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Abstract

Statistical Defect Prediction Models for Software Quality Assurance

Yan Luo

Software defects entail a highly-significant cost penalty in lost productivity and post-release main-
tenance. Early defect prevention and removal techniques can substantially enhance the profit re-
alized on software products. The motivation for software quality improvement is most often ex-
pressed in terms of increased customer satisfaction with higher product quality, or more generally,
as a need to position SAP Inc as a leader in quality software development. Thus, knowledge about
how many defects to expect in a software product at any given stage during its development process
is a very valuable asset. The great challenge, however, is to devise efficient and reliable prediction
models for software defects. The first problem addressed in this thesis is software reliability growth
modeling. We introduce an anisotropic Laplace test statistic that not only takes into account the
activity in the system but also the proportion of reliability growth within the model.

The major part of this thesis is devoted to statistical models that we have developed to predict
software defects. We present a software defect prediction model using operating characteristic
curves. The main idea behind our proposed technique is to use geometric insight in helping con-
struct an efficient prediction method to reliably predict the number of failures at any given stage
during the software development process. Our predictive approach uses the number of detected
faults in the testing phase. Data from actual SAP projects is used to illustrate the much improved

performance of the proposed method in comparison with existing prediction approaches.
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CHAPTER

Introduction

Software quality is becoming increasingly important. Software is now used in many demanding
applications and software defects cost businesses and the software industry billions of dollars in
lost productivity. Software quality impacts development costs, delivery schedules, and user sat-
isfaction. While defects in financial or word-processing programs are annoying and very costly.
When software-intensive systems fly airplanes, drive automobiles, control air traffic, run factories,
or operate power plants, defects can cause serious damage and even physical harm. In spite of all
its problems, software is ideally suited for critical applications: it does not wear out or deteriorate.
Computerized control systems are so versatile, economical, and reliable that they are now the com-
mon choice for almost all systems. Software engineers must thus consider that their work could
impact the health, safety, and welfare of many people.

Early defect prevention and removal techniques can substantially enhance the profit realized
on software products. The motivation for software quality improvement is most often expressed in
terms of increased customer satisfaction with higher product quality, or more generally, as a need
to position SAP Inc as a leader in quality software development. Thus, knowledge about how many

defects to expect in a software product at any given stage during its development process is a very



Chapter 1. Introduction

valuable asset. Being able to estimate the defects related cost driver characteristics will substan-
tially improve the decision processes relevant for e.g. releasing a software product . In addition,
the production process for software products can be substantially improved by employing a model
that accounts for the dynamic nature of software production processes and reliably quantifies the
expected defects that a future customer is likely to encounter.

The great challenge, however, is to devise efficient and reliable prediction models for software
defects. The first problem addressed in this thesis is software reliability growth modeling. We
introduce an anisotropic Laplace test statistic that not only takes into account the activity in the
system but also the proportion of reliability growth within the model. This generalized approach
is defined as a weighted combination of a growth reliability model and a non-growth reliability
model.

The major part of this thesis is devoted to statistical models that we have developed to predict
software defects for any software or firmware product. We present a software defect prediction
model using operating characteristic curves. The main idea behind our proposed technique is to use
geometric insight in helping construct an efficient and fast prediction method to accurately predict
the cumulative number of failures at any given stage during the software development process. Our
predictive approach uses the number of detected faults instead of the software failure-occurrence
time in the testing phase. Data from actual SAP projects is used illustrate the effectiveness and the
much improved performance of the proposed method in comparison with the Bayesian prediction
approaches. Although additional investigations, such as a determination of post-release software
defects, might provide a more detailed analysis of the predicted defects, the results presented in

this provide compelling motivation for improved software quality.



1.1 Framework and Motivation
1.1 Framework and Motivation

Software Quality Assurance (SQA) is defined as a planned and systematic approach to the eval-
uation of the quality of and adherence to software product standards, processes, and procedures.
SQA includes the process of assuring that standards and procedures are established and are fol-
lowed throughout the software acquisition life cycle. Compliance with agreed-upon standards and
procedures is evaluated through process monitoring, product evaluation, and audits. Software de-
velopment and control processes should include quality assurance approval points, where an SQA
evaluation of the product may be done in relation to the applicable standards.

One of the many challenges faced when attempting to build a business case for software process
improvement is the relative lack of credible measurement data. If a company does not have the data
to build the business case, it does not have the improvement project to get the data. It is the classic
chicken-and-egg dilemma. The motivation behind this thesis is to implement statistical models for
predicting software defects using available failure data. The practitioners collect software defect
data during software development processes but the decision support power of the collected data
is wasted in most of the organizations. These defect data combined with the data of other features
become a well-suited repository for using Bayesian statistics and machine learning techniques to

predict future defects.

1.1.1 What are Defects?

A software engineer’s job is to deliver quality products for their planned costs, and on their com-
mitted schedules. Software products must also meet the user’s functional needs and reliably and

consistently do the user’s job. While the software functions are most important to the program’s
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users, these functions are not usable unless the software runs. To get the software to run reliably,
however, engineers must remove almost all its defects. Thus, while there are many aspects to
software quality, the first quality concern must necessarily be with its defects.

The reason defects are so important is that people make a lot of mistakes. In fact, even expe-
rienced programmers typically make a mistake for every seven to ten lines of code they develop.
While they generally find and correct most of these defects when they compile and test their pro-
grams, they often still have a lot of defects in the finished product.

Some people mistakenly refer to software defects as bugs. When programs are widely used
and are applied in ways that their designers did not anticipate, seemingly trivial mistakes can have
unforeseeable consequences. As widely used software systems are enhanced to meet new needs,
latent problems can be exposed and a trivial-seeming defect can truly become dangerous. While
the vast majority of trivial defects have trivial consequences, a small percentage of seemingly
silly mistakes can cause serious problems. Since there is no way to know which of these simple
mistakes will have serious consequences, we must treat them all as potentially serious defects, not
as trivial-seeming “bugs”.

The term defect refers to something that is wrong with a program. It could be a misspelling, a
punctuation mistake, or an incorrect program statement. Defects can be in programs, in designs,
or even in the requirements, specifications, or other documentation. Defects can be redundant or
extra statements, incorrect statements, or omitted program sections. A defect, in fact, is anything
that detracts from the program’s ability to completely and effectively meet the user’s needs. A
defect is thus an objective thing. It is something you can identify, describe, and count.

Simple coding mistakes can produce very destructive or hard-to-find defects. Conversely, many

sophisticated design defects are often easy to find. The sophistication of the design mistake and the
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impact of the resulting defect are thus largely independent. Even trivial implementation errors can
cause serious system problems. This is particularly important since the source of most software
defects is simple programmer oversights and mistakes. While design issues are always important,
initially developed programs typically have few design defects compared to the number of simple
oversights, typos, and goofs. To improve program quality, it is thus essential that engineers learn

to manage all the defects they inject in their programs.

1.1.2 Software Reliability Growth Models

Software reliability engineering is focused on engineering techniques for developing and main-
taining software systems whose reliability can be quantitatively evaluated. In order to estimate as
well as to predict the reliability of software systems, failure data need to be properly measured by
various means during software development and operational phases. Moreover, credible software
reliability models are required to track underlying software failure processes for accurate reliability
analysis and prediction.

Achieving highly reliable software from the customers perspective is a demanding job for all
software engineers and reliability engineers. [24] summarizes the following four technical areas
which are applicable to achieving reliable software systems, and they can also be regarded as four

fault lifecycle techniques:
1. Fault prevention: to avoid, by construction, fault occurrences.

2. Fault removal: to detect, by verification and validation, the existence of faults and eliminate

them.

3. Fault tolerance: to provide, by redundancy, service complying with the specification in spite
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of faults having occurred or occurring.

4. Fault/failure forecasting: to estimate, by evaluation, the presence of faults and the occur-
rences and consequences of failures. This has been the main focus of software reliability

modeling.

Fault prevention is the initial defensive mechanism against unreliability. A fault which is never
created costs nothing to fix. Fault prevention is therefore the inherent objective of every software
engineering methodology. Fault prevention mechanisms cannot guarantee avoidance of all soft-
ware faults. When faults are injected into the software, fault removal is the next protective means.
Two practical approaches for fault removal are software inspection and software testing, both of
which have become standard industry practices in quality assurance.

When inherent faults remain undetected through the inspection and testing processes, they will
stay with the software when it is released into the field. Fault tolerance is the last defending line
in preventing faults from manifesting themselves as system failures. Fault tolerance is the survival
attribute of software systems in terms of their ability to deliver continuous service to the customers.
Software fault tolerance techniques enable software systems to (1) prevent dormant software faults
from becoming active, such as defensive programming to check for input and output conditions
and forbid illegal operations; (2) contain the manifested software errors within a confined boundary
without further propagation, such as exception handling routines to treat unsuccessful operations;
(3) recover software operations from erroneous conditions, such as checkpointing and rollback
mechanisms; and (4) tolerate system-level faults methodically, such as employing design diver-
sity in the software development. Finally if software failures are destined to occur, it is critical to
estimate and predict them. Fault/failure forecasting involves formulation of the fault/failure rela-

tionship, an understanding of the operational environment, the establishment of software reliability

6
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models, developing procedures and mechanisms for software reliability measurement, and analyz-
ing and evaluating the measurement results. The ability to determine software reliability not only
gives us guidance about software quality and when to stop testing, but also provides information
for software maintenance needs.

As a major task of fault/failure forecasting, software reliability modeling has attracted much
research attention in estimation (measuring the current state) as well as prediction (assessing the
future state) of the reliability of a software system. A software reliability model specifies the form
of a random process that describes the behavior of software failures with respect to time. There
are three main reliability modeling approaches: the error seeding and tagging approach, the data
domain approach, and the time domain approach, which is considered to be the most popular one.
The basic principle of time domain software reliability modeling is to perform curve fitting of
observed time-based failure data by a pre-specified model formula, such that the model can be
parameterized with statistical techniques (such as the Least Square or Maximum Likelihood meth-
ods). The model can then provide estimation of existing reliability or prediction of future reliability
by extrapolation techniques. Software reliability models usually make a number of common as-
sumptions, as follows. (1) The operation environment where the reliability is to be measured is the
same as the testing environment in which the reliability model has been parameterized. (2) Once
a failure occurs, the fault which causes the failure is immediately removed. (3) The fault removal
process will not introduce new faults. (4) The number of faults inherent in the software and the
way these faults manifest themselves to cause failures follow, at least in a statistical sense, certain
mathematical formulae.

There are essentially two types of software reliability models:

e those that attempt to predict software reliability from design parameters
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e those that attempt to predict software reliability from test data
The first type of models are usually called “defect density” models and use code characteristics
such as lines of code, nesting of loops, external references, input/outputs, and so forth to estimate
the number of defects in the software. The second type of models are often called software reliabil-
ity growth models (SRGMs) since the number of faults (as well as the failure rate) of the software
system reduces when the testing progresses, resulting in growth of reliability. These models at-
tempt to statistically correlate defect detection data with known functions such as an exponential
function. If the correlation is good, the known function can be used to predict future behavior.
Software reliability growth models are the focus of Chapters 2 and 3.

Most software reliability growth models have a parameter that relates to the total number of
defects contained in a set of code. If we know this parameter and the current number of defects dis-
covered, we know how many defects remain in the code. Knowing the number of residual defects
helps us decide whether or not the code is ready to ship and how much testing is required if we
decide the code is not ready to ship. It gives us an estimate of the number of failures that customers
will encounter when operating the software. The estimate helps us to plan the appropriate levels
of support that will be required for defect correction after the software has shipped and determine
the cost of supporting the software.

The most popular SRGMs are the so-called nonhomogeneous Poisson process (NHPP) models
that have been widely used to track reliability improvement during software testing as well as
to assess the software reliability, the number of remaining faults in the software, and the optimal
software release schedule. These models enable software developers to evaluate software reliability
in a quantitative manner, and have been successfully used to provide guidance in making decisions

such as when to terminate testing the software or how to allocate available recourses.
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The general NHPP software reliability growth model is formulated based on the following
assumptions:
e The occurrence of software faults follows an NHPP with mean value function m(t)
and failure intensity function A(¢).
e The software fault intensity rate at any time is proportional to the number of remaining
faults in the software at that time.
e When a software fault is detected, a debugging effort takes place immediately.
Let {N(t),t > 0} denote a counting process representing the cumulative number of faults detected
by the time t, and m(t) = E[N(t)] denote its expectation. The failure intensity A(¢) and the mean

value functions of the software at time t are related as follows

m(t) = /Ot)\(s)ds

and

dm(t)
T2 = ).

The cumulative number of faults detected at time t follows a Poisson distribution with time-

dependent mean value function as follows

_ me)”

o e~ n=0,1,2,...,00

The software reliability, i.e., the probability that no failures occur in (s, s + t) given that the last

failure occurred at testing time s is
R(t|s) = exp[—(m(t + s) — m(t))]

The mean value function m(t) is nondecreasing with respect to testing time ¢ under the bounded

condition m(co) = a, where a is the expected total number of faults to be eventually detected.

9
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( Model name [ m(t) ] A(t) |
Log-linear w exp(a + St)
Exponential (Goel-Okumoto) afl — exp(—05¢)] af exp(—pt)
Weibull (Generalized Goel-Okumoto) afl — exp(—Gt)] afyt"lexp(—pt)
t\” gt
Power law (—) — (—)
« o\«
S-shaped all — (1 + Bt) exp(—pt)] af*texp(—pt)

Table 1.1: NHPP models.

Knowing its value can help us to determine whether the software is ready to be released to the
customers and how much more testing resources are required. It can also provide an estimate
of the number of failures that will eventually be encountered by the customers. The mean value

function can be expressed as follows
m(t) = aF(t),

where F'(t) is the cumulative distribution function. Hence,

F(t)

T-FQ = [a —m(t)]p(2),

At) = aF'(t) = [a — m(t))
where p(t) is the failure occurrence rate per fault of the software, or the rate at which the individual

faults manifest themselves as failures during testing. The quantity [a — m(t)] denotes the expected

number of faults remaining. The failure occurrence rate per fault (also known as hazard function)

p(t) = M)

m(oo) — m(t)
can be a constant, increasing, decreasing, or increasing/decreasing.

Table 4.1 and Figure 1.1 show examples of NHPP models with different failure intensity func-

tions A(t; 6), where 8 = («, 3).

10
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Figure 1.1: Illustration of failure intensity functions.

1.1.3 Operating Characteristic Curves

A statistical test provides a mechanism for making quantitative decisions about a process or processes.
The intent is to determine whether there is enough evidence to “reject” a conjecture or hypothe-
sis about the process. The conjecture is called the null hypothesis. Not rejecting may be a good
result if we want to continue to act as if we “believe” the null hypothesis is true. Or it may be a
disappointing result, possibly indicating we may not yet have enough data to “prove” something
by rejecting the null hypothesis. A classic use of a statistical test occurs in process control studies,

and it requires a pair of hypotheses:

Hy : anull hypothesis

Hj : an alternative hypothesis

11
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The null hypothesis is a statement about a belief. We may doubt that the null hypothesis is true,
which might be why we are “testing” it. The alternative hypothesis might, in fact, be what we
believe to be true. The test procedure is constructed so that the risk of rejecting the null hypothesis,
when it is in fact true, is small. This risk, o, is often referred to as the significance level of the test.
By having a test with a small value of o, we feel that we have actually “proved” something when
we reject the null hypothesis.

The risk of failing to reject the null hypothesis when it is in fact false is not chosen by the
user but is determined, as one might expect, by the magnitude of the real discrepancy. This risk,
0, is usually referred to as the error of the second kind. Large discrepancies between reality and
the null hypothesis are easier to detect and lead to small errors of the second kind; while small
discrepancies are more difficult to detect and lead to large errors of the second kind. Also the risk
{3 increases as the risk o decreases. The risks of errors of the second kind are usually summarized

by an operating characteristic curve (OC) for the test.

1.1.4 Bayesian Statistics

Bayesian inference is statistical inference in which evidence or observations are used to update or
to newly infer the probability that a hypothesis may be true. The name “Bayesian” comes from the
frequent use of Bayes’ theorem in the inference process.

Bayesian inference uses aspects of the scientific method, which involves collecting evidence
that is meant to be consistent or inconsistent with a given hypothesis. As evidence accumulates,
the degree of belief in a hypothesis changes. With enough evidence, it will often become very
high or very low. Thus, proponents of Bayesian inference say that it can be used to discriminate

between conflicting hypotheses: hypotheses with a very high degree of belief should be accepted

12
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as true and those with a very low degree of belief should be rejected as false. However, detractors
say that this inference method may be biased due to initial beliefs that one needs to hold before
any evidence is ever collected.

Bayesian inference uses a numerical estimate of the degree of belief in a hypothesis before
evidence has been observed and calculates a numerical estimate of the degree of belief in the
hypothesis after evidence has been observed. Bayesian inference usually relies on degrees of
belief, or subjective probabilities, in the induction process and does not necessarily claim to provide
an objective method of induction. Nonetheless, some Bayesian statisticians believe probabilities
can have an objective value and therefore Bayesian inference can provide an objective method of
induction.

Bayes’ theorem adjusts probabilities given new evidence in the following way:

P(E|H,)P(Hy)
P(E)

P(Ho|E) =

where

e Hj represents the null hypothesis that was inferred before new evidence, F, became
available.

e P(H,) is called the prior probability of Hj.

e P(E|H,) is called the conditional probability of seeing the evidence E given that the
hypothesis Hy is true. It is also called the likelihood function when it is expressed as
a function of Hy given E.

e P(E) is called the marginal probability of E: the probability of witnessing the new
evidence E under all mutually exclusive hypotheses. It can be calculated as the sum
of the product of all probabilities of mutually exclusive hypotheses and corresponding

conditional probabilities: Y P(E|H;)P(H;).

13
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o P(Hy|E) is called the posterior probability of H, given E.

The factor P(E|H,)/P(E) represents the impact that the evidence has on the belief in the hypoth-
esis. If it is likely that the evidence will be observed when the hypothesis under consideration is
true, then this factor will be large. Multiplying the prior probability of the hypothesis by this factor
would result in a large posterior probability of the hypothesis given the evidence. Under Bayesian
inference, Bayes theorem therefore measures how much new evidence should alter a belief in a
hypothesis.

Bayesian methods aim at assigning prior distributions to the parameters in the model in order
to incorporate whatever a priori quantitative or qualitative knowledge we have available, and then
to update these priors in the light of the data, yielding a posterior distribution via Bayes Theorem.
The ability to include prior information in the model is not only an attractive pragmatic feature of

the Bayesian approach, but it is also theoretically vital for guaranteeing coherent inferences.

1.2 Thesis Overview and Contributions

The organization of this thesis is as follows:

L The first Chapter contains a brief review of essential concepts and definitions which we will
refer to throughout the thesis, and presents a short summary of material relevant to software
defect prediction methods including software reliability growth models, Bayesian statistics,

and operating characteristic curves.

(I In Chapter 2, we present an anisotropic Laplace test statistic for software reliability growth
enhancement. The proposed approach is defined as a nonlinear function of the Laplace

trend test using redescending stabilization functions. The goal of stabilization functions is

14



1.2 Thesis Overview and Contributions

to deal with the problem of increasing reliability growth by taking into account the absence
of activity in the system. Experimental results with real software failure data illustrate the
effectiveness and the much improved performance of the proposed method in software reli-

ability.

QO In Chapter 3, we introduce a new weighted Laplace test statistic for software reliability
growth modelling. The proposed model not only takes into account the activity in the system
but also the proportion of reliability growth within the model. This generalized approach is
defined as a weighted combination of a growth reliability model and a non-growth reliability
model. Experimental results illustrate the effectiveness and the much improved performance

of the proposed method in software reliabiiity modelling.

O In Chapter 4, we present a software defect prediction model using operating characteristic
curves. The main idea behind our proposed technique is to use geometric insight in help-
ing construct an efficient and fast prediction method to accurately predict the cumulative
number of failures at any given stage during the software development process. Our predic-
tive approach uses the number of detected faults instead of the software failure-occurrence
time in the testing phase. Experimental results illustrate the effectiveness and the much im-
proved performance of the proposed method in comparison with the Bayesian prediction

approaches.

U In the Conclusions Chapter, we summarize the contributions of this thesis, and we propose
several future research directions that are directly or indirectly related to the work performed

in this thesis.
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CHAPTER

Anisotropic Laplace Trend

We present an anisotropic Laplace test statistic for software reliability growth enhancement. The
proposed approach is defined as a nonlinear function of the Laplace trend test using redescending
stabilization functions. The goal of stabilization functions is to deal with the problem of increasing
reliability growth by taking into account the absence of activity in the system. Experimental results
with real software failure data illustrate the effectiveness and the much improved performance of

the proposed method in software reliability.

2.1 Introduction

Software reliability engineering is centered on a key attribute, software reliability, which is defined
as the probability of failure-free software operation for a specified period of time in a specified
environment [25]. Among other attributes of software quality such as functionality, usability, ca-
pability, and maintainability, etc..., software reliability is generally accepted as the major factor
in software quality since it quantifies software failures, which can make a powerful system inop-

erative. Software reliability engineering (SRE) is therefore defined as the quantitative study of
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2.1 Introduction

the operational behavior of software-based systems with respect to user requirements concerning
reliability.

Existing SRE techniques suffer from a number of weaknesses. First of all, current SRE tech-
niques collect the failure data during integration testing or system testing phases. Failure data
collected during the late testing phase may be too late for fundamental design changes. Secondly,
the failure data collected in the in-house testing may be limited, and they may not represent fail-
ures that would be uncovered under actual operational environment. This is especially true for
high-quality software systems which require extensive and wide-ranging testing. The reliability
estimation and prediction using the restricted testing data may cause accuracy problems. Thirdly,
current SRE techniques or modeling methods are based on some unrealistic assumptions that make
the reliability estimation too optimistic relative to real situations. Of course, the existing software
reliability models have had their successes; but every model can find successful cases to justify
its existence. Without cross-industry validation, the modeling exercise may become merely of
intellectual interest and would not be widely adopted in industry. Thus, although SRE has been
around for a while, credible software reliability techniques are still urgently needed, particularly
for modern software systems [26].

Figure 2.1 shows an SRE framework in current practice [24]. First, a reliability objective is
determined quantitatively from the customer’s viewpoint to maximize customer satisfaction, and
customer usage is defined by developing an operational profile. The software is then tested ac-
cording to the operational profile, failure data collected, and reliability tracked during testing to
determine the product release time. This activity may be repeated until a certain reliability level
has been achieved. Reliability is also validated in the field to evaluate the reliability engineering

efforts and to achieve future product and process improvements. It can be seen from Figure 2.1 that
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2.1 Introduction

there are four major components in this SRE process, namely (1) reliability objective, (2) opera-
tional profile, (3) reliability modeling and measurement, and (4) reliability validation. A reliability
objective is the specification of the reliability goal of a product from the customer viewpoint. If a
reliability objective has been specified by the customer, that reliability objective should be used.
Otherwise, we can select the reliability measure which is the most intuitive and easily understood,
and then determine the customer’s “tolerance threshold” for system failures in terms of this re-
liability measure. The operational profile is a set of disjoint alternatives of system operational
scenarios and their associated probabilities of occurrence. The construction of an operational pro-
file encourages testers to select test cases according to the system’s likely operational usage, which
contributes to more accurate estimation of software reliability in the field.

Reliability modeling is an essential element of the reliability estimation process. It determines
whether a product meets its reliability objective and is ready for release. One or more reliability
models are employed to calculate, from failure data collected during system testing, various es-
timates of a product’s reliability as a function of test time. Several interdependent estimates can
be obtained to make equivalent statements about a product’s reliability. These reliability estimates
can provide the following information, which is useful for product quality management: (1) The
reliability of the product at the end of system testing. (2) The amount of (additional) test time
required to reach the product’s reliability objective. (3) The reliability growth as a result of testing
(e.g., the ratio of the value of the failure intensity at the start of testing to the value at the end of
testing). (4) The predicted reliability beyond the system testing, such as the product’s reliability in
the field.

Despite the existence of a large number of models, the problem of model selection and appli-

cation is manageable, as there are guidelines and statistical methods for selecting an appropriate
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Figure 2.1: Software reliability engineering process overview.

model for each application. Furthermore, experience has shown that it is sufficient to consider only
a dozen models, particularly when they are already implemented in software tools [24].

Using these statistical methods, “best” estimates of reliability are obtained during testing.
These estimates are then used to project the reliability during field operation in order to deter-
mine whether the reliability objective has been met. This procedure is an iterative process, since

more testing will be needed if the objective is not met. When the operational profile is not fully
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2.1 Introduction

developed, the application of a test compression factor can assist in estimating field reliability. A
test compression factor is defined as the ratio of execution time required in the operational phase
to execution time required in the test phase to cover the input space of the program. Since testers
during testing are quickly searching through the input space for both normal and difficult execution
conditions, while users during operation only execute the software with a regular pace, this factor
represents the reduction of failure rate (or increase in reliability) during operation with respect to
that observed during testing.

Finally, the projected field reliability has to be validated by comparing it with the observed field
reliability. This validation not only establishes benchmarks and confidence levels of the reliability
estimates, but also provides feedback to the SRE process for continuous improvement and better
parameter tuning. When feedback is provided, SRE process enhancement comes naturally: the
model validity is established, the growth of reliability is determined, and the test compression
factor is refined.

During the development process of computer software systems, many software defects may
be introduced and often lead to critical problems and complicated breakdowns of computer sys-
tems [1,2]. Hence, there is an increasing demand for controlling the software development process
in terms of quality and reliability. Software reliability can be evaluated by the number of detected
faults or the software failure-occurrence time in the testing phase which is the last phase of the
development process, and it can be also estimated for the operational phase. A software failure is
defined as an unacceptable departure of program operation caused by a software fault remaining
in the software system [1,2,19].

It is, however, very difficult for developers to produce highly reliable software systems ef-

ficiently because of the diversified and complicated software requirements. Software reliability
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2.2 Non-homogeneous Poisson Process

models can provide quantitative measures of the reliability of software systems during software
development processes [4, 5]. In recent years, several software reliability models have been pro-
posed [6,7]. In particular, software reliability models that describe software fault-detection or
software failure-occurrence phenomena in the testing phase are referred to as software reliability
growth models (SRGMs). The SRGMs have been proven to be successful in estimating the soft-
ware reliability and the number of errors remaining in the software, and are very useful to assess
the reliability for quality control and testing-process control of software development [4-9].

The rest of this chapter is organized as follows. In the next section, we formulate the prob-
lem and we briefly review the mathematical aspects of non-homogeneous Poisson processes. In
Section 3, the likelihood function of the cumulative number of failures is derived. Motivated by
the concept of a stabilization function as a growth-stopping criterion, we introduce in Section 4
our proposed anisotropic Laplace test statistic. Section 5 presents experimental results to demon-
strate the much improved performance of the proposed approach in software reliability growth

enhancement. Finally, we conclude in Section 6.

2.2 Non-homogeneous Poisson Process

Software failure data are usually available to the user in three basic forms:

1. in the form of a sequence of ordered failure times

O<ti<ty<... <,
2. in the form of a sequence of interfailure times 7; where 7; = t; — t;_;for i =1,....n

3. in the form of cumulative number of failures.
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2.2 Non-homogeneous Poisson Process

It is easy to verify that the failure and interfailure times are related by ¢; = >

j=1 T; as depicted in

Figure 2.2.
0 3] to t3 t
! - Lo * >
<« > € >
T1 T2 73

Figure 2.2: Illustration of failure times ¢; and interfailure times ;.

The cumulative number of failures N(t;) detected by time ¢; (i.e. the cumulative number of
failures over the period [0,¢;)) defines a non-homogeneous Poisson process (NHPP) with failure
intensity or rate function A(t;) such that the rate function of the process is time-dependent. The
mean value function m(t;) = E(N(t;)) of the process is given by m(t;) = fot " M(u)du. Moreover,

the function
5
£(t:) = Ats) exp (— / A(u)du) — A(t:) exp(~m(t,))
0
defines a probability density function.
On the other hand, the number of failures N (¢;, ¢;) in any interval [t;, ¢,) defines a non-homogeneous
Poisson process with mean function

/t  Mu)du = mit;) — mity).

%

That is,

P(N(t;) = N(t:) = k)

_ (m(t) ;!m(t,-))“ exp(—(m(t;) — m(t))).
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2.3 The Likelihood Function

Software reliability R(t;|¢;) is defined as the probability that no software failure is detected in the

time interval (¢;,t; 4 ¢;), given that the last failure occurred at testing time ¢;, and it is given by

R(t;lt) = exp(— (m{ti + ;) = m(t) ).
It is worth pointing out that if the failure intensity function is time-independent, then the cumulative

number of failures N(t;) defines a homogeneous Poisson process (HPP).

2.3 The Likelihood Function

Assume we model the failure times using an NHPP with failure intensity function A(¢; 8), where
0 is an unknown parameter vector.

Under the NHPP assumption, the failure times ¢; define intervals for which only failure counts
n; = N(i) — N(i — 1) in the interval (¢;_;,;) are recorded, that is n; is the number of failures

during the i unit of time. Then, the probability of seeing n; events in the interval (¢ tic1 is given
g p y g 1t:)1s g

by

P(N(ti-1) = N(t;) = ny)

_ () —mlt-) (m(t:) = m{t_1))).

If we consider & time intervals, then the likelihood function is given by

L(6) = Hft uedumexp( / Mu; 0 du)

i=1 !

[[ 8 =t o)™

Il

=1

and the marginal probability that there are exactly N = Z =1 N events is given by

c(6) = "D o)
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2.4 Proposed Method

Hence the conditional log-likelihood function is given by
£(0) = log(L(6)) — log(G(6))
k
= Y nilog(m(ts6) — m(ts-1:0))
i=1

— Nlog(m(tk; 6)) +C

k t;
= ;ni log(/ti_1 Ay, O)du)
tk
_ Nlog(/o M 0)du> +C,

where C' = log(N'!) — log([T*_, n:!) is a constant.

24 Proposed Method

During testing and development of new systems, reliability trend analysis is needed to evaluate the

progress of the development process [4, 5, 10, 11]. The hypotheses we wish to test are:

H() : HPP

H, : NHPP

where Hj and H, are the null and the alternative hypotheses respectively.
Under the null hypothesis “Hj : the process is a homogeneous Poisson process” (that is the

intensity function is time independent), we define the Laplace trend as

L(6y)

V= By

where 0, is a component of the vector 6 such that its value makes the intensity function A(t; 9)

time independent.
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2.4 Proposed Method

Assuming a type I error probability «, the Laplace trend values may be interpreted as follows:

o U < —z,: reliability growth

e U > z,: reliability deterioration (i.e. increasing failure intensity)

e —2, < U < z,: stable reliability,

where z, is the is the upper « percentage of the standard normal distribution Z such that P{Z >
2o} = a (i.e. 2, is the 100(1 — o) percentage point of the standard normal distribution).
If the null hypothesis H, : HPP is true, the distribution of the Laplace test statistic U is approxi-
mately normal N (0, 1). Consequently, if Hy : HPP is true, the probability is 1 — 2¢ that a value
of the test statistic U falls between —z, and z,. Hence, we should reject H, if either U > z, or
U < —2z,, and fail to reject Hy if —z, < U < z,.

The objective of system reliability trend tests is to determine whether the pattern of failures
is significantly changing with time. For example, when the occurrence of the events is an NHPP
with a log-linear failure intensity function A(t) = exp(a + Gt), then the null hypothesis may be
expressed as Hy : § = 0. Moreover, it can be shown that in the case of a log-linear failure intensity

function [4, 5,11}, the Laplace test statistic is given by

k E—1 k
E(i—l)ni———Q—E n;
i=1

Uk) = =2

The main limitation of the Laplace trend is that it does not take into account the presence or the
absence of activity in the system. To circumvent this problem, we propose an anisotropic Laplace

test statistic. The basic idea is to replace the Laplace trend factor U (k) with an anisotropic Laplace
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Function g(x)
tanh
Green [12] anh(z) (if x # 0)
2z
g,
Gaussian [13] exp | ——
202
. 1
Lorentzian [13] 5 22/7
1 732\ ° .
Tukey’s biweight 9 (1 - (;) ) ifjz] <o
0 otherwise.
1 .
— if|z| <o
Huber minimax norm (sji n(z)
Sleme) otherwise.
T
1
Total Variation m (if x #£ 0)
z
1
Hyper Surfaces _—
P 2v/ 11—|— z2
Geman & McClure m

Table 2.1: reliability growth-stopping functions.

trend factor A(k) which is defined as

Alk) =

where g is a “reliability growth-stopping” function as shown in Table 3.1 and Figure 2.3. The

g-function is chosen to satisfy g(z) — 0 when z — oo so that the reliability growth is stopped

when there is no activity in the system.

The parameter o of the Gaussian and Lorentzian g-functions may be estimated using tools from

g(U(k)) if no activity

U(k) otherwise,
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Figure 2.3: Plots of g-functions.

robust statistics as follows
o = 1.4826 MAD{(U(k) = U(k — 1)},

where MAD denotes the median absolute deviation [14], and the constant is derived from the fact

that the MAD of a zero-mean normal distribution with unit variance is 0.6745 = 1/1.4826.

2.5 Experimental Results

We tested our proposed anisotropic Laplace test statistic on a real software failure data which

was taken from an SAP development system. The data contains daily software failures that was

recorded for a period of 175 days. Moreover, there are no activities in the system during the test
28



2.5 Experimental Results

phase process on the days 121, 122, 128, 142, 143, 144, 145, 146, 147, 148, 149 and 150. Figure
2.4 displays the scatter plot of cumulative failure number versus failure time, and it clearly illus-
trates an improving system since the probability of failures stabilizes substantially after a period of

150 days.
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Figure 2.4: Cumulative Number of Failures vs. Failure Time.

2.5.1 Anisotropic Laplace trend results

Using a significance level of o = 5%, Figure 2.5 through Figure 2.7 show the anisotropic Laplace
trends using the following reliability growth-stopping functions:

o Green’s function:
. tanh(U(k) — U(k — 1))

9(U(k)) 2U(k) - Uk — 1)]
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e Gaussian function:

o(U(k)) = exp (_ (U(k) —QZ (k1) >

o Lorentzian function:

1

g(U(k)) = 2
Ly UE-UG-1)

g

15

r\\l‘ +Za

Laplace Factor

20 . . . L ; . L L
0 20 40 60 80 100 120 140 160 180

Days

Figure 2.5: Anisotropic Laplace trend using Green’s function.
We can see from Figures 2.5-2.7 that the portions of the anisotropic Laplace trends displayed
as star-points clearly correct the original Laplace trend when no activity took place during the days
121, 122, 128, 129, 142, 143, 144, 145, 146, 147, 148, 149, 150. Furthermore, The experimental

results clearly indicate that Green’s function gives the best results.
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Figure 2.6: Anisotropic Laplace trend using Gaussian function.
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Figure 2.7: Anisotropic Laplace trend using Lorentzian function.
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2.5.2 Adjusted Laplace trend results

The Laplace test statistic is a test for the null hypothesis Hy that the data come from an HPP. Thus
rejection of Hy means that the process is not an HPP, but it could still in principle be a renewal
process and hence still has no trend. In order to improve the test performance when the null
hypothesis is a more general renewal process, the Lewis-Robinson (LR) test should be used [15].

The LR test is basically a scaled version of the Laplace test and it is defined as

where C'V(7) is an estimate of the coefficient of variation of the interfailure times 7;, and it is

calculated in terms of the mean and the standard deviation of interfailure times as follows
—— g
CV(r) ==,
=

with 7 representing the variable of interfailure times.

The reason for dividing the Laplace trend by the coefficient of variation is to account for non-
exponential distributions of the interfailure times and also in order to insure that U, i follows a
standard normal distribution whenever the data come from a renewal process. Moreover, when the
null-hypothesis is an renewal process model with non-exponential inter arrival times, this adjust-
ment maintains the type-I error probability better than the Laplace test [15].

The adjusted Laplace trend is displayed in Figure 2.8 which clearly shows a growth reliability
improvement over the Laplace trend.

We define the adjusted anisotropic Laplace trend factor Ay g (k) as follows

g(Urr(k)) if no activity
Arr(k) =
Urr(k) otherwise.
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Figure 2.8: Adjusted Laplace trend.

Figure 2.9 through Figure 2.11 show the adjusted anisotropic Laplace trends using different “reli-

ability growth-stopping” functions.
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Figure 2.9: Adjusted anisotropic Laplace trend using Green’s function.
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Figure 2.10: Adjusted anisotropic Laplace trend using Gaussian function.
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Figure 2.11: Adjusted anisotropic Laplace trend using Lorentzian function.

2.6 Conclusions

In this chapter, we proposed a nonlinear measure of trend for software reliability growth enhance-
ment. The proposed test statistic is defined in terms of redescending stabilization functions which
tackle the problem of increasing reliability growth by taking into account the activity in the sys-
tem. The experimental results clearly indicate a much improved performance of the proposed

anisotropic Laplace test statistic in software reliability growth enhancement.
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CHAPTER

Weighted Anisotropic Laplace Test Statistic

We introduce a new weighted Laplace test statistic for software reliability growth modelling. The
proposed model not only takes into account the activity in the system but also the proportion of re-
liability growth within the model. This generalized approach is defined as a weighted combination
of a growth reliability model and a non-growth reliability model. Experimental results illustrate the
effectiveness and the much improved performance of the proposed method in software reliability

modelling.

3.1 Introduction

During the development process of computer software systems, many software defects may be
introduced and often lead to critical problems and complicated breakdowns of computer Sys-
tems [1,2]. Hence, there is an increasing demand for controlling the software development process
in terms of quality and reliability. Software reliability can be evaluated by the number of detected
faults or the software failure-occurrence time in the testing phase which is the last phase of the

development process, and it can be also estimated for the operational phase. A software failure is
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defined as an unacceptable departure of program operation caused by a software fault remaining
in the software system [1,2,19].

It is, however, very difficult for developers to produce highly reliable software systems ef-
ficiently because of the diversified and complicated software requirements. Software reliability
models can provide quantitative measures of the reliability of software systems during software
development processes [4, 5]. In recent years, several software reliability models have been pro-
posed [6,7]. In particular, software reliability models that describe software fault-detection or
software failure-occurrence phenomena in the testing phase are referred to as software reliability
growth models (SRGMs). The SRGMs have been proven to be successful in estimating the soft-
ware reliability and the number of errors remaining in the software, and are very useful to assess
the reliability for quality control and testing-process control of software development [4-9].

The rest of this chapter is organized as follows. In the next section, we formulate the prob-
lem and we briefly review the mathematical aspects of non-homogeneous Poisson processes. In
Section 3, the likelihood function of the cumulative number of failures is derived. In Section 4,
we propose a weighted Laplace test statistic which is defined in terms of a weighted combination
of a growth reliability model and a non-growth reliability model. Section 5 presents experimen-
tal results to demonstrate the much improved performance of the proposed approach in software

reliability growth modelling. Finally, we conclude in Section 6.
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3.2 Proposed Method

3.2 Proposed Method

During testing and development of new systems, reliability trend analysis is needed to evaluate the

progress of the development process [4, 5, 10, 11]. The hypotheses we wish to test are:
HO : HPP
H; : NHPP

where Hy and H, are the null and the alternative hypotheses respectively.
Under the null hypothesis, “Hj : the process is a homogeneous Poisson process” (that is the inten-

sity function is time independent), we define the Laplace trend as

L(6o)
E(=L(00)")’

U=

where 6 is a component of the vector 8 such that its value makes the intensity function A(¢; 8)
time independent.

Assuming a type I error probability o = P{reject Ho| Hy is true}, the Laplace trend values may
be interpreted as follows:

o U < —z,: reliability growth

o U > z,: reliability deterioration (i.e. increasing failure intensity)

o —2, < U < z,: stable reliability,
where 2, is the is the upper « percentage of the standard normal distribution Z such that P{Z >
za} = a (ie. 2, is the 100(1 — a) percentage point of the standard normal distribution). If
“Hy : HPP” is true, the distribution of the Laplace test statistic U is approximately normal N (0,1).
Hence, if “Ho : HPP” is true, the probability is 1 — 2a that a value of the test statistic U falls
between —z, and z,. Hence, we should reject Hj if either U > 2z, or U < —Zq, and fail to reject

Hyif —2, < U < 2z,.
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The objective of system reliability trend tests is to determine whether the pattern of failures
is significantly changing with time. For example, when the occurrence of the events is an NHPP
with a log-linear failure intensity function A(t) = exp(a + S3t), then the null hypothesis may be
expressed as Hy : 8 = 0. Moreover, it can be shown that in the case of a log-linear failure intensity

function [4,5, 11], the Laplace test statistic is given by

3.2.1 Anisotropic Laplace trend

The main limitation of the Laplace trend is that it does not take into account the presence or the
absence of activity in the system. To circumvent this problem, we replace the Laplace trend factor

U (k) with an anisotropic Laplace trend factor A(k) that is defined as follows

Ak = g(U(k)) if no activity
U(k) otherwise,
where g is a “reliability growth-stopping” function as shown in Table 3.1. The g-function is chosen
to satisfy g(z) — 0 when 2 — oo so that the reliability growth is stopped when there is no activity
in the system.

The parameter o of the Gaussian and Lorentzian g-functions may be estimated using tools from

robust statistics as follows
6 = 1.4826 MAD{(U(k) — U(k — W},

where MAD denotes the median absolute deviation [14].
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Function 9(x)

Green [12]

72
Gaussian [13] exp (——)

Lorentzian [13]

1+ z2/0?

Table 3.1: reliability growth-stopping functions.

3.2.2 Weighted Laplace trend

Let w € [0, 1] be a weight parameter denoting the proportion of software reliability growth during

the period [t;, ¢, + t,,]. Then, we define a weighted failure intensity function as follows

Aw(t) = A1) Logesty) + WA(L) Ligy<t<toren)

+ (1 — w))\(tg) l(tlgtgtg—i—tw):

where A(t) is the failure intensity function, and 15 denotes the indicator function of a subset S.

When w = 1, the weighted failure intensity function reduces to the original intensity function,
and when w = 0, the function )\, becomes a constant (straight line). Moreover, for w € (0,1), the
weighted failure intensity function A, has a less heavier tail that A(t) in the interval [t;, 1, + ,,)]
indicating a slow reliability growth of the Laplace trend as illustrated in Figure 3.1.

Therefore, we may define a weighted anisotropic Laplace test statistic as follows

Au(k) = A(k) Losksty) + wA(K) Li,<h<totte)

+ (1 — w)A(te) Ly <hztorta)s
where A(k) is the anisotropic Laplace test statistic.

40



3.3 Experimental Results

3 T T T T T
\\
2.5 ‘\ 1
\\
\
2\ ]
\\
\\
=
% 1.5F )
3
~< \\
N\,
\\
1t S Tw=0
‘ \\\ — w = 0.3
L f’ ™~ ——aw = 0.5
0.5 : \\\\
: \,\\\\
0 1 1 L L ! \\\\\H“ w=1
0 2 4 6 8 10 20
te t te + ty

Figure 3.1: Weighted failure intensity function.

It can be shown that the 95% asymptotic efficiency on the standard Gaussian distribution is

obtained with the tuning constant o = 2.3849.

3.3 Experimental Results

We tested our proposed anisotropic Laplace test statistic on a real software failure data which
was taken from an SAP development system. The data contains daily software failures that was
recorded for a period of 175 days. Moreover, there are no activities in the system during the test
phase process on the days 121, 122, 128, 142, 143, 144, 145, 146, 147, 148, 149, and 150.

Figure 3.2 displays the scatter plot of cumulative failure number versus failure time, and it clearly

41



3.3 Experimental Results

illustrates an improving system since the probability of failures stabilizes substantially after a pe-

riod of 150 days.
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Figure 3.2: Cumulative Number of Failures vs. Failure Time.

3.3.1 Weighted Laplace trend results

Figure 3.3 through Figure 3.5 depict the much improved performance of the weighted anisotropic
Laplace trends A, (k) with a weight parameter w = 0.5 in comparison with the anisotropic Laplace
trends Ay. The no-activity periods of the weighted anisotropic Laplace trend are displayed with

black-star points, whereas the no-activity periods of the anisotropic Laplace trend are displayed

with red-star points.
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Figure 3.3: Weighted anisotropic Laplace trend using Green’s function, with w = 0.5.
3.3.2 Weighted adjusted anisotropic Laplace trend results

The Laplace test statistic is a test for the null hypothesis Hj, that the data come from an HPP. Thus
rejection of Hy means that the process is not an HPP, but it could still in principle be a renewal
process and hence still has no trend. In order to improve the test performance when the null
hypothesis is a more general renewal process, the Lewis-Robinson (LR) test should be used [15].

The LR test is basically a scaled version of the Laplace test and it is defined as

ULR = =
c

40
where C'V/(7) is an estimate of the coefficient of variation of the interfailure times 7;, and it is

calculated in terms of the mean and the standard deviation of interfailure times as follows
——— 0‘
CV(r)= -,
7
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Figure 3.4: Weighted anisotropic Laplace trend using Gaussian function, with w = 0.5.

with 7 representing the variable of interfailure times.

The reason for dividing the Laplace trend by the coefficient of variation is to account for non-
exponential distributions of the interfailure times and also in order to insure that U; p follows a
standard normal distribution whenever the data come from a renewal process. Moreover, when the
null-hypothesis is a renewal process model with non-exponential interarrival times, this adjustment
maintains the type-I error probability better than the Laplace test [15].

Figure 3.6 through Figure 3.8 show the weighted adjusted anisotropic Laplace trends with
a weight parameter w = 0.5. The weighted adjusted anisotropic Laplace trends with a weight
parameter w = 0.1 are depicted in Figure 3.9 through Figure 3.11. Note that the no-activity periods
of the weighted adjusted anisotropic Laplace trends are displayed with black-star points, whereas

the no-activity periods of the adjusted anisotropic Laplace trends are displayed with red-star points.
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Figure 3.5: Weighted anisotropic Laplace trend using Lorentzian function, with w = 0.5.
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Figure 3.6: Weighted adjusted anisotropic Laplace trend using Green'’s function (w = 0.5).
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Figure 3.7: Weighted adjusted anisotropic Laplace trend using Gaussian function (w = 0.5).
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Figure 3.8: Weighted adjusted anisotropic Laplace trend using Lorentzian function (w = 0.5).
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Figure 3.9: Weighted adjusted anisotropic Laplace trend using Green’s function (w = 0.1).
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Figure 3.10: Weighted adjusted anisotropic Laplace trend using Gaussian function (w = 0.1).
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Figure 3.11: Weighted adjusted anisotropic Laplace trend using Lorentzian function (w = 0.1).

3.4 Conclusions

In this chapter, we proposed a new weighted Laplace test statistic for software reliability growth
modelling. The proposed model not only takes into account the activity in the system but also
the proportion of reliability growth within the model. This generalized approach is defined as
a weighted combination of a growth reliability model and a non-growth reliability model. The
experimental results clearly indicate a much improved performance of the proposed anisotropic

Laplace test statistic in software reliability growth modelling.
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CHAPTER

Operating Characteristic Curves-based

Approach

We present a software defect prediction model using operating characteristic curves. The main idea
behind our proposed technique is to use geometric insight in helping construct an efficient and fast
prediction method to accurately predict the cumulative number of failures at any given stage during
the software development process. Our predictive approach uses the number of detected faults
instead of the software failure-occurrence time in the testing phase. Experimental results illustrate
the effectiveness and the much improved performance of the proposed method in comparison with

the Bayesian prediction approaches.

4.1 Introduction

Each software defect encountered by customers entails a significant cost penalty for software com-
panies. Thus, knowledge about how many defects to expect in a software product at any given

stage during its development process is a very valuable asset. Being able to estimate the number
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4.1 Introduction

of defects will substantially improve the decision processes about releasing a software product.
Moreover, the production process for software products can be substantially improved by employ-
ing a prediction model that accounts for the dynamic nature of software production processes and
reliably predicts the number of defects [2,9, 16-18].

During the development process of computer software systems, many software defects may
be introduced and often lead to critical problems and complicated breakdowns of computer sys-
tems [1]. Hence, there is an increasing demand for controlling the software development process
in terms of quality and reliability. Software reliability can be evaluated by the number of detected
faults. A software failure is defined as an unacceptable departure of program operation caused
by a software fault remaining in the software system [2, 19]. In the traditional software develop-
ment environment, software reliability evaluation, which shorten development intervals and reduce
development costs, provides useful guidance in balancing reliability, time-to-market and develop-
ment cost [9]. Hence, there is an increasing demand for prediction the quality and reliability of
software.

Several software reliability prediction models have been proposed in the literature for esti-
mating system reliability, but all these kinds of models make unrealistic assumptions to ensure
solvability [4-8, 11, 15, 19]. These unreasonable assumptions in most traditional models limited
the applications of these models [17,18].

Bayesian statistics provide a framework for combining observed data with prior assumptions
in order to model stochastic systems. Bayesian methods aim at assigning prior distributions to the
parameters in the model in order to incorporate whatever a priori quantitative or qualitative knowl-
edge we have available, and then to update these priors in the light of the data, yielding a posterior

distribution via Bayes’s Theorem [20]. The ability to include prior information in the model is not
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4.2 Problem Formulation

only an attractive pragmatic feature of the Bayesian approach, but it is also theoretically vital for
guaranteeing coherent inferences.

Motivated by the widely used concept of operating characteristic (OC) curves in statistical
quality control to select the sample size at the outset of an experiment [21], we propose in this
chapter a software defect prediction technique using OC curves in order to predict the cumulative
number of failures at any given time. The core idea behind our proposed methodology is to use
geometric insight in helping construct an efficient and fast prediction method to accurately predict
the cumulative number of failures at any given time. Moreover, our predictive approach uses the
number of detected faults instead of the software failure-occurrence time in the testing phase.

The layout of this chapter is organized as follows. In the next Section, a problem formulation
is stated. In Section 3, we briefly review some Bayesian prediction models that will be used for
comparison with our proposed approach. In Section 4, we propose a new prediction algorithm
based on OC curves. In Section 5, we present experimental results to demonstrate the much im-
proved performance of the proposed approach in the prediction of software defects. Finally, some

conclusions are included in Section 6.

4.2 Problem Formulation

The problem addressed in this chapter may be concisely described by the following statement:
Given the historical failure times data D = {t1,...,t,} and its corresponding cumulative number
of failures data N' = {N(t1), ..., N(t,)}, find the predicted cumulative number of failures at any

given time .
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4.3 Prediction using Bayesian Statistics

Model name m(t) A(t)
bt
Log-linear exp(c;—i— ) exp(a + bt)

Exponential | a(1 — exp(—>bt)) | abexp(—bt)

b =1
b [t
Power law (E) — <—>
a a \a

Table 4.1: NHPP models.

4.3 Prediction using Bayesian Statistics

Assume we model the failure times using an NHPP with a parametrized failure intensity function
A(t; @), where 0 is a vector of unknown parameters. Table 4.1 shows examples of NHPP models
with different failure intensity functions A(¢; @), where & = (a,b). Bayesian methods aim at
assigning prior distributions to the parameters 6 is the model in order to incorporate whatever a
priori quantitative or qualitative knowledge we have available, and then to update these priors in
the light of the data, yielding a posterior distribution via Bayes’s Theorem. The ability to include
prior information in the model is not only an attractive pragmatic feature of the Bayesian approach,

but it is also theoretically vital for guaranteeing coherent inferences.

4.3.1 Predictive density

Consider the problem of making prediction for a new failure time ¢ without any measurements
on the predictors for any of the individuals so that the dataset is just given by D = {t1, ... Jtn}
That is, we want to determine p(¢|D), the probability density function of the new failure time

conditioned on the observed failure times. The function p(t|D) is referred to as predictive density
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4.3 Prediction using Bayesian Statistics

of a new failure time and may be written in integral form as
p(tD) = [ p(eD, 6)p(01D)do,

where p(0|D) is the posterior distribution of 8 given by

p(D|0)p(6)
»(D)
p(D|0)p(0)
[ p(D|6)p(6)do
{ITi=, p(t:0)}p(8)
J{ITi=, p(t:]6)}p(8)d6

and p(0) is the prior distribution which represents information available about the unknown para-

p(6|D) =

meters. The prior estimate provides a means of combining exogenous information with observed
data in order to estimate parameters of a probability distribution. It is convenient to choose sim-
ple forms of prior distributions which result in computationally tractable posterior distributions.
Hence, the posterior distribution is found by combining the prior distribution p(8) with the proba-
bility p(D|6) of observing the data given the parameters. The probability p(D|8) is also called the

likelihood function of the data and it is given by

p(D|6) = [ [ »(t:l0),
i=1
where
t;
p(t10) = At O)exp (- [ A(ui0)au)
0

assuming that the failure times data are independent and identically distributed (iid). The likelihood
function is the probability of observing the given data as a function of 6.

Therefore, the Bayesian approach consists of three main steps:

1. Assign prior distributions to all the unknown parameters.
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4.3 Prediction using Bayesian Statistics
2. Determine the likelihood of the data given the parameters.
3. Determine the posterior distribution of the parameters given the data.

Maximum Likelihood is a statistical estimator that can be used to estimate a models unknown
parameter values from data. The maximum likelihood estimate (MLE) of @ is that value of @
that maximizes the likelihood function p(D|#) or equivalently that maximizes the log-likelihood

function log(p(D|#)), and it is the value that makes the observed data the most “probable”.

4.3.2 Bayesian prediction

The Bayesian prediction approach proposed in [16] is based on the power law model shown in

Table 4.1. The parameter b of the power law model may be estimated as follows

tn

S S NG NG

and the predicted cumulative number of defects N (¢) at time ¢ is given by

176
N(t) = N(t,) (tiF(zt, 2%, : ’y)) , a1

n

where v = P{x2 < x2,}, and F'(2t,2t,;) denotes the ~ percentage point of the F-distribution

with 2¢ and 2¢,, degrees of freedom.

54



4.3 Prediction using Bayesian Statistics

4.3.3 Bayesian prediction using MCMC

If we draw samples 81, ..., ") from the posterior distribution p(0]D), then the predictive den-

sity may be approximated as follows

p(t|D) = Zp(tlD,G("))p(e"')lD)

N
= NZ (t|D, 8%

The samples 00 ..., 0™ are draws from the posterior distribution of 6, and may be obtained
using Markov chain Monte Carlo (MCMC) simulation algorithms [22,23].
For the Bayesian prediction approach using MCMC, the predicted cumulative number of de-
fects N(t) at time ¢ is also given by Eq. (1) where b is estimated using the MCMC algorithm [23].
Let f(z|0) is Probability density function; 7(8) is the proposal density function; g(6®)')6®) is

the proposal density function.

1. From Bayesian theorem,

(89 | D) o p(D | 69)m(6)

2. Metropolis-Hastings
n(8Y" | D)/g(6”]6%)
(671 D)/g(67]07)

n = min{l,
The algorithm of MCMC estimate parameters b consists of the following steps:
1. using MCMC to simulate each parameter distribution.

2. estimate the maximal likely value of parameter distribution which gives us the value of ex-

pected parameter.
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4.4 Proposed Method

Consider the two-sided hypothesis

Hoi t=tk

Hli t#tk

where Hy and H; are the null and the alternative hypotheses respectively.
Define Xi,k as the percentage value of the chi-square distribution with k degrees of freedom

such that the probability that the chi-square distribution x? exceeds this value is o, that is
P{xi > X2 1} = @ = P{reject Hy|Hy is true},

where o € (0, 1) is the probability of type I error (also referred to as the significance level).

Denote by

njR N

. 9 4 )
7= 5 (s 57m) =K (e~ m)

where K is the cumulative distribution function of 2.

The predicted cumulative number of defects are given by:

(X540 + X5 5)%0?

N(T) = 5

where: o =0.1,0 = v2n,0 =t;,1 =1,2,...,n, and X%,a denotes the inverse of the chi-square
cdf with o degrees of freedom at the values in .
Suppose that Hj is false and that the true value is t = t, + §, where § > 0. Since H, is true,

the distribution of the test statistic
Xi = t

7=
V2k




4.4 Proposed Method

has a mean value equal to §/v/2k, and a type II error will be made only if —x? p <2< X2 /2

That is, the probability of type Il error 5 = P{accept Hy|H, is false} may be expressed as

where @ is the cumulative distribution function of x?2.

The function §(t) is evaluated by finding the probability that the test statistic Z falls in the
acceptance region given a particular value of t. We define the operating characteristic (OC) curve
of a test as the plot of §(t) against ¢. Note that given the OC curve parameters 3, o, k, and 8, we

can derive the predicted cumulative number of defects at time ¢ as follows

2
V2k 2
N() = (—5 ) (35 +x3s) - @

Fig. 4.1 depicts a plot of the cumulative number of defects using OC curves.
The OC curve approach, however, makes a prediction without taking into account the historical
data. To circumvent this limitation, we propose a predictive operating characteristic (POC) curve

where the predicted cumulative number of defects at time ¢ is calculated as follows
v2p\’ 2
N(t) = (T (s +xs) 3)
and the parameter p is given by (see Fig. 4.2)

N(t), ift<t,
p =
N(t,), ift,<t<T.
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Figure 4.1: Tllustration of cumulative number of defects using OC curves.

y S

i

p=N(t) P

Figure 4.2: Illustration of the p parameter in the POC curve.
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4.5 Experimental Results

We tested our proposed method on a real software failure dataset (DS I) that was taken from a
SAP development system. This dataset contains monthly software failures that were recorded for
a period of 60 months as shown in Table 4.2,

Fig. 4.3 depicts the cumulative number of failures versus failure time (month) during a software

life cycle.
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Figure 4.3: Cumulative Number of Failures vs. Failure Time (DS I)

We also applied the proposed method to a truncated dataset (DS II) that was obtained by trun-
cating the original software failure data after the 40th month as shown in Fig. 4.4. Note that the

cumulative number of failures stabilizes substantially after the 50th month, which clearly indicate
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Month | Cumulative number | Month | Cumulative number
of defects defects
1 17 31 2,217
2 39 32 2,430
3 53 33 2,586
4 87 34 3,884
5 106 35 4,099
6 140 36 4,385
7 165 37 5,104
8 286 38 8,074
9 359 39 10,120
10 412 40 12,618
11 461 41 16,715
12 555 42 21,606
13 654 43 24,592
14 747 44 27,789
15 836 45 29,739
16 926 46 30,843
17 989 47 32,011
18 1,049 48 32,599
19 1,103 49 33,010
20 1,152 50 33,707
21 1,182 51 34,103
22 1,213 52 34,426
23 1,225 53 34,736
24 1,266 54 34,903
25 1,306 55 35,110
26 1,331 56 35,261
27 1,363 57 35,440
28 1,443 58 35,614
29 1,495 59 35,763
30 1,737 60 35,876

Table 4.2: Softgéare failure data.
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that the system is improving.

In all the experiments, we used a probability of type I error o = 0.01. The value of -y was set

tol — .
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Cumulative number of defects
o o
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[4,)

1 1 1 i
40 45 50 55 60
Month

Figure 4.4: Cumulative Number of Failures vs. Failure Time (DS II)

4.5.1 Qualitative evaluation of the POC method

In this subsection, we present simulation results where the Bayesian prerdiction method [16], the
Bayesian prediction using MCMC (23], OC curve approach, and the POC curve algorithm are
applied to the software failure dataset (DS I) and also to the truncated software failure data (DS D).

For the Bayesian prediction method, the estimate of the parameter bis equal to 0.3374, and for
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the Bayesian prediction approach with MCMC the estimate of the value of bis equal to 0.5402.
Fig. 4.5 and Fig. 4.6 show the prediction results of the proposed POC curve in comparison
the Bayesian approaches for both datasets DS I and DS II respectively. These results clearly
indicate that our method outperforms the Bayesian techniques used for comparison. Moreover, the
proposed method is simple and easy to implement. One main advantage of the proposed algorithm

is the nearly perfect fit between the predicted data and the observed data.
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Figure 4.5: Comparison of the prediction results for DS I.
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Figure 4.6: Comparison of the prediction results for DS II.

4.5.2 Quantitative evaluation of the POC method

Denote by N,(t) and N,(t) the observed and the predictive cumulative number of failures respec-
tively.

To quantify the better performance of the proposed predictive method in comparison with the
Bayesian approaches, we computed three goodness-of-fit measures: the skill score, the Nash-
Sutcliffe model efficiency coefficient, and the relative error between the observed 7, x 2 data

matrix

D, = {(t, N,(t)) : t = 1,...T,},
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and the predicted T, x 2 data matrix
Dy ={(t,Np(t)):t=1,...T,}.

Note that the size of observed data matrix D, may not be equal to the size of the predicted data
matrix D, and hence an intersection step is necessary to pair up the observed data to the predicted
data. This intersection function is setup to pair up the first column in the observed data matrix
and the first column in the predicted data matrix. Data values are located in the second column of
both matrices. More precisely, we create a subset of matched data D,,, = {t, N,(t), N,(t) : t =

1,...T,} that would be used to compute the following goodness-of-fit measures:

1. Skill Score: it is a error statistic that is used to quantify the accuracy of prediction models,

and it defined as follows

SS=1-— \/ﬁ 2201 (No(t) — Np())

V= S (No(t) — )

The model prediction is better, when the value of the skill score S5 is closer to one. When
55 is less than zero, the model predictions are poor and the model errors are greater than

observed data variability.

2. Nash-Sutcliffe model efficiency coefficient: is an indicator of the model’s ability to predict

about the 1:1 line between the observed and the predicted data, and it is defined as follows

5o S () = Ny(®))®
Z(No(6) = W)

The Nash-Sutcliffe model efficiency coefficient is a statistic similar to the skill score in that

the closer to one the better the model prediction. A value of E = 1 indicates that the model
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prediction is perfect, and if the value of E is equal to or less than zero, then the model

prediction is considered poor.

3. Relative error: it measures how close a model is estimated with respect to the actual data.

The relative error (RE) is defined as

The values of the three goodness-of-fit measures for all the experiments are depicted in Fig. 4.7
through Fig. Fig. 4.12, which clearly show that the proposed method gives the best results indicat-

ing the consistency with the subjective comparison.

1 T T T T

0.9

T

0.8

T

0.7

T

T

206
5]

041

0.3

T

0.2

0.1

Figure 4.7: Skill score results for DS 1.
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Figure 4.8: Skill score results for DS II.

4.6 Conclusions

In this chapter, we introduced a new method for software defects prediction using operating char-
acteristic curves. The core idea behind our proposed technique is to reliably predict the cumula-
tive number of defects at any given stage during the software development process. The predic-
tion accuracy of the proposed approach is validated on a real software failure data using several
goodness-of-fit measures. The experimental results clearly show a much improved performance of

the proposed approach in comparison with the Bayesian prediction methods.
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Figure 4.10: Nash-Sutcliffe model efficiency coefficient results for DS II.
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CHAPTER

Conclusions and Future Work

A defect prediction solution provides a guideline to the sources of defects that might be caused
due to programmers inability, failure in requirements collection or design mistakes. Thus, a de-
fect prediction model with source identification can give important ideas regarding the erroneous
bottlenecks in the software development cycle. Especially, efficiency focused software develop-
ment units can benefit using defect cause information. They can take necessary precautions in a
proactive manner. In other words, a defect focused prediction solution can also help to change the
development methods. Such a solution or systematic approach can affect in a positive manner to
produce less defected software.

An important aspect of a defect prediction solution is that such a solution becomes necessary
when there is a trade-off between to deliver earlier and to deliver with fewer defects. In today’s
software development industry, all companies and software development houses are in a severe
competition that minimizing development time decreases the overall project cost [27,28]. On the
other hand, less development and testing time also increases the defect density ratio in the final
product. So, with this fact the executive management of the software company should require a

quantitative indicator to find the correct point in this balance. Therefore a defect prediction solution
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may provide the required quantitative metric to make a decision on the product delivery. The senior
management of the software development company would be able to decide launching the product
if the defect density level is below a certain threshold.

This thesis has presented statistical defect prediction models for software quality assurance.
We have demonstrated the performance of the proposed algorithms through a variety of software
failure datasets, and we compared our techniques with existing defect prediction methods.

In the next Section, the contributions made in each of the previous chapters and the concluding
results drawn from the associated research work are presented. Suggestions for future research

directions related to this thesis are provided in Section 5.2.

5.1 Contributions of the Thesis

5.1.1 Anisotropic Laplace trend

We proposed a nonlinear measure of trend for software reliability growth enhancement. The pro-
posed test statistic is defined in terms of redescending stabilization functions which tackle the
problem of increasing reliability growth by taking into account the activity in the system. The
experimental results clearly indicate a much improved performance of the proposed anisotropic

Laplace test statistic in software reliability growth enhancement.

5.1.2 Weighted anisotropic Laplace test statistic

We proposed a new weighted Laplace test statistic for software reliability growth modelling. The

proposed model not only takes into account the activity in the system but also the proportion of
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reliability growth within the model. This generalized approach is defined as a weighted combi-
nation of a growth reliability model and a non-growth reliability model. The experimental results
clearly indicate a much improved performance of the proposed anisotropic Laplace test statistic in

software reliability growth modelling.

3.1.3 Operating characteristic curves-based approach

We introduced a new method for software defects prediction using operating characteristic curves.
The core idea behind our proposed technique is to reliably predict the cumulative number of defects
at any given stage during the software development process. The prediction accuracy of the pro-
posed approach is validated on a real software failure data using several goodness-of-fit measures.
The experimental results clearly show a much improved performance of the proposed approach in

comparison with the Bayesian prediction methods.

5.2 Future Research Directions

Several interesting research directions motivated by this thesis are discussed next. In addition to
designing robust statistical models for software defect prediction, we intend to accomplish the

following projects in the near future:

3.2.1 Predictive operating characteristic curves and Laplace trend

The POC curve method introduced in Chapter 4 provides a reliable software defect prediction tech-
nique. The performance of this approach, however, is not very satisfactory when the Laplace trend

statistic continues to increase, that is when the software reliability deteriorate rapidly indicating a
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highly increasing failure intensity.

To circumvent this limitation, we combine the POC curve approach with Laplace trend analysis
to improve the prediction performance. The key idea is to calculate the “Laplace trend stopping
increase” point ¢ = t, as shown in Figure 5.1. Then, we use the POC curve method when the

Laplace trend statistic starts to decrease, that is when ¢ € (¢, ..., T).
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Figure 5.1: Laplace Factor vs. Failure Time.

Our preliminary results shown in Fig. 5.2(a) and Fig. 5.2(b) clearly illustrate that after the 45"

month for DS I and after the 15" month for DS II, the Laplace trend statistic starts to decrease.
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Figure 5.2: Laplace Factor vs. Failure Time: (a) DS I, (b) DS 1II.

73



5.2 Future Research Directions

5.2.2 Recurrent neural networks

Artificial neural network (ANN) models have been extensively studied with the aim of achieving
human-like performance, especially in the field of pattern recognition. These networks are com-
posed of a number of nonlinear computational elements which operate in parallel and are arranged
in a manner reminiscent of biological neural interconnections. The area of neural networks is
nowadays considered from two main perspectives. The first perspective is cognitive science and
the second perspective is information processing. The neural networks in this thesis are approached
from an engineering perspective, i.e. to make networks efficient in terms of topology, learning al-
gorithms, ability to approximate functions and capture dynamics of time-varying systems.

The classic approach to time series prediction is to undertake an analysis of the time series data,
which includes modeling, identification of the model and model parameter estimation phases. The
design may be iterated by measuring the closeness of the model to the real data. This can be a long
process, often involving the derivation, implementation and refinement of a number of models
before one with appropriate characteristics is found. In particular, the most difficult systems to
predict are:

e those with non-stationary dynamics, where the underlying behavior varies with time.

e those which deal with physical data which are subject to noise and experimentation

error.

e those which deal with short time series, providing few data points on which to conduct

the analysis.

A recurrent neural network is a neural network where the connections between the units form a
directed cycle. Recurrent neural networks must be approached differently from feedforward neural

networks, both when analyzing their behavior and training them. Recurrent neural networks can
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also behave chaotically. Usually, dynamical systems theory is used to model and analyze them. A

popular type of recurrent neural network is the Elman network.

5.2.3 Machine learning approaches

As a broad subfield of artificial intelligence (AI), machine learning is concerned with the design
and development of algorithms and techniques that allow computers to “learn”. As regards ma-
chines, one might say, very broadly, that a machine learns whenever it changes its structure, pro-
gram, or data (based on its inputs or in response to external information) in such a manner that its
expected future performance improves. The major focus of Machine learning research is to extract
information from data automatically by computational and statistical methods, hence, machine
learning is closely related to data mining and statistics but also theoretical computer science.

Machine learning usually refers to the changes in systems that perform tasks associated with
AL Such tasks involve recognition, diagnosis, planning, prediction, etc. The “changes” might be
either enhancements to already performing systems or synthesis of new systems.

One might ask “Why should machines have to learn? Why not design machines to perform as
desired in the first place?” There are several reasons why machine learning is important. Some of
these are:

e Some tasks cannot be defined well except by example, that is, we might be able to
specify input/output pairs but not a concise relationship between inputs and desired
outputs. We would like machines to be able to adjust internal structure to produce
correct outputs for a large number of sample inputs and thus suitably constrain their
input/output function to approximate the relationship implicit in the examples.

e It is possible that hidden among large piles of data are important relationships and

75




5.2 Future Research Directions

correlations. Machine learning methods can often be used to extract these relationships
(data mining).

e Human designers often produce machines that do not work as well as desired in the
environments in which they are used. In fact, certain characteristics of the working en-
vironment might not be completely known at design time. Machine learning methods
can be used for on-the-job improvement of existing machines designs.

e The amount of knowledge available about certain tasks might be too large for explicit
encoding by humans. Machines that learn this knowledge gradually might be able to
capture more of it that humans would want to write down.

e Environments change over time. Machines can adopt to a changing environment
would reduce the need for constant redesign.

e New knowledge about tasks is constantly being discovered by humans. Continuing
redesign of Al systems to conform to new knowledge is impractical, but machine
learning methods might be able to track much of it.

There are two major settings in which we wish to learn a function f: supervised and unsupervised.
In supervised learning, we know the values of f for the m samples in the training set S. We
assume that if we can find a hypothesis h that closely agrees with f for the members of S, then this
hypothesis will be a good guess for f, especially if S is large. Curve fitting is a simple example of
supervised learning of a function.

In unsupervised learning, we simply have a training set of vectors without function values of

them. The problem in this case, typically, is to partition the training set into subsets Sy, . .., Sk in
some appropriate way.

Our future efforts will be focused on evaluating various machine learning models to develop
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robust prediction approaches. The performance of each prediction method will be evaluated regard-
ing their precision, recall, robustness and sensitivity using confusion matrices and simulations. A
model’s precision is defined as the ratio of the number of modules correctly predicted as defective,
or true positive (¢p), to the total number of modules predicted as defective in the set (¢, + f,). A
model’s recall is defined as the ratio of the number of modules predicted correctly as defective
(tp) to the total number of defective modules in the set (¢, + f,,). To perform well, a model must
achieve both high precision and high recall. However, a trade-off exists between precision and
recall. For example, if a model predicts all modules as defective, its recall will be equal to 1, but
the precision will be low. Obviously, in this case, we can’t say that the model performs well. On
the other hand, if a model predicts only one module as defective and the prediction turns out to be
correct, the model’s precision will be equal to 1. Yet again, we cannot consider this model to have
good performance. In this project, we propose the use of the F’-measure to measure prediction per-
formance. F-measure considers precision and recall equally important by taking their harmonic
mean. Like precision and recall, F-measure is always valued between 0 and 1, and a higher value

indicates better prediction performance.
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