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ABSTRACT

Vision-Based Curve Reconstruction

Shu Ren Li

A typical curve reconstruction problem is to generate a continuous linear representation
of a curve from a set of unorganized sampling points on the curve. These unorganized
points should be joined by edges in the order in which they appear on the curve. There
are many methods to reconstruct curves from existing point clouds. Most of the existing
algorithms are designed based on concepts from computational geometry. The current
algorithms have difficulties in reconstructing curves with sharp corners or noisy points
and they depend on predefined parameters. The present thesis proposes a different way
to reconstruct curves, that is, to reconstruct curves based on the experiments of human
vision. The curves should be reconstructed in the same manner that human beings
perceive them. In the present thesis, statistical experiments are conducted to construct a
vision function. A software system, based on that vision function, is developed to
simulate human vision for curve reconstruction. The experiments investigate the
relationships between points and the relationship between points and curves, by using
methods from Design of Experiments (DOE), ANOVA and the multivariate non-linear
regression model. The errors between the predicted values using the regression model
and the observed values from vision experiments follow normal distribution. The

algorithm based on the constructed vision function uses the key factors as input to
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identify curves for given points. Examples show that the curve reconstruction results

using this new algorithm are advantageous by comparison the results with from existing

algorithms.
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Chapter 1

Introduction

1.1 Background

The curve reconstruction problem is to reconstruct a set of unorganized sampling points

into a continuous linear representation of a curve. This problem is illustrated in Figure 1.

(a) (®) (c)

Figure 1 Conventional curve reconstruction problem

Curve reconstruction has been used in a large number of applications such as reverse

engineering, medical applications, and geotechnical exploration.

When a new product is developed, modifications are often made on a real-world
prototype. In order to reflect the modification in an element file, the real-world
prototype is often scanned with a laser scanner. A CAD model can then be derived from
the scanned model of the real-world prototype. The procedures include scanning the
prototype to take a set of sample points from the surface of the prototype, reconstructing

curves on the sample points for each layer based, and reconstructing the surfaces based



on the curves. Precisely reconstructed curves can improve the quality of the CAD model

as is shown in Figure 2.

Figure 2 Application of curve reconstruction in CAD model (Pernot, 2002)

Another application area is biomedical engineering. Computertomographers are widely
used in scanning the human body in layers, thereby gathering valuable information
about the tissue structure. Both the layered view and the three-dimensional model are in
great demand. These need to detect automatically, the boundaries between different
tissue types in the layered scans. Using curve reconstruction techniques, this
information can be processed into a collection of curves that represent the different
tissue types in each layer. Figure 3 gives an example. For example, in computer
tomography (CT) and magnetic resonance imaging (MRI), each slice or layer is a
sample of the shape created by the intersection of the scanned object with a plane. One
approach in reconstructing the surface is first to reconstruct the shapes in each layer and

then connect adjacent layers appropriately.



Figure 3 Application of curve reconstruction in biomedical engineering

In addition, geotechnical exploration also uses curve reconstruction techniques and
surface reconstruction techniques to build the 3D geotechnical model. The methodology

is similar to that used in the aforementioned applications (MRI and CT).

These applications require the curves to be reconstructed with precise, efficient, and
robust algorithms. Because of the varieties in shapes and applications, many algorithms
have been proposed over the last two decades. The target of the present thesis is general

applications.



1.2 Objective

A typical curve reconstruction problem is to generate a continuous linear representation
of a curve from a set of unorganized sampling points on the curve. These unorganized
points should be joined by edges in the order in which they appear on the curve. Two
sample points can be connected if and only if they are adjacent on the curve. In general,
there are five types of curves: a) a simple smooth open curve, b) a simple smooth closed
curve; ¢) a simple curve with sharp corners, d) a self-intersecting curve, and e) a
combination of the four basic types of curves a) to d). A simple curve is a curve without

self-intersection.

Obviously, using only these sample points, it is impossible to produce a linear
representation of the curve unless some criteria are established beforehand. Considering
the application domains of curve reconstruction algorithms, such as computer vision,
biomedical imaging, and reverse engineering, the sampling points should be connected
in a pattern that is natural to the human eye. The algorithm presented in the present
thesis is based on two observations about the human visual system in the context of
curve reconstruction: 1) two closest neighbors tend to be connected, and 2) sampling

points tend to be connected into a smooth curve (Zeng et al, 2007).

The variety of reconstruction problems is huge. However, they can be classified into
two categories. In the first category of problems, the original curve is known,
researchers analyze the properties of the curve, and they propose a sampling condition.
Then an algorithm is developed so that all samples can be correctly connected if the

sampling condition is satisfied. In the other category of problems, the original curve is



not known. The only information is a set of unorganized sampling points or a physical
curve without an equation or any other mathematical representation from this curve
using techniques such as CT or MRI as is the case in biomechanical engineering. Then

researchers develop an algorithm to reconstruct this curve.

Many curve reconstruction algorithms have been designed in recent years. Most of
those algorithms are based on concepts from computational geometry. People always
compare the algorithms by the reconstruction results. The present thesis aims to design
a new algorithm that reconstructs curves from points in the same way that human beings
perceive them. To discover the effect of human vision on curve reconstruction,
experiments were designed and conducted to identify how human vision recognizes

curves from unorganized points.

1.3 Challenges

In the second category of problems introduced above, the original curve is not known.
The only information is a set of unorganized sampling points. This category of
reconstruction problems gives rise to two challenges: how to sample the curve and how

to evaluate the result.

Suppose that a finite set of points on a plane curve is given. If the sample is large
enough and is well distributed, then it is an easy task for human beings to perceive the
shape of the curve. The human perception of curve shapes includes not only topological
aspects, such as the identification of connected components and the differentiation
between open and closed pieces, but also geometrical aspects, such as qualitative

measures of curvature and winding.



A computer, on the contrary, has no such natural perception: the sample has no priori
structure that can be exploited to provide a computational description of the curve. To
the machine, the sample is merely a list of coordinates. A fundamental problem, which
we would expect to solve using such computational descriptions, is exactly how to sort
the points in an order compatible with the natural trace of the curve as perceived by a
human. This order may be used to structure the sample into a polygonal approximation
of the curve, thus reconstructing the curve from the sample. Reproducing the human
perception of shapes from dot patterns (dense uniform samples of “fat" points on plane
regions) is a classical problem in low-level computer vision, pattern recognition, and
cluster analysis (Zahn 1971; Toussaint 1980). Much of the work in computational
geometry was originally motivated by problems in these fields. Toussaint (1980) coined
the term “computational morphology” for use in computational geometry for extracting

shape information.

1.4 Contributions

The major contributions made in the present thesis can be summarized as follows:

1. Construction of a vision function based on experiments. The present thesis

analyzes the experiment and calculates the regression model.

2. Development of a vision-based curve reconstruction algorithm.

1.5 Thesis organization

The rest of the present thesis is organized as follows:



Chapter 2 reviews the main algorithms for curve reconstruction and the basic concepts
behind these algorithms, such as the Voronoi diagram, Delaunay triangulation, a-shape,
medial axis and local feature size. The following algorithms are reviewed: ABE
algorithm, NN-CRUST algorithm, Conservative-crust algorithm, GATHAN algorithm,

and TSP algorithm.

Chapter 3 introduces a distance-based parameter-free algorithm. Also introduced are the
criteria for the connectivity of points, the necessary and sufficient conditions for the

sampling, and the platform for curve reconstruction algorithms design.

Chapter 4 explains the procedure of the modeling of human vision in the context of

curve reconstruction. It includes factors analysis, experiments, and regression.

Chapter 5 gives a vision-based curve reconstruction algorithm. The comparison

between the algorithm and current algorithms is discussed.

Chapter 6 summarizes the main research results based on the present thesis and points

out future research directions.

The list of my publications completed during my graduate studies is provided after

Chapter 6.



Chapter 2 Literature Review and Fundamental Concepts

As mentioned in Chapter 1, the curve reconstruction problems can be classified into two
categories. In the first category of problems, the original curve is known; a sampling
condition can be proposed by analyzing the properties of the curve. Then an algorithm
is developed so that all samples can be correctly connected if the sampling condition is
satisfied. In the other category of problems, the original curve is unknown. The only

information is a set of unorganized sampling points.

For the first category of reconstruction problems, a curve can be sampled either
uniformly or non-uniformly (Dey, 2004), which have been handled by researchers with
different algorithms. A uniformly sampled simple closed curve can be reconstructed
using the algorithms such as minimum spanning tree (Figueiredo et al, 1994), alpha
shapes (Bernardini et al, 1997, Edelsbrunner et al, 1983), and r-regular shapes (Attali,
1997). For non-uniformly sampled simple closed curves, the crust and skeleton method
has been developed by Amenta, Bern and Eppstein (Amenta et al, 1998), and refined by
Gold (Gold, 1999). Dey and Kumar also proposed an algorithm to deal with this type of
curve using the nearest neighbor, medial axis, and Delaunay triangulation (Dey et al,
1999). For simple open curves, a method using Voronoi and Delaunay disks of edges
has been introduced by Dey, Mehlhorn and Ramos (Dey er al, 1999). To reconstruct
curves with sharp corners, Dey and collaborators have recently developed another
algorithm based on two predefined parameters: a threshold distance for filtering
Delaunay triangles and an angle to adjust the smoothness and sharp corners in the

reconstruction of curves (Dey et al, 2001). One of the main difficulties in using this

8



algorithm is the selection of the predefined angle parameter. According to Dey and
Wenger (Dey et al, 2001), the performance of the algorithm is "heavily dependent" on
the value of the predefined angle. The shape of the curve to be reconstructed and the
sampling properties of the curve usually determine this angle. In addition, methods for
solving the Traveling Salesman Problem (TSP) were also used by Giesen (Giesen,
1999). Althaus and Melhlhorn (Althaus er al, 2000) also used travelling Salesman
Problem (TSP). This method always generates a single curve due to the nature of the

TSP algorithm.

All algorithms mentioned above have been proven correct for certain types of curves by
using rigors mathematical procedure. The reconstruction results are homeomorphic to
the original curve and correct. However, despite the successes of such algorithms that
have already been developed for problems of the first group, it is still an open task to
develop an algorithm that could deal with the second group problems, for it is not
known much information about the topology of the curve and therefore any assumption
about the curve cannot be made. The only information provided to a curve
reconstruction algorithm is a set of sampling points and no knowledge about the
topology of the curve is available. The algorithm developed for this type of problems
will be able to distinguish and reconstruct multiple simple curves that may be open,
closed, and/or with sharp corners. As such, some concepts that applied to problems of
the first group, such as uniformly distributed or non-uniformly distributed sampling,
cannot be applied directly to the second type of problems. As a result, most of the
existing algorithms fit well for problems of the first group but not for the second

category. On the contrary, an ideal curve reconstruction algorithm for problems of the
9



second group should not make any assumption about the type of curves to be

reconstructed and the characteristics of the sampling points.

The objective of the present thesis is to develop a curve reconstruction algorithm for the
second category problem. Before a more detailed review is given for the existing curve

reconstruction algorithms, concepts used in the curve reconstruction will be introduced.

2.1 Preliminaries

2.1.1 Voronoi diagram:

Voronoi diagram, named after Georgy Voronoi (Voronoi, 1907), is a decomposition of
a metric space determined by distances to a specified discrete set of objects in the space,
e.g., by a discrete set of points. Voronoi diagrams that are used in geophysics and
meteorology to analyze spatially distributed data are also called Thiessen polygons after

American meteorologist Alfred H. Thiessen. In the simplest and most common case,

given a set of points S € R’, and the Voronoi diagram for S is the partition of the plane
that associates a region V(p) with each point p from S in such a way that all points in
V(p) are closer to p than any other points from S. A formal definition is given as

follows (Dey, 2004).

Definition of Voronoi diagram (Dey, 2004): Given a point set P € R? the Voronoi

diagram Vp of P is a collection of Voronoi cell V, , for each point p € P, where
V,={xeR'||x-pl<lx—ql||Vge P}
Figure 4 shows an example of 2D Voronoi diagram.

10



Figure 4 Example of Voronoi diagram

2.1.2 Delaunay triangulation:

Delaunay triangulation or Delone triangularization for a set P of points in the plane is a
triangulation DT (P) such that no point in P is inside the circumcircle of any triangle in
DT (P). Delaunay triangulations maximize the minimum angle of all the angles of the

triangles in the triangulation. A formal definition is given as follows.

Definition of Delaunay Triangulation (Dey, 2004): The Delaunay triangulation of a

point set P € R is the simplicial complex D, so that a simplex with vertices {py,

P2,-..pk}is in Dy if and only if [

i=l,.k

Vp,v&d).

Figure 5 is an example of Delaunay triangulation. It is observed that the dual graph for a

Voronoi diagram corresponds to the Delaunay triangulation for the same set of points S.

11



Figure S Example of Delaunay triangulation

2.1.3 a-shape:

Edelsbrunner ef al (Edelsbrunner et al, 1983) define the a-shape of a point set P € R”
as the underlying space of a simplicial complex called a-complex. The a-complex of P
is defined by all simplices with vertices in P that have an empty circumscribing disk of

radius «.

Imagine that using one of these sphere-formed ice-cream spoons by carving out all parts
of the ice-cream block that can be reached without bumping into chocolate pieces,
thereby even carving out holes in the inside (e.g. parts not reachable by simply moving
the spoon from the outside). In such a way, a-shape can be obtained as shown in Figure

6.

12



Figure 6 Example of g-shape

2.1.4 Medial axis and local feature size:

In many algorithms such as CRUST (Amenta et al, 1998), NN-CRUST (Dey and
Kumar, 1999), Conservative-crust (Dey et al, 1999), and GATHAN (Dey et al, 2001),
medial axis and local feature size are two key concepts by which sampling conditions

are given.

Definition_of Medial axis (Amenta ef al, 1998): The medial axis of a curve F is the

closure of the set of points in the plane that has two or more closest points in F.

13



The light curves are the medial axis of the heavy curves.

Figure 7 Example of medial axis (Amenta ef al, 1998)

Figure 4 shows the medial axis of a smooth curve. That includes components of the
medial axis on either side of the curve, so that some components of the medial axis may
extend to infinity. Since the medial axis is defined to be a closed set, it includes the
centers of all empty osculating disks (the empty disks tangent to F with matching
curvature), which are its limit points (Amenta et al, 1998). The medial axis can also be

thought of as the Voronoi diagram generalized to an infinite set of input points.

Definition of local feature size (Amenta er al, 1998): The local feature size, LFS(p),

of a point p € F is the Euclidean distance from p to the closest point m on the medial

axis.

14



P

LFS(p) 1s the distance d(p,m), not the perpendicular distance
d(p,m') to the center of the largest empty tangent ball at p.

Figure 8 Example of local feature size (Amenta ef al, 1998)

Figure 4 shows an example of local feature size. It should be noted that this definition
of local feature size depends on both the curvature at p and the proximity of nearby

features because it uses the medial axis (Amenta et al, 1998).

2.2 Previous Work

In this section, the present thesis will review the existing curve reconstruction

algorithms. They include Crust, NN-CRUST, Conservative Crust, CATHAN, and TSP.

15



2.2.1 ABE algorithm (CRUST)

ABE algorithm (Amenta et al, 1998) is the first algorithm for curve reconstruction that
applies Delaunay and Voronoi diagrams. The algorithm is mainly composed of three

steps:
Step 1: Constructs the Voronoi diagram VD of the points in S,

Step 2: Constructs a set L=S UV, where V is the set of vertices of VD,

Step 3: Constructs the Delaunay triangulation DT of L and makes G the graph of

all edges of DT that connect points in S.

It is proven that CRUST correctly reconstructs a collection of closed smooth curves I if

the sample set S is an e-sample for £< 0:252 (Funke,2001).

A Vorono: diagram of a point set S and the Delaunay triangulation of SU V., with the crust lughlighted.

Figure 9 Example of ABE Algorithm (Amenta ef al, 1998)
Figure 9 is an example of curve reconstruction using ABE algorithm. Figure 6 shows

the detailed flow chart of the algorithm.

16



S: a set of points

Construct the Yoronoi diagram System

V

I

V:a set of vertices,

W I W

Lil=5U¥

Construct the Delaunay triangulation %

|

D:Delaunay triangulation

E:End Points of D

V V

I

C<=EN5:end points of edgesin 5

v v
|

Discard all other edges of D

Figure 10 Flow chart of ABE algorithm

2.2.2 Reconstruction of smooth curves (NN-CRUST)
NN-CRUST (Dey and Kumar, 1999) computes crust in three steps:

Step 1: Compute the set of edges N that connect nearest neighbors in P.

17




Step 2: Let Pa be a point that is incident with only one edge E. in N. Compute
the shortest edge incident with Pa among all the edges that make an angle more

than 7 /2 with E.. Let D be the set of all such edges.
Step 3: Output G=N U D.

Both steps 1 and 2 can be performed on the edges of the Delaunay triangulation. An

Example using NN-CRUST is shown in Figure 11.

Figure 11 Example of NN-CRUST algorithm

This algorithm requires the sampling density e < 1/3. It can solve the problem of curve
reconstruction that takes a set of sample points on a single smooth closed curve C. It
cannot treat the sharp comer, intersection problems and endpoint problems. The

algorithm does not need parameters and can be extended to three dimensions but it

needs special care of endpoints.
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All the reconstruction calculations are in the edges of the Delaunay triangulation. If one
of the sample points is missing or some noise points are added, the Delaunay

triangulation will have some wrong edges, which result in a wrong connection.

The algorithm requires that Delaunay triangulation and medial axial should be
computed first. The computation of Delaunay triangulation needs O (nlogn). Then steps
1, 2, 3 all need O (n) in R®. However, in step 2, there should be at least n iterations,
which means that step 2 actually needs O (n®). Therefore, the total time complexity
should be O (nd). Meanwhile, since Delaunay triangulation is needed, the space
requirement in this algorithm is much larger than those algorithms without using

Delaunay triangulation.

2.2.3 Reconstruction of curves with or without boundary (Conservative-crust)

The Conservative-crust algorithm (Dey et al, 1999) takes as input the point set P and a

parameter o . It outputs a plane graph G with vertex set P and a curve that witnesses the

correctness of the reconstruction. In details, the algorithm is described as follows.
Algorithm Conservative-Crust(P; p)

1. Compute the Delaunay triangulation D(P ).

2. Extract the Gabriel graph G(P ) cD(P).

3. Compute the graph Gy = G(P ), where e € G(P )is in Gy iff B(e,l(e)/ o) is

a V-disk.
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4. Refine Gy into G by eliminating any e € G, for which X = B(e,1(e)/4 p )N Gy
contains a degree-0 vertex or a degree-1 vertex not connected to e within X.

Repeat until no such edge remains.

5. Output G as defined above.

The algorithm computes the Delaunay triangulation, and then deletes some of invalid
edges. The idea of algorithm is how to figure out the invalid edges. The algorithm use
Gabriel graph, if B (e,l(e)/ p)isa V -disk. B (e,l(e)/4 p ) without a degree-0 vertex or a

degree-1 vertex to delete invalid edges. An example is shown in figure 8.
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Figure 12 Example of Conservative-crust Algorithm (Dey ef al, 1999)

The algorithm uses a global parameter 0 and can compute multiple curves. However, it

cannot treat the sharp corners and intersection problems. Another problem with this

algorithm is that if the global parameter p is too small, some of points cannot be

connect; if P is too large, some parts of crust will be over-connected.

The accuracy of the algorithm heavily depends on the global parameter P .
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The computational time of the algorithm is O(n log n). The algorithm needs to calculate

order-1, order-2 and order-3 Voronoi diagrams, Delaunay triang]es.

2.2.4 Reconstruction of curves with corners (GATHAN)

The algorithm GATHAN (Dey et al, 2001) is described in the following.

Gathan(P,0.,p);

Compute the Voronoi diagram V5 ;
Foreachp €P do

Compute the pole and the normal line 1.

Let E be the set of Delaunay edges incident to p satisfying the following

Conditions:
A. normal to each ¢ € E makes an acute angle less than a with |, ,
B. h/I> p where | and h are the lengths of e and its dual Voronoi edge.

Keep only the smallest edges pq € E and ps € E on each side of .
End for

Delete any edge that is not among the smallest two edges incident to a sample point.

End

The algorithm first computes all the Delaunay edges. Then, it computes the normal line
I, for each edge and pole for each point. Usually, the pole is farthest Voronoi vertices
from the samples in their respective Voronoi cells if a Voronoi cell is bounded,
otherwise the pole is estimated to be the average of the directions given by the two
unbounded rays. Amenta and Bern (Amenta et al, 1998) observed that a Voronoi cell Vo

for a sample p is elongated along the normal direction if the sampling condition (R) is
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satisfied. Therefore, the direction of the pole is that along which Voronoi cell is

elongated.

This algorithm can compute non-smooth curve problems for curve reconstruction. It can
compute multiple curves with shape corners and endpoints, but it cannot compute
intersection problems and it is hard to extend to 3D.

This algorithm needs two parameters: ¢ and p. a determines how sharp the corner
can be where p determines how detailed the outline of the crust will be. Therefore, the

algorithm is very sensitive to two parameters: @ and o .

Obviously, some parts of crust may have wrong edges because the algorithm has to
choose a compromised value. In some situations, if shape corner and endpoint are not

very clear, the algorithm may compute wrong corner.

The computation of Delaunay triangulation needs O (nlogn). The algorithm computes

Delaunay triangulation, the normal line and Voronoi edge.
2.2.5 TSP algorithm
Some researchers view curve reconstruction as a TSP problems (Althaus er al, 2000).

1. Compute the Delaunay triangulation of the given points. Delete parallel edges

and compute the length of the remaining edges.

2. Create an L, for this graph and add the degree constraints to the L,.
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3. Tterate solving the L, and computing violated cutest constraints until either the
current solution is integral and the graph is connected, or any violated constraint

cannot be found.

Since TSP algorithm always generates a single curve, it is not suitable for general curve
reconstruction problems. In addition, TSP algorithm in computational complexity

theory is classified as NP-hard.

Table 1 is a comparison of four algorithms.

Name Scope Advantage Disadvantage Complexity
ABE Multiple Simplicity It cannot treat O(n log n)
smooth curve the sharp
corner, and
endpoint
problems.
NN-CRUST Single smooth Simplicity It cannot treat O(n log n)
closed curve the sharp
corner,
intersection
problems and
endpoint
problems.
Conservative- | Multiple The algorithm It cannot treat O(n log n)
crust smooth curve can compute the sharp
multiple curves. | corner,
intersection
problems.
GATHAN Multiple The algorithm | It cannot treat O(n log n)
nonsmooth can compute intersection
curve multiple curves | problems.
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with sharp

corner

TSP

Single smooth

closed curve

The algorithm
can compute
single curves
with sharp

corner

It cannot treat
multiple curves

and intersection.

NP-hard

Table 1 Comparison of ABE, NN-CRUST, Conservative-crust and GATHAN

All the algorithms discussed above are based on the computation of Delaunay
triangulation. The difference between the five algorithms lies in how they compute
valid crust edges and delete invalid edges through different methods. If the algorithms

use global parameters, they may lose local feature property. Moreover, it is not accurate

to compute different curves by using the same global parameter.
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Chapter 3
Distance-Based Parameter-Free Algorithm

3.1 Introduction

The Design Lab (CIISE, Concordia) developed a distance-based parameter-free
algorithm for curve reconstruction (Zeng et al, 2007). This chapter will review this
algorithm. The distance-based parameter-free algorithm, named DISCUR, is a simple,
efficient, and parameter-free algorithm to reconstruct curves from unorganized sample
points. The scope of this algorithm includes multiple simple curves that may be open,
closed, and/ or with sharp corners. The algorithm is able to deal with the cases that the

given information is only point cloud with or without knowing the sampling curves.

The algorithm originates from two observations made concerning the human visual
system: 1) two closest neighbors tend to be connected, and 2) sampling points tend to be
connected into a smooth curve. Based on these two observations, the neighborhood
features of a curve and the statistical properties of a set of samples are studied. A
general vision function is proposed to quantify the connectivity of a point with a curve
segment. The necessary and sufficient sampling conditions for the algorithm to work
correctly were included in two theorems, which define the precise scope of the

algorithm.

Section 3.2 will introduce the criteria of the connectivity of points, followed by the
distance-based parameter-free algorithm for curve reconstruction. The sufficient and

necessary sampling conditions are explained in Section 3.4. The algorithm (DISCUR) is
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developed and implemented on the curve reconstruction platform designed by myself.

This general platform will be briefly introduced in 3.5.

3.2 Criteria for the connectivity of points

3.2.1 Notations

A finite set of n points is denoted as P = {p,, p,...., p,} . The quasi-distance between two

point sets P and S can be defined as

d(P,S)=min{|p, -s,|

si=1...kand j=1,..,m}. (3.1

A polyline is a continuous and piecewise linear curve. It can be denoted by

T =[y,¥5¥,).- Ina <h,, o, > —distributed polyline, < h,, 5, > present

m—1
h, = Z,.=1 ||y,. I)’m” (3.2)
m—
o, :\/Z:(“yf—y;u”—hd)z (3.3)
m—

Symbols < h,, 0, > are distance mean and standard deviation of a polyline.

3.2.2 Requirement for curve reconstruction algorithms

A curve reconstruction problem can be reduced to a combination of connecting points
and connecting a point with a curve. Thus, the criteria for the connectivity should be

investigated.
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The major challenges in designing a curve reconstruction algorithm are: first, how to
handle multiple features such as boundaries, sharp corner, intersection, and outlier
points. Secondly, what criteria should be chosen for evaluating the correctness of

reconstructed curves.

In this research, it has be assumed that the points should be connected in a pattern that is
natural to the human perception. To illustrate, two general observations about human

vision are given below:
¢ Nearness: the nearest neighbors tend to be connected.
* Smoothness: the connected curve tends to be as smooth as possible.

The nearness observation implies that two neighbors could be connected if their
distance is small enough. The distance-based parameter-free algorithm (DISCUR)
implies smoothness by considering only nearness under the assumption that if a curve
can be reconstructed in the way that human beings perceive it, then this curve has the

best smoothness among all its possible reconstructions.

By using the geometric features of samplings, the observation of nearness shows the

connectivity of two points and the criterion of the connection.

The proposed geometric features for a sample set of a simple smooth closed curve in R”

can be described as follows: for a given finite set S in R” with |S|= m - 1 > 2, there is an
order of y,y,,..., y,, for all points in S such that the closed polyline T = [y, 5,,...,

Ym» Ym= ¥ ] satisfies:
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(NF1) (Neighborhood Feature 1): For all zes, if wes is its nearest neighbor, then z

and w are adjacent vertices on the polyline T.

(NF2) (Neighborhood Feature 2):

(@) Forany i, j with 1<i<i+l<j<m-1, ifd(y,,S-{y,...., Yia)<d(y, . S—{ v
yipor d(y,, S ={ys y,0D2 d(¥,, S = {¥;y5e ¥, ) then y,, (ortesp. p ., )
is the unique point in S so that d(y,,y)=d(y,,S-{y,,..., Y,a))(orresp.d(y;,y,)
=d(y,,S-{y,..., Y, 3)- specially, if d(y,, S - {y,,..., Yya)=4d(y,, S—{y,...,
¥,.11)then y, and y, are the nearest neighbor to each other.

(b) For any i; j with 1<i<i+l=j<m-1, ifd(y,,S-{y.,y,p =< d(y,,» S - {y,
v, Cord(y,, S={y, y,})2d(y,,S-{y, y,}) then y,_, (orresp. y,,, ) is the
unique point in S such that d(y,,y) =dy,, S - {y, ¥,}) (or resp. d(yj,yj+,) =

d(yjss_{yia y_]}))

A0, S~ ey pu)) 20,.5-13,))
4 ., ¢ +1
3 - 3 L] - 1
Za 2y ¢ i
- ]
ie 1w g 1
e} {m) . » - "s_ ””
L] o
2] s ® 4o 't vs P g oy n ®
a} Neighborhood feature (NF2a) b} Neighborhood feature {NF2b}

Figure 11 Illustration of neighborhood features (Zeng et al, 2007).
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Figure 11 a) and b) illustrate neighborhood features (NF2), which implies the
characteristics of a point adjacent to one of the boundaries of an open curve belonging

to the closed polyline T.

The nearest neighbors tend to be connected by human vision, but some curves should be
open. It also reflects another aspect of human vision. For example, in Figure 12, the

reconstructed open curve is more acceptable than the closed one.

Figure 12 Closed and open curves

Thus, a criterion should be defined to determine when two nearest neighbors can be
connected if the reconstructed curve should be natural to the human vision. Zeng ef al
(Zeng, et al, 2007) developed a dynamic vision function to define the range of

connectivity for a point p to be connected to an existing curve segment T,. A general

form of this vision function can be written as follows:
E[p.T,]1=f(p.V) (3.4)

where V is a vector that comprises statistical properties of the curve segment T,.1If

d(p,q) < E[p, T, ], then p and q can be connected. The function can be obtained through

experiments or through observations. A distance-based parameter-free algorithm for
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curve reconstruction (Zeng et al, 2007) gives a formula based on observations about

human vision.

My

iy (3.5)

d
Oy

h
Elp.T,1=h,—(1+

3.3 Distance-based parameter-free algorithm

Before introducing the distance-based parameter-free algorithm, the present thesis first
introduce a simple distance-based algorithm. This simple algorithm implements the two

observations without considering the vision function.

Algorithm: SimpleSmoothClosedCurve(Input:S;Output: T)

find the nearest neighbors x,,x, €S
T'<[x,x,],S =S —-{x,,x,} .
ifd(x;, S) <d(x,, S) then

find x, € S such that ||x1 - xOH =min{ “x1 ~X

; xe8}
T <[x|T] S =8 —{x,}

else

find x; € S such that ”x2 - X, “ = min{“x2 - X

';xeS}

T <[x,|T1], S =S —{x,}.
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end if

i3

while T[1] # TJ[i] do

if d(T[1], SU {T[il}) < d(T[i], SU {T[1]}) then

find x, € S such that |[T[1] - x,| = min{|TT1] - x

; xe8}
T < [x[TL.S < S—{x,}.

else

find x,,, €S such that |T[i] - x,,| = min{|T[i] - x|; xe S}
T<[Tlx,.S<=S—{x,,}

end if

i<i+l

end while

Output T.

The basic idea of this algorithm can be explained as follows: first, find two different

points x,,x, € S that have the minimum distance in S. Second, find X,, X, such that

b4

%, —xo]|= d(x,.8 - {x,,x,})and s = x| =d(x,.8 — {3, 3) - I o, = x| < [, — x,

then x; is added to the head of T and the polyline is updated as T = [x4:%5%,]
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Otherwise, x; is added to the tail of T and the polyline is updated as T = [x5%,5%;].

Third, from the new T (for convenience, the present thesis write T = [x,; x,; x,]), find
x, and x, such that “xl —x0“= d(x,.S —{x,,x,}) and “x3 —x4||= d(x;.8 = {x,,x;}). If

||x1 _xO“ <||x3 R

, then x, is added to the head of T and the polyline is updated as T
= [Xy5%,5x,;x,]. Otherwise, x, is added to the tail of T and the polyline is updated as

T =1x:x;%;x,]. Step by step, T can be expanded into a reconstructed closed

polyline. Figure 11 shows a set of sample points and the reconstructed curve using this
algorithm. The reconstruction of the closed polyline in Figure 13 is implemented
according to the following procedures: [8; 11— [8; 1; 5] — [3; 8; 1; 5] — [3; 8; 1; 5; 4]
—[7;3;8,1;54] = [2;7;3;8,1;5,4] > [6;2; 7;3; 8; 1,5, 4] — [6; 2; 7; 3; 8; 1, 5;

4; 6].

It is proven that any evenly sampled C'-curve has the geometric features (NF1) and
(NF2), and any curve that satisfies (NF1) and (NF2) can be reconstructed by Algorithm:

SimpleSmoothClosedCurve [15].
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a) Original sample points b) Reconstructed curve

Figure 13 Example of Distance-based algorithm

The algorithm DISCUR improves this algorithm by using the vision
h ko

function E[p, T, ] = hd§(1+o_—‘:)"" . Algorithm DISCUR has three main steps. Step 1

computes the Delaunay triangulation for the sample set S and do initialization. Step 2

processes all the Delaunay edges to determine which edges should be connected, which

edges should be removed, and which edges should be retained for further procession.

Step 3 processes the Delaunay edges retained in step 2 and completes the curve

reconstruction.

Algorithm DISCUR (Sample Set: S)
1: Step 1 — Delaunay triangulation and initialization

2 Step 2 — Determining the connectivity of Delaunay edges
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3 Step 3 — Updating the connectivity of Delaunay edges

4 Output the reconstructed curves

by
Algorithm DISCUR uses the vision function E[p,Tq]=hdﬁ(l+h—d)"" to check the
s o

d
connectivity between a point and a curve but not connect the point directly. By this way,
all the Delaunay edges that meet the vision function will be connected and the Delaunay
edges conflict with the vision function will be disconnected even if they are the shortest

neighbors.

3.4 Necessary and sufficient condition for the sampling

Necessary and sufficient conditions for the algorithm DISCUR to work correctly are

given in two theorems as follows (Zeng et al, 2007):

Theorem 1 Suppose that S is a set of sample points on a curve or a collection of curves.

For every sample point peS , points tL ,tf) €S are the two neighbors of p

and pe{t ,t’} . Without loss of generality, it can be assumed that

r, =d(p,t,) = max{d(p,t,),d(p,t>)}. There exists an N, which is a subset of S, such
— . 1 2 . .

that N, ={ge S:d(p,q) < r,and q #p,t .t} . The point p will be guaranteed to be

connected to its neighbors t. and t? by Algorithm DISCUR, if and only if the
P P

following conditions are satisfied:
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1) r, <max{E[p.T, 1. Et,.T,1}.37,.7, (3.6)

2) [N,| = 01v[dp,q) >, Aq %12, Vg e N, ] 3.7
where Elp,T ' ] and E [t;, 7,1 are the vision function and
r, =d(q.}) = max{d(g,1!),d(g,°)}

Theorem 2 Suppose that S is a set of sample points on a curve or collection of curves.
For every boundary pointp € S, there exists a set B, , which is a subset of S, such that

B, = {qeS:[p,q] is a Delaunay edge}. The point p will not be connected to any point

in B by Algorithm DISCUR, if the following tow conditions are satisfied:

1) All interior points are sampled according the Theorem 1

2 d(p.g)zmax{E[p.T,},E[q.T,1}.Vq € B,.T,.T,

where E[p,T,] and E[q,T, ] are the vision function.

3.5 Platform for curve reconstruction algorithm design

During the development and research of the curve reconstruction algorithm, I designed
a platform for developing curve reconstruction algorithms. This platform implements
almost all the major algorithms about curve reconstruction. The platform provides a

toolkit to help researchers implement and evaluate new algorithms.

The function of the platform includes a graphic interface to show points and

reconstruction result, Voronoi diagram, Delaunay triangulations, Circumcircle, multiple
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data [/O method, demonstration of curve reconstruction algorithms, sampling tool,

statistic tools, and software interface for implementing new algorithms.

The interface of the platform is shown as below:

Figure 13 Interface 1 of the platform for curve algorithm design

This interface provides general geometric calculation for the curve reconstruction
algorithm. It includes points input, grid display, mouse location, Voronoi diagram,
Delaunay triangulations, and Circumcircle in Figure 13. Inside the platform, it also
provides the software interface for these calculations. When researchers design or test a

new algorithm, they do not have to implement these algorithms. They can use the result
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directly. It can also load a picture as background for gathering points or comparing

algorithm results.

rvelecorstructionTool By D urveReconsirartronTool

(a)
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(d)

Figure 14 Interface 2 of the platform for curve algorithm design

These interfaces in Figure 14 (a) are designed for algorithm testing, sampling and
statistical information collecting. The first panel provides almost all the current curve
reconstruction algorithms; the second panel gives some simple sampling tools and the
last one can measure the segment length and do some statistical calculation as is shown
in Figure 14 (d). All the functions have been put into a software library for the future
use. Researchers can use all the functions in the user interface. A geometric class library
is also built. It helps the researcher implement the new algorithm by providing many

data structures, classes, statistical functions and graphic output interface.
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Chapter 4
Design of Vision Function for Curve Reconstruction

As was indicated in chapter 3, algorithm DISCUR uses the vision function

hy

h o . .. .. .
—(1+—%) in determining the connectivity between two points. The form
s o,

E[p,Tq] =h,
of this vision function affects greatly the algorithm performance. Although this function
works well, it does not consider the smoothness of curve explicitly. As a result, the

sampling for sharp corners and two close curves would need extra effort (Zeng et al,

2007). This chapter aims to redesign this vision function based on experiments.

In understanding human vision, Gepshtein and Nanks did the research in size perception
of vision and haptics (Gepshtein, Banks, 2003). Some other researchers studied the
conscious experience and brain stimulation, like Baars, Ramsey (Baars, Ramsey, and
Laureys, 2003) and Libet (Libet, 1966). Levin presented a geometric method for
measuring and characterizing the perceptions of an observer of continuum of stimuli
(Levin, 2000.). It is assumed from the previous work that there must be some relations
between human vision and curve reconstruction. The present research attempts to
explore the possibility to design experimentally the vision function E[p, T4]. This
chapter will present a framework of this experiment that the author tested himself. A
more systematic experiment will be redesigned based on this exploration and is the

future work of this research.
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The rest of this chapter is organized as follows: the challenges of constructing the vision
function are introduced in Section 4.1. The experimental framework for designing the

vision function is given in Section 4.2. The last section summarizes this chapter.

4.1 Background of experiment

To design the vision function with the help of human vision, it is essential to understand
the human perception (Morrone, Burr, 1988). The human visual system is a very
complex system, which involves color, size, background, etc (Lubin, 1997). Since this
chapter aims to design the vision function for curve reconstruction, the experimental
framework will be developed in this specific context (Chellappa, Wilson, Sirohey,

1995).

The vision function should be a simple formula that can be computed efficiently. From
the point of view of curve reconstruction algorithm, the inputs of the vision function
must be a point and a curve. The output is the connectivity value that presents the
relationship between the point and the curve. The two major challenges to find the

vision function are summarized as below:

e  The vision function must consider all the major factors that affect the

characteristics of the potential curve to be reconstructed.

e The selection of regression model for the quantification of vision

function.

To find vision function, all the potential factors in the context of curve reconstruction

are firstly enumerated. Then experiments are designed and implemented to exclude the
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minor factors and to keep the major ones. Finally, the experiment of data of the major
factors is used to construct the vision function and to evaluate the correctness of the

function.

4.2 Factor analysis

Before designing the experiments, as many factors as possible should be considered. In
looking into the problem, the following relevant factors are apparent: distance between
points, angles at each curve node, curve extension (the maximum distance that a point
could have from a curve for the point to be connectable to the curve), sharp corner,
curve-to-curve distance, point size, point color, background color, shape of curve, curve
length, etc. As the present thesis focuses only on the geometric factors in the context of
curve reconstruction, only point size, point distance, and angles are considered.
Intuitively, since when people reconstruct curves from points, the absolute distances
and angles are not essential. Instead, only the mean and variance of these variables are
more important, which implies the smoothness, homogeneous and continuousness of a
curve. The present thesis uses experiments and regression to identify these factors,
based on which a new algorithm is designed and implemented. The validity of these

assumptions is evaluated according to the results of the algorithm in chapter 5.

If the experiments consider all the factors, the sample size for the experiment would be
huge. Suppose that the 10 factors of points' distance, curve angle, curve extension, sharp
corner, curve-to-curve distance, point size, point color, background color, shape of
curve and curve length are considered and each factor has 4 levels, the total samples
will be 1048576 (4'%). To finish the experiments with the speed of 1 second per sample,
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it would take 2 years without a break. For this consideration, experiments are done by
starting with the simplest factors. If some factors do not affect the curve reconstruction
result, they will be eliminated and then factors that are more complex are added to the
experiments. Such procedure is repeated and only the most significant factors are kept.
Finally, a multivariable nonlinear regression model is applied to identify the

relationship between those major factors and connectivity.

The procedure of designing experiments for constructing the vision function is as

follows:

Firstly, the simplest situation is considered, that is, a straight line is constructed by
points. Through these experiments, the relationships among point size, point absolute
distance, point’s distance variance, curve extension and the interactions between these
factors are analyzed by using analysis of variance (ANOVA). The objective of this

experiment is to identify the major factors of straight line reconstruction.

Secondly, keeping the major factors from step 1, the present thesis adds the curve angle
to generate experiment of data. The objective of this experiment is to identify the major
factors of curves with angle. Based on the result of these experiments, a multivariable

nonlinear regression model can be applied to construct the vision function.

4.3 Experiments of straight line

In this step, two experiments are designed. The objective of the first experiment is to
exclude the influence of the point size. The point size should be considered because the

sample points cloud is drawn on the screen. The point can be drawn in a small dot or a
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big disk. In the context of curve reconstruction algorithm, the point size should not be
considered. Thus, before doing the experiment related to the curve reconstruction, an
experiment should be done to make sure that effect of the point size in the experiments
can be eliminated. The second experiment is related to the mean of point distance,
standard deviation of point distance, extension rate (the scale rate of point to curve
distance by the mean of point’s distance of curve), and point count. This experiment can

find out the significant factors in the straight line.

4.3.1 Experiment 1

The objective of this experiment is to find out the effect of point size on the vision
function. The input is the horizontally distributed points of various sizes. The output is
the connection of the points. A software system is developed for this experiment, the

interface of which is shown as below:
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points are drawn
are: 200 400

The point cloud is created with the following factors: point size, point’s absolute
distance and the point count. The point size distributes in 2 pixels, 3 pixels and 4 pixels.
The distance between two points distributes in 200 pixels, 300 pixels and 400 pixels.

The point count distributes in 2, 3 and 4. The points are generated and sorted randomly.

(b)

The sample data is listed in the table below:

Figure 15 Survey of simple curve’s extension

Index Location Size Distance Count
1 2 3 4
20 0| 400 800 0 2 400 3
27 0| 400 800 1200 4 400 4
17 0 300 600 0 4 300 3
18 0 300 600 900 4 300 4
24 0| 400 800 1200 3 400 4
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23 0] 400 800 0 3 400 3
10 0| 300 0 0 2 300 2
11 0| 300 600 0 2 300 3
7 01 200 0 0 4 200 2
3 0} 200 400 600 2 200 4
19 0| 400 0 0 2 400 2
14 0| 300 600 0 3 300 3
21 0] 400 800 1200 2 400 4
1 0| 200 0 0 2 200 2
4 0{ 200 0 0 3 200 2
16 0| 300 0 0 4 300 2
15 0| 300 600 900 3 300 4
12 0| 300 600 900 2 300 4
25 0] 400 0 0 4 400 2
26 0| 400 800 0 4 400 3
9 0| 200 400 600 4 200 4
13 0{ 300 0 0 3 300 2
6 0] 200 400 600 3 200 4
22 0| 400 0 0 3 400 2
2 0 200 400 0 2 200 3
8 0| 200 400 0 4 200 3
5 0| 200 400 0 3 200 3

Table 2 Sample data from experiment 1

There are a total of 27 trials in experiment. The experiment is repeated 9 times on IBM
PC under the common working environment. The decision about the connectivity is
made based on the points drawn on screen. The time spent on each decision is recorded

to identify outliers. If an experiment takes too much time, it should be redone.

One of the experimental results is listed below.

Index Time Answer
20 19 1
27 15 1
17 11 1
18 11 1
24 22 0
23 12 0
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10 10 0
11 8 1
7 22 0
3 9 1
19 14 0
14 10 0
21 9 1
1 14 1
4 12 1
16 8 1
15 8 0
12 9 1
25 30 0
26 63 1
9 8 1
13 5 1
6 12 0
22 15 1
2 15 0
8 14 1
5 7 0

Table 3 Sample result of experiment 1

As the experiment is repeated 9 times, the sum of answer is in 0 to 9. The sample data

and sum of result was analyzed by using ANOVAN in MATLAB (R2006A).

The MATLAB analysis result is listed below.

Source

Points size [} 2

Points distance 146 2

Points counts 27. z

Points size*Points distance 1.111 4

Points size*Points counts 0.889 4

Points distance*Points counts 1z._444 4

Error 1.778 g

Total 190.667 e =}

Constrained (Type ) sums of squares.

Table 4 Analysis of variance of experiment 1
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Points size 3868.7 4 1934_33 4_36 0.05z24
Points distance 4010.9 4 2005._44 4_52 0.0486
Points counts 3504.2 2 1752.11 3.9595 0.0641
Points size*Points distance 4130. 4 4 1032.61 2.33 0.1437
Points size*Points counts zZ609.1 4 65Z.28 1.47 0.2972
Points distance*Points counts £5134.9 4 1283.72 2.89 0.09338
Error 3548.4 8 443_56 T
Total 26806.7 26 xl

Constrained (Type ) sums of squares,

Table S Analysis of variance of time spent in experiment 1

In this experiment and all other experiments, both survey result and the time spent are
recorded and analyzed. Table 5 shows how these factors affect the time spent in the

experiments. Table 4 is used to determine the significant factor.

F value and Pr F have the same meanings as for multiple regressions. This is to be
expected since analysis of variance is nothing more than the regression of the response
on a set of indicators defined by the categorical predictor variable. The F Value or F
ratio is the test statistic used to decide whether the sample means are within sampling
variability of each other. This is the same thing as asking whether the model as a whole
has statistically significant predictive capability in the regression framework. F is the
ratio of the Model Mean Square to the Error Mean Square. Under the null hypothesis
that the model has no predictive capability (all of the population means are equal, which
means that the factor does not affect result), the F statistic follows an F distribution with
p numerator degrees of freedom and n-p-1 denominator degrees of freedom. The null
hypothesis is rejected if the F ratio is large. In this experiment and all other experiments,

only the factors with large F value comparing to the others are significant factors.
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From Table 4, the point’s distance and point count play an important role in the
experiment. The interaction between point’s distance and point count also affect the
decision. Therefore, the point’s distance and point count are significant factors.
Meanwhile, the point size does not affect the result significantly in the distribution of 2
pixels, 3 pixels and 4 pixels. Thus in the following experiments, the point size is not

taken as a significant factor.

From Table 5, the time spent is related to 3 factors when a decision about the

connectivity is made.

4.3.2 Experiment 2

In this experiment, the objective is to find out the significant factor in the straight line
reconstruction. The input is a horizontally distributed point cloud. The output is the
connectivity of those points. A software system is developed for this experiment, the

interface which is shown below:
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aper” simpleextension'.data2.txt

Tis is the 0 g expenmn.
3 points are drawn.
They are: 178,76 279.12 429,12

(a)
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points are drawn. )
y 53.801 224.16 366.3 666.3

(b)

Figure 16 Experiment of the straight line reconstruction

The point cloud is created with the following factors: mean of point’s distance, standard
deviation of point distance, extension rate (the scale rate of point to curve distance by
the mean of point’s distance of curve), and point count. The mean of point’s absolute
distance distributes in 50 pixels, 100 pixels and 150 pixels. The point count distributes
in 2, 3 and 4. The standard deviation of point distance distributes in 10%, 20%, and
40% around the absolute distance mean of points in normal distribution. Due to the
central limit theorem, this experiment uses the normal distribution as a model of
quantitative phenomena in the natural and behavioral sciences. Many psychological
measurements and physical phenomena (like noise) can be approximated well by the

normal distribution. The use of the normal model can be theoretically justified by
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assuming that many small, independent effects are additively contributing to each
observation. The curve extension distributes in 1 times, 1.5 times and 2 times of
absolute distance mean of points. The experimental data is generated and sorted

randomly. A set of the sample experimental data is listed below:

Index Location Mean | Deviation | Extension | Count
1 2 3 4

9 53.062 | 96.444 | 143.14 | 243.14 50 0.1 2 4
62 153.03 | 31447 | 614.47 0 150 0.1 2 3
57 152.23 | 276.83 | 437.62 | 587.62 | 150 0.1 1 4
81 53.801 | 224.16 | 366.3 | 666.3 150 04 2 4
71 167.81 | 341.51 | 641.51 0 150 0.2 2 3
48 55.673 | 154.64 | 210.21 | 310.21 100 04 1 4
51 77632 | 1475 | 284.53 | 43453 | 100 04 1.5 4
42 97.971 | 145.27 | 245.83 | 39583 { 100 0.2 15 4

5 47.729 | 94.469 | 169.47 0 50 0.1 1.5 3
18 47.072 | 97.901 | 155.56 | 255.56 50 0.2 2 4
22 75.187 | 150.19 0 0 50 0.4 1.5 2
75 108.87 | 242.77 | 321.47 | 47147 | 150 04 1 4
60 138.63 | 29527 | 45894 | 683.94 | 150 0.1 1.5 4
25 39.146 | 139.15 0 0 50 0.4 2 2
50 120.01 | 199.32 | 349.32 0 100 0.4 15 3
58 167.13 | 392.13 0 0 150 0.1 1.5 2

8 49.677 | 92.457 | 192.46 0 50 0.1 2 3
15 35.94 | 82.195 | 127.49 | 202.49 50 0.2 15 4
34 86.994 | 286.99 0 0 100 0.1 2 2

4 40.686 | 115.69 0 0 50 0.1 15 2
27 43.281 | 104.11 | 172,75 | 272.75 50 04 2 4
30 105.53 | 206.37 | 322.14 | 422.14 | 100 0.1 1 4
31 96.692 | 246.69 0 0 100 0.1 1.5 2
10 48.539 | 98.539 0 0 50 0.2 1 2
35 93.95 | 179.06 | 379.06 0 100 0.1 2 3
79 172.15 | 472.15 0 0 150 04 2 2
68 125.51 | 338.34 | 563.34 0 150 0.2 L5 3
41 111.97 | 21491 | 364.91 0 100 0.2 15 3
47 135.68 | 298.82 | 398.82 0 100 0.4 1 3
39 SL708 | 137.82 | 209.99 | 309.99 | 100 0.2 1 4
77 156.15 | 303.69 | 528.69 0 150 0.4 15 3
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3 47.069 | 104.76 | 155.46 | 205.46 50 0.1 1 4
23 50.883 | 94.6 169.6 0 50 0.4 1.5 3
59 173.28 | 344.03 | 569.03 0 150 0.1 L5 3
20 56.538 | 123.8 173.8 0 50 0.4 1 3
37 82.231 | 182.23 0 0 100 0.2 1 2
52 90.059 | 290.06 0 0 100 0.4 2 2
63 130.68 | 266.38 | 428.06 | 728.06 | 150 0.1 2 4
36 105.59 | 202.81 | 289.88 | 489.88 | 100 0.1 2 4
61 133.89 | 433.89 0 0 150 0.1 2 2
74 154,53 | 272.93 | 422.93 0 150 0.4 1 3

6 50.517 | 99.413 | 148.02 | 223.02 50 0.1 1.5 4
16 67.513 | 167.51 0 0 50 0.2 2 2
28 94.297 | 1943 0 0 100 0.1 1 2
21 63.588 | 124.68 | 194.72 | 244.72 50 0.4 1 4
69 1524 | 27429 | 44336 | 668.36 | 150 0.2 15 4

1 44.368 | 94.368 0 0 50 0.1 1 2
26 68.245 | 1148 | 2148 0 50 0.4 2 3
32 107.95 | 200.1 | 350.1 0 100 0.1 1.5 3
49 130.03 | 280.03 0 0 100 0.4 L5 2
54 1125 | 320.12 | 431.7 | 631.7 100 0.4 2 4
29 85.014 | 184.51 | 284.51 0 100 0.1 1 3
43 82.474 | 28247 0 0 100 0.2 2 2
64 149.81 | 299.81 0 0 150 0.2 1 2
46 85.965 | 185.96 0 0 100 0.4 1 2
38 80.27 | 178.84 | 278.84 0 100 0.2 1 3

7 46.332 | 14633 0 0 50 0.1 2 2
17 57.532 | 108.18 | 208.18 0 50 0.2 2 3
78 15.145 | 1345 | 299.45 | 52445 | 150 0.4 1.5 4
66 164.46 | 290.85 | 463.41 | 613.41 150 0.2 1 4
67 144.99 | 369.99 0 0 150 0.2 1.5 2
11 52.481 | 101.71 | 151.71 0 50 0.2 1 3
40 106.59 | 256.59 0 0 1060 0.2 1.5 2
12 67.382 | 133.6 | 189.87 | 239.87 50 0.2 1 4
45 76.835 | 188.44 | 293.23 | 493.23 | 100 0.2 2 4
70 200.46 | 500.46 0 0 150 0.2 2 2
53 94.007 | 143.67 | 343.67 0 100 0.4 2 3
33 87.369 | 194.04 | 280.11 | 430.11 100 0.1 15 4
14 41.924 | 87.311 | 162.31 0 50 0.2 1.5 3
76 164.91 | 389.91 0 0 150 0.4 1.5 2
19 94.737 | 144.74 0 0 50 0.4 1 2
13 50.918 | 125.92 0 0 50 0.2 1.5 2
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73 138.31 | 288.31 0 0 150 04 1 2
24 54.534 | 124.47 | 198.79 | 273.79 50 04 15 4
72 153.16 | 298.4 | 474.53 | 77453 | 150 0.2 2 4
56 153.7 | 282.17 | 432.17 0 150 0.1 1 3
65 165.73 | 356.66 | 506.66 0 150 0.2 1 3
80 160.75 | 308.51 | 608.51 0 150 0.4 2 3

2 45925 | 97.758 | 147.76 0 50 0.1 1 3
44 94.69 | 188.14 | 388.14 0 100 0.2 2 3
55 128.66 | 278.66 0 0 150 0.1 1 2

There are a total of 81 trials in this experiment. The experiment is repeated 9 times on
IBM PC under the common working environment. The sample data is regenerated for
each experiment. The decision about the connectivity is made based on the points drawn
on the screen. The time spent on each decision is recorded to identify outliers. If an

experiment takes too much time, it should be redone. Some of experimental results are

listed below.

As the experiment is repeated 9 times, the sum of answer is in 0 to 9. The sample data

and sum of results are analyzed by using ANOVAN in MATLAB (R2006A), which is

given below:

Table 6 Data of experiment 2

Index Time Answer

9 21 0
62 13 0
57 14 1
81 22 0
7 10 0
48 84 0
51 35 1
92 41 1
5 18 1
18 42 0
22 1 1

Table 7 Result of experiment 2
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Source Sq.

Hean of Points distance 1.556 zZ 0.778 0.97 0.386
Standard deviation 4.519 2 2.259 2.82 0.0695
Points extension rate 394.963 4 197.481 246.57 0

Points count 25.407 4 12z.704 15.86 0

Mean of Points distance*Standard dewviation 2.815 4 0.704 0.88 0.4838
Hean of Points distance*Points extension rate 3.259 4 0.815 1.0z 0.4079
Mean of Points distance*Points count 6.37 4 1.583 1.99 0.1113 Yo
Standard deviation*Points extension rate 59.407 4 14.852 18.54 o} N
Standard deviation*Points count 3.852 4 0.963 1.2 0.3221
Points extension rate*Points count 7.407 4 1.852 2.31 0.0711
Error 38.444 48 0.801 :
Total 548 80 ]

Constrained (Type l) sums of squares.

Table 8 Analysis of variance of experiment 2

Mean of Points distance 1479.7 4 73%.9 0.35 0.7042
Standard deviation 11437.8 2 5718.9 2.73 0.0753
Points extension rate 197862. 85 2 98931.3 47.24 0 »
Points count 1302z.3 2 6511.2 3.11 0.0537 :
Mean of Points distance*Standard deviation 14590 4 3647.5 1.74 0.1563
Mean of Points distance*Points extension rate 18574.1 4 4643.5 2.22 0.0811
Mean of Points distance*Points count 7037.2 4 1759.3 0.84 0.5066
Standard deviation*Points extension rate 44499.6 4 111z4.9 5.31 0.0013
Standard deviation*Points count 15420.5 4 3855.1 1.84 0.1364
Points extension rate*Points count 17891.8 4 4472.9 2.14 0.03%07
Error 100520.1 48 2094.2 o
Total 442335.7 80 .

Constrained (Type ) sums of squares.

Table 9 Analysis of variance of time spent in experiment 2

This experiment applies the same rule as that for analyzing the significant factor, that is,

the factors with large F value comparing to the others are significant factors.

From Table 8, the mean of point distance is not main factor because F value equals to
0.35 and the interaction between the mean of point distance and point count has a small
F value. The standard deviation and point’s extension rate affect the result very much.
The interaction between the standard deviation and the point count is a significant factor.
The interaction between the mean of point distance and point’s extension rate is a

significant factor, that is, there must be a relationship between them. The interaction can
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be understood as a part of the standard deviation of whole point cloud. Actually, the
point’s extension rate changes the standard deviation of whole points set. Therefore,
considering the whole point cloud, the standard deviation and the point count are kept to

continue the experiments.

From Table 9, the point count does not affect time spent much but it affects the result
significantly. In common sense, the major factor always affects time spent more, but in

this experiment, it does not. It is an interesting phenomenon.

4.4 Experiment of curve with sharp corners

The objective of this step is to identify the major factors that affect the vision function
for curves. The effect of the curve’s angle will be studied. Based on experiment 2, this
experiment considers the entire point cloud. Determining whether a point should or
should not be connected to a curve uses the same logic of determining if the potential
curve (extended point connected to the curve) is or is not a curve that can be
reconstructed by vision function. In a global view, the extension rate changes the
standard deviation of distance. Therefore, the extension rate is not considered anymore
and the mean of points’ angle, standard deviation of angle, standard deviation of

distance and point count are the four factors in the experiment.

4.4.1 Experiment 3

In this experiment, the objective is to determine the significant factors in constructing
the vision function for the reconstruction of curves with angles. The point cloud does

not distribute in a straight line anymore. This experiment only investigates anti-
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clockwise turning curve because any curve can be decomposed into a set of anti-
clockwise and clockwise turning curves and anti-clockwise curves can be easily
transformed to clockwise turning curves . A software system is developed for this

experiment, the interface of which is shown below:

. ® Survey of Vision: urveangh dataS.txtv

This is the NO:1 experiment.

(2)
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Figure 17 Survey of curve with angle 1
The point cloud is shown on the interface of the software system. The order of points is

shown below:
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curveangle

Figure 18 Survey of curve with angle 2

The point cloud is created with the following factors: the mean of curve angles,
standard deviation of angles, standard deviation of distances and point count. The mean
of curve angles distributes in 15 degree, 45 degree, 75 degree. The standard deviation of
angle distributes in 6, 5, 4. The point count distributes in 2, 3 and 4. The absolute
distance mean of points is 100 pix. The standard deviation of point distance distributes
in 10%, 20%, and 40% around the absolute distance mean of points in normal

distribution.

The experimental data is generated and sorted randomly. One set of the sample data is
listed below:
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Index

Location

Distance | Count Angle Angle | Angle
1 ) 3 4 deviation 1 2 3 4 mean | deviation

15 96.255 | 87.316 | 127.83 | 113.68 20 4 8.1145 | 15.237 | 34.893 | 50.194 15 5
79 61.644 | 54714 0 0 30 2 74.859 | 149.79 0 0 75 4
81 128.17 | 65.512 | 178.69 | 171.27 30 4 75226 | 147.87 | 21894 | 288.43 75 4
66 103.61 | 96.154 | 103.55 | 108.35 10 4 79.384 | 157.12 | 23245 | 312.73 75 5
14 79.249 | 82.209 | 117.56 0 20 3 18.251 | 33.787 | 48.701 0 15 5
33 106.22 | 89.404 | 91.353 | 10436 20 4 46.053 | 85.08 134.57 | 187.56 45 6
73 92.031 | 108.56 0 0 10 2 71.681 | 150.39 0 0 75 4
41 89.163 | 98.07 | 46.404 0 20 3 38.188 | 80.634 | 126.45 0 45 5
78 98.403 | 114.75 | 130.7 | 125.35 20 4 82981 | 158.88 | 228.61 | 304.34 75 4
8 130.88 | 14334 | 103.78 0 30 3 20.9 45.007 | 66.014 0 15 6
6 11641 | 110.02 | 95.107 | 1174 20 4 18.863 | 32.816 | 33.621 | 58.436 15 6
42 73.741 | 70.816 | 131.59 | 87.786 20 4 35204 | 87.961 | 133.29 | 180.59 45 5
40 98.685 | 115.23 0 0 20 2 44.7 84.683 0 0 45 5
45 59.964 | 80.328 1169 115.95 30 4 47.398 | 89.491 | 131.79 181.7 45 5
21 110.81 | 101.72 | 120.84 | 103.65 10 4 21.113 | 41.023 | 67.618 | 72.322 15 4
29 101.07 | 99.095 115.2 0 10 3 4341 | 88.048 | 1333 0 45 6
43 102.68 | 98.819 0 0 30 2 47.482 | 88.158 0 0 45 5
60 85.766 | 112.58 | 132.19 1144 20 4 73.841 | 138.41 | 205.79 | 2742 75 6
65 105.08 | 85202 | 103.1 0 10 3 73.598 | 140.19 | 209.51 0 75 5
77 118.58 | 100.42 | 89.213 0 20 3 76.615 | 153.05 | 221.37 0 75 4
62 126.78 | 109.67 | 55.223 0 30 3 82.887 | 147.72 | 229.09 0 75 6
30 | 94336 | 87.895 | 80.358 { 88.51 10 4 46.2 | 93.615 | 13533 | 179.55 45 6
31 153.15 | 116.62 0 0 20 2 35.709 | 90.806 0 0 45 6
76 69.134 | 77.654 0 0 20 2 78.265 | 155.29 0 0 75 4
34 120.14 | 94.356 0 0 30 2 47.046 | 83.852 0 0 45 6
48 99.819 | 95.886 | 103.32 | 84.26 10 4 4232 | 80416 | 1349 | 176.63 45 4
70 74.397 | 27.941 0 0 30 2 78.853 | 146.24 0 0 75 5
20 94.233 | 94.557 | 86.314 0 10 3 18.186 36 51.958 0 15 4
13 117.7 | 94.965 0 0 20 2 19.648 | 34.708 0 0 15 5
27 60.032 | 122.84 | 12047 | 91.122 30 4 12902 | 2622 | 38.616 | 54.46 15 4
47 96.842 | 101.95 | 109.15 0 10 3 42,735 | 88.74 | 130.75 0 45 4
7 128.07 { 121.31 0 0 30 2 12.115 | 24.383 0 0 15 6
67 75.025 | 71.43 0 0 20 2 80.011 156.5 0 0 75 5
4 118.88 | 65.349 0 0 20 2 14.787 | 27.98 0 0 15 6
26 148.28 | 102.87 | 99.536 0 30 3 9.6901 | 22.655 | 33.737 0 15 4
36 7722 1729 | 70.245 | 154.84 30 4 46.684 | 98.955 | 149.09 | 191.57 45 6
37 104.77 | 103.17 0 0 10 2 40375 | 77.951 0 0 45 5
10 90.639 | 99.156 0 0 10 2 18.899 | 39.894 0 0 15 5
52 11845 | 103.98 0 0 30 2 44975 | 94.709 0 0 45 4
58 120.49 | 98.378 0 0 20 2 83.485 | 159.48 0 0 75 6
9 124,54 | 51.549 | 141.32 | 79.006 30 4 15.716 | 28.613 | 43.099 | 47.961 15 6
75 101.88 | 10096 | 114.18 | 1042 10 4 79.151 | 155.61 | 22423 | 298.94 75 4
1 104.46 | 99.19 0 0 10 2 28.291 | 48234 0 0 15 6
28 109.28 | 98.391 0 0 10 2 46.257 89.75 0 0 45 6
50 118.15 | 95.055 | 94.755 0 20 3 40.681 | 88.217 128 0 45 4
16 88.974 | 115.89 0 0 30 2 56004 | 19.52 0 0 15 5
55 104.75 | 104.09 0 0 10 2 83.709 | 151.17 0 0 75 6
74 93.071 | 101.88 | 87.724 0 10 3 68.726 | 134.01 | 204.35 0 75 4
3 91.483 | 104.18 106 88.264 10 4 14,523 | 28963 | 26.17 | 37.719 15 6
64 94.866 | 108.49 0 0 10 2 76.5 147.49 0 0 75 5

=)}
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46 11126 | 117.18 0 0 10 47.683 | 88.079 0 0 45
19 87.221 | 94.996 0 0 10 16.533 | 33.712 0 0 15
22 79.501 | 131.65 0 0 20 21.803 | 35.823 0 0 15
32 14325 | 77.412 | 100.04 0 20 42,692 | 75978 | 117.74 0 45
35 156.75 | 82.984 | 98.615 0 30 37.147 | 89.895 | 138.38 0 45
72 50.191 | 121.65 | 139.28 | 62.323 30 76.529 | 150.58 | 230.87 | 312.26 75
2 93.731 | 93.258 | 105.77 0 10 15.346 | 34.788 | 54.047 0 15
49 104.59 | 104.28 0 0 20 45.885 | 92.029 0 0 45
53 114.84 | 116.06 | 8524 0 30 41,952 | 85.392 { 130.22 0 45
38 103.78 | 91.972 | 105.86 0 10 42.648 | 86.453 | 13337 0 45
59 91.4 | 24.023 | 86.017 0 20 72.856 | 132.13 | 208.12 0 75
17 118.72 | 37.629 | 103.87 0 30 14.262 | 22.549 | 31.161 0 15
57 98.135 | 88.837 | 99.681 | 120.6 10 80.435 | 159.12 | 244.1 | 328.67 75
63 90.525 | 89.33 | 86.149 | 14821 30 82.078 | 154.01 | 227.7 | 293.43 75
80 97.014 | 117.07 | 116.48 0 30 75.531 | 145.61 | 227.19 0 75

18 15392 | 68.07 | 120.38 | 121.77 30 22723 | 33.408 | 44.255 | 49.411 15

24 82262 | 6844 | 11891 | 122.04 20 13.576 | 21.006 | 37.968 | 55.776 15

12 94.478 | 111.69 | 80.517 | 95984 10 1532 | 20.386 | 40.364 | 56.494 15

5 89.146 | 67.717 | 1044 0 20 18.724 | 40.129 | 52.992 0 15

56 96.102 | 102.93 | 11691 0 10 77.408 | 158.88 | 243.24 0 75
44 131.79 | 83.905 | 65.448 0 30 45.803 | 89.964 | 140.77 0 45
25 91.193 | 82.395 0 0 30 10.093 | 37.171 0 0 15
11 91.506 | 101.61 | 110.57 0 10 14.51 | 32.978 | 42.956 0 15

23 32.875 | 92.58 | 127.82 0 20 14.172 | 35.854 | 55.575 0 15

51 73.685 | 132.82 | 99.399 | 10048 20 41988 | 87.244 | 13398 | 1845 45

54 6.7911 | 12924 | 15729 | 91.602 30 47.544 | 91.779 | 14042 | 189.48 45
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39 109.81 | 83.471 | 94.082 | 103.21 10 53.705 | 104.74 | 150.69 | 196.66 45
61 150.6 | 75.166 0 0 30 74.157 | 147.73 0 0 75
69 100.03 | 88.561 | 83.991 | 88.655 20 73.483 | 1435 | 217.04 | 289.07 75
71 74.623 | 111.68 | 85.314 0 30 76.046 147 218.51 0 75
68 78.426 | 98.902 | 125.82 0 20 71.513 | 148.15 | 216.64 0 75

Table 10 Data of experiment 3

There are a total of 81 trials in the experiment. The experiment is repeated 15 times on
IBM PC under the common working environment. The sample data is regenerated for
each experiment. The decision about the connectivity is made based on the points drawn
on screen. The time spent on each decision is recorded to identify outliers. If an

experiment takes too much time, it should be redone. Some of experimental results are

listed below.

Index Time Answer
15 21 0
79 13 0
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81 14 1
66 22 0
14 10 0
33 84 0
73 35 1
41 41 1
78 18 1
8 42 0
6 i1 1

Table 11 Result of experiment 3

As the experiment is repeated 15 times, the sum of answers is in 0 to 15. The sample

data and sum result can be analyze by using ANOVAN in MATLAB (R2006A).

The matlab analysis result is listed below.

Source Sum Sq. _f. Mean Sq. ¥ Prob>F
Hean of Points Angle 1394.3 z 697.148 537.8 0
Standard deviation of angle 0.52 2 0.259 0.2z 0.8194
Standard deviation of distance 153.56 2 76_778 59.23 0

Points count 305.41 2 152.704 117.8 o

Mean of Points Angle*Standard deviation of angle 0.74 4 0.185 0.14 0.9653
Mean of Points Angle*Standard deviation of distance 6.15 4 1.537 1.19 D.3291 "
Mean of Points Angle*Points count 527.41 4 131.852 101.71 0 §
Standard deviation of angle*Standard deviation of distance 1.7 4 0.426 0.33 0.8574 *:
Standard deviation of angle*Points count 2.96 4 0.741 0.57 0.6846
Standard deviation of distance*Points count 18.59 4 4.648 3.59 0.0123
Error 62.22 48 1.296

Total 2473.56 80

Constrained (Type Hll} sums of squares.

Table 12 Analysis of variance of experiment 3

Source

Sum Sq. Prob>F
Mean of Points Angle 2884814.8 2 1442407.4 2.43 0.0586
Stsndard deviation of angle 1302137.6 Z 651068.8 1.1 0.3419
Standard deviation of distance 2041529 4 1020764.5 1.72 0.1898 &
Points count 419086.5 2 209528.2 0.38 0.7042 %
Mean of Points Angle*Standard deviation of angle 2792626.4 4 698156.6 1.18 0.3328
Mean of Points Angle*Standard deviation of distance 1568560.6 4 392140.1 0.66 0.8622
Mean of Points Angle*Points count 833198.4 4 208299.6 0.35 0.8419%9
Standard deviation of angle*Standard deviation of distance 2748956 4 687239 1.16 0.3408
Standard deviation of angle*Points count 2628632.3 4 657188.1 1.11 0.3637
Standard deviation of distance*Points count 3320160.5 4 830040.1 1.4 0.2484 i
Error 28470892.7 48 593143.6 ¥
Total 49010564.8 80

Constrained (Type #if) sums of squares.
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Table 13 Analysis of variance of time spent 3

In this experiment the same rule is applied as that for analyzing the significant factor,

that is, the factors with large F value comparing to the others are significant factors.

From Table 12, the means of curve angles, standard deviation of distances, point count
are the role factors. The F value of the standard deviation of angle is small (0.2). It
shows that the vision function is not sensitive to the small change of angle. From Table
13, the F value of point count is 0.35 but in Table 12 the F value of point count is 117.8.
It is hard to explain why the point count does not affect the time of decision making but

does affect the result of curve reconstruction.

4.5 Regression model

In this part, a vision function is derived from the data in experiment 3 by using the least

square multiple variant non-linear regression method.

Nonlinear least squares regression extends linear least squares regression and can be
used for a much larger and more general class of functions. Nonlinear regression model
can almost simulate any function into a closed form. The greatest advantage of
nonlinear least squares regression is that it can fit a more broad range of functions than

many other techniques.

Standard multiple regression estimates the regression coefficients that can minimize the
residual variance (sum of squared residuals) around the line of regression model. Least
squares estimation is used in minimizing the sum of squared deviations of the values in

experiment 3 from the predicted value simulated by the vision function.
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The following function is used as vision function:

F=a;+a *x+a,*y+a, *xz+a, *W+a, *x*xy+a *¥X*2+a, *X*W+a, *y*z

tag*y*wWta *z*wWHa ¥*X*X+a,*y*ry+a,, kz*z+a, *WkW

where F is the subject’s decision from 0 to 15, x is the mean of angle, y is the standard
deviation of angle, z is the standard deviation of distance, and w is the count of point.
From a0 to al4 are the regression coefficients in the form of vector A. A value is found

by using the least square multiple variant non-linear regression method.

A=[27.5648 05151 0.0509 -0.0611 -12.7037 -0.0009 0.0002 -0.0944

0.0028 0.1944 0.0167 -0.0043 -0.0556 -0.0044 2.2778]

Comparing the simulated data with the original data, the following chart is given.

20 . ; ;

100

Figure 19 Comparison between the simulated data and original data
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The cross point is the original data. The dot point is the simulated data. The curve is the

error. In Figure 19 the residual is calculated and plotted.

Normal Probability Plot

I
0.98 1o - ek

080 | [
0.90 i e — R e L — o]

0.75 | — R — — ]

0.50

Probability

0.25 |

0.10 | _
0.05 bbb
0.02 | S A NS S S S S i
0,01 |

| | | | |

Figure 20 Residual of vision function

It shows that the error follows the normal distribution. It proves that the error is the

background noise. The vision function is:

F=27.5648+0.5151*x+0.0509*y-0.0611*2-12.7037*w-0.0009*x*y+0.0002*x*z-
0.0944*x*w+0.0028*y*z+0.1944*y*w+0.0167*z*w-0.0043 *x*x-0.0556*y*y -

0.0044*z*z+ 2.2778*w*w;
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where F is the connectivity decision from 0 to 15, x is the mean of angles, y is the
standard deviation of angles, z is the standard deviation of distances, and w is the count

of point.
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Chapter 5
Vision-Based Curve Reconstruction: Algorithm and

Comparison

5.1 Introduction

On the foundation of the distance-based parameter-free algorithm (DISCUR) in Chapter
3 and on the experimental results in Chapter 4, a vision-based curve reconstruction
algorithm is proposed in this chapter. For a given set of point clouds, the proposed
algorithm will connect the points into curves by using the vision function obtained from

the previous chapter.

In Chapter 3, although Algorithm DISCUR is a simple, efficient, and parameter-free
algorithm to reconstruct curves from unorganized sample points, algorithm DISCUR

still can be improved in the following aspects.

Firstly, the algorithm DISCUR used only distance to quantify the two observations
about the human visual system. The algorithm works correctly if sampling conditions in
Theorems 1 and 2 (Chapter 3) are met. However, in some cases such as that given in
Figure 21 a), if any two adjacent sampling points have the same distance, the curve

cannot be reconstructed into a visually acceptable result.

. . T
a) Sampling point b) Reconstructed result by DISCUR

Figure 21 Example of wrong connections by DISCUR (Zeng ef al, 2007)
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In Figure 21 a), the wrong connections by using Algorithm DISCUR obviously violate
the smoothness observation. The algorithm can be enhanced by adding a quantification
of the smoothness observation based on angles between two edges to be connected.

Vision function for curve reconstruction can be applied to deal with this problem.

Secondly, as mentioned in Chapter 3, algorithm DISCUR uses the vision function

hy

E[p,Tq]=hdﬁ(l+—d)‘?" in determining the connectivity between two points. The
s oy

hy

h P . . .
—(1+—)% is based on observations about human vision.
s o,

formula E[p, T,1=h,
Therefore, this formula could be replaced by vision function for curve reconstruction in

Chapter 4, which is obtained experimentally.

A vision-based curve reconstruction algorithm is presented in this Chapter to improve

algorithm DISCUR.

5.2 Vision-based curve reconstruction algorithm

To facilitate the description of the algorithm, a sample is called a free point if there is no
edge connected to it; an end point or boundary if there is only one edge connected to it;
an interior point if there are two edges connected to it (Zeng et al, 2007). The
connectivity value of a curve and an edge is the result that is calculated by the vision

function based on the curve and the edge.
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vision-based curve reconstruction algorithm does not change the structure of algorithm
DISCUR and only make some essential changes to make algorithm DISCUR

compatible with the vision function in Chapter 4.
Two major modifications on algorithm DISCUR are given below:

First, vision-based curve reconstruction algorithm searches all the potential Delaunay

edges and curves that connect to the end points of the nearest neighbor.

One candidate
curve Ca

Pa

The shortest
edge

The other
candidate curveCb

Figure 22 Candidate curves

Figure 22 shows how the algorithm searches for the nearest neighbor and connects them.
In Figure 22, the algorithm searches the nearest neighbor because of observation 1) two
closest neighbors tends to be connected. When the algorithm finds the two end points P,
and Py, of the nearest neighbor, the algorithm iterates all the Delaunay edges that

connect to P, and Py, and find two curves C, and Cy, as candidate curves. For C,, the
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algorithm find all the potential Delaunay edges that connected to P, and are not a part of
Ca, and then the algorithm calculates all the connectivity value of C, and the potential
Delaunay edges. The greatest one is marked as the connectivity value of C,. The
connectivity value of Cy is calculated similarly. Then the algorithm finds the greatest
connectivity value of C, and Cy. If the greatest connectivity value is big enough (greater

than 7 or 8), the algorithm extends the curve with the correspond edge.

Secondly, while calculating the connectivity between a curve and an edge (or a curve
and a point), the 2, 3 and 4 points on the curve that are closest to the point are calculated
separately with the edge. All these 3 combinations have a connectivity value. Choose

the greatest one as connectivity value of the curve.

The pseudocode of the algorithm is given as below:

Calculate the Delaunay triangulation.
WHILE Find the nearest neighbor.
Find the two ends.
IF both of the end points are not end point of a curve
Connect the point pair.
ELSE IF both of the end points are not interior points
FOR each point in the end points
IF the point is an end point of a curve
FOR each edge that connect to the point

Calculate the connectivity value of the curve.
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ENDFOR
END
ENDFOR
Find the edge with the largest connectivity value.
IF the connectivity value is reasonable large
Connect the edge.
ELSE
Disable the edge.
ENDIF
ELSE
Disable the edge.
ENDIF

ENDWHILE

Figure 23 shows the connecting sequins of the vision-based curve reconstruction

algorithm. Figure 23 (a) is the input points. Figure 23 (f) is the reconstructed curve.
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(a) (b) (c)
— Q
(d) (e) (f)

Figure 23 Connecting Sequins of the vision-based curve reconstruction

The major difference between the vision-based curve reconstruction algorithm and

algorithm DISCUR is the treatment of the nearest neighbor.

The vision-based curve reconstruction algorithm first finds the end point of the nearest
neighbor and all the edges that connect to the end points. Then the processing has three

cases:

First, the end points in the nearest neighbor do not belong to any reconstructed curves.
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This is the simplest situation. The points are connected immediately. Indeed, if the
nearest neighbor is not a right construction, there must be some errors in the original
points cloud and this violates the sampling condition. When a curve is sampled, there is
no way the shortest distance of connected point pair is greater than the distance of non-

connected point pair. This situation could be caused by noise point or some loss of point.
Second, one of the end points in the nearest neighbor belongs to a reconstructed curves.

As one of the end points is related to a reconstructed curve. Analysis should be made to
investigate the relationship or effect of the curve. The algorithm finds all the edges that
are connected to the end point. Thus, the algorithm tries to extend the curve to all the
edges and find the most suitable edge. If the connectivity value of the edge is reasonable

large, the algorithm connects the edge to the curve.
Third, both of the end points in the nearest neighbor belong to reconstructed curves.

This situation is about curve connection. There are a three of potential results. 1) The
two curves could be connected. 2) The two curves are near but not connected. 3) The
original curve intersects. The algorithm needs find all the edges that are connected to
the two end points of the edge. Then the best two edges for each end point are found.
Finally, if these two edges are the same one and the connectivity value is reasonably
large, the two curves are connected. If they are not the same edge, then the algorithm
find the edge has the greatest the connectivity value. If the connectivity value is

reasonably large, the edges to the each curves are connected separately.

The computational time of the algorithm is O(n log n). First, the algorithm calculates

Delaunay triangulation. The complexity is O(n log n). Secondly, the algorithm sorts the
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Delaunay edges. The complexity is also O(n log n). In the third step, the algorithm
iterates the related Delaunay edges and calculates the connectivity value, and the largest
connectivity value. The complexity is O(n). So, the complexity of the algorithm is O(n

log n).

5.3 Results

This part the result of the algorithm and comparison between the algorithm and other

algorithms are given.

The input points cloud is shown in Figure 24. In Figure 25, Delaunay triangulations are

constructed.

Figure 24 Original points




Figure 25 Delaunay triangulation

In Figure 26, the reconstruction result from our algorithm is shown.

Figure 26 Reconstruction result

In Figure 27, the reconstruction result from ABE crust is shown.

Figure 27 Reconstruction result from ABE crust

In Figure 28, the reconstruction result from Nearest Neighbor is shown.
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Figure 28 Reconstruction result from nearest neighbor

The comparisons with other algorithms show improvements made by our algorithm. By
observing the differences, it is easy to find that vision-based algorithm has a more

natural to human vision.

5.4 Comparison with existing algorithms

Most existing curve reconstruction algorithms, such as Crust (Amenta et al, 1998), NN
Crust (Dey and Kumar, 1999), Conservative Crust (Dey et al, 1999), and Gathan (Dey
et al, 2001), generate results homeomorphic to original curves provided their sampling
conditions are satisfied. Most of those algorithms are O(n log n), which is comparable
to the algorithm proposed in the present thesis. In this section, comparisons as regard to
scope and accuracy will be made between vision-based curve reconstruction algorithm
and existing algorithms, particularly Crust (Amenta et al, 1998), NN-CRUST (Dey and
Kumar, 1999), and Gathan (Dey et al, 2001), which are viewed as effective ones in the

literature.
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Algorithm | Sampling | Smoothness Boundary Components
a-shape [3,4] Uniform Required None Multiple
y-regular [5] Uniform Required None Multiple
EMST [2] Uniform Required Exactly two Single
Crust [6,7] | Non-uniform Required None Multiple
NN [§] Non-uniform Required None Multiple
TSP [11,12] | Non-uniform | Not required | Must be known Single
CC [9] Non-uniform Required Any number Multiple

Table 14 Scope of curve reconstruction algorithms (Dey, 2004)
Table 14 shows a comparison of most existing curve reconstruction algorithms as
regard to their sampling condition, their ability to deal with sharp corners (smoothness
of original curve), their capability to process open curves (curve with boundaries), and
their ability to reconstruct multiple components. Examples will be given in the

following to show the performances of these existing algorithms.
Sampling condition and parameters

Although many existing algorithms can successfully reconstruct curves from "dense
enough" samples, they require the sampling conditions based on local feature size and
pre defined parameters. The parameters depend heavily on the curves to be
reconstructed. As a result, those algorithms may cause difficulties as the curves become
complex. For example, multiple curve with different features. Different parameters
should be adopted at different parts of the curve to achieve the desired result. More
importantly, optimal parameter value should vary with curve features and thus make it
more difficult to determine or balance. Figure 29 shows the results with different
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parameters have significant difference. The vision-based curve reconstruction algorithm

can easily handle the difficulty as shown in Figure 30, which conforms to the human

perception.
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Figure 12: Effect of the parameter p: 0, 1/8, 172, 8/4, 1, 5/4, 7/4, 2, 2.5.

Figure 29 Sample of conservative-crust algorithm (Dey et al, 1999)

]

.
»

ot
S
-

I’ * \.«’_;_)’" " ‘X ?
j +
“0..1\‘ . e +
',“.4_: .} O +
N LR S
.'\’ j ‘, 4 ‘\1' P, :

4
‘V‘k,«t"‘ Q.

79



Figure 30 Result of vision-based curve reconstruction algorithm

As a parameter-free algorithm, the vision-based curve reconstruction algorithm brings
two major advantages. First, without parameter, reconstruction of multiple curves with
multiple features is made an automatic process. There is no need of multiple parameters
for 2 various parts with complex features. Secondly, the vision-based curve
reconstruction algorithm can be used when original curve is not known. In this case, the
sampling points will be connected as the human eye naturally perceive them. This
makes it more useful for engineering applications than those dependent on known curve

features.
Sharp corners

In the case involving sharp corners as shown in Figure 31, it is very difficult for
CRUST and NN-CRUST to achieve a reconstruction close to the original curve. With
correctly chosen parameters, GATHAN can successfully handle curves with sharp
corners in some cases. Example in Figure 31 shows a complex sample set, which
includes multiple features such as uneven samplings, sharp corners, boundaries, and
multiple components. For the samples given in Figure 31, the vision-based curve
reconstruction algorithm can obtain desired output if adding more points to the local
area where the sampling connection is violated. As can be seen, CRUST and NN-

CRUST still experience problems.
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(a) Input point

n

(b) Crust
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(c) Nearest Neighbor

@

(d) GATHAN

@

(e) Vision-based curve reconstruction

Figure 31 Comparison 1

Figure 31 illustrates the effectiveness of CRUST, NN-CRUST, GATHAN. Obviously,
vision-based curve reconstruction algorithm is the only algorithm that works for such a

complex case.

Boundary and multiple components
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In comparison with CRUST and NN-CRUST, the vision-based curve reconstruction
algorithm is able to detect the boundary points while NN-CRUST and CRUST wrongly
connect them as shown in Figure 32. Given a sufficiently dense sample of a closed
smooth curve, CRUST and NN-CURST successfully reconstruct the original curve but
when the original is an open curve the algorithms do not guarantee the reconstruction in

Figure 33 and Figure 34.

(a) Sampling points

(b) CRUST
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(c) NN-CRUST

(d) GATHAN

(e) Vision-based curve reconstruction algorithm

Figure 32 Reconstruction in the case of open curve 1
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(a) Input points

(b) Crust

(c) NN-CRUST
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(d) GATHAN

(e) Vision-based curve reconstruction algorithm

Figure 33 Reconstruction in the case of open curve 2
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(a) Input points

(b) CRUST and NN-CRUST

(c) GATHAN

(d) Vision-based curve reconstruction algorithm

Figure 34 Reconstruction in the case of open curve 3
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In some cases GATHAN algorithm can not detect the boundary endpoints correctly

either. An example is given in Figure 34. It wrongly connects boundary points.
Two adjacent sampling points with the same distance

This problem originally comes from distance-based parameter-free algorithm (DISCUR)
(Zeng et al, 2007) in Figure 35. Actually, many existed algorithms also have such kind

of problem.

(a) Input points

1>

(b) CRUST
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(¢) NN-CRUST

<L

(d) Distance-based parameter-free algorithm
(¢) GATHAN

__

(f) Vision-based curve reconstruction algorithm

Figure 35 Two adjacent sampling points with the same distance

From Figure 35, NN-CRUST and distance-based parameter-free algorithm (DISCUR)

cannot handle this problem because they are both distance oriented. GATHAN and the
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vision-based curve reconstruction algorithm can reconstructed the input points well

because they both take angle in to account.
Noisy points

Existing algorithms, particularly Crust (Amenta et al, 1998), NN-CRUST (Dey and

Kumar, 1999), and Gathan (Dey et al, 2001) cannot detect the noisy points in Figure 36.

(a) Input points

]

(b) CRUST
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(c) NN-CRUST

AN

(d) Vision-based curve reconstruction algorithm

RN

(¢) GATHAN
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() Norm line of GATHAN

Figure 36 Reconstruction in the case of noisy point

From Figure 36, GATHAN is very sensitive to the noisy point because the noisy point
changes the direction of normal lines of GATHAN in Figure 36 (f). The vision-based
curve reconstruction algorithm can exclude the noisy point because this algorithm can

perceive point cloud as naturally as the human eye.

5.5 Conclusion

Vision-based curve reconstruction algorithm has some advantage and disadvantage by

comparison with other algorithms.
e  This algorithm is good at dealing with points with outliers or noisy points.

o This algorithm can handle the sharp corners unless the connection between two

nearest neighbor points is not in the edges of sharp corner.

e  This algorithm cannot treat intersection problems.
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Chapter 6
Conclusions and Future Work

The present thesis aims to design a new algorithm that reconstructs curves from points
in the same way that human beings perceive them. To discover the effect of human
vision on curve reconstruction, experiments were designed and conducted to identify
how human vision recognizes curves from unorganized points. The present thesis has
found a regression model by using methods from Design of Experiments (DOE),
ANOVA and the multivariate non-linear regression model. To verify the vision function,

the vision-based curve reconstruction algorithm has been designed.

The present thesis proposed a vision-based curve reconstruction algorithm based on a
vision function constructed from experiments. The major contributions made in the

present thesis can be summarized as follows:
1. Construction of a vision function based on experiments.

During the development and research of the curve reconstruction algorithm, I designed
a platform for developing curve reconstruction algorithms. This platform implements
almost all the major algorithms about the curve reconstruction. The platform provides a

toolkit to help researchers implement and evaluate new algorithms.

To find vision function, all the potential factors in the context of curve reconstruction
are firstly enumerated. Then experiments are designed and implemented to exclude the
minor factors and to keep the major ones. Finally, the experiment of data of the major

factors is used to construct the vision function and to evaluate the correctness of the
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function. Based on the experiments, a vision function is derived from the data by using

the least square multiple variant non-linear regression method.
2. Development of a vision-based curve reconstruction algorithm.

The present thesis used the vision function, which is derived from experiments, to
implement the vision based curve reconstruction. In doing that, the present thesis makes
some essential changes to make algorithm DISCUR compatible with the vision function.
The proposed vision-based curve reconstruction algorithm is more effective in dealing

with curves with sharp corners.

In the future, this research should be focused on recognition of sharp corners by human
vision, and curve reconstruction by human vision combining with human experiences
and knowledge. The work will help solve sharp corner problems. Moreover, more
research should be done with more experiments to study the relationship between two
observations of human vision and balance the priority of two observations of human

vision.
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