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ABSTRACT

New Approaches for Nonlinear Acoustic Echo Cancellation

Jing Fu

The nonlinearity of amplifier and/or loudspeaker gives rise to nonlinear echo in
acoustic systems, which degrades seriously the performance of speech and audio
communications. Many acoustic echo cancellation (AEC) schemes have been proposed by
researchers to cancel the disturbing echo. In this thesis, two approaches for nonlinear echo
cancellation, namely, the 2™ order Volterra filter-based canceller and the sigmoid-
transform-based (STB) canceller, are developed.

Volterra filter (VF) plays a critical role in modeling a nonlinear acoustic system
where the nonlinear distortion is mainly caused by a loudspeaker. However, the large
number of coefficients and the high computational complexity always make the VF
difficult to be used in practice. By analyzing a general 2™ order VF model and a cascade
model consisting of a 2" order VF and a transversal filter, this thesis proposes a simplified
2™ order VF structure with relatively low computational complexity for the echo
cancgller, which is shown to be more efficient in acoustic echo cancellation applications.
A theoretically justification is also provided to show the feasibility of such a
simplification. Moreover, a normalized least mean square (NLMS) algorithm for kernel-
separated 2™ order VF is derived to accelerate the convergence speed of the coefficients of

the nonlinear filter. This algorithm uses a new range of the step size or called convergence
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factor to ensure the stability of the adaptive filter. The outstanding performance of the
proposed AEC is verified by computer simulations

For solving the nonlinear distortion caused mainly by an amplifier, a simple yet
efficient nonlinear echo cancellation scheme is proposed by using an adaptable sigmoid
function in conjunction with a conventional transversal adaptive filter. The new scheme
uses the least mean square (LMS) algorithm to update the sigmoid function and the
recursive least square (RLS) algorithm to determine the weight vector of the transversal
filter. The proposed acoustic echo canceller is proved to be convergent under some
reasonable assumptions. Extensive computer simulations show that the proposed AEC has

a very satisfactory echo cancellation performance for saturation-type nonlinear distortion.
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Chapter 1 Introduction

In general terms echo is the repetition of a wave due to mismatch in the design of the
circuitry and due to reflection from the surroundings [1]. The echo degrades the voice
quality during a conversation in wired and wireless phones. There are mainly two kinds of
echo, hybrid echo and acoustic echo.

Hybrid echo: this type of echo is mainly encountered in telephone lines due to
impedance mismatch on the connecting lines.

Acoustic echo: an acoustic echo is produced due to the reflection from the
surrounding objects in the room during a conference call or objects in a car when the
wireless handset is being used. The echo produced in this manner is known as room
acoustic echo.

For getting rid of the disturbance of the echo, the idea of echo cancellation used in
telecommunications field began in July 1962. At very beginning, the applications of the
echo cancellation were mainly focused on solving the hybrid echo problems. Later, there
has been considerable interest in acoustic echo cancellers for teleconferencing. In this
application, the echo is generated acoustically by the coupling between the loudspeaker
and microphone through the impulse response of a conference room. In principle, the

problem is similar to that of network echo cancellers, but there are some differences in



practice because the impulse responses in the acoustic case are much longer and more
variable [2].

Acoustic echo cancellation (AEC) is an effective technique to suppress the echo
effect and improve the communication system performance. Most AEC techniques do not
consider the nonlinear distortion caused by a loudspeaker/amplifier. However, recently, it
has been found that the AEC system performance could be greatly improved by
considering the nonlinearities existing in the system. In most cases the implementation of
the nonlinear filter is computationally expensive, owing to the large number of
coefficients required to identify the nonlinear system. The high computational complexity
filters may cost a lot of calculating operations and time to converge. Considering the
acoustic echo cancellation is a real-time implementation, low-complexity nonlinear AECs
turn out to be important. Many different nonlinear AECs have been proposed in recent
years., but it is still difficult to find a practical unified model that efficiently adapts all the
possible nonlinear distortions. Therefore, the performance of a nonlinear acoustic echo
canceller highly depends on the nature of the echo path. The objective of this thesis is to
develop two different low-complexity nonlinear models to identify two kinds of common

nonlinear distortions happening in a loudspeaker/amplifier system.

1.1 Acoustic Echo

When the sound from a loudspeaker or the earpiece of a telephone handset is picked
up by the microphone in the same room or the microphone in the very same handset, an
acoustic echo arises and is delivered to the far-end user/speaker. This disturbance exists in
all communications scenarios where the speaker and the microphone are in close distance.

Examples of acoustic echo are found in everyday surroundings such as:

2



A standard telephone in speakerphone or hands-free mode
Telephone conference such as polycom's soundstation
Hands-free car phone systems

In-room sound systems using ceiling speakers and desk phones

YV V V ¥V V¥V

Physical coupling (vibrations of the loudspeaker transferred to the microphone via

the handset casing)
b
Far-end Near-end ’r\
E- N
~~~~~~~~~~~~~~~ g ] \\ .-,f‘
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""""" § p‘ // B
/
< ¥ 4 B
28|

Figure 1.1 Acoustic echo produced in hands-free system

In most of these cases, the signal from the loudspeaker passes through the room and
enters the microphone, which creates the so-called acoustic echo path. The acoustic echo
can easily perceived by the far-end speakers in a communications conversation, as shown
in Figure 1.1 [3]. Although it is attenuated in amplitude and delayed in time, it is still very
disturbing to the speaker. Therefore it is of crucial importance to cancel acoustic echo. The
difficulties in cancelling the acoustic echo signal stem from the alteration or the distortion
of the original sound caused by the acoustic echo path. This distortion may be linear or
nonlinear depending on the nature of the echo path. The echo path from the speaker to the
microphone in the same room is usually characterized by a liner FIR filter. Accordingly,

the echo signal arrives at the microphone is often measured by the room impulse response,
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namely, the impulse response of the FIR filter. Therefore, this echo is considered to be
linear. In recent years, however, researchers have found that it is not sufficient to treat the
echo path as a linear system since the room impulse response does not take into account
the possible nonlinear distortion caused by the loudspeaker and/or amplifier. As shown in
the next section, in order to realize a high-quality voice communication, the nonlinear

echo component has to be eliminated or alleviated.

1.2 Nonlinear Distortion in Loudspeaker/Amplifier

Figure 1.2 shows a complete echo path from the D/A converter in the speaker up to
the A/D converter in the microphone [4]. Let us neglect in this thesis the nonlinear

quantization which might be used in the D/A and A/D converters.

Room

A | B | acousticecho C D

'
/

| I
-~ | |
|—‘>DA—>D ' ‘b"D—[’ D"T”
|

I o ———

Figure 1.2 Nonlinear echo path

The main source of nonlinearity is found in part B, since the loudspeaker and the
power amplifier are operated at the high signal level in the transmission chain. This part of
the system is considered to be weakly time-variant, e.g. due to temperature drift. Part C
consists of the room impulse response and the microphone. It is assumed to be an LTI
system due to the fact that the signal received by the microphone is of low amplitude.
Therefore, the nonlinear characteristic of the loudspeaker and the amplifier become critical

in the cancellation of the entire acoustic echo. Previous works have discussed that the



loudspeaker and the amplifier may exhibit different nonlinear characteristics [5], [6], [7],
[8].
As far as a loudspeaker is concerned, the large signal behaviour of an electrodynamic

loudspeaker can be modeled by a pair of simplified nonlinear differential equations [5]:

u=Re+9’—(—L;Tx)Q+Bl(x)v (1.1)

LdL() .,

Bl(x)i=ma+ Rv+k(x)x—— (1.2)
2 dx

where u denotes the loudspeaker diaphragm velocity. The main electrical pieces are the

voice-coil electrical resistance R, and the voice-coil nonlinear self inductance L(x). In
equation (1.2), Bl(x) is the nonlinear force factor, m represents a moving mass, R a
mechanical damping and 4(x) a nonlinear stiffness. In spite of constructional

improvements, loudspeakers still exhibit nonlinear behaviour. The main resources of
nonlinearities can be summarized below [6]

» The force factor as a function of the voice coil excursion.

» The electric self-inductance depending on the voice coil excursion

» The nonlinear suspension stiffness

In some situations, the nonlinear distortion is mainly caused by an overdriven
amplifier. This kind of nonlinearity can be described by a nonlinear function [7], [8],
which implies that each input value is mapped to a unique output value. This kind of
nonlinearity is also called memoryless nonlinearity, which especially happens in mobile

equipment, where the low weight constraint requires low supply voltages.



1.3 Acoustic Echo Cancellation (AEC)

This thesis emphasizes on the cancellation of the distortion caused by the

loudspeaker/amplifier and the room acoustic echo.

1.3.1 Acoustic Echo Cancellation (AEC) System

As shown in Figure 1.3, in general, an Acoustic Echo Canceller works as follows:

>
>

The electronic sound signal received by the speaker.

The received signal passes through the entire echo path including the nonlinear
distortion and the room impulse response.

The microphone picks up the echo which is the delayed and distorted version of
the received sound signal.

The electronic signal from the microphone is also sampled and then compared with
the reference signal.

An adaptive filter is properly designed such that the reference signal can match the
echo but with 180° phase difference.

If the echo is perfectly cancelled, then only the voice of the local speaker is

transmitted to the far-end user.

In reality, however, a small error signal that is the difference of the reference signal

and the echo still exists but it is negligible and very often not sensible by the far-end user.
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Figure 1.3 General block diagram of an acoustic echo canceller

From the above process, the residual error signal can be formulated as

e(n)=y'(n)—y(n) (1.3)
Considering the signal s(n) from the local speaker, the signal transmitted to the far end is
given by

u(n) =s(n)+e(n) (1.4)
Clearly, when y(n) is equal to y'(n) the signal received by the far-end user B contains
only the speech from the local speaker A [9]. The error signal plays a very important role
in adaptive AECs. It is used to update the weight vector, namely, the coefficient vector of
the adaptive filter such that a norm of the error function is minimized. It should be noted
that the adaptive filter could be linear or nonlinear. If only the linear echo is considered, a
transversal filter is often used. Otherwise, if the echo is nonlinear or contains nonlinear

components, using a linear adaptive filter is not sufficient. A more efficient nonlinear filter

must be pursued.



1.3.2 General Requirements for AEC

Typically, an echo canceller should meet the following requirements [9]:

» Rapid convergence speed: the echo canceller should have a fast convergence speed
so that it can identify and track rapidly the changes in the unknown echo path. The
convergence rate depends on the adaptive algorithm as well as the structure of the
adaptive filter used in the AEC.

» Accurate double talk detection: when the two speakers talk simultaneously, the
echo canceller should be able to detect this double talk condition accurately. The
adaptation process should then be stopped to avoid divergence of adaptive filter
coefficients and cancellation of the speech signal itself. Since in real applications
both sides of the communication seldom talk at the same time, we only discuss the
single talk situation in this thesis.

» Low complexity: in acoustic echo cancellation, the adaptive filter needs to proceed
with a large number of coefficients. This makes the implementation of complex
adaptive algorithms more difficult. Therefore, it is always preferable to develop
low-complexity algorithms and filter structures.

» High echo return loss enhancement (ERLE): in adaptive echo cancellation, a term
known as ERLE is used to measure the effectiveness of an echo cancellation
method. If this value is high, the echo canceller is considered to be good. It has
been observed that the ERLE value is normally with 30dB due to the nature of the

speech signals and other constraints [1], [10].



1.4 Main Contributions

This thesis studies the performance of different nonlinear AEC filters in different
nonlinear acoustic echo path situations. Since each nonlinear canceller has its own
advantages, we focus on the performances of a simplified 2™ order VF and a saturation-
curve-based nonlinear filter for AEC applications. The main contributions of this thesis
are summarized as follows:

The feasibility of simplifying a 2™ order VF to fit a cascade structure of nonlinear
echo path without sacrificing its performance is first investigated. Since the input signal
variaﬁce has a great impact on the convergence rate of the 2™ order VF, a NLMS
algorithm with a new range of the step size is proposed for the kernel-separated 2™ order
VF to reduce the effect of the input signal variance. This algorithm updates both linear and
the 2™ order kernels of the nonlinear filter separately, and outperforms a conventional
NLMS algorithm. It is verified by computer simulations that the simplified VF structure
can reduce the computational complexity of a 2™ order VF significantly, while the
proposed NLMS algorithm can efficiently reduce the negative effect of the input signal
variance.

Considering that the saturation-type distortion is also a typical one in
loudspeaker/amplifier systems, we present a new nonlinear echo canceller that uses a
sigmoid function followed by a conventional linear adaptive filter, in which the
parameters of the sigmoid function and the coefficients of the linear transversal filter are
updated, respectively, with the LMS and RLS algorithms. A theoretical analysis of the

convergence of the nonlinear transform-based acoustic echo canceller is also given.



1.5 Thesis Organization

This thesis is organized as follows:

Chapter 2 introduces the basic knowledge of linear adaptive filtering and some
popular updating algorithms which can be used in nonlinear AECs.

Chapter 3 describes some previous works about nonlinear adaptive filters applied in
acoustic echo cancellation. The basic structures of a VF, a cascade nonlinear filter and a
nonlinear transform-based filter are introduced.

Chapter 4 focuses on the development of the 2™ order VF-based techniques for
acoustic echo cancellation. A simplification strategy for the 2™ order VF used in AEC is
proposed along with a new NLMS algorithm for the update of filter coefficients.

Chapter 5 proposes a nonlinear saturation-curve-based canceller structure consisting
of a sigmoid function and an FIR filter. The convergence analysis of the nonlinear
structure is also conducted, yielding a low complexity and fast convergent nonlinear
acoustic echo canceller.

Chapter 6 summarizes the work completed in this thesis and provides some

suggestions for future research.
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Chapter 2 Linear Adaptive Filters and

Applications in AEC

In this chapter, basic adaptive filtering techniques are introduced. The optimum
solution for a linear filter response is derived based on some commonly used adaptation

algorithms that will be adopted in the next several chapters.

2.1 Adaptive Filtering Techniques

In many applications the characteristic of a system of interest is unknown. Adaptive
signal processing is a technique where an adjustable model can be designed through an
iterative procedure such that the characteristic of this model best fits the unknown system.
This model is termed as adaptive filter which is time-varying in natures, and normally can
adjust itself according to the changes in the unknown system.

The configuration of a general adaptive system is shown in Figure 2.1. It consists of
the following blocks [9]:

» Unknown system: it contains time-varying parameters depending on the type of
application.

» Adaptive filter: its performance depends on the filter structure as well as the update
mechanism. It is also associated with the unknown system. The input signal is

. passed though this filter to produce an output and form an error signal which is
11



used to dictate the update algorithm. Depending on application needs, this filter
can be linear or nonlinear.

» Update mechanism: this is the core of an adaptive algorithm which determines the
characteristics of the adaptive filter based on the performance requirement as well
as the nature of the unknown system. It usually involves a set of mathematical
expressions required to determine and update. These update formulas are usually
derived from a minimization problem with respect to the error signal e(n). The
most commonly used adaptive algorithms include the least-mean square (LMS),

normalized least-mean square (NLMS), and recursive least square (RLS), etc.

Unknown
System
X(n)
—>
| | ()
| Adaptive | +
| filter W@S
| structure |
| |
| |
l Update | e(n)
| mechanism | [
L |

Figure 2.1 General Block Diagram of an adaptive system

Adaptive filters can be applied into many applications, including system
identification, channel equalization, adaptive beamforming, signal enhancement, noise

cancellation and echo cancellation. This thesis will focus on the system identification and

12



acoustic echo cancellation. A detailed description of the other applications can be found in
1 1].'

Linear adaptive filter is widely used in acoustic echo cancellation (AEC) and many
other fields due to its good properties such as global convergence and guaranteed stability.
Many linear adaptive filtering techniques can be directly applied to nonlinear filter. In the
folloWing subsections, we review some of these techniques with an emphasis on their
applications in acoustic echo cancellation. This serves as a background material for further

study of nonlinear filtering algorithms in the next chapter.

2.2 Wiener Filter

One of the most widely used objective functions in adaptive filtering is the mean-

square error (MSE) defined as [12]

E[e* (n)]= E[(d(n) - y(n))*] 2.1)
x(n)

wo(n)
Y
2-1

d(n)

wi(n)
- v X e
i -
|
Y
2!

Wn.1(N)

Figure 2.2 Adaptive FIR filter
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A straightforward realization of the adaptive filter is to use a direct form FIR structure as
illustrated in Figure 2.2, which is also called transversal filter. The output of this variable-

tap FIR filter can be written as
N-1
y(n) = w(m)x(n—i)=w' (n)x(n) 22)
i=0

where x(1) =[x(n),x(n=1),---,x(n= N +1)]" and w(n) =[w,(n),w, (n),-- YW (n)]" are the
input and the weight vector or coefficient vector of the filter, respectively. Using equation
(2.2), the objective function (2.1) can be rewritten as
E[e*(m)]=¢(n) = E[d* (n) = 2d(m)w" (n)x(n) + W' (n)x(n)x" (nyw(n)]
= E[d* (m)] - 2E[d(m)w’ (m)x(m)]+ E[w" (m)x(m)x” (m)w(n)] ~ (2.3)
For a filter with fixed coefficients, the MSE function is given by
£ =E[d*(n)]-2w"p + w Rw (2.4)
where p=E[d(n)x(n)] is the cross-correlation vector between the desired and the input
signals, and R= E[x(n)x” (n)] is the correlation matrix of the input signal. As can be noted,
the objective function F(e(n)) is a quadratic function of the tap-weight coefficients which

allows for a straightforward solution for w, when vector p and matrix R are known. Note
that R corresponds to the Hessian matrix of the objective function.

The gradient vector of the MSE function (2.4) related to the filter coefficients is given
by

Loz oz or o

T
" ow 0w, ow, 8wN]

=2p+2Rw (2.5)
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By equating the gradient vector to zero and assuming R is non-singular, the optimal tap-
weight vector that minimizes the objective function can be obtained as:

w,=R'p (2.6)

This solution is called the Wiener solution, which requires the exact knowledge of R

and p. In practice, however, R and p are not available. Therefore, in most of adaptive

algorithms R and p are estimated through time-domain average and the resulting solution

is considered as an approximation of the Wiener solution.

2.3 Steepest-Descent Algorithm

The method of steepest-descent (SD) can be considered an efficient gradient-type
algorithm that updates the weight vector at each iteration step. In order to get a practical
feeling of a problem that is being solved using the steepest-descent algorithm, we assume
that the optimal coefficient vector is given by the Wiener solution wy, and that the
reference signal is not corrupted by measurement noise [12].

The SD algorithm updates the coefficients in the following general manner [12]
1
Wi+l =win)-—pg, (7) 2.7)

It is worth-noting that several alternative gradient-based algorithms are available to
replace g, (n)byg,(n), which differ in the way the gradient vector is estimated.
Substituting equation (2.5) into equation (2.7), we get

w(n+1)=w(n)— uRw(n)+ up (2.8)
To look into the convergence behaviour of the SD algorithm in stationary environment, it
is necessary to perform an analysis of the influence of the convergence factor 4 on the

adaptive algorithm.
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The derivation of the filter coefficients from the Wiener solution is given by
Aw(n)=w(n)-w, (2.9)
The SD algorithm can then be represented in an alternative way, that is
Aw(n+1) = Aw(n) — u(Rw(n) + Rw,)
= Aw(n) — uRAw(n)
= - uR)Aw(n) (2.10)
where the relation p=Rwj has been employed in obtaining equation (2.10). It can easily be

shown that
Aw(n+1) =(I- uR)" Aw(0) (2.11)

Pre-multiplying equation (2.11) by Q', where Q is the unitary matrix that diagonalizes R,

we have
Q" Aw(n+1) =(I- Q"RQ)Q" Aw(n)
=v(n+1)
=I-uA)v(n)
1-udy 0 0
- ? 1'(‘)‘}“ . ? v(n) 2.12)
o 0 1-m,
where
v(n+1) =Q Aw(n +1) (2.13)

is the rotated coefficient-vector error. Using mathematical induction, equation (2.12) can

be rewritten as
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v(n+1) =1 - uA)"" v(0)

(1= )™ 0o .- 0
_ ? 0~ﬁ?¥* ) ? v0)  (2.14)
0 0 (1- )™

It is clear form (2.14) that in order to guarantee the convergence of the update

algorithm, each element 1- x4, must have an absolute value less than one, which requires

the convergence factor u to satisfy

O<p< (2.15)

max

where A__ 1is the largest eigenvalue of R. In this case, all the elements of the diagonal

max

matrix in equation (2.14) tend to zero as n — oo, leading v(n+1) to 0 for large n. The above
range of 4 guarantees that the coefficient vector approaches the optimum solution w,. It
should be mentioned that if matrix R has a large eigenvalue spread which is the ratio of

the largest over the smallest eigenvalue, the convergence speed will be primarily
dependent on the value of the smallest eigenvalue of R. Note that the slowest decaying
element is given by (1—-u4_ )"".

There are certain limitations in SD algorithm that R and p are usually unknown.
Therefore, these values have to be estimated from the available data. The least-mean

square (LMS) algorithm as one of the most frequently used adaptive algorithms will be

introduced.
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2.4 Least Mean Square (LMS) Algorithm

The LMS algorithm has been the most widely used algorithm in adaptive filtering for
several reasons. These include its low computational complexity, guarantee of
convergence in stationary environments, unbiased mean to the Wiener solution and stable
behavior in finite-precision arithmetic implementation. As such, it was used in the AEC
applications [11], [13].

In the LMS algorithm, it is assumed that d(n)and x(n) are jointly wide-sense
stationary (WSS), and if good estimates of matrix R, denoted by R(n), and of vector p,
denoted by p(n), are available, according to equation (2.8), a steepest-descent-based

algorithm can be used to search the Wiener solution as follows:
1,
WD) = W) -4, ()

=w(n) - uRw(n) + up (2.16)
for n=0,1,2,..., where w(n) =[w,(n),w,(n),"--,w,_ ()], &, (n) represents an estimate of

the gradient vector of the objective function with respect to the filter coefficients.
One possible solution is to estimate the gradient vector by employing instantaneous

estimates for R and p as follows
R(n) = x(n)x” (n) (2.17)
p(n) = d(n)x(n) (2.18)
where x(n) =[x(n),x(n—-1),-,x(n—N+1)]". The resulting gradient estimate is

represented by

18



8., (n) = =2d(n)x(n) + 2x(n)x" (n)w(n)
= -2x(n)(d(n) + X" (nyw(n))
=-2e(n)x(n) (2.19)

Substituting equation (2.19) into (2.16), the LMS algorithm can be summarized as [12]

Initialization
x(n)=w(n)=[0 0 - 0]

Do for n>0
e(n) =d(n)~x" (n)w(n) (2.20)
w(n+1)=w(n) - ue(n)x(n) (2.21)

In order to guarantee convergence of the coefficient in the mean, the convergence factor of

the LMS algorithm x should be chosen in the range of

O<u< (2.22)

tr{R]
Due to the slow convergence speed of the LMS algorithm, the normalized LMS

(NLMS) algorithm as one of the major algorithms for increasing the convergence speed in

linear adaptive filters was derived.

2.5 Normalized Least Mean Square (NLMS) Algorithm

If one wishes to increase the convergence speed of the LMS algorithm without using
other special estimates of the input signal correlation matrix, a variable convergence factor
or step size is a natural solution. The normalized LMS algorithm (NLMS) usually
converges faster than the LMS algorithm, since it utilizes a variable convergence step size

to minimize the instantaneous output error [12].
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The NLMS filter is manifestation of the principle of the minimal disturbance. From
one iteration to the next, the weight vector of the adaptive filter should be changed in a
minimal manner, subject to a constraint imposed on the updated filter’s output. To cast
this principle in mathematical terms, let w(n) denote the old weight vector of the filter at
iteration n and w(n+1) denote its updated weight vector at iteration n+1. We may then
formulate the criterion for designing the NLMS algorithm as that of constrained
optimization. Given tap-input vector x(n)=[x(n),x(n—1),"--,x(n-N+1)]", and desired
response d(n) , determine the updated weight vector w(n+1) so as to minimize the squared

Euclidean norm of the change [14],
ow(n+)=w(n+1)—w(n) (2.23)

Subject to the constraint

w (n+Dx(n)=d((n) (2.24)
To solve this constrained optimization problem, we use the method of lagrange

multipliers. According to this method, the cost function for the problem at hand consists of

two terms,
J)=|ow(n+D)|" +Ad(n)-w (n+1x(n)) (2.25)
where Ais the lagrange multiplier.
The cost function J(n) is a quadratic function in w(n+1), as shown by expanding
equation (2.25):
Jn)=(wrn+1)-wn) (wn+1) -wr) + A(d(n) -w' (n+1)x(n)) (2.26)
To ﬁnd the optimum value of the updated weight vector that minimizes the cost function

J(n), it is proposed as follows:

Differentiate the cost function J(n) with respect to w(zn +1)
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oJ (n)

ow(n D) =2(w(n+1)-w(n))—Ax(n) (2.27)

Setting the result in equation (2.27) equal to zero and solving for the optimal value
w(n+1), we obtain

w(n+l)=w(n)+ %Zx(n) (2.28)

Solve for the unknown multiplier A by substituting equation (2.28) into the constraint

equafion (2.24), we first obtain

d(n)y=w" (n+1)x(n)

= (w() + 2 Ax() X
=w' (n)x(n) +-;—l||x(n)”2 (2.29)
Then, solving for 4, we obtain
A= ze(”)2 (2.30)
[x(m)

where e(n) =d(n)~w’ (n)x(n). Combining the results obtained to formulate the optimal
value of the incremental change Sw(n +1). Substituting equations (2.30) into (2.28), we
have

ow(n+l)=w(n+1)—w(n)

1
x|

e(n)x(n) (2.31)

In order to exercise control over the change in the tap-weight vector from one

iteration to the next without changing the direction of the vector, we introduce a positive

real sbcaling factor denoted by x,,,. . We redefine equation (2.31) simply as
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wn+l)=wmn+1)—-w(n)

= mz-e(n)x(n) (2.32)
Equivalently, we write
w(n+1)=w(n)+ ”X“("T'”)'ilze(n)x(n) (2.33)

By comparing the updating formula of the standard LMS algorithm with that of the NLMS

algorithm, the desired upper bound result follows [12]:

<u= % Ny (2.34)
0< s <2 (2.35)
Then, the NLMS algorithm is described as [12]
initialization
x(0)=w(0)=[0 0 - 0]
Choose 0< u,,, <2
y =small constant
Do for n20
e(n)=d(n)-x" (nyw(n) (2.36)
W(n+1) = W(n) +——2ins_ o(nyx(n) 2.37)

y+x" (n)x(n)

Due to the relatively fast convergence speed and low computational complexity, the
NLMS algorithm has been applied into AEC [15], [16]. But this algorithm is still affected

a lot by the eigenvalue spread of the input signal correlation matrix.
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2.6 Recursive Least Square (RLS) Algorithm

The recursive least square (RLS) algorithms are known to pursue fast convergence
even when the eigenvalue spread of the input signal correlation matrix is large. These
algorithms have excellent performance when working in time-varying environments. Due
to these merits, they have been used in AEC [17], [18]. But all these advantages come
with the cost of an increased computational complexity and some stability problems,
which are not as critical as in LMS-based algorithms [19]. The RLS algorithm will be
introduced below.

The input signal information vector at a given instant n is given by
x(n) =[x(n),x(n-1),,x(n~N+1)]" (2.38)
where N is the memory length of the FIR filter, the coefficients, w, (n) for i=0,1,...,N-1, are

adaptable aiming at the minimization of a given objective function. In the case of least

squares algorithms, the objective function is deterministic and is given by

£ (m) =Y e (i)
i=0

=3 2d () - X" (Yw(n)] (2.39)
i=0

where w(n)=[w,(n),w, (n),~-,w,_(n)]" is the adaptive filter coefficient vector and
e(i) is the a posteriori output error at instant ;. The parameter A here is an exponential

weighting factor that should be chosen in the range 0 << A <1. This parameter is also
called forgetting factor since the information of the distant past has an increasing

negligible effect on the coefficient updating [12].
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It should be noticed that in the development of the LMS and LMS-based algorithms
we utilized the a priori error. In the RLS algorithm e(#n) is used to denote the a posteriori
error whereas e'(n) denotes the a priori error, because the a posteriori error will be our
first choice in the development of the RLS-based algorithms.

As can be noted, each error consists of the difference between the desired signal and
the filter output, using the most recent coefficient w(n), by differentiating £°(n) with

respect to w(n), is follows that

%i%’)l - -22,1"-&(;')[61(1') —x" ()w(n)] (2.40)

By equating the result of equation (2.40) to zero, it is possible to find the optimal vector

w(n) that minimizes the least square error, through the following relation:

0
23 XA X ()= (2.41)
0

The resulting equation for the optimal coefficient vector w(n) is given by
w(m) =[D_ A x(x" O A X ()
i=0 i=0

=Ry (m)P;(n)

=S, (m)P,(n) (2.42)
where R, (n)and P,(n)are called the deterministic correlation matrix of the input signal
and the deterministic cross-correlation vector between the input and desired signal,

respectively. S,(n)is the inverse of R (). Rewrite equation (2.42) into
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{Zn: A" () (n) = ﬂ[i A77x@)d ()] + x(m)d (n) (2.43)

By considering that
R,(n-DYw(n-1) =P, (n-1) (2.44)

It follows that

n

D> A7 x(@x" ()Iw(n) = AP, (n 1) + x(n)d (n)

i=0

= AR, (n -D)w(n 1)+ x(n)d(n)

=13 A xR () - XX (W —1) +x(md(r)  (2.45)

Now define the a priori error as

e'(n)=dn)-x" (mwn-1) (2.46)
Expressing d(n)as a function of the a priori error and replacing the result into equation
(2.45), it can be shown that

w(n) =w(n-1)+e'(n)S ,(n)x(n) (2.47)

Then it is straightforward to generate a conventional RLS algorithm [12]:
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Initialization
S,(-)=dl
- where J can be the inverse of an estimate of the input signal power
x(-l)=w(-1)=[0 0 - 0]
Do for n=0
e'(n)=dn)-x" (nyw(n-1)

v(n) =8S,(n-1)x(n)

_Lis (nony- YOV ()
Sp(m) = ISp(n-D- s s

w(n)=w(n-1)+e'(n)S ,(n)x(n)
If necessary compute
y(n)=w" (m)x(n)

e(n) =d(n) - y(n)

(2.48)

(2.49)

(2.50)

2.51)

(2.52)

(2.53)
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Chapter 3 Brief Review of Nonlinear AEC

Approaches

3.1 General

The linear filtering techniques are known to be effective in a variety of applications in
signal processing, telecommunications and control. In some applications, however, the use
of linear filters is not sufficient. For example, in acoustic echo cancellation (AEC) where
nonlinear distortions caused by the loudspeaker/amplifier occur, linear filters can only
cancel or alleviate the linear echo, leaving the nonlinear distortions after the AEC, thus
resulting in a degraded communication quality [20]. As presented in this chapter, we will
introduce the nonlinear filtering techniques applicable to nonlinear case.

Recently, nonlinear filters have become a very important tool in solving the problem
of AEC, where a nonlinear filter is employed to identify as close as possible the acoustic
echo path that is found to be highly nonlinear [10]. The main source of nonlinearities in an
echo path is caused by the loudspeaker and the power amplifier which are operated at the
highest signal level of the transmission chain [4]. The fundamental principle of
loudspeaker has never been changed since its invention. A loudspeaker has so complex
structure to transform electric signal into mechanical signal and to radiate acoustic wave.

In general, it produces both linear and nonlinear distortions. Nonlinear cone suspension
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and uneven magnetic flux densities in the loudspeaker introduce nonlinear distortions at
large cone displacement levels. In the meanwhile, at a high volume setting, saturation
effects may occur in the power amplifier, producing gross nonlinearities in the system.
These nonlinear distortions greatly impair the performance of acoustic echo cancellers [8].
In order to find more powerful tools to solve the nonlinear distortion problems in acoustic
systems, researchers have made tremendous efforts to developing various types of
nonlinear filtering techniques.

A general block diagram of a nonlinear system identification model is shown in
Figure 3.1. When the nonlinearity is caused by the loudspeaker/amplifier [21] operated at
its power limit, the memory of this nonlinear behaviour cannot be neglected due to the
long ftime constants of the electro-mechanical system. To combat this kind of nonlinearity,
adaptive systems with memory are required. In [22], adaptive Volterra filters (VFs) were
proposed for nonlinear echo cancellation (AEC). The VF-based methods were further
studied in [23], [24]. In these methods, modelling the nonlinear acoustic echo path with
the VF is essential to the elimination of the nonlinear distortion [25], [26]. However, due
to itsv high numerical complexity, the VF has to be truncated and simplified to keep the
computational complexity modest before its use in practical systems. On the other hand, if
the major cause of nonlinearity is due to a clipping amplifier [4], namely, the amplifier
will amplify the signal only up to its maximum capacity, at which point the signal will be
ampliﬁed no further, a low-complexity scheme by using a memoryless saturation curve to

describe this nonlinearity can be used to achieve a remarkable performance. As there is a
lack of unique theory to model and characterize an arbitrary nonlinear system, we here

introduce the basic nonlinear echo cancellation techniques based on VFs and a saturation-
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type transform, which will be used to develop new AEC methods in the following

chapters.

x(n)

! l

Nonliner o anlingar
adaptive distortion
filter
Room
- y(n Impulse

e(n) + d(n) |
+

Figure 3.1 Nonlinear system identification model

3.2 Volterra Filter-Based AECs

The VF has been widely used as a nonlinear model in AEC [10], [20]. A VF is
actually a truncated version of the Volterra series with finite order and memory. Given an

input signal x(n), the output of a nonlinear system using the kth order VF can be written

as
Ny-1 Ny=1N,;-1 Ny=l o Nl

y()y =Y hG)x(n—i)+ ihz(il,iz)x(n—i])x(n—i2)+ DD Gy i) x(n—i) - x(n—iy)
i,=0 /=0 i,=0 i=0 =0

3.1)

where 7,(i),h, (1) ... b (. 5,), for k=1,2..., are the coefficients of the VF model and

in particular, the set A,(i.i,)is also known as the kthorder Volterra kernel of the
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nonlinear filter [12]. In equation (3.1), NV, stands for the memory of the kth order kernel

of the VF. Note that the Volterra kernels are usually assumed to be symmetric. For

example, a 2™ order VF has a symmetric 2™ order kernel as given by 4, (i,3,) =h, (i, 1)

Figure 3.2 shows an implementation diagram for a 2™ order VF with a memory length of

3 for each kernel. In which there are total 3 coefficients for the linear kernel, and a total of

6 coefficients for the

x(n)

,; hz?o,O)'g]()_’ _l(:)
>LXJ h2(5,1) _g9—> 5
;59 hz(:1,1)—® g

hz(2,2)

Figure 3.2 A 2" order Volterra filter with two delay elements

2™ order kernel due to the symmetry. It is also clear that the output of the VF is a linear

combination of the delayed versions of the input signal and their products yielding higher-

order nonlinear terms. Accordingly, the output of a general VF can be expressed using

vectors as [27]
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y(m)=h"(m)x(n) (3.2)
where h(n) is comprised of all the VF parameters, namely,
h(n)= [h1 (0;72): h] (1;’1)' ! 'h1 (N1 "l;n)yhz (0>0;n)a hz (0,1;71),' ) '>h2 (Nz - 1: Nz - 1;1’!),' ' ']T (33)

and, the input vector x(n) of the VF is given by,

x(n) =[x(n),x(n=1)-+-x(n— N, +1),x* (n),x(M)x(n=1),---,x*(n =N, +1),--]" (3.4)
Note that equation (3.2) can be rewritten using the kernels of the VF as,

y(n) =h" (n)x(n)

_x1 (”)-
X, (n)
=[h] (n),h] (n),--hi(n),--] 3.5)

X, (n)

where h, (n) is the coefficient vector of the kth order kernel and x, (n) presents the input

sub-vector corresponding to the itk order kernel.
Note that the input vector needs to be updated for every new sample of the input

signal in order to calculate y(n). It can be seen that, except the way the input vector is

constructed, the VF behaves similar to a linear filter. Therefore, the VF is often treated as
a linear filter and many linear adaptive algorithms can be applied directly to the VF, such
as [27], [28], [29].

Broadly speaking, there are two kinds of VF-based structures. One is to use a
conventional VF to model the whole nonlinear echo path including the effect of the
loudspeaker and the room impulse response. In this structure, a VF with a large memory
length and in turn a large number of coefficients is often required. Since the number of

coefficients grows exponentially with the increase of the memory length, a direct use of
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VF with large memory size incurs a slow convergence rate as well as a high computational
complexity. The other is to model the echo path with a nonlinear cascade filter structure as
studied in [30]. This structure consists of a VF for the modeling of the loudspeaker and a
linear transversal filter to identify the room impulse response. The advantage of the
cascade structure is its relatively low computational burden since the memory sizes for
both the VF and the linear filters are short [30]. However, since the output of the entire
cascade structure is a bilinear function of the filter coefficients, convergence toward the
optimal solution cannot be guaranteed. Indeed, the non-quadratic form of the MSE in this
scheme produces some local minima, leading to a convergence toward incorrect
parameters if the initial values are not chosen properly. Both of the above AEC schemes

are presented below, based on which a new approach using 2™ order VF will be developed

in Chapter 4.
nonlinearity
A
X(n) ..‘-;.':: """ .‘\ 1
> \|
v ‘!
AEC A
Votlerra filter /,f" \
h(n) Room Impulge
1 /
2} ,."/ &
= s
Z ; _,.'"
S /7
w y(n) ,,.'j /'f"
2 - /" ,/'
- f.';,/'
! o
e(n) + d(n)

Figure 3.3 A Nonlinear AEC with adaptive Volterra filter
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Figure 3.3 shows the block diagram of an adaptive VF. Since the adaptive VF is a
direct extension of a linear adaptive filter, many linear filtering algorithms can be applied
to the VF. For example, both LMS and normalized LMS (NLMS) algorithms have
relatively low complexity and fast convergence speed, and ‘therefore, find wide
applications in AEC. The two basic algorithms for their application to VF are given as
follows.

The LMS adaptive VF was proposed in [28], which states

Initialization
Specify the initial values x(0)and h(0)
Do for n20
e(n) = d(n) —x" (n)h(n) (3.6)
h(n +1) =h(n) + pe(n)x(n) 3.7)
O<pu< 2 (3.8)

max

where u is the step size of iteration and A, is the maximum eigenvalue of the
correlation matrix of the input vector x(n)of the VF. Alternatively, another LMS

algorithm can be described via the Volterra kernels as

Initialization
Specify the initial values x, (0) and h, (0)
Do for n=0
e(n) = d(n) x| (mh, (n) = x; (Mh, (n) - (3.9)
for k=1,2...
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hy(n+1) =h,(n) + pe(n)x, (n) (3.10)

O<uy, < (3.11)

'k, max

where u, represents the step size for the kth kernel and 4, ., is the largest eigenvalue of

the input correlation matrix corresponding to the kthkernel. Like a general LMS

algorithm, the convergence speed of the LMS adaptive VF depends on the eigenvalue

spread, A . /A

s Awax | Amin » Where A is the smallest eigenvalue of the correlation matrix of x(n) .
It is obvious that the larger the eigenvalue spread, the slower the convergence speed is.
This is particularly troublesome for nonlinear filters, since the eigenvalue spreads of
nonlinear filters are in general very large. For accelerating the convergence of the adaptive

VF, the NLMS algorithm is usually applied.

The NLMS algorithm for the VF can be stated as [27]

Initialization
Specify the initial values x(0) and h(0)
Do for n>0
e(n) =d(n)-x" (n)h(n) (3.12)
h(n+1) = h(n) + -2 e(n)x(n) (3.13)
[xC)l
0< tpps <2 (3.14)
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Similarly, the kernel version of the NLMS for the VF can also be described as

Initialization
Specify the initial values x,(0) and h, (0)
Do for n>0
e(n) = d(n)—x{ (m)h, () =X} (n)h, (n) = (3.15)
for k=1,2...
h,(n+1)=h,(n)+ Eimg —e(n)x, (1) (3.16)

[, O+ + [, 0]

O<u, <2 (3.17)

The NLMS adaptive VF also encounters some problems. Taking a 2" order VF as an
example, if ||x1||2 >> "X2“2 , the coefficients of the 2™ order kernel will be updated in a very

small step according to constraint (3.17), which severely slows down the 2™ order kernel
convergence [4].

The above VF structure treats the loudspeaker and the room impulse as an overall
nonlihear system. In practice, however, the nonlinear loudspeaker and the linear room
impulse response are in cascade connection nature, whereas the VF is considered as a
parallel connection of a linear kernel and higher-order nonlinear kernels. Therefore, a
general VF model cannot effectively identify the overall effect of the nonlinear
loudspeaker and the linear room impulse response, because it is difficult to accurately
choose the valid coefficients. Considering a VF can also accurately model the nonlinearity
caused by the loudspeaker, another echo cancellation structure that is based on the cascade
connection of a VF and a linear filter was proposed in [30] to identify the loudspeaker

parameters and the room impulse response separately. Figure 3.4 shows the diagram of
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such a cascaded-form nonlinear canceller, where the loudspeaker parameters are identified
by a VF and the output signal of the VF feeds a transversal filter which is to identify the
room impulse response.

The NLMS algorithm for the cascade structure can be summarized as [30]

X(I’l) = [XIT (n)sxg (I’Z), ! ']T
h(n) = [th (n)’ h; (n)’ *t ']T

w(n)=[w,(n), wy (1), -, Wy (n)]T

U, (m)= [x, (1), X, (n=1),, %, (n = L+ (3.18)
U"(n) =[x(n),x(n-1), -, x(n— L+1)]=[U, (n), U,,--]" (3.19)
Initialization

Specify the initial values h(0) and w(0)

Do for n>0
x, (n) = U(n)h(n) (3.20)
e(n) = d(n) - x! (n)yw(n) (3.21)
w(n+1) = w(n) +—2— e(n)x, (n) (3.22)
x,(n))
fork=1,2...
h,(n+1) = h, (n) + —E—— e(n) UL (m)w(n) (3.23)
[UF yw(n)|
O< p,, 1, <2 (3.24)

where h, (n) is the kth order Volterra kernel, and L denote the memory length of the linear

filter. The details of the NLMS-based nonlinear AEC can be found in [30].
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Figure 3.4 A cascade-form adaptive nonlinear AEC using VF

The two AEC structure along with their NLMS algorithms will be revisited in

Chapter 4 in order to develop a simplified VF echo canceller.

3.3 Nonlinear Transform-Based AECs

The so-called memoryless nonlinearity a type of nonlinear distortion can be
characterized by a saturation curve. This often occurs in power amplifiers, especially in
mobile devices. In this situation, the nonlinear distortion in echo path can be modeled by a
saturation-type nonlinear transform which is used to compensate the nonlinear distortion
in conjunction with a liner FIR filter used to compensate the room impulse response. In
[31], a general solution for this kind of distortion cancellation was introduced. Figure 3.5

shows the diagram of such a nonlinear transform-based acoustic echo canceller.
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Figure 3.5 Block diagram of a typical nonlinear transform-based acoustic echo canceller

Several nonlinear transforms have already been proposed in literature for nonlinear

AEC. For example, a hard-clipping nonlinear function as given by

-a x<-a
fla,x)=< x x<a (3.25)
a xza

was adopted as a preprocessor in [31], prior to the linear adaptive filtering. The overall

nonlinear AEC utilizing f(a,x)along with a transversal filter was then updated via the

NLMS algorithm, which is highlighted as follows.
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Initialization

Specify the initial values w(0) and a,

Do for 720
| x(n) =[x(n), x(n—1), -, x(n— L+1)]" (3.26)
s(n) = f(a,,x(n)) (3.27)
s(n) =[s(n),s(n—1),-+,s(n—= L+ D))" (3.28)
e(n)=d(n)-w" (n) f(a,,x(n)) (3.29)
Gy = a, + (' (a, x(n)" w(n)e(n) (3.30)
w(n+1) = w(z) +“;(ﬁn‘;|7s(n)e(n) (3.31)

In the above algorithm, L denote the memory length of the FIR filter. x, and 4, are the

step sizes for the update of the parameters a and the coefficients vector of the FIR filter,

respectively. Note that f(a,,x(n)) is a vector representing the distortion version of x(»)

and f"(a, x(n))is the first derivative of f(a,,x(n)) with respect to a, . This method is just

suitable for the hard-clipping distortion situation.

Recently, a novel nonlinecar AEC has been proposed in [32], where nonlinear
transform based on the raised-cosine function is used to compensate the nonlinearity of the
power amplifier. The nonlinearly transformed signal is then processed by a conventional
linear adaptive filter. This nonlinear filter has been proved to perform well in AEC. In this
nonlinear canceller, the nonlinear transform was derived from the raised-cosine function

and can be eventually expressed as
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X < =
2T
Ty 1-8 ﬂ 2szz'+7r]’ 1+,[)’< S_l—ﬂ
25 2T 2T
1-4 1-p
x)=/ 2Tx, ——<x<—— 3.32
S(x) X o7 <Y< (3.32)
s 28 —ﬂ ,[)’ [2Txﬂ 72']’ 1_’B_x31+’3
ﬂ' 203 2T 2T
1 x>l+'8
’ 2T

where T and S are the free parameters to determine the shape and the dynamic range of
the nonlinear curve. The significant advantage of the transform given by equation (3.32) is
its capability of fitting a wide range of saturation curves through a proper choice of the

values of T and £ . The algorithm is summarized below

Initialization

Specify the initial values, w(0), 7, and S,

Do for n20
e(n)=d(n)—w" (n) f(x(n)) (3.33)
B =5, +ﬂﬁe(n)w (n)-L_=22 f(’fé”))’ﬂ =p,,T=T, (3.34)
where Fxn) _
op
( _
0, |x|<1 'Bor|x|> +p
2T 2T
<l_lCOS(ZTxﬂ+ﬂ)_2Tx+lsin[2Tx7r+7r]’ 1-p_ _1-5
2 2/ 28 28 2T 2T
1 1 (ZTxﬂ—ﬂ) 2Tx—1 (ZTxﬂ'—ﬂ) 1-8 1+ 4
——+—CO0S + sin , —_— < XS —
i T 23 28 28 2T 2T
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T =T, +tielw (VLD (3.35)
[ 2X, |x|<2—]’?
x+xsin(2Txn+”} —l.—'BSx<l B
where of (x(n) _ 203 2T 2T
oT x—xsin(ZTxﬂ_ﬂJ, 1-f_ 1+5
28 2T 2T
0, o> 12
L 2T
w(n+1) = w(n) + ———— f(x(n))e(n) (3.36)
fonw

where w(n) represents the coefficient vector of the transversal filter, and x(») is the signal
vector input to the nonlinear transformer. ;,u; and uare the step sizes. Note that

f(x(n)) represents a vector that is the distorted version of x(n) .
It has been shown in [32] that the update of parameters T and £ can easily be

implemented with the derived explicit update formulas. Moreover, the convergence of T

and S does not depend on their initial values. However, due to the high complexity of the
nonlinear transform which is piecewise defined, the convergence of T and A could not

have been justified theoretically.

In summary, the nonlinear transform-based echo cancellation methods are very
efficient in dealing with the saturation-type nonlinear distortions. Furthermore, they enjoy
a very low computational complexity as compared to the VF-based nonlinear AECs.
Motivated by the simplicity of the nonlinear transform method, a new nonlinear echo
canceller that uses a sigmoid function in conjunction with a conventional FIR filter will be

proposed in Chapter 5 for the cancellation of the saturation-type distortions.
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Chapter4 A New AEC Based on a

Simplified 2" Order VF

’fo model accurately the nonlinearity caused by the loudspeaker in acoustic systems, a
nonlinear filter with memory is required [4]. As the Volterra filter (VF) can be regarded as
the Taylor series with memory and can be used to model any nonlinear distortions, an
adaptive VF is commonly employed to model a loudspeaker or a complete echo path in
AEC. Since a conventional VF suffers from a large number of parameters and in turn a
high computational complexity [33] in modeling a complete nonlinear echo path, many
researchers have dedicated to the reduction of computational complexity of VF to better
meet the need of practical nonlinear acoustic echo cancellation (AEC) [10].

It has been observed that the 2™ order kernel of a VF, when used to model the whole
echo path, has its most significant coefficients laying on the diagonals near the main one.
Based on this observation, some simplified 2™ order VFs have been proposed [10], [34],
[35]. Their common idea is to discard some insignificant coefficients of the 2™ order
kernel, leading to a significantly reduced filter length. As mentioned in Chapter 3, the
NLMS algorithm is often used in the VF-based AECs. However, the input correlation
matrix of a VF is usually ill-conditioned due to the involvement of the product terms in

the formed input signal vector, making the NLMS less efficient even in the case of
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Gaussian input. Moreover, the convergence rate of the 2™ order VF is very sensitive to the
variance of the input signal.

In this chapter, an efficient scheme is proposed to reduce greatly the insignificant
coefficients of the 2™ order Volterra kernel when a VF is used to model the complete echo
path. A NLMS algorithm using a new update mechanism for the step size is also presented
for kernel-separated 2™ order VF to reduce the effect of ill-conditioning of the correlation
matrix.

Section 4.1 presents a simplified structure of the 2™ order VF with theoretical
justification. Section 4.2 derives a new NLMS algorithm for kernel-separated VF in which
a new update scheme for the step size is utilized. An eigenvalue spread analysis of the new
algorithm is also undertaken. Section 4.3 gives simulation results to validate the proposed

simplification strategy as well as the new NLMS algorithm.

4.1 A New Simplified Structure of 2" Order VF

As stated in the previous chapter, the overall echo path counting the loudspeaker and
the room impulse response can be better modeled by a cascade of a Volterra filter and an
FIR filter, rather than a single VF. However, the cascade VF structure has the convergence
problem i.e. the coefficients of the cascade structure tend to converge to local minima.
Figure 4.1 shows a nonlinear AEC using cascade VF structure consisting of a 2™ order VF
g(n) and a linear filter w(n), in which it is assumed that the NLMS is applied to update

both the nonlinear and linear filters. In this section, we will show that the cascade VF
structure is exactly equivalent to another 2™ order VF h(n) with reduced 2™ order kernel

coefficients. Moreover, the memory length of the new filter h(n) can be determined by
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that of g(n) as well as w(n). the new 2™ order VF h(n) is referred to as the simplified 2™

order VF.
x(n)
A
e
AEC ‘[Q/ \\
2" order VF 2'—53 Nonlinear
g(n) 3 E distortion
// % f > Acoustic /
W et Echo Patil
4 y © '8 re
ois y e
FRwm |3 Room 0
%, w Impulse
3 A
z
y(n)
e(n) +d(n)

Figure 4.1 Nonlinear acoustic echo canceller using 2" order VF

It has been shown in [25] that Volterra kernels are symmetric and thus, a 2™ order VF

can be expressed as

Nyl Ny=IN,-1
y(n)= zhl(il)x(n"il)+ Z th(iz’jz)x(”_iz)x("“jz) (4.1)
ii=0 1,=0 /=i,

where N, and N, denote the memory lengths of the 1% and the 2™ order kernels,

respectively. Considering that the coefficients with the most significant amplitude of the
2™ order kernel are located around the main diagonal, we propose a representation for the

2™ order kernel, namely

Y= S hE)x(=i)+ 3 3y =iy, jo)x(n i, = j)x(n=j,)  (42)

iy =0 i2=0 jo=i,
where the 2™ order kernel coefficients are re-arranged in terms of the relative importance

of the diagonal elements. Taking a 4-memory 2™ order Volterra kernel as an example, the
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selection of the kernel coefficients starts from the most important main diagonal elements

and extends then to the upper-triangle elements, as shown in the following equation,

Mg Py P s
A AN N

_ hlo EL\:\\\Z\i\\h'\&

hy By \hzi‘\\:hﬁ
AR

hyy hy hy B

H, (4.3)

where symbol 7%, ; has been used to replace #,(i, j) for notational convenience. As will be

seen blater, with the new formulation one can easily drop insignificant coefficients by
keeping several most important diagonals of Hj,

In order to reveal the relationship between the cascade VF structure and the
equivalent simplified VF, we first make following definitions,

}c(n) : the input signal

¥, (n) : the output of the VF g(n)

y(n): the output of the entire cascade structure, namely, the estimate of the echo
signal.

d(n) : the desired signal.

g(n) : the vector of VF coefficients in which can be written as

g “
where
g,(n) =[g,(n),g,(n),g,(n) -, gy, (W] (4.5)
and
g.(m) =g, (.8, (M).8,,(n), .8, (Mg, . (M (4.6)
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g,(n) and g, (n) represent the 1% and 2™ order kernel vectors, respectively, in the cascade

structure.

u(n) : the input vector of the VF in the cascade structure, which can be expressed

u(n) = R’: EZ;} @.7)
where
w, (1) =[x(n), x(n 1), x(n—2),:++, x(n = N, + 1) 4.8)
and

u, (n) =[x*(n),x(n-D)x(n-1),x(n - 2)x(n—2), -, x(n =) x(n— N, +1),x(n)x(n— N, +1)]"
(4.9)
u,(n) and u,(n) represent the input vectors of the 1% and 2™ order Volterra kemnels,

respectively, in cascade structure.

h(n): a vector of coefficients of the new VF,

hl(n)}

h, (n) (*+10)

h(n) ={

with h,(n) and h,(n)being the 1 and 2™ order kernel vectors, respectively, of the 2™

order VF to be determined.

x(n): input vector of the new VF h(n), as given by,

x(n) = {x‘ (”)} 4.11)

X,(n)
where x,(n) and x,(n)represent the input vectors of the 1% and 2™ order kernels of the

VF, respectively.
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We now derive the expression for the output y(n) of the cascade structure in terms of

g(n) and w(n) as well as that in terms of h(n) only. We will then show that the two
expressions are equivalent provided that some of the 2™ order kernel coefficients in h(n)

are set to zero.

Employing the above definition, y,(n) can be expressed in vector form as

»,(n) =u’ (n)g(n) (4.12)

Substituting equations (4.4) and (4.7) into equation (4.12), we obtain

_ u,(n) T{&(”)}
g “(")"an)} g, ()
= (g, (n)+u (n)g, () @.13)

Then, the output of the cascade structure can be expressed as
y(my=w"(n)y,(n) (4.14)
where w(n) =[w,(n),w,(n),---,wy ,(n)] denotes an Nitap FIR filter coefficients and

y,(m)=[y,(»),y,(n-1),,y,(n—N, +1)] is formed by y, (n) from equation (4.13), i.e.

N w(n=i) ’ g, (n)
g v(”")“[uz(n—t)} [gz(n)} 13

Using equation (4.15), the vector y, (n) can be expressed as

y,(n)= U (n)g(n)

U, e
={ 1(n)i! I:gl } (4.16)
U,(n) g,(n)
where U,(n) is a NibyNrmatrix formed by u,(n) , namely,

U,(n)=[u,(n),u,(n-1),...,u;(n—=N, +1)] 4.17)
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and U, (n) 1s a MabyN; matrix constituted by u,(n) i.e.
U,(m)=[u,(n),u,(n-1),...,u,(n=N, +1)] (4.18)

Note that the row dimension M is determined by the following combination [142]

M2=(N2 +p"lJ (4.19)
p

where, p=2 for the 2™ order VF.

Substituting equation (4.16) into equation (4.14), yields

y(n) =w (U] (n)g, (n)+w' (MU (n)g, (n) (4.20)
It is easy to verify that,
w' U (n)g, (n)
x(n) x(n-1) - x(n—N, +1) g,(n)
)y (s ()] x(n:— ) x(n-2) ) x(n - N) g, :(n)
x(n—}v,+1) | x(n—Nl;-N,+2) gNI_.l(n)
4.21)
w' (U3 (g, (n)
=[wo (n), Wy (), -+, Wy, 1 ()]
() x(n=Dx(n-1) x(n=Dx(n—N, +1) x(m)x(n—N, +1)
X} (n-1) : x(n-Dx(n-2) X(n-1)x(n-N,)
x*(n —:N, +1) x(n—N, +)x(n—N,) . x(n—N, +1)x(;1 ~N,-N, +2)
g,,(m)
g, I:(n) 422)
|80, (M)

On the other hand, the output of the new VF h(n) can be written as
48



y(n) =hy (n)x; (n) +h; (m)x,(n) (4.23)
Considering the memory lengths of g,(n)and g,(n)as well as the lengths of w(n), the
memory length of h, (n)is set to Nj+N;-1, and that for h,(#) is N2+N;-1. In what follows,
we show that equation (4.20) is equivalent to equation (4.23) provided that some of the
coefficients of h,(n) are set to zero.

It is obvious that equation (4.21) is equivalent to the first part h (n)x, (n) of the right
hand side of equation (4.23) as long as x,(n)=[x(n),x(n—1),"--,x(n~=N, =N, +2)]". As
for the output of the 2™ order kernel h,(n), x,(n)can be written under the full memory
length of No+N;-1, as
X, () =[x* (n),x(n = Dx(n=1),x(n—2)x(n-2), -, x(n=Dx(n~ N, =N, +2),x()x(n—-N, =N, +2)"

(4.24)
It is seen from equation (4.22) that not all cross terms, such asx(n)x(n—N,),
x(n=N,)x(n—N,~N,+2),---, x(n)x(n—N, —N, +2)are not included, implying that a
simplified version of x,(n)should be applied in equation (4.23), which leads to a
simplified structure of h,(n). This result can be illustrated in the following matrix

expression of the 2™ order kernel coefficients

ﬁ'o:&\ B A ’h'(wz:l B PNy en, -2
o ™ Jlu hl,N2-1 T hl,N2+N,.—2
. > ~ - -~ . N ~ - ~ .
. (4.25)

N,-1,0 hN,~1,1 hﬁ:—i -1 kN,—],N2+N:'—2
. . A . . )
Thel i
~ )

_hN2+N,—2,0 hN2+N,—2,1 e hN2+N,—2,N2—1 o hN;-T—N;—.Z~,N2+iV,—2 i

Sy

where only the coefficients marked within dashed line are required to form h,(»), the 2nd
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order kernel thus simplified along with the first order kernel is referred to as the simplified

2™ order VF in this thesis.

4.2 A New NLMS Algorithm for Kernel-Separated 2" Order

VF

4.2.1 Algorithm Derivation

In section 4.1, a simplified 2™ order VF which is equivalent to a cascaded VF has
been developed to model an acoustic echo path. As stated in Chapter 3, although the
NLMS can be directly applied to a nonlinear VF, the convergence speed would be affected
considerably by the existence of the nonlinear distortion because of the ill-conditioned
correlation matrix of the input signal of the nonlinear VF. In this section, a new NLMS
algorithm is proposed to update two kernels of the 2™ order VF separately as described in
Figufe 4.2. as show later, this algorithm can reduce the effect of the ill-conditioning of the

correlation matrix, thus speeding up the filter convergence rate.

x(n)
P
y o
v Nonlinear
AEC i distortion
1% order 2" order «—> Acoustic
kernel of 1 kernel of Echo Pa Ve
| VFhm) | | VFhan)
Room e
impulse ‘/

y(n)

A

+
on  —+ dm)
Figure 4.2 Kernel-separated structure of a 2" order VF
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As denoted in Figure 4.2, the estimated error e(n) can be expressed as
e(n)=d(n)—y(n) (4.26)
Substituting equations (4.10) and (4.11) into equation (4.23), and using equation (4.26) we

can obtain the mean-square-error (MSE) J(n) as

J(n) = E[e’ (m)] = E[(d(m) = h] (n)x, (n) ~h; ()X, (m))’] (4.27)

Some researchers have considered to update the 1% and 2" order kernels separately to
overcome the slow convergence problem. In this methods, however, the choice of the step
size u follows a conventional NLMS scheme, which is not ideally suited for the two
different kernels as whole, due to the interaction between them. Moreover, the range of
#1s in conventional NLMS algorithm does not guarantee the convergence of the VF
coefficients. To obtain a more efficient NLMS algorithm for kernel-separated 2™ order

VEF, we first establish two cost functions for the first and second order Volterra kernels,

respectively as shown in Figure 4.2:

Minimize oh,(n+1)=h,(n+1)-h,(n) (4.282)
subject to the constraint h] (n+1)x,(n) =d,(n) (4.28b)
Minimize oh,(n+1)=h,(n+1)-h,(n) (4.29a)
subject to the constraint hl (n+1)x,(n)=d,(n) (4.29b)

where d,(n)and d,(n)denote respectively, the desired signal of the first order kernel and
that of the 2™ order one.

Following the method of lagrange multiplier [14], we have
Jimy=[on,(n+ D + A,(d,(n) =] (n+Dx(m) (i=1,2)  (4.30)
By taking the derivative of J,(n) with respect to h,(n+1), we can obtain
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aJ,(n)

Gh (nen) Db (m) =4, () (4.31a)
oJ,(n) _ _ _
ahz(n+1)_2(h2(”+1) h, (7)) = 2,x, () (4.31b)

where A, and A, represent two different lagrange multipliers.

Letting (4.31a) and (4.31b) be zero, we obtain

hl(n+1)=h1(n)+-§-ﬂ1x1 (n) (4.32a)

h, (7 +1) =h2(n)+%/12x2(n) (4.32b)

Considering that only d(n), instead of d,(n) and d,(n) individually, is available in
practice, where
d,(n)+d,(n)=d(n) (4.33)
we substitute equation (4.28b) and (4.29b) into equation (4.33) to produce
h! (n+1)x,(n) + h (n +1)x,(n) = d(n) (4.34)
Using equations (4.32a) and (4.32b) into (4.34), gives
1 1
d(n)=h{ (n)x,(n) =h3 (n)x,(n) = -Z-&Xf(n)xl (n) +Eﬂzxg(n)x2(n) (4.35)
or
1, 7 1, 7
e(n)= -2-/717‘1 (n)x,(n) +-2-ﬂvzxz (m)x, (n) (4.36)
Here, we can see A, and A4, are jointly determine e(n). Following [14], let
A = —2the) (4.37a)

x! (m)x,(n)
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A, = _2e(n) (4.37b)
xg(")xz(n)

where u, and u, are positive real scaling factors [14]. Substituting equations (4.37a) and
(4.37b) into equation (4.36), one can verify that

th+ =1 (4.38)
On the other hand, using equations (4.37a) and (4.37b) into (4.32a) and (4.32b),

respectively, the kernels of the 2™ order VF can be updated as follows

h, (n+1) =h1(n)+#§:)(n)xl(n) (4.39a)
h, (n+1) =h2(n)+xg‘(;+$)(mxz(n) (4.39b)

As a result, in order to guarantee the convergence of the VF coefficients in the mean

sense, we can set the following range for the step sizes,
O< y <1 (4.40a)
O<u, <1 (4.40b)
which is different from the range 0< 4, <2and 0< u, <2in the method [4], where the
two kernels are treated independently.
As a matter of fact, it is found from computer simulations that if both 4 and u,are

larger than one, the NLMS would not converge.

4.2.2 Eigenvalue Spread Analysis of Kernel-Separated VF

It is known that the variance of the input signal would severely affect the eigenvalue
spread of the correlation matrix of the input vector of a 2™ order VF, which in turn affects

the convergence rate of the NLMS algorithm even if the input is a Gaussian process. In
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this section , we show that the convergence of kernel-separated VFs is less sensitive to the
variance of the input signal. The following investigation is based on the assumption that a
Gaussian input with a zero mean and variance o*is applied to the VF. We first consider
that cast of separated kernels. Since the correlation matrix of the 1% order Volterra kernel
is a diagonal matrix whose element is the variance o, its eigenvalue spread is unity.
Thus, the convergence of the 1% order kernel is not affected by the variance of the input
signal.

The elements of the correlation matrix of the second-order kernel can be expressed as

the following general form [36],
E(xyxip%,3%54) = E (3% )E(x;0%34) + B3 %, ) E(X33%35) + E(x%, ) E(x;3%,4) - (4.41)
where x,,x,,x,andx, denote four delayed versions of four input samples. There are

several cases for the combination of the four elements

If x; =x, =x; =%,

_ 20 2P)! _
E(xyx,xp%,)=0"" 5 =3¢0* (4.42)
If x; =%;3,%, =x,and x; #x,,
E(x,%,%3%,) = E(x)x3) =0 (4.43)
Otherwise,
E(xyx;,%3%,4) =0 (4.44)

Thus, we only have two non-zero values in the correlation matrix of the 2™ order kernel,

denoted ac*,(a =1, 3). Accordingly, the correlation matrix of the 2™ order kernel can be

represented generally
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Ay Gy ' 4y

Q

a a
R=¢6'|"" "' . "P|=6'R, (4.45)
a3 a3 Qs

where R)is a constant matrix whose element is 0, 1 or 3. Clearly, the eigenvalue spread of

R; equals that of R, which does not depend on the variance o,

For a 2™ order VF whose kernel are not separated since correlation matrix of the
input vector of the entire VF contains both the 2™ order and higher order (3™ and 4"
order) statistics, it cannot be written as the form in (4.45). Therefore, its eigenvalue spread
depends on the variance of the input signal. This justifies that the convergence of kernel-

separated VFs is in general better than that of non-kemnel-separated VFs.

4.3 Simulation Results

The echo return loss enhancement (ERLE) is employed to evaluate the performances
of the proposed echo canceller in comparison to some of the existing methods. The ERLE

is defined by the following equation [10]:

_ E[d*(n)]
ERLE(n)(dB) = 1010g10—E[e2 o) (4.46)

where d(n) is the desired signal picked up by the microphone and e(n)is the residual

echo -signal after the AEC. In the simulation, the AEC system is excited with a white

Gaussian noise, and a measurement noise is added to the desired signal d(n)as

environmental disturbance.
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4.3.1 Performance of Proposed NLMS algorithm for Kernel-separated

2" order VF

In this subsection, we will verify the performance of the proposed NLMS algorithm
for kernel-separated 2™ order VF as described by equation (4.39) in comparison with a
conventional NLMS algorithm directly employed in the nonlinear filter as described by
equation (3.13). Figure 4.3 shows the ERLE plot of the proposed NLMS algorithm as well
as the conventional one for various input signals with different variances. In this
expeﬁment, the echo path is assumed to be a 2™ order VF with 96 coefficients for the 1
order kernel and 210 coefficients for the 2™ order kernel. The echo path is identified by a
same VF with unknown coefficients. In the updating process, we choose the step size

1=0.5 for the conventional NLMS algorithm, and 4, =0.55 u, =0.45 for the 1% and the

o kérnel, respectively, for the proposed NLMS. It is seen that when the variance of the
input signal is increased from 2 to 5, the proposed algorithm performs equally well in
terms of the convergence rate, whereas the convergence of the conventional NLMS
becomes very slow, which can also be seen clearly from Table 4.1. These results show
that the proposed NLMS algorithm is able to reduce the effect of the variation of the input

signal variance.
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Figure 4.3 ERLE plot for input signals with different variance (Experiment 1)

Table 4.1 Convergence rate comparison of conventional NLMS and proposed NLMS

Conventional | Conventional| Proposed Proposed
NLMS var=2 | NLMS var=5 | NLMS var=2 | NLMS var=5
First order kernel length (taps) 96 96 96 96
Second order kernel length (coefficients) 210 210 210 210
Convergence rate (iterations) 9000 17000 6000 6000

Figure 4.4 shows the ERLE results of both the proposed and the conventional NLMS

algorithms when the echo path has a longer memory length. In this simulation, the echo

path is assumed to be a 2™ order VF with 128 first-order coefficients and 528 second-

order coefficients. We use a VF with the same number of coefficients for both NLMS

algorithms. Clearly, the convergence rate of both filters gets slower due to the increase of

the number of coefficients. However, it is evident that the convergence of the proposed

NLSM algorithm is much better than that of the conventional one, despite the large

number of VF coefficients.
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It should be emphasized that the range for the step sizes y and p, in the proposed
NLMS algorithm has to satisfy equation (4.40). As a matter of fact, we have attempted
other choices of g and u, in our simulation and found that the algorithm fails to
convergence when both g and , are large than 1. It should also be mentioned that in the

above experiments, we used a conventional 2™ order VF which has full coefficients to
verify the proposed NLMS algorithm. The conclusion can also be drawn for the case of

the simplified 2™ order VF structure.

4.3.2 The Performance of the Simplified 2" order VF using Proposed
NLMS Algorithm

In this section, the performance of the simplified 2™ order VF with the proposed
NLMS algorithm will be examined and compared with that of the conventional 2™ order

VF using the same NLMS algorithm.
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Considering a real echo path is composed of a loudspeaker cascaded with the room
impulse, the echo path is set to be a nonlinear cascade structure in this experiment,
namely, it consists of a 2™ order VF followed by an FIR filter. The 2™ order VF has a
memory length 64 for the first order kernel and 12 for the second order kernel. The FIR
filter in the cascade structure is of 26 taps. If the nonlinear echo path is to be identified by
a conventional 2" order VF, then the VF should have 89 coefficients for the 1% order
kernel and 703 coefficients for the 2™ order kernel. However, as discussed in Chapter 4
the simplified VF with the same memory length as the conventional one has only 89 taps
for the 1 order kernel and 378 coefficients for the 2™ order kernel. Figure 4.5 illustrates
the performance of the conventional and the simplified VF. It is not surprising to see that
the convergence rate of the simplified structure is faster than conventional one. As both
cancellers are implemented under the same condition, we have compared their execution
time. Table 4.2 gives the computational complexity comparison of both echo cancellers in
terms of execution time from a Pentium PC 4 with 2 CPU 3.00 GHz and 1.00 GB RAM. It
is found that the echo canceller using conventional VF is more time consuming than the
simplified VF in updating process, even though both converge to the same eventual ERLE

value.
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(Experiment 1)

Table 4.2 Comparison of two 2" order VFs using proposed NLMS algorithm

(Experiment 1)

Conventional 2nd order VF | Simplifed 2nd order VF
First order kernel length (taps) 89 89
Second order kernel length (coefficients) 703 378
Convergence rate (iterations) 12500 9000
ERLE (dB) 40 40
Execution time/per run (seconds) 4.8 3.3

Figure 4.6 shows the results when the echo path has a longer-duration room impulse

response of 32 taps. Table 4.3 shows the computational complexity of both VF structures.

Clearly one can conclude that the proposed echo canceller is overall better than the

conventional one in terms of convergence rate and computational complexity, even though

the final ERLE value of both methods are slightly different.
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Table 4.3 Comparison of two 2™ order VFs using proposed NLMS algorithm (Experiment 2)

Conventional 2nd order VF Simplifed 2nd order VF
First order kernel length (taps) 95 95
Second order kernel length (coefficients) 946 450
Convergence rate (iterations) 18000 10000
ERLE (dB) 38 39
Execution time/per run (seconds) 5.7 3.7

The performance of the proposed echo canceller has been investigated in the above
two experiments given white Gaussian noise as the input signal. We now look into the
performance of the proposed method in comparison with the conventional VF as well as
the cascade VF structure as shown in Figure 3.4, when the input signal is a colored
Gaussian noise. In the cascade VF structure canceller, the 2™ order VF and the FIR filter
have the same number of coefficients as the echo path but with unknown parameters.

Figure 4.7 shows ERLE plot of the three methods, where the parameters of the echo path
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are the same as that in Figure 4.5. It is easy to see that the proposed echo canceller has the

best performance while the cascade structure gives the worst ERLE due to its convergence

to the local minima. It is also seen the conventional VF has a slightly worse ERLE

compared to the simplified VF.
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4.3.3 Performance of the Simplified VF using RLS Algorithm

In this section, the RLS algorithm is applied to update the coefficients of both

conventional and simplified 2™ order VFs. The echo path is also modeled by a cascade

structure, where the 2™ order VF is assumed to have 32 taps for the 1* order kernel and

memory length of 8 for the second order kernel. The FIR filter in the cascade structure

assumed to have 14 taps. Figure 4.8 illustrates the performance of both VFs using RLS

algorithm along with that of the simplified VF employing the proposed NLMS algorithm

when the input is white Gaussian noise. Table 4.4 gives a comparison of the three echo
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cancellers with their execution time. It is seen that the two cancellers using the RLS in
general give a faster convergence than the VF using the proposed NLMS. However, the
simplified VF with NLMS has a much less computational complexity than the RLS in
view of the execution time. This is because the inversion of the matrix Rp(n) required in
RLS algorithm is very time consuming, It is also clear that the simplified VF with RLS is
significantly better than conventional VF with RLS in computational complexity although
both of them have the almost same convergence rate. Overall, the simplified VF structure
with the proposed NLMS algorithm is a very good compromise in terms of both the

convergence rate and the computational complexity.
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Figure 4.8 Performance comparison of 2" order VFs using RLS and proposed NLMS (a) conventional
VF using RLS (b) simplified VF using RLS (c) simplified VF using proposed NLMS

63



Table 4.4 Comparison of 2" order VFs using RLS and proposed NLMS algorithms

Conventional 2nd

Simplifed 2nd order

Simplifed 2nd order VF

order VF using RLS| VF using RLS using proposed NLMS
First order kernel length (taps) 45 45 45
Second order kernel length (coeffs) 231 140 140
Convergence rate (iterations) 2000 2000 >3000
ERLE (dB) 40 40 35
Execution time/per run (seconds) 15.6 5.5 0.33
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Chapter 5 Nonlinear AEC Based on Sigmoid

Transform and RLS Algorithm

It is known that a VF has, in general, a high computational complexity due to the
involvement of a large number of filter coefficients, especially in case of large memory
length and high orders. In this chapter, we propose to use a sigmoid transform to model
the saturation-type nonlinear distortion. The echo canceller structure constituted by a
nonlinear transform implementing a variable saturation curve and an FIR filter has been
attempted by several researchers in [8], [31], [32]. In particular, the acoustic echo path is
modeled as a cascade of a memoryless amplitude-limited saturation curve and a linear
filter in [8], where a three-stage cascade structure is employed. Since only one adaptable
parameter, namely, the maximum value of the saturation curve is used in this cascade
structure, the shape of the saturation curve remains non-adjustable. Obviously, this model
with only one free parameter cannot be adapted to an arbitrary shape of nonlinear
distortions. In [31], the cascaded stages have been reduced to two, leading to a low-
complexity echo canceller. But this method is only suitable for the ideal hard-clipping
distortion, which also limits the AEC performance. More recently, a raised-cosine-
function-based model has been studied in [32]. The nonlinear characteristic of the acoustic
echo path is approximated by a transform that is derived from the raised-cosine function.

This model is able to adapt to both soft-clipping and hard-clipping nonlinearities, and
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gives a superior performance compared to the VF approaches in some situations [32].
Another advantage of this method is its low computational complexity since only two free
parameters are involved in the nonlinear function and their update can easily be
implemented by the derived closed-form expression. On the other hand, due to the nature
of the piece-wise defined nonlinear function it seems very difficult to theoretically justify
the convergence of the algorithm.

In this chapter, a new nonlinear AEC employing the sigmoid function is developed.
Section 5.1 presents the detailed system model based on the nonlinear sigmoid transform
as well as the update schemes for the transform parameters and the transversal filter
coefficients. Section 5.2 gives the theoretical analysis of the convergence behaviour of the
new echo canceller. A detailed simulation study validating the effectiveness of the
proposed acoustic echo canceller is carried out in Section 5.3 with comparison to some of

the existing techniques.

3.1 Proposed Acoustic Echo Canceller

The proposed adaptive nonlinear echo canceller is shown in Figure 5.1, in which the
signal from a far-end user is first nonlinearly distorted by the amplifier/loudspeaker and
then passed through the linear echo path characterized by the room impulse response.
Note that the nonlinear distortion is assumed to be of saturation type but with unknown
parameters. In order to compensate for the nonlinearity of the amplifier/loudspeaker in the
compiete echo path, a nonlinear transform implementing the saturation curve with
adaptable free parameters is used. Clearly, the adaptive transversal filter is employed to
cancel the effect of the room impulse response of the echo path. In this paper, we adopt

the following two-parameter sigmoid function [14] for the nonlinear transform.
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f(x)=

where o and B determine, respectively, the shape and the clipping value of the saturation
curve. This function can accurately cover a large range of nonlinear distortions by
choosing different values of a and B. Although the parameter B could be easily removed
from- equation (5.1) by combining it with the weight vector of the subsequent linear
adaptive filter in the AEC, it is advantageous to keep in the nonlinear transform since it
can mimic the actual dynamic range of the amplifier. It should be mentioned that even
though the sigmoid function has been utilized in [8], [31], its capability of fitting a
variable saturation curve was not well exploited. Our idea in this chapter is to update the
two parameters a and B by using the LMS algorithm such that the unknown nonlinear

distortion of the amplifier is best matched, thereby cancelling the nonlinear component in
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Figure 5.1 Proposed nonlinear acoustic echo canceller
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Denote the input signal vector of length L by x(n), and the estimate output signal of

the linear adaptive filter by y(n).
y@)=w'(n) £ (x(n)) (5.2)
where w(n) represents the coefficient vector of the transversal filter, and f(x(n))=
[f(x(n)), flx(n=-1), -, f (x(n—L+1))]T is the nonlinearly transformed vector
corresponding to x(n). Then, the estimated errore(n) can be expressed as
e(n) =d(n)~ y(n) =d(n)-w" (n) f (x(n)) (5.3)
where d(n) is the desired signal which is the echo collected by the microphone. From
equation (5.3), we can calculate the mean-square-error (MSE) J(n) as
J(n) = E[e* ()] = E[(d(n)~w" (n) f(x(n)))*] (5.4)
In equation (5.4), there are three unknown parameters, o, p and w(n). The LMS algorithm

is used to determine the optimal solution of o and B, leading to the following update

formulas.
a,,=a, —%ga(n) (5.5)
My
By =B, —T”g 5(n) (5.6)

where g (n) and g ,(n) represent the estimate of the gradient of J(n) with respect to a

and that to B, respectively. Substituting equation (5.4) into equations (5.5) and (5.6)
respectively, gives

Hy 4 Hy 0J(n)
a,, :an T4 &a n =an TS
n+1 2 g ( ) 2 aa

[pop, =, + el ) LED 5.7

¢ O (x(n)
oa

where each element o is given by
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of (x) _ 2xexp(—a x)

oa  (1+exp(-a x)* (58)
and
o Mps oo Hpdm)) ro O (x(n)
ﬂn+1 - ﬂn 2 gﬂ (I’l) ﬂn 7 5,3 a=a, ﬁn + luﬂe(n)w (n) 6ﬂ a=a, (59)
where each element of @”(aLﬁ(,n)) is given by
I __ 2 1 (5.10)

0  1+exp(-ax) -

It is to be noted that equations (5.8) and (5.10) are obtained by using each sample of the

input vector x(n)to the function f(x). x4, and u, represent the convergence factors,
which determine the step size in the update of a and .

In this paper, we adopt the RLS algorithm to update the weight vector w(n) of the

transversal filter due to its fast convergence speed. Here, we assume that the input signal

vector of the transversal filter is defined by wu(n), which can be formulated by

u(n) = [f(x(n)), f (x(n=1)), f (x(n=2)), - f(x(n = L+1)T

with L being the

a=a, rﬂ=ﬂn

length of the transversal filter. The RLS algorithm is briefly described as follows [12].

Initialization
S,(n-1)=d
x(-)=w(-)=[0 0 - O
Do for n20
e, (n)=d(n)—u (myw(n-1) (5.11)
W(n) =S, (n-Du(n) (5.12)
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Ll o wmy' (n)
SD(n)“Z[SD(n 1) —————/1+\|l(n)u(n)] (5.13)

wn)=wn-1)+e,, (S, (n)u(n) (5.14)

where 1 with 0<<A<1 is the forgetting factor and & a small constant determining the
initial matrix which can be chosen as the inverse of an estimate of the input signal power
of the FIR filter. Note that the update of o, B and w(n) is on sample-by- sample basis. For
each input sample, these parameters are updated once. As seen from equations (5.7) and

(5.9), the old values of o and  from the last iteration should be used when updating o and

B for the current iteration.

5.2 Convergence Analysis

The nonlinear characteristic of the transform makes an accurate theoretical analysis of
the convergence of the proposed AEC rather complicated and difficult [12], [30]. In this
section, we provide a convergence analysis under some assumptions, including the
independence assumptions well-described in [14],

» The input vectors x(1), x(2),..., x(n) are a set of statistically independent
vectors.

» At any time n, the input vector x(n) is statistically independent of all previous
desired signals d(1), d(2),..., d(n-1).

» At any time n, d(n) is just dependent on the corresponding input vector x(n) but

statistically independent of all previous samples of the desired signals.
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According to the independence assumption, the input x(n), the intermediate signal
f(x(n)) and the output y(n), as described in the Figure 5.1, are all wide-sense stationary
(WSS) processes.

Assume that the unknown nonlinear echo system is described by &, fand w,, where

w,is to be identified by the proposed adaptive FIR filter of the same order. As /3’ can
readily be combined with w,as a new w,, the convergence analysis is thus simplified to

the study of a andw.

5.2.1 Convergence of the Sigmoid Parameter
The error of ¢, at the nthiteration can be written as
Aa. =a. -4 (5.15)
Using equation (5.7), we have
Aa,, =Aa, +ue(n)w’ (n)

of (x(n))
S (5.16)

where,

2 —
1+ exp(—ax(n))

2 —
1+ exp(-a,x(n))

e(n) = w; ( - w' (n)(

1) (5.17)

We ﬁow expand the function f(x) given by equation (5.1) as a Taylor series with respect
to &@. As f has been combined with the FIR coefficients, a series expansion can be
obtained as follow [37].

fila,)=f(&)+ f(@)e, — &)+ {higher order terms}

= f(@)+ f'(&)Aa,+{higher order terms) (5.18)
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where f'() represents the first order derivative, and the higher order items can be ignored

[37]. Using equation (5.18) into (5.17) and then substituting the result into (5.16) and

assuming that w(n) - wyasn — o, we have

Aa,, = Ao, + 4, W, [~ Txm) (@, =&)Iw," )
0 |gus o
=Aa,[1-u,wi U (x(n)) w! of (x(n)) ]
oa |, 0a  |,ep

where
LEOD [pom) fata-1) o fxa-L+0)]

2x(n) exp(—ox(n))
(1+exp(-ax(n)))®

with f'(x(n))= and L being the length of the FIR filter.
For the sake of simplicity, let
v,(n)=w,

r Of (x(n))
ox

Then, equation (5.19) can be rewritten as,

Aanﬂ ~ Aan [1 —HVs (n)va,, (71)]

(5.19)

(5.20)

(5.21)

(5.22)

where v, (n) represents the estimate of v, (n). By further assuming that v, (n) is WSS

and v, (n) approximates closely v,(n) when n is large, the expectation of the error in

(5.22) can be calculated
E(AanH ) = (1 - luarv (0))E(Aan)

= [1= 4,7, (0)]"" E(Aczy)

(5.23)

where r,(0) is the autocorrelation of the process v, (n). It is seen from equation (5.23) that

when -1<1-u,r,(0) <1, namely O< u, <2/7,(0), E(Ac,,,) tends to zero as n —» 0.
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5.2.2 Convergence of the Coefficient Vector

We now conduct the convergence analysis of the linear filter coefficient vector w(n)
in the proposed AEC based on the WSS assumption made at the beginning of this section.
The system input signal x(n), the output signal f(x(n)) of the nonlinear transfer function
and the output of the whole system y(n), as described in the Figure 5.1, are assumed to be

wide sense stationary(WSS) processes. Our objective is show that the derived LS solution

approaches the ideal Wiener solution.

Assume that a measurement noise r,(rn) is added to the desired signal, leading to
d(n) =w," f(x(n)+ny(n) (5.24)
where w,is the ideal coefficients which are to be identified by the proposed adaptive filter

of the same order. The additional noise n,(n)is considered to be an AWGN with zero

mean and variance 5,,2 . From [12], when A =1 we can get

w(n) = R;' (n)P, (1)

n n

=| AT fxO) S T(X(i))} Zl"'if (x(@)d (@)

L i=0

SPCOTHEOTID WEONE (529)

Supposing that the f(x(n)) is WSS, from the first part of equation (2.25), we can obtain

1S . .
lim—3% f(x())f" (x(i)) =R (5.26)
n-o 41 sy
where R is the correlation matrix of the input signal of the FIR filter. Using equations
(5.24) and (5.26) and considering additive noise is independent of the input signal of the

linear part, we can get,
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lim——" f@O =lim—— . KOS CDIWo +1,(0)

n—o g 4142

=lim;1—i—l~§f x@) T x(D) W,

n—oo

=Rw, (5.27)

when n is very large, using equations (5.26) and (5.27) into equation (5.25) gives
w(n) =R, (n)P,(n)=R'Rw,=w, (5.28)
This result indicates that the least-squares solution of w turns to the Wiener solution as

long as the signals involved are ergodic and stationary.

5.3 Simulation Results

As usual, the echo return loss enhancement (ERLE) is employed to evaluate the
performances of the proposed method in comparison with some of the existing methods.

For understanding easily, here, we briefly introduce the concept of the ERLE again:

E[d* (m)]

ERLE(n)(dB) =10log10
(n)(dB) =10log B ()]

(5.29)

where d(n) is the desired signal picked up by the microphone and e(») is the residual echo

signal after the echo cancellation. In the following simulations, the AEC system is excited
with a white Gaussian noise, and a measurement noise is added to the desired signal

d(n) as environmental disturbance. We would like to examine the convergence behavior

of parameters a and  and the ERLE performance of the proposed method along with that

of the linear canceller and the Volterra filter-based canceller.
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5.3.1 Learning Curve of the Nonlinear transform

To demonstrate the capability of the proposed sigmoid transform in adaptation to
different distortion situations, we assume three pairs of values for (a, ), namely, (6, 3.5),
(4, 3), and (1.5, 1), for the simulation study. These choices represent three typical
nonlinear distortions as shown in Figure 5.2 (a). The learning curves of a and B are
examined for these nonlinear transforms. To evaluate the tracking ability in noisy
environment, a measurement noise is added in the simulation. Through extensive
simulations, we find the convergence speed of o and B is dictated mainly by the step size
of the update mechanism and p=0.05~0.15 is a proper choice for the update of both
parameters in view of both the convergence speed and the misadjustment. Figure 5.2 (b)
and (c) give the learning curve of o and that of B, respectively, for the three distortion
cases when pu=0.1. From Figure 5.2(a), (b) and (c), it is clear that both parameters can
always converge to the true values very fast with little misadjustment in all the distortion
cases, and a higher-order nonlinearity has a little bit slower convergence. It proves that

this sigmoid method is suitable for nonlinear distortion adaptation.
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Figure 5.2 Convergence behavior of Sigmoid function, (a) three typical saturation-type distortions, (b)
learning curves of a, (c) learning curve of p
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5.3.2 ERLE of the Proposed AEC with Comparisons

In all the following simulations, big step size of o and B maybe make the updating
speed faster, it also causes the unstable problem, so the updating step size of o and P
should be chosen carefully. To make sure the stable results, in this section, the step sizes
of a and B are always chosen less than 0.15 and the forgetting factor value of RLS is
above 0.995. Figure 5.3 shows the ERLE of the proposed canceller in comparison with

that of the NLMS based linear filter. In this experiment, the echo path is modeled by a

saturation curve with parameters & =4, ,3=3 and a 128-tap linear filter. The echo path is
identified by the new nonlinear method as well as the conventional linear NLMS
algorithm, both of which use a 128-tap transversal filter with unknown coefficients. It is
not surprising that the proposed canceller performs much better than the conventional
linear echo canceller, since the nonlinear echo component cannot be compensated by a
linear FIR filter.
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Figure 5.3 ERLE comparison with linear NLMS filter
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Figure 5.4 compares the ERLE performance of the proposed nonlinear filter with that
of a truncated 2™ order VF [10]. The echo path is the same as that in Figure 5.3, but the
room impulse response is now assumed to be 64-tap long. The nonlinear VF canceller
consists of a 64 linear coefficients and a 210 nonlinear coeffients. For avoiding the false
convergence caused by RLS algorithm, the parameters of the proposed method is always
fixed when a threshold is reached, such as error less than a small & value. We can see from
Figure 5.4 that the ERLE has no big changes after the parameters are fixed. It proves that
the proposed method makes the updating parameters converge to the values which are
close to the true ones. We can also obtain that the proposed method converges fast to the
true echo channel and gives a much better ERLE value than the 2™ order VF does.
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Figure 5.4 ERLE comparison with a second order VF

The proposed nonlinear echo canceller is also evaluated in the linear distortion
situation. In Figure 5.5, the simulation echo path is modeled by two 64-taps transversal

filters in conjunction. Both AECs in last simulation are also used to do comparison, it can
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be seen that the ERLE performance of the NLMS 2™ order VF is better than that of the
proposed method. But we can see the proposed echo canceller can also reach an
acceptable performance. It is because the sigmoid function is not competent in
approximating a linear mapping. Finally Figure 5.6 depicts the simulation results when the
nonlinear echo path is modeled by a 3" order VF with 64-tap linear response, and 55
coefficients for the 2™ order and 35 coefficients for the 3™ order nonlinear parts. As
shown, the ERLE result is in favour of the 2™ order VF, suggesting that a VF, rather than
the sigmoid function-based canceller, be employed if the echo path is of a nonlinear nature
that is described by a nonlinear polynomial with memory and cross terms. It is worth

mentioning that in all the above situations, the proposed nonlinear canceller always

exhibits a fast convergence.
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Chapter 6 Conclusion

6.1 Concluding Remarks

The objective of this thesis has been to develop efficient nonlinear adaptive filter
structures and algorithms for the cancellation of acoustic echo signals in loudspeaker and
amplifier systems used in hands-free telephones or teleconferences. Due to the diverse
characteristics of nonlinearities caused by loudspeaker and amplifier, two kinds of
acoustic echo cancellers for different nonlinear situations have been proposed and
analyied.

To cancel the nonlinearity caused mainly by a loudspeaker, we have employed a 2™
order VF. By comparing a general 2™ order VF with a cascade structure of a 2™ order VF
plus a linear filter, we have proved that the cascade structure can be equivalently
converted to a simplified 2™ order VF with reduced coefficients for the 2™ order kernel. A
NLMS algorithm for kernel-separated 2™ order VF was also derived to speed up the
update of the Volterra kernel coefficients. A new convergence factor has also been
obtained for the proposed NLMS algorithm. It has been verified by computer simulations
that the proposed simplified 2™ order VF using the new NLMS algorithm has less
computational complexity and faster convergence rate than a conventional 2" order VF.
Extensive simulation results have also shown that the derived NLMS algorithm for kernel-

separated 2" order VF with new step size range is less sensitive to the input signal
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variance than the conventional NLMS algorithm. Furthermore, the superiority of the
simplified 2™ order VF has also been demonstrated via the RLS algorithm which was used
to update the coefficients of the nonlinear filter.

For modeling a nonlinear acoustic system without memory, we have proposed a
simple yet fast-converging AEC which consists of a sigmoid function-based transform and
a conventional linear adaptive filter. The update mechanism of the transform parameters
and the adaptive filter coefficients has been investigated according to the LMS and RLS
algorithms. A theoretical justification of the convergence of the new method has also been
presented. It has been shown through an intensive simulation study that the proposed
method outperforms the VF approach when the echo path undergoes a saturation-type
nonlihear distortion, while the proposed method has a much faster convergence in all the
distortion cases of the echo path. The simulation results have indicated that the
performance of a nonlinear echo canceller depends to a large degree on the distortion

nature of the echo path.

6.2 Future work

This thesis proposed two kinds of nonlinear acoustic echo cancellers, a simplified 2™
order VF-based canceller and a sigmoid transform-based RLS canceller. The proposed
simplified 2™ order VF and NLMS algorithm exhibit superior performance to
conventional 2™ order VF. However, the AECs based on the 2™ order VF have its limit in
cancelling higher-order nonlinear distortion. Recent studies have shown the benefits of
using higher-order VF which can model higher-order nonlinear distortions. Hence, one
could extend the proposed simplification strategy to higher-order VFs to develop new

nonlinear AECs.
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The sigmoid transform-based canceller has been proved to be suitable for the
cancellation of acoustic echo in some specific nonlinear situations. The further research,
however, is warranted to discover other transforms which can cover a wider range of
saturation curves including hard-clipping, soft-clipping and linear distortions, yet have
relatively simple forms. AECs using new transforms to compensate the distortion of an
amplifier might outperform the proposed canceller.

Usually, the human voice is stationary for a short period. Which means the speech
turns to be non-stationary over a long period. However, in this thesis, the proposed AECs
use the white Gaussian noise as input signal to evaluate their ERLE performances, which
is certainly an ideal case. Hence, in order to confirm the improved performance of the
proposed AECs for real speech communications, it is necessary to carry out experiments

for the nonlinear echo canceller under the input of real speech data.
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