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ABSTRACT

The John-Nirenberg Inequality for Q,(R")
and Related Problems

Hong Yue, Ph.D.
Concordia University, 2007

The John-Nirenberg inequality characterizes functions in the space BMO in terms
of the decay of the distribution function of their oscillations over a cube. In the first
part of this thesis, separate necessary and sufficient John-Nirenberg type inequalities
are proved for functions in the space Q,(R"). The results are a modified version
of the conjecture made by Essén. Janson. Peng and Xiao, who introduce the space
Qo(R™). The necessity for this modification is shown by two counterexamples.

The counterexamples provide us with a borderline case function for Q4(R"). In
the second part, the discussion on the relation between the function and the space
(o In a wider range is presented. Moreover, the analytic and fractal properties of
the function are studied and the fractal dimensions of the graph of the function are
determined. These properties and dimensions illustrate some form of regularity for
functions in Q,(R™).

Lastly, the relation between the tent spaces 17 and LP, H?, and BMO for ¢ # 2
is discussed. By the theory of Triebel-Lizorkin spaces, a projection from T? to L? for

1 < p < oo, to HP for p < 1, and to BMO for p = oo, is shown to exist for 1 < ¢ < 2.
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Chapter 1

Introduction

In 1961, John and Nirenberg [22] introduced the space BMO of functions of

1
loc

bounded mean oscillation. It consists of functions f € L] (R™) satisfying

I/ llwo = sup ] '/].If(l“) — f(D)ldx < oo, (1.1)

where the supremum is taken over all cubes I in R™ with sides parallel to the coordi-
nate axes, |/| is the volume of /. and f(7) denotes the mean value of f on the cube
I f(I)= ﬁ [, f(z)dz. Modulo constants, BMO becomes a Banach space under the
norm defined in (1.1).

The space BMO is an extension of L*. From its introduction, BMO has been an
important function space in the study of partial differential equations, in particular in
endpoint results for Sobolev embeddings. Ten years later, C. Fefferman [17] connected
BMO to harmonic analysis by identifying BMO with the dual of the real Hardy space
H' in his famous work. This duality theorem provided a new direction for research in
harmonic analysis and PDE. The year after. the subsequent paper by Fefferman and
Stein [19] developed this subject, including the characterization of BMO in terms

of Carleson measures. Since then, the space BMO has played a prominent role in



harmonic analysis. In one dimension, it is also closely connected to function theory
in the disk (see [21]). A more general version of the BNO-H! duality is provided by
the theory of tent spaces given by Coifman, Meyer and Stein [3].

John and Nirenberg [22] characterized functions in BMO via an inequality which
now bears their names. Let A\;(t) be the distribution function of f — f(/) on the cube
I:

A(t) = Ha e I:[f(x) = f(I)] > t}], (1.2)

where |S| denotes the Lebesgue measure of a set S.

John-Nirenberg Inequality: There exist two positive constants B and b (depending

only on n) such that. if f € BMO(R"), then for all cubes I in R™. and all t > 0.

Ar(t) < Bl exp(=bt/||f |lamo)- (1.3)

Conversely, if for any cube I and any ¢ > 0, \;(t) < Ce~<YI|. for some positive
constants C' and ¢, then f € BMO(R") (see [23], [4]).

John and Nirenberg showed the inequality (1.3) by applving the Calderon-Zygmumd
decomposition [6] to |f| on the cube [I]. Their proof was improved by Neri [23] in
1977, using the same decomposition, but in a more straightforward manner (based
on an unpublished proof by Calderé6n).

The inequality (1.3) is equivalent to
I

for some constants k and C.

Let 1 < p < o0, and set

1/p
I fllIBnOp = sup ([[[l /]f(r) - f,[pd.r> . (1.4)
I J1



Then this defines an equivalent norm in BMO. By Jensen’s inequality,

1/p
1 llBao < sup (url [1st - ffl”dx> (15)
1 JT

and conversely, the inequality

IfllBMOp < alifllBMO VP < o0 (1.6)

is a corollary of the John-Nirenberg inequality (1.3). On the other hand, Feffer-
man and Stein (see [19]) showed that (1.6) with ¢, = ¢p implies the John-Nirenberg
inequality (1.3). Moreover, they proved (1.6) via the duality of H' and BMO.

In recent years, a new family of function spaces, called @Q spaces, was first intro-
duced by Aulaskari. Xiao and Zhao [1] in the case of the unit disk D as the class of

holomorphic functions f satisfying

sup [ /D /() Plg(z w)Pdm(z) < oo,

where g(z.w) is the Green’s function for D. m is the Lebesgue area measure, and
0 < p < 1. They named the Banach spaces of such functions @,(D). Note that these
spaces are invariant under conformal mappings of the disk.

Essén and Xiao [15] showed a characterization of the boundary value of functions

in Qp:
. (™) — f(e)]?
sep[ﬂ // ezs e”|2 S—dsdi < oo,

where the supremum is taken over all arcs I € 8D, the unit circle.

Following their work (see [13] for more details). Essén. Janson, Peng and Xiao [14]

introduced the spaces ), (R"), corresponding to a parameter v € R:

Q Rﬂ) - {f € Lloc( n) : ||f||Q(\ < OO}‘



where

. ) 1/2
I, == sup sty [ [0S goay) (17)

; ‘I _ y[n—f-Za

As above, the supremum is taken over all cubes I, and ¢(I) denotes the side-length
of I.

As is the case for BMO, (1.7) defines a norm modulo constants, and the resulting
Banach spaces are in fact subspaces of BMO, which are proper and nontrivial for
the range 0 < o < 1 (when n > 2), or 0 < & < 3 (when n = 1) (see [14])). When
o = % and n = 1, Q% (R') is the same as the homogeneous fractional Sobolev space
LQ% (R'). More generally, when 0 < o < min{1,n/2}, Q. contains the homogeneous
Besov spaces A%/ for all 8> o and g < oo. It was also shown by Wu and Xie [29]
that @), spaces are closely related to Morrey spaces, which play an important role in
PDE.

We will assume from now on that 0 < o < min{1,n/2}. For o in this range,
the spaces Q) (R™) satisfy interesting analogues of the important properties of BMO,
such as the relation with Carleson measures (see [14]), duality (see [8], [29]), and
decomposition via wavelets or quasi-orthogonal “atoms” (see [14],[9]).

The spaces (), are characterized by the p-Carleson measures, with p =1 — 2a/n.
As usual, we denote the upper half Euclidean space by R*! and points in it by (z, t)
with z € R" and ¢ > 0. A p-Carleson measure 1 is a Borel measure defined on R7*!

which satisfies u(B) < C|BJP for some p > 0, where

B = {(a,t),dist(z,0B) > t} (1.8)

is the tent over the ball B. When p = 1, these are the usual Carleson measures.
Dafni and Xiao [8] explored the @, spaces further. Using the relation between frac-
tional Carleson measure and Hausdorff capacity, they defined a predual for Q,, spaces,

called the Hardy-Hausdorff space. and showed that it contains the real Hardy space



H'. In addition, they gave the corresponding atomic decomposition of distributions
in the predual [8], and showed a decomposition of @), in terms of quasi-orthogonal
functions [9)].

While these spaces have been extensively studied recently. an important question
remaining has been to find an analogue of the John-Nirenberg ineqguality. A conjecture

proposed in [14] claims:

Conjecture 1 (EJPX). There exist two positive constants B and b such that for any
function f € Q4(R™), and any cube I in R,

i?ga_n)k Z /\J(t)gBt‘]exp bt . (1.9)
= /] 1/1lq,

k=0 JEDL(I)

Here D;(I), k > 0. denotes the collection of subcubes of I of sidelength 27%¢(I),
obtained by successively halving all edges of I, k times, and \,(¢) is the distribution
function of f — f(J) on the cube J, as defined in (1.2).

We prove modified, separate necessary and sufficient versions of this conjecture.
First, we show that such an inequality is sufficient for a function to be in ), (R"). In

fact, an even weaker version will suffice:

Theorem 1. Let0<a<1(n>2),0or0<a< % (n=1), and 0 < p < 2. If there

extst positive constants B, C' and ¢, such that, for all cubes I C R™, and any t > 0,

22(2mn)k )\]JJ(T) < Bmax{1, (%)p} exp(—ct), (1.10)

JEDL(I)
then [ s a function in Q. (R™).

For f € BMO, the John-Nirenberg inequality in the case t < ||f|lzmo is trivial,

since A;(t) < |I|. However, the version of the inequality we discuss involves a sum-

At
[t -

mation of the quotients If we use the trivial bound of 1 for these quotients as

t — 0, the sum diverges. Thus it is important to find the rate of divergence.



Our second theorem shows a necessary version of the inequality which has a higher

rate of divergence as t — 0:

Theorem 2. Let 0 < v <1 (n>2), or0< a< % (n=1). For any [ € Q.(R"),
there exist two positive constants B and b (depending only on n), such that. for all

cubes I C R™,

“ocamme § MO g S (I le N (=t
22 2 T =P {1( t )} (i) o

Note that in the case t < ||f||o., there is a gap between Theorems 1 and 2. We

could not include p = 2 in Theorem 1, since p = 2 in (2.5) is not sufficient for f € Q,.
2 P
On the other hand, it is impossible to sharpen (@) to (ﬂ%l_l) in (2.7) for any

0 < p < 2. This is shown by two counterexamples which give the following:

Theorem 3. Let 0 < a < %
(a) If0 < p < 2. then there are no constants B and b such that the following inequality
holds for all functions f € Q,(R™), all cubes I in R", and all t > 0:

ggm_mk ¥ M0 < { <uf|t|Qo) }exp (ﬁ) 112)

JEDK(I)

(b) There exists a function f satisfying an inequality of the form

22(20 n)k Z <B ax{l (g)Q}exp(—ct) (1.13)

JED(
for all cubes I in R™, with some positive constants B, C, c, but which is not in Q. (R").

This theorem states that any version of the John-Nirenberg inequality in Theo-
rem 2 with p < 2 cannot hold. In particular, this applies to Conjecture 1 from [14]
(with p = 1). Moreover, it shows that putting p = 2 in the inequality in Theorem 1

will not be sufficient for membership in Q,.



As the counterexample for part (a) of Theorem 3, {f,},>0 is a sequence of multi-
ples of Haar functions supported in the unit cube Iy = [0,1]", with the coefficients
depending on the parameter o of the space. When 0 < o < %, fi are uniformly
bounded in @, (R"). However, if we replace the power 2 by ¢ with ¢ < 2 in the norm
of Q,(R™"), the new quantity goes to oo when [ increases.

The role of the counterexample for part (b) is played by the sum function f =
> oo fi- This function is bounded and hence f € L*(R") ¢ BMO(R"). How-
ever, f ¢ (Q,(R") though it satisfies the John-Nirenberg type inequality for Q.(R™).
Therefore, f provides us with a sort of borderline case for Q,(R"™). Replacing o in

the definition of f by another parameter 5 and denoting the new function by f3, we

have

Theorem 4. Let 0 < a < %

(a) If0 < 3 <o, f3 ¢ Qu(R"), while if o < < %, f5 € Qu(R").
(b) If B > «. then fs satisfies the John-Nirenberg type inequality (5.2).

An equivalent expression of f3(x) for z on its support Iy can be given by using

the binary expansion of r as:

oC

fole) = S (1pieigt

(=0

where 0.bb}b5 - - - is the binary expansion of z;, the ith coordinate of 2. We call this
expression the binary expression of fj.

The proofs of Theorem 1 and 2 are given in Chapter 2, Section 2.2. Next, in
Chapter 3, we construct the counterexamples which show Theorem 3 in Section 3.1.
Then, we give the Haar wavelet decomposition and the binary expression of the
function fs in Section 3.2. We show by the binary expression that fs maps I, onto
(—C5,Cs)l when 0 < < 1, where C3 = (1 — 27%)~1. After that, the proof of Theorem

4 is presented in Section 3.3.



The function f; has some fractal properties on its support Iy, such as self-affinity
and fine structure. Understanding these fractal properties will help us to grasp the
nature of Q,(R™). In order to measure its complexity, we explore the fractal properties
and dimensions of the function in Chapter 4 for all values of 3 > 0. The analytic
properties of the function are discussed in Section 4.1, for n = 1, and in Section 4.2,
for n > 1. In R!, when 3 # 1. f is discontinuous at every dyadic point in [0, 1],
and continuous elsewhere. In addition. f is not monotone in any subinterval of [0, 1].
When 3 = 1, however. f is a linear function on [0, 1]. Most of these properties can
be generalized to R™ for n > 1, except in the case of 3 = 1, f is no longer continuous
everywhere and its discontinuity set is also dense in [0,1]*. Finally, following some
preliminaries on fractal geometry in Section 4.3, Section 4.4 is devoted to the fractal
properties and dimensions of the graph of f. The main result concerning the fractal

properties of f3 is as follows:

Theorem 5. Let Gy, = {(z, f3(x)).x € Iy}. the graph of f5 over Iy. Then C_ifﬁ is an

affine invariant set on Iy x [—Cy, C3]. Moreover.

~ n+1-p0 if 0<pg<1,
dimg Gy = dimp Gy = (1.14)

n if B>1,

where dimg G and dimp G are, respectively, the Box dimension and the Falconer
dimension of the set G. which will be defined in Section 4.3.

Another interesting consequence of the counterexamples provided in Chapter 3 is
that power 2 in the definition of @, cannot be changed to q for ¢ # 2. This is unlike
the case of BMO, where the p-inean oscillation (1.4) defines an equivalent norm. In
the paper of Coifman, Meyer and Stein [3], they introduced the tent spaces T? for all
0 <p<oo,1<q < oc, and showed that the tent spaces are closely connected with
Hardy spaces, L” and BMO. In particular, for ¢ = 2, they project TJ to LP(R™), for

1 <p<oc, T§ to HP/(R") for 0 < p < 1. and T5° to BMO. As for (Q,,. the power 2 is



special compared to other powers for the tent spaces. Moreover, the space TP varies
when g changes. This motivated our interest in seeing what will happen if we change
the power 2 to g for ¢ # 2. In Chapter 5, we prove an analogue to Theorem 6 in [3],

that is,
Theorem 6. For 1 < q < 2. there is a projection which maps

a). TP to L,(R"). if 1 < p < oo:

c).

d). TP to HP(R™), for p < 1.

T to BMO:;

(

(b). T! to H'(R);
(c). T

(d).

The proof of this theorem involves the use of the homogeneous Triebel-Lizorkin

spaces F)4.

Remark on notation: Throughout the thesis. we will follow the notation used
above. Unless otherwise stated, the letters C, ¢ will denote arbitrary constants which

may change from line to line.



Chapter 2

The John-Nirenberg Inequality for
Qa(R")

In this chapter, we prove, separately, the necessary and sufficient versions of the

John-Nirenberg inequality for the space Q,(R™).

2.1 Some background on @,(R")

Let I be any cube in R™ with edges parallel to the axes (this will be assumed in
everything that follows). One can modify the definition of the mean oscillation of f

over the cube I by considering the g-mean:

(1) = |1 / 1 (z) - F(I)de. (2.1)

The fact that for f € BMO, the supremum over all cubes of ®%(I) is bounded for any
g < o0 is a consequence of the John-Nirenberg inequality (and is in fact equivalent
to it if the bound is given by (cq)? - see [26], Chapter 4, Section 1.3).

For Q,(R"), we will be interested in the case ¢ = 2. Following [14]. Section 5, we

10



write:

05(0) = 9(0) = o7 [ 1) = f(DFde = s [ 1700 = s Pasay

With Dy (1) as defined following Conjecture 1, namely Do(I) = I, D(I), k > 1. is the

collection of the subcubes of the kth generation of I obtained by dyadic subdivision

of the sides, and D(I) = UyDi(1), we let

NG e D U S € )

JEDK(I) JeD(I)
The following is Theorem 5.5 of [14]:

Theorem 7 (EJPX). sup, (V. (I))"/? is an equivalent norm in Q4(R"), i.e.
[ € Qu(R™) & sup(V, (I))"? < . (2.2)
I

In order to show the equivalence of ¥, () and the double integral defining @, (R")
in (1.7) for each individual cube I (without taking the supremum), it was necessary
in [14] to restrict to the case o < % and use Lemma 5.6. A generalization of this

lemma to the generic case in R” is given in Lemma 2.6 of [9]. We will need a slight

variation of that lemma in Section 3.1:

Lemma 1. Assume o < 1. Let I',--- I' be | cubes of the same size, that is,
[I'=---=|I'|=V, forsame V > 0. Ifa cube I C I'U---UI', withV < |I| < 2"V,
then,
’ N2 —1) }
(1) <D0 (F) + == Y I - S (2.3)
=1 1<i<j<l

and

Vo) O S b+ Y 15— ] (2.4

j=1 1<i<y<l

11



Note that in general we may assume [ < 2". The proof of the lemma is the same
as that in [9], except for replacing |I| by V = |I’|, j = 1,--- [, in the proof of the

first inequality.

2.2 Proofs of Theorems 1 and 2

We restate and prove Theorems 1 and 2 in this section.

Theorem 1. Let 0 <a <1 (n>2), or0<a< % (n=1). and 0 < p < 2. If there

extst positive constants B, C and c, such that, for all cubes I C R™, and any t > 0,

0o P
22(2a-n)k Z )‘"J(t) < Bmax{1, (g) } exp(—ct), (2.5)
k=0 JeDK(I) | I !

then f is a function in Q. (R™).

Proof: Using Theorem 7, it suflices to show that ¥, ,(7) is bounded independent of
for I. In fact, we will show, more generally, that for any ¢ > p. we have (using the

notation from (2.1))

o

Wh (1) =) 20 N 99()) < BE gy, (2.6)
k=0 JeD(I)

where B, C,c are the contstants appearing in (2.5), and K¢, ,, is a constant de-
pending only on C, ¢, p, and q. When ¢ = 2, \Il?a(l) = W 4(7), so this implies the
theorem.

Fix a cube I. For any J € Dy(I), write [, |f(z) — f(J)|%dx = q [;° 972X, (t)dt,
and proceed as follows, changing the order of integration and summation by the

Monotone Convergence Theorem and using inequality (2.5):

12



v (1) = Zzﬂa Y / 10 (1)t
JeD(I)
I As(t)
_ q/ 14 1 ZQ(?Q n)k Z dt
0 k=0 séomny 7]

[e.e] C r
< q/ t771 . B(1+ (——) Ye dt
0 t
= ¢gB <c”/ u"le”du+07’c(‘”’)/ ut-rl “du)
0 0

= ¢B(c"T(q) + C"c¢"PI'(q - p))

where T'(y) = fooo uw¥ le~¥du. Since 0 < p < g, the two integrals converge. We set

Keepq = ¢ T (q) + CPc~9"PT(g ~ p).

Theorem 2. Let 0 < a <1 (n>2), or0<a <1 (n=1). Forany f € Q. (R").
there erist two positive constants B and b (depending only on n). such that, for all

cubes I C R™.

gﬂyhn)k 3 A}.]J(r) < Bmax {1, (%ﬁ)g} exp (ll;llb;) : (2.7)

JeDi (1)

Proof: Assume f is a (nontrivial) element of Q,(R"), and write v = sup, (¥ (1)),
which by Theorem 7 may be considered the norm of f in Q,(R"). Note in particular

that for all cubes 7 we thus have

i ) = F()lde < (@) < (W) < (2.8

Fix a cube I. For each J € Dy(I), we have by Chebychev’s inequality, for t > 0,

J(1) <t / () — £(J)[d.

13



so it follows that

> A(t _ -
22(2(]—”)16 Z IJL](I) St Q\Ilf‘a(]) St 2,}/2' (29)
k=0 JED(I)

Thus in the case t <, (2.7) holds with B =¢ and b = 1.

It therefore remains to consider only the following

Case t > 4: Following the proof of the John-Nirenberg inequality for BMO in [23]
(based on an unpublished proof by Calderén), we mainly use the Calderén-Zygmund
decomposition [6] to demonstrate that f satisfies (1.3). However, unlike the BMO
case in which the decomposition is applied to the given cube I, in the Q, case we
instead decompose the subcubes of I.

Recall the Calderén-Zygmund decomposition [6]:

Lemma 2 (CZ). Assume that f is a nonnegative function in L'(R™) and £ is a
positive constant. There is a decomposition R* = PUQ, PN Q = 0, such that
(a) Q@ = Uge; Ik, where {1} is a collection of cubes whose interiors are disjoint:
(b) f(x) <& for a.e. x € P;
(c) £ < ’]7| [, flx)dx < 2" €. for all I in the collection {I}}.

As in [23], we may add the following consequence of properties (a) and (c):
(d) £lA] < [, flx)dr < 2"€E|A], if A is any union of cubes I from {I;.}.

Fix a cube I, and consider a subcube J € D, (I). Applying the Calderén-Zygmund
decomposition to |f(z) — f(J)| on J with £ =t for some ¢ > 0, we write Q;(t) instead
of Q and J \ §2,(t) instead of P in the Lemma above.

Again following [23], we note that estimate (c) can be sharpened as follows:

1

< m/K F(z) = F()]de < 2y +1, (2.10)

for all cubes K in the decomposition of §2;(¢). To see this, note that if & is such a
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cube. then K # J. since by (2.8).

M/|f Nldr <~ <t

which contradicts (c). From the proof of the Calderén-Zvgmund decomposition (see,
for example, [25], Section 1.3.3), we thus know that K must have a “parent” cube

K* C J with ((K*) = 2((K) for which

S = SO 1K [ 1) = Sl <1

Again using (2.8), we have

1

< ey [ =l < l”/|f Kl +17(K*) = ()
< g [ ) = S0 e 4
< 2%y 4+t

In order to deal with the sum in (1.3) we also need the following variant of property
(d):
?|A] < / |f (2 J)|Pda (2.11)

for an union A of the cubes A" in the decomposition of €2;(t). This is simply obtained
by squaring and applying the Cauchy-Schwarz inequality to the left-hand inequality
in (d).

Continuing as in [23], we note that Q,(t') C Q,(t) whenever t < t'. For if any
cube K in the decomposition of ,;(#') is not contained in §;(t), then K is in the
complement, J \ Q;(¢), and by property (b), t > % Ji 1f(z (J)|dx > ¢/, which is
a contradiction.

Lastly, setting #' = 7 + 2"*1~. we want to prove



€2, (t)] < 27Q, ()], (2.12)
To see this, take a cube K in the decomposition for €2,(¢). From (2.10) we have

1

M@ = FDlds < 2 i<t

This means that /& is not a cube in the decomposition of €,(#'), and was further
subdivided. Let A" = K N Q,(¢). If A # §. it must be a union of cubes from the

decomposition of €2,(t'). Therefore by (d), (2.8). and (2.10),

IN

A Af(x) = f(D)ldx

IN

IR / () — O de + L) — 70|
< |A” llKilhl/U fK) delH/]f F(D)|dz

< JATHE )y 4+ 2 4t
Replacing ¢' by t + 2"*!4_ subtracting ¢ and dividing by ~, we get
(2M —2m) < |A'IPY K],

that is,

[KNnQ, ()] = A < 27 K]

for any cube K in the decomposition of 0 s(t). Summing over all such K, and using
the fact that Q,() = Q,(t) N Q,(¢'), gives (2.12).

As a result of (2.12), we get

i 9(2a—n)k Z IQi’J(IIU)’ < on EOC: o(2a—n)k Z IQI{](r)I (2.13)

k=0 JeD (1)
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for # =t 4 21ty

For every J € Dy(I). property (b) of the decomposition for |f — f(J)| gives

Ai(t) = Hz e J:[f(z) = f()] >t} = [Q,(8)], (2.14)

S0 we are now in a position to estimate the left-hand side of (2.7) for t > ~. Denoting
by j the integer part of 2"+Yv’ and setting s = (1+ j2""')~, we have v < s < ¢. It

follows that

k=0 JEDR(I) k=0 JEDL(I)
_ i2(2a~n)k Z |QJ((1+J2n+1)’7)|
/]
k=0 JED(I)

7]

by (2.13). Iterating this j times and using (2.14). (2.9) with { = ~. we have

(o]

As(t) ny S (2 [2,0)
ZQ(Q )k Z i < 1222 Z »

k=0 JeDy(I) JeD(I)

ey
< 2"”(,\’271% ‘1) — 2*#—(1/7)2#4‘”'

Letting B = 202" )4 and p = Fm7 In2, we obtain the following:

;2 Gamh §7 A (=bt/~),

JeDr(I)

which is (2.7), since we assumed v = || f| 0.
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Chapter 3

Counterexamples

In the first section of this chapter, we define a sequence of function {f;} to show
part (a) of Theorem 3. Then, using the sum function f = 3" f;, we show part (b).
In the second section, we replace o in the definition of the sum function by another

parameter 3 to get a function fg, and discuss the relation between f3 and the space

Qa(R™).

3.1 Proof of Theorem 3

Again, we review Theorem 3, then prove it.

Theorem 3. Let 0 < a < 1.
(a) If 0 < p < 2, then there are no constants B and b such that the following wnequality
holds for all functions f € Q.(R™), all cubes I in R™, and all t > 0:

(T s B

JEDk(])

18



(b) There exists a function f satisfying an inequality of the form

iQ(%_")k Z )\I]J(r) < Bmax {1, <§) }exp(—ct) (3.2)

k=0 JEDL(I)
for all cubes I in R™. with some positive constants B, C, ¢, but which is not in Qo (R™).

Proof of Part (a): Let 0 < o < 1/2. We will prove this part by contradiction.
Suppose (3.1) holds for some 0 < p < 2, and take q with p < ¢ < 2. Then, replacing
C and ¢ in inequality (2.6) in the proof of Theorem 1 by | ]|, and m, respectively,
we get

v5.)

IA

qB

(%) L(g) + 11 f1l5, <”fQQ“) upl“(q—p)} (3.3)
= Bl (G + G- ») (3.4

= ¢B|flIb, Kopb: (3.5)

where K, ,, = bqu(q) + +51(g — p). In particular, if f lies in a bounded subset of
(e then \I/?a(l ) will be uniformly bounded. We will see from the following example

that this may fail to hold.

First, we construct a sequence of functions H,(x), = = (z1,--- ,z,) € R*, which

N

are multiples of Haar functions. Let h be a function supported in the interval [0, 1]

with
1if 0<z<]
hz)=q -1 if l<z<1
0 if z¢1[0,1)

Define

H(z) =[] h(x).

i=1

where r; is the ith coordinate of r. H(r) is supported in the unit cube I, = [0, 1]"

19



and takes the value 1 or —1 on each subcube in D;(Iy), the first dyadic partition

of Iy, with any two adjacent cubes having opposite values. Also note f H(x)dx =

H:—;l fh(l'z)dl'z = 0.
Fix I > 0. For each dyadic cube J € Dy(Ip). write J = [, [m;27!, (m; + 1)27],

where m; € {0,---,2! — 1}. Let H, ;(r) be a function supported in J, such that:

Hy j(z) =27 ﬁ h(2'z; —my) = 27 H(2'z — m). (3.6)

i=1

with m = (mq,---,m,). Namely, H,; takes the value 2-%! or —2-*! on each sub-
cube in Dy(.J), and any two such neighboring cubes have opposite values. Again
fHU(:E)da: =0.

Finally, define a sequence of functions { f;};>0 on R" by

H[?J(I) ifx € J, J € Dl(]());
filz) = (3.7)

Claim 1. There exist a constant C. depending only on «. such that
sup Uy, o(I) = sup \Ili‘a(]) <C V>0,
1 I '

that is (by Theorem 7), {fi}1>0 is a bounded set of functions in Qo (R™). On the other
hand, for q < 2
sup U4 (I) — o0 as | — co.
; .
This claim will provide the contradiction to (3.5).

Proof of Claim 1 : We first calculate W9 (Io). Let J be a dyadic subcube in
Dy, (Ip).-
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If k <1, then .J is a union of cubes J' from D;(Iy), so the mean

fl(J) = l_}[ Z /HZ’J/(I)dZL’ =0.

J'cJ

Thus, the oscillation

1
PI(J) = — [ |27|9dy = 2792
3% (J) ,J,/J| 7dz

On the other hand, if k£ > [, then J is contained in a single subcube from D, (J’)
for some J' € Dy(1y), so fi(z) is constant on J, and the oscillation @7 (J) =0.

It follows that

l l
\1}(}1‘0(10) _ Z 22ak'7nk Z 2—aql — Z 220k ) 27(,\(11 (38)
k=0 k=0

JeD(I)

_ 22a(l+l) -1 . 2faql _ 2(2—q)al o 2~2a—qal (3 9)
920 _ | -2 '

Hence, if ¢ < 2,

\I/q

hallo) = 00 as [ — oo,

proving the second part of the claim, while

(To) < —

2
Vpallo) =0 S {9

Jr.a

vi>0.

We still need to show Uy, ,(I) is bounded for all cubes I C R*. We now estimate
Wy, o(1) for a dyadic cube. Since suppf, = Iy, ¥y o(I) = 0if INIy = @. So for
smaller cubes, we need only consider the dyadic subcubes of I, that is, I € D;(1y),
J > 0, while for bigger ones, we consider only dyadic cubes containing Iy, namely
I=1[0,2]", j > 0.

n

Case 1: I € D;(Ip), j > 0. Write [ = H[mﬂ*j, (m; + 1)277), m; € {0,--- .29 — 1}.

=1

We can further assume j <, otherwise W, ,(I) = 0 since f; will be constant on 1.
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Asin the case of Iy. fi(J) = 0if J € Dy(I) for k < 1—j, resulting in ®,(J) = 2724,
while fi(x) = constant on J if k > [ — j, resulting in ®;,(J) = 0. Therefore we again

get

I-j
\I/fl,o(]) _ ZQQQ’kfnk Z 2~20¢l
k=0

JeDr(I)
B 92a(l—j+1) _ 1 27201 B 9—2aj _ 2»2(1([—}—1)
- 221 T 1-2
< ——1 .
= 1 2

Case 2, I = [0.27]", j > 0. Consider J € Dy(I). If k < j, then either J is disjoint from

Iy. in which case ®,(J) = 0. or it contains it, which occurs only in one case, namely
J =1[0.277*]". in which case f;(J) =0 and ®;(J) = |J|™! [y i) Pda = 2tk =2el,
If j <k <1+, then again either J is disjoint from Iy, in which case ®;,(J) = 0,
or it is contained in it, i.e. J € Dy_;(lp), and again, since k — j < I, fi(J) = 0 and
O (J) =220,
Finally. if & > [+ j. we also have that either .J is disjoint from Iy and @ n(J)=0,
or J € Dy_;(o), but now since k — j > I, f; is constant on J, resulting in ®,(J)=0.

Consequently (using the fact that j > 0 and o < n/2) we get

J I+j
‘ijlﬂ(I) - Z 22ak—nk2n(k—j)—2al + Z 22ak—nk Z 2*2al
k=0 k=j+1 JEDx_;(Io)
I+ 2a(l+j+1)
. , 92a(l+5+1) _ 1
_ —nj—2al 20k __ o—nj—2al
= 2 Z 2 =2 220; -1
k=0
2(2a~n)j _ 2—2a(l+1)7nj 1
- 1_22 S 1T

Lastly, we use Lemma 1 to estimate ¥y, ,(/) for any cube I C R”. This is the
only place where the restriction a < 1/2 is used.

For any given I. there exists an integer j such that the sidelength of I satisfies
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27 < (1) < 271 Moreover. there exist 2" adjacent dyadic cubes I',---  I?", with
sidelength 27, such that I € I'U---UI?. Since the mean of f; on each of these
dyadic cubes. fi(I'), is either zero or 272!, we have |f,(I') — f;(I’)] < 2-2. So,

by Lemma 1. and the estimates above of ¥y, ,(I) for dyadic cubes I, we have

2"
\ijl.a(]) < Cn Z\I}fl.a(]j)_{_ Z lfl(]i>_fl(1j>'2}
j=1 1<i<j<an
1 2271 _9n oad
< ’ n 4. 920
= Cn,()'-

This completes the proof of the Claim 1 .
Proof of Part (b): We will now show that the form of the John-Nirenberg-type
inequality (2.5) with p = 2 is not sufficient.

Consider the function f = 3", f;. Note that the sum converges absolutely since

—al __ .
El [f,[gIE_OQ —1_27(1—.Ca<oo.

In what follows we will continue to use the notation C, for this constant, and C for

any other constant, which may also depend on a.

Claim 2. The function f is not in Q4(R™) for any o > 0 (it is in fact in L=\ Qo)
However. when o < 1/2, f satisfies the John-Nirenberg-type inequality (3.2), ie.
there exist positive constants B, C' and ¢, such that, for all cubes I C R", and any

t > 0.

22(20’_")’“ Z )\[JJ(T) < Bmax{1, (%) } exp(—ct). (3.10)

k=0 JeDR(I)

As a consequence. for allq > 2. 0 < o < 1/2, sup; ‘ll‘}va(l) < 00. Moreover, we can
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show, even for o« > 1/2. that for all ¢ > 2.

sup WY (1) < oo,

dyvadic cubes [

Proof of Claim 2: We have alrcady shown that f is bounded by C,. Now we will
show W ,(Iy) = oo, hence f ¢ Q,(R").
Given k > 0, let J be a dyadic cube in Dy(1y). Since

S [0l = 3 [ 2 ee= e, < o

1>0 V- >0

the average of f on J can be written as f(J) = 32, fi(J). Recalling that f,(J) =0

when k < [ and f; is a constant (= £27%) on .J when k > [, we have

oC k-1 oo
@) = FD =Y fle) =AW =D fila)].
1=0 1=0 1=k
By the orthogonality of {f,},-) on J. we have
Oi())=— o)Pdr = — T)|2d.
=157 13t 712 wopas

- Z 2—201 = 0202‘20’6-
=k

Consequently,

00 0o
\Ilf.a(IO) — Z 2(207”)]&“ Z (I)f(]) _ CQQ Z 2(2a77z)k+nk72uk = 00,
k=0

JED(Io) k=0

This shows f & ,(R") and proves the first part of the claim.

To show the second part, namely that f satisfies a John-N irenberg-type inequality

of the form (3.2). we first deal with the case of  large. where the inequality follows
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from the fact that f € L. Namely, since f is bounded by C,. we have, for t > 2C,,,

As(t) = 0 for all cubes J, and therefore

o o2k (1)
D plemmk R IIJI =0

k=0 JeDy(1)

for all cubes I, so for such ¢ the inequality holds with any B > 0, C = 2C,,. and any
real number c.

So it remains to consider ¢ small, i.e. t < 2C,.

We will deal with the summation in & depending on the size of k relative to .

Case 1: k small. When 2°%F < 2, /t, we use the trivial estimate 2"* on the number

of cubes J in D, (I). This gives

S gk Y AIJJ(F) < ¥ 220'\‘5()1(2?“)2. (3.11)

{k:1<20k <20, /t} JEDR(I) {k:1<20k <20, /t}

Case 2 : k large. When 2% > 20, /t, we want to estimate more carefully the
number of of cubes J in Dy (I) which contribute a nonzero amount to the sum. Given

any subcube J, we have, as above, f(J) =3, fi(J) and therefore

(@) = f(D] <D 1hilz) — A < > 22700
1 {L: fitconstant on J}

For a fixed [ > 0, f; is constant on J when either J is disjoint from I, or .J is contained
in some dyadic cube J’ belonging to D,y1(/y). Varying [ and .J, we will denote by G
the set of all “good” pairs (J,l), namely those for which f; is constant on J.

If (J,1) € G for some I, i.e. J intersects I, and is not contained entirely in any
element of Dyy1(lp), then it cannot, a fortiori, be contained in any dyadic cube in
Dyy2(1o), hence we also have (J,1+ 1) ¢ G. For such J we will denote by [, the first

value of [ for which (J,1) € G.
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If J is disjoint from Iy, we use the convention [; = co. Thus we can write, for all

@)= f) < > 22790 =23 97 = 90,270
Ly

{1+ (J1)gG}
and hence |f(x) — f(J)| > t only if t < 2C,27° in which case we estimate A;(J) <

|J|. Otherwise, we have A¢(J) = 0. Summing, we get

IA

iQ(Qa—n)k Z )\IJJ(T) f:2(2a—n)k Z 1
= k=0

k=0 JEDR(T) {JEDL(1):2C, 270 >}

We estimate the right-most sum, namely the number of J for which 2C, 272 > ¢,

as follows:

#{J e D) 20,27 >t} = Yoo #IeDd) =1}

{1:20,27°1>1}

Yoo #IeD): 1, <1

{l:20l<c2C, /t}

- Z #{J e D (I): (J1) € G}.

{1: 20020, /t}

IA

Now in order to satisfy (J,1) € G, the cube J must intersect the boundary of one
of the cubes in Dyy1(1y), i.e. we must have JN(U{J : J' € Di11(L)}) # 0. Note
that this intersection is contained in I N Jy. We can estimate the (n — 1)-dimensional

volume of I (U{dJ' : J' € Diy1(Ip)}) by

n(ﬂ]iﬂ(f([), 1)

o + 1) min(£(1), 1)""1.

Moreover, since J € Di(I), J must be contained in the set of points of distance
no more than 27%¢(I) from this (n — 1)-dimensional set, measured along one of the

coordinate directions. This means that J is contained in a set of n-dimensional volume
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at most

, (Inin(é'(]), 1)

: g n—-lo—k
SEES Y 1) min(¢(1),1)" = 27%¢(1I). (3.12)
When ¢(]) < 1, we get an upper bound of nf(I)"27%(¢(I)2!™! + 1). Dividing this
by |J] = (27%¢(I))", and recalling that the cubes in Dy(I) have pairwise disjoint

interiors, we get an estimate on the maximum number of “bad” cubes:
#{J € D (1) : (J,1) € G} < n2=DR((1)25 4 1) < p2m-DkH+2,

When £(I) > 1, estimate (3.12) gives

n(247 4 1)27k¢(T)

#{J € D(I): (J.) ¢ G} < PRADE

— nz(n—l)ke(])l—n(21+l + 1)

so we again get an upper bound of n2®~D¥H+2 Plygging this into the sum gives

Y #{JeDdD): (L) EC)

{1:201 <20, 11}

< ,’7,2(n~l)k Z 21+2 < C2(n71)k(2Ca/t)1/n,.
{1:201 <20 /1)

Finally, summing over k, and using the assumption o < 1/2, we get

Z o(2a-n)k Z )‘lJ](r) < C<2?a)1/“ Z o(2a—1)k

{k>0:205>(2C4)/t} JeDr(1) {k:20k>(2C, )/}
QC’Q 1/ 26‘& (2a-1)/a ZC’Q 2
gC(t) (t) :Cz(t)' (3.13)

Combining the two sums (3.11) and (3.13) gives the desired inequality for ¢ < 2C,
with B = emax(C, Cy), C = 2C, and ¢ = (2C,)~*. This completes the proof of the

second part of the claim.
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The uniform bound on W () when ¢ > 2, a < 1/2, follows as a corollary to f

satisfying (3.2) in the same way as (2.6) (see the beginning of the proof of Theorem 1).

Now we will show that for o, 0 < o < min(1,n/2), and any ¢ > 2, ¥4 _(I) is
uniformly bounded over dyadic cubes I.

Note that for a fixed cube I, we can use subadditivity of the L9, {7 norms to get:

(W9 (1) = (ZQ(?a—n)k Z (I)(}(J))l/q
k=0

et
= (ryeer /u(g” n; /“Qa/q A6 A M)

< oy ")/Q(J;)(,z;” PO = A Mien) )
< o WZ(J;,) Il = M) ™

_ gﬂ:a;@ (‘é(_l))""ZQ@f;l(J)) : g(w’,’rm(l))l/q.

Therefore if we can show that for each [, and each dyadic cube I,

\Ijq

1 (1) < C2Bm00! (3.14)

with a constant C' < oo independent of I, then we will get

sup (\Ij?7a(1))1/q <C Z 2(2/g—-1)cd

dyadic cubes [ =0

and this sum is convergent if and only if ¢ is strictly larger than 2.

For Iy, estimate (3.14) was computed in the beginning of the proof of Claim 1 (see

(3.9)).

For a dyadic subcube I € D;(ly), j > 0, we repeat the estimates in Case 1 of the
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proof of Claim 1 with ¢ instead of 2 to get

= 2ak-nk 2: 1 _ grell=3+1) —1 ! (2—g)al
ak—n qo L 9—qo ) —q)a
fl a 2 2" _—a 1 2 < CQQQ .
k=0 JEDk

Similarly, when I = [0,27]", j > 0, we can replace 2 by g in Case 2 the proof of

Claim 1 to obtain

I+j
ak—nkon « nk —qu
\I/(j]-a(]) _ 222 k— L2 (k—j)—q l+ Z 22ak Z 92-4q l
k=j+1 JED;_;(1Io)
I+ 2 l+(2a—n); _ 2»qal—2@—nj
_ —nj—qal 2ak (2—g)l
= Z 2 1— 2—2(1 S C202 .

Note that here we only used the fact that o« < n/2. As in [14], [9], it seems that in
order to go from the dyadic to the general case one needs the restriction a < 1/2 in

dimensions n > 1, perhaps because one is dealing with sets of dimension n — 1.

3.2 The wavelet decomposition and binary expres-
sion of the function f;

The sum function f above can be viewed as a wavelet decomposition in the Haar
basis (see [26]). In order to explore the relation between the function and the spaces
Qo (R™) in a wider range, in what follows we replace « in the coefficients of the wavelet
decomposition by a new parameter 3 with 4 > 0. The new function is denoted by
[

More explicitly, let us define fz using the orthonormal Haar wavelet basis in R".

Let D be the collection of all dyadic cubes in R™:

D= {J = ﬁ[m,—,?", (m; + 1)21]} ., Lmy,---.m, € Z. (3.15)

=1
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Recall h(x) and 71(x), the Haar function in R! and R", respectively. Consider the

normalized Haar functions in L?(R"), which we denote by H, ;. Namely,

Hyy(x) =22 H (2w —m) = 222 T h(2'a; — ma). (3.16)

1=1

{I:]l’ 7}iep is the so-called orthonormal Haar wavelet basis.

The Haar wavelet decomposition of f5 is given by

fﬁ(f) = Z aj g f]l..l

L.J

where a; ; = 27¥+2) if in (3.15) I = 0,1, --- , and J € D,(I,), otherwise a, ; = 0.

b ¥

We have
- 1
o) <> 27 = 95 = (s <0

=0

For 2 € Iy = [0,1]" , we can also express f;(z) in terms of the binary expansions
of ; (1 € {1,--- ,n}), where z; is the ith coordinate of x. This equivalent expression
is more straightforward and more convenient to use in some cases.

Consider the simplest case n = 1. Let = = 3,2 5,27+ corresponding to the
expansion 0.bobiby ---, where b = 0 or 1. We will use the expansions ending in

infinitely many zeros rather than infinitely many 1’s. Thus, the function fs can be

written as
fa(z) = i(—l)btz*ﬁl =Cs—2 i b27P (3.17)
1=0 1=0
Again, we reserve Cy for (1 —279)~1.
In general, let © = (21, 22,- - , ) € Ip and let 0.b3b%b5 - - - be the binary expansion
of z;, ie. z; =Y 2, b2~ for i € {1,--- ,n}. We can write
o) = (-1 (3.18)
1=0
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Lemma 3. For 0 < 7 < 1. f = f3 defined by (3.18) is onto from Iy to (—Cj3, Cgl.

Remark: —Cj is excluded in the range of the function f. This is clear from its
binary expression (3.17) when n = 1. The value f(x) = —Cj corresponds to b, = 1
VI. that is, the binary expansion of x is 0.111--- = 1. However, f(1) = 0 from the

definition of the function in Section 3.1.

Proof. We prove the lemma for the one dimensional case (3.17), then for (3.18):
By the second equality in (3.17), we just need to show Vy € [0,Cj3), y can be

expanded as

y=y by (3.19)

where b;(y) =0 or 1, VI > 0.

If0 < 3 <1 then 1 < g =2° < 2. Using the “greedy algorithm” in [12] (see
also [11], [10]). the expansion (3.19) is obtained by putting digits b,(y) inductively as
follows:
bo(y) =1if 1 <y.orby(y) =0if 1 >y. For [ > 1,

Lt b2 2 <y,

o) = o (3:20)
0 if Y5 obi(m2 P +27% >y

Claim 3. With such b/(y). > 20 bi(y)27P! converges to y € [0, Cp).

While this result may be found in the literature on base g expansion (see [7]), we
give our own proof below.

Proof of the claim:

Note that for any y € [0,Cj). (3.20) guarantees Z;:o b;j(y)27P7 < y, VI. Since
y # Cg =>°,27%0 3l such that b (y) = 0. If Jly such that b(y) = 0, VI > Iy, then
Yy = Z;’U:o bi(y)2=7 and we are done.

Otherwise. there are infinitely many I's such that b(y) = 0 and b, (y) = 1.

31



Namely,

-1 -1
D b2 P 42700 <y <N Ty (y)2 P 27 (3.21)
=0 =0

To see this; suppose there were only finite many such [, and denote by [y the greatest

one of them. Then we have b(y) = 1 VI > [y + 1, that is,

lo—1 oo
Db+ Y <y (3.22)
=0 j=lp+1

Comparing (3.22) with the right inequality of (3.21) for [ = [y, we get

9-8lo - Z 987 _ 231 - .9~ Blo.

j=lo+1

1

PEmY >1when 0 < 3 < 1.

This is a contradiction since
So with b(y) given by (3.20), 35, bi(y)2~% converges to y since its partial sums
are positive, monotone increasing. and the subsequence given in the left hand side of
(3.21) clearly converges to y.
Setting v = Y ,° bi(y)2~ "+ we have f(x) = C'3—2y. In addition, this expression
cannot end with infinitely many 1's. This proves Lemma 3 for n = 1.

For n > 2, (3.18) is onto since for each i, f(0,--- ,x;,---,0) is onto from [0, 1) to

(—C35, Cs] based on the case n = 1.

3.3 Relation of f; to Q,(R")

Recall the relation between f; and Q,(R") is given by

Theorem 4. Let 0 < o« < %

(a) If0< B < o fiy & Qu(RY). while if 0 < < 2. f5€ Qu(R).
(b) If B > «. then fs satisfies the John-Nirenberg type inequality (3.2).

Proof:
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Part (b) is a combination of Theorem 3 for the case 3 = «, and a corollary of part
(a) for the case 8 > a.

The proof of part (a) is analogous to that of Theorem 3; for simplicity, we use f
instead of fg:

Let J be a subcube in Dy(/y) for a fix integer k > 0. Recall that

fle)= 3" 270 ().

JED (o)

We have f;(J) =0 when k <[ and [; = +277 on J when k > [. Hence

[f(z) = [N = |52 h(x) = S fild))]
= |22 A

In addition, by the orthogonality of the sequence {f;};>x on J, we have that

o(J) = ﬁf]'zgk Si(z)Pde
= ﬁZloik f.} | fi(x) Pz
= Z;‘ik 9-281 _ C26272ﬁk-

where Cys = 1——. Consequently,

o 00 0
Upallo) =3 2508y 0 @p(J) = Y 2lermiink. 0y 0720k = (yy y~ 9%a 0k
k=0

JeDr(Io) k=0 k=0

It converges iff 5 > «. This proves the first part of the claim.
To prove the second part, we will show that, for all cubes / ¢ R*, ¥ fall) is
bounded provided a < g < 3.

We estimate W ,(7) for a dyadic cube, as in the proof of Claim 1 in Section 3.1.

Case 1: I € D;(Ip), j > 0. As in the proof of Claim 2 in Section 3.1, by the orthogo-
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nality of the sequence {f;};>x4; on J € Di(I), we have that

O()) = IS, fila)Pdr
- l17| >k [ (@) Pde
= szﬂ- 2280 — (72)72—2;3(k+j)_

So,
\I}fa(]) - Zz.;o 2(20771)](‘ ZJGDk(]U) (I)f(‘])
— ch:() 9(2a-n)k+nk C2ﬁ2~2/3(k+j)

= Cyp2 2y Qe < O

Case 2, 1 = [0.27]", j > 0. Consider J € Di(I). If k < j, then for any /, either J is

disjoint from Iy, in which case f;(z) = 0, or it contains it, which occurs only in one
case, namely .J = [0,277%]" in which case f;(J) = 0. Hence, fi(x) — fi(J) = fi(z) if
x € Iy and fi(x) =0if r € J\ Iy. Thus,

|22 fil)] if ey
0 if IGJ\I().

[f(x) = f(I)] =

and by the orthogonality of {f;},50 on Iy,

() = g Lo | 22050 filw)Pda
= 7 2o fy, Li(@) Pz

= % Do 27 = Cop27m R,

If £ > j, then for 0 < k — 5 < [, again either J is disjoint from I, in which
case fi(J) = 0, or it is contained in it, i.e. J € D;_;(Iy), and again, f,(J) = 0 and
filz) = filJ) = fi(x).

As for k—j > I, we also have that either J is disjoint from Iy and | f,(z)— f,(J)| = 0,

or J € Dy ;(lo). but now f; is constant on J, resulting in f(z) — f,(J) = 0.
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It follows that

[f(2) = F(D = 12 5lf() = filJ)]]
|sz‘f‘j Si(@)].

Once more, by the orthogonality of the sequence {f;};>,_; on J, we have that

®;(J) = g [, 15, hle)Pdr
- [17|Z;>ik—j f]|f,(x)|2dx

= szﬁ' 2720 = Cop2720k=7),

Consequently, we have

U, o(l) = Cyg ( Lg2Ce b 9mbh) g gk 272ﬂ(k—j))
= Cyy (Zf{ o 220 AIA2Bh=+(23-m)j 4 S0 2(20—n)k+(k~j)n—2;3(k~j))
- =J

< C% Zi‘io 92(a=B)k+(28-n)5 02ﬁ2(2ﬁ—n)j ZZ‘;O 92(a-p)k

02’36(1)26~n
1-20-8 -

provided o < 3.

As a result, we have, for all dyadic cubes I in R",

_ Capmax{l, |7]}51
= 1— 208

\Ijja([) < Ca,ﬂ <0 (323)

when 3 < 7.

Lastly, we use Lemma 1 to estimate Wy, (/) for any cube I C R™. Here we have
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to restrict to o < 1/2.

\Ilf,a(]) S Cn

R IRIOED SR f(ﬂ‘)l?]

1<igy<2n
’ 22n —_9n )
< Cn (Ca.ﬂ + —2— ) 4CB>

Cnyavﬂ'

We are done.

Theorem 4 states that a borderline case occurs when 3 = . As one can see from
the definition of f3, it has intricate detailed structure on any small scale. However, it
will be clearer later that the complexity of the function, in particular, the oscillation
on a small scale reduces as (3 increases from 0 to 1, which is consistent with Theorem 4.
This illustrates some form of regularity for functions in Q,(R™).

In addition, by [14], Theorem 2.3, Q, C @, for o < o'. f; provides another

example showing that this inclusion is strict.
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Chapter 4

Fractal properties and dimensions

Irom its definition, f; can be defined in a simple recursive way. Moreover, when
we look at any small subcube of I, the complexity of the function on it is the same
as that on Iy. We say that the function has a fine structure. In order to measure the
complexity of the function, we discuss the analytic and the fractal properties of f3
on Iy for all values of 5 > 0. We will show, for 0 < < 1, that the graph of f; has a

non-integer fractal dimension.

4.1 Analytic properties of f for n =1

In what follows f = f; defined on I, unless stated otherwise. We mainly discuss

the case R!, then we generalize those results to higher dimensions.

Proposition 1. Let n = 1. When 8 # 1, The function f is a right continuous
function on Iy = [0,1]. It is discontinuous at all dyadic points in I, and continuous
elsewhere. In other words, f is continuous almost everywhere in the sense of 1-
dimensional Lebesque measure, whereas its set of discontinuity points is dense in Iy.
In addition, f is not monotone in any subinterval of Iy.

When 3 =1. [ is a linear function: f(r) =2— 4z, Vr € [0.1).
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Proof:
Recall that the dyadic points are the endpoints of the dyadic intervals in [0, 1], or
the points with finite binary expansion. Denote by E}. the set of the end points of all

dyadic intervals in Dy (lp), and let ' = | .-, Ex, the set of dyadic points.

Part 1 of the proof, f is continuous on Iy \ E:

By the convergence of }_,|fi(y) — fi(z)], we have

fy) = flx) = (fly) - filz)).

10

Let x € Iy \ E. Since z ¢ E, Vk > 0, x ¢ E,, so there exists a unique subinterval

in Dy(1p). denote it by Ji(x), such .that x 18 an interior point of Ji(x). Moreover, we
have

Jo(x) D S(z) DD Je(z) D ---

and f; (I < k), as well as the partial sum Z;:o] f1, are constant on J,(z).

Let ¢ > 0. For any y € J.(x),

@) = @< Y 1Ay - o) < 2D 27" =227 N 9 = 90,07 <
=k 1=k =0
(4.1)

for k sufficiently large. So, f is continuous at z.

Part 2 of the proof, f is discontinuous on E:

First, we have that f(z) is discontinuous at x = 0 and z = 1, since

FO) =352 =Cs #0=f(07)
fA7)==3527" =-Cs #0 = f(1*).

Now, consider the unique point ¢ = % € E1\ Ep.
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Claim: f(x) is right continuous at % with

1) - 1+ = -1 277 = 2,
/ 5 =flz - +Z -
while the left limit
f(—)-l—ZQm —(Cz—2).

Since Cy = 2 iff 7 = 1. if 8 # 1. f(z) is discontinuous at 3 with a jump 2(Cj — 2).

Proof of the claim:

Let k> 1, a, = % —27%and d; = %+2"“. Let J, = [ay, %] and J, = [%,dk], which

are two adjacent subintervals in Dy (ly) touching at %, such that,
Jp D N/ and J]: D) J,IC_H, Yk > 0.

We have

1 r € lag, 3):
1. fo(x) = a5 2) VEk > 1
-1 T € [%dk)

-2 rela.d):
2. fi(x) = VI>1 & k>l+1.
279 € [% dk)

Let A= 1437 278 = Cy— 2.

o€ fan, ), fla) =120 — oo = 2860 4 52 10 then
|f(x) )| < Z +277) < 222"3[ =2C27°% -0, as k— oo.
1=k 1=k

Ifre(.d) fl)=-142F4... 42 0k=D L $% £(s), then

]()—4]<Z]fl )—2‘3’)<222 PL=2042"% 50, as k— oo.
=k
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So, f (-?) - f <{> = 2A. In addition. f (3) = A = Cj3 — 2 since § € [3.dy), Vk.
This proves the claim.
Comparing f(0) = f(0%) = Cg with f (3—) = —(Cs — 2). as well as [ (}) =
f (%—F) = Cg — 2 with f(17) = —Cj. and using the upper bound in (4.1), we have
that VJ € Dy(1y),
up f(x) — inf f(x) = 20527 (12)

z€J
Now, for any = € E \ {0, %7 1}, there exists a £ > 1, such that x € Eyyy \ Ey.
Then, there exist an subinterval Jy(x) € Dy (Iy). such that z is the middle point of
Ji(x). Furthermore, fo,--- . fi_1. as well as the partial sum Z;:Ol fi are constants on
1

Ji(x). Denote by a = Y"1 fi(x) for x € Ji(x). Similarly to the case z = 3. we have

the left limit,

fa)y=a+2 = N~ 2 = g4 2792 — ), (4.3)
[=k+1

and the right limit,

Flat)=a—27% Z 270 =+ 27%%(Cy - 2). (4.4)
I=k+1
Thus,
Fa') = fla™) = 2(Cp — 2)2°%%. (4:5)

Therefore, there is a jump: 2(Cs — 2)277% at x for 3 # 1.
A corollary here will be useful later in the estimate of the Box dimension of the

graph of f:

Corollary 1. Given a k > 0. and a dyadic subinterval J € Dy(Iy), we have,

sup f(r) — inf flr)=2C42"* (4.6)

re.)
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Proof: Similar to the proof of (4.2). The lower bound is obtained by comparing the
value of the left end point which is right continuous and the left limit to the right end

point.

Part 3 of the proof, f is not monotone in any subinterval of I,:

We just give a proof for the case 0 < ¢ < 1. The proof for the case 3 > 1 is
similar.
First, we show that f(x) is not monotone in Iy = [0, 1}:

On the one hand, f(r) is not monotone increasing in I, since for % > %, we have

3 _ = 1
f(i):—1—26+;;2m<@4:f<?)

On the other hand, we know, from the proof of part 2. that limy_. ¢, = —A. So there
exists a kg > 0, such that, f(a,) < —A/2 < f (3) . Note that ay, = 3 — 2% < 2. S0
f(z) is not monotone decreasing in 1.

Next, let J € Dy(/y). Similarly to the case Iy, we look at r ;. the middle point of
J. Also from the proof of part 2, there exist two points #’ and z” in J. such that.
' <xy <a” while f(a') < f(r;) and f(2”) < f(xs). So. [ is not monotone in any
dyadic subinterval of I,.

Finally, we conclude that f is not monotone on any subinterval in I, since any

interval contains a dyadic interval.

Part 4 of the proof, fs—1(x) =2 — 4z, (x € (0,1)):

Recall the dyadic expression (3.17) and set 3 = 1, then
flz) =2-4> 5270 =2 —4q.
1=0

So, fs=1 is linear on [0,1) and 0 and 1 are the only two discontinuous points of
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fa=1(x) for v € R, since

fg;](O) =2 7é 0= f@:1(0‘), and fﬁzl(l_) =-2 7é 0= fljzl(l).

4.2 Analytic properties of f; for n > 1
For the case n > 1, we get a parallel theorem to Theorem 1.

Proposition 2. Let n > 1. For § # 1. The function f is continuous at every point
which is not on the surface of any dyadic cube in Iy, and discontinuous at all dyadic
points in [0, 1), i.e.. points whose coordinates are dyadic points in [0,1). Therefore. f
15 continuous in Iy almost everywhere in the sense of n-dimensional Lebesque measure.
and its discontinuous points are dense in Iy. Moreover. [ is not monotone along any
coordinate direction in any subcube of I.

For g =1, f is discontinuous at some dyadic points and the set of those points is

still dense in .

Proof:

Denote by 0.J the surface of the cube J. The same proof as that in the case n = 1
will give the continuity of f in I\ (UJED(IO) dJ). In particular, (4.1) remains true for
the case n. > 1. We only need to show the discontinuity.

Recall z; = "2 027U+ (5 = 1,--. n), with 0.6jbib%--- being the binary ex-

tension of the coordinate z;. Rewrite the binary expression (3.18)

o0

fla) =3 (~1)¥ (—1)Eiatinat

=0

Without lose of generality, we just look at those points of which the first coordinate
71 is dyadic. Moreover, we can simplify the proof further by just checking the discon-

tinuity of f(x) at (3,72, x,), a similar approach will work for other such points.
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as we have shown for n = 1.

Again, let q;, = % —27%and d, = % +27% for k > 1. Fix z9,- -, z,. we have

L= Y e L) Wk > 1;

—(—DZ=% € [%,dk)-

— (=Xl g e a RESE
2. filz) = =1 | 1 € law 3) Vi>1 & k>[+1
(—1)xi=2bi2-8l 1, € [%,dk)-

Let A = —(—1)Xi=2% 4 320 (—1)Ei=tig
If x € [ak, %),

fla)=(=1)E28% — (—1)22b2-F ... (_1)23%712—%3(#1) + 3%, fi(x), then,

f(z)— (-A4)| < f: filz) + 277 <2 277 = 204277 — 0,k — o0.
=k

=k

If z; € {%,dk),
fla) = _(_1)22 b 4 (_1)23 b8 4 ... 4 (_1)23 bp_19-Bk=1) 4 S fi(x), then

(@) = Al <Y Ifila) =277 <23 277 = 20527 — 0.k — oo
=k 1=k

So, f (%+,1‘2,--' ,:rn) — f (%_,1'2,-" ,x") =24, and [ (3,22, .z,) = A.
Generally, if 7, bj =even VI, A = 1+ 372 277 = Cy — 2, if 3", b =odd VI,
A=1-37,2"P = —(Cs —2). In both cases, A =0« 3 =1.
Specifically, we consider >, b, =0Vl > 1, thatis, z; =0or 3 Vi=2,.-- ,n. In

this case, x is a dyadic point in R*. We have
A= (=1)Zi=b 4 Z 9=l
=1

There are again two typical cases:

L. 21”:2 by =even. for instance, bg = =bp=0,A=0C3-2=0&3=1.
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2. Y1, by =odd, for instance, by = 1,0y =---=b =0, A=C;>0.Y3 >0

In general, let = be a dyadic point in [0, 1)", i.e., z; # 1 for ¢ = 1,--- ,n. There
exists an integer k > 0, such that, VI > k, b} =0fori=1,--- ;n,and Ji € {1,--- ,n},
such that, b, = 1. Without lose of generality, we assume b, = 1. Similarly, we have
(a). ST b =even, f(xf,xa, -, x,) — flay, 22, - ,1y,) = 2(Cy — 2)277k;

(b). S0 0 =odd,  f(zf,x2, - ,T0) — fla], 20, ,Tn) = 20527°F.

In conclusion, when 3 # 1, f is discontinuous at all dyadic points inside I,. When
B =1, on each subcube J € Dy (1), there exists at least one point satisfying (b). So
unlike in R!, f is no longer continuous everywhere, but has a discontinuous set dense
in /o too. In particular, let x; be the center point of the cube .J. Then V.J € D, (1),
when n is even, f is discontinuous at x,;, while when n is odd, f is continuous at z,
with limit Z;:o] filzy).

Following from the proof, we have

Corollary 2. Let n > 2. Giwen k > 0 and a dyadic subcube J € Dy(ly), we have,

sup f(z) — 1r€1§f("c) = 20327k, (4.7)

reJ

Finally, based on the above proof for the discontinuity at dyadic points, for 8 # 1,
we can get that f is not monotone along any coordinate direction in any subcube of
Iy by an analogous approach to that of part 3, Section 4.1. Hence, f oscillates on all

small scales.

4.3 Preliminaries of fractal geometry

In the following section, we will show that the graph of f is a self-affine set in
R™*! with a non-integer fractal dimension for 0 < 3 < 1. So, f is a fractal function

for 3 in this range (see [16], Introduction for the definition of a fractal).
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We will need the following concepts (see [16], Section 9.4):

Definition 1. Self-affine set: Let D be a closed subset of R*. Let 11,--- | T, be affine,
contractive transformations from D to D. A non-empty compact set F is called self-

affine with 7, - -+ , Ty, if F is invariant for the 7;, i.e. F satisfies F = J", 7:(F).

Remark: The existence and uniqueness of such an invariant set is guaranteed by

Theorem 9.1 in [16].

Definition 2. Swingular values of a contracting and non-singular mapping: Assume

that T : R* — R"™ s a contracting and non-singular linear mapping. The singu-
lar values 1 > m > 192 > -+ > m, are defined as the positive square roots of the

ergenvalues of T*T. where T* is the adjoint of T'.

Definition 3. Singular value function of T: Let 0 < s < n. The singular function

of T 1s given by

& (T) = mmp 02T, (48)
where r 18 the wteger for whichr —1 < s <.

We will use the following notion of dimension, due to Falconer (see [16], Theorem

9.12):
d(Tl,u-,Tm):inf{s:izgﬂ:ﬁho...oTik)<oo} (4.9)
k=1 S
where Sj, denotes the set of all k-term sequences {i1,--- 4} with 1 <; < m.
Following [20], we call (4.9) the “Falconer dimension” of the collection {T7,--- , T, }.

It is related to the Hausdorff dimension (dimy F') and Box dimension (dimpg F) as

follows:

Theorem 8 (Falconer). Let 7; = T; + b;, (1 =1,--- ,m) be affine, contractive trans-

formations on R™, where T; are linear contractive mappings and b; are vectors in R".



If G is the affine invariant set satisfying

m

¢ = JT(G) +b). (4.10)

=1

then dimy G = dimg G = d(T1.--- .T,n) for almost all {by,--- by} € R™ with

respect to the nm-dimenstonal Lebesgue measure.

Based on this theorem, for G satisfying (4.10), we also call d(T3,---,T,,) the
Falconer dimension of the set G and denote it by dimp G.

Box dimension is also called fractal dimension [2]. There are several equivalent
definitions of this dimension. We adopt the following one which is convenient for our

purpose (see [16], Section 3.1):

Definition 4. Box dimension of a set F C R": Let 6 > 0. A collection of cubes of

the form

[myd, (mq + 1)0] x -+ x [my,6, (m,, + 1)d]

where my.--- .m, are integers. is referred to as a 5-mesh of R™.
Let F' be a non-empty bounded subset of R™ and let Ns(F) be the number of

d-mesh cubes that intersect F'. The upper and lower Box dimensions of F' are de-

fined, respectively, as dimg(F) = Hﬁ;ao“’?ﬁ,‘gf) and dimg(F) = h_maﬁob%?%?- If
dimp(F) = dimgz(F), the common value is called the Box dimension of F and denoted
by dimg(F).

In particular, the limit as § tends to zero can be taken through &, = c* with

0<e< 1.

The upper and lower Box dimension, dimg(F') and dim;(F), are both monotone.
In addition. dimp(F) is finite stable, that is, dimg(EUF) = max{dimg(E), dimg(F)},

but there is no analogous result for dimg(F). (see [16], section 3.2)
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4.4 Fractal dimension of f;

Recall G; = {(z. f(x)).x € Iy}, the graph of the function f over the cube Iy.
We will apply Theorem 8 to the closure G s instead of G because of the compact-
ness of the former. Since the discontinuous points of f(r) are on the boundary
of the dyadic subcubes of I;, we have dimg(G; \ G;) < n. On the other hand,
dimg G; > (Projg.G;) = dimp Iy = n. By the finite stableness of dimg, one can
expect that dimg G; = dimg G;. Later, this is confirmed by calculating dimp Gy
from its definition directly.

In what follows we show that G is self-affine on Iy x [~Cjy, Cs), and compute
its Falconer dimension and Box dimension. We discuss the self-affinity of G for the

cases n = 1 and n > 1. respectively. Again, we consider n = 1 first.

Proposition 3. Let 7y and 75 be affine transformations defined as follows:

where
2-1 0 1
Th=T, =T = , 1 =1(0,1) and by = (=, —1). (4.12)
0 28 2

Forn = 1. we have that G’f is affine invariant of {m1, T2}, that is, it satisfies

G - Tl(G) U TQ(G) = (T](G) + bl) U (TQ(G) + bz) (413)

In addition,

_ 2—-0 if 0<pg3<1,
dinlp Gf = d(T],TQ) = f /3 (414)

1 iof p=1

(See Figures 1. 2 and 3 on page 48).
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Proof of Proposition 3:

Note that for x € Iy = [0,1], f(z) = 3.5, fi(x) can be written as:

Jo(x) + 277 f(21) = 1+277f(2r) if 0
folt) +277f(2x—3) = —1+4277f(2x 1)) if

IA

T <

N

f(a) =

jum—y

T <

(4.15)

=
[N

Hence, (_}'f 1s affine invariant under the following two contracting mappings in R?:

i (ry) — (2712,27%y) 4+ (0. 1),
11 (2.y) ( ,) (0.1) (4.16)
m(ry) — (27',279) + (4, -1).
The matrix forms of 7; (i = 1,2) are given by (4.11).
To prove (4.14), we consider 0 < # < 1 and 3 > 1, separately.
First, for 0 < § < 1, the singular values of T in (4.12) are n; = 279 > ny = 2L

Correspondingly. the singular values of 7" =T o---o T are nk =279 > pk = 2k,
k times
We consider 1 < s < 2 instead of 0 < s < 2 in Definition 3 since as a graph of a
function, the dimension of G is greater than or equal to that of I, its projection on
R!. (See [16], Chapter 6).
We calculate the singular function ¢*(7*) given by (4.8) in three cases as follows:

Case 1, s = 2: then r =2 and
st(Tk) — n{c(né)s—r-f-l — 2~,@k2—k — 2~(l+ﬁ)k'
Case 2,1 < s < 2: alsor = 2, and

(bs(Tk) — T,ic(,r’l;)sfr-%l — 2—ﬂk2—(s—l)k — 2(1—ﬁ—s)k.
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Case 3, s = 1: then r = 1, and
#(T*) = ()T = 277,

Now, calculate d(T},T») in (4.9):
Since for all k-term sequences {4y, --- ,iy} withi; =lor2 (j = 1,--- , k), we have

Tij:Tand ilo-v»oTikZTk,SO

D (T, 000 Ty,) = 255 (TH).
Sk

M? s=2
00 00 o0 98
kg sipky _ ko-(14+3)k _ —Bk _
D o2k (rh) = "2k =Y"2 =55 <™
k=1 k=1 k=1
Case 2, 1< s<2:
Z 9% 3 (TH) = Z oko(1=p—s)k _ Z K2 o & s>2-4.
k=1 k=1 k=1
Case 3, s = 1:
SR =3 2= Y I = o
k=1 k=1 k=1
Consequently,

d(T],TQ) = inf{s 15> 2— ,6} =2-0.

Second, for 3 > 1, the singular values of T are n; = 27! > 5, = 275 and the singular
values of T* are n¥ = 2% > pk = 25k,

We only need to look at 1 < s < 2. Thus, for r = 2, the singular function

(bs(Tk _ n;v(néc)sfr-i—l — 2~k27(s~l)ﬂk — 271{-(371)/717,



and
Z 2k¢s(Tk) — Z 2k2vk-(s—l)/3k — Z 2-(8—1);31\" < 00.
k=1 k=1 k=1

Therefore,

ATy, T2) =inf{s:s > 1} =1.

We now generalize Proposition 3 to R™ for n > 1.

Let x = (21,...,2,) € Iy = {0,1]", and consider the graph G; = {(z, f(2)).2 €
Iy} € R™ x R'. suppose the contracting mappings 7, : R* x R! — R" x R! are
affine transformations given by 7;(x,y) = Ti(z,vy) + b;, where T; are n + 1 dimension
diagonal matrices, with T; = T = diag{2",--- |27, 279} Vi, b; = (bi 1, ..., bin, bis1)s
with b;,; = 0 or 1 for j = 1,..n and b, .11 = (—1)7®), where P(b;) denotes the

number of times % occurs in b; 1, ..., b;,,. There are in total 2" such distinct 7;.

Proposition 4. Gy is the affine invariant set on Iy x [—Cj. Cy), which satisfies

G:Un@L (4.17)

where 7; (1 = 1,--- ,2™) are 2" distinct affine contractions as described above. More-

over,

n+l-fF if 0<p@<l,

dimp Gy =d(Ty, -+ ,Ton) = (4.18)
n if 0> 1.
Proof: The proof of Proposition 4 is analogous to that of Proposition 3. Here we
just show the details of calculation of s = d(Ty,--- ,Tyn) for 0 < 3 < 1.
Since T* = diag{27*,... ,27% 278k} (£ > 1), its singular values are
anQ_ﬁk>n§:"':n£+1:2_k'
‘If“(s~r+l)

Recall the singular function of T*, ¢*(T*) = nknk ...y, . Naturally, we just



consider n < s <n+1:

Case 1, s=n+1: thenr =n+1 and
¢*(T*) = nfmb - -l y = 27727k = 27knth),
Case 2, n<s<n-+1lalsor=n+1,
O (T*) =i -y ™) = 27 Phgr (n Dhgrklem) = gh=879),
Case 3, s =n: then r = n,
G (TF) = gl g = 27Pkg=(n=Dk — g-k(n—1+5)

Since for any 1 <¢; < 2" T}, =T and Tj, 0 --- o T;, = T* V(iy,- -+ ,ix)., we have

11

D 0T oo T) = 2HAT)

Casel, s =n+1:

ian Zan,Q 6k2 —nk 22 Bk _ — < o0,
k=1

Case 2, n<s<n+1:
Zan 22nk2k(1ﬂ s) ZZk(”+1ﬁs)<oo®3>n+l—ﬁ
k=1 k=1

Case 3, s = n:

Z 211k¢s(Tk) — Z 2nk27k(n~l+/3) i 2(1—ﬂ)k = 0.

k=1 k=1 k=1
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Consequently,
dimpG;=d(Ty, - T,)=if{s:s>n+1-8}=n+1-3.

Now we come to the proof of

Theorem 5. Let Gy, = {(z, fg(x)),z € Lo}, the graph of fs over Iy. Then Gfﬁ is an

affine invariant set on Iy x [—Cp, Cj|. Moreover,

_ n+1-p3 if 0<pB<l,
dimB Gfﬁ = dinlp Gf,g = (419)

n f p=>1,
Proof: This could be a corollary of Proposition 3 or 4 by noting Theorem 8. However,
Theorem 8 gives no clue for which by, --- b, the Hausdorff dimension and the Box
dimension agree with the Falconer dimension (4.9). So, in what follows we calculate
the Box dimension of the graph G directly.
Let 6, = 27%. By (4.7). the number of §,-mesh cubes in R**! in the column over
each J € Dy(lp) which intersect G, is at most 2C327°%/27% + 2. Since there are in

total 2"% many such J, N;, < 2"F . (2C,;275% /2% + 2). So

log([27 . (2¢,20-B)k 4 9 n+l-—p0 if 0<p3<1;
dimBGf S lim Og[ ( Cﬂ + )] = ﬁ .
k—00 —log2—*

n if g>1.

When 8 > 1, dimg Gy = n since dimpG; > dimg(Projg.Gy) = dimg Iy = n (see
[16], Chapter 6).

When 0 < 8 < 1, since the part of Gy over J € Dy is affine to Gy, f restricted
to J is onto from J to [inf,e; f(r), sup,e, f(x)] by Lemma 3. It follows that the

number of j-mesh cubes in R**! in the column over each J € Dy(Iy) intersecting G
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is at least 2C;277% /27X Therefore, Ny, > 2% - 2’3277 /27% "and

=n+1-70,

dimy G, > A]BTolo 10g[2(_],,1(.)§(27:1,d)k]
Hence, dimp Gy =n+1— 3.
Remark: As a counterexample, the function f; is interesting only for 0 < 8 <
min{1, 3} due to the properties of ), spaces. However, f; is well defined for all 3 > 0.
Moreover, the related mappings {1, -+, 7o= } is a system of affine contractions for all
£ > 0 (a system of similar contractions when 3 = 1.) Theorems 5 tells us that fj is
a fractal function if 0 < 3 < 1, since for 3 in this range, dimp Gy =n+1- 8 > n.
As a corollary of Theorem 4 and 5, the fractal dimension of f; is related to the space
Qa(R™) by the fact that f3 € Q4 (0 < o < 1) ifand only if n < dimp Gy, < n+1—a.
This raises an interesting question: is this a characterization of functions in the space

Qa(R)?
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Chapter 5

The tent spaces Tg for q # 2

When Coifman, Mever and Stein [3] studied the BMO-Hardy duality in the setting
of tent spaces T7, they gave a projection mapping from T§ to L?. H?, or BMO for
1 <p<oo p <1 orp = oo, respectively. Conversely, by any standard square
function, such as the Lusin area integral, one can map functions in LP, HP, or BMO
to T3 for p in the corresponding range (see also [17]). Hence T% are bijective to L?,
H?_ or BMO. In this chapter. we explore what happens to the relationship between

tent spaces and LP, H?. and BMO when one modifies their theorem by change ¢ = 2

to q # 2.

5.1 Connection of TP with 17, H'! and BMO

We adopt the following notations from [3]:

Let I'(x) be the cone in R%"! with aperture 1 whose vertex is at z, i.e.

I(z) ={(y.t),|v — y| < t}.

Denote by A, and C, two functionals mapping functions on R**! to functions on
q q ppig +

(&1
(1]



R", defined as:

dud 1/q
Aq<f><x>=(/F()lﬂy,twtfj) C0<g<oo (5.1)
and
1 dydt Y
) =sm (5 [ or™®) o< <o (52)

where B is the tent over ball B which is defined in (1.8). and the sup is taken over

all balls B containing .

Definition 5. Tent space:
Let 0 < g < 0o. The tent space TP is defined as the collection of all function f in

R™*! such that

[fllrg o= N Ag ()l < o0

when 0 < p < o0, and

”f“T,,oc = ”Cq(f)llpc < OC.

when p = o0.

Definition 6. TP atom:
Let1 <g<oocand0<p<1. ATP atom is a function a(x,t) which is supported

in the tent B for some ball B C R™, and satisfies

( /B la(l-,t)[q@)% < BV, (5.3)

With p and g in this range, functions f in TP can be decomposed as

f=> " Naj, (5.4)
j=1

o6



where a; are TP atoms, A; € C and 3 [\;]P < c[[f”’l’f (see [3], Proposition 5).

Let ¢ be a function defined in R™ such that

1. ¢ has compact support in the unit ball B(0,1));

2. |(x)] < M and 3e > 0, such that. [¢(x + h) — ¢(x)] < M(h|/]2])
3. [¥(x)dr =0;

4. [2"y(x)dz =0, for all |r| < N, where N > [n(% - 1)J , the greatest integer in
n(% —1).

Put () =t (x/t), t > 0. Define an operator 7, on TP by

W0 = [ U0 w0F =t [0ee0% e 5

where the limit is taken in the sense of distribution. Namely, Vf € TP and G € S,

the Schwartz space, the action of m;(f) on G is defined as

<mipca=m [ ([ N<f<~,t>wt><r>ﬂ) Cla)ir.

e—0 i‘
N—oo

Note that when f has compact support in ]R’fl, the limit in (5.5) can be taken in the

pointwise sense, so, as in [3], the operator 7, can initially be defined on this dense

subset of Tg’ .

In the case ¢ = 2, Coifman, Meyer and Stein proved (see [3], Theorem 6),

Theorem 9 (CMS). Under conditions 1, 2, and 3 on v, my(f) extends to a bounded

linear operator from:

i). TV to Ly(R™), if 1 < p < oo

(

(i). T} to HY(R);
(iii). T5° to BMO:
(

iv) T? to HP(R™). for p < 1. if condition 4 is included.
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As an analogue of their result to q # 2, we have theorem (6) stated in the intro-

duction with the same projection 7, under the same condition for .

5.2 Proof of Theorem 6

Theorem 9 is based on the relation of the square function and Littlewood-Paley
gy-function, and is proved by vector-valued singular integrals applied to g, (see [26]
Chapter 1, Section 8.23 and Chapter 3, Section 4.4). However, in order to generalize
this theory to the case ¢ # 2, we need some knowledge about Triebel-Lizorkin spaces

(see [27], [18]):

Definition 7. Triebel-Lizorkin spaces:

Let ¢ be a function in Schwartz space S. and let  be the Fourier transformation

of v. Assume that ¢ is supported in {€ : 1 < |€] <2} and |F] > c>04f 2 < ¢ < 2.

1
2

Let s e R, 0 < p,qg<oc, and f € §’. Define

1/q
1Sl gy = {Z(Tsls@u * fl)"} : (5.6)

VEZ Lp

The homogeneous Triebel-Lizorkin space FTf’q consists of all distribution f such that

the norm || f|

F}f’q < 0OQ.

Triebel connected these spaces to the spaces LP, HP and BMO by the following

theorems: (see [27] Section 1.7, [18] Section 5)

Theorem 10 (Triebel). The homogeneous F;f-,q Triebel-Lizorkin spaces can be iden-

tified with the spaces LP, H? and BMQO as follows:
o [P F;?’2 when 1 < p < 00;

e HP F]?Q when 0 < p<1L:

o8



o BMO = F92.
Moreover, we have, (see [28] Section 2.2, [24])

Theorem 11 (Triebel). For 0 < p < 00,0 < ¢ < o0, G € Fl?*q(R"), W oas in

Section 5.1, and g(r.t) = G * (1),

Gl gy = 1 Ag(g) ] rwn)- (5.7)
Define the truncated cone with aperture 1, whose vertex is at x, as
I(2) = {(4,0), |t — yl < t < b},

and put

i/q
dydt) . (5.8)

A = ([ 1 org

As in [3] (in the case ¢ = 2). we define a stopping time for the function g (relative

to some large constant A, chosen to depend only on n) as

h(z) = Sl;p{Aq(glh)(fr) < MCy(g)(7)}. (5.9)

From this we can derive, in the same way as for ¢ = 2, that for a ball B C R" of

radius r,

Hr e B:h(x)>r} > cam,
Thus we have from Fubini’s Theorem (see [3], inequality (4.3)),

Lemma 4 (CMS). Assume ®(y,t) is a non-negative function, then,

/ O(y. t)t"dydt < c/ {/ (P(y,t)dydt} dr. (5.10)
Ry n LJTh) (x)
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Replacing ®(y. t) by |f(y. 1)g(y, )]+ in (5.10) and applying Holder’s inequal-

ity, we get

Lo s < o [ {/lx_yktlf(y,t)g(y,t)lffff}dx (5.11)

¢ [ AL G @)z (5.12)

IA

Hence, by (5.9),

/n+ |/ (y, t)g(y, t !y—dt < r/n Cylg ¢ (f)(x)dz. (5.13)

If we also apply Holder’s inequality to the integral (5.12) and note that A(f|h)(z) is

increasing in h, we get
dydt
[ 09t 012 < Al A ()l (5.14)

Now we prove Theorem 6. More precisely, let 1 < ¢ < 2, we show that if ¢ satisfies
conditions 1, 2, 3, (/) extends to a bounded linear operator from

a). TP to Lp(R"), for 1 < p < oo;

(

(b). T, to H'(R);
(c). T° to BMO;
(

d). TP to HP(R™), for p < 1, provided condition 4 is also included.

Proof of (a):
Let 1 <p < 00,1 < g < 00, and let p’ and ¢’ be the conjugate exponents of p and

. o 141 _ 1,1
g, respectively, that is, , Fo7=1and st =1
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For f € T} with compact support and G € S, we have, by Fubini’s Theorem,

<mtn.G>1 =[] rnoge (F72) 2 toas

= g o e ()] 7

) /" /ooof(yvt)((?*(/;t)dydt‘

t

dydt
= f(y,t)g(y,t)——f
]Rn-(-] g

< cllA(Nlee Ay (Dl by (5.14),

where ¢(z) = ¢'(—z), and g(z,t) = G % ¢/;. Since such f is dense in T?, (5.14) holds
for all f € TP.

We have that ||A,(g)||.» < ¢||G]l;». To see this, first for 0 < p < oo, we use the
fact that F£'2 C FS"’ is a continuous embedding for ¢ > 2 (see [18]). If G € L, then

for ¢ > 2 (or ¢ < 2), we have, by Theorem 10 and (11),

[Ag (@l < cll Gl

Fo < CHGHFQQ < C”G”LP"

It follows that

| <my(£), G > <cllfllezllGlly, VG ES.

Therefore, for f € TP, 1 <p < oo,and 1 < ¢ < 2,
I P q

Iy (F)llee < cll fllzg- (5.15)

Proof of (b): Based on the atomic decomposition for the space qu, we just need to
show that m, maps a T, atom to a multiple of H' atom. We use the following
definition of an HP-atom (see [26], Chapter 3, Section 2.2) with L? size condition,

1 <g<oc:
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Definition 8. H? atom: Let p < 1. an H? atom is a function a such that
1. a 1is supported in a ball B,
2. a satisfies the size condition ||a||p. < |B|}/e91/P,
3. a satisfies the moment conditions [ x"a(x)da = 0, for all [r] < n(l/p —1).

First, note that m,(a) is supported in the closed ball B ¢ R* if a is a T ql atom
supported in the tent B. To see this, note if that r ¢ B, then I'(z) N B=19 , and

since ¥ 1s supported in the unit ball,

r —y, dydt
o) = [ aon T -

Second, letting 1 < ¢ < 2. and putting p = ¢ in (5.15), we get, by Fubini’s theorem
and (5.3).

I7ry.(a)

dydt 1
< <|la||1”—c[/n/ tn+1d$]
dydt
- [/ aly. )W}
R+ 4
dydt
= o[ [ o] < e ppen

This shows that 7y (a) satisfies the L? size condition for an H! atom.

Third, since [, (x)dr =0, my(a) satisfies the moment condition

/ _my(a)(x)dx = 0.

Proof of (d):

If we also assume condition (4) on ¢, we will get the H? moment condition on
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my(a). Moreover the size condition (5.3) will imply the condition
|7y (a)|lLe < c- IB|1/(1*1/P'

Proof of (c): To prove (c). we show that for f € T2°. m(f) can be paired with H'.

Similarly to the proof of (a), but now using (5.13), we have

dydt

[<mlNG>1 = [ sosn S

[ N

cAllCo Nl Ag ()l

VAN

IA

again where ¢(z) = ¢(—x). g(x.t) = G x4 (x).
Since ||Cy(f)lle= = [Ifllzz=, and as in the proof of (a), [|A,(g)llL1 < |Gl by

putting p = 1 in Theorem 10 and (5.7)., we have

| <my(f). G > < cllflliz Gl 1< g <2

so by the duality of BMO with H!,

7y (F:llBao < cll fllrge. 1< g <2 (5.16)

This completes the proof of Theorem 6.

Remark The discussion in this chapter raises the interesting question of what will
happen if the tent spaces defined by Dafni and Xiao [8] are modified by changing 2 to
q # 2, and whether there is a relation between these tent spaces and the generalized

Q (Morrey) spaces Q5 , defined by Cui and Yang [5].
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