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ABSTRACT 
Proteomic Analysis of the Clostridium thermocellum Cellulosome 

Nicholas Gold 

A metabolic isotope-labelling strategy was used in conjunction with nanoLC-ESI-

MS peptide sequencing to assess quantitative alterations in the expression patterns of 

subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, 

grown on either cellulose or cellobiose. The effects of adding xylan, pectin and 

galactomannan to these cultures were also explored. In total, 55 cellulosomal proteins 

were detected, including 50 type I dockerin-containing proteins, which count among 

them all but one of the known docking components and 28 new subunits. All differential 

expression data was normalized to scaffoldin CipA such that protein-per-cellulosome was 

compared for growth between the different substrates. Proteins that exhibited higher 

expression in cellulosomes from cellulose-grown cells as compared to cellobiose-grown 

cells were: cell-surface anchor protein OlpB; exoglucanases CelS and CelK; and GH9 

endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on 

cellulose as compared to cellobiose was observed for GH8 endoglucanase CelA; GH5 

endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, XghA. GH9 

cellulases were the most abundant group of enzymes per CipA when cells were grown on 

cellulose, while hemicellulases were the most abundant group on cellobiose. The results 

support the existing theory that expression of scaffoldin-related proteins is coordinately 

regulated by a catabolite repression type of mechanism, as well as the prior observation 

that xylanase expression is subject to a growth rate-independent type of regulation. 

However, concerning transcriptional control of cellulases, which had also been 

previously shown to be subject to catabolite repression, a novel distinction was observed 

with respect to endoglucanases. 

iii 



ACKNOWLEDGEMENTS 

I want to thank Dr. Vincent Martin for giving me the opportunity to prove myself, 

for trusting me to handle his expensive machines, and for taking the time to show me 

how it's all done. I am grateful for his guidance, his support, and his friendship. 

I am grateful to Dr. Justin Powlowski and Dr. Reginald Storms for sitting on my 

committee. I also thank Dr. Storms and Dr. Emma Master for helping to review the 

published manuscript that is the core of this thesis. 

I also want to thank my lab mates whose camaraderie made daily work fun and 

productive. Kane LaRue helped in the development of the minimal medium we used. 

Euan Burton helped in the daily operation of the LC-MS. 

Thanks to Rebecca Sydenham, Yun Zheng and Donald Patton for their help in 

setting up the enzymatic assays. 

My parents and family get innumerable thanks of course for seeing me through 

this part of my life, as does my best friend and number one girl Klara. 

IV 



TABLE OF CONTENTS 
Section Page no. 

LIST OF FIGURES vii 

LIST OF TABLES viii 

LIST OF EQUATIONS ix 

LIST OF ABBREVIATIONS x 

1.1. OBJECTIVES 1 
1.2. STRUCTURE OF THE THESIS 1 

2. INTRODUCTION 2 
2.1.1. Cellulosic ethanol 2 
2.1.2. Strategies for overcoming the recalcitrance of cellulosic biomass... 5 
2.2. Clostridium thermocellum 8 
2.2.1 The C. thermocellum cellulase system 9 
2.2.2. Cellulosome structure 13 
2.2.3. Cohesin and dockerin domains 16 
2.2.4. Docking subunits: a variety of catalytic domains 17 
2.2.5. Regulation of cellulosomal enzymes 20 
2.3. Mass spectrometry for quantitative proteomics 22 
2.3.1. Peptide sequencing by MS/MS 23 
2.3.2. Relative quantitation using internal standards 26 
2.3.3. Quantitation by peptide counting methods 29 

3. METHODS 31 
3.1. Media preparation for growing C. thermocellum 33 
3.2. Growth conditions and metabolic labelling 37 
3.3. Protein fractionation 38 
3.4. Preparation of phosphoric acid swollen cellulose 40 
3.5. Isolation of cellulosomes by affinity digestion 41 
3.6. Analysis of gel-separated cellulosomes by nanoLC-ESl-MS 43 
3.7. Database screening and success criteria 44 
3.8. RelEx analysis 45 
3.9. EmPAI analysis 47 
3.10. Enzymatic assays 49 

4. RESULTS 52 
4.1. Fractionation of C. thermocellum protein 52 
4.2.1. Detection and relative abundance of cellulosomal proteins induced 

by Avicel or cellobiose 56 
4.2.2. Relative differences in abundance of cellulosomal components 

induced by Avicel or cellobiose 62 

v 



Section Page 
4.2.3. Non-cellulosomal proteins detected in Avicel- or cellobiose-grown 

cells 64 
4.3.1. Comparison of cellulosomes from cells grown in medium 

containing xylan, pectin and locust bean gum 67 
4.3.2. Enzymatic activities of cellulosomes isolated from cultures grown 

with xylan, pectin, and locust bean gum 74 

5. DISCUSSION 78 

6. REFERENCES 85 

APPENDICES 
A In silico classification of proteins from C. thermocellum database 107 
B Freeze-down procedure for culture collection 110 
C In-gel trypsin digestion protocol 113 
D In-solution trypsin digestion for cellulosomal protein 118 
E Attempts to calibrate the emPAI method 121 
F RelEx procedure using BioWorks 3.3 and DTASelect 1.9 125 



LIST OF FIGURES 
No. Page no. 
1 Cellulose utilization in C. thermocellum 12 
2 Structure of the C. thermocellum cellulosome complex 14 
3 Structure of the type I cohesin-dockerin complex 18 
4 Schematic of the LTQ linear ion trap mass spectrometer 24 
5 Peptide ion fragmentation and sequencing 25 
6 General scheme for quantitative proteomics using metabolic 

labelling 28 
7 Graphical user interface for RelEx software upon analysis of 

peptide to labelled peptide ratios 30 
8 General scheme for the comparison of cellulosomes from Avicel-

and cellobiose-grown C. thermocellum cells 32 
9 General protein fractionation scheme 39 
10 Affinity digestion method for cellulosome isolation from culture 

supernatant 42 
11 Determination of equation for predicting peptide retention times 

and determination of range for theoretically observable peptides 
used in emPAI analysis 48 

12 Extracellular protein fractions from C. thermocellum culture grown 
to late stationary phase on cellobiose (0.5%, wt/vol), separated by 
SDS-PAGE (6%), stained with Coomassie Blue 53 

13 C. thermocellum cellulosomal protein separated by SDS-PAGE 
(6%), stained with Coomassie Blue 57 

14 Fractional differences in expression of C. thermocellum Avicel-
grown cellulosomal components relative to cellobiose-grown 
components by RelEx, normalized to CipA, over logarithmic scale. 65 

15 C. thermocellum cellulosomal protein from sample-reference 
culture mixtures with cells grown on Avicel or cellobiose, with 
and without XPM, separated by SDS-PAGE (6%), stained with 
Coomassie Blue 68 

Bl Growth of C. thermocellum on 0.5% (wt/vol) cellobiose from 10% 
(vol/vol) inoculum from Avicel-grown culture in exponential 
phase I l l 

El Calibration of emPAI method by Ishihama et al 122 
E2 In-house calibration of emPAI method 124 
Fl Bio Works 3.1 SEQUEST search parameters for RelEx analysis 126 
F2 DTASelect deployment via DOS command prompt 127 
F3 Steps for analysis of peptide ratios in RelEx Browser 128 

vii 



LIST OF TABLES 
No. Page no. 
1 Buffer solution for ATCC 1191 liquid growth medium 34 
2 Vitamin solution for ATCC 1191 liquid growth medium 35 
3 Mineral solution for ATCC 1191 liquid growth medium 36 
4 Reaction mixtures for enzyme assays 50 
5 C. thermocellum proteins detected in the total extracellular protein 

fraction whose sequence also contained a signal peptide for 
secretion from the cell 55 

6 C. thermocellum Avicel-grown cellulosomal components 
identified by nanoLC-ESI-MS, ranked by emPAI 58 

7 C. thermocellum cellobiose-grown cellulosomal components 
identified by nanoLC-ESI-MS, ranked by emPAI 59 

8 Fractional differences in expression of C. thermocellum Avicel-
grown cellulosomal components relative to cellobiose-grown 
components by RelEx, ranked by /?-value, normalized to CipA 63 

9 Comparison of relative cellulosome component abundances per 
CipA per sample, as determined by emPAI, for cellulosomes 
grown on Avicel and cellobiose with or without xylan, pectin, and 
locust bean gum, organized by protein function or fold 69 

10 Comparison of relative differences in cellulosome component 
abundances between two samples, normalized to CipA, as 
determined by RelEx analysis, from cells grown on Avicel and 
cellobiose with or without xylan, pectin, and locust bean gum 72 

11 Comparison of observed peptide numbers between experiments 
described in sections 4.2 and 4.3 73 

12 Specific exoglucanase, endoglucanase, and xylanase activities of 
cellulosomes grown on Avicel and cellobiose with or without 
xylan, pectin, and locust bean gum 76 

Al Checklist for cellulolytic and hemicellulolytic enzymes and 
structural proteins with or without Docl, Doc2, Cohl, Coh2 
domains, and a signal peptide cleavage site (SignalP) indicating 
that the protein is secreted from the cell, ranked by Genlnfo ID 
number 108 

El EmPAI values for 2-uL injections of a mixture of 3 protein digests 
at varying concentrations 123 

vni 



LIST OF EQUATIONS 
No. Page no. 
1 Ratio of the sample to reference ratios normalized to CipA 46 
2 Standard errors for the ratio of the sample to reference ratios 

normalized to CipA 46 
3 Student's two-tailed t-test for RelEx comparison 46 
4 Degrees of freedom for RelEx comparison 46 
5 Molar percentage of a docking subunit per CipA 49 
6 Standard error for specific activity determination 52 

IX 



LIST OF ABBREVIATIONS 

ABC 
ACN 
BCA 
CBD# 
CBP 
CE# 
CID 
CMC 
Cohl 
Coh2 
Docl 
Doc2 
DOE 
DTT 
emPAI 
ESI 
FA 
Fn 
GH# 
GHG 
Ig 
JGI 
nanoLC 
MS 
MS/MS 
MWCO 
m/z 
NCBI 
PAGE 
PASC 
PNP/PNPC 
"pro 

PQD 
PTM 
SDS 
SD 
SE 
SLH 
S/N 
SSF 
TPCK 
XC 
XIC 
XPM 

adenosine-binding cassette 
acetonitrile 
bicinchoninic acid 
cellulose binding domain family # 
consolidated bioprocessing 
carbohydrate esterase family # 
collision induced dissociation 
carboxymethyl cellulose 
type 1 cohesin domain 
type 11 cohesin domain 
type I dockerin domain 
type II dockerin domain 
U.S. Department of Energy 
dithiothreitol 
exponentially modified protein abundance index 
electrospray ionization 
formic acid 
fibronectin 
glycoside hydrolase family # 
greenhouse gas 
immunoglobulin 
Joint Genome Institute 
nanovolume liquid chromatography 
mass spectrometry or mass spectrometer 
tandem MS 
molecular weight cut-off 
mass to charge ratio 
National Center for Biotechnology Information 
polyacrylamide gel electrophoresis 
phosphoric acid swollen cellulose 
p-nitrophenol/p-nitrophenyl-p-D-cellobioside 
protein probability 
pulsed-Q dissociation 
post-translational modification 
sodium dodecyl sulfate 
standard deviation 
standard error 
surface-layer homology 
signal to noise ratio 
simultaneous saccharification and fermentation 
7V-tosyl-L-phenylalanine chloromethyl ketone 
cross correlation 
extracted ion chromatogram 
xylan + pectin + locust bean gum 

X 



1.1. OBJECTIVES 

In this study of cellulosomal gene expression at the proteome level in Clostridium 

thermocellum, there were two main objectives: first, to query the composition of the 

cellulosome protein complex using nanoLC-ESI-MS peptide sequencing; and, second, to 

quantitatively assess changes in the subunit profiles within cellulosomes isolated from 

cells grown on Avicel (microcrystalline cellulose) versus cellobiose as carbon source. 

The addition of hemicelluloses to these substrates was also investigated. Quantitation was 

achieved using a metabolic isotope-labelling strategy in conjunction with nanoLC-ESI-

MS; a peptide counting technique was also applied to approximate the relative abundance 

of each cellulosome component per sample. In comparing cellulosomes from cells grown 

on different substrates, we expected to detect several novel gene products and also to 

uncover differences in protein expression that can shed more light on our understanding 

of the regulation of cellulosomal cellulases and hemicellulases. Cells grown on Avicel 

were expected to produce cellulosomes with increased levels of key enzymes for 

degradation of crystalline cellulose such as the processive exoglucanase CelS [1, 2]. 

1.2. STRUCTURE OF THE THESIS 

The text is organized in the style of a journal article. The introduction presents 

background on C. thermocellum and lignocellulosic ethanol, as well as concepts in 

quantitative proteomics using mass spectrometry. Experimental techniques used are 

described in the methods section. Results section 4.2 describes published data for the 

comparison of cellulosomes from cells grown on Avicel versus cellobiose [3]. Section 4.3 

describes data from the comparison of growth on Avicel and cellobiose with or without 
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hemicelluloses added. A discussion of these results concludes the main body of the text. 

Some information deemed peripheral to the essence of the thesis was deferred to 

appendices, although it is relevant to anyone wishing to take up the continuation of this 

work. 

2. INTRODUCTION 

2.1.1. Cellulosic ethanoi 

Research into the conversion of lignocellulosic biomass is driven by the pursuit of 

environmental security as well as energy security. Global climate change can have a 

range of significant impacts on extreme weather events, natural ecosystems, human 

health and economic activity [4]. There is general agreement in the scientific community 

that the rise in global temperatures is due to emissions of greenhouse gases like carbon 

dioxide, the main source of which is the burning of fossil fuels [4]. Worldwide levels of 

carbon dioxide emissions from fossil fuels increased by a record of 4.5% in 2004, to 7.57 

billion tons of carbon [5]. In 2005, Canada's total greenhouse gas (GHG) emissions were 

estimated at 747 megatons of carbon dioxide equivalent (up 25% from 1990), and energy 

production and consumption contributed about 82% of this [6]. In such a way, the 

problem of climate change is intertwined with the matter of energy supply, production 

and consumption. Solutions to climate change that seek to curb carbon dioxide emissions 

will thus also need to pose an alternative to fossil fuel as a source of energy. In view of 
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the projected shortages and increasing prices of fossil fuels, this is the perfect time for 

world economies to seek out alternative energy sources that can both reduce net GHG 

emissions and help alleviate their dependence on oil. 

The international community has recognized the need to curb GHG emissions and 

has set goals, legally binding obligations to be sure, for doing so, in the form of the Kyoto 

Protocol, ratified by 141 countries in 2005. Canada's Fourth National Report on Climate 

Change describes federal and provincial initiatives being implemented to encourage 

'cleaner' living and increased consideration for bioenergy technologies at the consumer 

level and by research and industry [7]. 

Bioenergy sources are of many different types, from hydrogen to biodiesel, 

bioethanol and biogas. Ethanol, as a high performance fuel for spark-ignition internal 

combustion, contains about two-thirds the energy per volume of gasoline, and can be 

used by automobiles in a blend with gasoline up to 20% ethanol with no modifications to 

the engine [8]. Fuel-flexible vehicles (FFVs) are capable of utilizing blends with up to 

85% ethanol (E85). In Canada, 7% of all gasoline currently sold is blended with ethanol, 

and 11 new plant projects are projected to produce an additional 1.2 billion litres of 

ethanol by the end of this year [7]. Fuel ethanol is mass-produced from sugarcane in 

Brazil, where the energy produced powers the production process [9]. In the United 

States, large-scale fuel ethanol is made from starches in grains (corn, wheat, barley, rye), 

however the production processes are presently powered mostly by fossil fuels such that 

the net GHG emissions are not much lower than they are for gasoline [10]. What makes 

bioethanol attractive as a solution to GHG emission reduction is the fact that carbon 

dioxide exhausted by its combustion is offset by the carbon dioxide fixed during 
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photosynthetic growth of the feedstock [11, 12]. In theory, bioethanol production and 

consumption is thus considered a GHG neutral process, however the extent to which this 

zero net GHG cycle is maintained in practice depends on the fossil fuel inputs required 

for feedstock production, conversion, and utilization. 

Ethanol as well as other fuels derived from cellulosic materials in plant cell walls 

has perhaps the greatest potential for reducing GHG levels while bringing about energy 

self-sufficiency [10, 13]. Cellulose is the most abundant organic polymer on Earth. 

Feedstocks for lignocellulosic ethanol are relatively inexpensive and can vary from 

dedicated energy crops (perennial grasses such as switchgrass and miscanthus) to 

agricultural plant wastes (corn stover, cereal straws, sugarcane bagasse) to industrial 

plant wastes (paper pulp, sawdust, wood chips) to municipal solid wastes [13, 14]. In 

production designs, lignin, a by-product of the biomass conversion process, can be 

burned instead of fossil fuel to power production. Thus, because the fossil inputs are low, 

the ratio of energy output to fossil energy input is high, and by corollary net GHG 

emissions are low as well, exceptionally so given the sheer abundance of carbon dioxide-

fixing feedstock that is taken into the equation. 

Lignocellulosic ethanol will create jobs and stimulate agriculture in regions 

incapable of supporting food crops. For the time being, however, slowed down by the 

once prohibitive cost of converting biomass into fermentable sugars, it remains on the 

cusp of being produced at the commercial scale. While pilot-scale (producing less than 1 

million gallons of ethanol per year, MMgy) and demonstration-scale (1-10 MMgy) 

cellulosic ethanol plants are presently operational in Canada (logen Corporation; 

SunOpta BioProcess Inc.), the U.S. (National Renewable Energy Laboratory/Abengoa 
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Bioenergy Research & Development), Spain (Abengoa Bioenergy), Sweden (Etek), 

Denmark (Elsam), and the People's Republic of China (SunOpta BioProcess Inc.), the 

world's first commercial-scale biorefinery (10 MMgy) is scheduled to open in Canada by 

the end of 2007 (SunOpta BioProcess Inc./Greenfield Ethanol), and others could follow 

in the U.S. (Mascoma; Abengoa Bioenergy), the Netherlands (Nedalco), and the People's 

Republic of China (SunOpta BioProcess Inc.) by 2009 [15-18]. 

2.1.2. Strategies for overcoming the recalcitrance of cellulosic biomass 

Conversion of lignocellulosic biomass involves two major steps: first, 

transformation of biomass into a utilizable carbon source; second, microbial fermentation 

of the resulting carbon to ethanol (or another valuable carbon-based chemical). While 

lignocellulosic ethanol technology is rapidly developing with the help of biotechnology, 

one of the main stumbling blocks to its economic production has been overcoming the 

recalcitrance of cellulosic materials to release their fermentable carbon. 

The recalcitrance of cellulosic biomass resides in its heterogeneous composition 

and in the crystalline structure of cellulose. Linear chains of (up to 15,000) P-1,4 linked 

anhydrous glucosyl residues hydrogen bond to form tightly packed cellulose microfibrils. 

The tight packing, responsible for the crystallinity of cellulose, limits penetration of small 

molecules and cellulolytic enzymes [12]. In such a way, cellulose is highly resistant to 

hydrolysis, although crystallinity exists in varying degrees depending on the feedstock. 

Further complicating matters, cellulosic microfibrils are locked into a matrix with other 

structural biopolymers; hemicellulose tethers cellulosic microfibrils together as well as to 

lignin. By dry weight, the secondary cell walls of plants are composed of 38-50% 
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cellulose, 23-32% hemicellulose, and 15-25% lignin [19]. Lignin is a large, cross-linked 

macromolecule consisting of various types of substructures, organized in an apparently 

haphazard manner and incorporating three monolignol monomers, methoxylated to 

various degrees: />-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol [20]. 

Removing lignin is crucial to the conversion process. As mentioned above, it can be 

recovered and burned to help power the process. Hemicellulose, on the other hand, 

represents another valuable cache of utilizable sugars in biomass, and one much more 

susceptible to hydrolysis due to its structure [19]. In contrast with cellulose, it is a 

branched polymer of up to only 200 subunits that can consist of many different sugar 

monomers besides glucose: hexoses galactose and rhamnose, as well as pentoses xylose 

(the most common), mannose, and arabinose [21]. 

Cellulosic biomass can in fact be separated and converted into its composite 

carbon in several ways. Gasification transforms lignocellulosic materials into gaseous 

carbon monoxide and hydrogen, which can be fermented to ethanol by some anaerobic 

bacteria (like Clostridium Ijungdahlii) [22]. Alternatively, the raw materials can be 

broken down into sugars for subsequent fermentation by robust ethanologenic 

microorganisms that can utilize hexoses (traditionally Saccharomyces cerevisiae) and 

preferably pentoses as well. The saccharification step can be achieved in two ways. The 

first involves acid hydrolysis, which is expensive and can generate degradation products 

(like furfural and hydroxymethyl furfural) that are toxic to fermentation [23]. Better and 

cleaner hydrolysate yields can be obtained from a second method that calls for a pre-

treatment step (by dilute acid, organic solvents, steam explosion, or ammonia fibre 

expansion) to remove lignin (and sometimes hemicellulose), followed by enzymatic 
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hydrolysis of the remaining cellulose (and hemicellulose) [24]. This second avenue offers 

more possibility for cost reduction and improvement via biotechnology. Enzymatic 

hydrolysis is currently carried out using cocktails of purified cellulolytic enzymes, 

patterned after fungal cell-free cellulase systems (such as that of Trichoderma reesei) and 

genetically modified to achieve optimal and synergistic hydrolysis of cellulose. While the 

prohibitive cost of these purified enzymes has been one of the key obstacles to economic 

production of cellulosic ethanol, biotechnological advances are driving down these costs. 

One of the major steps forward was taken in 2004-2005 when both Genencor 

International and Novozymes Inc., two enzyme producing companies commissioned by 

the U.S. National Renewable Energy Laboratory, achieved 30-fold reductions in overall 

enzyme costs, lowering the enzyme cost of ethanol production from around $5.00 to less 

than $0.20 per gallon [25]. 

Hydrolytic enzymes can be implemented with a fermenting microorganism in the 

same vessel for simultaneous saccharification and fermentation (SSF). Conversion 

solutions seeking to circumvent the cost of enzyme production implicate the cellulolytic 

microbes themselves. One strategy is the co-culturing of two or more 'specialist' 

microorganisms; the first being a specialist in cellulose hydrolysis, the second in hexose 

fermentation, and perhaps a third in pentose fermentation [26]. Another strategy termed 

consolidated bioprocessing (CBP) involves the genetic engineering of a single 

microorganism to accomplish all steps of the conversion process by itself: production of 

saccharolytic enzymes, hydrolysis of pretreated biomass to sugars, fermentation of 

hexoses, and fermentation of pentoses [12, 27]. One approach to CBP is to take cellulase 

and hemicellulase genes and transform them into a classic hexose fermentor like 
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Saccharomyces cerevisiae; another approach is to streamline a cellulolytic organism for 

industrial ethanol production. 

2.2. Clostridium thermocellum 

One microorganism receiving considerable attention for CBP implementations is 

the cellulolytic, ethanologenic, anaerobic, thermophilic Gram-positive bacterium 

Clostridium thermocellum [12, 26]. The reason for the great interest in C thermocellum 

is that it has an exceptionally high hydrolysis rate against crystalline cellulose, exhibiting 

about 50-fold higher specific activity than Trichoderma reesei [26], one of the aerobic 

fungi traditionally drawn on for most large-scale conversion technologies [12]. Indeed, C. 

thermocellum is capable of solubilizing lignocellulosic materials like dilute-acid pre-

treated mixed hardwoods [28]. It further utilizes the cellulose hydrolysates yielding 

ethanol, acetic acid, lactic acid, hydrogen gas and carbon dioxide as fermentation end-

products [29]. Thus, it has the potential for CBP of cellulose to ethanol. 

The thermophilic and anaerobic features of its nature also pose advantages to 

using C thermocellum for large-scale ethanol fermentation from biomass, as enumerated 

by Demain et al. [26]. Thermophiles tend to be robust microorganisms with stable 

enzymes. Fermentation at high temperature would reduce the cost of cooling, be less 

prone to contamination, and facilitate removal and recovery of ethanol, thus reducing the 

requirement for a strain with high tolerance to ethanol. Anaerobes tend to have low cell 

growth yields and thus convert most of their substrate to product. Anaerobiosis would 

eliminate the cost of aeration in the fermentation tanks. 
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C. thermocellum grows readily on cellulose, cellobiose (the p-l,4-linked glucose 

dimer and repeating unit of cellulose), and laminaribiose (the P-l,3-linked glucose 

dimer), and after a lag on fructose, sucrose and glucose [26]. However, it cannot grow on 

pentoses like xylose even though it is capable of solubilizing hemicellulose such as xylan 

[30] and it has intracellular [3-xylosidase activity [31]. Improving substrate utilization via 

a co-culture strategy is a possibility that would involve anaerobic thermophiles such as 

Clostridium thermosaccharolyticum [32] and Clostridium thermohydrosulfuricum [33], 

which are capable of metabolizing pentoses. Maximizing ethanol yield by eliminating the 

metabolic pathways leading to lactic acid and acetic acid production is also possible via 

genetic manipulation. The genome of C. thermocellum has been sequenced by the Joint 

Genome Institute (JG1). A genetic electrotransformation system has been developed for 

C. thermocellum specifically [34], and a knockout system for Clostridia (ClosTron) has 

also been established [35]. Efforts to raise ethanol tolerance are also being made [36]. 

Microarray technology is now available for wide-scale gene expression studies in C. 

thermocellum at the transcriptome level [37]. 

2.2.1. The C. thermocellum cellulase system 

Aerobic cellulolytic organisms produce extracellular cell-free cellulases in high 

concentration. On the other hand, C. thermocellum, being an anaerobic cellulolytic 

bacterium that relies on ATP from glycolysis for cellular energy, cannot afford to 

produce large amounts of extracellular cellulase. Instead, it organizes its cellulolytic 

enzymes into highly efficient cell surface-bound protein complexes termed cellulosomes. 

Cellulosome complexes have also been observed in other bacteria like Clostridium 
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cellulovorans [38], Clostridium cellulolyticum [39], Clostridium josui [40], Clostridium 

acetobutylicum [41], Acetovibrio cellulolyticus [42], Bacteroides cellulosolvens, 

Ruminococcus albus [43], Ruminococcus flavefaciens [44], Vibrio sp., and the anaerobic 

fungal genera Neocallimastix, Piromyces, and Orpinomyces [45]. 

The C thermocellum cellulase system comprises both cellulosomal and 

noncellulosomal cell-surface bound enzymes, although the latter are responsible for no 

more than 5% of the overall endoglucanase activity [46]. There are exo- and endo-p-1,4-

glucanases, xylanases and other hemicellulases, and carbohydrate esterases. The presence 

of these different enzymatic activities (cellulolytic and hemicellulolytic) in the 

cellulosome is one reason C. thermocellum is so effective at overcoming the 

heterogeneity of plant cell wall materials [47, 48]. The high efficiency of the cellulosome 

is also attributed to the presence in optimal stoichiometry of catalytic domains that 

complement one another resulting in synergism, the phenomenon whereby certain 

combinations of enzymes (endo- and exoglucanase pairs; pairs of exoglucanases that 

process cellulose chains from reducing and non-reducing ends) collectively exhibit higher 

overall activity than the sum of their individual activities [12]. Synergistic action among 

enzymes within the cellulosome setting is further enhanced by cellulose targeting via the 

cellulose-binding domain of the complex's central structural protein, and also by 

appropriate spacing between individual catalytic subunits (for optimal channelling of 

substrate between them) [49]. Preferred proximity relationships between specific catalytic 

domains also appear to be possible contributors to the synergistic effect [50]. The 

tethering of enzymes within the cellulosome prevents their cooperativity from being 

hindered by steric interactions between free subunits [51]. The phenomenon of enzyme-
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enzyme synergy exists for cell-free cellulase systems [52] as well as for complexed ones; 

however, it is thought to be more pronounced in the cellulosome. In a recent study, cell-

free versions of bacterial enzymes as well as dockable chimeric fungal enzymes were 

created, and then the activities of cell-free enzyme pairs were compared with enzyme 

pairs docked onto a chimeric scaffoldin [53]; and synergy was observed for the right 

combination of complementary docked enzymes. 

The C. thermocellum cellulosome is tethered to the cell surface, which means that 

the products of hydrolysis are also in proximity to the cell, where they can be taken up 

via adenosine-binding cassette (ABC) transporters at the cost of one ATP [54] (Figure 1). 

A type of enzyme-microbe synergy was recently reported for growing, metabolically 

active C. thermocellum cells that was attributed to surface phenomena involving adherent 

cellulolytic microorganisms rather than to the removal of hydrolysis products from the 

bulk fermentation broth [55]. In cell-free cellulase systems, another form of synergy 

exists between cellulases and extracellular p-glucosidases, which convert cellobiose and 

other cellodextrins to glucose. At high levels, cellobiose, one of the major products of 

cellulose hydrolysis, feedback inhibits cellulolytic activity [56], presumably to maintain a 

balance between cellulose degradation and the cell's ability to metabolize its catabolites. 

For C. thermocellum, cellobiose and longer cellodextrins are cleaved inside the cell either 

hydrolytically by P-glucosidases [57] or phosphorolytically by an intracellular cellobiose 

or cellodextrin phosphorylase [58-60] (Figure 1). The rate of the phosphorolytic cleavage 

reaction is about 20 times higher than the hydrolytic cleavage [61]. From a bioenergetic 

standpoint, phosphorolytic cleavage of imported P-glucan chains is preferable because 

the glucose-1-phosphate produced can be converted by phosphoglucomutase to glucose-

11 
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6-phosphate for glycolysis and thus ATP production. Hydrolytic cleavage, on the other 

hand, produces only glucose, which costs an ATP in order to be converted to glucose-6-

phosphate via hexokinase. It has been shown that the primary product taken up by the cell 

is a cellodextrin with on average 4 glucosyl moieties, not glucose or cellobiose [62]. With 

the energy savings on sugar transport that come with importing a cellodextrin with 4 

degrees of polymerization and the benefits of the phosphorolytic cleavage of p-glucan 

bonds, this process was shown to be capable of supporting the cost of cellulase synthesis 

in anaerobes. 

Cellulosome size is estimated at between 2 x 106 and 6 x 106 Da [63]. Assembled 

on the cell surface, polypeptides contain an N-terminal signal peptide that is cleaved off 

during secretion from the cell. Cellulosomes appear bound to the cell surface during log 

phase, become free in late exponential, and are mostly all free in stationary phase [63-

65]. Cellulosomes have a requirement for Ca2+ and cellusomal activity is susceptible to 

oxidation due to the presence of sulfhydryl groups [66, 67]. 

2.2.2. Cellulosome structure 

The structure of the C. thermocellum cellulosome consists in a central, 

noncatalytic, multimodular scaffolding protein bearing up to nine catalytic subunits 

(Figure 2) [68, 69]. The scaffolding protein is also referred to as scaffoldin or as 

(cellulosome integrating protein) CipA [69]. CipA has a predicted size of 196,800 [70], 

but it runs at higher than 200,000 by SDS-PAGE, likely because it is glycosylated [71]. 

The glycosylation may help protect the cellulosome from proteolytic cleavage in the 

extracellular environment [71, 72]. 
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o 

1 Scaffoldin (CipA) |l -. •- v 
Type 1 cohesin (Cohl) • * 

Type II dockerin (Doc2) ^ ^ 

Cellulose-binding domain |CBD3a) ^ ™ 

X module M 

• Enzymes with type 1 dockerins (Docl) 

Cell-surface anchor protein 

Type II cohesin (Coh2) 

Surface layer homology repeats 

Figure 2. Structure of the C. thermocellum cellulosome complex. Scaffolding protein 
CipA binds 9 catalytic subunits via Cohl-Docl interactions. Doc2-Coh2 interactions 
mediate the binding of CipA to an anchor protein containing surface layer homology 
repeats that bind it noncovalently to the cell surface. In addition to 9 Cohl domains, 
CipA contains a family Ilia cellulose-binding domain and a domain of unknown function. 
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The attachment of a given catalytic subunit to the cellulosome is mediated by the 

interaction of its type I dockerin (Docl) domain with one of the nine highly conserved 

cohesin type I (Cohl) domains of CipA [73]. CipA contains, between its seventh and 

eighth Cohl domains at the N-terminal, a type Ilia cellulose-binding domain (CBD3a), 

responsible for attachment of the complex and its enzymes to the surface of cellulose 

[70]. This mode of substrate targeting runs contrary to the cell-free fungal enzymes, 

which have their own CBDs for substrate binding. Some C. thermocellum cellulosomal 

enzymes do contain their own CBDs (CBD3b, CBD3c, CBD4, CBD30) but these do not 

bind cellulose as tightly as CBD3a [26]. While they may strengthen the binding to 

cellulose, their roles are more in facilitating the catalytic function of processive enzymes. 

The three-dimensional structure of a CBD3a revealed a 9-stranded p-sandwich with jelly 

roll topology and a Ca2+ binding site [74]. A comparison of the C. thermocellum CBD3a 

from CipA and CBDs from Trichoderma reesei showed that the former binds more sites 

on cellulose [75]. In addition to bringing the enzymes in contact with cellulose, the role 

of a CBD is believed to modify the surface of the substrate in order to promote hydrolysis 

[76, 77]. Some noncellulosomal enzymes in C. thermocellum have their own CBD3a 

[26]. 

CipA is bound to the cell-surface by virtue of the interaction of its C-terminal type 

II dockerin (Doc2) domain with the type II cohesin (Coh2) domain of one of three S-

layer anchor proteins, SdbA, Orf2p, or OlpB [26]. SdbA has one Coh2 domain, Orf2p 

two Coh2 domains, and OlpB four Coh2 domains, presumably for binding one, two, and 

four CipA proteins, respectively. OlpA is a non-cellulosomal anchor protein that contains 

a Cohl domain for tethering catalytic docking subunits directly to the cell surface [78]. 
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These anchor proteins contain C-terminal surface-layer homology (SLH) repeats which 

integrate noncovalently with the S-Iayer (glycocalyx) just external to the peptidoglycan 

layer of the cell wall. 

CipA also contains a module of unknown function, referred to as the X module, 

found between its first Cohl and the Doc2 domain. 

2.2.3. Cohesin and dockerin domains 

The cohesin-dockerin interactions are crucial to complex formation in the 

cellulosome. The interactions are among the strongest noncovalent bonds found in nature. 

Binding assays using recombinantly expressed dockerin and cohesin polypeptides have 

been used to quantitate the thermodynamics of the interactions. Affinity constants on the 

order of between 109 and less than 10n M"1 have been reported for both type I [79, 80] 

and type 11 interactions [81, 82], placing them in the high end of the range for typical 

protein-protein interactions [83]. The high affinity explains the remarkable stability of the 

quarternary structure of the cellulosome, which resists dissociation upon treatment with 

guanidine HC1, urea, nonionic detergents, and extremes in pH or ionic strength [84]. 

Treatment with SDS at temperatures above 70°C appears to consistently break the 

cellulosome into its component parts. 

Cohesin-dockerin interactions are also highly type-specific in that Docl domains 

only recognize Cohl domains, whereas Doc2 domains only recognize Coh2 domains 

[85]. Despite this type-specificity, there is no known specificity of particular Docl 

domains for any particular Cohl; thus, there is no known spatial order for binding of 

catalytic subunits along the CipA. Cohesin-dockerin interactions are also species-
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specific. A Docl domain from C. thermocellum has been shown not to associate with a 

Cohl domain from the CipC scaffoldin from C. cellulolyticum [86]. 

Structural studies in conjunction with mutagenesis approaches have uncovered the 

major aspects of cohesin-dockerin recognition and binding. The structures have been 

solved for Cohl, Docl and the Cohl-Docl complex (Figure 3). Like the CBD3a, the 

Cohl fold is characterized by a nine-stranded (3-sandwich with jellyroll topology [87, 88]. 

Repeats in the primary structure of the Docl sequence are manifested structurally as two 

Ca2+-binding loop-helix motifs connected by a linker [89]. Proper folding of dockerin 

domains thus requires Ca2+, hence the requirement for the divalent cation for cellulase 

activity. Both Ca2+-binding segments of Docl are required for Cohl recognition [80], 

which is mediated mainly by hydrophobic interactions between one of the faces of the 

Cohl and a-helices 1 and 3 of the Docl; Ser45 and Thr46 of the Docl dominate the 

hydrogen bonding network between it and the Cohl [90]. 

The structures of Coh2 and Doc2 resemble their type I counterparts, however the 

Coh2-Doc2 complex, including the adjacent X module, showed that the latter participates 

in the interaction and may play a role in type 1 versus type II specificity [81]. 

2.2.4. Docking subunits: a variety of catalytic domains 

Sequencing and annotation of the C. thermocellum ATCC 27405 genome led to 

the discovery of more than 60 open reading frames coding for products with putative 

Docl domains [91], that is, proteins that can potentially bind to CipA and contribute to 
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Figure 3. Structure of the type I cohesin-dockerin complex, reproduced from [90]. The 
complex is formed between the second Cohl from CipA (red, lower right) and a Ca2+-
bound Docl (green, upper left). The residues involved in domain contacts are shown as 
stick models. The two Ca2+-binding sites of the dockerin domain are shown as orange 
spheres. 
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cellulosomal activities. The predicted catalytic activity or function of about one-quarter 

of these genes is unknown. Considering the number of'dockable' candidate open reading 

frames, relatively few, about one-third, of the products of these genes have been 

identified from the cellulosome complex itself. The participation in the cellulosome of 

the remaining putative gene products remains moot. 

Twenty-seven docking component genes have been observed and/or cloned, 

expressed recombinantly and characterized: 4 that exhibit exoglucanase activity (CelS, 

CelK, CbhA, CelO), 12 with endoglucanase activity (CelA, CelB, CelD, CelE, CelF, 

CelG, CelH, CelJ, CelN, CelQ, CelR, CelT), 5 with xylanase activity (XynA, XynC, 

XynD, XynY, XynZ), one with chitinase activity (ChiA), one with mannanase activity 

(ManA), one with lichenase activity (LicB), one with xyloglucanase activity (XghA), and 

2 that are nonenzymatic proteins (CseP, PinA). Both cellulolytic and hemicellulolytic 

glycoside hydrolases (GH) are classified into families according to the structural fold 

(predicted from primary structure) of the catalytic module [92], as are carbohydrate 

esterases (CE) [93]. Optimal conditions for these enzymes can range from pH 4.0-7.5 and 

temperatures of 55-78°C [94-100]. 

The major catalytic subunit of the cellulosome is the processive exo-acting 

cellobiohydrolase CelS [97, 101-103], which has a tunnel-shaped binding site [104] and 

is the only GH48 member in the C. thermocellum genome. Exoglucanases are the key 

enzymes in the degradation of crystalline cellulose [2], attacking cellulose chains from 

the reducing end, like CelS [104] or GH5 CelO [105], or the non-reducing end, like GH9 

enzymes CelK and CbhA [106]. They work in concert with endoglucanases, which attack 

at random locations within a cellulose chain. Typically, exoglucanases exhibit higher 
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activity against crystalline forms of cellulose like Avicel or cotton, whereas 

endoglucanases prefer amorphous forms such as carboxymethyl cellulose (CMC). The 

major endoglucanase in C. thermocellum is CelA [12], the only member of GH8 in the C. 

thermocellum genome. The other endoglucanases have GH5 or GH9 folds. Many of the 

enzymes with GH9 folds also contain, directly C-terminal to the catalytic module, either 

a CBD3c (or an immunoglobulin-like domain), which has been shown to participate 

directly in the processivity of their catalytic function [107, 108]. 

The variety of hemicellulolytic activities is in keeping with the various types of 

hemicellulose that can exist in lignocellulosic materials. Six of the described docking 

components (CelE, CelH, CelJ, XynA, XynY, and XynZ) have more than one catalytic 

domain. Of note are the CE1 modules of XynY and XynZ. These have demonstrated 

feruloyl esterase activity, which would enable them to uncouple the cellulose-

hemicellulose network from lignin [96]. 

Among the nonenzymatic docking proteins, PinA is a member of the serpin 

superfamily of serine protease inhibitors [109]. Presumably, it plays a role in defending 

the cellulosome against proteolytic cleavage in the extracellular environment. CseP bears 

sequence homology to spore-coat assembly protein CotH of Bacillus subtilis, which 

suggests it has a structural role in the cellulosome [110]. 

2.2.5. Regulation of cellulosomal enzymes 

Cellulosome-related genes are regulated in a coordinated fashion to facilitate 

economic and efficient utilization of cellulosic materials [111]. Previous studies have 

shown that cellulolytic activity in C. thermocellum is regulated by either carbon source or 
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growth rate (or both), and that changes with respect to one or the other are reflected in 

overall cellulase production [112] and in the cellulosomal subunit profile [31, 84, 113, 

114]. Expression of endoglucanases was observed to be controlled temporally, as celA, 

celD and celF transcripts were only observed at late exponential and early log phase 

during growth on cellobiose [115]. Catabolite repression by non-limiting concentrations 

of readily metabolized carbon sources has been the standing hypothesis for cellulase 

regulation in C. thermocellum for more than 20 years [30]. The catabolite repression 

scheme is supported by the presence of genes for Hpr, Hpr kinase, a CcpA-like 

Lacl/GalR-family regulatory protein, and catabolite responsive element binding 

sequences in the C. thermocellum genome [112, 116]. While there is no evidence of a 

specific inducer being involved in cellulase synthesis, cellobiose does appear to be a 

repressor of genes responsible for activity against crystalline cellulose [117]; although 

overall endoglucanase activity is constitutive [30, 46, 118]. Higher cell-specific cellulase 

yields (mg per g of dry cell weight) are observed during growth on Avicel, and the 

decrease in cellulase yield has been correlated to increased extracellular cellobiose 

concentration [112]. The immediate availability of energy from cellobiose results in 

increased growth rate and leads to the repression of genes required to mine energy from 

crystalline cellulose. Lower growth rates and cellulose as substrate seem to promote 

cellulase production, as has been demonstrated for CelS, both at the protein [84] and the 

mRNA level [1, 119], as well as for the transcription of GH5 endoglucanases celB and 

celG and GH9 endoglucanase celD [120]. Transcription of scaffoldin gene cipA and cell-

surface anchoring genes olpB and orfip are likewise controlled by growth rate and/or 

carbon source, which is not the case for another cell-surface gene sdbA [119, 121]. 
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Expression of xylanase xynC increases on cellobiose, both at the protein level [84] 

and the transcript level, although this increase does not appear to be growth-rate 

dependent [120]. Beyond these findings, hemicellulase regulation has not received much 

attention in C. thermocellum. In Clostridium cellulovorans, however, two major 

xylanases have been shown to be inducible by growth on xylan [122], and the mRNA 

levels of genes for xylanase xynA and pectinase pelA are also induced by growth in 

xylan- or pectin-containing media, respectively [123]. 

It has recently been shown that growth of C. thermocellum on laminaribiose 

induces genes for noncellulosomal P-l,3-glucanases CelC and LicA [124]. 

2.3. Mass spectrometry for quantitative proteomics 

Low expression levels and overlapping and/or novel biochemical activity not 

detected by frequently used activity assays can account for the difference between the 

number of C. thermocellum cellulosomal proteins predicted and the number of those that 

have been biochemically characterized. Mass spectrometry (MS) has become an 

increasingly popular tool in the study of proteins due to its high sensitivity and mass 

accuracy, and its quantitative applications are being progressively refined [125]. The 

most wide-ranging C. thermocellum cellulosome study until now coupled a two-

dimensional gel electrophoresis system with protein mass fingerprinting by matrix 

assisted laser desorption/ionization MS, giving rise to the simultaneous identification of 

13 docking components from a cellulose-grown culture [91]. 
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2.3.1. Peptide sequencing by MS/MS 

Shotgun MS approaches have been developed for the study of entire proteomes or 

subproteomes [126-129]. A mixture of proteins is digested to peptides with trypsin. The 

digested protein in solution phase can be resolved into its constituent peptides, according 

to their relative hydrophobicities, by LC placed in-line with a tandem mass spectrometer. 

Electrospray ionization (ESI), a soft ionization technique used so that large peptides do 

not break apart prior to MS/MS fragmentation, converts the eluting peptide ions from 

solution to gas phase by pushing the liquid through a very narrow capillary to which a 

charge is applied. In an ion trap MS such as the Thermo LTQ (Figure 4), the ions 

produced by ESI are focused into the ion trap by an electrostatic lensing system (ion 

optics). An ion gate system pulses open and closed to allow ions into the trap and confine 

them by creating a potential well [127]. Ions in the trap can be released selectively, 

leaving behind only the precursor ion of interest to be dissociated by collisional 

activation with helium as damping gas (collision induced dissociation or CID), which 

converts kinetic energy to vibrational energy resulting in fragmentation [127]. Fragment 

ion products are ejected from the trap and detected using an electron multiplier. The 

MS/MS spectrum of fragment-ion peaks generated reflects the amino acid sequence of 

the precursor peptide. The peptide sequence is established from the mass differences 

between the peaks, using b- and y-type ions, which extend from the amino and the 

carboxy termini, respectively (Figure 5). This information is recorded as a list of the 

peptide fragment masses and their intensities (stored as a DTA file by Thermo Electron 

software). This list is then matched to a theoretical peptide fragment spectrum in a 

sequence database, which contains the masses and intensities of peptide fragments from a 
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Figure 4. Schematic of the LTQ linear ion trap mass spectrometer. 
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collection of proteins or translated open reading frames digested with trypsin in silico 

[130]. In such a way, multiple peptides can be detected and correlated to a protein. The 

correlations can be calculated using the SEQUEST algorithm, which assigns a cross 

correlation score (XC) that takes into account the percentage of fragment ions detected 

for a peptide sequence, as well as the number of peptides identified per protein [131]. The 

more peptides are sequenced, the higher the confidence in the protein correlation. Thermo 

Electron's BioWorks software also calculates a Ppro value which represents the likelihood 

that the sequence information should correlate to another protein in the sequence 

database. Given trypsin specificity, intact peptide mass, and a partial amino acid 

sequence, the protein correlation can be very strong even with a single peptide, in 

contrast to a peptide mass fingerprinting experiment. 

2.3.2. Relative quantitation using internal standards 

Relative quantitation of peptides/proteins can be done in nanoLC-ESI-MS 

experiments with the use of internal standards. The absolute signal intensity of a peptide 

ion measured by MS does not necessarily reflect the abundance of that peptide in a 

mixture with other peptides. Two different peptide sequences present in equal abundance 

can give signals of unequal intensity in a single MS run. This is due to differences in 

ionization efficiencies between peptide ions and to background and ion suppression 

effects. The use of an internal standard accounts for these effects, and also controls for 

losses that occur during sample preparation (if added prior to extraction) and LC 

injection. The best internal standard is an isotopically labelled version of the peptide to be 

quantified. An isotopically labelled internal standard will have a similar extraction 
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recovery, chromatographic retention time, and ionization response in ESJ-MS as its 

unlabelled analog. MS is particularly well suited for the use of stable-isotope labelled 

internal standards because of its ability to measure masses at high accuracy; however, the 

labelled peptide should provide a difference of at least 3 Da for adequate separation from 

the naturally occurring isotopic distribution around the peptide ion being measured [132]. 

Several quantitative proteomics technologies exist that involve incorporation of stable 

isotope tags either in vivo or in vitro. In vitro labelling can be done after the protein is 

digested. ITRAQ (isobaric tags for relative and absolute quantitation) technology 

involves chemically modifying the amino termini of peptides with stable isotope-labelled 

reagents [133]. Labels can also be added during protein digestion with trypsin. During 

proteolysis, trypsin incorporates an oxygen atom from the surrounding water. Performing 

the digestion in , 8 0 water incorporates a 2-Da difference per peptide created [134]. Then 

again, protein can be tagged prior to digestion. ICAT (isotope-coded affinity tag) 

technology involves labelling the cysteine residues in proteins with a stable isotope label 

[135]. Alternatively, labels can be incorporated in vivo. SILAC (stable isotope labelling 

with amino acids in cell culture) involves growing cells in medium containing stable-

isotope labelled amino acids. Instead of the amino acids being labelled, it could be some 

other reagent in the growth medium like a 13C carbon source or 15N nitrogen source 

(Figure 6) [136, 137]. When the labelled analog of the carbon or nitrogen source is 

supplied to cells in culture, it gets incorporated into all newly synthesized proteins. After 

a number of cell divisions, all instances of the original will be replaced by the analog. 

Since there is hardly any chemical difference between the labelled and the natural 

isotopes, the cells behave similarly. 
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Figure 6. General scheme for quantitative proteomics using metabolic labelling, 
reproduced from [137]. Cells grown in media containing 15N are mixed with cells from 
different conditions prior to protein extraction and digestion. Measurement of the proteins 
from each sample is made using their respective 15N-labelled protein as internal 
standards. Changes in protein level are expressed relative to another sample to minimize 
systematic errors. 
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In all of these strategies, one of two (or several) samples being compared is 

labelled, and then mixed with unlabelled sample (or sample tagged with a different label). 

In extracting quantitative data, mass spectra are acquired, resulting in isotope clusters for 

each pair of labelled and unlabelled peptides. As the peptides co-elute from the column, 

their signals are sampled several times, tracing out individual ion-current curves (Figure 

7). The area under each curve is an extracted ion chromatogram (XIC) and is proportional 

to the peptide's abundance [125]. Differences in abundance can be determined by 

comparing the area under each peak in a ratio. A complex mixture analysis can yield 

thousands of peptide XICs which can be correlated to proteins and used for quantitation 

of their relative abundance. A computer program called RelEx has been developed for the 

calculation of such peptide ion-current ratios using a least-squares regression (Figure 7) 

[137]. 

2.3.3. Quantitation by peptide counting methods 

An altogether different approach, not relying on internal standards for the MS-

quantitation of proteins, involves peptide counting. Such methods correlate the number of 

peptides detected per protein to the abundance of that protein in a mixture with other 

digested proteins. The need to normalize this number somehow becomes clear when it is 

considered that a large and a small protein present in a mixture in equal concentration do 

not yield the same number of peptides upon proteolysis. Normalizing to the number of 

theoretical peptides, peptides that can be detected within the LC run and the mass range 

of the MS, yields a rough proportionality to protein abundance, as per the emPAI 

(exponentially modified protein abundance index) method [138]. The concept of 

theoretically LC-MS-observable peptides has evolved into the notion of a proteotypic 

29 



Figure 7. Graphical user interface for RelEx software upon analysis of peptide to labelled 
peptide ratios [137]. (a) Mass spectra are acquired, resulting in isotope clusters for each 
peptide, the naturally occurring isotope distribution (left) and the labelled peptide 
distribution (right), (b) As the peptides co-elute from the column, their signals are 
sampled several times, tracing out overlapping extracted ion chromatograms (XICs) for 
each. The area under each curve is proportional to that peptide's abundance, (c) RelEx 
determines a correlation factor as a measure of the overlap of the XICs. (d) Differences in 
abundance are determined by calculating the ratio of the areas under each curve. 
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peptide, which is an experimentally observable peptide that uniquely indentifies a 

specific protein [139]. Proteotypic peptides are being used to normalize emerging peptide 

counting quantitation methods [140-142]. 

3. METHODS 

The general scheme for the comparison of cellulosomal subunit profiles from C. 

thermocellum cells grown using different carbon sources is depicted in Figure 8. In 

summary, C. thermocellum was grown on different substrates in liquid (batch) culture. 

Each sample culture was mixed with a reference culture in which all proteins were 

labelled metabolically with l5N. Cellulosomes were isolated from each mixture, separated 

by SDS-PAGE, and then digested with trypsin for peptide sequencing by nanoLC-ESI-

MS/MS. Cellulosomal proteins were identified by using the SEQUEST algorithm to 

match (unlabelled) peptide sequence information to the C. thermocellum sequence 

database. The unique (unlabelled) peptides observed were counted and used in the 

calculation of relative protein abundances per sample by the emPAI method. Labelled 

peptides acted as internal standards for the determination of relative differences in protein 

abundance between two samples, using RelEx software. 
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Figure 8. General scheme for the comparison of cellulosomes from Avicel- and 
cellobiose-grown C. thermocellum cells. Cells from each sample culture were mixed with 
an internal standard culture grown in medium enriched with 15N. Cellulosomes were 
isolated from each mixture, separated by SDS-PAGE, digested proteolytically with 
trypsin, and then analyzed by nanoLC-ESI-MS. Proteins were identified by matching 
MS/MS spectra to the C. thermocellum sequence database using SEQUEST. Protein 
abundances were evaluated by the emPAI method and by RelEx analysis. 
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3.1. Media preparation for growing C. thermocellum 

The liquid media were based on ATCC medium 1191, but without sodium sulfide. 

They were prepared from the mixture of three separate solutions: a buffer solution, a 

vitamin solution and a mineral solution. The buffer solution was prepared by combining 

the ingredients listed in Table 1. The dry ingredients were dissolved completely before 

adding sodium hydroxide. The solution was then transferred to anaerobic culture bottles 

(Bellco Glass) in volumes of 95 mL. When Avicel PH101 (Fluka-Biochemika) was used 

as carbon source, 200 mg was added to each bottle (final concentration of 0.2%, wt/vol). 

Xylan from birch wood (100 mg; Sigma Aldrich), pectin from citrus peel (50 mg; Sigma 

Aldrich), and locust bean gum (50 mg from Ceratonia siliqua seeds; Sigma Aldrich), 

when used, were also added at this point. Solutions were sparged in the anaerobic bottles 

with nitrogen gas for 3-5 min, and then quickly stoppered with a rubber septum which 

was then sealed with an aluminum cap. Sealed media bottles were then sterilized by 

autoclaving on liquid cycle for 15 min. 

The vitamin solution was prepared by combining the ingredients in Table 2. Only 

small amounts of the vitamin solution are required, so unused vitamin solution was 

divided into 50-mL aliquots and frozen at -20°C. In preparing the mineral solution from 

the ingredients in Table 3, the nitrilotriacetic acid was first suspended in 500 mL of 

water, and then titrated to pH 6.5 with 2 N KOH to dissolve. Unused mineral solution 

was filter-sterilized into an autoclaved bottle and left at room temperature for later use. A 

mixture of the vitamin and mineral solutions was prepared by combining 1 mL of the 

former with 10 mL of the latter, and diluting up to 100 mL. When cellobiose (Sigma-

Aldrich) was used as carbon source, 4 g was dissolved into this vitamin-mineral solution, 
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Table 1. Buffer solution for ATCC 1191 liquid growth medium 
Per L of water 

KH2P04 
Na2HP04-12H20 
14NH4C1 
I5NH4C1 (99%) 
MgCl2-6H20 
L-cysteine HC1 
Yeast extract 
Resazurin (0.1% wt/vol) 
NaOH(lON) 

Full medium 
1.58 g 
4.42 g 
0.53 g 

0.19g 
0.53 g 
2.11 g 

1.05 mL 
842 uL 

Minimal medium 
1.58 g 
4.42 g 

0.53 g 
0.19g 
0.53 g 

1.05 mL 
842 uL 



Table 2. Vitamin solution for ATCC 1191 liquid growth medium 
Per L of water 

Biotin 
p-Aminobenzoic acid 
Folic acid 
Pantothenic acid calcium salt 
Nicotinic acid 
Vitamin B12 
Thiamine HC1 
Pyridoxine HC1 
Pyridoxal HC1 
Thioctic acid 
Riboflavin 

Full medium 
40 mg 
lOOmg 
40 mg 
lOOmg 
100 mg 
2mg 
lOmg 

200 mg 

lOOmg 
10 mg 

Minimal medium 
40 mg 
lOOmg 
40 mg 
lOOmg 
lOOmg 
2mg 
10 mg 

200 mg 
lOOmg 
10 mg 



Table 3. Mineral solution for ATCC 1191 liquid growth medium 
Per L of water 

Nitrilotriacetic acid 
MgS04-7H20 
MnS04-H20 
NaCl 
FeS04-7H20 
Co(N03)2-6H20 
CaCl2 (anhydrous) 
ZnS04-7H20 
CuS04-5H20 
A1K(S04)2 (anhydrous) 
Boric acid 
Na2Mo04-2H20 
Na2Se03 (anhydrous) 

1.5 g 
3g 

500 mg 

l g 
100 mg 
lOOmg 
100 mg 
100 mg 
10 mg 
10 mg 
10 mg 
10 mg 
1 mg 



such that the final concentration was 4% (wt/vol). The vitamin-mineral mixture, with or 

without cellobiose, was sparged with nitrogen for several minutes. While sparging, the 

solution was drawn up through a stainless steel cannula into a 60-mL syringe. The 

cannula was replaced with a 0.2 u.m filter to which was fixed a syringe needle. The 

solution was then filter-sterilized into a clean, empty anaerobic culture bottle, which had 

been previously autoclaved, flushed with nitrogen gas, and stoppered as before. Five mL 

of this solution were added to the buffer solution, for a total volume of 100 mL per bottle 

(final cellobiose concentration of 0.2%, wt/vol). 

3.2. Growth conditions and metabolic labelling 

For comparison of growth on cellulose versus growth on cellobiose, C. 

thermocellum strain ATCC 27405 was grown anaerobically at 58°C in 100-mL batch 

cultures in full ATCC medium 1191, containing 0.2% (wt/vol) of either Avicel (the 

model substrate for crystalline cellulose) or cellobiose. An Avicel-grown reference 

culture was prepared similarly in minimal ATCC medium 1191, in which 99% 15N-

enriched NH4C1 (Cambridge Isotope Laboratories, Andover, MA) was substituted for the 

nitrogen source and pyridoxine HC1 was replaced with pyridoxal HC1. A 5% (vol/vol) 

inoculum of unlabelled Avicel-grown cells was passed three times into 15NH4C1-

containing medium, before inoculation of the final reference batch, which was 

consequently enriched with 15N to an estimated 98.9%. All cultures were harvested for 

protein isolation in late stationary phase (70 h), at which point each test culture was 

mixed 1:1 (vol/vol) with the reference culture. 
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For comparison of growth on either cellulose or cellobiose with and without 

hemicelluloses, Avicel- and cellobiose-grown cultures of C. thermocellum strain ATCC 

27405 in exponential phase, grown as above, were used to make 3% (vol/vol) inoculae 

into Avicel and cellobiose media, respectively, containing 0.1% (wt/vol) xylan (p-1,4-

linked xylose), 0.05% (wt/vol) pectin (ot-l,4-linked galacturonic acid), and 0.05% 

(wt/vol) locust bean gum (P-l,4-linked mannose with occasional galactose branch 

points). Xylan (X), pectin (P) and locust bean gum (M) will often be referred to 

collectively in the text as XPM. A reference culture was grown and enriched as above 

except with XPM added to the Avicel-containing minimal medium, which resulted in a 

growth lag. The reference culture was therefore inoculated 48 h prior to the test cultures, 

which were harvested at once in late stationary phase (70 h). All test cultures were mixed 

1:1 (vol/vol) with the reference culture. 

3.3. Protein fractionation 

The steps in the isolation of various C. thermocellum protein fractions are shown 

in Figure 9. A 1-L culture grown on cellobiose to stationary phase, as above, but not 

mixed with a reference culture, was centrifuged at 10,000 x g for 10 min. The supernatant 

was divided into two portions. To one portion was added 4 volumes of cold acetone, and 

the mixture was left at 4°C for 30 min to precipitate the total extracellular protein. The 

mixture was centrifuged at 17,000 x g for 20 min to pellet the protein, which was 

suspended in 50 mM Tris-HCl, pH 7.4. Cellulose-binding extracellular protein (the 

cellulosome fraction) was removed from the other portion of the supernatant (as 
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C. thermocellum 
grown to stationary phase (40-70h) 

Centrifugation 

Supernatant 

Phosphoric acid swollen cellulose Acetone precipitation 
added, 2h incubation at 4»C 

Cell pellet 

Mild sonication 

i 
Centrifugation Total extracellular protein Cell-surface protein 

Cellulose pellet Supernatant 

Dialysis at 589C Acetone precipitation 

(Cellulosomes Non cellulose binding protein 

Sonication 

Centrifugation 

Supernatant 

4 
Ultracentrifugation 

Pellet Supernatant 

1 I 
Membrane protein Cytosolic protein 

Figure 9. General protein fractionation scheme. The left-most path follows the isolation 
of cellulosomes from C. thermocellum grown to stationary phase in liquid culture. 
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described in section 3.5), and the non cellulose-binding extracellular protein remaining in 

the supernatant was acetone-precipitated and recovered as before. 

The cell pellet was divided into three portions that were treated by different 

methods in attempts to effect the release of proteins from the cell surface. Cells were 

suspended in 50 raM Tris-HCl, pH 8.0, and sonicated at 0.3 cycle/s with pauses of 0.5 s 

and a power setting of 0.5 (maximum strength 550 W) [143]. Other cells were suspended 

in a 50 mM Tris-HCl sucrose buffer, pH 8.0, containing 1 mg/mL lysozyme, 250 u.g/mL 

RNAse A, and 2 mM phenylmethylsulfonyl fluoride, and incubated at 37°C for 1 h [144]. 

Finally, cells were suspended in 50 mM Tris-HCl, pH 8.0, with 8M urea, and incubated at 

room temperature for 30 min [144]. After all three treatments, cells werepelleted again by 

centrifugation, and the supernatants were concentrated by acetone precipitation as above. 

The total extracellular protein, cellulose-binding extracellular protein, non-

cellulose binding extracellular protein, and three surface-layer protein fractions were 

resolved by SDS-PAGE (6%) and stained with Coomassie Blue. 

3.4. Preparation of phosphoric acid swollen cellulose 

Phosphoric acid swollen cellulose (PASC) was prepared as per Walseth [145] 

with some modifications. In a mortar kept on ice, 5 g of Avicel was gradually added to 

100 mL of phosphoric acid (85%), with stirring using a pestle to avoid lumps. Once all 

the Avicel was added, the mixture was stored at 4°C for 30 min to allow swelling. The 

mixture was then washed several times with cold water and then Tris-HCl buffer (50 

mM, pH 6.8), with centrifugation steps in between, until the mixture had reached a stable 

pH of 6.8. Finally, the mixture was homogenized in a blender to remove lumps. 
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3.5. Isolation of cellulosomes by affinity digestion 

Supernatants were collected by centrifuging sample cultures or sample-reference 

culture mixtures at 10,000 x g for 10 min. The pH of the supernatants was adjusted to 6.8 

with 10 N NaOH. To 900 mL of each were then added approximately 14 mg of PASC. 

The supernatants containing PASC were incubated at 4°C with stirring for a minimum of 

2 h. PASC pellets were then collected by centrifugation for 20 min at 17,000 x g. Pellets 

were washed once with cold water, re-centrifuged and then suspended in 5-7 mL of 

dialysis buffer consisting of 5 mM dithiothreitol (DTT), 0.1 g/L L-cysteine HC1, 2 mM 

EDTA, 12 mM CaCb, and 50 mM Tris-HCl, pH 6.8. The suspensions were then 

transferred to Pierce Slide-A-Lyzer dialysis cassettes (MWCO 10,000), which were each 

placed in 1 L of water held at 58°C while stirring on a hot/stir plate. This procedure, 

termed 'affinity digestion' and first developed by Morag et al. [146], is illustrated in 

Figure 10. Dialysis is necessary because, as the digestion progresses, cellulases active at 

high temperature degrade the PASC, releasing cellobiose which inhibits cellulolytic 

activity [56]. The digestion-dialysis should not be allowed to carry on for too long, for 

otherwise, should the cellulases finish breaking down the PASC, they will attack the 

dialysis membrane, which itself is made of nitrocellulose; and this would result in total 

loss of sample. After a 5-h digestion and dialysis period at 58°C, the contents of the 

cassettes were removed and precipitated with four volumes of cold acetone. The 

precipitates were collected by centrifugation, dried down in a vacuum centrifuge, and 

suspended in 50 mM Tris-HCl, pH 7.4, each to final concentrations of approximately 10 

mg/mL, as verified by Bradford protein assay. 
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Dialysis membrane 

(Cellobioso],,, — tCelloblose]OUT * 0 

[Ce!lobiose]m — [Ce!lobiose]0! 

Figure 10. Affinity digestion method for cellulosome isolation from culture supernatant. 
Cellulose-bound protein is suspended in buffer containing Ca2+ and a reductant, and 
placed in a dialysis cassette. Over the course of a 5-h digestion-dialysis period against 
water at 58°C, cellulose is converted to cellobiose which is removed by osmosis. Purified 
cellulose-binding protein remains. 
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3.6. Analysis of gel-separated cellulosomes by nanoLC-ESI-MS 

Purified cellulosome mixtures were separated by 6% SDS-PAGE and stained with 

Coomassie Blue. Sample lanes from the gel were excised and divided into fifteen gel 

bands, with each band containing on average roughly 11 ug of protein. The protein in 

each gel band was subsequently reduced and alkylated (to prevent reduced cysteine thiols 

from forming oxidized disulfide bonds), and digested with trypsin TPCK (Sigma-

Aldrich), as described previously [147]. (See Appendix C for in-gel digestion protocol.) 

The resulting peptide mixtures were removed from the gel pieces using excess extraction 

buffer, dried, and then made up in equal volumes of 8% (vol/vol) acetonitrile (ACN) in 

0.1% (vol/vol) formic acid (FA). (Alternatively, proteins can be digested with trypsin in-

solution; see Appendix D for protocol.) Peptide samples were injected quantitatively for 

separation on a PicoFrit BioBasic CI8 nanocolumn (New Objective; 10 cm length x 75 

p.m inner diameter, 5 urn particle size, 300 A pore size) with a 60-min solvent gradient, 

ranging from 3% to 50% ACN in 0.1% FA, at a flow rate of 1 uL-min"1. Before flowing 

to the column, sample was cleaned of impurities using a CI 8 peptide trap. Under these 

conditions, most peptides eluted in about 30 s or 500 nL. Detection and sequencing of 

peptide ions was accomplished by an LTQ linear ion-trap MS (Thermo Electron, San 

Jose, CA USA), equipped with an ESI nanosource and operating in positive mode with a 

voltage of 1.4 kV applied at a liquid junction just upstream of the column. Initial full MS 

survey scan (-10 ms) was performed for the m/z range of 400-2000, followed by several 

data dependent scans (~33 ms each). The seven most abundant ions from the survey scan 

were subjected to MS/MS for sequencing using pulsed-Q dissociation for ion 

fragmentation. A triggering threshold of three times the noise level (S/N) was applied for 
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MS/MS events. Peptide ions that triggered an MS/MS more than once within a 30-s 

window were placed on an exclusion list for three minutes to improve the possibility of 

less abundant ions being detected. 

For comparison of cellulosomes from cells grown on cellulose or cellobiose with 

and without XPM, rather than a C18-packed nanocolumn, a BioBasic CI8 column with 

180-um internal diameter was used in conjunction with an unpacked nanocolumn for 

respective peptide separation and ESI. The solvent gradient ran from 8-40% ACN in 

0.1% FA in 90 min. 

3.7. Database screening and success criteria 

Using SEQUEST from Bio Works 3.3 (Thermo Electron), peptide sequence 

results were searched against the 2007/02/16 release of the C. thermocellum genome 

available at the National Center for Biotechnology (NCBI) website courtesy of the U.S. 

Department of Energy (DOE), JGI (http://www.ncbi.nlm.nih.gov, Refseq accession 

number NC009012). The database was digested in silico with trypsin, generating 

peptides within the mass range 400-3500 Da. Furthermore, the database was indexed for 

a maximum of 3 of the following post-translational modifications (PTMs) per peptide: 

carboxymethylation of cysteine residues (monoisotopic 8 mass of 58.0050), oxidation of 

methionine residues (to sulfoxide, 8 mass of 15.99490), N-terminal acetylation and 

acetylation of lysine residues (8 mass of 42.01060). A peptide tolerance of ± 2 atomic 

mass units was implemented. Charge state analysis was performed during DTA file 

filtering, and a series of high-stringency filters were applied to the search results. Singly, 

doubly and triply charged peptide ions required SEQUEST cross correlation (XC) scores 
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of at least 1.8, 2.5, and 3.5, respectively. Peptide and protein hits also needed probability 

scores, as calculated by Bio Works, of less than 1(T3. Moreover, only proteins identified 

on the basis of two or more unique peptides were considered in the final analysis. The 

SignalP 3.0 server (http://www.cbs.dtu.dk/services/SignalP/) was used to verify that 

proteins contained an N-terminal peptide signalling secretion from the cell [148]. 

3.8. RelEx analysis 

DTA files were filtered separately using DTASelect [149], which assembles the 

peptides into proteins using the same XC-score stringency factors as above. The filtered 

DTA files were then analyzed by RelEx [137], which generates extracted ion 

chromatograms of peptide isotope pairs, and uses the areas under each curve to calculate 

a peptide signal ratio of sample to isotope-labelled reference. (See Appendix F for 

DTASelect-RelEx procedure.) An extracted ion chromatogram pair was rejected if the 

S/N was below three or if the correlation factor, the measure of the overlap of the curves, 

was below 0.9. Protein ratios were calculated as averages of the ratios of the peptides 

matched to them. The ratio of each unlabelled Avicel-grown protein over 15N-labelled 

Avicel-grown protein was divided by the ratio of the corresponding unlabelled 

cellobiose-grown protein over 15N-labelled Avicel-grown protein. The quotient of the 

ratios is the ratio of unlabelled Avicel-grown protein over cellobiose-grown protein. In 

such a way, this strategy corrects for any systematic errors introduced during sample 

preparation [137]. All ratios were normalized to that obtained for the comparison of 

CipA. Given that the time required for a single measurement places practical limits on the 

number of replicate values of individual samples that can be performed in determining 
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error and the significance of observed changes in protein abundances, assessing variance 

by multiple peptides per protein in a single run is an acceptable alternative that 

approximates the same result [132]. Standard error (SE) in the normalized ratio of ratios 

was calculated using the simple rules of error propagation for quotients. Since 

( rA,Avicel \ 

1*A,cellobiose ) 
Eq. 1 KA- / ^CipA.Avicel \ 

\rCipA,cellobioseJ 

where RA is the overall ratio of sample to reference ratios r, normalized to CipA, for a 

given protein A, then the overall standard error in RA is 

PV» 0 rr- r. l(SDAAvicei\ lSDAcenoi,i0Se\ (SDcipA,Avicel\ . I^"dpA,cellobiose\ 

^ 4 M SEA = RAX - + - + - + — 
-U \ 'A,Avicel / \ 'A.cellobiose J \ ' CipA,Avicel / \ 'A,cellobwse / 

where uncertainties (standard deviations SD) in A on Avicel, A on cellobiose, CipA on 

Avicel, and CipA on cellobiose are random and independent. 

The two-tailed Student's t-test was used to determine the probability that the 

ratios calculated for growth on Avicel and for growth on cellobiose corresponded to two 

distinct populations between which real differences could be observed. The t-distribution 

value was calculated as 

Eq.3 
^A,Avicel ^A.cellobiose 

\~wrr~~,+ ~FL iTT ) K^Mvicei_ * ) x svAtAvicel + {NAiCeilobiose - i j x sDAcellobiose\ 
\ A^Avicei A,ceitODiose/ 

df 

where N is the number of peptides used for the calculation of the ratio r, and df is the 

degrees of freedom, which is 

Eq.4 df — NAAvicd + NAceUobiose — 2 
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The determined t-distribution value was compared to t-distributions corresponding to the 

varying degrees of freedom at different confidence levels. Relevant comparisons were 

made only with ratios for which the t-values were above the t-distributions at 95% 

confidence or better. 

3.9. EmPAI analysis 

EmPAI, which was shown to bear a roughly linear relationship to protein 

concentration, is defined as 10PAI minus one, where PAI, the protein abundance index, is 

the ratio of the number of MS-observed peptides for a given protein over its theoretically 

observable peptides [138]. The unique peptide parent ions matched for a given protein 

were counted as its observed peptides. For theoretical peptides, a protein's in silico 

tryptic digest products (no missed cleavages, no PTMs) were generated within a mass 

window of 0 to 4000 Da using the MS-Digest tool at the ProteinProspector website 

(http://wwwl.ncifcrf.gOv/ucsfhtml3.2/msdigest.htm). The relative hydrophobicities of the 

resulting peptide sequences were calculated using the Sequence Specific Retention 

Calculator available at http://hs2.proteome.ca/SSRCalc/SSRCalc.html [150]. Peptide 

retention times were predicted based on relative hydrophobicity and coefficients derived 

from our data set. These coefficients correspond to the slope and intercept of a plot of 

actual retention times against relative hydrophobicity values for a representative sample 

data set (Figure 11). Theoretical peptides were accepted within a retention time window 

of 12-68 min (the range of the regression line in Figure 11) and a mass window of 400-

3500 Da (the same mass range used for SEQUEST searching). All emPAI values were 

normalized to that obtained for CipA, assuming that one CipA exists per cellulosome. 
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• y = 1.087X + 11.08 

10.00 

0.00 

<r w 

10 20 30 40 

Relative hydrophobicity (predicted) 

50 60 

Figure 11. Determination of equation for predicting peptide retention times and 
determination of range for theoretically observable peptides used in emPAI analysis. 
Retention times for observed peptides are plotted against their calculated relative 
hydrophobicities. The slope of the linear regression line is used to calculate retention 
times for unobserved theoretical peptides. 
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The molar percentage of a docking subunit A per total docking subunits per CipA (thus 

not including anchor proteins) was calculated as 

Eq. 5 ( WPA'A \ 

(JL-\ = 100 x \mPA'^) 
\CipAJmom r(emPAlDocl\ 

^\emPAlcivA) 

3.10. Enzymatic assays 

Exoglucanase, endoglucanase and xylanase activities were tested for unmixed 

cellulosome preparations from cultures grown on Avicel, cellobiose, Avicel with XPM, 

or cellobiose with XPM. Activity against xylan and activity against 

carboxymethylcellulose (CMC) were determined by measuring the amount of reducing 

sugars released [151]. Bicinchoninic acid (BCA) was used as a detection reagent for Cu+1 

which is formed upon reduction of Cu+2. The complexing of two BCA molecules with 

one Cu+1 exhibits strong absorbance at 562 nm. The buffer solution for these assays was 

53 mM succinate, pH 5.7, containing 2 mM CaCl2. Substrate for xylanase activity was 

prepared by boiling a 0.5% (wt/vol) solution of xylan from birch wood (Sigma Aldrich) 

in water for 10 min, then centrifuging to remove insoluble xylan. CMC-4M (Megazyme) 

was dissolved in water to 0.5% (wt/vol). The total reaction volume was 80 uL: 40 u.L of 

substrate (xylan or CMC-4M); 30 uL of 140 mM succinate, pH 5.7, buffer with 5mM 

CaCb; and 10 uL of enzyme dilution (Table 4). Enzyme preparations were diluted from 

0.5 to 0.001. To determine concentrations of reducing sugars produced, standard curves 

were prepared using xylose and glucose in concentrations ranging from 0.005 to 1 mM. 

Both reactions were carried out in 0.5 -mL microcentrifuge tubes, in a thermocycler 

block, for 15 min at 60°C. Ten uL of each reaction mixture were transferred to a clean 
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Table 4. Reaction mixtures for enzyme assays 
Xylanase CMCase PNPCase 

Xylan (0.5 %, wt/vol) or xylose standard 40 uL 
CMC-4M (0.5 %, wt/vol) or glucose standard 40 uX 
PNPC (5 mM) or PNP standard 10 uL 
140 mM succinate, pH 5.7; 5 mMCaCl2 30 uL 30 |uL 
100 mM succinate, pH 5.7 15 uL 
Enzyme dilution (or water if standard or blank) 10 uL 10 uX 25 uL 
Total volume 80 uL 80 u.L 50 uX 
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tube, to which was added, on ice, BCA reagent (100 pL of a 1:1 mixture of a first 

solution containing 0.51 M Na2CC>3, 0.29 M NaHCC>3, and 5 mM BCA, and a second 

solution containing 12 mM L-serine and 5 mM CUSO4), followed by 90 u.L of water. A 

40-min incubation at 80°C followed to allow the colour to develop. Eighty pL of each 

reaction mixture was transferred to a 96-well plate, and absorbance was read at a 

wavelength of 562 nm. One unit (U) of xylanase or CMCase activity is defined as the 

amount of enzyme releasing 1 pmol of xylose or glucose equivalent from xylan or CMC-

4M perm in. 

Activity against />-nitrophenyl-p-D-cellobioside (PNPC) was determined by 

measuring the release of/?-nitrophenol (PNP), which itself exhibits strong absorbance at 

410 nm at pH 10. The buffer solution for this assay was 30 mM succinate, pH 5.7. A 5 

mM solution of PNPC in water was prepared as substrate. The total reaction volume was 

50 u,L: 10 u.L of substrate; 15 pL of 100 mM succinate, pH 5.7, buffer; and 25 pL of 

enzyme dilution (Table 4). Enzyme preparations were diluted from 0.02 to 0.00125. A 

standard curve was prepared using PNP concentrations ranging from 0.0005 to 5 mM. 

Reactions were again carried out in 0.5-mL microcentrifuge tubes, in a thermocycler 

block, but for 60 min at 60°C. Fifty p.L of a 1 M disodium carbonate solution was added 

to quench the reaction and raise the pH for colour development. Eighty pL of each 

reaction mixture were transferred to a 96-well plate, and absorbance was read at a 

wavelength of 410 nm. One unit of PNPCase activity is defined as the amount of enzyme 

releasing 1 pmol of PNP from PNPC per min. 

Measurement of total protein for specific activity determination was done using 

bovine serum albumin as standard with the MicroBCA Protein Assay Kit (Pierce), which 
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functions on the same principle as the reducing sugar assay described above. Standard 

errors (SE) in the specific activity (s.a.) values reported were calculated from standard 

deviations from total protein assays performed in quadruplicate and enzyme assays 

performed in triplicate, as follows: 

Eg. 6 SErn - Is.a.iX —-——) + \s.a.2x r-^——) + s.o.,x —-——1 
1 i.u. -̂  \ x total protein J \ *• total protein J \ ° total protein J 

4. RESULTS 

4.1. Fractionation of C. thermocellum protein 

Total extracellular and cell-surface protein fractions (Figure 9, center) were 

obtained in order to assess their complexity and our ability and to isolate and detect 

cellulosomal protein. Protein fractions extracted from a cellobiose-grown C. 

thermocellum culture and separated by SDS-PAGE are shown in Figure 12. In the total 

extracellular protein fraction (Figure 12, lane A), the cellulosome scaffolding protein 

CipA appears above the 200 kDa mark; a smear between about 110 and 150 kDa likely 

corresponds to a glycosylated protein. When cellulose-binding protein was removed from 

the total extracellular protein fraction using the affinity digestion method, CipA 

disappeared although the smear remained (Figure 12, lane B). As expected, CipA was 

found to reside in the cellulose-binding fraction obtained via affinity digestion (Figure 

12, lanes C and D). 
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Ladder Ladder 
(moiwtx-IO3) A B C D E F G (mofwtxIO 3 ) 

!00 

He ^ * * ^ N P P 

97 

66 

• • ' . *r " • • " ! * . " • . • ' 

3 1 ^ • ' ' ' 

Figure 12. Extracellular protein fractions from C. thermocellum culture grown to late 
stationary phase on cellobiose (0.5%, wt/vol), separated by SDS-PAGE (6%), stained 
with Coomassie Blue. Lane A, total extracellular protein. Lane B, non cellulose binding 
protein. Lane C, cellulose binding (cellulosomal) protein fraction. Lane D, same as C 
with residual cellulose removed. Lane E, cell-surface protein released by treatment with 
lysozyme. Lane F, cell-surface protein released by treatment with urea (possible lysis). 
Lane G, cell-surface protein released by sonication. Mol wt markers shown at left and 
right. 
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The total extracellular protein fraction was digested with trypsin in-solution and 

then analyzed by one-dimensional nanoLC-ESI-MS. Only 5 of the proteins matched to 

the C. thermocellum database contained a predicted signal peptide cleavage site in their 

sequence such that they would be secreted into the supernatant (Table 5). For the analysis 

of cellulosomes, the fact that CipA was the only cellulosomal protein detected, and with 

such low percent amino acid coverage as compared to the other 4 proteins, suggests the 

importance of simplifying the protein fraction and/or adding a dimension of resolution, 

either prior to protein digestion (SDS-PAGE) or afterwards (strong cation exchange 

chromatography). Alternatively, it may be that the conditions used in the in-solution 

digest were not harsh enough to dissociate the cellulosome into its component proteins 

for the proteolysis step to be effective. 

MS analysis of the gel bands containing the protein smear (Figure 12, lanes A and 

B) determined that it corresponds to a predicted 113-kDa protein (gi 125974833) with a 

possible (e = .006) SLH domain (pfam00395) and an immunoglobulin-like fold. The 

significance of the presence of this protein and of the other noncellulosomal proteins 

detected in the total extracellular protein fraction is addressed below in section 3.2.3. 

Three methods were tested for releasing proteins from the cell surface. The mild 

sonication appears to be the most promising, as compared with treatment with lysozyme 

or urea. Judging from the number of proteins that appear on the gel (Figure 12, lane F), 

the urea treatment may have caused the cells to lyse. 
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4.2.1. Detection and relative abundance of cellulosomal proteins induced by Avicel 

or cellobiose 

For investigation of substrate-induced changes to the cellulosomal subunit profile 

of C. thermocellum, cellulosome complexes were isolated from the supernatants of batch 

cultures grown to late stationary phase on either Avicel (the model substrate for 

crystalline cellulose) or cellobiose. Prior to cellulosome isolation, each culture was mixed 

with an equal volume of a ,5N-labelled Avicel-grown culture for quantitation at a later 

step. Purified cellulosomes were denatured and the components separated by SDS-PAGE. 

Proteins in the gel bands (Figure 13) were trypsin-digested and extracted for analysis. 

In total, 41 cellulosomal proteins in the C. thermocellum database were detected 

between the two samples, 35 on Avicel (Table 6), 34 on cellobiose (Table 7), with 29 

common to both samples. Thus, a similar number of subunits were detected in the two 

growth conditions. A total of 36 docking components were identified, including 16 

subunits that have never been observed experimentally as components of the cellulosome. 

The specificity of the methodology is such that the matching of only two unique peptides 

to one protein out of the 3191 proteins in the C. thermocellum database resulted in a 

probability of at worst 10"5 that another protein could have been matched. The molecular 

weights of the proteins identified generally corresponded to the gel bands in which they 

were detected; deviations from this trend suggested possible proteolysis or glycosylation. 

The 17 new proteins identified in this study are indicated in Tables 6, 7 and 8 by shaded 

rows. The reference protein from Avicel-grown cells did not interfere with the 

identification of cellulosomal proteins from cellobiose-grown cells in the mixed sample 

as SEQUEST analysis could not identify 15N-labelled peptides given the LC conditions 
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Ladder A B Gel band 
(mol wt x 103) (~molwtx103) 

200 
> 195 

165-195 

» 133-165 

106-133 

Figure 13. C. thermocellum cellulosomal protein separated by SDS-PAGE (6%), stained 
with Coomassie Blue. Lane A, 1:1 (vol/vol) mixture of unlabelled cellobiose-grown and 

N-labelled Avicel-grown cellulosomes from late stationary phase, 170 u,g total protein. 15 

Lane B, 1:1 (vol/vol) mixture of unlabelled Avicel-grown and N-labelled Avicel-grown 
cellulosomes from late stationary phase, 170 fig total protein. Mol wt markers shown at 
left. At right, the approximate mol wt ranges for the division of the gel bands for trypsin 
digestion 
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and MS parameters applied. This was tested in an earlier experiment (data not shown), 

where l5N-labelled cellulosomes were isolated independently and analysed by nanoLC-

ESI-MS. No proteins were identified using SEQUEST and the same criteria as described 

above. 

The emPAI method [138] was used to relate the number of unique peptides 

matched to a protein to the relative abundance of that protein in each sample. While 

attempts to standardize the emPAI method on our system revealed a divergence from 

linearity at higher concentrations such that higher abundance proteins would be 

underestimated, it nevertheless supplies a basis for informed analysis as to the abundance 

of particular proteins per cellulosome preparation. Since the affinity digestion method 

used to isolate cellulosomes pulls the complex down 'by the CipA', all relative 

abundance values (emPAI and RelEx below) were normalized to that obtained for CipA. 

This provided a protein-per-CipA basis for comparison between samples. 

There are significant differences in the relative abundances of docking subunits 

per CipA between the two data sets as per molar percentage calculated from emPAI 

values. Exoglucanases accounted for a total molar percentage of 24.4% of the total moles 

per CipA of all docking subunits detected when cells were grown on Avicel, but only 

9.2% when cells were grown on cellobiose. The molar percentage of CelS dropped from 

9.4% on Avicel to 1.2% on cellobiose, while GH9 exoglucanases CelK and CbhA 

changed from 11.0 to 5.8% and 4.1 to 2.1%, respectively. Components with known 

endoglucanase activity accounted for a total molar percentage of 40.0% when cells were 

grown on Avicel, but this decreased to 26.1% on cellobiose. In total, GH9 cellulases 

decreased from 43.6% on Avicel to 19.2% on cellobiose; whereas enzymes containing a 

60 



GH5 domain increased slightly from 20.2% on Avicel to 23.0% on cellobiose. The GH5 

fold is predominantly associated with cellulases, but it has also been linked to 

hemicellulolytic activity [21]. A new GH5 enzyme (gi 125973339) was detected among 

the most abundant catalytic subunits in both samples (6.9% on Avicel, 5.9% on 

cellobiose). It has a predicted mass of 63.0 kDa and migrated similarly as known proteins 

CelB and CelT by SDS-PAGE when isolated from cells grown both conditions (Tables 6 

and 7); the overlap with these proteins might explain why it was not identified 

previously. Overall, the molar percentage of hemicellulases increased from 19.9% on 

Avicel to 50.3% on cellobiose. Docking subunits with xylanase activity accounted for a 

total of 11.3% of all docking subunits detected when cells were grown on Avicel, but 

their contribution increased to 34.3% when cells were grown on cellobiose. Other 

hemicellulases accounted for a total molar percentage of 8.6% on Avicel and 15.1% on 

cellobiose. GH9 cellulases were the most abundant group of enzymes per CipA when 

cells were grown on Avicel, while hemicellulases were the most abundant group on 

cellobiose. 

Other notable differences between the two samples concern the 13 components 

detected exclusively in one sample but not the other. Detected only in Avicel-grown 

cellulosomes were GH9 endoglucanases CelN and CelQ; the GH16 lichenase LicB; the 

GH26 mannanase ManA; a new GH9 cellulase; a new subunit with putative 

endopygalactorunase activity; and a new cell-surface anchor protein predicted to have the 

same number of type II cohesin domains as OlpB but no SLH domain. XynD and XynY, 

both with GH10 xylanase activity, were detected exclusively in cellobiose-grown 

cellulosomes, along with cell-surface anchoring protein SdbA, a new bifunctional 
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GH30/a-L-arabinofuranosidase B hemicellulase, a new GH43 glycosidase, and a new 

bifunctional GH43/a-L-arabinofuranosidase B glycosidase. 

4.2.2. Relative differences in abundance of cellulosomal components induced by 

Avicel or cellobiose 

Simultaneous quantitative differences in the expression of all but four 

cellulosomal components common to both Avicel and cellobiose were measured by 

means of metabolically 15N-labelled peptides as internal standards. While emPA] 

supplied a means of determining the relative abundance of proteins in a given sample, 

RelEx provides a highly reliable way to compare the amount of a particular protein 

present in two samples. Sample-to-reference ratios were determined separately for 

Avicel- and cellobiose-grown cellulosomes, and the ratio of ratios represented the 

fractional difference between proteins grown on either substrate. Normalization of ratio 

values to that obtained for the scaffoldin protein CipA allowed for comparison of changes 

in protein expression per cellulosome complex. That the average ratio of unlabelled 

Avicel-grown protein to 15N-labelled protein was 1.23 with a standard deviation of 0.29 

(Table 8) suggests that our methodology was accurate (and precise) at determining ratios 

between cellulosomal proteins from two separate samples. 

From the total of 29 proteins found in both samples, RelEx was able to determine 

a ratio of sample-to-reference for 25 protein pairs, given the S/N and correlation filters 

adopted (Table 8). The null hypothesis was rejected for all but four of these, for which it 

was determined that/? > .05. There was no significant change in expression for these four 

proteins: two new GH9 cellulases and two hemicellulases, ChiA and a new GH53 
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subunit, whether obtained from Avicel- or cellobiose-grown cells. Proteins for which 

significant differences were observed are represented visually over a logarithmic scale in 

Figure 14. 

The grouping of proteins by structural function or enzymatic activity revealed 

several trends. Cell-surface anchoring protein OlpB demonstrated higher expression 

during growth on Avicel than on cellobiose (Table 8), suggesting an increased anchoring 

requirement for a greater number of cellulosomes. Expression of exoglucanases was 

either higher in Avicel-grown cellulosomes or showed no change as compared to growth 

on cellobiose. As expected, based on the results of a previous study, cellobiohydrolase 

CelS showed the greatest difference in favour of growth on Avicel of any docking 

enzyme. GH9 endoglucanases either demonstrated higher expression on Avicel (CelJ) 

than on cellobiose, or exhibited no significant change between the two substrates (CelT, 

CelF, CelR). On the other hand, GH8 endoglucanase CelA and GH5 endoglucanases 

(CelB, CelE, CelG) showed lower expression on Avicel than on cellobiose. One new 

enzyme from each of GH9 and GH5 demonstrated higher expression in cells grown on 

cellobiose. All hemicellulases compared displayed higher expression per cellulosome 

when cells were grown on cellobiose. 

4.2.3. Non-cellulosomal proteins detected in Avicel- or cellobiose-grown cells 

Four non-cellulosomal proteins with signal peptides for secretion were detected 

(not shown in Tables 6 or 7). The GH9 endoglucanase Cell (gi 125972564) was detected 

in the cellobiose cellulosome sample [110]. It was identified by two unique peptides. 

From the Avicel-grown sample only, three unique peptides were matched to a predicted 
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34-kDa protein (gi 125972914) with similarity (e = 3E-32) to RbsB (COG1879), a 

ribose-binding protein in Escherichia coli. This protein also has a lipid attachment site to 

anchor it to the membrane. In both Avicel- and cellobiose-grown cellulosome 

preparations, 17 and 10 unique peptides, respectively, matched to a predicted 50-kDa 

protein (gi 125973535) with similarity (e = 1E-42) to UgpB (COG1653), a periplasmic 

gIycerol-3-phosphate-binding protein in E. coli. Finally, seven unique peptides from both 

samples were matched to a predicted 113-kDa protein (gi 125974833) with a possible 

SLH domain for anchoring it to the cell wall, and also an immunoglobulin-like fold, 

which may behave like a carbohydrate binding domain. This protein had been recently 

observed in the cell membrane fraction [36], and its migration pattern by SDS-PAGE 

suggests it may be glycosylated. All three of the latter proteins were observed in 

considerable abundance (at least 25% amino acid coverage) in the total extracellular 

protein fraction from cells grown on cellobiose (Table 5, section 4.1). Their high 

abundance and, more particularly, the presence in each of them of a possible 

carbohydrate binding domain point to the possibility that these proteins are contaminants 

of the cellulosome preparations, consistently co-purifying with cellulosome-cellulose 

complexes. This possibility does not, however, preclude the alternative: that they may in 

fact be specifically associated with these complexes and play roles in secondary 

cellulosomal product-related function, perhaps in the uptake of cellodextrins in the 

manner of RbsB from Bacillus subtilis [163] or MalX from Streptococcus pneumoniae 

[164], both lipoproteins involved in sugar transport in Gram-positive bacteria. 
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4.3.1. Comparison of cellulosomes from cells grown in medium containing xylan, 

pectin and locust bean gum 

A subsequent experiment compared C. thermocellum cellulosomes grown on four 

sets of substrates: cellobiose; cellobiose with xylan (X), pectin (P), and locust bean gum 

(M); Avicel; and Avicel with XPM. X, P and M were added all together with the 

expectation that xylanase, pectinase and mannanase expression would increase, such that 

yet more novel cellulosomal components could be detected. The Avicel and cellobiose 

samples were included as controls based on our previous findings. Each of the four 

cultures was grown to stationary phase and then mixed in equal volume with a ^re­

labelled reference culture, this time grown on Avicel with XPM. As before, cellulosomes 

were isolated from each mixture, separated by SDS-PAGE (Figure 15), digested with 

trypsin, and then separated and detected by nanoLC-ESI-MS for subsequent emPAI and 

RelEx analysis. 

Fourteen docking proteins not observed in the previous experiment (described in 

section 3.2) were detected between the four samples, but in low abundance as per emPAI 

per CipA (Table 9). Among these was the GH5 exoglucanase CelO, which was detected 

only on Avicel with XPM. CseP was detected in both the Avicel and cellobiose samples, 

whereas PinA was detected in the latter only. A new GH30 docking component was 

detected in all but the Avicel sample, and in quite high abundance on cellobiose with 

XPM. A new pectate lyase (gi 125975431) was detected in all 4 samples. One new lipase 

(gi 125973316) was detected in all but the Avicel sample, while another lipase (gi 

125975619) was detected in only the cellobiose sample containing XPM. 
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Figure 15. C. thermocellum cellulosomal protein from sample-reference culture mixtures 
with cells grown on Avicel or cellobiose, with and without XPM, separated by SDS-
PAGE (6%), stained with Coomassie Blue. Lane CXPM, 1:1 (vol/vol) mixture of 
reference cellulosomes with cellulosomes grown on cellobiose supplemented with xylan, 
pectin and locust bean gum. Lane AXPM, 1:1 (vol/vol) mixture of reference cellulosomes 
with cellulosomes grown on Avicel supplemented with xylan, pectin and locust bean 
gum. Lane C, 1:1 (vol/vol) mixture of reference cellulosomes with cellulosomes grown 
on cellobiose. Lane A, 1:1 (vol/vol) mixture of reference cellulosomes with cellulosomes 
grown on Avicel. Approximately 150 fig total protein per sample lane. Mol wt markers 
shown at left. At right, the approximate mol wt ranges for the division of the gel bands 
for trypsin digestion. 
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Table 9. Comparison of relative cellulosome component abundances per CipA per 
sample, as determined by emPAI, for cellulosomes grown on Avicel (A) and cellobiose 
(C) with or without xylan (X), pectin (P), and locust bean gum (M), organized by protein 
function or fold. Shaded rows indicate proteins not detected in the previous experiment 
described in section 4.2 
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Genlnfo ID 

125973254 

125973822 
125975556 

125975557 

125975558 

125974633 
125972933 
125972934 

125974579 

125973055 
125973315 

125975353 
125972791 

125972567 

125973062 

125973097 

125973142 

125973143 

125973343 

125975294 

125972926 

125973339 
125974678 

125972796 

125972954 
125973263 

125975242 
125975243 

125973429 

125974342 

125974464 

125975073 

125975452 

125972735 

125975291 
125972792 
125972556 
125975293 
125975491 
125974626 
125972540 
125973179 
125973786 
125973914 
125973912 

125973316 
125975431 
125975619 
125972568 
125972714 
125972761 

125972768 
125973158 

125973247 
125975610 

Protein name and (putative) function or 

cell-surface anchor 

SdbA cell-surface anchor 
CipA scaffoldin 

OlpB cell-surface anchor 

Orf2p cell-surface anchor 
CelO exogiucanase (GH5) 

CelK cellobiohydrolase (GH9) 
CbhA cellobiohydrolase (GH9) 

CelS cellobiohydrolase (GH48) 

CelB endoglucanase (GH5) 
CelE endoglucanase (GH5), CE2 

CeIG endoglucanase (GH5) 

CelA endoglucanase (GH8) 

CelN endoglucanase (GH9) 

CelF endoglucanase (GH9) 

CelR endoglucanase (GH9) 

CelJ endoglucanase (GH9), GH44 

CelQ endoglucanase (GH9) 

CelD endoglucanase (GH9) 

CelT endoglucanase (GH9) 

GH5 
GH5 

GH5 

GH9 

GH9 
GH9 

GH9 
GH9 

XynYxylanase(GHlO) 

XynCxylanase(GHlO) 
XynZ xylanase (OHIO), CE1 
XynD xylanase (GH10) 

XynAxylanase(GHll) , CE4 

LicBlichenase(GH16) 
GHI6 
ChiAchitinase(GH18) 
GH26 
ManA mannanase (GH26) 
GH30 
GH30, a-L-arabinofuranosidase B 
GH43, a-L-arabinofuranosidase B 
Galaotan 1,3-P-gaiactosidase (GH43) 
GH43 

fold(s) m o l w t ( x l O ' ) 

140.5 

68.6 
196.7 

248.0 

74.9 

75.3 
100.6 
137.0 

83.5 

Total 

Total docking % per CipA 
63.9 
90.2 

63.2 

52.6 

82.1 

82.0 

82.1 

178.0 

79.8 

72.4 

68.5 

Total 

Total docking % per CipA 
59.9 

63.0 

103.1 

62.6 
89.4 

82.1 

109.0 

80.2 

119.6 

69.5 
92.2 

71.6 

74.4 

Total 
Total docking % per CipA 

37.9 
147.8 
55.4 
67.3 
67.0 
70.4 
110.6 
79.0 
63.9 
74.5 

Arabinogalactan endo-l,4-galactosidase (GH53) 47.0 
XghA xylogliicaiuise (GI17I) 
Lipase 
Pectate lyase 
Lipolytic enzyme 
CseP spore coat assembly 
PinA serine protease inhibitor 
Unknown cellulosome enzyme 
Integrins alpha chain 

Endopygatactoruna.se 

Unknown cellulosome enzyme 
Unknown cellulosome enzvmc 

92.3 
58.1 
59.4 
91.2 
61.3 
67.8 
1 T 5 
K"5 

i . l * 

in 7 

46.8 

C 
0.17 

0.23 
1.00 

0.82 

0.28 

0.70 
0.46 

1.27 

2.43 

12.14 

1.38 
0.26 

0.82 

3.41 

0.19 

0.25 

0.77 

0.59 

0.10 

0.14 

0.35 

8.27 

41.28 
0.31 

0.46 

0.24 

0.42 

0.10 

0.02 
0.16 

0.03 

1.92 
1.27 

0.75 

0.67 

4.64 

23.16 

0.05 
0.06 
0.53 
0.25 
0.13 

0.05 
0.04 
0.22 
0.08 
0.90 
0.23 
0.05 

0,08 
0.10 
0.02 

0.11 

0.08 

CXPM 

0.08 

0.21 
1.00 

0.51 

0.23 

0.90 

0.44 

1.47 

2.81 

9.59 

1.45 
0.16 

0.63 

5.62 

1.22 

0.79 

1.94 

0.26 

0.07 

0.08 

0.34 

12.57 

42.92 
0.08 

5.23 

0.06 

0.15 
0.08 

0.23 

0.11 

3.16 
0.63 

0.44 

1.38 

5.61 

19.16 

0.30 

0.10 
0.27 
0.69 

0.20 

0.22 
0.11 
0.15 
0.09 
0.09 

0.06 

0.07 

A 

0.15 

0.03 
1.00 

0.90 

0.17 

0.43 

0.35 

0.60 

1.37 

15.39 

0.22 
0.24 

0.40 

2.00 

0.04 

0.11 

0.82 

0.42 

0.02 

0.08 

4.36 
48.86 

0.07 

0.17 

0.30 

0.18 

0.10 

0.44 
0.79 

0.19 

0.45 

1.87 

20.98 

0.06 

0.03 

0,05 
0.05 

0.26 

0.05 

AXPM 

0.42 

0.05 
1.00 

0.89 

0.17 

0.07 
1.96 
0.56 

3.38 

5.97 

43.66 

0.38 
0.26 

0.47 

0.43 

0.07 

0.13 

0.69 

0.44 
0.36 

0.07 

0.35 

3.65 
26.70 

1.59 

0.04 

0.17 
0.09 

0.14 

0.46 
0.22 

0.10 

0.23 

1.01 

7.39 

0.25 
0.22 

0,04 
0.14 
0.05 
0.15 
0.07 
0.05 

0.04 
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The different chromatographic conditions used - longer run time, shallower 

gradient, and larger-bore column (the use of a 180-um instead of a 75-um internal 

diameter column corresponds to about a 6-fold drop in mass sensitivity) - resulted in a 

lower number of theoretically observable peptides for this experiment as compared to the 

previous one (Table 11). In spite of this, emPAI, which relies on the number of unique 

peptides observed, can still be used to glean semi-quantitative information, although the 

emPAI results should be considered with caution. Protein bands between 165-195 kDa 

and most pronounced in each of the Avicel and Avicel with XPM sample lanes of the 

SDS-PAGE gel (Figure 15) appeared to correspond to the 178-kDa CelJ; however, the 

emPAI results indicate that the CelJ abundance is highest in the cellobiose sample, for 

which the band appears the faintest on the gel. 

The number of unique peptides observed in general increased on cellobiose 

whereas the contrary was observed on Avicel (Table 11); however, it turns out that the 

Avicel data set is unreliable. Both the emPAI and RelEx results, inasmuch as the latter 

can be counted on (see below), show that CelS abundance was lowest in the Avicel 

sample, even when compared with the cellobiose sample. This contradicts the findings of 

our previous experiment and the literature, and indicates that the Avicel sample is 

somehow corrupted. The data from the Avicel sample must therefore be disregarded, 

along with Avicel versus cellobiose and Avicel versus Avicel with XPM comparisons. 

Exoglucanase abundances were highest on Avicel with XPM (about 2 times 

higher for CelK, and 2.5 times for CelS). CelO was detected on Avicel with XPM only. 

On the other hand, endoglucanase abundances (except for CelQ) were generally higher 

on cellobiose and cellobiose with XPM than they were on Avicel with XPM (about 3 
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times higher for CelA, and 8 times for CelB). The cellobiose with XPM sample, as 

compared to the cellobiose sample, demonstrated increased expression of CelA (about 

1.5-2 times), CelN (6 times), and CelR (2.5 times). Expression of one uncharacterized 

GH5 (gi 125973339) increased with the addition of XPM, but was highest on cellobiose 

with XPM (4 times higher than on Avicel with XPM, on which it was 3 times higher than 

on cellobiose). This GH5 is the same protein that was found in the top-5 emPAl-ranked 

proteins from the previous experiment. 

It is not obvious how or if the addition of XPM affected expression of 

hemicellulases. Xylanases had the lowest expression on Avicel with XPM. XynA and 

XynC expression were highest on cellobiose with XPM, whereas XynZ and XynD were 

highest on cellobiose. As for the other hemicellulases, XghA abundance was highest on 

cellobiose. A new GH30 had the highest expression on cellobiose with XPM. The 

greatest number of hemicellulases, including xylanases, was detected on cellobiose (17), 

followed by cellobiose with XPM (13) and Avicel with XPM (12). 

The RelEx data (Table 10) must be discounted due to large standard errors 

resulting from low numbers of sample to reference peptide ratios calculated. RelEx 

analysis depends heavily on the number of peptide ratios calculated for statistical 

significance. The standard errors are so large (50-150%) in this case that it is impossible 

to distinguish between two sets of sample to reference ratios for the comparison of any 

protein between any two samples. The numbers of ratios obtained are much lower than in 

the previous Avicel versus cellobiose experiment, using the same regression and S/N data 

filters (Table 11). One reason for this, as mentioned above, is the different 

chromatographic conditions used. Another scenario that might explain the large standard 
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Table 10. Comparison of relative differences in cellulosome component abundances 
between two samples, normalized to CipA, as determined by RelEx analysis, from cells 
grown on Avicel (A) and cellobiose (C) with or without xylan (X), pectin (P), and locust 
bean gum (M) 

Genlnfo ID 

125973254 
125973822 
125975556 
125975557 
125975558 
125972933 
125972934 
125974579 
125973055 
125973315 
125975353 
125972791 
125972567 
125973062 
125973097 
125973142 
125973343 
125975294 
125973339 
125974678 
125972796 
125973263 
125975243 
125974342 
125974464 
125975073 
125975452 
125975293 
125975491 
125973786 
125973912 

Protein name & (putative) function/fo!d(s) 

cell-surface anchor 
SdbA cell-surface anchor 
CipA scaffoldin 
OlpB cell-surface anchor 
Orf2p cell-surface anchor 
CelK cellobiohydrolase (GH9) 
CbhA cellobiohydrolase (GH9) 
CelS cellobiohydrolase (GH48) 
CelB endoglucanase (GH5) 
CelE endoglucanase (GH5), CE2 
CelG endoglucanase (GH5) 
CetA endoglucanase (GH8) 
CelN endoglucanase (GH9) 
CelF endoglucanase (GH9) 
CelR endoglucanase (GH9) 
CelJ endoglucanase (GH9) 
CelD endoglucanase (GH9) 
CelT endoglucanase (GH9) 
GH5 
GH5 
GH9 
GH9 
GH9 
XynCxylanase(GHlO) 
XynZ xylanase (GH10), CE1 
XynDxylanase(GHlO) 
XynA xylanase (GH11), CE4 
ManA mannanase (GH26) 
GH30 
GH43 
XghA xyloglucanase (GH74) 

A / C 

ratio 

0.95 

1.00 
2.12 
1.04 
1.17 
0.57 
0.32 
0.23 
1.00 

0.31 
0.27 
0.83 
1.22 
2.91 

0.21 
2.49 

0.25 
0.75 
0.50 
0.58 
0.81 

0.72 
0.93 

0.14 
0.27 

SE 

0.53 

0.70 
1.50 
0.78 
1.16 
0.35 
0.44 
0.12 
0.66 

0.16 
0.14 
0.47 
0.78 
1.59 

0.12 
2.89 

0.13 
0.38 
0.25 
0.49 
0.60 

0.54 
0.47 

0.09 
0.14 

CXPM/C 

ratio 

0.40 
0.66 
1.00 
0.75 
0.36 
1.05 
0.82 
0.53 
0.86 
0.49 
0.59 
0.47 
3.47 
0.88 
0.85 
0.45 
0.96 
1.16 

10.37 
0.20 

1.31 
0.93 
1.14 
1.15 
1.21 
1.09 
1.14 
1.12 
1.12 
0.48 

SE 

0.36 
0.58 
1.23 
0.79 
0.34 
1.46 
0.88 
0.49 
0.79 
0.45 
0.53 
0.43 
3.12 
0.81 
0.78 
0.40 
0.84 
1.07 
9.57 
0.18 

1.16 
0.81 
1.04 
1.23 
1.67 
1.04 
1.02 
1.01 
1.16 
0.43 

A X P M / A 

ratio 

1.00 
0.70 

0.85 
1.14 
4.98 

1.21 

0.87 
3.27 

1.34 
0.59 

4.10 
3.44 

0.73 

0.82 
0.22 

0.52 
2.14 

2.45 
0.58 

SE 

0.59 
0.67 

0.63 
0.59 
6.69 

0.67 

0.37 
1.36 

0.75 
0.27 

1.71 
3.83 

0.33 

0.64 
0.14 

0.31 
0.90 

1.30 
0.25 

AXPM /CXPM 

Ratio 

1.00 
1.98 

0.94 
0.80 
2.98 

2.48 

0.57 
0.25 

1.92 
3.83 

0.75 
0.83 
1.10 

0.42 

0.41 
0.15 
0.36 
0.34 
1.74 
0.33 
0.30 
0.32 

SE 

1.17 
2.43 

1.14 
0.82 
2.67 

2.10 

0.48 
0.21 

1.65 
3.27 

0.63 
0.71 
0.91 

0.36 

0.35 
0.15 
0.48 
0.29 
1.47 
0.28 
0.28 
0.27 
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Table 11. Comparison of observed peptide numbers between experiments described in 
sections 4.2 and 4.3 

Observed/Observable Peptides 
Sample proteins Avicel 

previously here 
CipA 42/50 30/34 
CelS (GH48) 29/44 16/23 
CelA(GH8) 14/26 15/13 
CelR(GH9) 28/45 21/26 
CelE(GH5) 24/47 15/36 
GH5(gi|125973339|) 15/27 6/18 
XynC(GHlO) 18/44 16/27 
XynZ (GH10, CE1) 18/44 27/34 

cellobiose 
previously here 

25/50 28/34 
4/44 21/23 
9/26 17/13 
8/45 19/26 
14/47 14/36 
9/27 10/18 
16/44 29/27 
25/44 31/34 

N peptide ratios used by RelEx 
previously/here 

Avicel 
179/29 
81/3 
21/8 
27/15 
23/6 
14/3 

21/13 
32/11 

Cellobiose 
108/46 
4/18 
9/8 
7/10 
9/6 
10/7 

13/24 
48/15 
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errors is the possibility that the reference culture protein and the sample culture protein 

(from each of the 4 samples) were degraded to unequal extent. The variance manifests 

itself here as a drifting average sample to reference ratio within a gel lane. Consider, for 

example, that if the reference protein is degraded more than the sample protein, the 

sample to reference ratios calculated would be higher in higher molecular weight gel 

bands, and lower in lower molecular weight gel bands; this owing to the fact that intact 

reference protein would be less abundant but degraded protein more abundant. In an 

effort to diminish the SD, we might consider using only ratios from gel bands with 

molecular weight equal to and greater than that of a given protein to calculate its average 

sample to reference ratio, thus incorporating only so-called intact protein in the final 

analysis. However, in so doing we would be biasing against the true protein abundance, 

to which the degraded protein contributes; still, if we assume that all the sample protein is 

degraded (or not) to the same extent, this should not be problematic since the same 

amount of reference protein, degraded or not, was mixed with all samples. This data 

manipulation was attempted, but the already low number of peptide ratios made it 

unfruitful. Ultimately, my sense is that, even though these data cannot be used because of 

the staggeringly large standard errors, the ratios are most likely correct because it agrees 

roughly with the emPAI data. 

4.3.2. Enzymatic activities of cellulosomes isolated from cultures grown with xylan, 

pectin, and locust bean gum 

Cellulosomes were also isolated from each of the 4 unmixed sample cultures in 

order to evaluate differences in their specific exoglucanase, endoglucanase and xylanase 
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activities (Table 12). All activities were measured at pH 5.7 and 60°C. Even though it is 

not assumed that all enzymes of a given specificity have the same activity, relative 

differences in enzymatic activities were expected to agree more or less with relative 

differences in enzyme abundances as per the protein-specific MS data (section 4.3.1). As 

mentioned above, the Avicel sample should be disregarded based on the MS results 

which showed, contrary to the literature and our earlier findings, that CelS levels were 

lower in the Avicel sample than in the cellobiose sample. 

Exoglucanase-like activities, which were measured using the chromogenic 

cellobiose derivative PNPC, did not change from sample to sample (Table 12). The 

PNPCase activities observed are up to 5-fold higher than the value of 0.46 U/mg reported 

for a "subcellulosome fraction" comprising 6 main subunits [100]. Activity against PNPC 

has been shown for individual components; for example, PNPCase of 15.1 U/mg was 

reported for recombinant CelK at pH 6.0 and 65°C [98]. Cellulosomal specific activities 

are lower in part because there are only 4 known exoglucanases out of more than 20 

known docking enzymes in the very large cellulosome complex (Table 9). Also, it has 

previously been shown that CelS, a cellobiohydrolase and the cellulosome's most 

important exoglucanase, has no activity against PNPC [165] and cannot degrade anything 

smaller than a cellotetraose [97]. 

Endoglucanase activity was measured using CMC, which exoglucanases typically 

cannot break down. The specific CMCase activity of cellobiose-grown cellulosomes was 

42 U/mg, about double that for any other sample (Table 12). This value falls within the 

typical range previously observed for cellulosome preparations [166, 167]. The MS data 

above did not suggest a dramatic difference between the overall endoglucanase activities 
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Table 12. Specific exoglucanase, endoglucanase, and xylanase activities at pH 5.7 and 
60°C for cellulosomes grown on Avicel (A) and cellobiose (C) with or without xylan (X), 
pectin (P), and locust bean gum (M) 

Specific activity ± SE ((jmol/min/mg) 
Growth 
Substrate 
C 
CXPM 
A 
AXPM 

Total protein ± SD 
(ug/mL) 

1755 ±118 
644 ± 29 
723 ±175 

3806 ±579 

Exoglucanase 
(PNPCase) 
2.18 ±0.29 
1.15 ±0.09 
1.84 ±0.91 
2.17 ±0.67 

Endoglucanase 
(CMCase) 

41.84 ±5.06 
19.75 ±1.52 
18.60 ±7.85 
17.20 ±4.66 

Xylanase 

13.27 ±1.55 
11.54 ±0.89 
12.88 ±5.52 
6.44 ±1.70 
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of any of the samples (Table 9). If any sample might have been expected to demonstrate 

higher activity based on the MS results, it was the cellobiose with XPM sample. In spite 

of the changing enzyme abundances between samples, overall activity was expected to 

remain more or less constant between all samples, as had been observed previously [30, 

46]. It is possible that the elevated activity of the cellobiose sample was due to a highly 

active subunit present in greater abundance in that sample, namely CelD, CelG or CelJ 

(Table 9), or some combination thereof. 

Cellulosomal xylanase activity was tested using xylan from birch wood. A 

previous study reported a value of 100 U/mg for cellulosomes purified from cellobiose-

or cellulose-grown cultures [31]. The reported value is almost one order of magnitude 

greater than the values observed here (Table 12); however, a different strain (YS rather 

than ATCC 27405) and a chromogenic rather than a reducing sugar assay (using the 

xylan derivative Remazol Brilliant Blue R-D-xylan) were used at pH 6-7.5 and 70°C. 

Cellulosomes grown on Avicel with XPM displayed the lowest overall xylanase activity. 

While this result corroborates the MS data described above (Table 9), it is not clear 

whether or not the presence of XPM acted to repress xylanase expression and whether or 

not the presence of cellobiose, in the case of the cellobiose with XPM sample, helped to 

counteract this effect. 
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5. DISCUSSION 

This thesis presents the most comprehensive proteomic study of the C. 

thermocellum cellulosome to date. Until the recent use of two-dimensional gels and MS-

based methods to improve the compositional detail of the C. thermocellum cellulosome 

[36, 91], most of the work concerning the identification of cellulosomal components had 

so far been done by means of enzymatic assay [68] or Western blot analysis [99, 108-

110, 152, 153, 155-159, 161, 162]. The detection of 29 (16 in section 3.2, 13 more in 

section 3.1) new Doc 1-containing proteins represents a 130 percent increase in the 

number of docking subunits observed in cellulosomes. However, it should be noted that 

in general the proteins detected in highest abundance were known, which attests to the 

fact that the more abundant proteins are the more 'discoverable'. Yet one new GH5 

enzyme (gi 125973339) containing a predicted galactose-binding domain was found in 

considerable abundance under both growth conditions, and may prove to be a subunit of 

some importance upon further investigation. 

The first part of this discussion focuses on the comparison of cellulosomes from 

Avicel- and cellobiose-grown cells described in section 3.2. The three known docking 

subunits to escape detection were the non-catalytic docking component CseP [110], the 

serine protease inhibitor PinA [109], and the bifunctional component CelH [36]; 

however, all three of these were observed by us in earlier trials (data not shown) in which 

either no reference protein was mixed in or the reference had not been 15N-enriched to 

99%. CseP and PinA were detected on both substrates, whereas CelH, which has both a 

GH5 and a GH26 domain, was detected only on cellobiose. CelO, the only known GH5 
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exoglucanase in C. thermocellum [105], is the only previously cloned docking gene 

product never to be detected by us. 

XynD was detected exclusively on cellobiose even though it had been discovered 

on cellulose by 2D gel followed by MS [91]; and ManA and LicB were detected 

exclusively on Avicel, whereas they had previously been observed on cellobiose by 

Western blot analysis [158, 159]. These discrepancies could be explained by the 

differences between the protein identification methods used in the previous studies and 

that used in the present work. In Western blot analysis, a radiolabeled antibody raised 

against a particular subunit can be used to detect that subunit, even in low concentrations, 

directly on an SDS-PAGE gel, despite the presence of other proteins. In LC-MS, on the 

other hand, the high specificity only applies at the database screening stage, while the 

detection of a protein depends on several considerations including its relative abundance, 

the efficiency of its proteolysis, and, in our case, the extraction efficiency of its derivative 

peptides from the acrylamide gel. A peptide present at a low but in theory detectable 

concentration may not be detected if a more abundant peptide elutes from the LC column 

at the same time. Compounding these factors, the presence of 15N-labelled peptides in our 

experimental setup in fact doubled the complexity of each sample; for even even though 

they did not count in the identification of cellulosomal proteins, they were detected by the 

MS. It is possible that XynD, ManA and LicB were present in both samples but that their 

peptide signals were masked by peptides from proteins present in higher abundance. 

Growth on the different substrates revealed a similar mix of cellulosomal 

components that were present in significantly different relative amounts. Differences in 

the relative expression levels of individual components grown on either carbon source 
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demonstrated GH family-specific regulatory patterns, providing evidence in support of 

existing hypotheses for cellulosomal component regulation as well as contributing a 

novel distinction with respect to endoglucanase synthesis. 

The exoglucanase CelS exhibited the greatest increase of any docking component 

during growth on Avicel as compared to cellobiose. The increase of CelS on Avicel 

versus cellobiose had already been observed at the protein level by SDS-PAGE [84] and 

Western blot analysis [1]. This result also agrees with changes in celS transcript levels 

per cell between growth on cellulose and cellobiose [1]. Exoglucanases are the key 

enzymes in cellulase mixtures effective on crystalline cellulose [2], so it was not 

surprising that exoglucanase CelK also increased on Avicel, even while the expression of 

CbhA did not change significantly. 

Docking proteins with known endoglucanase activity demonstrated varied 

expression patterns. GH5 endoglucanases CelB, CelE and CelG demonstrated higher 

expression when cells were grown on cellobiose than on Avicel. The same was true for 

CelA from GH8. In contrast, CelJ from GH9 showed increased expression on Avicel, 

while that of other GH9 endoglucanases CelF, CelR and CelT did not change 

significantly. The detection of CelN and CelQ on Avicel and not cellobiose may be taken 

as another indication of increased GH9 endoglucanase production on Avicel. The 

differential expression of GH9 versus GH5 endoglucanases poses an apparent 

discrepancy with the recent transcript analysis of Dror et al. [120], who observed 

increased transcript levels per cell of each of the endoglucanase genes celB and celG 

from GH5 and celD from GH9 when cells were grown at low versus high growth rate and 

also on cellulose versus cellobiose. Thus, while our results with respect to GH9 
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endoglucanases agree with these previous findings at the transcript level, the increase of 

GH5 endoglucanases and of CelA on cellobiose was a somewhat unanticipated result. 

One possible explanation for the difference between the trends observed at the mRNA 

and protein levels is that GH9 endoglucanase genes may be more responsive to catabolite 

repression than celA or GH5 endoglucanase genes, such that the former would be more 

repressed on cellobiose than either of the latter. 

The data suggest the organism has a "cellulolytic preference" for GH9 

endoglucanases when degradation of crystalline cellulose is required. In total, 

cellulosomal GH9 cellulases contained in the C. thermocellum genome outnumber GH5 

enzymes by 14-to-8. This preference could be due to what distinguishes them from CelA 

and GH5 endoglucanases: the presence, in many instances, of a type IIIc carbohydrate 

binding module, which has been shown to participate in the catalytic activity of the 

enzyme [107, 108] and be responsible for processivity [65, 74]. What is more, GH9 

endoglucanases carry out different modes of attack on cellulose, resulting in cellodextrins 

of different lengths [107]. CelR, which was the most abundant endoglucanase in 

cellulosomes from Avicel-grown cells, is one such enzyme, a processive GH9 

endoglucanase that produces cellotetraose as its primary hydrolysis product [94], which is 

more energetically favourable for the cell than production of cellobiose [62]. 

Thus, the apparent constitutive nature of overall endoglucanase activity appears to 

be the result of different GH5, GH8 or GH9 endoglucanases varying in expression to 

balance out global activity. Still, repression of exoglucanase expression and activity by 

cellobiose holds. It is possible that the differences observed between the two samples 

were diminished by an evening out effect proportional to the titering of cellobiose outside 
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the cell. In the cellulose-grown culture, slow growth or lack of a repressor molecule 

(cellobiose) initially lead to up-regulation of genes for activity against crystalline 

cellulose. As the Avicel was degraded, the cellobiose concentration accumulated, 

repressing these genes. Equally, in the cellobiose-grown culture, it is possible that as the 

cellobiose concentration became limited, genes for enzymes crucial to crystalline 

cellulose degradation were activated. 

With respect to hemicellulases, all subunits with xylanase or xyloglucanase 

activity decreased on Avicel, as per RelEx and emPAl. XynC production has previously 

been shown to increase on cellobiose [84, 120], and xynC transcript levels have been 

found to increase on cellobiose in a growth rate-independent fashion [120]. In this study, 

XynZ, XynA, XynC and XghA were among the five most abundant docking components 

in cellobiose-grown cellulosomes, along with CelA. XynD and XynY were not detected 

in the Avicel sample, possibly because their signals were overwhelmed by those of more 

abundant subunits. On the other hand, their exclusive detection on cellobiose might be 

taken as another indication of increased xylanase production on cellobiose. Other new 

subunits with glycosidase and arabinofuranosidase activities were detected exclusively on 

cellobiose. The trend of increased hemicellulase production on cellobiose could also 

explain the increase of bifunctional subunit CelE, which has a family 2 carbohydrate 

esterase domain in addition to a GH5. As for other hemicellulases, no change was noted 

for ChiA, and the appearance of LicB and ManA on Avicel but not cellobiose suggests 

that transcription of these genes was repressed on cellobiose. In the case of manA, 

Stevenson et al. [119] reported a 10-fold reduction in its transcript level on cellobiose as 

compared to cellulose. Thus, while xylanase transcription is growth-rate independent and 
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increases on cellobiose, chitinase, lichenase and mannanase appear to be under a different 

type of regulation mechanism. C. thermocellum is unable to utilize the pentose sugars 

produced by the action of xylanases and other hemicellulases [26, 30]; therefore, the 

apparent role of hemicellulases is to expose cellulose to the action of cellulases. When 

the organism is not mining energy from cellulose, as when it is grown on cellobiose, in 

general it appears to prepare itself to mine cellulose from plant wall materials, 

hemicellulose and lignin, as it would in its natural ecosystem. 

Finally, our investigation into the addition of xylan, pectin and locust bean gum 

(galactomannan) to Avicel- and cellobiose-grown cultures proved inconclusive (section 

3.3). It was not clear what effect, if any, the addition of these hemicelluloses has on the 

cellulosomal subunit profile. The expectation was that xylanase, pectinase, and 

mannanase expression would increase. While an additional 12 components were detected, 

including a new GH30 subunit, 2 new lipases and a pectate lyase, these were not 

exclusively in the samples containing the hemicelluloses. The only hint of a regulating 

quality their presence may have effected was that they appeared to repress xylanase 

expression. This possibility runs contrary to what is known about hemicellulolytic 

enzyme production. Analogous to cellulase induction of endoglucanases by cellobiose, 

hemicellulases are thought to be induced by the presence of low levels of their end-

products, which can enter the cell and stimulate their transcription [168]. This is the case 

in xylanolytic xylose-utilizing organisms [169-171] and for C. thermocellum's close 

neighbour Clostridium cellulovorans [122, 123]. However, it may be that since C. 

thermocellum cannot utilize xylose or xylobiose as carbon source, it does not possess the 

machinery for control of xylanases by xylan metabolites. 
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In conclusion, this work provides a global view of the C. thermocellum 

cellulosome. During growth on two utilizable carbon sources with and without 

hemicelluloses added, the organism produced a wide variety of dockable hydrolytic 

enzymes, accounting for more than 80% of the genes containing dockerin I sequences. Of 

the remaining unobserved putative dockable gene products, there remain about 12 

proteins of unknown function, which may be inducible using more complex substrates. 

Future work for this project should begin with uncovering the quantitative differences in 

the cell surface, cell membrane and cytosolic protein fractions of C. thermocellum, grown 

on Avicel or cellobiose; these subproteomes should be obtained with no difficulty (Figure 

9) and should reveal more detail as to cellular mechanisms underlying cellulosome 

regulation and metabolism of the products of its action on various substrates. An 

understanding of the mechanisms by which bacteria regulate the expression of the various 

cellulases and hemicellulases at their disposal will be important to the eventual 

production of optimal enzyme cocktails or designer cellulosomes used in the break-down 

of cellulosic materials for the transition from an oil-based to a carbohydrate-based 

economy. 
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APPENDIX A 

In silico classification of proteins from C. thermocellum database 

Using the 2007/02/16 release of the C. thermocellum genome available at NCBI 

courtesy of DOE, Joint Genome Institute (http://www.ncbi.nlm.nih.gov, Refseq accession 

number NC009012), protein sequences annotated to possess a glycoside hydrolase or 

carbohydrate esterase fold or to participate in the cellulosome were submitted to 

InterProScan, protein BLAST and SignalP to verify the presence of Docl, Doc2, Cohl, 

Coh2 domains, and a signal peptide cleavage site indicating that the protein is secreted 

from the cell. The presence of a Docl indicates that the protein, if it is secreted, would 

have the ability to bind to CipA and participate in the cellulosome. 
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Table Al. Checklist for cellulolytic and hemicellulolytic enzymes and structural proteins 
with or without Docl, Doc2, Cohl, Coh2 domains, and a signal peptide cleavage site 
(SignalP) indicating that the protein is secreted from the cell, ranked by Genlnfo ID 
number 
Docl Doc2 Cohl Coh2 SignalP Genlnfo ID Protein name and/or (putative) function and/or modules of interest 
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a-L-arabinofuranosidase B, GH43 
GH26 
Cell p-l,4-cellobiosidase 
CelN endoglucanase (GH9) 
CseP spore coat assembly protein 
CelY (5-1,4-cellobiosidase 
Unknown cellulosome enzyme 
Serine protease inhibitor 14, serpin 
LicB lichenase (GH16) 
Unknown cellulosome enzyme 
lntegrins a chain, CBD6 
Unknown cellulosome enzyme 
CelA endoglucanase (GH8) 
ChiAchitinase(GH18) 
GH9 
GH5 
CelK cellobiohydrolase (GH9) 
CbhA cellobiohydrolase (GH9) 
GH9 
Unknown cellulosome enzyme 
Unknown cellulosome enzyme 
Cellulosome anchor protein 
CelB endoglucanase (GH5) 
CelF endoglucanase (GH9) 
CelR endoglucanase (GH9) 
CeU endoglucanase (GH9), Ig-like 
CelQ endoglucanase (GH9) 
Endopygalactorunase 
GH81 
Galactan p-l,3-galactosidase (GH43): ricin B lectin 
Unknown cellulosome enzyme 
Cellulosome anchor protein 
Cellulosome anchor protein 
GH9 
CelE endoglucanase (GH5), CE2 
Lipase GDSL 
GH5: coagulation factor 5/8 type-like 
CelD endoglucanase (GH9) 
XynY xylanase (GH10), CE1 
Unknown cellulosome enzyme 
P-l,4-cellobiosidase, SLH, Ig-like fold, Fn type Ill-like fold 
GH43, CBD6 
SdbA cell-surface anchor protein 
XghA xyloglucanase (GH74) 
Arabinogalactan endo-1,4-galactosidase (GH53) 
GH5 
CelH endoglucanase (GH5), GH26, CBD11 
Unknown cellulosome enzyme 
XynC xylanase (GH10) 
Unknown cellulosome enzyme 
XynZ xylanase (GH10), CE1 
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Table Al . (continued) 
Docl Doc2 Cohl Coh2 SignalP GenlnfoID 
• 

• 

• 

• 

• 

• 

• 

V 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

V 

•/ V 

V 

• / 

s 

V 

V 

• / 

•/ 

• 

• 

• 

V 

• / 

• / 

• 

y 

• 

• 

V 

• 

/ 
• 

• 

• 

• 

• 

• 

• / 

125974530 

125974579 

125974609 

125974624 

125974625 

125974626 

125974652 

125974678 

125974679 

125974680 

125974681 

125974682 

125974756 

125974845 

125975032 

125975033 

125975073 

125975242 

125975243 

125975289 

125975291 

125975294 

125975353 

125975360 

125975376 

125975452 

125975491 

125975556 

125975557 

125975558 

125975559 

125975610 

125975619 

Protein name and/or (putative) function and/or modules of interest 

Unknown cellulosome enzyme 
CelS cellobiohydrolase (GH48) 
GH10 
Unknown cellulosome enzyme 
GH43, a-L-arabinofuranosidase B 
a-L-arabinofuranosidase B, GH30 
GH8 
GH5, CBD6 
GH10, CBD4,CBD6 
CBD4, CBD6, pectin lyase-fold 
GH43, CBD4, CBD6 
GH2, GH2, GH2, Ig-like, CBD4, CBD6 
Unknown cellulosome enzyme 
GH9, CBD3a 
a-N-arabinofuranosidase 
Unknown 

XynDxylanase(GHlO) 
GH9, CBD3a 
GH9, CDB3a 
CeIC (GH5) 
LicA (GH16), SLH domain, CBD CenC-like 
CelT endoglucanase (GH9) 
CelG endoglucanase (GH5) 
Unknown cellulosome enzyme 
Chitinase(GH18) 
XynA xylanase (GH11), acetylxylan esterase (CE4) 
GH30, CBD6 
CipA scaffolding protein 
OlpB cell-surface anchor protein 
Orf2p cell-surface anchor protein 
OlpA cellulosome anchor protein 
Unknown cellulosome enzyme 
Rhamnogalacturan acetylesterase-like, lipolytic enzyme G-D-S-L 
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APPENDIX B 

Freeze-down procedure for culture collection 

Some laboratories keep frozen stocks of C. thermocellum spores. A liquid C. 

thermocellum culture is left at room temperature for several days (at least a week) and 

then frozen at -80°C. This procedure does not require the use of glycerol. Revival of 

spores can involve a lag of 2-3 days. 

We have preferred to freeze growing cultures of C. thermocellum, which can be 

revived in 1 day. A solution containing 40% (vol/vol) glycerol, 0.5 g/L L-cysteine HC1, 

and 0.0001% (wt/vol) resazurin is prepared and transferred to an anaerobic culture bottle. 

The solution is then simultaneously heated and sparged with nitrogen gas for 5-10 min, 

before the bottle is sealed with a rubber stopper and aluminum cap and autoclaved. 

Meanwhile, clean empty 10-mL anaerobic culture bottles are flushed with nitrogen gas, 

stoppered and autoclaved. When the glycerol solution emerges from the autoclave, it 

should be clear in colour. Inside the anaerobic chamber, 5-mL volumes of the sterile 

glycerol solution is transferred to the sterile 10-mL bottles using a syringe. Because of 

the viscosity of glycerol, even at 40%, transfer by syringe is easier if the solutions are 

heated in the anaerobic chamber's incubator. If the glycerol solution changes colour (to 

pink or orange) during transfer, the bottle should not be used. 

Liquid cultures are grown to log phase. The growth of a cellobiose-grown culture 

can be easily monitored by measuring the optical density (OD) at 660 nm (Figure Bl). 

Exponential phase is reached at an OD of 0.3-0.5. Inside the anaerobic chamber, 5-mL 
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Figure Bl. Growth of C. thermocellum on 0.5% (wt/vol) cellobiose from 10% (vol/vol) 
inoculum from Avicel-grown culture in exponential phase 
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aliquots of the log-phase culture are transferred by syringe to the 10-mL culture bottles. 

These are then frozen at -80°C. 
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APPENDIX C 

In-gel trypsin digestion protocol 

The following protocol is adapted from protocols such as found in [147, 172]. The 

procedure requires a period of 3-4 days. The volumes noted are for gel bands of less than 

20u.L. For a ID gel, this corresponds to a band with dimensions 1-2 mm x 1cm x 1 mm 

(band width x lane width x gel thickness). For gel bands larger in size, volumes of each 

reagent should be increased proportionally. All reagents must be prepared fresh. The 

trypsin used should be proteomics grade and modified to resist autolysis and be defective 

for chymotrypsin-activity (such as T6567 from Sigma-Aldrich). Solvents should be 

HPLC grade. Water for preparing solutions should be HPLC-grade or nanopure or at 

worst double-distilled. Prior to the addition of trypsin, the same pipette (tip) can be used 

for removal of reagent from sample all tubes. 

Coomassie destaining solution 

50% (vol/vol) methanol and 10% (vol/vol) acetic acid 

Buffers 

100 mM ammonium bicarbonate: 0.0791 g of ammonium bicarbonate per 10 mL of water 

50 mM ammonium bicarbonate: XA dilution of above 

Reductant 

10 mM DTT: 15 mg of DTT per 10 mL of buffer 
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Keep in dark. 

Alkylating agent 

100 mM iodoacetic acid: 18 mg of iodoacetic acid per mL of buffer 

Keep in dark. 

Trypsin 

0.2 ng/uL trypsin: 20 ug in 1 mL ice-cold buffer 

Prepare just prior to use and keep on ice. 

Dehydration or extraction solvents 

ACN 

50/5% (vol/vol) ACN/FA 

80/5% (vol/vol) ACN/FA 

Day 1: Excision and destaining of protein gel bands 

1. Using a scalpel or razor blade, cut the protein bands from the gel as closely as 

possible, then divide each gel band into smaller pieces, approximately 1 -2 mm in 

size. Be careful not to crush or the gel pieces, which could result in fine particles that 

can block your LC system. 

2. Place the gel pieces for each band into a 1.5-mL microcentrifuge tube. 

3. Add 200 uL of the destaining solution and allow gel pieces to destain for 4 h or 

overnight. 
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Day 2: Reduction, alkylation, digestion of protein with trypsin 

4. Carefully remove the destaining solution from the sample. Repeat steps 3-4 as 

necessary. 

5. Add 200 pL of ACN, vortex mix once, and let sit for 5 min to dehydrate at room 

temperature. When dehydrated, the gel pieces will have an opaque white color and 

will be significantly smaller in size. 

6. Carefully remove the ACN from the sample and discard. 

7. Completely dry the gel pieces at room temperature in a vacuum centrifuge for 2-3 

min. 

8. Add 30 u.L of 10 mM DTT and reduce the protein for 30 min at room temperature. 

9. Carefully remove the DTT solution from the sample with a plastic pipette and 

discard. 

10. Add 30 pL of 100 mM iodoacetic acid to alkylate the protein at room temperature for 

30 min. 

11. Carefully remove the iodoacetic acid solution from the sample and discard. 

12. Add 200 pL of ACN and dehydrate the gel pieces for ~5 min at room temperature. 

When dehydrated, the gel pieces will have an opaque white color and will be 

significantly smaller in size. 

13. Carefully remove the ACN from the sample with a plastic pipette and discard. 

14. Rehydrate the gel pieces in 200 pL of 100 mM ammonium bicarbonate, incubating 

the samples for 10 min at room temperature. 

15. Carefully remove the ammonium bicarbonate from the sample and discard. 
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16. Add 200 |iL of ACN, vortex mix once, and dehydrate the gel pieces for 5 min at 

room temperature. 

17. Carefully remove the ACN from the sample and discard. 

18. Completely dry the gel pieces at ambient temperature in a vacuum centrifuge for 2-3 

min. 

19. Prepare the trypsin reagent as above. 

20. Add 30 uL of the trypsin solution to the sample and allow the gel pieces to rehydrate 

on ice for 10 min with occasional vortex mixing. Watch that the gel pieces appear to 

have been rehydrated by the trypsin solution. 

21. Drive the gel pieces to the bottom of the tube by centrifuging the sample for 30 s. 

Carefully remove the excess trypsin solution from the sample and discard. 

Day 3: Extraction of peptides 

22. Add 5 uL of 50 mM ammonium bicarbonate to the sample (or enough to cover the 

gel pieces). Vortex mix once. Drive the sample to the bottom of the tube by 

centrifuging for 30 s, and carry out the digestion for 18 h or overnight at 37°C. 

23. Add 30 uL of 50 mM ammonium bicarbonate to the digest and incubate the sample 

for 10 min with occasional gentle vortex mixing. Drive the digest to the bottom of 

the tube by centrifuging the sample for 30 s. Carefully collect the supernatant and 

transfer the sample to a new microcentrifuge tube. 

24. Add 30 uL of the 50/5% (vol/vol) ACN/FA solution to the tube containing the gel 

pieces, and incubate the sample for 10 min with occasional gentle vortex mixing. 

Drive the extract to the bottom of the tube by centrifuging the sample for 30 s. 
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Carefully collect the supernatant and combine the extract in the same new 

microcentrifuge tube. 

25. Repeat step 24. 

26. Add 30 uL of the 80/5% (vol/vol) ACN/FA solution to the tube containing the gel 

pieces, and incubate the sample for 10 min with occasional gentle vortex mixing. 

Drive the extract to the bottom of the tube by centrifuging the sample for 30 s. 

Carefully collect the supernatant and combine the extract in the same new 

microcentrifuge tube. 

27. Reduce the volume of the extract to less than 20 uJL by evaporation in a vacuum 

centrifuge at ambient temperature. Do not allow the extract to dry completely. 

28. Adjust the volume of the digest to 10-20 uL, as needed, with 5/0.1% (vol/vol) 

ACN/FA for analysis. 
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APPENDIX D 

In-solution trypsin digestion for cellulosomal protein 

Cellulosomes are notoriously difficult to dissociate. Dissociation of the complex 

is crucial to in-solution trypsin digestion of its components. Some studies have reported 

the need to use SDS, EDTA plus DTT to break the complex into its component parts 

[68]; others have used SDS and temperatures of 70°C [84]. Trypsin can tolerate up to 

0.1% SDS (wt/vol). The ideal protease/protein ratio is between 1/100 and 1/50 (wt/wt). 

All reagents must be prepared fresh. The trypsin used should be proteomics grade and 

modified to resist autolysis and be defective for chymotrypsin-activity (such as T6567 

from Sigma-Aldrich). Solvents should be HPLC grade. Water for preparing solutions 

should be HPLC-grade or nanopure or at worst double-distilled. 

Buffer 

100 mM ammonium bicarbonate, pH 7.8: 0.0791 g per 10 mL of water 

Reductant 

200 mM DTT: 30 mg of DTT per mL of buffer 

Keep in dark. 

Alkylating agent 

200 mM iodoacetic acid: 36 mg of iodoacetic acid per mL of buffer 

Keep in dark. 
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Detergent 

10%SDS(wt/vol) 

Trypsin 

0.2 mg/mL trypsin: 20 pg in 100 pL of ice-cold buffer 

Prepare just prior to use and keep on ice. 

1. Dry down approximately 200 pg of sample protein in a vacuum centrifuge at 

medium dry rate. (For example, if your protein concentration is 1 mg/mL, dry down 

200 pL.) 

2. Suspend the dehydrated protein in 100 pL of 100 mM ammonium bicarbonate. 

3. Add 4 pL of 10% (wt/vol) SDS* and 5 pL of 200 mM DTT (for final concentration 

of 0.37% SDS and 18 mM DTT). Transfer to a 0.5-mL PCR tube. 

4. Incubate at 70°C for 45 min in a thermocycler with heated lid. 

5. Add 20 pL of 200 mM iodoacetic acid. Incubate at room temperature for 1 h in the 

dark. 

6. Add 20 pL of DTT (to quench the alkylation reaction). Incubate at room temperature 

for 1 h in the dark. 

7. Add 350 uL of 100 mM ammonium bicarbonate (to dilute the SDS concentration to 

0.08%).* 

8. Add 10 pL of trypsin to the alkylated protein suspension. Incubate 4-8 h or overnight 

at 37°C. 
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9. Place the proteolysis reaction at 4°C. Remove a 30-u.L aliquot to test the extent of the 

digestion by SDS-PAGE. 

10. If the reaction is complete (no proteins visible on gel), then the reaction can be 

stopped by adding 20 u.L of glacial acetic acid. If not, repeat steps 8-9. 

11. Reduce the volume to less than 20 u.L by evaporation in a vacuum centrifuge at 

medium dry rate. Do not allow the extract to dry completely. 

* If this protocol does not yield a total protein digest, consider increasing the amount of 

SDS added (step 3), and then increasing the dilution accordingly (step 7). 
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APPENDIX E 

Attempts to calibrate the emPAI method 

Ishihama et al. showed an almost linear relationship between protein 

concentration and 10PA1 - 1, where PAI (protein abundance index) is equal to the ratio of 

the number of unique peptides observed for a protein over the number of theoretically 

observable peptides for that protein [138]. Their results for 46 protein digests are 

reproduced in Figure El . We have endeavoured to establish a direct relationship between 

concentration and emPAI, using our in-house nanoLC-ESI-MS conditions. Using the 

same chromatographic and MS conditions as described in section 2.4, emPAI values were 

determined for triplicate 2-u.L injections of a series of 5 dilutions of a 3-protein digest 

mixture (Table El). The digest mixture was prepared by combining digest standards 

yeast protein and bovine serum albumin from Michrom Bioresources. A linear regression 

with R2 of 0.69 was the best fit for a plot emPAI values versus protein digest 

concentrations (Figure E2), even though different regression types were tried. The curve 

seems to flatten out at higher concentrations such that proteins in higher abundance 

would be underestimated. While the emPAI method has thus been shown to provide only 

semi-quantitative information, it is nonetheless useful as a means of ranking protein 

abundances within a sample. 
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Figure El. Calibration of emPAI method by Ishihama et al. [138]. A plot of emPAI 
values for 46 protein digests against the concentrations at which they were analyzed by 
LC-MS yielded a linear regression with R2 of 0.85. 
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Table El. EmPA] values for 2-JJ.L injections of a mixture of 3 protein digests at varying 
concentrations 

Protein 
Yeast enolase 1 
(gi 119336) 

Bovine serum albumin 
(gi 1351907) 

Yeast alcohol dehydrogenase I 
(gi 1168350) 

no. obs. 
un. pep. 

4 
4 
4 
7 
6 
6 
11 
11 
10 
12 
10 
8 
13 
9 
10 
13 
16 
12 
15 
17 
18 
22 
20 
17 
29 
25 
25 
28 
32 
26 
6 
8 
8 
8 
7 
6 
8 
11 
9 
14 
11 
14 
12 
14 
15 

emPAl 
0.33 
0.33 
0.33 
0.65 
0.54 
0.54 
1.21 
1.21 
1.05 
1.37 
1.05 
0.78 
1.55 
0.91 
1.05 
0.66 
0.87 
0.60 
0.80 
0.94 
1.02 
1.36 
1.18 
0.94 
2.10 
1.65 
1.65 
1.98 
2.49 
1.76 
0.74 
1.09 
1.09 
1.09 
0.91 
0.74 
1.09 
1.75 
1.29 
2.63 
1.75 
2.63 
2.02 
2.63 
2.98 

Cone. 
(fmol/uL) 

3.13 
3.13 
3.13 
6.25 
6.25 
6.25 
12.5 
12.5 
12.5 
25.0 
25.0 
25.0 
50.0 
50.0 
50.0 
31.3 
31.3 
31.3 
62.5 
62.5 
62.5 
125 
125 
125 
250 
250 
250 
500 
500 
500 
31.3 
31.3 
31.3 
62.5 
62.5 
62.5 
125 
125 
125 
250 
250 
250 
500 
500 
500 

Injection 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
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Figure E2. In-house calibration of emPAI method. A plot of emPAI values for 3 protein 
digests against the concentrations at which they were analyzed by nanoLC-ESl-MS 
yielded a linear regression with R2 of 0.69. 
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APPENDIX F 

RelEx procedure using BioWorks 3.3 and DTASelect 1.9 

For RelEx analysis, the .DTA file-containing .RAW file is placed in its own 

specific folder. SEQUEST is then used to search the .RAW file, generating .OUT file 

results in the same folder, rather than a unified .SRF file. A sequest.params file referring 

to the appropriate non-indexed .FASTA file is created, once again, in that same folder. It 

is important that the file be called 'sequest.params' and that the original non-indexed 

.FASTA file be used (Figure Fl). Furthermore, since the non-indexed .FASTA file is 

being used, the PTMs will have to be entered into the search parameters for searching 

dynamically on the fly (for 8 masses see section 2.5 on Database screening and success 

criteria). 

Once the search is complete, open a DOS command prompt. Navigate to the same 

folder as above and type 'dtaselect —here' (Figure F2). 

When DTASelect has completed its protein calling, open RelEx. Click on Tools 

in the navigation bar and then Extract-Chro (Figure F3). Navigate to the same folder as 

above and choose the DTASelect-filter.txt file that was created in the folder. Change the 

Atomic Enrichment of Label to 99%, and click on Extract. When the extraction is 

complete, close the Extract-Chro window and click on Options in the navigation bar and 

then Integration Settings. Make sure all of the check-boxes are checked as shown in 

Figure F3. Under Chromatogram Filters, change the minimum correlation factors at 1 and 

10 as desired; the higher they are, the less manual filtering will be necessary: values of 

0.9 were used for the work described here. Under Protein Filters, change the minimum 
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Figure Fl. BioWorks 3.1 SEQUEST search parameters for RelEx analysis. The .SRF 
option must be unchecked. The folder for the search results must match the folder for the 
sequest.params file, which must point to an indexed .FASTA sequence database. 

126 



icrosoffc windows XP lUersion 5.1.2600] 
CO Copyright 1985-2881 Hicrosoft Corp. 

C:\Bocunent; s\Martirs Lab>cd.. 

S:\Docunents and Sett ings>cd. . i 

C:\>ed xealibui> 

C:\XcalihuiOcd data ! 

D:\Xcalibur\data>cd nicholas_gold 

C:\Xcalibur\data\NichoIas_Gold>cd july3187 

S:\Xc«libu»*Sd<»taSNicholas_Cold\july310?>cd c i 

K:\Xealibur\data\Nicholas_Gold\july310?\C>cd c_8S_rw._95"186 

S:vXcalihur\dat»\Nicholas_.Cold\july310?NC\C_05„MW„95-186 

5:\Xcalibuj*\data\Nicholas„Gold\julv310?\C\C„05„(1U„95"106>jaua -cp c:\SfftSelect D: 
[ftSelect —here i 
DTftSelect wi.9 
Reading Bff t8elect . tx t . . . 
Applying c r i t e r i a to spectra and l o c i . . . 
t reat ing selected r e p o r t s . . . ; 

Cheating DTASelect.htnl and DTfiSelect~Ciltep.txt,. . I 
DTfiSelect is completed. i 

Figure F2. DTASelect deployment via DOS command prompt. Type 'dtaselect —here' 
once at the appropriate folder. 
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Figure F3. Steps for analysis of peptide ratios in RelEx Browser, (a) Open Extract-Chro 
tool, (b) Navigate to DTASelect-filter.txt in appropriate folder and set Atomic 
Enrichment of Label to 99%. (c) Open Integration Settings Option, (d) Check all boxes 
for Ratio Correction Settings, Chromatogram Filters and Protein Filters. Set Min 
Correlation factors to 0.9. Set Min Number of Peptides to 0. (e) Create a report by 
clicking on Text File. 
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number of peptides per protein to 0, so that even if only 1 peptide ratio was calculated for 

a given protein, it will be reported (the default is value is 2); single ratios of the kind can 

be combined with other ratios calculated for the same protein should they appear in 

different .RAW files. Finally, to generate a report, click Report in the navigation bar, 

followed by Text. A tab-delineated Protein-Output.txt file will appear in a folder name 

'chro', under the same folder as above. 
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