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ABSTRACT

Utilization of Mode-Match Technique for Calculating the Dispersion Characteristic

of 2D Periodic Structure

Sitsofe Kudjoe Dorvlo

In this work the Mode-Matching-Point-Matching (MM-PM) has been applied to
determine the dispersion characteristics for a two-dimensional (2-D) structure. The 2-D
structure is defined as a structure with a homogeneous dielectric substrate backed by a
ground-plane on one side and an array of strip lines on the other. In this case, a strip line

is assumed to have an infinitesimal small thickness.

The developed MM-PM technique uses two well documented methods: the mode-
matching and point matching technique to solve for both the transverse electric (TE) and
the transverse magnetic (TM) modes at an interface. The two methods together produce a
set of equations which are expressed in a homogenous matrix form. Using singular value
decomposition, the homogenous matrix is solved to produce the dispersive characteristics

of the microstrip.

The generated numerical results for both the one-dimensional (1-D) and 2-D structures
are compared to Ansoft Designer and Ansoft HFSS simulated results. Also experimental
results from fabricated structures are compared to theoretical results. A good match is

obtained from all the different results.
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Overall the results are in general very good agreement. These results demonstrate that the
MM-PM technique, characterized by its simplicity, can be used as a possible alternative

method for the determination of dispersion characteristics of structures.
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Chapter 1

INTRODUCTION

1.1 Motivation

Recently there has been a lot of interést focused on periodic structures called photonic
bandgap (PBG), because of their ability to forbid propagation of electromagnetic waves
for a given frequency range. This allows for passband or stopbands to be developed for
guided waves through transmission lines. Thus there has been a lot of work done in
incorporating the use of periodic structures in applications where propagation of
electromagnetic waves is prevented at certain frequencies. Such applications include
traveling wave slot, dipole arrays, log periodic antennas, phased arrays. These structures

are usually referred to as EBG [1]{2][3][4].

As the uses of periodic structures increase so does the need to develop methods of
designing structures with pre-defined properties. One important property of periodic
structures that allows for this is known as the dispersion characteristic. With this
information we can determine the passband or stopband of a particular structure. Hence
intensive work has been carried out into developing numerical method to determine the
dispersion characteristic of periodic structures. Several of these methods are briefly
introduced in this thesis. With each method there is an inherit problem which ranges from
being mathematically complex to requiring a large amount of derivations to being

computationally intensive.



This thesis looks at developing a mathematical model able to calculate the dispersion
characteristics for a 2-dimensional (2-D) periodic structure. The 2-D structure under
consideration is defined as a structure with a homogeneous dielectric substrate backed by
a ground-plane on one side and an array of metal patches on the other. In this case, the
metal patches are assumed to have an infinitesimal thickness. Accordingly, a simple
mathematical formulation is used. A similar model will be introduced for a one
dimensional (1-D) structure, involving simple mathematical formulation and very little

computational time[6].
1.2 Aim of Thesis

The Mode-Matching-Point-Matching (MM-PM) technique uses the mode-matching
technique, alongside the point matching technique to develop a mathematical model used
to determine the dispersion characteristic of a 2-dimensional (2-D) periodic structure. The
results are then compared with simulated results using commercially available software

and also experimental data.

The MM-PM technique for 2-D structures is derived by first determining the electric and
magnetic field equations as an expression of normal modes in each region. The electric
and magnetic fields are then matched using appropriate boundary conditions to produce a
set of equations. These equations are then transformed into an infinite set of homogenous
eciuations of unknown variables via the conventional techniques of taking a scalar
prodﬁct with a complete set of functions for that particular problem. These functions take
the form of A(3, f)=0. The singular value decomposition method is used to solve these

equations. The aim of this thesis is to validate the MM-PM technique through the
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development of theoretical results using Matlab as the computational tool. Furthermore,
the theoretical results for both the 1-D structure and the 2-D structure are compared with

experimental results and to see if it is a good representation.

1.3 Brief Qutline of Thesis

Chapter 2 contains the literature review. A brief but comprehensive review of photonic
band-gap (PBG) structures focusing on unilateral compact PBG structures is undertaken.
Following that, the mode-matching technique is introduced with an explanation as to how
it is used. Similarly, Floquet’s Theory is introduced and its implication to this work is
explained. The effects of the boundary conditions on the system are also introduced. Also

a possible application of this work is discussed.

The mathematical modeling behind developing the MM-PM method for the 2-D periodic
structure can be found in Chapter 3. The structure under consideration consists of a
dielectric substrate backed by a ground place and air with an infinite array of patches,

perfect conductors at an interface.

The mathematical model, a set of equations for the MM-PM technique, is developed by
applying mode matching with the required boundary conditions. The model is then coded

using Matlab to generate numerical results, the dispersion characteristics.

These numerical results are detailed in Chapter 4. The validity of the MM-PM method is
checked by varying different parameters and seeing the effects on the solution. The
results are then compared with simulation produced with commercially available

software. The final part of this chapter introduces an application for this work.

3



In the Chapter 5, we conclude with suggested improvements, and possible future work.



Chapter 2

LITERATURE REVIEW

2.1 Photonics Band-Gap Structures

Photonic band-gap (PBG) structures are periodic structures in which optical waves are
forbidden in certain frequency bands. PBG structures can be of one-, two- or three-
dimensional periodic structures. Due to the analogy between electromagnetic wave
propagation in multidimensional periodic structures and electron wave propagation in

crystals, PBG structures have found applications in both optics and microwave regimes.

Recently there has been interest in the area of photonic band-gap engineering where
extensive research has been done in applying PBG phenomena for practical use in
microwave antennas [2]. PBG structures are widely used for improving the
electromagnetic performance in microwave circuits and antennas [2]. These structures,
operating at microwave frequencies, usually consist of periodic arrays of metal patches

patterned on a grounded dielectric substrate [2].

By properly designing a PBG structure, the performance of these devices can be
controlled. PBG structures can be used to prevent the propagation of substrate waves in a
frequency band. Another property of PBG is their behavior as an artificial perfect
magnetic conductor, reflecting the incident plane wave without phase reversal. This

permits the design of transverse electromagnetic TEM wave-guides and low-profile



antennas. PBG devices at microwave frequencies can be found in the following

applications: - microstrip antennas, resonant cavities and filters [2].

The analysis of the electromagnetic band-gap structures produces two different pieces of
information, the dispersion curve of the modes supported by the periodic device and the
phase of the reflection coefficient of the structure under plane-wave excitation. The most
useful information is the dispersion curve which indicates where the propagation of

electromagnetic waves will operate.

PBG structures can be divided into three categories, one, two, and three dimensional
categories as shown in Fig. 2-1. In the microwave community one and two-dimensional
periodic structures have been under investigation for awhile. Recently, new concepts and
ideas developed in the optics regime have sparked new interest in the microwave area.
Among the new ideas, the most attractive to microwave engineers is the ability to forbid
electromagnetic wave propagation in all or selected directions. A lot of research has been
done in the application of these new concepts in the microwave and millimeter-wave
domain [5]. Some of these concepts have resulted in the different applications of which
PBG structures are being used. For example, one-dimensional periodic structures can be
found in metallic waveguides which have slots cut in and are used as slotted-waveguide
linear antennas. Other types of 1-D periodic structures include leaky-wave antennas
based on either periodic surface corrugation or metal grating along a dielectric

waveguide.

Two-dimensional (2-D) periodic structure, properties include a distinctive pass-band and

stop-band, slow-wave effects, low attenuation in the pass-band, and suppression of



surface waves when serving as the ground plane of planar microstrip circuits [3]. Thus
they have found applications in frequency - selective surfaces (FSS) and polarization
diplexer designs [5]. They can also be found in applications such as slow-wave phase
shifters, surface wave and leaky wave suppressors, high impedance ground planes as well

as TEM waveguides [5].

Three-dimensional (3-D) periodic structures can be found in applications such as high-

efficiency LEDs and nano-ca\)ity lasers.

Recently, there has been great interest and extensive efforts in developing novel periodic
structures for planar microwave circuits and antennas [5]. For example the ubiquitous
high-low impedance microstrip low pass filter is a 1-D periodic structure. For these 1-D

periodic structures, the term PBG can only be used in a relatively loose fashion.

periodic in periodic in periodic in
one direction two directions three directions

Fig. 2-1: Periodic Structure [5]

2.2 Uniplanar Compact Photonic Band-Gap Structure

In the quest to reduce the size of traditional periodic PBG structures, recent research

efforts have developed compact structures periodically distributed in two dimensions.



These devices, referred to as Uniplanar Compact PBG (UC-PBG), can realize a 2-D
periodic network without introducing vias, [4] and result in the reduction of the device
size. The UC-PBG structures are structures which consist of a uniformly distributed
periodic metallic pattern on one side of a dielectric slab. UC-PBGs thus exhibit properties
of 2-D periodic structures. Moreover, the UC-PBG structure can also be used to realize a
perfect magnetic conducting (PMC) surface, which finds applications in designing a

TEM waveguide and a low profile cavity backed slot antenna [4].

In this thesis the primary focus is on a basic 2-D periodic structure which has one side of
the dielectric backed by a ground plane and the other side an infinite array of patches
(perfect conductors). Mohebbi [6] developed a system known as the mode-matching-
point matching technique to calculate the dispersion characteristics of a microstrip line. It
was then developed to accommodate a 1-dimensional periodic structure with periodicity
in the x-plane. As part of the results section of this thesis we will compare results from
MM-PM technique for 1-D structures with simulated results obtained from commercially

available software and with measured results for identical structures.

2.3 Numerical Methods

In recent years, significant developments have been made in modeling techniques used to
model opto-electronic components due to the introduction of commercially available
computer-aided design software. These design tools have been significant in the study of
optical components which vary from the optimization of designs, to the testing of new

design concepts [7].



One modeling technique of significant interest is the mode solving technique which
provides information to determine the mode(s) that can propagate in a given, uniform
cross section of a wave guide structure [7]. Mode solving techniques are important parts
of a design process since they provide information on the mode that propagates, the
propagation constants and mode shapes, and, via overlap integrals, the relative modal
excitations in a multimode guide in response to a given input field. For example, mode
solving techniques can analyze a dielectric waveguide used in photonic integrated circuits
which are known to propagate in a single mode but in some cases multimode or slightly

multimode guides are involved in part of the device operation [7].

In applying mode solving techniques, we assume that the wave guide section is unaltered
in the propagation direction [7]. Thus the direction of propagation can be determined
based on the assumption that the variation in direction is exponential (e ) where B, the
propagation constant, is known. In summary, the mode solving techniques, for a
waveguide cross-section and a specified value of operating frequency or wavelength,

determine the values of  and the corresponding modal pattern for each desired mode.

The mode solving technique has further given birth to several numerical techniques to
determine the dispersion characteristics of defined structures in both shielded and open
environments. Since a lot of work has gone into the development of these formulations
there exists a large number of publications on the different methods [8][9]. Listed below

are a few of such methods.

e TEM approximations [8]

¢ Singular integral equation[10]



e Integral equation method[11]

e Method of lines[9]

e Spectral domain method[12]

» Finite difference method[9]

¢ Mode-matching[9]

¢ Finite difference time domain[13][14]

¢ Finite element method [15][16]
The finite difference time domain (FDTD) method is a grid based differential time
domain numerical modeling method used in calculating the transverse electric and
magnetic properties of structures. The FDTD works by discretizing the time-dependent
Maxwell equations using the central difference approximation for the space and time
partial derivatives [17]. These equations are then solved for the TE and TM cases
alternatively [18] resulting in the dispersion characteristics. The FDTD is a very popular
method used to calculate the dispersion characteristics of structures because it is a very
versatile modeling technique to solve Maxwell’s equations. Another advantage is that the
FDTD is applied in the time domain it allows for propagation to be calculated over a

large range of frequencies in a single simulation.

The finite element method (FEM) offers the possibility of a general tool for
electromagnetic analysis, capable of handling arbitrary shapes and realistic materials.
Finite elements works well in the analysis of problems with finite boundaries and the
electric and magnetic ficlds extend over all space [19]. The FEM works by finding the
approximate solution for partial differential equations, where it approximates these

equations as ordinary differential equations. An example of the FEM can be found in

10



[20]. This example shows the analysis of the eigen-mode problem for uniform

transmission lines to obtain the propagation constant for periodic structures [20].

The Method of Lines (MOL) is a technique again for solving partial differential equations
where all but one dimension is discretized. This method uses a semi analytical approach,
which yields accurate results, with less computational effects than other techniques [21].
The MOL permits the analysis of the hybrid modes that are supported by the waveguides
under test. An advantage of the MOL is that it is a very comprehensive technique used to
analyzing structures. Le. it has the ability to analyze lossy waveguides and waveguides
including metallization of finite thicknesses [22]. Also using the MOL method there is
the added benefit that nonphysical or spurious modes do not appear in the analysis and

that the method has no problem with relative convergences [21].

The integral equation method (IEM) is another popular method. IEM is been used in
varies ways to formulate solutions for the scattering effect. One advantage of IEM is that
it is able to be solved numerically within either the frequency or time domain [23]. An
example of the use of this method is used in electromagnetics is in the solving of

scattering from cavities in the conducting group plane. .

The singular integral equation technique (SIE) is used to solve many waveguide problems
and has the advantage of characterizing the structure by a small order matrix, which can
be used to produce accurate results for high-order modes. Another advantage is that the
matrix elements are produces from analytical expressions, avoiding the need to calculate

the infinite sums or numerical integrations that are involved in some methods [10].
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The Spectral Domain Method is simply the Galerkin’s approach but used in the Fourier
transform or the spectral domain [24][25]. One of the advantages of this approach is that
it is numerically more efficient than conventional methods that work directly in the space
domain. This is due primarily to the fact that the process of Fourier transformation of the
coupled integral equations in the space domain yields a pair of algebraic equations in the
transform domain that are easier to handle [24][25]. Therefore one avoids the need to
numerically evaluate complicated integrals, which can be extremely time consuming.
Another benefit to the spectral domain method is that, eigenvalues for the propagation

constants can be obtained from the determinantal equation [24].

The FDTD and the FEM are both intrinsically very rigorous but need long computational
time to determine results since the longitudinal and transverse current distribution over
the structure must be defined using a larger number of basis function to produce
reasonable results. For the Finite Difference (FD) Method a large solution matrix is
required to determine the zeros of the determinant to calculate the dispersion
characteristics and so requires large computational power. The spectral domain method,
documented in papers, is also limited as it requires a lengthy derivation processes in the
formulation phase which is difficult to extend to complicated structures. The TEM
approximation was one of the first methods used to determine dispersion characteristics,
but as further research has been done and many numerical techniques have been
developed it has been difficult to find published results that are in reasonable agreement.

The IEM in many cases can be very flexible and efficient but it has some numerical

difficulties in producing solutions.
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2.3.1 The Mode Matching Technique

The mode-matching technique is a powerful method for analyzing periodic structures and
waveguides with varying cross-sections using a straight forward mathematical
formulation. This technique is useful when the geometry of the structure can be identified
as an interface of two or more regions, each belonging to a separable coordinate system,

as shown in Fig. 2-2 where A and B denotes two different regions. [6][26].

Fig. 2-2 Rectangular waveguide

In each region there exists a set of well-defined solutions of Maxwell’s equations that
satisfy all the boundary conditions except at the interface. The mode matching technique
is based on the matching of the total mode fields at each junction between uniform
sections. Thus by solving at the interface we can determine the electromagnetic
characteristics of the device under investigation. Ther electromagnetic fields traveling

along an axially periodic structure as guided waves are described by Floquet’s theory.

The first step in the mode-matching procedure is the expansion of unknown fields in the
individual regions, for example regions A and B in Fig. 2-2, in terms of their respective
normal modes. Since the functional form of the normal modes is known, the problem is

reduced to determining the set of modal coefficients associated with the field expansions

13



in various regions [26]. This procedure in conjunction with the orthogonality property of
normal modes eventually leads to an infinite set of linear simultaneous equations for the

unknown modal coefficients.

In a periodic structure, the field can be expanded to a complete set of vector wave
functions. These functions are usually called modes. The amplitudes of the separate
modes at the output of a junction can be deduced in terms of the amplitudes of the mode
spectrum at the input to the junction. The strength of the mode-matching technique stems
from the fact that the amplitudes of the modes can be expressed as the components of a

scattering matrix. Each boundary along the patch has its own scattering matrix.

Extracting an exact solution is usually not possible since this is an infinite system of
equations. Because of this, one has to use approximation techniques such as truncation or
iteration. In adopting one of these methods, care need to be taken to ensure the accuracy
of the approximated results because of the relative convergence problem found in the

evaluation of the mode-matching equations.
2.4 Radiation Condition and Edge Condition

In certain problems the region of interest contains boundaries at infinity or contains
geometrical singularities thus resulting in non unique mathematical solutions to
Maxwell’s equations. Therefore, to produce a unique solution that gives the anticipated
results one has to add extra conditions. These conditions are in the form of radiation and

edge conditions.
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2.4.1 Radiation Condition

The radiation condition is the addition of a parameter that governs the effects of the field
at infinity for sources in an unbounded space containing a finite region. These can be

introduced in one of two forms [6][27].

In the case where the medium is lossy the fields are required to vanish. The second
method is when the medium is lossless and isotropic. In this case the field at infinity is
determined by the sommerfield radiation condition. This condition states that “The field
at a large distance r from the source has a phase processing outward and has an amplitude

~19s

that decreases at least as rapidly as r ” [27]. More precisely, any transverse components £

of the field (with respect to the r direction) must satisfy the conditions [27].

1im,%(-‘—;—'/’ - ikw) =0 2.1

-

where k = @,/ e is the propagation constant of the medium.

In attempting to simplify the mathematics involved we chose to implement the medium
lossless. Thus the propagation constant reduces to the phase constant as the attenuation

constant is assumed to equal zero.
2.4.2 Edge Condition

The edge condition is defined by the following equation.

[(€|E|2 + H[ )dv — 6, [27] 2.2)
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6, denotes the total energy at the edge

This means that the electrical and magnetic energy stored near the edge must be finite. In
the case of this work presented in this thesis, the edge condition does not have to be

invoked to obtain a unique solution.

2.5 Floquet Theorem

Floquet’s theory is a branch of the theory of ordinary differential equations relating to the
class of solutions to linear differential equations. According to Floquet’s theorem, each
solution of an equation can be expressed as an exponential function and a periodic
function [6][{28]. In this thesis, the Floquet-Bloch expansion method uses an expression
of the fields in terms of the Floquet space harmonics. Using this, the propagation of EM
waves along periodic dielectric structures is formulated as a rigorous boundary value

problem. When Floquet’s Theorem is applied rigorously it produces very accurate results.

The Floquet Theorem is applied to periodic structures where it is infinitely periodic in
both the x and z axes. For the sake of simplicity, we will keep the periodicity for both

directions constant, d and consider square metal patches.

The following statements for periodic structures were derived from Floquet Theorem

outlined in [29].

(I) The field (time-harmonic electromagnetic field) E(x, y,z) and/or

H (x, ¥, z) along a periodic structure in two dimensions takes the form of
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E(x,p,2)=e"E (x,,2) 2.3)

H(x,y,2)=e7"IH (x,7,z) 24)

where E, and H, are periodic functions of x and z with periodicity d.

(II) The Floquet Theorem states that along the line of periodicity, at any point
of the unit cell, the time electromagnetic field takes on exactly the same

value as a similar point on other unit cells multiplied by the

exponential e™ , where y = 3, + 3, . Therefore the field

between0<z < L,0<x<L for E(x,y,z)and H(x, y,z) for a unit cell

located at L < z < 2L, L < x <2L will have similar properties.

(III)  The field in a periodic structure can now be represented as

E(x,y,z)= i i E, (x,yk B e

mETee =T 5 5 2.5)
where 8, = . +—’;—”, B. = 4. +%”.

The Floquet Theorem can be stated in the form of a Fourier series expansion. Reviewing
[6] we see that the effect of reducing the truncation, that is, increasing the number of
terms, improves the approximation to the function value. The only area of concern is at
the extremities of the graph where Gibbs phenomenon becomes a factor. But as
mentioned in [6] this would not be a problem since we would not be considering values at

the extremes.
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2.6 Ill Conditioned Matrix

An ill conditioned matrix is defined as a matrix where the condition number is very large.
That is matrix A in Ax=bis very sensitive to changes in A or b. If a matrix is ill-
conditioned it can be difficult to find the solution to the system Ax = b particularly when

iterations are used to find the solution [30].

For example the following equation represents two simultaneous equations in the form of

Ax=b

1 2 X\ 3 S
2 4.0001Ax,) \6.0001) (2.6)

The solution to this set of equation is x1 = x2=1 but if 4.0001 is rounded to 4.0
unsolvable equations are obtained. Leaving 4.0001 as is and rounding 6.0001 to 6, the
solution of the equation become x1 = 3 and x2=0. And if 4.0001 and 6.0001 were
rounded off to 4 and 6 respectively redundant, equations would be produced. Thus it can
be seen that slight changes in the equations could cause significant changes in the

solution.

Another way of obtaining ill-conditioned matrices is when the [A] matrix values vary by
several orders of magnitude, this would also result in widely discrepant results due to

small perturbations in the values of matrix [A][30]
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Ill-conditioned matrices can create issues for iterative solvers because one has to guess an
initial value and iterate to a certain tolerance value. This can cause solving the set of

equations a lengthy process and in some cases this may not be acceptable [30].

One well known method of solving ill-conditioned matrices is the Singular Value

Decomposition (SVD) [31]. This will be discussed in the next section.
2.7 Singular Value Decomposition (SVD)

There are many applications of existing numerical techniques for the analysis of
microwave and millimeter-wave structures. Some of these numerical techniques lead to a
homogenous equation of the form of (4)- x = 0, where A4 is a complex matrix of size m x
n (m > n) and x is an n-element column Qector. In order to determine the solution of this
equation, it is common practice to vary a (complex or real) parameter y until the
det(4(y))=0 for y = y,. This constant could either represent the propagation constant,
the effective permittivity or the cut-off frequency. In this thesis we will be focusing on

the propagation constant [32][33].

The accuracy with which the above equation is solved is directly related to the accuracy
with which the zeros of det(4(y)) can be detected. For most numerical techniques
available this is a difficult problem due to the fact that the matrix A is an ill-conditioned
matrix i.e. the det(4(y))changes rapidly due to small changes of yo[33] . Therefore, the

homogenous equations have to be solved using a search algorithm that operates in small

step widths to detect the zeros. On a computer, the algorithm also has to be able to cope
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with inaccuracies introduced by the numerical limits of the computer. This can therefore

affect the numerical solution of the equations significantly.

To improve the solution of the homogenous equations, a method known as the singular
value decomposition (SVD) is used [31]. The singular value decomposition is an
important factorization method of rectangular real or complex matrices, with several
applications in signal processing and statistics. SVD is a powerful algorithm for dealing
with matrices that are either singular or numerically very close to singularity. It is
demonstrated that by detecting the minima of the minimum singular value instead of the
zeros of the system determinant the accuracy of the computation is increased. Similarly,

the search algorithm is simplified and the accuracy of the computation increases.

2.7.1 Statement of the theorem

The singular value decomposition is defined as follows: Suppose M is an m-by-n matrix
whose entries come from the field K, which is either the ficld of real numbers or the field

of complex numbers, then there exists a factorization of the form [33]

. 2.
M=UZV @7)

where U is an m-by-m unitary matrix over K, the matrix % is m-by-r» with nonnegative
numbers on the diagonal and zeros off the diagonal, and V* denotes the conjugate
transpose of ¥, an n-by-» unitary matrix over K. Such a factorization is called a singular-
value decomposition of M. The matrix V thus contains a set of orthonormal "input" or
"analyzing" basis vector directions for M. The matrix U contains a set of orthonormal

"output” basis vector directions for M. The matrix X contains the singular values, which

20



can be thought of as scalar "gain controls" by which each corresponding input is

multiplied to give a corresponding output [31].
2.8 Applications

The formulation developed provides a means to analyze 2-D periodic structures, an array
of microstrip patches mounted on a grounded dielectric substrate. An example of such a

situation is the leaky wave antenna.
2.8.1 Leaky-Wave Antenna

Leaky wave antennas radiate microwave and millimeter wave energy from a series of
metal strips mounted on a dielectric waveguide. It is excited by a horizontal infinitesimal
dipole inside the substrate, which launches the leaky waves [34][35][36]. These antennas
have the advantage of being structurally very simple and have simple frequency scanning
properties [34]. Leaky wave antennas are also of interest because their ability to produce

highly directive beams.

One common configuration for leaky wave antennas is similar to the structure that was
analyzed in the formulation detailed above [34]. This structure caﬁ be seen again in Fig.
2-3, where the spatial distance of the structure is ‘a’, and the width of the patch is ‘L’
both in the x direction. For the equivalent y direction the spatial distance is ‘4’ and the

width is ‘w”.

The leaky wave antenna structure behaves like a leaky parallel-plate waveguide, allowing

radiation at a scan angle. This angle is primarily dependent upon the phase constant (B) of
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the waveguide mode which is strongly dependent upon the substrate thickness [35] [37].
Knowledge of the propagation constant provides information about the beam direction.
Specifically, the normalized phase constant B/k, is related to the main beam direction i.e.
the scan angle 6, and the normalized attenuation constant a/k,, provides information on
the beam width in the azimuth [34][35]. Using the phase information extracted by the
formulations developed in this work, the main beam direction of the leaky-wave antenna

can be determined.

1X=
(]

®)

Fig. 2-3: Geometry of the 2-D periodic LWA. [34] (a) Top view. (b) Side view.
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Chapter 3
FORMULATION FOR 2-D

PERIODIC STRUCTURE

Due to the periodicity of the structure, the Floquet theorem can be applied and the
electromagnetic problem reduces to the investigation of the unit cell of the periodic
structure. The key to understanding periodic structures in two dimensions is to realize
that the fields in 2D can be divided into two polarizations by symmetry [5]: TM®
(transverse magnetic), in which the magnetic field is in the (x-y) plane and the electric
field is perpendicular (z); and TE” (transverse electric), in which the electric field is in the
(x-y) plane and the magnetic field is perpendicular. The use of Floquet's theorem reduces
the analysis to a single cell of the propagating fields for both, - TE* and TM*

polarizations.
3.1 Formulation

The cross section geometry of the device considered can be seen in

Fig. 3-1, where 2x¢ is the width of the metal patch along x; 2Xx L is the length of the
unit cell along y; 4 is the height of the air substrate combined with that of the substrate;
and d is the height of the dielectric substrate. Also regions 1 and 2 denote the dielectric

and air substrate, respectively.
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To simplify the analysis, and to obtain an accurate eigenvalue problem, a perfect electric
conductor is placed parallel to, and at a large distance from the ground plane. The
distance 4 is chosen large enough so that there is little or no effect on the guide properties
from the conducting plane. In the structure, all components of the E and H fields will be

found in the guided modes.

0
o
coo

5

N

Fig. 3-1: Cross section of 2-D periodic structure (a) Top View (b) Side View
The incident wave on the device is a plane wave and the geometry of the scatterer is
periodic in x with a period of L. The field is obtained at two arbitrary points, separated by
a distance L along a line parallel to the x-axis. This means that the scattered field is

calculated only in the basic period, -L < x < L with the same is applied for the z direction.
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To determine the dispersion characteristics of a periodic structure the following steps
were followed. First the transverse electric (TE®) and transverse magnetic (TM?) fields
were written using normal modes in each sub-region. Then the electric and magnetic

fields were matched at the boundaries by applying the continuity conditions at the gap

’x| >t and the boundary condition on the strip |x| <t at the interface y =d [38]. Thirdly

the produced equations were transformed into an infinite set of homogenous
simultaneous equations that could be solved using singular value decomposition. It is
important to note that care need be taken in choosing the appropriate truncation for the

number of nodes for the relative convergence.
3.1.1 Assumption

In this analysis, it is assumed that the fields are time-harmonic, and the wave is traveling
along the positive z direction with the objective to find the dispersion curve along this
direction. Also, the regions are homogenous and source-free. The patches are perfect
conductors with negligible thickness. The substrate is assumed to be a lossless dielectric.
The geometry is expressed in rectangular coordinates, so we use rectangular coordinate

system for this problem.

3.2 Electromagnetic Fields

TE® modes are obtained if 4 =0 andF =4,F(x, y,z). Likewise for the TM* modes, it can

be obtained if F=0 and A=&ZA(x, y,z) which in turn produces the following

equations.
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TE*[39][40] TM* [39][40]

__10F, oo 1 94, (3.1a,b)
e dy * Jw,ue oxoz
24 (3.2a, b)
5 _1OF. Ey=—jLa .
7 £ ox e dyoz
2 (3.3a,b)
E, =0 E, =—1L(a—2+ﬁ’}42
wue\ oz
2 34a,b
Ho-j L V. o1 342,1)
WUE 0x0z M Oy
2 3.5a,b
iomj LVE. oo Lo G55b)
g WUE dyoz U Ox
2 (3.6a, b)
Hz=—j_.l._(a_2.+ﬂ2)[7‘z HZ=
aue\ oz

To solve the above equations, the Helmholtz Equation V7 + 5% =0 was used, where
¥, is a scalar function which could be either standing waves (sinusoidal) or traveling

waves (exponential with complex arguments). Therefore

. (x»,2)= f(x)gy)h(z) 3.7)

develops into

V. (x,»,2)= [Cl cos(ﬂy}’ )"’ D, Sin(ﬂyy )] [Cze_jﬁxx + Dt/ J [Cse_jﬁzz + Dze+jﬂzzJ (3.8)

Given that the source is located in a position where only the positively traveling wave

was present, Equation 3.8 simplified to

v. (x.5.2)=[C, cos(B,y)+ D;sin(B, yllCe 7 |lcse | 9

The auxiliary equation for the TE” is as follows:
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F,(x,3,2)=[C, cos(B, )+ Dy sin(B, y|Ce 7+ Ce 772

(3.10)

In developing the transverse electric wave TE* mode, the following conditions and

assumption, that there was no electric field present at the boundaries of the region were

used. Thus given the boundary conditions

Ex(x,y=0,z)=EX(x,y=h,z)=0
E,.(x,y=0,z)=E (x,y=hz)=0

z

The auxiliary equation for the TE” is:

F(x,3,2)=[C, cos(B y )l [|ce .

For the respective regions the auxiliary equations for the TE? is as follows

egion s )=l eodgllce o)

region 2: F(xy,2)= [C1 cos(ﬂy (h— y))] [C2 e‘jﬂ*’J[C3e"’B’Z].

3.11)

(3.12)

(3.13)

(3.14)

Likewise for calculating the transverse magnetic wave TM" modes, its corresponding

auxiliary equation is as follows:

A, (x,. y,2)= [C, cos(ﬂy y)+ D, sin(ﬂy y)] lCze“f/’x" J lc3 e—jﬁzzJ.

(3.15)

Using the same boundary conditions as used for the TE* mode the auxiliary equation

simplifies to

A, (x, Y, Z) = [D1 sin (ﬂyy)] lcze_jﬂ'x J lcae_jﬂ:z J

For the respective region the equations are as follows
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region I 4,(x2,2)=[Dsin(B,y)lC2e |l G179

region 2: A,(x,,2)= [ D, sin(ﬁy (h— y))] lcz e—j/?XxHC3 e—jﬂz,zJ (3.18)

The geometry for the two-dimensional scattering by an infinite periodic structure is

shown in Fig. 3-2.

O ©
OO 0 0 0O
Q Ie) o &}

Fig. 3-2: Cross section of a periodic array of rectangular patch
The phase constants in x-direction and z-direction, according to the Floquet theorem, can

2m 27mm
and =8 +
2L P =P 2L,

X

be expressed by 8, = 8, + respectively.

Therefore phase constant in the y- direction can then be expressed as

2 2 2 3.19
ty ==if, =B+ B0 )-8 G.19)

To satisfy the boundary conditions at the interface between the dielectric and air, the total

transverse scalar functions of F.(x,y,z) must be written as the summation of F.. After

some rearrangements, expanding in terms of the Floquet modes and using 4,,, for region

m

1, Fig. 2-3(b) to symbolize constants equation 3.13 becomes:
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le (x’ y,Z) = i i Anm COSh(anmy)e_jﬂ"xe_jpmz . (320)

H=—00 p=~00

Following a similar method for equation 3.14 the following is formed

4, (x’ Ys Z) = i i 4, Sinh(a’nmy)e_jﬂ""e‘jﬂmz . 3.21)

Nn=—00 fp=—o0

Again this is repeated for region 2, with B, used to symbolize constants, equations 3.15

and 3.16 transform to the following respectively,

(x,3,z Z Z B, cosh(a,, (h— y))e /e P (3.22)

n=—00 p=—0c0

(%, 7,2 Z ZB,,,,, sinh(ar, (h—y))e e /Pet (3.23)

Hmmem s
Substituting the auxiliary equations back into the Floquet harmonic equations the

following were developed.

For the Transverse Electric Wave TE” Modes in Region 1

B.=-= 3 Y 4.V a,, sinh(a, O p)e e (.24
| e e
E =—J£i > ZA,,,"“",B cosh(a,," y)e P e i (325)
T E =0 (3.26)
Homie 5 3.0, cosa, e 627
| oo e ,
H, =_w_&m§n§ nm(h)ﬁmanm Smh(amu)y)e-,ﬂx T » (3.28)

H,

a),ug1

n=-—oo p=—~oc0

(Z Z(ﬂm -~ B, )4, coshler m,.“)y)e""" '/ﬂnﬂ) (3.29)

In region 2 for the transverse electric mode,
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E,=—3 S8, %, sinh

g, = =

E,=—j= 3 3B, coh(@, (h-y)e et

€9 m=—os n=so

@ (h - y))e-jﬂ,,xe~jﬂmz

nm

E =0

z

1 i i Bnm(h)ﬂnﬂm COSh(aﬂm(Z) (h - y))e—jﬁ,,xe—jﬁ,,,l
QUE, pt

1 i i B,." B, silh(,,” (h= y))e P e /b
a)ﬂé‘z m=—o0 p=—ca

H =j

H =

¥y

HZ = _j 1 ( i i (ﬂ(2)2 - ﬂmZ )Bnm COSh(anm(Z) (h - y)}-jﬂ,,xe—jﬂmz)

wuE,

n=—oa f==~00

Transverse Magnetic Wave TM? modes in region 1 are

1 00 =) . . . . B
E =j——3 3'4,°B,p,sinh(a,,”y)e et
UE j. L,

1 0o oo (e) I3 m . .
Z ZAnm ‘ B, cosha,, 'y)e B o B
a)ﬂgl Mm=—co p=—oco

EZ - _J;( i i (ﬂ(1)2 - ﬁmz )Anm(e) Sinh(anm(l)y)e—jﬁnxe-jﬁmz )

QUE, \ e i

E =-

1 & ¢ e 1A
Hx = — Z ZAnm(e)anm(l) cosh(anm(l)y)e Jﬂnxe TPz
u m=—c0 f=—oo .

1 - - e . —jBuX ~jBnz
H, = i > ¥4, B, sinh(e,, " yye e

Mm=—oo p=—oo

H. =0.

And in region 2

R B (© . @ B =B
E = B nh(e,, > (h - y))e e n
= e ,,,Z:; 5,8, sinh(a,,” (h— y))e e

1 &= o
Y. Y B, B, cosh(ar,,” (h— y)e e
QUE, .=

E =—j 1 ( i i(ﬂmz _ﬂm2 )Bnm(e) Sinh(a,nmm(h_y))e—jﬁnxe-j/zmz

WUE,

E, =

M==00 p=woo
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(3.30)

(3.31)
(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
(3.37)
(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
(3.43)

(3.44)



Ho=-1 % S8, 9%, coshla, (h-y)e et (3.45)

Mo

H,=j 1 i iB,,,,,“),B,, sinh(er,, @ (h = y))e P eIPnt (3.46)

M=—00 p=—00

H. =0 (3.47)

T . . AW
For the sake of simplicity, we can consider the new variables — — A"’ and
£

r

A . . . .

Zmm 5 49 instead of the previous A and A4 likewise for B™ and B,
nm p nm nm nm nm

E

r

(n (e)

B . .
—m — BY and = — B!, The equations also have been normalized by a factor of
£ £

()
W€,

The final fields are the superposition of TE and TM fields:

r

Ey= Y Yo, e, - 4, 5,p, Sih(a,, " ye et G4
Ex2 == z Z (ijn(e)ﬂnﬂm + wIUOBnm(h)anm(Z) )Sinh(anm(z) (h - y))e-jﬂ,,xe-jpmz (349)
E_v] = Z Z (Anm(E)ﬂmanm(l) - jwluOAnm(h)ﬂn )COSh(anm(l)y)e_jp"xe_jpmz (350)

M=—00 p=—00

Ep= 3 S (au8,"8, - B, B eoshiar,,® (1= y)e e O3

m=—o0 fp=—00

Ea= j( i i (ﬂu)z -8 )A,,m(e) Sinh(anm(l)y)e_jﬁ""e“jﬂmz) (3.52)

M==o0 p==-c0

E,= j[ i i (ﬁ(z)2 -8 )Bnm(e‘) sinh(a"m(z) (- J’))ehjﬁ”xe'j/’mzj (3.53)

M==00 f==—o0

Hy==Y 3 (0g 6,4, e, + j4,,” B,B, Jeosh(a,, ye e (-39

M=—00 B=~-00

sz = i i (a)grzganm(e)amn(Z) - jBnm(h)ﬂmBm )COSh(anm(Z) (h - y))e-jﬂ,,xe—jﬂmz (355)

m= n=—oc
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H}" = Z Z (Aﬂm(h)ﬂmanm(]) - ja)grgrEOAnm(e)ﬂn )Sinh(anm(l)y)e_-iﬂ"xe_jﬂmz (3.56)

M=—c0 =00

Hy=Y Y jae0B, B, ~ B, Bty Jsinhi@,, ® (b= p)e e (357)

m=—o0 pp=—o0

H, = j( i i (ﬂ<1)2 - ﬁmz )Anm(h) Cosh(anm(l)Y)e-w"xe""ﬂ”z ) (3.58)

n=—oco p=—00

H,= J( i i (,3(2)2 —ﬂ,,,z )an Cosh(anm(z) (h- y))e-jﬂ,.xe—jﬂ,,,z) (3.59)

N=—00 f=—00

3.3 Boundary Conditions

Due to the symmetry of the structure with respect to the x = 0 plane, the symmetric
(even) and anti-symmetric (odd) modes can propagate in the guide. If E; is even or H; in
odd (similarly), a magnetic wall can be inserted at x = 0 without any effect on the field
distribution likewise at z = 0. This information then allows us to consider only a quarter
of the structure, i.e. treating x =0 — L similarly to x=0 > —-Land z=0— L similarly
toz=0-—>-L. The fields at the interface y = d are matched and solved for the

propagation constant.

In summary the total fields derived must satisfy the boundary condition. Considering the
symmetry with respect to the y-axis, we have the following four boundary conditions for

the printed periodic structure [38]:

¢y) E, =E, (x,z) e Unit Cell O<x<L
O<z<L
) E,=E, (x,z)€ Unit Cell O<x<L
O<z<lL
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3) (a E. =0 (x,z) € Patch O<x<t

O<z<«t
(b) H,=H_, (x,z) € Aperture t<x<L

t<z<L
(C)) (a) E, =0 (x,z) e Patch O<x<t

0<z<t
(b) H,=H, (x,z) e Aperture t<x<L

t<z<lL

The coefficients 4, 4%, B and B” are unknowns; their relations can be found by

applying proper boundary conditions along the air-dielectric interface. The appropriate
boundary conditions are applied along the air-dielectric interface including the center
conductor. It should be stated again that the superposition of the TE® and TM modes must
satisfy the boundary conditions along this interface. Considering the symmetry with
respect to the y axis, the appropriate boundary conditions along the interface for x>0 that
must be enforced there are four mutually independent equations are. It should be noted

that the same applies for x<0:

i i (e)(ﬂa) -B. )e_j/“ Pt =0 |x[<t
i 3 P (B4, e e L (3.60a,b)
e e r<ly<L

_] Z ZTnm(ﬂ (h) —Jﬂx ~JBaz =0

e o I <z
j Z zAnm(E)ﬂnﬁme—jﬁnxe—jﬂmz =0

M=—00 p=—o0

i i Wﬂm (ﬂz )A"m(h)e'jﬂnxe"jﬁmz +

Nn=—o0 p=—oc0

(3.61a,b)

t<|x|<L

o0 o0

j Z ZQnm (ﬂ; )me'jpnxe—jﬂmz = 0

=00 =m0
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“ = 4, sinh(a,,Vd) (3.62)

‘—4-;7:(,’) = Anm(h) SIHh(anmu)d) (3.63)
(!)
T,.(8.)=2 . —m - cosh(a,, ” (h~ y)) + B,B, cosh(e,," y) (3.64)

we, 80 (IB(I) ﬂ: ) (2)

P,,,,, (ﬁz ) - 2 2 COSh(anm(Z) (h - y))
(ﬂ B, ) ('B(z) ,B(x) ) (3.65)

wﬂo nm(Z) (ﬂ(z) - B. )

M o
+we e, cosh(ar,, " y)
O

w,,(8.)= (8, - B, Jeosh(ar,, )+ (8, - ﬁm?)a cosh(a,, @ (h-d))  (3.66)

nm

Qnm(ﬁz)z (ﬂ(2)2 _ﬂ(x) )wﬂ 'B"'( 5 COSh( @ (h —d))_ (3.67)

0 nm

3.4 Matrix Presentation of 2-D Printed Periodic Structure

Applying the Floquet theorem for periodic structures, the 2-D structure can be considered
as a unit cell and then expanded as the theorem dictates. This unit cell shown in Fig. 3-3
has been divided into nine different sections where sections A, B, C, D, F, G, H and I are

the dielectric and section E is the patch.

G| H I
D F

A | B |C

Fig. 3-3: Unit Patch
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Applying the appropriate equation to the correct region, equation 3.61b and 3.62b are

applied to all sections except E. Equations 3.61a and 3.62a are applied to region E.

Several points along the x and z axis are taken by varying the counters » and m in A4
and 4" . The appropriate equations are applied to the various regions. The coefficients
are truncated to —N to N for both n and m. This limits the number of coefficients for 4

and A" respectively to 2N + I. The coefficients are then arranged in a matrix form to

which the singular value decomposition is applied. The smallest singular value, o is then

used to find the phase constant at a particular frequency.

The resulting matrix referred to as the solution matrix is outlined below in Equation 3.68.

LA : 2N, +1 : 2N+ ] Z(e)
2N +1 | : 2N 41} : 2N +1 1 "
wo ) i ) : :
I | i —
(1-r)(2N,+1)/2 points on the - Co B Co c ' Ay
first aperture in the z-plane ) | :
i E I mT
! 1 J—
Lo ! . i 4©
* : * : ¥ | m
. ! t ! | ! (=0 (3.68)
r(2N,+1) points on the patch ) D L F OV F —h
in the z-plane ' ' | ! . Ay
| : ) | ] .
I I -
>, : .en : “ve _
‘ T R T T A9
(1-r)(2N,+1)/2 points on the i T ' "
first aperture inthe z-plane) G | H | [ :
[ A A | e
1-r)2N, +1 . .
*1- % points on the first aperture in the z-plane
r(2N, +1)

points on the patch in the z-plane.
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Chapter 4

SIMULATION RESULTS
4.1 2-D MM-PM Technique Parametric Study

The performance of the MM-PM technique is tested and different program parameters are
determined to generate results in an adequate amount of time. The expected result from
the singular value decomposition is a curve of the smallest singular value against the
propagation constant. The lowest points in the curve are further used as the solution for
the homogenous equation, A4(#, f)=0. Therefore for a given frequency the lowest
points of the curve correspond to the propagation constants at that frequency. Also from

the parametric study for 4, N and S, it is expected that as # and N are increased and S, is

decreased the lowest points on the curves would converge to common points.

For the parametric study the following parameters are kept constant:d =1.27mm,
L=635mm, t=0.635mm and &, =8.875. Depending on the test ., the truncating

factor N and the height of the substrate 4 are varied. It is important to note that the

logarithm of the smallest singular value, o is plotted.
4.1.1 Varying the truncating factor vV

For the results depicted in Fig. 4-1, the following parameters were used:

h=6.35mmand B, =10e”. In the Fig. 4-1, we see the result of varying N, the truncating
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factor. By varying N, the smallest singular value follows similar patterns where valleys
occur at the approximately the same positions. From this result it can be seen that

increasing the truncation value has little effect on the solution as the valleys occur at

approximately the same 3, /k, . However, it should be noted that the main interests are

where the valleys occur, this appears to be constant. Thus in the interest of processing

time, the value of N= 7 is used since N=7 and N = 10 were a closer match.

8 ! ! !
TR NI N —
-10,/_/_’:1&\\‘\5 ,,,,,,,,,, i, i,,,jzf,/,,,,_{]k-,N o]
R S S
DI et S L NI S

Lowest Singular Value [In(cL)]

| P o ~
A3 - A - \ "{1\ ******** -
1] | y :‘5 I
o N W e Amm e
K : | :
ASE- - N l . S P
i : : - = N=§
T . ] N=T |
' ! ! — - -N=10
A7l 1 : :
15 2 2.5 3 3.5
Bk,

Fig. 4-1: Lowest Singular Value for different values of N

4.1.2 Varying h, height of the air substrate

Varying the height of the air substrate resulted in no change in the results as seen in Fig.
4-2, where major valleys occurred at 1.7 and 2.3. From this result we can conclude that
by increasing the height of the air substrate to a large enough height we can simulate for

an open air environment, since it has no effect on the solution.
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Lowest Singular Value [In(cl_)]

-—# -hx 1000
R

Fig. 4-2: Varying h(mm), the height of the air substrate

4.1.3 Varying By

From Fig. 4-3, varying §_ caused a vertical shift in the results. In all three graphs, the
valleys occurred at the same place, similar to the parametric study of varying N. The
vertical shift in the cures can be ignored since the regions of interest are the valleys which
are consistent throughout the different Bx. It should be noted that as Bx gets larger the
difference between the highest point and the lowest point in the curves gets smaller.

Therefore to make it easier to find the lowest points B, should be kept at approximately

10e” to make it easier for the algorithm to find the lowest point.

Fig. 4-5 shows several spurious responses due to the solution matrix becoming
increasingly ill-conditioned. However, looking outside the spurious responses, it can be

noted that there are significant areas where prominent valleys occur. For Fig. 4-5 these
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areas occur approximately atf, /k, =1.55,2.4and 3.2. These results tell us that the

dominant mode occurs at these points.

Lowest Singular Value [In(o-L)]

ﬁz/ko
Fig. 4-3: Lowest Singular Value for different values for B,

4.1.4 Singular Value Decomposition

In the results depicted in Fig. 4-4 to Fig. 4-5 the following parameters were
used B, =1e”, N = 7 and h = 12.7mm. Fig. 4-4 is similar to that of Fig. 4-5 but at a
different frequency. Observing the results from Fig. 4-4, we can see some spurious
results. What’s more looking at the general outline of the trend we can see that as before
there are areas where there are valleys at particular values. In Fig. 4-4 valleys occurred

approximately at £, /k, =1.55,2.3 and 2.8.
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Singular Value Decomposition at 5GHz
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T
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Fig. 4-4: Lowest Singular Value for frequency

mposition at 30GHz

Singular Value Deco

|
o e < v © ~ ®
) v ) Nl N} v )

z._bv:__ anjeA Jejnbuls 1semon|

30GHz.

Fig. 4-5: Lowest Singular Value for frequency

The results from the figures indicate that as the frequency increase more spurious results

occur.
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4.2 1-Dimensional Limiting Case

The 2-D MM-PM technique was applied to a 1-D case, where the patches were made as
long as possible in the z plane. The patches were then made so that the distances were as
large as possible in the x axis. The results from these simulations were then compared to

that of the microstrip case presented by Mohebbi [6] in his work.

The structure simulated had the following parameters: L = 2lmm, t = 1.27mm, d =
1.27mm, h = 127mm. These parameters are also used in 1-D MM-PM. The results from
both simulations can be seen in Fig. 4-6. In this figure the results from a similar structure

is simulated using HFSS.

In Fig. 4-6 it can be seen that there is a very good match between the 1-D MM-PM
technique and fhe 2-D MM-PM method. From this, it can also be concluded that in the
limiting case, the 2-D MM-PM results compare very well with the results presented by
Mittra et al [38], since the 1-D MM-PM method had a good match in the results as

presented by Mohebbi [6].

The HFSS results did not produce a close match to the results as shown in the figure, and
as the frequency increased the difference between the graphs increased. However the
results are positive since the difference in the structure can be attributed to not being an

infinite structure in the z plane in HFSS.
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Fig. 4-6: Dispersion characteristics for 1-D structures

4.3 2-D MM-PM Technique Versus Ansoft Software

The results shown in next few figures are the calculated dispersion curve from the MM-
PM technique outlined earlier and using commercial available software. Three different
situations, L = 6.35mm, h= 12.7mm, t = 0.635mm, d = 1.27mm, & = 8.875, L = 6.35mm,
h = 12.7mm, t =0.635mm, d = 1.27mm, &, = 10.2, and L = 8.5mm, h = 17.0mm, t =
0.85mm, d = 1.7mm, & = 10.2, were considered, where the difference between the
situation 1 and 2 was in . For situations 2 and 3 the dimensions of the patch differed. In

the Matlab simulation, the following variables were set at the following values §, = 10e”,

seed value of 8, /k,=2.1, N=7.

Looking at Fig. 4-7, a close match between the MM-TM technique, Ansoft Designer and

Ansoft HFSS can be seen. While the Ansoft software results show a linear variation of
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f, with frequency, MM-TM technique results fluctuate. However, the linear trends in

both are approximately the same over the frequency range of 0 to 20GHz.

Fig. 4-8 again shows a close match between the slopes of Ansoft Designer and HFSS and
the MM-PM technique curve. However, the Ansoft software curve is slightly higher than

that of the MM-PM technique curve. Furthermore the difference is more evident at high

frequencies.
1500 T T 1 f I | T 1 T
| | l ; | I i l !
1 1 1 I | ] ] | |
1 1 1 t I ] ] | 1
| | \ | | l I | |
1 1 ] I t | { ] |
1 1 ] | | ] t ] { {
1 1 1 1 1 1 1 1 !
1 1 1 + I 1 i) i 1/
1000} - - - - = T R 1 P
| ' ( ) 1 1 ) v )
- i ; 1 | | | . |
E | ; I i I | 4 I |
= 1 ' [ ' ' i 1 ! I
o | | i i A S | )
1 ] 1 1 1 t 1 3 1
500k oo T - . A S T R SO
1 t I I 1 i I t 1
i | i / 1 1 1 | |
1 1 1 1 i | 1 1 i
1 1 1 ! 1 L L i
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l : ) \ ! | —+— Ansoft HFSS
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Fig. 4-7: Dispersion curve for MM-TM technique vs. Ansoft for L = 6.35mm, h =12.7mm, t =
0.635mm, d = 1.27mm, &, = 8.875.
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Fig. 4-9 shows an excellent match between the slope of the Ansoft Designer curve and
that of the MM-PM technique curve. When compared with HFSS at low frequencies, the
2D MM-PM technique produces a good match, but as the frequency increases over

approximately 8GHz the difference becomes more prominent.

4.4 A Comparison with Experimental Data

4.4.1 One- Dimensional MM-PM Technique

To determine the propagation constant to compare with the developed MM-PM technique
a strip-line was built with the following properties: L = 25mm, t = 2.5mm, d = 62mil, ¢ =
2.2 and a depth of 15.6cm. The device can be seen in Fig. 4-10. A network analyzer was
used to measure the S parameter of the structure. These results were then loaded into
ADS and the optimizer feature was used to match the s- parameters to an ideal
transmission line while optimizing g;. For this the physical length is matched to the actual
length and the phase response is used to optimize. In Appendix C, the schematic of the

design is shown. The results can be seen in Fig. 4-11.

A similar structure was simulated ﬁsing the MM-PM technique; these results can also be
seen in Fig. 4-11. It should be noted that in the MM-PM technique, the height of the air
substrate needs to be defined. Thus to make the simulated situation in the MM-PM
technique similar to that of the open air environment for the case of the network analyzer,

the height was set to a relatively large value [6].

From the results in Fig. 4-11, it can be shown that both the MM-PM technique result and

the network analyzer result provide a linear result. Furthermore we can see that there is a
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very close match between the three results. It should be noted that some difference in the
result is expected due to imperfections in the fabrication of the device, which are made
more pronounced at high frequencies. In summary, the results show that the MM-PM
technique for strip-line produced a very good approximation for the dispersion

characteristics.

Fig. 4-10: Shielded Microstrip Line

Dispersion Characteristics for 1-D Limiting Case

1 T T T T T T
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0.7 b o e — ' '
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Fig. 4-11: MM-PM Technique vs. network analyzer for 1-D structure.
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4.4.2 Two- Dimensional MM-PM Technique

To determine the measured phase constant of a 2-D  structure, as seen in Fig. 4-12, the
phase component of the S;, was measured. A similar structure was then simulated using
the 2D MM-PM technique method and HFSS. The results shown in Fig. 4-13 are the
simulated results and the measured results for a 2-D structure with the following
properties; L = 15mm, ¢= 2.2, d = 62mil, t = 23mm. For the simulated results, h = 620mil

used. This was to simulate the open air environment that is in the experiment.

The results show a relatively close match between the HFSS and the network analyzer
results. However, both results have lower slopes that the 2-D MM-PM technique.
Possible reasons for this could be less than ideal test conditions and fabrication errors.
With respect to the 2D MM-PM technique it appears that as the structure gets larger the
solution matrix becomes more ill-conditioned and so can produce errors. Overall the

results were a good match.

EEEEN
EEEER
-AHEENR

Fig. 4-12 Simulated 2-D Structure
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Dispersion Characteristics for 2-D Structure
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Fig. 4-13: MM-PM technique vs. network analyzer for 2-D structure

4.5 Feed Location Combinations

In the previous sections the devices were fed from the centre patches that are located at
opposite ends of the devices. In this section the locations of the feeds are varied, using
Ansoft HFSS, to see how it compares with that of the 2-D MM-PM technique. Two

different feed combinations were used.

First, the feed points are located on patches mirrored on the y-z plane and adjacent to the
centre patches as shown in Fig. 4-14. The second feed combination used is shown in Fig.
4-15. The numerical results from two different devices and for the two configurations are
shown in Fig. 4-16 and Fig. 4-17. From Fig. 4-16, at low frequencies it is seen that the
two different feed styles match the MM-PM technique. As the frequency increases the

first feed style results deviate from the results of the second feed style and that of the
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MM-PM technique. For the second device this is not the case. Three results in Fig. 4-17

are approximately the same.

EEEEN
n B B B B o
EEEER
EEEEN
EEEEN

Fig. 4-14 Feed style 1.
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Fig. 4-15 Feed style 2.
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Chapter 5

CONCLUSION

In this thesis we adopted the hybrid method of the mode matching technique and develop
it to calculate the dispersion characteristics of a 2-D periodic structure. In the MM-PM
technique an infinite number of periodic patches were distributed on a substrate. We
assumed that the strips are infinitely small and a perfect metallic shield is placed at a
large distance above the patches to prevent radiation. Floquet’s theorem is used to obtain
the field equations both in the air and in the dielectric substrate. Then by imposing
boundary conditions at the interface of the air and substrate, a set of equations are
obtained. These equations are expressed in a matrix form and then solved to yield the

dispersion characteristics.

There is a close match of the results of the 2-D MM-PM technique developed and the
results generated using HFSS, Ansoft Designer and the limiting case for the 1-D MM-PM
method, as seen Fig. 4-6 to Fig. 4-9. A reasonable match between the 2-D structure and
the 2-D MM-PM technique is also obtained. Likewise there is a good match between the
experimental results, Fig. 4-11 and Fig. 4-12, for the 1-D and 2-D structure and the MM-
PM technique. The implications of these results are that the MM-PM technique is valid

alternative method to calculate the dispersion characteristics.

The parametric study showed that several modes appeared since several valleys in Fig.

4-1 to Fig. 4-5 were observed. It should be noted that the spurious valleys present in the
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results indicated that the solution matrix was ill-conditioned. These results are more
significant when a large structure is under test, since for large structures large values are
included in the solution matrix and these further cause large variations in the elements’

values of the matrix.

It is noted from the experimental data for 1-D and 2-D periodic structure that the 2-D
MM-PM technique worked best at lower frequencies. This is expected since like before
large frequency values increased the condition of the matrix making it more difficult to
extract the propagation constant. Therefore with a small structure care was taken in
choosing the parameters used. The SVD is powerful enough tool to compensate for small

departures and provide reasonable results.

It was noticed from the experimental data for 1-D and 2-D periodic structures that the 2-
D MM-PM, technique worked best at lower frequencies. This is expected since large
frequency values increased the condition of the matrix, making it more difficult to extract

the propagation constant.

It was seen that changes to the dimension of the metal patch brought negligible changes
in the dispersion characteristics. However changes in &, did bring noticeable changes to
the dispersion characteristics. This is seen in both the theoretical results and simulated
results. These results confirm that g, does in fact have a larger effect on the dispersion

characteristics.

In summary it has been shown that the MM-PM technique can be successfully applied to

calculate the dispersion characteristics for the 2-D periodic structure, with good accuracy
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as shown by comparison with results from commercially available sofware and also with

experimental results.
5.1 Further Work

The current work was developed for a simple shaped patch arranged in an array format.

Further work could be done on the design of some other shapes such as circular patches.

Extending this work to 3-D structures is another possibility for further work. But again,
care need to be taken as the matrices could be very ill conditioned. In pursuing this
avenue of work, efforts would need to be put into improving the conditioning of the

matrices before solving them.

Currently there is a lot of work being done in designing 2-D periodic structures by having
a patterned ground plane which is separated from a microstrip line by a dielectric
substrate. Therefore this work could be developed to look at having a patterned ground

plane as opposed to a simple sheet as ground.

The propagation constant B in this work was considered to be a scalar and real quantity.
As stated in Scarmozzino et al. [7], this would provide results of interest but may not be
accurate in determining the propagation constant. This could also be used to explain why
the experimental results obtained from measurements compared to that obtained from the
MM-PM method do not match. An improvement to the results could be achieved by
considering the case where the propagation constant is complex (o. + jB). This would give

us a better understanding of the band-gap for the structure under investigation.
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MATHEMATICAL FORMULATION
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Appendix B

MATLAB CODE

B.1. sitsodominant.m

clc

clear all;
close all;
Y%tt=cputime;

fmax=50¢e9;
fmin=20¢9;
N=7;

% GEOMETERY OF THE PROBLEM

L =20e-3; %The half length of the shield along x-direction

h =20.0e-3; %The length of the shield along y-direction
d=1.5478e-3; %The thickness of the substrate along y-direction
t=0.5%5.0e-3; %The half width of the strip

%CONSTITUATIVE PARAMETERS
epsilon0=1e-9/36/pi;

miu0=pi*4.0e-7;

epsilonr=8.8;

%NORMALIZATION
Num=50;
f=linspace(fmax,fmin,Num);

k0=2*pi*f*sqrt(epsilon0*miu0);
ke=2*pi*f*sqrt(epsilonr*epsilon0*miu0);

betax=0.0001;
nL=L;

nh=h;

nd=d;

nt=t;
nbetax=Dbetax;
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nbetaz0=4.0*kO0;
for i=1:Num

forj=1:1
fprintf('i = %d\t', i)
fprintf('freq = %2.2dGHz\t', f(i)/1¢9)

%]|nbetaz(i,j), fval] = fminsearch(@(betaz) temparef(betaz,nbetax(i), betal, beta2,
nL(i), nh(i), nd(i), nt(i), epsilonr, Nx, Nz ), [nbetaz0(j)]);

[nbetaz(i,j), fval]=fminsearch('temparef2',nbetaz0(i),[],nbetax,k0(1), kr(i),
nL,nh,nd,nt,epsilonr,N);

nbetaz0(j)=nbetaz(i,j);

fprintf(‘fval = %d\t', fval)

fprintf('nbetaz = %d\n', nbetaz0(j)/k0(i))

end
plot(f(1:1)/1¢9 , nbetaz(1:i,1))
xlabel(*{\itf} (GHz)") ‘
ylabel("\beta_z")
grid
pause(2)

end

B.2. temparef2.m

function y = temparef2(betaz, betax, k0, kr, L, h, d, t, N)
Al = twodpointmatching(betaz, betax, kO, kr, L, h, d, t, N);
sm = svd(Al);

y = min(sm)."2;

B.3. twodpointmatching.m (normal case)

function Al=twodpointmatching(betaz, betax, k0, kr, L, h, d, t, N)

r=t/L;
j = sqrt(-1);

xNuml =ceil((1 -n)* (2 *N+1)/2);
x1min=-L;

71



x1max = -t;
deltax1 = (x1max - x1min) / (xXNuml + 1);

xNum2=2*N+1-2*xNuml;

X2min = -;

x2max =t;

deltax2 = (x2max - x2min) / (xNum2 + 1);

xNum3 =ceil((1-r)*(2*N+1)/2);
X3min=t;

x3max=L;
deltax3=(x3max-x3min)/(xNum3+1);

zNuml =ceil((1-r) * (2 * N+ 1)/ 2);
zlmin=-L;

zlmax = -t;

deltazl = (z1max - zlmin) / (zNuml + 1);

zNum2 =2 * N + 1 -2 * zNuml;

z2min = -t;

Z2max =t;

deltaz2 = (z2max - z2min) / (zNum2 + 1);

zNum3 =ceil((1-r)*(2*N+1)/2);
Z3min=t;

z3max=L;
deltaz3=(z3max-z3min)/(zNum3+1);

for m =-N:N
for n=-N:N
betan=betax+n*pi/L;
betam=betaz+ m*pi/L;

if betan.”2+betam.”2>=kr."2
alphanl=sqrt(betan.”2+betam.”2-kr.”2);
else

alphanl=-j*sqrt(kr."2-betan.”2-betam."2);

end

if betan.\2+betam."2>=1;
alphan2=sqrt(betan.”2+betam."2-k0./2);
else

alphan2=-j*sqrt(k0."2-betan.”2-betam.”2);

end

tempt1=coth(alphanl*d);
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tempt2=coth(alphan2*(h-d));

if betan == 0 || betam == 0
Pn=kr."2 .* alphanl .* temptl + (kr."2 - betam.”2)/ (k0.”2 - betam."2) .*
alphan2 .* tempt2;
else
Pn =kr "2 * alphanl ./ (betan .* betam) .* tempt1 ...
+ alphan2 .* tempt2 .* (k0.2 - betam.”2) / (kr.”2 - betam.”2) ./ (betan .*
betam)...
+ betan .* betam ./ alphan2 .* (kr.*2 - k0./2)/(kr.”2 - betam."2).*tempt2;

end 7

Tn = betan .* betam ./ alphanl .* tempt] + betan .* betam ./ alphan2 .* tempt2;

Qn = betan .* betam ./ alphan2 .* (k0./2 - kr.*2) ./ (k0.2 - betam."2).*tempt2;

Wn = (kr.”2 - betam.”2)./(k0.”2 - betam."2) .* betan .* betam ./ alphanl .* tempt] +
betam .* betan ./ alphan2 .* tempt2;

q=n+N+1;
p=m+N+1;

%REGION A

for x = 1:xNuml
x1 =x1min + x * deltax1;
for z = 1:zZNuml
z1 = zlmin + z * deltazl;
b=(p-D*@2*N+D) +q;
a=(x-1)*xNuml + z;
Almn(a, b) = betan .* betam .* Pn * exp(-j * betan * x1) .* exp(-j * betam
*z1);
A2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x1) .* exp(-j * betam
*z1);
A3mn(a, b) = Qn * exp(j * betan * x1) .* exp(-j * betam * z1),
Admn(a, b) = Wn * exp(-j * betan * x1) .* exp(-j * betam * z1);
end
end

%REGION B

for x = 1:xNum2
x2 = x2min + x * deltax2;
for z = 1:zNuml
z1 = zlmin + z * deltazl;
b=(p-1)*(2*N+1)+q;
a=(x-1)*xNum2 + z;
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*z1);

* 21);

*zl);

*zl);

* 72);

* 22),

Blmn(a, b) = betan .* betam .* Pn * exp(-j * betan * x2) .* exp(-j * betam
B2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x2) .* exp(-j * betam

B3mn(a, b) = Qn * exp(-j * betan * x2) .* exp(-j * betam * z1);
B4mn(a, b) = Wn * exp(-j * betan * x2) .* exp(-j * betam * z1);

end

%REGION C

for x = 1:xNum3
x3 = x3min + x * deltax3;
for z=1:zNuml

z1 = zlmin + z * deltazl;

b=(p-1)* 2*N+1)+g;

a=(x-1)* xNum3 + z;

Clmn(a, b) = betan .* betam .* Pn * exp(5 * betan * x3) .* exp(-j * betam

C2mn(a, b) = betan .* betam .* Tn * exp(-) * betan * x3) .* exp(-j * betam

C3mn(a, b) = Qn * exp(+j * betan * x3) .* exp(-j * betam * z1);
C4mn(a, b) = Wn * exp(j * betan * x3) .* exp(-j * betam * z1);

end

%REGION D

for x = 1:xNuml
x1 =xImin + x * deltax1;
for z= 1:zZNum2

z2 = z2min + z * deltaz2;

b=(p-1)* (2*N+1) +q;

a=(x-1)*xNuml + z;

D1mn(a, b) = betan .* betam .* Pn * exp(-j * betan * x1) .* exp(-j * betam

D2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x1) .* exp(-j * betam

D3mn(a, b) = Qn * exp(-j * betan * x1) .* exp(-j * betam * z2);
D4mn(a, b) = Wn * exp(+j * betan * x1) .* exp(-j * betam * z2);

end

%REGION E

for x = 1:xNum?2
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z2);

* z2);

* 22);

* 23);

* 23);

x2 =x2min + x * deltax2;
for z = 1:z2Num?2

z2 =72min + z * deltaz2;

b=(p-1)* (2*N+1) +q;

a=(x-1)*xNum2 +z;

Elmn(a, b) = (kr.*2 - betam.”2) .* exp(-j * betan * x2) .* exp(-j * betam *

E2mn(a, b) = 0;
E3mn(a, b) = betan .* betam * exp(-j * betan * x2) .* exp(-j * betam * z2);
E4mn(a, b) = betan .* betam * exp(-j * betan * x2) .* exp(~j * betam * z2);

end

end

%REGION F

for x = 1:xNum3
x3 =x3min + x * deltax3;
for z = 1:z2Num?2

z2 = 72min + z * deltaz2;

b=(p-1)*(2*Nt1)+q;

a=(x-1)*xNum3 + z

Flmn(a, b) = betan .* betam .* Pn * exp(-j * betan * x3) .* exp(-j * betam

F2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x3) .* exp(-j * betam

F3mn(a, b) = Qn * exp(4 * betan * x3) .* exp(-j * betam * z2);
F4mn(a, b) = Wn * exp(+j * betan * x3) .* exp(-j * betam * z2);

end

end

%REGION G

for x = 1:xNuml
x1 =x1min + x * deltax1;
for z = 1:2Num3

73 = z3min + z * deltaz3;

b=(p-1)* (2*N+1) +q;

a=(x-1)*xNuml +z;

GIlmn(a, b) = betan .* betam .* Pn * exp(-j * betan * x1) .* exp(j * betam

G2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x1) .* exp(-j * betam

G3mn(a, b) = Qn * exp(-j * betan * x1) .* exp(-j * betam * z3);
G4mn(a, b) = Wn * exp(-j * betan * x1) .* exp(-j * betam * z3);

end

end
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%REGION H

for x = 1:xNum?2
X2 =Xx2min + x * deltax2;
for z = 1:zZNum3
z3 = z3min + z * deltaz3;
b=(p-1)* (2*N+1) +q;
a=(x-1)*xNum2 + z;
Hlmn(a, b) = betan .* betam .* Pn * exp(+j * betan * x2) .* exp(-j * betam

* 23);
H2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x2) .* exp(+ * betam
* 73);
H3mn(a, b) = Qn * exp(-j * betan * x2) .* exp(-j * betam * z3);
H4mn(a, b) = Wn * exp(-j * betan * x2) .* exp(-j * betam * z3);
end
end
%REGION I
for x = 1:xNum3
X3 = x3min + x * deltax3;
for z = 1:zNum3
z3 = z3min + z * deltaz3;
b=(p-1)* @*™N+D) +g;
a=(x-1)*xNuml + z;
Ilmn(a, b) = betan .* betam .* Pn * exp(-j * betan * x3) .* exp(-j * betam
* 23);
I2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x3) .* exp(+j * betam
* 23);
I3mn(a, b) = Qn * exp(-j * betan * x3) .* exp(+j * betam * z3);
I4mn(a, b) = Wn * exp(-j * betan * x3) .* exp(-j * betam * z3);
end
end
end
end

A =[Almn, A2mn; A3mn, Admn];
B = [Blmn, B2mn; B3mn, B4mn];
C = [Clmn, C2mn; C3mn, C4mn];

D = [DImn, D2mn; D3mn, D4mn]};
E = [Elmn, E2mn; E3mn, E4mn];
F = [F1mn, F2mn; F3mn, F4mn};

G =[Glmn, G2mn; G3mn, G4mn];
H = [Hlmn, H2mn; H3mn, H4mn];
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I=[I1mn, I2mn; I3mn, I4mn};

Al =[A;B;C;D;E;F;G;H;1];

B.4. twodpointmatching.m (limiting case)

function A l=twodpointmatching(betaz, betax, kO,kr,L, h, d, t, N)

zL = 1000*L;
zt = 1000*L;
zr = zt/zL;

r=t/L;
J=sqrt(-1);

xNuml =ceil((1-1) *(2* N+ 1)/2),
x1lmin=-L;

xIlmax = -t;

deltax1 = (xImax - x1min) / (xXNuml + 1);

xNum2 =2 *N+1-2*xNuml;

x2min = -t;

X2max =t;

deltax2 = (x2max - x2min) / (XNum2 + 1);

xNum3 =ceil((1-r)*(2*N+1)/2);
x3min=t;

x3max=L;
deltax3=(x3max-x3min)/(xXNum3+1);

zNuml =ceil((1 -zr) * (2 * N+ 1)/2);
zlmin = -zL;

zlmax = -zt;

deltazl = (zlmax - zlmin) / (zZNuml + 1);

zZNum2=2*N+ 1 -2 * zNuml;

z2min = -zt;

z2max = zt;

deltaz2 = (z2Zmax - z2min) / (zNum?2 + 1);

zNum3 =ceil((1-zr)*(2*N+1)/2),
z3min=zt;

z3max=zL;
deltaz3=(z3max-z3min)/(zNum3-+1);
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for m =-N:-N
for n=-N:N
betan=betax+n*pi/L;
betam=betaz ;

if betan.*2+betam. 2>=kr."2
alphanl=sqrt(betan."2+betam."2-kr."2);
else
alphan1=-j*sqrt(kr.”2-betan.”2-betam."2);
end

if betan."2+betam."2>=1;
alphan2=sqrt(betan.”2-+betam."2-k0.72);
else
alphan2=-j*sqrt(k0./2-betan."2-betam."2);
end

tempt1=coth(alphan]*d);
tempt2=coth(alphan2*(h-d));

if betan == 0 || betam ==
Pn=kr"2 .* alphanl .* temptl + (kr.*2 - betam.”2)/ (k0.”2 - betam."2) .*
alphan2 * tempt2;
else
Pn=kr.*2.* alphanl ./ (betan .* betam) .* tempt1 ...
+ alphan2 .* tempt2 .* (k0.”2 - betam.*2) / (kr."2 - betam.”2) ./ (betan .*
betam)...
+ betan .* betam ./ alphan2 .* (kr.*2 - k0./42)/(kr.*2 - betam.”2).*tempt2;

end

Tn = betan .* betam ./ alphanl .* tempt] + betan .* betam ./ alphan2 .* tempt2;

Qn = betan .* betam ./ alphan2 .* (k0.”2 - kr."2) ./ (k0.72 - betam.”2).*tempt2;

Wn = (kr.”2 - betam.”2)./(k0.”2 - betam.”2) .* betan .* betam ./ alphanl .* tempt1 +
betam .* betan ./ alphan2 .* tempt2;

q=ntN+I;
p = mtN+l;

%REGION A
for x = 1:xNuml
x1 =x1min + x * deltax1;

for z = 1:zZNuml
z1 = zlmin + z * deltazl;
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b=(p-1)* 2*N+1) +q;

a=(x-1)*xNuml + z

Almn(a, b) = betan .* betam .* Pn * exp(-j * betan * x1) .* exp(-j * betam
*z1);

A2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x1) .* exp(-j * betam
*zl);

A3mn(a, b) = Qn * exp(-j * betan * x1) .* exp(-j * betam * z1);

Admn(a, b) = Wn * exp(+ * betan * x1) .* exp(-j * betam * z1);

end
end

%REGION B

for x = 1:xNum?2
X2 =x2min + x * deltax2;
for z=1:zNuml
z1 =zlmin + z * deltazl;
b=(p-1)*2*N+]) +gq;
a=(x-1)*xNum2 + z;
Blmn(a, b) = betan .* betam .* Pn * exp(+ * betan * x2) .* exp(-j * betam
*zl),
B2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x2) .* exp(- * betam
* zl);
B3mn(a, b) = Qn * exp(-] * betan * x2) .* exp(-j * betam * z1);
B4mn(a, b) = Wn * exp(-j * betan * x2) .* exp(-j * betam * z1);
end
end

%REGION C

for x = 1:xNum3
x3 = x3min + x * deltax3;
for z =1:zNuml
z1 =zlmin + z * deltazl;
b=(p-1)* (2*N+1) +q;
a=(x-1)*xNum3 + z;
Clmn(a, b) = betan .* betam .* Pn * exp(+j * betan * x3) .* exp(+j * betam
*zl);
C2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x3) .* exp(-j * betam
*z1);
C3min(a, b) = Qn * exp(-j * betan * x3) .* exp(-j * betam * z1);
C4mn(a, b) = Wn * exp(-j * betan * x3) .* exp(-j * betam * z1);
end
end

%REGION D

79



* 22);

*z2);

z2);

* 22);

* z2);

for x = 1:xNum!
x1 =x1min + x * deltax1;
for z= 1:zNum2

z2 = z2min + z * deltaz2;

b=(p-1)*(2*N+1) +q;

a=(x-1)*xNuml + z;

Dlmn(a, b) = betan .* betam .* Pn * exp(-j * betan * x1) .* exp(-j * betam

D2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x1) .* exp(-j * betam

D3mn(a, b) = Qn * exp(-j * betan * x1) .* exp(+j * betam * z2);
D4mn(a, b) = Wn * exp(-j * betan * x1) .* exp(-j * betam * z2);

end

%REGION E

for x = 1:xNum?2
X2 =x2min + x * deltax2;
for z = 1:zNum?2

z2 = z2min + z * deltaz2;

b=(p-1)* (2*N+1) +q;

a=(x-1)*xNum?2 + z;

Elmn(a, b) = (kr."2 - betam.”2) .* exp(-j * betan * x2) .* exp(-j * betam *

E2mn(a, b) = 0;
E3mn(a, b) = betan .* betam * exp(-j * betan * x2) .* exp(-j * betam * z2);
E4mn(a, b) = betan .* betam * exp(-j * betan * x2) .* exp(-j * betam * z2);

end

%REGION F

for x = 1:xNum3
x3 =x3min + x * deltax3;
for z=1:zNum?2

z2 = z2min + z * deltaz2;

b=(p-1)*(2*N+1) +q;

a=(x-1)*xNum3 + z;

Flmn(a, b) = betan .* betam .* Pn * exp(-) * betan * x3) .* exp(-j * betam

F2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x3) .* exp(-j * betam

F3mn(a, b) = Qn * exp(5 * betan * x3) .* exp(-j * betam * z2);
F4mn(a, b) = Wn * exp(+] * betan * x3) .* exp(-j * betam * z2);
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end
end
%REGION G

for x = 1:xNuml
x1 =x1min + x * deltax1;
for z = 1:zZNum3
z3 = z3min + z * deltaz3;
b=(p-1)* @*N+])+g;
a=(x-1)*xNuml + z;
Glmn(a, b) = betan .* betam .* Pn * exp(-j * betan * x1) .* exp(-j * betam
* 23);
G2mn(a, b) = betan .* betam .* Tn * exp(+ * betan * x1) .* exp(-j * betam
* 23);
G3mn(a, b) = Qn * exp(j * betan * x1) .* exp(-j * betam * z3);
G4mn(a, b) = Wn * exp(-j * betan * x1) .* exp(-j * betam * z3);
end
end

%REGION H

for x = 1:xNum?2
x2 = x2min + x * deltax2;
for z = 1:zZNum3
z3 = z3min + z * deltaz3;
b=(p-1)* 2*N+]) +g;
a=(x-1)*xNum2 + z;
Hlmn(a, b) = betan .* betam .* Pn * exp(-j * betan * x2) .* exp(-j * betam

H2mn(a, b) = betan .* betam .* Tn * exp(-j * betan * x2) .* exp(+j * betam

H3mn(a, b) = Qn * exp(-j * betan * x2) .* exp(-j * betam * z3);

H4mn(a, b) = Wn * exp(-j * betan * x2) .* exp(-} * betam * z3);

end )
end

%REGION 1

for x = 1:xNum3

x3 =x3min + x * deltax3;

for z=1:zNum3
z3 =z3min + z * deltaz3;
b=(p-1)* (2*N+1) +q;
a=(x-1)*xNuml + z;
I1mn(a, b) = betan .* betam .* Pn * exp(-j * betan * x3) .* exp(-j * betam

* 23);
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I2mn(a, b) = betan .* betam .* Tn * exp(+j * betan * x3) .* exp(-j * betam

* 23);
I3mn(a, b) = Qn * exp(-j * betan * x3) .* exp(-j * betam * z3);
I4mn(a, b) = Wn * exp(-j * betan * x3) .* exp(-j * betam * z3);
end
end
end
end
if zZNuml ~= 0;

A =[Almn, A2mn; A3mn, A4mn];
B = [Blmn, B2mn; B3mn, B4mn];
C=[Clmn, C2mn; C3mn, C4mn];

D = [D1lmn, D2mn; D3mn, D4mn];
E =[Elmn, E2mn; E3mn, E4mn];
F =[Flmn, F2mn; F3mn, F4mn];

G = [Glmn, G2mn; G3mn, G4mn];
H = [Hlmn, H2mn; H3mn, H4mn];
I=[I1mn, I2mn; I3mn, I4mn];

Al =[A;B;C;D;E;F;G;H;1];

else
D =[DIlmn, D2mn; D3mn, D4mn];
E = [Elmn, E2mn; E3mn, E4mn];
F =[Flmn, F2mn; F3mn, F4mn];

Al =[D;E;F];
end
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Appendix C

ADS SCHEMATICS
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