1)) is con-
sidered from [10] and observed for the warping effects. Frequency warping errors are

calculated in term of mean-square-error (MSE) (equation (4.5.2)).
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 Hgp(sl,s2) = - S (4.5.1)

1 1.618 1 1
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The analog cutoff frequency of equation (4.5.1) is 0.9 rad/sec and the double
bilinear transformations are applied to equation (4.5.1) to obtain the 2D digital filter.
The resultant 2D digital filter provides MSE = 0.0545 in between the 2D desired
digital filter and the designed digital filter. The proposed method is applied to the
equation (4.5.1) for converting the analog domain to digital domain. The resultant 2D
digital filter gives the MSE = 0.0016. This method provides significant improvement
for the 2D digital filter design. Frequency scaling is done on the equation (4.5.1) to
obtain the different analog transfer function with the different cutoff frequency [44]

and verify the MSEs and reduced MSE of the designed digital filters by the proposed
method (Table 4.6)

Ziﬂio Z;V:() (Hideal(i9 .7) - Hdesigned(i7j))2
Mx N
where H,geq is the 2D desired digital filter, Hyesigneq is the designed digital filter

and both filters is M by N matrix.

(4.5.2)

MSE =

Table 4.6: Frequency warping errors of the 2D digital filter
Wij (rad/sec) MSE kz a; b,L Reduced MSE

1.65 0.0204 | 0.385370 | -1.00 | 0.170187 0.005684
2.00 0.0257 | 0.289385 | -1.00 | 0.170180 0.005488
2.20 0.0352 | 0.240349 | -1.00 | 0.166600 0.004626
2.40 0.0425 | 0.211691 | -1.00 | 0.166599 0.003862
2.75 0.0598 | 0.153245 | -1.00 | 0.166601 0.002172
3.10 0.0718 | 0.111380 | -1.00 | 0.170185 0.001090

The second method is started with a gyrator network and impedances of the gyra-
tor network are replaced by the doubly terminated RLC networks. The resultant 2D
analog transfer function is stable (section 2.4) and coefficients of the transfer function

are functions of gyrator constant (g). Equ. (4.5.3) is applied to the analog transfer
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Figure 4.14: Comparison in between MSEs as generated by double bilinear transfor-
mation and reduced MSEs by the proposed method.

function in order to obtain the desired digital filter. An approximation problem of
the 2D analog filter design is solved through the application of optimization method
in order to obtain the analog frequencies equal to the desired digital frequencies. An
error function (equation (4.5.4)) is formulated on the basis of the desired amplitude
frequency response and a norm of the error function is minimized with respect to the
transfer function coefficients. As the value of the norm approaches zero, the result-
ing amplitude or phase response approaches the desired amplitude or phase response
and desired analog frequencies are achieved. Alternative technique can be followed
to avoid heavy computation, that is 2D frequency scaling of the 2D analog filter and
scale factors of the both dimensions are calculated as a ratio of new frequencies to old
frequencies. It has found that the scale factors are function of g and judicious choice

of g can obtain less warping effect in the both dimensions.

(4.5.3)
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where, i = 1,2.

M1l M2
E(QliUQ%l)g: k’L) - Z Z IHA(jwlilajw%g) - HD(jwlinwZiz?g; kz)’z (454)

11=0142=0
where, H4 is the desired filter and Hp is the designed digital filter.
For example, it is required to design a 2D digital low-pass filter to meet the

following specifications:

1, fory/wi+wi<l

Hy(z,29) = (4.5.5)

0, fory/w?+wi>25

A stable analog transfer function is generated in section 2.4, where impedances of
a doubly terminated gyrator network (Figure 2.2) are replaced by two doubly termi-
nated RLC networks (second-order Gargour&Ramachandran filters) and stability of

the resultant transfer function (equation (4.5.6)) is satisfied (section 2.4).

3g+1  0.725+3.75g 2.05g 1

[1 51 5%] 0.725+3.75g 49 +0.5 2.225¢ 89

i 2.05¢ 2.225¢ g J i S%J

H3pap(s1,82) = = -
0.364¢2% + 1 0.454¢2 +0.97  0.251g% + 0.364

8-25[ 1 s s? ] 0.454¢% +0.97 0.515% g2 +0.94 0.364 4 0.267g>

0.2519% +0.364  0.364 +0.267¢% 0.127 +0.127¢° |
' (4.5.6)

The error function (equation (4.5.4)) is used to minimize the error in between
the desired filter (H4) and the designed filter (Hp). It is shown that the 2D digital
low-pass filter (equation (4.5.7)) with the cutoff = 1 rad/sec is obtained when g =
0.01 and k = 3.25. Figure 4.15 shows the 3D magnitude and contour plots of the
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designed 2D digital low-pass filter.
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Figure 4.15: 3D magnitude and contour plots of the 2D digital low-pass filter
Both the methods are efficient in the digital filter design, but the first method has
more parameters than the second method for reducing the warping error. It has been

shown in the chapter 3 and chapter 4 that the both methods are applied together in

order to obtained the desired digital filter responses.

4.6 Realization of the digital filter

Realization is the process of converting the transfer function of the digital filter into a
digital structure for the implementation in two forms, such as software and hardware.

In a software implementation, difference equations are represented in the state-space
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which is converted into a computer program that can simulate the performance of
the digital filter and in the hardware implementation a digital network is converted
into a piece of dedicated hardware.

Several realization methods are available that lead to a great variety of digital-filter
structures [45] such as, continued fraction expansions, direct implementation, discrete
state-space implementation. In 2D polynomials, there is no general factorization
scheme. However under certain conditions, 2D polynomial can be expressed as a
product of special type of two-variable polynomials of lower order as shown in paper
[46]. Direct implementation of 2D recursive filter is realized using equation (4.6.1)
in paper [47] and state-space model is developed by considering the input variable
to all delay elements as state variables and applying linear transformation to the
state variable, many equivalent state-space models of 2D structure can be developed.
But, the direct implementation is not applicable in the case of presence of the all
orders of variables and all the coefficients of all variables are not zero. In this thesis,
a realization of 2D digital polynomial is proposed and the realization is suitable to
implement any 2D polynomial with finite order.

A canonical realization of 2D digital polynomials is shown below:

Two-dimensional recursive filter as a ratio of two-dimensional polynomials [47]

can be represented as below:

M, N, )
Zn:o 1210 ailizzil zéz (461)

My Ng
Zz’lzo i2=0 bmzzl z2

Let, an input signal X (21, 2), the output of the filter Y (21, 22) = Hy(21, 22) X (21, 22)
and byp = 1 in the equation (4.6.1) and (4.6.3).

Hd(zla ZQ)

Mn Ny
Z17Z2 E E :allilzl 22 ]X 21, z2)
31=042=0
d d
= E E bmzz1 z2 Y (21, 22) (4.6.2)
11=012=0

- For example, if M,, = My = 2 and N,, = N; = 2, the equation (4.6.3) is obtained.
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Figure 4.16: Realization of a second-order 2D Digital filter

1 ag1 Qg2 1
2
[1 Z1 21} a1 411 Q12 2
Qoo G21 QG22 z% '
Hy(z,22) = (4.6.3)

boo bo1  bo2 1

[ 1 2 2 ] bio bir bz )

bao ba1 ba2 P2

The digital filter can be decomposed into some building blocks and hardware
implementation of the digital filter is made by interconnecting very-large-scale inte-

grated (VLSI) circuit chips. However, it is possible to implement the entire digital
filter on single chips, but complexity of the chips will be comparatively high [48].
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A higher-order filter requires operation at high sampling rates and large amount of
computation is done in each sampling period. As a consequence, the implementa-
tion is expected to be faster. The computation speed is increased by increasing the
speed of the basic gates and reducing the propagation delays of interconnection wires.
Major improvement in the computational speed is obtained by the concurrent use of
processing elements. Digital filter realization allows high degree of concurrency; as a
result, fast computation speed of the implementation is expected. Systolic arrays are
highly regular networks and digital filter can be realized by this network [49]. In this
thesis, an approach for hardware implementation of an IIR digital filter is proposed.
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Figure 4.17: Realization of the Digital filter

The basic parameters of the digital filter implementation are created in sepa-
rate programs VHDL (Very High Speed Intégrated Circuit Hardware Description
Language) Synopsis software [50] and interconnected those as required in the imple-

mentation [51]. The basic components are different gates, such as AND, OR, XOR,
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Figure 4.19: (a) A D-flipflop (NAND gate based), (b) A Serial Adder and symbol of
a serial adder.

Inverter and NAND. Every gates are tested in the test bench as well as VHDLDBX
platform by giving different input in the gates. The delay elements (D-flip flop) are
the most important components in this realization. There different kinds of D-flipflop
(DFF), such as level triggered, positive edge triggered and negative edge triggered.
Positive edge triggered DFF and 2 input serial adders are used for the proposed re-
alization. The 3 input serial adder is a combination of two serial adders and a 2
input serial adder is generated by a half-adder, full-adder and DFF (Figure 5.13). A

serial-in-parallel-out register is used in order to store the final result.

All basic gates have their own delays. NAND gate is a combination of AND gate
and Inverter, as a result, total delay of NAND gate is (0.14-0.1) = 0.2 nanosecond
(ns). The 3-input NAND gate is a combination of two NAND gate, so the delay is
(0.2+0.2) = 0.4 ns. The setup time (0.6ns) and hold time (0.4 ns) of the positive
edge triggered DFF (NAND gate based) is determined from Figure 5.13 and a two
input serial adder has 3 ns delay. Sampling time 7; (where i = 1,2) is greater than
sum of delay for clock to Q of DFF (0.8 ns), maximum delay for combinational logic
(0.1+ 3*0.3 = 1 ns) and setup time of the DFF (0.6 ns). Synthesis of the design can
be done by FPGA (Field Programmable Gate Array) (Xilinx ISE tool) [50].

In hardware digital filter implementation, numbers are stored in finite-length
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registers, but coefficients and signal values are quantized and stored in the regis-
ters.. However, number quantization gives three types of errors, such as coefficient-
quantization error, product-quantization error and input-quantization error. It has
already been shown that there are many methods to minimize the effects of quantiza-
tion [52], [53], [54], [45]. Some of the corresponding VHDL codes are given for further

improvement of the hardware implementation.

library ieee; use ieee.std_logic_1164.all; entity dff is
port(D,clk,clr: in std_logic;
Q : out std_logic);
end dff; architecture arch_dff of dff is
component nand_3_pac
port(A,B,C: in std_logic;
Z: out std_logic);
end component;
component nand_2_pac
port(A,B: in std_logic;
Z: out std_logic);
end component;
for U1,U5: nand_2_pac use entity Work.nand_2_pac(arch_nand_2_pac);
for U2,U3,U4,U6: nand_3_pac use entity
Work.nand_3_pac(arch_nand_3_pac); signal clrl,sl,s2,s4,s3,s5,s6:
std_logic; begin clri<= not clr; Ul: nand_2_pac port map

(A=>s4,B=>82,Z=>s1 ); U2: nand_3_pac port map
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(A=>s1,B=>clk,C=>clr1,Z=>s2 ); U3: nand_3_pac port map
(A=>s2,B=>clk,C=>s4,Z=>s3 ); U4: nand_3_pac port map
(A=>s3,B=>D,C=>clrl,Z=>s4 );

U5: nand_2_pac port map (A=>s2,B=>s6,Z=>g5 );

U6: nand_3_pac port map (A=>s5,B=>s3,C=>clrl,Z=>s6 );

U7:. Q<=sb; end arch_dff;

library ieee; use ieee.std_logic_1164.all; entity h_adder_pac is
port (A,B: in std_logic;
S, Ca: out std_logic);
end h_adder_pac; architecture arch_h_adder_pac of h_adder_pac is
component xor_2_pac
port(A,B: in std_logic;
C: out std_logic);
end component; component and_2_pac
port(A,B: in std_logic;
C: out std_logic);
end component; for Ul: xor_2_pac use entity
Work.xor_2_pac(arch_xor_2_pac); for U2: and_2_pac use entity
Work.and_2_pac(arch_and_2_pac) ;--\\
begin
Ul: xor_2_pac port map ‘
(A=>A, B=>B, C=>8); U2: and_2_pac port map (A=>A,‘B=>B, C=$ Ca);

end arch_h_adder_pac;
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library ieee; use ieee.std_logic_1164.all;

entity f_adder_pac is
port(A,B, C: in std_logic;
S,Ca: out std_logic);
end f_adder_pac; architecture arch_f_adder_pac of f_adder_pac is
component h_adder_pac
port(A,B: in std_logic;
S,Ca: out std_logic);
end component; component or_2_pac
port(A,B: in std_logic;
C: out std;logic);
end component; signal Al1,Bi1,s1,s2,s83: std_logic; for U1, U2:
h_adder_pac use entity Work.h_adder_pac(arch_h_adder_pac); for U3:
or_2_pac use entity Work.or_2_pac(arch_or_2_pac); --\\
begin Ul: h_adder_pac port map (A=>A,B=>B,S=> s1, Ca=>s2); U2:
h_adder_pac port map (A=>C,B=>s1,5=>S, Ca=>s3); U3: or_2_pac port

map (A=>s3,B=>s2,C=>Ca); end arch_f_adder_pac;

library ieee; use ijeee.std_logic_1164.all; entity adder_sr2 is

port( X0, YO , clk, clrl :in std_logic;
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Sout: out std_logic);
end adder_sr2; architecture arch_adder_sr2 of adder_sr2 is
component dff
port( D, clk, clr: in std_logic;
Q : out std_logic);
end component; component f_adder_pac
port(A,B, C: in std_logic;
' S,Ca: out std_logic);
end component; signal di, d2, Cl1: std_logic; for ADDING:
f_adder_pac use entity Work.f_adder_pac(arch_f_adder_pac); for AD:
dff use entity Work.dff(arch_dff); --\\
begin ADDING: f_adder_pac port map (A=>X0,B=>Y0,C=>d1,
S=>Sout,Ca=>d2) ; --\\

AD: dff port map (d2, clk ,clril,dl); end arch_adder_sr2;

library ieee; use ieee.std_logic_1164.all;
entity adder_2 is
port(--A, B, C :in std_logic;
Sout: out std_logic);
end adder_2; architecture arch_adder_2 of adder_2 is component
adder_sr2
port(XO, YO , clk, clrl :in std_logic;

Sout: out std_logic);
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end component; component clockl

port(c: out std_logic);
end component; component Stimulator port( Outl, Out2, Out3: out
std_logic); end component; component regé

port( D, clk, clrl : in std_logic;

Q: out std_logic);

end component; component df

port( D, clk, clr: in std_logic;

Q: out std_logic);

end component; signal clk,clrl,A,B,s5,d1: std_logic; --\\
for ST: clockl use entity Work.clockl(arch_clockl); --\\
for ST1: Stimulator use entity Work.Stimulator (ALGORITHM); --\\
for Al: adder_sr2 use entity Work.adder_sr2(arch_adder_sr2);--
begin ST: clockl port map(c=>clk);--\\
ST1: Stimulator port map (clri,B,A); --\\

Al: adder_sr2 port map (A,B,clk,clril,Sout); end arch_adder_2;

library ieee; use ieee.std_logic_1164.all; entity reglépr_2 is
port( Din , clk , clrl: in std_logic;
Dout: out std_logic_vector(15 downto 0));
end reglépr_2; architecture arch_reglfpr_2 of reglbpr_2 is
component dff
port( D, clk, clr: in std_logic;

Q: out std_logic);
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end component; for AD2: dff use entity Work.dff (arch_dff); signal
C: std_logic; signal D: std_logic_vector(15 downto 0); begin C <=
clk;
AD2: dff'port map. (Din, C, clrl, D(156));
R: for i in 14 downto O generate
Bl: block
for AD1: dff use entity Work.dff (arch_dff);
begin
AD1: dff port map (D(i+1), C , «clrl, D(i));
end block; end generate;
Dout <= D;

end arch_regl6pr_2;

4.7 Summary and discussions

This chapter has introduced the proposed high-pass, band-pass and band-elimination
filter design and a digital filter transformation method. The 2D digital IIR filters
design is described in this chapter and the previous chapter, where a continuous-time
filter is transformed into the desired discrete-time filter by applying the GBT. This
design ensures the desired 2D digital filter and the corresponding modified analog
filter obtained by the double inverse bilinear transformatiohs have the monotonic
amplitude-frequency response in pass-band region. The proposed 2D digital IIR filter
design is started from a 2D analog doubly terminated gyrator filter and this filter is
modified into another analog filter and the modified filter is then transformed into a
digital filter. Two steps are performed for the digital high-pass filter design. First,
the GBT is applied to an analog filter in order to obtain the desired digital filter
and second, the inverse bilinear transformation is applied to the digital filter in order
to obtain the modified analog high-pass filter to test the monotonic characteristic.
Overall, the GBT and inverse bilinear transformation have changed the original analog

filter structure to the corresponding modified analog filter (section 2.3).
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The proposed high-pass filter design is discussed in section 4.2 and it is shown that
the 2D digital high-pass filters (Figure 4.2) are obtained for the negative values of g
of an non-symmetric filter (Figure 2.2). It is observed that sharper characteristics of
a 2D digital high-pass filter are obtained for the negative values of g of a symmetric
filter (Figure 2.1). However, the 2D digital high-pass filters are also obtained for the
positive values of g of the both filters (Figure 4.10). Six 2D digital high-pass responses
are shown in Figure 4.2 in case-I, case-1I and case-1II of the both doubly terminated
gyrator filters. Those frequency responses are studied and it is shown in this chapter

that all responses satisfy the monotonic amplitude-frequency responses (Figure 4.4).

The proposed band-pass and band-elimination filter design are shown in Figure 4.5
and first few steps of the design are similar to the design of low-pass or high-pass filter.
Basically, three steps are performed for a digital band-pass and band-elimination filter
design. At first, the stable 2D analog filter is transformed to a 2D digital low-pass or
high-pass filter by the GBT and the corresponding modified 2D analog low-pass or
high-pass is obtained by the inverse double bilinear transformation. The 2D analog
modified filter is transformed to the 2D digital band-pass or band-elimination filter by
the summation of two GBTs. It has been shown in this chapter that generally, the 2D
digital band-pass filters are obtained for the positive values of g (Figure 4.7) and 2D
digital band-elimination filters are obtained for the negative values of g (Figure 4.8).
Six 2D digital band-pass filter responses are shown in Figure 4.7 in case-1, case-II and
case-III of the both doubly terminated gyrator filters. In Figure 4.8, six 2D digital

band-elimination filter responses are shown in case-I, case-II and case-III of the both

doubly terminated gyrator filters.

A digital filter transformation method is proposed in this thesis, where the value/sign
of g of a doubly terminated gyrator network provides opposite frequency responses
of the filter. This method gives band-pass to band-elimination filter or low-pass to
high-pass filter or vice-versa transformation by regulating the value and/or sign of g.
However, low-pass to band-pass or high-pass to band-elimination filter or vice versa
transformation is obtained by the regulating g and parameters of the GBT. Two
techniques are applied for the digital filter transformation of low-pass to high-pass or
band—riass to band-elimination or vise Versa, such as the value of g and the sign of g.
The concept of digital frequency transformation in the reactive behavior of a gyrator

filter changes not only the parameters of resistance, capacitance and inductance of
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the filter, but also the value and sign of g. Figures 4.10 and 4.12 have shown that
the values of g of the doubly terminated gyrator filter can inverse the amplitude-
frequency responses of the filter and Figures 4.11 and 4.13 have shown the sign of
g can inverse the amplitude-frequency response. Finally, two methods are proposed
to reduce frequency distortion in the high frequencies of digital domain due to the
double bilinear transformation and the methods can facilitate tight tolerances over a
wide frequency range. In the entire thesis, two RLC filters are considered and those
are used in the gyrator filter. The RLC filters are second order butterworth filter and
Gargour&Ramachandran filter, but for various applications higher order RLC filter
can be used. Finally, a realization of a 2D digital filter is shown.
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Chapter 5

Applications of The Proposed
Design in Image Processing

5.1 Introduction

A digital image is an array of 2D data and image is divided into N row and M column,
the intersection of each row and column is termed a pixel. Basically, a digital image is
a 2D array of pixels which can be expressed as brightness/intensity of an image. An
image is digitalized to convert in a form that can be stored in a computer’s memory
and it is processed by the digital computer as required [55].

An image representation is concerned about the quality that each picture element
(pixel) represents. An image could present luminance of the objects in a scene (or-
dinary camera), the absorption characteristics of the body tissues (X-Ray image),
the radar cross section of the target (radar image), temperature profile of a region
(infrared imaging), gravitational field in an area (geophysical imaging). Fundamental
requirements of digital image processing are sampled and quantized. The sampling
rate (number of pixel per unit area) has to be large enough to present the useful

information of an image which can be determined by the bandwidth of the image [1].

The 2D digital filters are used in the various image processing applications, such
as image enhancement, image restoration etc. [10]. Image enhancement is appealing
area of image processing and it has useful feature extraction, image analysis and
visual information display. It processes a digital image to obtain a more suitable
image than the original image for a specific application. For example, medical science

applications are concerned with processing of chest X-Ray, cine angiogram, projection
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of frame axial tomography and other medical images that occur in radiology, nuclear
magnetic resonance (NMR) and ultrasonic scanning. Those images are widely used
to screen and monitoring of patient or for the detection of tumor or the diseases of
the patients. In the gamma-ray imaging, radioactive isotope is injected to a patient
that emits gamma rays as it decays and gamma ray detector is used to collect the
emission and images are produced from the collected emission. Generally it is used
to locate bone pathology, such as infections or tumors. X-ray imaging is widely used
in the medical science and images are generated by the X-ray tube which is a vacuum
tube with cathode and anode. In the angiogram, a cathode is inserted into artery or
vein in the groin and cathode is guided to the area of studied by blood vessel and
cathode is heated, so free electrons strick on nucleus, as a result energy released in
the form of X-radiation and collected radiation produces images. Medical astronomy
uses radio wave for magnetic resonance imaging (MRI). In the ultrasound imaging,
millions pulses and echoes are sent and received each second for constructing an image.
For the purpose, a sound probe moves through the body and sends information for
imaging [56]. Sometime in the various applications, the image is degraded by the noise
and the degraded image is restored by 2D digital filter. Generally, noise arises during
data acquisition or transmission and environmental conditions, such as, lightning or
atmospheric disturbance cause noise added in the data. It has been seen that most of
the energy of the noise is often spread across the higher frequency range and energy
of the topical image located at the low frequency range, so the 2D low-pass filter has

good noise removal properties [10].

In this chapter, some image processing applications are shown by using different
types of 2D digital filters. In chapter 3 and chapter 4, the digital filters are designed
by the proposed filter design. The applications of the 2D digital low-pass filters are
shown in the case of image restoration applications, the 2D digital high-pass filter
applied for the application of the image enhancement and the 2D digital band-pass
filters and band-elimination filters are used to determine certain frequency elements
of fourier transformation of an image. It has been shown in the previous chapter that
" the band-width of the digital filter can be controlled by the magnitude of g and the
parameters of the GBT. As a result, in the case of image procvessving applications, the

proposed design allows to choose the desired band-width of a 2D digital filter.
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5.2 Image Restoration

Image restoration is removal or minimization of the known degradations of an image
in order to obtain the original image. The cause of the most common degradations
in an image are imperfections of the sensors, transmission etc. Mathematical model
of various degradation processes is known, such as Gaussian noise, Rayleigh, Erlang
(Gamma) noise, exponential noise, uniform noise, impulse (slat and pepper), peri-
odic noise etc. and those noises can be added in the image for the analysis of image
restoration [56]. Most of the common degradation is gaussian noise and this noise
arises from the electronic circuit, sensor noise due to poor illumination or high tem-
perature. Another common noise is salt and pepper noise (impulse noise) and this

noise is generated in the case of fault switching during imaging.

For illustration, the standard images are corrupted by the known noises and the
degraded images are passed through the 2D digital low-pass filter for de-noising
purposes. The quality of the reconstructed images are measured in term of mean
squared error (MSE) (equation (5.2.3)) and peak signal-to-noise ratio (PSNR) (equa-
tion (5.2.4)) in decibels (dB) for the most common gray image [10]. In the chapter
3, the 2D digital low-pass filters are designed using the proposed design and all the
digital low-pass filters are designed in the section 3.3 have the monotonic amplitude-
frequency response in the bandpass regions. Because of having the monotonic char-
acteristics in the aplitude-frequency response, the significant improvement (PSNR)
in the reconstructed images are obtained by the 2D digital filter. |

In the filter 1, the six 2D digital low-pass filters having monotonic amplitude-
frequency response are designed in the section 3.3.2, 3.3.3, 3.3.4, 3.3.6, 3.3.7 and 3.3.8.
Those filters are used in this section for the image restoration. For the simplicity,
the filters are categorized as case I, case II and case III corresponding to the section
3.3.2, 3.3.3 and 3.3.4 respectively. Similarly in the filter 2, the 2D digital low-pass
- filters are also categorized as case I, case II and case III corresponding to the section
3.3.6, 3.3.7 and 3.3.8. R .

- Two standard images are considered for the image restoration process such as
- Lena (256x256) (Figure 5.1(a)) and Mriknee (256x256) (Figure 5.3(a)). The. most
common two types of noise are considered to degrade the images, such as Gaussian

and salt&pepper noise. At first, pixels of the image are normalized in between 0
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to 1 and the noises are added to the image. The effects of restoration by the 2D
digital low-pass filters are studied on the reconstructed images and the quality of
the reconstructed images are compared with the original image in term of MSE and
PSNR [57].

MSE of the degraded image

O Sy (imgns (i, i) * 255 — img(iy, ip) * 255)°

MSE,, = F=a=0 £=0 A (5.2.1)
PSNR of the degraded image
; -
MSE of the reconstructed image
MSE. - — S SN (imout(iv, 12) * 255 — img(iy, ip) * 255) 593
out — Mx N ( v )
PSNR of reconstructed image
2552
PSNR,,; =10 x log;g——— b2.4
t g10 MSE,,, ( )

where, img is the original image, 9mgy,, is the noisy image and img,,; is the recon-
structed image and all the images contain M by N pixels. Error metrics are measured
on the intensities of two images and the error pixel ranges are between black (0) and
white (1).

Gaussian noise with zero mean and variance = 0.01 is added to the normalized
image of Lena and Mriknee. The degraded images are reconstructed by the digital
2D low-pass filters (sections 3.3.2, 3.3.3, 3.3.4, 3.3.6, 3.3.7 and 3.3.8). Tables 5.1 and
5.2 give the values of MSE and PSNR of the degraded images and the reconstructed
images of Lena by the case I, case II and case III of the both gyrator filters. Tables
5.3 and 5.4 give the values of MSE and PSNR of the degraded images and the re-
constructed images of Mriknee by the case I, case IT and case III of the both gyrator
~ filters. o '

In Figure 5.1, Gaussian noise (mean = 0, variance = 0.01) is added to the nor-
‘malized image (Lena) and restoration of the image is done by the case I (filterl) and
case I (filter2) (Figures 5.1 (c)-(f)). It is observed that the presence of noise reduces

(Figures (c) and (d)) from the degraded image (Figure 5.1(b)). However, the presence
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Table 5.1: The restoration of an image (Lena) by filter] when Gaussian noise with
mean = 0, variance = 0.01 is added into the image

Case | g | MSEn, | PSNRu(dB) | MSEyy; | PSNRyp(dB)
Case 1 |0.001 | 629.9926 | 20.1374 | 257.3906 |  24.0249
Case 11 | 0.001 | 636.2678 | 20.09044 | 257.7424 | 24.0189
Case 111 | 0.001 | 636.3803 | 20.0936 | 273.4251 |  23.7624

Table 5.2: The restoration of an image (Lena) by filter2 when Gaussian noise with

mean = 0, variance = 0.01 is added into the image (Lena)

Case | & | MSEn, | PSNR.(dB) | MSE,,; | PSNRyy(dB)
Case 1 |0.001 | 630.9419 |  20.1309 | 256.4202 |  24.0411
Case IT | 0.001 | 634.0169 |  20.1008 | 244.2690 | _ 24.2521
Case 111 | 0.001 | 630.1828 | 20.0746 | 253.6035 |  24.0803

of noise reduces more (Figures (e) and (f)) from the degraded image when the values
of g of the both case I (filterl) and case I (filter2) filters change. Figure 5.1 (e) has
less noise than Figure 5.1(c) and PSNR of the reconstructed image (Figure 5.1(¢)) is
improved to 24.3337 dB. Figure 5.1(f) has less noise than Figure 5.1(d) and PSNR
of the reconstructed image Figure 5.1(f) is improved from to 24.2287 dB. The corre-
sponding MSEs are reduced by the case I (filterl) and case I (filter2) are compared
in Figure 5.2. Tt is seen that in the both cases less MSEs in the reconstructed images

are obtained for the less magnitudes of g of the filters.

Table 5.1 shows the restoration of an image (Lena) by the 2D digital low-pass
filters (filterl) and the noise reduces from the degraded image (MSE = 545.4575)
to the reconstructed image (MSE = 184.2213) by the case I (filterl). PSNRs of
the reconstructed images are 24.0249 dB, 24.0189 dB and 23.7624 dB by using case
I(filter1), case II(filterl) and case III(filterl) respectively.

Table 5.2 shows the restoration of an image by filter2 and the noise of the degraded
image (Figure 5.1(b)) reduces by the 2D digital low-pass filters (filter2). MSE of the
degraded image is 629.9926 and it reduces to MSE = 257.3906 by using case I (filter2)
and the corresponding PSNR of the reconstructed image improves from 20.1309 dB
to 24.0411 dB. Similarly, the case II (filter2) and case III (filter2) are used for de-
noising purposes and the corresponding PSNRs of the reconstructed 'images improve
to 24.2521 dB and 24.0893 dB respectively. Figure 5.2 shows the filter2 has better

image restoration capability than filterl.
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Figure 5.1: (a) The original image of Lena (b) the noisy image with Gaussian noise
(variance =0.01) (c) the reconstructed image by case I (Filter 1) when g = 0.03
(PSNR = 20.9729 dB) (d) the reconstructed image by case I (Filter 2) when g = 0.1
(PSNR = 22.6459 dB), (e) the reconstructed image by case I (Filter 1) when g =
0.001 (PSNR = 24.3337 dB), (f) the reconstructed image by case I (Filter 2) when g
=0.001 (PSNR = 24.2287 dB) 140
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Figure 5.2: Plot of the MSE of the reconstructed Lena image vs g (when Gaussian
noise with mean = 0, variance = 0.01 is added to the original image).

Another example is considered for the image restoration using the six 2D digital
low-pass filters and in this case another type of image Mriknee (256x256)(Figure
5.3(a)) is used. Gaussian noise (mean = 0, variance = 0.01) is added to the normalized
image (Mriknee) and restoration of the image is done by the case I (filterl) and case
I (filter2) (Figures 5.3 (c)-(f)).

The noise of the degraded image is reduced by the case I (filterl) and case I
(filter2). The reconstructed images are shown in Figures 5.3 (c) and (d). However,
Figure 5.3 (e) has less noise than Figure 5.3 (c) and the PSNR of the reconstructed
image (Figure 5.3 (e)) improves to 27.4203 dB. The value of g of filterl is changed
to a suitable value, so that a significant amount of noise in the degraded image is
attenuated by the resultant 2D digital low-pass filter. For the same reason in the
case of filter2, Figure 5.3(f) has less noise than Figure 5.3(d) and the PSNR of the
reconstructed image (Figure 5.3(f)) improves to 27.2907 dB.

Table 5.3 gives the values of MSE and PSNR, of the degraded and the reconstructed
images (Mriknee). The 2D digital low-pass filters (filterl) are used for the restoration
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Table 5.3: The restoration of image (Mriknee) by filter] when Gaussian noise with

mean = 0, variance = 0.01 is added to the original image

Case | g | MSEn, | PSNRuy(dB) | MSEqyy | PSNRyu(dB)
Case I | 0.001 | 545.4575 |  20.7632 | 184.2213 |  25.4774
Case 11 | 0.001 | 547.6805 |  20.7455 | 202.1106 | _ 25.0749
Case 111 | 0.001 | 547.2279 |  20.7491 | 222.0545 |  24.6662

Table 5.4: The restoration of image (Mriknee) by filter2 when Gaussian noise with

mean = 0, variance = 0.01 is added to the original image

Case | g | MSEn, | PONRy(dB) | MSEyy; | PSNRow(dB)
Case I | 0.001 | 555.7851 |  20.6817 | 101.6142 |  25.3065
Case IT | 0.001 | 548.8489 | 20.7363 | 189.5080 | _ 25.3545
Case 111 | 0.001 | 547.7421 | 20.7450 | 205.0716 |  25.0117

of the image. It shows that the noise of the image reduces by the case I (filterl) from
the degraded image (MSE = 545.4575) to the reconstructed image (MSE = 184.2213).
PSNRs of the reconstructed images are 25.4774 dB, 25.0749 dB and 24.6662 dB by
using case I(filter1), case II(filterl) and case III(filter1) respectively.

Table 5.4 gives the values of MSE and PSNR of the degraded and the recon-
structed images (Mriknee). The restoration of the images are done by the 2D digital
low-pass filters (filter2). It shows that noise is reduced by the case I (filter2) from the
degraded image (MSE = 555.7851) to the reconstructed image (MSE = 191.6142).
The corresponding PSNRs of the reconstructed images are 25.3065 dB, 25.3545 dB
and 25.0117 dB by using case I(filter2), case II(filter2) and case III(filter2) respec-

tively. Figure 5.4 shows that the both gyrator filters ( when 0.0001 < g < 0.02) are
equally good for the image restoration, but filter2 has better performance when g
starts to increase.

From the above discussion, it is observed that filter2 can remove more noise from
a degraded image with Gaussian noise (mean = 0 and variance = 0.01) than filterl.
In the both examples (image Lena and Mriknee), average PSNR of the reconstructed
images by filter2 is higher than filterl. However, in some cases, filter]l provides better
performance than filter2. To show more comparisons, another example is considered
with the different type of noise (impulse noise) and the noise is added to the same

image (Lena) and reconstruction of the image is done by the both filterl and filter2.
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(e)

Figure 5.3: (a) The original image of Mriknee (b) the noisy image with Gaussian
noise (variance =0.01) (c) the reconstructed image by case I (Filter 1) when g = 0.03
(PSNR = 21.8147 dB), (d) the reconstructed image by case I (Filter 2),when g =
0.3, (PSNR = 21.0756 dB)(e) the reconstructed image by case I (Filter 1), when g =
0.001, (PSNR = 26.9425 dB), (f) the reconstructed image by case I (Filter 2), (PSNR

= 27.2907 dB) 143
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Figure 5.4: Plot of the MSE of the reconstructed images (Mriknee) vs g by the case
I (filterl) and the case I (filter2) (when Gaussian noise with mean = 0, variance =
0.01 is added to the original image).

In Figure 5.5, the impulse noise with variance = 0.01 is added to the normalized
image (Lena) and the restoration of the degraded image is done by the case I (filterl)
and case I (filter2) (Figures 5.5 (c)-(f)). Figure 5.5 shows that the presence of noise
in Figures 5.5(c) and (d) reduces from the degraded image (Figure 5.5(b)). However,
more noises are reduced in Figures 5.5(e) and (f), when the values of g of the both
filters change. But, blurry effect of Figure 5.5(e) is more than Figure 5.5(c). Figure
5.5 (e) has less noise than Figure 5.5(c), but Figure 5.5(e) has more blurry effect and
PSNR of reconstructed image (Figure 5.5(e)) reduces to 25.8654 dB. Figure 5.1(f) has
less noise than Figure 5.1(d), but Figure 5.1 (f) has more blurry effect. As a result,
the PSNR of the reconstructed image (Figure 5.1(f)) reduces to 25 dB.

Table 5.5 show the restoration of the degraded image (Lena) by the 2D digital
low-pass filters (filterl) and the noise reduces from the degraded image (MSE =
190.5210) to the reconstructed image (MSE = 128.5301). The corresponding PSNRs
of the reconstructed images are 27.0408 dB, 27.2000 dB and 27.1226 dB by ﬁsing case
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Figure 5.5: (a) The original image of Lena (b) the noisy image with salt&pepper
noise (variance =0.01) (c) the reconstructed image by case I (Filter 1) when g = 0.05
(PSNR = 27.040 dB), (d) the reconstructed image by case I (Filter 2) when g=0.05
(PSNR = 27.4203 dB) (e) the reconstructed image by case I (Filter 1) when g =
0.001 (PSNR = 25.8654 dB),(f) the reconstructed image by case I (Filter 2) when g

= 0.001, (PSNR = 25.000 dB) 145
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Figure 5.6: Plot of the MSE of the reconstructed images (Lena) vs g by the case I
(filterl) and the case I (filter2)(when salt&pepper noise (variance =0.01) is added to
the original image).

I (filterl), case II (filterl) and case III (filterl) respectively.

Table 5.6 shows the restoration of the degraded image (Lena) by the filter2 and
the noise reduces from the degraded image (MSE = 173.8383) to the reconstructed
images. The MSEs of the reconstructed images are 117.7736, 123.3094 and 126.6066
by using case I (filterl), case II (filterl) and case III (filterl) respectively. The PSNRs
of the reconstructed images are 27.4203 dB, 27.2208 dB and 27.1062 dB by using case I
(filterl), case II (filterl) and case III (filterl) respectively. From the above discussion,

it is observed that filter2 can remove more noise from a degraded image with impulse

Table 5.5: The restoration of the image (Lena) by filterl when impulse noise with
variance = 0.01 is added in the image
’ Case g | MSE,s; | PSNR,;(dB) | MSEy: | PSNR,:(dB)
Case I | 0.05 | 190.5210 25.3314 128.5301 27.0408
"Case IT | 0.05 | 176.9348 25.6527 123.9032 27.2000,
Case ITI | 0.05 | 178.8236 25.6066 126.1320 27.1226
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Table 5.6: The restoration of the image (Lena) by filter2 when impulse noise with
variance = 0.01 is added in the image

Case g MSE,; | PSNR,s(dB) | MSEy; | PSN Ry, (dB)
Casel | 0.05 | 173.8383 25.7293 117.7736 27.4203
Case IT | 0.05 | 189.4831 25.3551 123.3094 27.2208
Case III | 0.05 | 195.1364 25.2274 126.6066 27.1062

noise (variance = 0.01) than filterl. Figure 5.6 shows that the both gyrator filters
(when 0.0001 < g < 0.02) are equally good for the image restoration, but filter2 has
better performance when g is starts to increase.

Average PSNR of the reconstructed images are obtained by filter2 is higher than
filterl, but, some cases, filter]l provides better performance than filter2. Overall, it
is seen that the significant amount of noise is reduced from a degraded image by the
both filters. So the proposed design is quite useful in the case of image processing
applications, such as the restoration of images. Another application of the proposed

design in the image processing is shown in below.

5.3 Image Enhancement

Image enhancement interprets the image for better visualization. The 2D high-pass
filter manipulates the digital pixel values of an image and can modify the visual inter-
pretation according to the specific application. In the previous section, blurry effect
in the image is found, because of high frequency components of fourier transformation
of the image is attenuated and the high frequency components are edges and abrupt
changes in the gray label. In this section, the 2D digital high-pass filters enhance the
high frequency components of fourier transformation of a image and attenuate the

low frequency components, as a result, better visualization of the image is obtained.

For the image enhancement purpose, Cerebral image (512x512) (Figure 5.7) is
considered and the 2D digital high-pass filters are used for the enhancement of Cere-
bral image. Those high-pass filters are designed in the previous chapter using the
proposed method. Figure 5.7 has shown a normal Cerebral MRA of a patient, where,
visualization of the cerebral vessels is poor. Figures 5.8(a), (b), (c), (d), (e) and (f)

show the enhanced images of Cerebral by using the case I (filterl), case II (filterl),
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Figure 5.7: Original Cerebral image (512x512)

case I1I (filterl), case I (filter2), case II (filter2) and case III (filter2) respectively and
the significant amount of enhancements are obtained in these cases. The bandwidths
of the each 2D digital high-pass filters can be changed by varying the magnitudes
of g of the both filters. As a result, the proposed design could be suitable for the

enhancement of any kinds of images.

5.4 Different Frequency Bands Filtering

The band-pass and band-elimination filters can attenuate the selected frequency re-
gions in between low and high frequencies of the fourier transformation of an im-
age. Section 4.3 has described the designs of six band-pass filters and six band-
elimination filters. This section shows the applications of the band-pass filters and
band-elimination filters. It has been shown in the previous chapter that the band-
width of a band-pass and band-elimination filter can be controlled by the magnitudes
of g of the filter and the parameters of the GBT. As a result, in the case of image
processing applications, the proposed design allows to choose the desired bandwidth

of a 2D digital band-pass and band-elimination filter.

For illustration, Baboon image (256x256) is considered (Figure 5.9) and pixels of

the image is normalized is between 0 and 1. The normalized image passes through
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NOREE. ®
Figure 5.8: (a)The enhanced Cerebral image by case I (Filter 1) (b) the enhanced
Cerebral image by case II (Filter 1), (c) the enhanced Cerebral image by case III
(Filter 1), (d) the enhanced Cerebral image by case I (Filter 2), (e) the enhanced

Cerebral image by case II (Filter2), (f) the enhanced Cerebral image by case III
(Filter2)
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Figure 5.9: The original Baboon image (256x256)

the 2D digital band-pass filters to determine different frequency bands of the fourier
transformation of the image. Figure 5.10 shows the output images of the 2D digital
band-pass filters in the case of both filterl and filter2. Figures 5.10(a), (b), (c), (d),
(e) and (f) show the output images of Baboon by using the case I (filterl), case
II (filterl), case III (filterl), case I (filter2), case II (filter2) and case III (filter2)

respectively.

The application of band-elimination filters is shown by degrading an image with si-
nusoidal noise [58] and the reconstruction of the image is done by the band-elimination
filters (section 4.3). For this application an image Pepper (256x256) is considered and
pixels of the image are normalized in between 0 and 1. Maximum value of pixels of
the image is 227 and each of the pixels are divided by 227 in order to normalize
the pixels in between 0 and 1. A sinusoidal noise (equation (5.4.1)) is added to the
normalized image and the reconstruction of the degraded image is done by the 2D
digital band-elimination filters. The quality of the reconstructed images is calculated
in term of MSE(equations (5.2.1), (5.2.3)) and PSNR (equations (5.2.2), (5.2.4)).

50
imgns(i1,%2) = ﬁsm(o.5 * Pk 4y + 0.5 % pi % 45) + img(iy, 2); (5.4.1)

where, (0,0) < (i1,42) < (255,255), img is original image (Figure 5.11(a)) and
imgns is degraded image (Figure 5.11(b)).
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(e) (f)
Figure 5.10: The output images of the designed 2D digital Band-pass filters (a) the
output image of case I (Filter 1), (b) the output image of case II (Filter 1), (c) the

- output image of case III (Filter 1), (d) the output image of case I (Filter 2), (e) the
output image of case II (Filter 2), (f) the output image of case III (Filter 2)

151



(a)
Figure 5.11: (a) Original image of Pepper, (b) Degraded image of Pepper.

Table 5.7: The restoration of image (Pepper) by filterl when sinusoidal noise is added
to the image

Case | MSE,, | PSNRy,(dB) | MSEyy | PSNRyu(dB)
Case 1 | 1577.3885 |  16.1514 | 630.4489 |  20.0727
Case 11 | 1577.3885 | 16.1514 | 858.8890 |  18.7914
Case 111 | 1577.3885 | 16.1514 | 650.7376 | 19.9371

The effect of the 2D digital band-elimination filters on the image is shown in Figure
5.12. Figures 5.12(a), (b), (c), (d), (e) and (f) show the output images of Pepper by
using the case I (filterl), case II (filterl), case III (filterl), case I (filter2), case II
(filter2) and case III (filter2) respectively. Tables 5.7 and 5.8 give the values of MSE
and PSNR of the degraded images and the reconstructed images. The reconstruction
of images have been done by the different 2D digital band-elimination filters (filterl
and filter2). It is observed that filter2 has better PSNRs of the reconstructed images

Table 5.8: The restoration of image (Pepper) by filter2 when sinusoidal noise is added

to the image
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Case | MSE,, | PSNR.,(dB) | MSEqy; | PSNRou(dB)
Case 1 | 1577.3885 |  16.1514 | 457.4738 | 21.5271
Case 11 | 1577.3885 |  16.1514 | 470.4074 |  21.4061
Case 111 | 1577.3885 |  16.1514 | 300.6090 |  23.3508




Figure 5.12: The output images of the designed 2D digital Band-elimination filters
(a) the output image of case I (Filter 1), (b) the output image of case II (Filter 1),
(c) the output image of case III (Filter 1), (d) the output image of case I (Filter 2),
(e) the output image of case II (Filter 2), (f) the output image of case III (Filter 2)
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than filterl.
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Figure 5.13: Plot of the MSE of the reconstructed Pepper images vs g by the Band-
elimination filters (when sinusoidal noise is added to the original image).

Overall, it is observed that a certain bands of frequencies elements of the fourier
transformation of the image is attenuated by the band-pass and band-elimination
filter. The advantages of the proposed design provide the facility to obtain the desired
2D digital filter as required in the applications. Moreover, the magnitudes of g of the
filter provides more flexibility in the filter design purpose and the magnitude of g can

be chosen as required for the applications.

5.5 Summary and Discussion

An image is digitized to be stored in a computer’s memory and it can be operated
upon by various image processing operations [55]. Most of the energy of the image
is located at the low frequencies, however, the sharp edge information of the image

is located at the high frequencies. Various kind of noise can be generated in the
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image and the energy of the common noises are located at the higher frequency
range, but energy of the white noise will be spread across the frequency axis. The 2D
digital low-pass filter is commonly used to reduce the noise from a degraded image.
Section 5.2 has described the noise reduction processes, where the 2D digital low-
pass filters attenuate high frequency components of the fourier transformation of the
degraded images. As a result, the corresponding PSNR of the reconstructed image
has improved, but the blurry effect in the reconstructed image has arisen. The image
restoration process has been done by degrading an image with the known noise and the
reconstruction of the images by applying the 2D digital low-pass filters. The MSE and
PSNR of the degraded images and the reconstructed images are studied and different
comparisons are shown. Section 5.3 has described the image enhancement application
by 2D digital high-pass filters. The digital high-pass filters have attenuated low-
frequency components of the fourier transformation of the image and allowed the
high-frequency components (sharp edges) and better visualization of the image is
obtained. Finally, the effects of the 2D digital band-pass and band-elimination filters
on the images are illustrated in Figures 5.10 and 5.12. Basically, the band-pass and
band-elimination filters have attenuated certain range of frequency components of the
fourier transformation of the image. The filters are used in this chapter to attenuate
the different bands in different applications and those filters are designed by the
proposed filter design. The design provides flexibility to design any types of filter as

required for the applications.
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Chapter 6

Conclusions

Because of recent growth in the 2D signal processing activities, a significant amount
of research work has been done on the 2D filter design and it is seen that monotonic
characteristics in frequency response of a filter is getting more popular. This is because
the filters with the monotonic characteristics are one of the best filters for the digital

image, audio and video (enhancement and restoration) [10].

This thesis proposes the designs of 2D digital filter having monotonic amplitude-
frequency responses using Darlington-type gyrator networks. To the best of our
knowledge, the design of 2D monotonic amplitude-frequency responses using Darlington-
type gyrator networks have not been done till now. According to the proposed design,
the 2D digital filters are designed by Darlington-type networks containing gyrators
and the impedances of the gyrator network are replaced by doubly terminated RLC
networks. As a result, the overall 2D analog transfer function is stable in analog
domain, if the denominator of the transfer function is satisfied to be VSHP (section
2.4). The coefficients of the 2D analog filter are functions of g of the gyrator filter
and the ranges of g are defined for attaining the stable monotonic characteristics in
amplitude-frequency responses, because g has control over the frequency responses
of the filter. The GBT is applied to the stable 2D analog transfer function in order
to obtain the digital transfer function and the corresponding modified analog filter
“structure is obtained by the inverse bilinear transformation. All the parameters of the
GBT are varied to obtain the desired filter responses which satisfy the stability con-
ditions and also ensure the monotonic amplitude-frequency response in the passband
region. As a result, more flexibility is achieved for the low-pass, high-pass, band-pass

and band-elimination filter design purposes. The locations of poles and zeros of the
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gyrator filter depend on the value and/or sign of g and it is seen that the reactive
behavior of the gyrator filter is changed not only for the values of resistance, capac-
itance and inductance of the filter, but also for the value and sign of g. The digital
filter transformation method is proposed considering the value and sign of g of the
gyrator filter. The constraints of the proposed digital filter transformation method is
imposed on the gyrator filters.

For illustration, the symmetrical doubly terminated gyrator network and the non-
symmetric doubly terminated gyrator network are taken from Darlington synthesis.
The doubly terminated second-order Butterworth and Gargour&Ramachandran fil-
ters are taken as the doubly terminated RLC networks. The impedances of the gyrator
network are replaced by the impedances of doubly terminated RLC networks and it
is found that the denominator of the overall 2D analog transfer function is satisfied
to be VSHP. Higher order of the transfer function is generated by cascading the two
RLC networks or using stable higher order doubly terminated RLC networks. The
GBT (k; > 0,—1 < a; < 0,0 < b <1 and |a;b;| < 0) is applied to the transfer func-
tion in order to obtain the digital transfer function and the coefficients are functions
of g of the gyrator filter. It has been shown in the case of symmetric and nonsym-
metric gyrator networks that the stable 2D digital low-pass filters are obtained due to
lower values of g. When the value of g is started to increase, the 2D digital low-pass
filters are changed into the 2D digital high-pass filters. In the symmetrical doubly
terminated gyrator network, the effect of negative values of g on the denominator of
the transfer function are same as positive values of g, but more sharp slopes in the
frequency responses are obtained due to the effect of the negative value of g on the
numerator. The negative values of g of the nonsymmetric doubly terminated gyrator
network have inverted the frequency responses of the filter as of the positive values
of g. The proposed design of digital band-pass and band-elimination filter can be
continued from the 2D digital low-pass/high-pass filter which can be transformed to
a 2D analog low-pass/high-pass filter by the inverse bilinear transformations. The
2D analog filter is transformed to the 2D digital band-pass or band-elimination filter
by the summation of two GBTs and the bandwidths and center frequencies of the
2D digital band-pass and band-elimination filter are controlled by the parameters of
the GBTs. Finally, in the proposed digital filter transformation, it is found that the
2D digital low-pass to high-pass filter or 2D digital band-pass to band-elimination
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filter or vice-versa transformation is obtained by regulating the value and/or sign of
g: However, the low-pass to the band-pass or the high-pass to the band-elimination
filter or vice versa transformation is obtained by regulating the value and/or sign of

g and the parameters of the GBTs.

In Chapter 2, the doubly-terminated gyrator networks are introduced and the
transfer function of each filter is derived. For the frequency transformation of the
filter, the GBT [15] is introduced and the relation between the analog domain to the
digital domain as well as the digital domain to the modified analog domain [16] are
obtained. For example, a simple filter structure is considered and the modifications of
the filter are shown. The generation of VSHPs have been done using VSHP generation
method I (section 1.7) and this method is applied to the doubly-terminated gyrator
networks. For the generation of VSHPs, the impedances of doubly terminated second-
order RLC filters are replaced with the impedances of the doubly terminated gyrator

networks and properties of the overall filters are outlined.

In the chapter 3, two filter designs are proposed for the 2D digital low-pass filter
design and the several examples are illustrated by the numerical examples. In the
section 3.2, 1D and 2D low-pass filter designs have shown and each of the responses
of the filters ensure the stability criteria. Another design is proposed for the low-pass
filter design which has much control on the transformation of a filter from analog to
digital domain and this design can overcome the drawbacks of the previous design.
The proposed design can modify the filter structure to the desired filter structure. The
GBT and the magnitudes of g of the filter are used together to obtain the desired digi-
tal filter response. The proposed method ensures the monotonic amplitude-frequency
response [17] of the desired filter. In the section 3.3, the proposed method is applied
to a transfer function and the transfer function is generated by replacing impedances

of the doubly terminated networks with second-order RLC filters.

In Chapter 4, a method is proposed to design a 2D digital high-pass filter having
monotonic amplitude—frequenéy response in the pass-band. In the section 4.2, the
method is applied to the doubly terminated networks and impedances of the gyrator
network are replaced with the differént combinations of second-order RLC filters and
the corresponding 2D digital high-pass filter respo.nses are shown. Another important

method is proposed for the frequency transformation and the method ensures the
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" monotonic amplitude-frequency response and stability of the desired filter. In the
section 4.4, the proposed method is applied to the doubly terminated networks as
before and the low-pass to high-pass filter transformations as well as the band-pass

to band-elimination filter transformations are shown.

In Chapter 5, some applications of the image processing are shown using the
various digital filters and those digital filters are obtained by the proposed design.
The 2D digital low-pass filters are used for the image restoration purposes. The 2D
digital high-pass filters are used for the image enhancement purposes. The 2D band-
pass filters are used to attenuate some frequency bands of fourier transformation of
an image. The 2D digital band-elimination filters are used for the image restoration
purposes. Overall, it is shown that the proposed design is quite useful in the case of

image processing applications, such as restoration and enhancement of images.

The overall goal of the thesis is the design of 2D digital filter having monotonic
amplitude-frequency responses using Darlington-type gyrator network. The proposed
filter design and the proposed filter transformation constitute powerful techniques for
the 2D digital filter design. It is useful for the design of a digital filter with the specified
frequency response and it can facilitate tight tolerances over a wide frequency range

or when the frequency response of an existing system is known.

6.1 Scope for Future Work

This thesis has shown the 2D digital filter design and the filter transformation method
of a Darlington-type doubly terminated gyrator network. However, this thesis can be
extended by considering n-port gyrator networks and it has been shown long time ago
(1983) that a 2-variable VSHP is generated without associating the various partial
derivatives and conditions are derived regarding the gyrator matrix ensuring that the
resulting polynomial is VSHP in nature [29]. Those polynomials can be used for the
2D digital filter.

An import'ant area noted for future work involves choosing other types of filter
structures from Darlington-synthesis and apply the proposed design and the filter

transformations. As a result, flexibilities of the design will be increased depending on

the structures.
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The proposed design has demonstrated that impedances of the gyrator filter are
replaced by the doubly terminated second-order RLC networks. But it is possible to
increase the order of the RLC filter and in such case accuracy of the filter design will
be increased. The numbers of resistance, inductance and capacitance values of the
filter give more flexibility in the filter design. Again impedances of a gyrator filter
can be replaced by the another gyrator filters and impedances of the second gyrator
filter are replaced by the doubly terminated second-order RLC networks. As a result,

two or more gyrator constants will have to be used in the design of a 2D digital filter.

Further knowledge of the GBT properties would be valuable in the digital filter
design. A comparative investigation of impulse invariance method would be effective
in the analog to digital filter transformation and the modifications of impulse invari-
ance method can be used instead of using the double bilinear transformation or the
GBT.

An extension of this work is to develop a filter design which can approximate an
arbitrary phase response.

Further investigation of the 2D digital frequency response will be necessary in

order to obtain monotonic characteristics in the passband regions of the filter.

Finally, the implementation of the 2D digital filter would be valuable in the digital
signal processing applications. Systolic implementation of the 2D digital filter can be
effective in the application, its operation can be realized to the rhythmical systolic
operation of the heart and arteries by which blood is pumped forward from one
artery to the next. This realization is not always suitable in the signal processing
applications. However, a useful technique could be pipelining of the system. The
total computation will be divided into small part and it can be assigned to a series of

different concurrent processing elements such a way that processing speed is improved.
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