DESIGN AND IMPLEMENTATION OF CONTEXT
CALCULUS IN THE GIPSY

XIN ToNG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2008
© XIN Tong, 2008

A

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40955-8
Our file Notre référence
ISBN: 978-0-494-40955-8

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canadg

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Design and Implementation of Context Calculus in the GIPSY

Xin Tong

The Lucid programming language is a family of intensional programming lan-
guages supported by the General Intensional Programming System (GIPSY). Among
all the Lucid variants, the notion of context is a core concept. After Lucx, a Lucid
variant introduced by Wan in her PhD thesis, contexts can be declared explicitly and
manipulated directly as first-class values. Lucx also enables a set of contezt calculus
operators performed on contexts. Such new concepts have greatly contributed to the
evolution of Lucid.

Upon these theoretical foundations, this thesis presents the integration into the
GIPSY of Lucx’s context and context calculus as defined in Wan’s PhD thesis. We
first provide the construction of Lucx’s compiler, including building the parser and
extending the existing semantic analyzer. Then we present how the concept of context
has been abstracted into a new type variant of the GIPSY type system. After that, we
specify how the context calculus operators have been implemented within the context
type. And finally, we démonstrate our testing strategies on each component of Lucx

to justify all the implementation efforts.

it

Acknowledgments

First, I would like to express my sincere gratitude to my supervisor Dr. Joey Paquet
for guiding me into this interesting field, inspiring me with his insightful ideas, pro-
viding me everlasting support and enéouraging me to overcome all the difficulties in
my graduate study.

I also would like to thank my team members for their selfless help and invaluable
cooperation.

Especially, I would like to give my special thanks to my family and friends both
here and in China. I am forever indebted to my parents who have not only brought
me to this world but also educated me how to find the meaning of life. Without their

unconditional love, nothing of this would ever happen.

v

Contents

List of Figures viii
1 Introduction 1
1.1 Problem Statement, 1

1.2 Proposed Solution. 2
1.3 Contributions 2
1.4 Structure of the Thesis 3

2 Background 4
2.1 Intensional Logicand Lucid 4
2.2 Lucid Programming Languages 5
2.3 GIPL,and LucxasaSIPL 7
2.3.1 Syntactical Extension, 11

2.3.2 Semantic Extension L. 11

2.4 Overview of GIPSY Framework Architecture 12
24.1 Compilation: GIPC 13

242 Execution: GEE 16

25 Related Work 19
26 Summary . ..o ... e e e e e e e e 21

3 Theoretical Basis for Implementing Context Calculus 22
3.1 Context Types e 22
3.1.1 Simple Context 23

312 Context Set 23

3.2 Context Calculus Operators 24
3.3 TagSet Types. o i e 28

3.3.1 Ordered Finite TagSet 31

3.3.2 Ordered Infinite Tag Set 32
3.3.3 Unordered Finite TagSet 33
3.3.4 Unordered Infinite Tag Set 33

34 Summary e e e e 34
Implementation 35
4.1 Integration of Lucx Compiler 35
411 LucxParsero 35
4.1.2 Extension of Semantic Analyzer 39

4.2 Design and Implementation of Context Classes 41
4.2.1 An Overview of the GIPSY Type System 42
4.2.2 Design of Context Classes 43

4.3 Implementing Context Calculus in the GIPSY 44
43.1 isSubContext 44

432 difference 45
4.3.3 intersection Lo o 46
4.3.4 projection 46
435 hiding 47
436 override Lo 48
437 union.o 48

4.4 Design and Implementation of Tag Set Classes 49
44.1 Designof Tag Set Classes 49
4.4.2 Implementation of Operators on Tag Sets 50
4.4.2.1 Ordered Finite Tag Set 50

4422 Ordered Infinite Tag Set 54

44.2.3 Unordered Finite Tag Set 57

_ 4.4.2.4 Unordered Infinite Tag Set 57
4.5 Embedding Context and Tag Set Classes into the GIPSY 58
4.6 Summary . . o. ... e e e 59
Testing 61
5.1 Testing Infrastructure for Luex 61
5.2 Testing for Lucx Parser P 61

vi

7

5.3 Testing for Semantic Analyzer
5.4 Unit Testing for Context Class and Tag Set Classes
5.4.1 Test Over GIPSYContext Class
5.4.2 Test Over TagSet Classes
5.4.2.1 Test Over isInTagSet

5.4.2.2 Test Over getPrevious() and getNext()

5.5 Summary

Conclusion

6.1 Extending the GIPC

6.2 GIPSY Type System

6.3 Context Calculus

6.4 Discussions and Limitations
6.4.1 Context Set: Motivation and Limitations
6.4.2 TheConceptof Box
6.4.3 The Unordered Infinite Tag Set
6.4.4 Test On Context Calculus

Future Work

7.1 The New Generation Of Execution Engine
7.2 Formal Verification of Context Set and Box Theory
7.3 More Possibilities Of Tag Set

Appendix
A Source Listing For Context Calculus Operators

B Source Listing For Tag Set Types

vii

72
72
73
73
74
74
75
75
76

77
7
77
77

83

83

93

List of Figures

© 00 N O Ot B W N

= = e e e
B W N = O

GIPL Syntax e 9
GIPL Semantics 10
New syntactic rules introduced by Luex SIPL. 11
New semantic rules introduced by Lucx SIPL. 12
Architectural overview of the GIPSY 13
Compilation/execution of GIPSY programs 14
GIPC Structure e 36
Concrete Luex Syntax 38
GIPSY Type System. 42
Context Classes it 44
Tag Set Classes e 50
Embed context class into GIPSY 59
Testing Infrastructure for Luex 62
Unit Testing for Tag Set and GIPSYContext D 69

viil

Chapter 1

Introduction

1.1 Problem Statement

Lucid [43, 12, 4, 2, 3] represents a family of intensional programming languages that
has several dialects all sharing a generic counterpart, which we call the Generic In-
tensional Programming Language (GIPL) [33, 48, 35, 31]. Other Lucid variants are
referred to as Specific Intensional Programming Languages (SIPL) [33, 48, 35, 31], and
can be translated into the GIPL. The GIPL is an intensional programming language
whose semantics was defined according to Kripke’s possible worlds semantics [25, 26].
Following this semantics, the notion of context is a core concept, as the evaluation
of expressions in intensional programming languages relies on the implicit context of
utterance [33, 44]. In earlier versions of Lucid, although the notion of context is per-
vasive, it could not be manipulated directly as first-class value, meaning that context
cannot be assigned to a variable, passed as a parameter, returned as the result of a
function, or included in a larger composite value.

To resolve this issue, a new dialect of Lucid, Lucx (Lucid Enriched With Context),
was introduced by Wan [45, 44]. Lucx embraced the idea of context as first-class value.
It also had a collection of operators defined, coalesced into a well-defined context
calculus. However, the operational details of integrating Lucx into the GIPSY have
not yet been defined, so these latest very important results have not been integrated
in our operational system. The main objective of this thesis is the integration of the

context calculus theory, developed by Wan, into GIPSY.

1.2 Proposed Solution

The classic way of integrating a new Lucid variant into the GIPSY is to provide
its parser and derive the translation rules [48] from SIPL to GIPL. The General
Eduction Engine (GEE) [33, 31], will then execute the translated source program.
This compilation process is described in more details in Chapter 2.

However, there are two main reasons that Lucx cannot follow this route: First,
what the translation does is to substitute Lucx context calculus operators with GIPL
basic operators. The Lucx-to-GIPL translation rules were given by Wan in her PhD
thesis. These translation rules are in fact simulating the notion of context using
the existing set of operators. Even though these translation rules are correct, such
substitutions will to a large degree increase the size of a program, making simple
context operators require very elaborated computing to simulate contexts as first
class values, thus the evaluation efficiency would be reduced significantly. The second
reason is that context is a very important concept in Lucid. The notion of context
as first-class value will eventually benefit the evolution of Lucid towards a more
complete and general intensional programming language. Thus, it is more reasonable
to make the concept of context explicit in GIPSY, as opposed to simulate it through
translation.

Following the above reasons, we propose the solution that after constructing Lucx
parser, instead of translating it into GIPL, we create a separate component which
contains the actual implementation of Lucx’s context type and context calculus oper-
ators. Then the execution of Lucx programs can be achieved by grafting the resulting
context calculus plugin into the GEE [33, 41, 40]. By this means, the efficiency of
execution is much higher than the classic translation process and the structure of the

engine retains its general properties to the greatest extent.

1.3 Contributions

The major contributions of this thesis are:
e Integration of Lucx’s compiler into the GIPSY framework

— Design of the concrete syntactic rules of Luex from Wan’s thesis

— Construction of a top-down parser for Lucx and its integration into the
GIPSY

— Extension of the existing Semantic Analyzer by adding type checking for

context values
e Design of a contert type and its integration into the GIPSY Type System:

— Abstraction of a contert entity into a type shared by all the intensional

programming languages supported by the GIPSY

— Integration of the context type into the compile-time and run-time type

system

— Implementation of contexrt calculus operators within the context type

e Design of tag set types from the definition of context and their integration into
the GIPSY Type System:

— Design of a cohesive group of tag set types that enables more flexibility in

the definition of Lucid dimensions

— Implementation of the tag set types and their integration into the GIPSY
Type System

1.4 Structure of the Thesis

Chapter 2 presents the background upon which Lucx was developed and implemented.
Chapter 3 provides the theoretical basis for the following implementation work, in-
cluding the definition of context, context calculus and tag set types. Chapter 4
specifies the implementation details of how the Lucx compiler was constructed, how
the context type, tag set types and more specifically, context calculus operators were
implemented, and how these entities were embedded into the GIPSY Type System.
Chapter 5 demonstrates the testing strategies and results of the corresponding mod-
ules in Chapter 4. Finally Chapter 6 draws a general conclusion of this thesis and

Chapter 7 gives an overview of the future work.

Chapter 2
Background

In this chapter, we present the information of Lucid programming languages and
GIPSY framework to provide an overview of the background where the context cal-

culus of Lucx was introduced of and is to be integrated.

2.1 Intensional Logic and Lucid

Intensional logic comes from research in natural language understanding [24, 11, 16].
According to Carnap [6], the real meaning of a natural language expression whose
truth-value depends on the context in which it is uttered is its intension. The exten-
ston of that intensional expression is the set of all its actual truth-values in different
possible contexts of utterance, where this expression can be evaluated. Basically, in-
tensional logics add dimensions to logical expressions, and non-intensional logics can
be viewed as constant in all possible dimensions, i.e. their valuation does not vary
according to their context of utterance. Intensional operators are defined to navigate
in the context space. In order to navigate, some dimension tags (or indexes) are
required to provide placeholders along dimensions. These dimension tags, along with
the dimension names they belong to, are used to define the context for evaluating

intensional expressions. For example, we have an expression :
E: the average temperature in Montreal in January is greater than 0°C.

The explicit context of this expression is [place:Montreal, month:January], it

adds dimension place and month to the expression and Montreal and January are

the place holder tags along those dimensions. Dimension names together with tag
values form the context in that expression.

We can extend that intension in both the place and month dimensions. And the
evaluation result of that expression will vary accordingly, as shown in the following:
Given the place dimension tags {Montreal, Ottawa, Quebec}, we have a valuation
for E:

|Ja Fe Mr Ap Ma Jn Jl Au Se Oc No De
Montreal | F F F F T T T T T F F F
Ottawa [F F F F F T T T F F F F
Quebec| F F F F F F T F F F F F

Intensional logic and its core concept of context is the foundamental basis of in-

tensional programming languages.

2.2 Lucid Programming Languages

Lucid is a multidimensional intensional programming language, whose semantics is
based on the possible world semantics of intensional logic. It is a functional language
in which expressions and their valuations are allowed to vary in an arbitrary number
of dimensions [33]. In its initial form, Lucid was designed to enable the declarative
expression of the sequence of values that a procedural program’s variables are tak-
ing as the program is being executed. In this view, Lucid relied on a unique time
dimension. Later on, it was realized that the generalization to multidimensionality
added much more expressive power to the language. The initial set of basic Lucid
operators, first, next, fby, wor, asa and upon [33] enabled the sequential/recursive
definition of sequences. When Indexical Lucid [13] came into existence, it allowed
accessing context properties in multiple dimensions, as well as two basic intensional
operators added to allow randomly access data streams. One is intensional navigation
(@.d), which allows the values of a stream to vary along the dimension d. Another is
intensional query (#.d), which refers to the current position (i.e.tag value) along the
dimension d.. After that, a group of Lucid variants has been derived according to the

fundamental intensional logic. Following is a brief list of Lucid dialects:

1. Granular Lucid (GLU), 1996 [21, 22]: First working hybrid intensional-imperative
paradigm (C/Fortran and Indexical Lucid), where a GLU program is defined

5

in two parts: an Indexical Lucid part acting as a skeleton language, into which
user-defined functions written in the second part (written in C or Fortran)
are called. This model was invented as a proof-of-concept to demonstrate the
dataflow model of computation attributed to Lucid at the time. Allowing Lu-
cid to call procedures written in a standard procedural language allowed for
increased granularity of computation, identified as a flaw when executing fine-
grained dataflow programs defined by standard ”pure Lucid” programs. In the
cases where the nature of the procedures allowed them to be executed in par-
allel, this model also allowed GLU to be used as a “program parallelization”
platform. The tagged-token demand-driven dataflow model (called eduction)
based on intensional logics used in the evaluation of Lucid programs did also
provide a failure-resistant model of distributed/parallel computation. The GLU
model is the basis of the design of the GIPSY.

. Tensor Lucid, 1999 [33]: Tensor Lucid is a dialect developed by Joey Paquet
for plasma physics computations to illustrate advantages and expressiveness of
Lucid over an equivalent solution written in Fortran. The objects manipulated
in Lucid are scalar fields. More general fields, such as vector or tensor fields,
cannot be expressed and manipulated in a natural manner. Tensor Lucid is a
generalization of Lucid that enables the expression and manipulation of vector

and tensor fields, which are in fact a generalization of scalar fields.

. GIPL, 1999 [33]: GIPL is a generic form of Lucid, i.e. all Lucid dialects can
be translated into GIPL through a set of translation rules. GIPL is in the
foundation of the execution semantics of GIPSY because its Abstract Syntax
Tree is the only type of Abstract Syntax Tree GEE understands when executing
a GIPSY program.(Note that the implementation of Lucx is different than what

stated here, we will discuss more about this later in this thesis.)

. RLucid, 1999 [15]: RLucid programming language is Lucid with a new opera-
tor, called before. With before, merging two streams in a deterministic manner,
according to the time of arrival, becomes a possibility. It is a superset of Lus-
tre, which was designed for the programming of real-time kernels. Real-time
interfaces can be written in RLucid, thereby making RLucid, in some sense, a

general real-time language.

5. JLucid, Objective Lucid, 2003 - 2005 [31]: JLucid brings embedded Java and
most of its powers into Indexical Lucid in the GIPSY by allowing intensional
languages to manipulate Java methods as first class values. However, it is very
natural to have objects with Java and manipulate their members in scientific
intensional computation, yet JLucid fails to support Java’s capability. Hence,

Objective Lucid was designed to address this deficiency.

6. Lucx, 2003 - 2005 [45, 44]: Kaiyu Wan introduced the notion of context as first-
class value in Lucid, thus context can be declared and manipulated directly in
Lucid programming languages. She also provides a set of well-defined context
calculus operators performed on context values to yield new contexts for differ-
ent applications. Before Lucx, context is always implicit in Lucid. Now Luex

has brought important new feature to Lucid in the sense of true intension.

2.3 GIPL, and Lucx as a SIPL

As briefly mentioned in the previous section, GIPL is the generic counterpart of all
the Lucid programming languages. Like Indexical Lucid, which it is derived from, it
has only two basic intensional operators: # and @ [33]. SIPLs are Lucid dialects with
their own attributes and objectives. Theoretically, all SIPLs can be translated into the
GIPL. All the SIPL conservatively extend the GIPL syntactically and semantically.
The following sections discuss about such extensions of Lucx to GIPL. The syntax
and semantics of GIPL are listed in Figure 1 and Figure 2 respectively. We then
present the extended syntactic and semantic rules of Lucx to GIPL in Figure 3 and
Figure 4.

Following is the description of GIPL semantic rules as presented in [33]:
DF-E:v

means that under the definition environment D, expression E would evaluate to

value v.
D,P+-E:v

means that in the definition environment D, and in the evaluation context P (some-

times also referred to as point) , expression E evaluates to v.

The definition environment D retains the definitions of all of the identifiers that

appear in a Lucid program. It is therefore a partial function
D :1d — IdEntry

where Id is the set of all possible identifiers and IdEntry, summarized in Table 1,

has five possible kinds of value, one for each of the kinds of identifier:

e Dimensions define the coordinates in which one can navigate with the # and @

operators. The IdEntry is simply (dim).

e Constants are external entities that provide a single value, whatever the context.
Examples are integers and Boolean values. The IdEntry is (const, c), where

¢ is the value of the constant.

e Data operators are external entities that provide memoryless functions. Exam-
ples are the arithmetic and Boolean functions. The constants and data operators
are sald to define the basic algebra of the language. The IdEntry is (op, f),

where f is the function itself.

e Variables carry the multidimensional streams. The IdEntry is (var, F), where
E is the expression defining the variable. It should be mentioned that this
semantics makes the assumption that all variable names are unique. This con-
straint should be easy to overcome by performing compile-time rehaming or

using a nesting level environment.

e Functions are non-recursive user-defined functions. The IdEntry is (func, id;, E),
where the id; are the formal parameters to the function and F is the body of the
function. The semantics for recursive functions could be easily added, but we
would have to store the environment, and it would add to the understanding of
the situation, especially given that Lucid encourages the use of iteration rather

than recursion.

The evaluation context P, which is changed when the @ operator or a where clause
is encountered, associates a tag to each relevant dimension. It is therefore a partial
function '

P:Id—> N

Table 1: Possible identifiers in the definition environment

type form
dimension | (dim)
constant | (const,c)
operator | (op, f)
variable | (var, E)
function | (func,id;, E)

id

E(E;, ..., E,)

if £ then F' else E”
#FE

EQFE'E"

FE where @)
dimension id

id=F

id(idl,idz, ceny Zdn) = E
QQ

Figure 1: GIPL Syntax

—— :H:

Each type of identifier can only be used in the appropriate situations. Identifiers of
type, op, func and dim evaluate to themselves. Constant identifiers (const) evaluate
to the corresponding constant. Function calls, resolved by the Eg. rule, require the
renaming of the formal parameters into the actual parameters (as represented by
E'lid; — E}]).

The function P’ = Pt[id — v"] means that P'(z) is v" if x = id, and P(z)
otherwise. The rule for the where clause, E,,, which corresponds to the syntactic
expression E where @), evaluates E using the definitions () therein.

The additions to the definition environment and context of evaluation made by
the Q rules are local to the current where clause. This is represented by the fact
that the E,, rule returns neither D nor P. The Qg;m rule adds a dimension to the
definition environment and, as a convention, adds this dimension to the context of
evaluation with tag 0. The Q;q and Qgq simply add variable and function identifiers

along with their definition to the definition environment.

D(id) = (const,c)

Eci .
d D,PFid:c (1)
D(id) = (op, f)
ED i T~ Y -3 -7
pid D,Prid:id (2)
D(id) = (dim)
Ega @ =D
4 D PFid:id ®)
D(id) = (func, ids, E)
E
fid D.PFid:id (4)
D(id) = (var, E) D,PFE:v
Evia D,Prid:v (5)
E D,Pt+E:id D(id) = (op, f) D,P+E;:v; 6
P D,PF E(Er,...,En): f(v1,...,vn) ©
E D,PrE:id D(id) = (func,id;, F') D,P+ E'lid; — E;}: v .
fet D,PF E(Ey,.. . En) v ™
B D,P+E:true D,P-E v 8
°T D,PF if E then E’ else E" : ¢/ ®)
E D,P+ E:false D,PFE":v" 9
F D,PF if FE then E' else E" : v" 9)
D,P+rE:id D(id) = (dim)
Etag D, P+ #E : P(id) (10)
E D,P+E':id D(@d=(dim) D,PHE":v" D,Pilid—v"|FE:v
at D,PFEQE E" :v (11)
D,P-Q : D,P D,P'FE:v
Ew
D,P I\ Evhere@:v (12)
Qaim D, Pt dimension id : Dilid+— (dim)], P{[id — 0] (13)
Qia (14)

D,PFid= E : Dt[id— (var, E)],P

D,P '_ Q . D,,PI DI,PI ’_ Ql R D",P”
QQ : D”’) }_ Q QI . 'DII7’PII (15)

(16)

Figure 2: GIPL Semantics

10

[E:E,. ,E:E]
{E,...,E}
EQF'

E cxtop E
isSubContext
difference
intersection
projection
hiding
override
union

crtop

.o .e

Figure 3: New syntactic rules introduced by Lucx SIPL

2.3.1 Syntactical Extension

Being a SIPL, Lucx inherits all the generic syntax and semantics of the GIPL. It
also extends the GIPL by introducing context as first class value and context calculus
operators, as defined in [44]. Figure 3 shows the elements of Lucx syntax to be added
to that of the GIPL. In Lucx syntax, the notation [E : E, ..., E : E] is introduced to
represent a contezt; the notation {£, ..., E'} is representing a context set; finally, a set
of context calculus operators is also presented as the complement of GIPL operators.
To explain the notion of context as first class value, let’s focus on the @ expression:
In GIPL, it is E @ E'E" i.e. the notion of context is represented by E'E"; while its
counterpart in Lucx is E @ F’, because we introduce the [E : E, ..., E : E] notation
into Lucx expressions. Thus, from the syntactic perspective of the @ operator, Lucx’
[E : E,..,E : E] is adding syntactic sugar to GIPL by syntactically encapsulating
context into square brackets. As explained below, Lucx in fact provides a semantics

for such encapsulation by creating a context semantic building block.

2.3.2 Semantic Extension

As a conservative extension to GIPL, Lucx’s semantics extends GIPL by introducing
the notion of contezt as a building block into the semantic rules, i.e. context as first
class value. Still take the @ expression for example. In GIPL semantic rule (11),
we can see that E' and E” evaluate to two separate semantic entities, which are
dimension and tag vaelue, the combination of these two elements is actually what we

refer to as a context, i.e. a < dimension : tag > mapping. However, in GIPL, there’s

11

D,P+E:P DPIPFE:v

Ea cX 1

tlext) D,PFEQ@E :v (17)
D,P |_ Edj : Zd] D(’Ldj) = (dim)
E . - D,PFE;:v; P =Potlidy = nlt.. . tlidy — vy as)
construction(ext) - D,PF |Ea, : Ei,, Eay : sy, .. Eq, By |: P
D,PF Evi.m:Pm
Econstruction(cxtset.) : DPE {El E 1} X {Pl D } (19)
E ~ D,PHE:id D(id) = (cop, f) D, P+ E;:P; (20)
op(ext) - D,PF E(E1, - En): f(P1,---Pn)
" _ D,P-E:id D(id) = (sop, f) D, Pt E;: {Pi,....Pi,} (21)
op(extset) D P E(E1, - En): JUPL Pt AP s Pan)

Figure 4: New semantic rules introduced by Lucx SIPL

no semantic representation of the context as an entity that coalesces dimension and
tag together, in other words, context is not first class value in GIPL semantics. On
the contrary, in Lucx semantic rule (19), E’ evaluates to one encapsulated contezt.
Figure 4 also shows the construction of simple context out of the expression
[Eq, : E;] pairs in rule (19). Rule (20) shows construction of contert set, which
evaluates {E1,..., Ep,} as a set of contexts, each element of the set being the result
of an evaluation using rule (19). Rule (21) and rule (22) show semantics of context
calculus operators on simple context and context set respectively. These rules were dif-
ferentiated from the standard GIPL rule E,, (6) due to the fact that these operators

on contexts are meaningless outside of Lucx.

2.4 Overview of GIPSY Framework Architecture

The GIPSY framework consists of three modular sub-systems: The General Inten-
sional Programming Compiler (GIPC) [34, 49, 35]; the General Eduction Engine
(GEE) [33, 31}, and the Run-time Interactive Programming Environment (RIPE) [9,
39], as shown in Figure 5. GIPC is the component on which all the compilers of the
programming languages supported by GIPSY reside. GEE is where a Lucid program
is executed using the eductive model of computation. And RIPE is a programming
environment (i.e. and Integrated Development Environment or IDE) enabling the

edition, compilation and execution of GIPSY programs using the GIPC and GEE.

12

~RIPE

interface for controlling:

" edition of GIPSY programs
compilation of GIPSY programs
execution-of GIPSY programs

controls

controls

GEE

Parsgrs: T | ger s GEER used by——s| RUN-tiME Ccomponents:
Lucid dialects parsers Demand generator
Imperative languages parsers Demand worker
L.ucid dialects translators Demand store/migrator

Semantic analyzer,

Dialects linking
Type checking
GEER generation

Figure 5: Architectural overview of the GIPSY

In the GIPSY, a GIPSY Program, may consist of two parts: the Lucid part that
defines the intensional data dependencies between variables and, optionally, the se-
quential part that defines the granular sequential computation units (written in a
procedural language). The GIPSY program is compiled in a two-stage process, as
depicted in Figure 6. First, the intensional (GIPL) part of the GIPSY program is
parsed, and then translated in Java data structures, then the resulting Java program
is compiled in the standard way, resulting in run-time systemn resources that we call a
GEER (General Eduction Engine Resources). The GIPSY run-time system, the GEE
(General Eduction Engine) is an interpreter written in Java that uses the GEER to
execute the program using the eductive model of computation that can be described

as "tagged-token demand-driven dataflow” computing.

2.4.1 Compilation: GIPC

The main component of the GIPC is the GICF (General Intensional Compiler Frame-
work), a compiler framework providing a generic infrastructure that enables the com-
pilation of hybrid programs written using various dialects of Lucid, as well as various
procedural programming languages, in which the Lucid (intensional) parts are calling
procedures written in these various procedural languages. One of the main precepts

of this framework design is that of the GIPL being a generic language into which

13

GIPC: GEER . i GEE

: X | LucidDeclarationsAST
. | GIPSYtypes : =
id dialect : : = . DemandGeneratorTier
] ¥
= Ny .

TypeSystem

________ ! """ DemandStoreTier

GICF | : »_

GEERDictionary T—I
: . . DemandWorkerTierJ

i ive dialt ProcedureClass

Figure 6: Compilation/execution of GIPSY programs

other Lucid dialects can be translated. This precept has two main goals: (1) to make
the intensional part of the compiler framework easy to extend vs Lucid dialects and
(2) have a fixed run-time system that will not have to be adapted each time a new
Lucid dialect is added.

The compilation process starts with the action of the Preprocessor [31, 30] on
the incoming GIPSY program’s source code stream. The Preprocessor’s role is to do
preliminary program analysis, processing, and splitting the source GIPSY program

“into “chunks”, each written in a different language and identified by a lahguage tag.
In a very general view, a GIPSY program is a hybrid program consisting of different
languages in one or more source files; then, there has to be an interface between all
these code segments. Thus, the Preprocessor after some initial parsing (using its
own preprocessor syntax) and producing the initial parse tree, constructs a prelimi-
nary dictionary of symbols used throughout the program. This is the basis for type
matching and semantic analysis applied later on. This is also where the first step
of type assignment occurs (for more details, see the description of the type system
below), especially on the boundary between typeful and typeless parts of the pro-
gram, e.g. Java and a specific Lucid dialect. The Preprocessor then splits the code
segments of the GIPSY program into chunks preparing them to be fed to the respec-
tive concrete compilers for those chunks. The chunks are represented through the
CodeSegment class that the GIPC collects. There are four baseline types of segments
defined to be used in a GIPSY program. They arc:

14

Table 2: Matching data types between Lucid and Java.

I Return Types of Java Methods l Types of Lucid Expressions

int, byte, long int
float float
double double
boolean bool
char, String string
void bool: :true

[Parameter Types Used in Lucid

Corresponding Java Types

string String
float float
double double
int, dimension int
bool boolean

e #funcdecl program segment declares function prototypes written as imperative
language functions defined later or externally from this program to be used
by the intensional language part. The syntactical form of these prototypes

is particular to GIPSY programs and need not resemble the actual function

prototype declaration they describe in their particular programming language.

They serve as a basis for static and dynamic type assignment and checking

within the GIPSY type system with regards to procedural functions called by

other parts of the GIPSY program, e.g. the Lucid code segments.

e #typedecl scgment lists all user-defined data types that can potentially be
used by the intensional part; usually objects. These are the types that do not
explicitly appear in the matching table in Table 2 describing the basic data
types allowed in GIPSY programs.

e #<IMPERATIVELANG> segment declares that this is a code segment written in
whatever imperative language may be, for example #JAVA for Java, #CPP for
C-++, #FORTRAN for Fortran, #PERL for Perl, #PYTHON for Python, etc.

e #<INTENSIONALLANG> segment declares that this is a code segment written in
whatever intensional language may be, for example #GIPL, #INDEXICALLUCID,
#LUCX, #JLUCID, #0BJECTIVELUCID, #TENSORLUCID, etc. as implemented by

the GIPSY. An example of a hybrid program is presented in Listing 2.1. The

15

preamble of the program with the type and function declaration segments are
the main source of type information that is used at compile time to annotate

the nodes in the tree to help both static and semantic analysis.

Of particular importance in the compiler framework design is the latter code seg-
ments (i.e. #<INTENSIONALLANG>). Those written in GIPL are parsed and directly
compiled into the GEER. For other Lucid dialects, the compiler uses a parser for
this specific language, and then relies on translation rules to translate, at the syntax
tree level, this specific language’s construct into GIPL constructs, then the translated
syntax tree is compiled into a GEER. This part of the compiler framework has been
designed and implement by Serguei Mokhov in his Master’s thesis. In the final com-
pilation phase, the semantic analyzer (including the type checker) makes appropriate
semantic checking and final generation of the GEER, which can then be used by the
GEE to execute this compiled GIPSY program.

Another important issue that has to be mentioned here is the GIPSY Type Sys-
tem [31]. JLucid [31] enables a GIPSY program to be hybrid, meaning that it can
be composed of an intensional part and a imperative part. In pure Lucid, type is
implicit and type declarations never appear at the syntactic level; however, in many
imperative programming languages, such as Java and C++, typing is explicit. One
of the goals of our framework is to support a common run-time environment and
co-existence of both the intensional and imperative languages. Thus we have im-
plemented a general type system to keep all the types shared by the programming
languages supported by GIPSY.

Although type is implicit at the syntactical level in Lucid, at the semantical level,
necessary type checking needs to refer to types. Also at runtime, the evaluation of
expressions needs to resort to types. The uniqueness of our type system is that it
not only supports the conventional types such as integer and string, but also types
related to intensionality, such as context, which will be discussed more in detail later

in this thesis.

2.4.2 Execution: GEE

The GIPSY recently adopted a multi-tier architecture, in which the system is executed
using tiers that have various roles in the execution of GIPSY programs. Tiers can be

residing on various GIPSY computation nodes (i.e. computers hosting a number of

16

/x %
*x Language—miz GIPSY program.
* @author Serguei Mokhov

x/
#typedecl
myclass;

#funcdecl

myclass foo(int,double);
float bar(int,int):”ftp://newton.cs.concordia.ca/cool.class”:baz;
int f1();

#JAVA
myclass foo(int a, double b)

{
}

class myclass

return new myclass(new Integer ((int)(b + a)));

public myclass(Integer a)

{
}

System.out.printin(a);

}
#CPP

#include <iostream>

int f1(void)

{
cout << ”"hello”;
return 0;

}
#OBJECTIVELUCID

A + bar(B, C)
where

B, C).intValue();

* in theory we could write more than one intensional chunk,
then those chunks would evaluate as separate possibly
totally independent expressions in parallel that happened
to use the same set of imperative functions.

*x/
// EOF

Listing 2.1: Example of yhybrid GIPSY program.

GIPSY tiers), thus achieving distributed computing through the use of the Demand

Migration Framework for communication between tiers [41, 40, 36].

Demand Generator Tier Using the eductive mode of computation, the Demand
Generator Tier (DGT) generates demands according to the program declarations and
definitions stored in one of the instances of GEER that it hosts. The demands gen-
erated by the Demand Generator Tier instance can be further processed by other
Demand Generator Tiers instances or Demand Worker Tier instances, the demands
being migrated across tier instances through a Demand Store Tier instance. Each
DGT instance hosts a set of GEER instances that corresponds to the Lucid programs
it can process demands for. A demand-driven mechanism allows the Demand Gen-
erator Tier to issue system demands requesting for additional GEER instances to be
added to its GEER Pool, thus enabling DST instances to process demands for addi-
tional programs as they are executed on the GIPSY instances they belong to. The

three different execution tiers are describe briefly below:

Demand Store Tier The Demand Store Tier (DST) acts as a middleware between
tiers in order to migrate demands between them. In addition to the migration of the
demands and values across different tiers, the Demand Store Tier provides persistent
storage of demands and their resulting values, thus achieving better processing per-
formances by not having to re-compute the value of every demand every time it is
re-generated after having been processed. From this latter perspective, it is equivalent
to the historical notion of warehouse in the eductive model of computation. A central-
ized communication point or warehouse is likely to become an execution bottleneck.
In order to avoid that, the Demand Store Tier uses a peer-to-peer architecture and
mechanism to connect all Demand Store Tier instances in a given GIPSY instance.
This allows any demand or its resulting value to be stored on any DST instance, but
yet allows abstract querying for a specific demand value on any of the DST instances.
If the demanded Valué is not found on the DST instance receiving the demand, it
will contact its DST instance peers using a peer-to-peer mechanism. This mechanism
allows to see the Demand Store abstractly as a single store that is, behind the scenes,

a distributed one.

18

Demand Worker Tier The Demand Worker Tier (DWT) processes procedural de-
mands i.e. demands for the execution of functions defined in a procedural language,
which are only present in the case where hybrid intensional programs are being exe-
cuted. The DGT and DWT duo is an evolution of the generator-worker architecture
adopted in GLU [21, 22]. It is through the operation of the DWT that increased
granularity of computation is achieved. Similarly to the DGT, each DWT instance
hosts a set of compiled procedures (Procedure Classes) that corresponds to the pro-
cedural demands it can process. A demand-driven mechanism allows the Demand
Worker Tier to issue system demands requesting for additional Procedure Classes to
be added to its Procedure Class Pool, thus achieving increasing capacities over time,

on demand.

2.5 Related Work

Context-awareness According to [8], a context is any information that can be used
to characterize the situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an application, including
the users and applications themselves. And context-awareness is defined as: A system
is context-aware if it uses context to provide relevant information and/or services to
the user, where relevancy depends on the user’s task. Context-awareness now has
a wide application domains such as: peer-to-peer mobile networks [17]; body sensor
networks [10] and so on. In their research and implementation, the notion of context
is more related to the applications that can sense their physical environment. More
specifically, three concepts of context are: (1) where you are; (2) who you are with;
and (3) what resources are nearby [46]. Our definition of context is at a more abstract

and formal level, and our applications would cover scientific programming [33] as well.

Context-oriented Programming Context-dependent behavior is becoming in-
creasingly important for a wide range of application domains, from pervasive com-
puting [1] to common business applications. Context-oriented Programming (COP)
is a new method of programming which aims to alleviate pervasive problems by in-
corporating context as a first-class construct of a programming language, much in
the same way that variables, classes, and functions form the first-class constructs of

many modern languages [23].

19

In [23], they proposed that a context-oriented program is one with many ‘gaps’
or ‘open-terms’, and the context-filling operation completes such a program by dy-
namically selecting portions of code from a repository of candidates to fill these gaps.
This selection process is based on the execution context of the program and a de-
scription of the open-term’s requisites. In practical terms COP allows the authoring
of program skeletons, which are pieces of software that contain a number of open
terms. Open terms are simply gaps in a program, which specify a goal and context.
Actual code to replace them is selected dynamically from a number of stubs in a
context-dependent fashion. This idea is referred to as context-filling. Context-filling
is the distinguishing feature of COP, the result being a separation of code into a
context-free skeleton and context-dependent stubs. Their basic idea is first, leave
gaps in a program where context-dependent statements are needed; then at run time,
fill those gaps with proper context in the database repository thus the execution of
the program would respond to the context and yield proper result.

In [19], they present their idea towards COP as a new programming technique to
enable context-dependent computation. They claim that Context-oriented Program-
ming brings a similar degree of dynamicity to the notion of behavioral variations that
object-oriented programming brbught to ad-hoc polymorphism. In support of this
claim, they carry out their first language extension called ContextL [7] to argue that
the dynamic representation of layers and their scoped activation and deactivation in
arbitrary places of the code are the essential ingredients for COP. In their implementa-
tion, context is represented by “layer”. They define the context-dependent attributes
or behaviors into different layers and by attaching or detaching those layered defi-
nitions, the original plain object could have polymorphic behaviors. For example,
assume that there’s a Person class, and an object of Person could be an employee or
student and so on. Their approach is to define the employee attributes in Employee
layered class and if the end user wants to display the employee’s attributes, he can
just activate the employee layer and attach it to the original Person class.

Although their work and ours share the idea of “Context as first class value”, there
is a major difference: They treat context as an individual concept in programming,
however, it is never represented at an abstract level, in other words, context has never
been abstracted into a “type”. For example, in [23], they use a notion of context-

dependent “stub” to represent contexts in different application domains. They are

20

stored in databases and retrieved at runtime according to different requirements.
In [19], contexts are represented by context-dependent layers, which can be context-
dependent classes or functions. And there are certain base plain classes, the idea of
context-oriented programming is implemented by attaching or detaching those layers
to the objects of the base class at runtime according to different specifications. Thus
in a word, what they refer to as context can be viewed as particular instances of

Context type.

Context Calculus There were similar computations on context, such as in [18, 37].
They developed a typed calculus for contexts i.e., lambda terms with "holes”. In ad-
dition to ordinary lambda terms, the calculus contains labeled holes, hole abstraction
and context application for manipulating first-class contexts. They also defined a
type system that precisely specifies the variable-capturing nature of contexts and
that keeps track of bound variable renaming. The fundamental theory behind their
context calculus is lambda calculus [5, 47], while our context calculus is based on the
set theory [27, 14]. And their effort is to find a formal specification for a programming

language, and ours is to perform computation on the context entity.

2.6 Summary

This Chapter has provided the background for implementing Lucx in the GIPSY
framework. It gives a review of Lucid programming languages, and then introduces
Lucx into the family as an extension to GIPL. Except these, it also gives an overview
of the GIPSY framework, emphasizing on GIPC compiler layer and the type system,

which are highly related to the actual implementation of Lucx.

21

Chapter 3

Theoretical Basis for Implementing

Context Calculus

In this chapter, we present the formal definitions of context and context calculus
operators according to Kaiyu Wan’s PhD thesis [44]. We derived the notion of tag
set types according to the concept of context. These definitions form the theoretical

basis for our implementation.

3.1 Context Types

Definition 1 Context: A context c is a finite subset of the relation: ¢ C {(d,x)|d €
DIM A x € T}, where DIM is the set of all possible dimensions, and T is the set of

all possible tags.

Tags are the indices to mark positions in dimensions, more details about tags and
tag sets will be discussed later in this chapter.

According to [44], she provides two types of context entities under discussion,
which are simple context and a context set. Simple context is actually what we refer
to as context in previous Lucid programming languages. Wan extends context by
introducing contezt set also as first-class context value. Thus here we make context
a more general form as the parent of both simple context and context sef. In the
following subsections, we first provide the definitions of simple context and context

set, followed by their syntax and examples.

22

3.1.1 Simple Context

A simple context is a collection of <dimension : tag> pairs, where there are no two
such pairs having the same dimension component. Conceptually, a simple context
represents a point in the context space. A simple context having only one pair of
<dvmension : tag> is called a micro contert. It is the building block for all the

context types. As shown in Chapter 2, Figure 3, the syntax of simple context is:

[E:E, .., E:E]

Example 1 o [d:1,e:2]

3.1.2 Context Set

Although context set has been introduced as a type of context, and also has a set of
context calculus operators defined on them, the operational semantic rules of context
set have not been integrated into Lucid yet. There is potential need for including
context set in our system, thus in the following sections, we still present the definition,
syntax and operators of context set as in [44]. See also Chapter 6 and Chapter 7 for
limitations and future work on context set.

A context set is a set of simple contexts. Context sets are also often named
non-simple contexts. Context sets represent regions of the context space, which can
be seen as a set of points, considering that the context space is discrete. Formally
speaking, a non-simple context is a set of <d s> mappings that are not defined by

a function. As shown in Chapter 2, Figure 3, the syntax of context set is:

{E,..,E}, where E — |[E: E,..,E: E]
Example 2 o {[x:3,y:4,2:5],[x:3,y:1,2:5]}

In [44], she also defined a concept of Box, which is a set of contexts, all of which
have the same dimension set and the tags corresponding to the dimensions in each
context satisfy a given constraint. It is a special kind of context set. More issues

about box will be discussed in Chapter 6.

23

3.2 Context Calculus Operators

In the following section, we provide the formal definition for the context calculus
operators on simple context and context set. The operators are isSubContext,

difference, intersection, projection, hiding, override, and union.

Definition 2 isSubContext

o IfC) and C, are simple contexts and every micro context of C is also a micro

context of Cs, then Cy isSubContext Cy returns true.

Note that an empty simple context is the sub-context of any simple context. Also
note that as the concept of subset in set theory, Cy could be the proper subset of
Cs, or Cy could be equal to Cs.

o If Sy and Sy are context sets, then S; isSubContext Sy returns true if every

simple context of Sy is also a simple context of S,.

Note that an empty context set is the sub-context of any context set. Also note
that as the concept of subset in set theory, Sy could be the proper subset of Ss,
or Sy could be equal to S,. '

Example 3 Ezxample for isSubContezt on both simple context and context set.
e [d:1,e:2] isSubContext [d:1,e:2,f:3] = true
o [d:1,e:2] isSubContext [d:1,e:2] = true
e () isSubContext [d:1,e:2] = true
o {[d:1,e:2],[£:3]} isSubContext {[d:1,e:2],[£:3], [g:41} = true
o {[d:1,e:2],[f:3]} 2sSubContezt {[d:1,e:2],[f:3]} = true.

Definition 3 difference:

e If Cy and Cy are simple contexts, then C, difference C, returns a simple
context that is the collection of all micro contexts which are members of Cy, but

not members of Cy: C) difference Cy = {my|m; € Cy Am; ¢ Co}.

Note that if C, isSubContext C, is true, then the returned simple context

should be the empty context. Also note that it is valid to “differentiate” two

24

simple contexts that have no common micro context; the returned simple context

is simply C.

o If S| and S, are context sets, this operator returns a context set S, where every
simple context C € S is computed as C) difference Cy: S =S, difference
S ={C|C =C, difference CoNC#PACL € SiACre S}V S=0.

Note that if for every Cy and C,, Cy difference Cy =, then S; difference
Se = 0. However, if there’s at least one pair of C; and Cy where Cy difference
Cs # 0, the result doesn’t contain empty context. This also applies to the fol-

lowing definitions on context set.

Example 4 Ezample for difference on both simple context and context set.

[d:1,e:2] difference [d:1,£:3] = [e:2]

[d:1,e:2] difference [d:1,e:2,£:3] =0

[d:1,e:2] difference [g:4,h:5] = [d:1,e:2]

{[d:1,e:2,£:3],[g:4,h:5]} difference {[g:4,h:5],[e:2]} =
{[d:1,e:2,£:3],[d:1,£:3],[g:4,h:5]]

Definition 4 intersection

o If Cy and Cy are simple contexts, then C; intersection Cy returns a new
simple context, which is the collection of those micro contexts that belong to
both Cy and Cy: C) intersection Cy = {m;|m; € Cy Am,; € Ca}.

Note that if Cy and Cs have no common micro contexts, the result is an empty

simple context.

e IfS; and Ss are context sets, then the resultz'ng intersection set S = S; intersection -

Sy = {C|C = C, intersectionCoNC #PANC, € S5AC€ S} v S =10

Note that if for every Cy and Cs, Cy intersection Cy ={), then S; intersection
S =0. However, if there’s at least one pair of Cy and Cy where Cy intersection

Cy # 0, the result doesn’t contain empty context.

Example 5 Ezxample for intersection on both simple context and context set:

25

o [d:1,e:2] intersection [d:1] = [d:1]
e [d:1,e:2] intersection [g:4,h:5] =0

o {[d:1,e:2,£:3],[g:4,h:5]} intersection {[g:4,h:5],[e:2]} =
{[e:2],[g:4,h:5]}

Definition 5 projection:

o If C s a simple context and D is a set of dimensions, this operator filters only
those micro contexts in C that have their dimensions in set D: C projection
D = {m|m € C Adim(m) € D}.

Note that if there’s no micro context having the same dimension as in the di-
mension set, the result would be an empty simple context. dim(m) returns the

dimension of micro context m.

o The projection of a dimension set onto a context set is a context set, which is a
collection of all the simple contexts project the dimension set. If S is a context
set, D is a dimension set; S’ = S projection D = {n|n = C projection

DAn#BACe S}V S =0.
Example 6 Ezample of projection on both simple context and context set:
o [d:1,e:2,f:3] projection {d,f} = [d:1,£:3]

o {[d:1,e:2,£:3],[g:4,h:5],[f:4]} projection {e,f,h} =
{[e:2,f:3],[h:5], [f:4]}

Definition 6 hiding:

o IfC is a simple context and D is a dimension set, this operator is to remove all
the micro contexts in C whose dimensions are in D: C' hiding D = {m|m €
C N dim(m) ¢ Dj}.

Note that if D contains all the dimensions appeared in C, the result is an empty
simple context. Also note that C projection D|JC hiding D =C.

e For context set S, and dimension set D, the hiding operator constructs a con-
text set S” where S’ is obtained by hiding each simple context in S on the dimen-
sion set D: 8" = S hiding D = {n|n = C hiding DAn £ OANC € S}V S = 0.

26

Example 7 Ezample for hiding on both simple context and context set:

o [d:1,e:2,f£:3] hiding {d,e} = [£:3]

e [d:1,e:2,f:3] hiding {g,h} = [d:1,e:2,f:3]

o [d:1,e:2,f:3] hiding {d,e,f} =0

o {[d:1,e:2,f:3],[g:4,h:5],[e:3]1} hiding {d,e} = {[£:3],[g:4,h:5]}
Definition 7 override:

o If C) and Cy are simple contexts, then C override Cy returns a new simple
context C, which is the result of the conflict-free union of Cy and Cs, as defined
below: C = Cy override Cy = {m|(m € C) A dim(m) ¢ dim(Cy)) Vv m € Cy}.

e For every pair of context sets Sy, Sa, this operator returns a set of context S,
where every context C' € S is computed as C; override Cy; Cy € S1, Cy € Sy-
S = S5 override So = {C|C = C) override Co|Cy € S ACy € S AC #
PrvS=0.

Example 8 Ezample of override on both stmple context and context set:
o [d:1,e:2,f:3] override [e:3] = [d:1,e:3,f:3]
o [d:1,e:2,f:3] override [e:3,g:4] = [d:1,e:3,£:3,g:4]

o {[d:1,e:2],[£:3],[g:4,h:5]1} override {[d:3],[h:1]} =
{[d:3,e:2],[d:1,e:2,h:1],[f:3,d:3],
[£f:3,h:1],[{g:4,h:5,d:3],[g:4,h:1]}

Definition 8 unton:

e If Cy and Cy are simple contexts, then C; unton Cy returns a new simple
-context C, for every micro context m in C: m is an element of C; or m is
an element of Cy: Cy union Cy = {mjm € C;V(m € Co Am ¢ Cy)}. Note
that if there is at least one pair of micro contexts in Cy and Cy sharing the
same dimension and these two micro contexts are not equal then the result
is a non-simple context, which can be translated into context set: For a non-

simple context C, we construct the set Y = {yg = C projection {d}|d €

27

dim(C)}. Denoting the elements of set Y as y,...,yp, we construct the set
S(C) of simple contexts: S(C) = {m; override m, override ...override
mplmy € yLAmg € Yo A...my, € Yo}, The non-simple context is viewed as the

set S(C). It is easy to see that S(C') = {s € S|dim(s) = dim(C)As C C}

e As described earlier for the union operator performing on simple contexts, the
result could be a non-simple context. If we simply compute union for each pair
of simple context inside both context sets, the result may be a set of sets, in
other words, higher-order sets. Due to unnecessary semantic complexities, we
should avoid the occurrence of such sets, thus we define the union of two context
sets as following to eliminate the possibility of having a higher-order set. If
C1 and Cy are context sets, then C = Cy union Cy is computed as follows:
D, = {dim(m) Am € C}, Dy = {dim(m) Am € C3}, D3 = Dy [Ds.

1. Compute X; : X, = {m; | J(m; hiding D3) Am; € C1 Am; € Cy}
2. Compute Xy : Xy = {m; J(m; hiding D3) Am; € C1 Am; € Cy}
3. The result is: C = X;J X>

Example 9 Example of union on both simple context and context set:

e [d:1,e:2] union [£:3,g:4] = [d:1,e:2,f:3,g:4]

e [d:1,e:2] union [d:3,f:4] =
[d:1,d:3,e:2,f:4] & {[d:1,e:2,f:4]),[d:3,e:2,f:41}

e {[d:1,e:2],[g:4,h:5]1} union {[g:4,h:5],[e:3]} =
{ld:1,e:2],[g:4,h:5],[g:4,h:5,d:1],[e:3,d:1],[e:3]}

3.3 Tag Set Types

A context is essentially a relation between dimensions and tags, the latter being
indices used to refer to points defined over these dimensions. In Lucx, such a relation
is represented using a collection of <dimension:tag> pairs [44]. In such a pair, the
current position of the dimension is marked by the tag value, while properties of

the tags, such as what are valid tags in this dimension, are bound to the dimension

28

they index. When a context is declared, a semantic check should be performed to
determine whether a tag is valid in the dimension it is used. Therefore, we introduce

the notion of tag set:
Definition 9 A tag set is a collection of all possible tags attached to a dimension.

In earlier versions of Lucid programming languages, tag set was assumed to be the
ordered infinite set of natural numbers, and was never explicitly declared as such.
However, as we explore more domains of application, natural numbers can no longer
represent tag values sufficiently.

Assume that we want to construct an application of Student Course Management
System: Some requirements related to our concern are: a student can take courses in
different fields, such as computer science, art, business and so on. And in a partic-
ular field, eg. computer science, there are also different branches, such as database,
programming language study, software engineering and so on.

If we set our focus to a particular school, eg. Concordia, and we define program-
ming language courses offered in computer science as our dimension, then the tags
inside this dimension are finite.

If we simply define course as our dimension without any restriction, meaning that
it could contain any course that had been taught in the past, is being given at present
or will be offered in the future, anywhere around the world then the tag set would be
infinite.

Now we go back to the dimension programming language courses(plc), assume
that there are 3 courses offered under this category: Introduction To Programming
Languages(COMPO001), Programming in C++(COMP002) and Advanced Program-
ming Practice(COMP003). They must be taken following the order as the way they
are listed, because the previous one is the prerequisite course for the next one. Thus
we have the program as shown in Listing 3.1: We use identifier isFinished to repre-
sent the state of a student who takes programming language courses. “0” represents
that he has finished all the courses offered in this area, “1” otherwise. The context
notation [plc : COMP002] denotes that he is currently taking COMPO002. The tag
set is explicitly defined as “ordered finite” with the prerequisite order. iseod is an
intensional operator which returns true if the current tag is the end of its dimension.
next and # are also intensional operators returning the next tag and current tag of a

dimension respectively.

29

isFinished @ [plc : COMP002]

where
dimension plc : ordered finite {COMP001, COMP002, COMPO03};
isFinished = if(iseod (next(#plc))) then 0 else 1;

end

Listing 3.1: An Example For Ordered Finite Tag Set

As discussed earlier, it is also possible for a student to take courses in different
fields, thus we can define a new dimension course field(cf) to represent all types of
courses offered in Concordia. However, there’s no order restricting the student to
take which kind of courses first, so tags inside the tag set are unordered. Listing 3.2
shows unordered tag set. pickField returns the choice of which field of courses he
would take currently. He’s free to choose any type, there’s no order to restrict him,

this program just simulates that he wants to choose “ComputerScience”.

pickField
where
dimension c¢f : unordered finite {Art, Business, ComputerScience,
Engineering, Science}
pickField = ComputerScience;
end

Listing 3.2: An Example For Unordered Finite Tag Set

So to sum up, it is clear that the properties of natural numbers set—ordered and
infinite—are not sufficient to include all the possibilities of tag set types. Addition-
ally, the tag value can actually be of string or other types, not only int, as shown
in our plc dimension. Therefore, it is necessary to introduce the keywords “or-
dered/unordered” and “finite/infinite” to determine the types of tag set associated
with dimensions upon declaration. Note that more keywords might also be included
in the future, here we only present those to the scope of our knowledge and the cur-
rent application. Following are the definitions for those keywords when they are used
to determine the type of a tag set. As tag sets are in fact sets, we define the following
terms as of set theory {27, 14]:

Definition 10 Ordered Set: A set on which a relation R satisfies the following

three properties:
1. Reflexive: For any a € S, we have aRa

30

2. Antisymmetric: If aRb and bRa, then a = b

3. Transitive: If aRb and bRc, then aRc

Definition 11 Unordered Set: A set which is not ordered is called an unordered

set.

Definition 12 Finite Set: A set I is called finite and more strictly, inductive, if
there exists a positive integer n such that I contains just n members. The empty set
0 is also called finite.

Definition 13 Infinite Set: A set, which is not finite is called an infinite set.

Out of backward compatibility with previous versions of Lucid, we assume that
the default tag set is the set of natural numbers, and its order is as with the order
of natural numbers. If other tag sets are to be applied, the programmer must spec-
ify them by explicitly specifying and/or enumerating the tag set and its order, as
discussed further in this thesis.

After introducing the keywords above, we can have four types of tag sets: ordered
finite tag set, ordered infinite tag set, unordered finite tag set and unordered infinite
tag set. The limitation of implementing unordered infinite tag set will be discussed
later.

In the following sections, we provide definitions for those types, syntax of their
expressions, when these expressions are applied and examples of them.

Here we use Z to denote the set of all integers; S to denote the tag set. We define
l,u,p,e € Z as integers to denote the lower boundary (1), upper boundary (u), step
(p) and any element (e) of the tag set when describing it syntactically. Also note that

prev(e) returns the element previous to the current element under discussion.

3.3.1 Ordered Finite Tag Set

For this type, tags insidc the tag set are ordered and finite. In our approach, this
tag set can be expressed by listing all the tag values, or giving the lower and upper
boundaries when there are too many elements to be listed. If it is the latter case, for

now, we only consider subsets of integers.
Expression Type 1 dimension id: ordered finite {E,..., FE}

31

o All the tag values inside the tag set are enumerated and their order is implicitly

defined as the order in which they are enumerated.

Expression Type 2 dimension ¢d: ordered finite {l to u}
o SCZ={ele—previe) =1Al<e<u}

Expression Type 3 dimension id: ordered finite {l to u step p}
o SCZ={ele—prev(e) =pAl<e<uAp>0}
o SCZ={ele-previe) =pAu<e<IAp<0}

Example 10 The following examples correspond to the syntactic expressions listed

above, respectively.
o dimension d : ordered finite {rat, bull, tiger, rabbit}
o dimension d : ordered finite {1 to 100}

o dimension d : ordered finite {2 to 100 step 2}

3.3.2 Ordered Infinite Tag Set

For this type, tags inside the tag set are ordered and infinite. For now, we only
consider subsets of integers. Note, in what follows INF- and INF+ stand for minus

infinity (—oo) and plus infinity (+o00) respectively.

Expression Type 4 dimension id: ordered infinite {/ to INF+}
o SCZé{ele—prev(e) =1A1<¢€}

Expression Type 5 dimension id: ordered infinite {l to INF+ step p}
e SCZ={ele—previe)=pAl<eAnp>0}

Expression Type 6 dimension id: ordefed infinite {INF- to u}
o SCZ=/{ele—prev(ie) =1ANe<u}

Expression Type 7 dimension id: ordered infinite {INF- to u step p}

32

o SCZ={ele—previe) =pAe<uAnp>0}
Expression Type 8 dimension id: ordered infinite {INF- to INF+}

o This represents the whole stream of integers, from minus infinity to plus infinity.

Note that the default tag set is N*, which is also within this type. Either by leaving
the tag set declaration part empty or specifying {0 to INF+}, they both refer to the

set of natural numbers.

Example 11 The following examples correspond to the syntactic expressions listed

above, respectively.
e dimension d : ordered infinite {2 to INF+}
e dimension d : ordered infinite {2 to INF+ step 2}
e dimension d : ordered infinite {INF- to 100}
o dimension d : ordered infinite {INF- to 100 step 2}

o dimension d : ordered infinite {INF- to INF+}

3.3.3 Unordered Finite Tag Set

Tags of this type are unordered and finite.

Expression Type 9 dimension id: unordered finite {E,...,E}

Example 12 The following example corresponds to the syntactical expression above.

o dimension d: unordered finite {red, yellow, blue}

3.3.4 Unordered Infinite Tag Set

Tags of this type are unordered and infinite. Please refer to Chapter 6 for more details

about the limitation in defining and implementing this type.

33

3.4 Summary

In this chapter, we first introduce the definition of context, which is a relation between
dimension and tag, then we categorize it into simple context and context set. After
that, a set of context calculus operators is specified. And in order to clearly define
context, we also introduce the notion of tag set and its types. All these definitions
and theories form the basis of implementing context and context calculus of Lucx in
the GIPSY.

34

Chapter 4
Implementation

After providing the formal definitions of context, context calculus and tag set types,
now we present the design and implementation of integrating Lucx into the GIPSY
framework. As described in Chapter 1, the integration of Lucx mainly consists of
two major tasks: First, the construction of Lucx compiler in the GIPC. Second, the

implementation of context and context calculus.

4.1 Integration of Lucx Compiler

As described in Chapter 2, the design of GIPC provides a generic and dynamic in-
frastructure that enables the compilation of hybrid programs composed of Lucid part
and sequential part. Figure 7 shows the structure of GIPC. As one of the SIPLs, Lucx
programs fit into the Lucid part, in other words, intensional part of the hybrid GIPSY
program. Its compiler should be embedded into the SIPL parser unit, where all the
parsers for SIPLs reside. Thus after the preliminary analysis by Preprocessor, which
splits a GIPSY program into chunks, Lucx code segment can be parsed by its own

parser and the initial AST is generated.

4.1.1 Lucx Parser

We use JavaCC(Java Compiler Compiler) [42] to generate parser for Lucx. Here we
first give a brief overview of JavaCC in order to better explain the syntax specifications
and so on. _

JavaCC along with the built-up JJTree, is the tool the GIPSY project is relying

35

P

GIPSY

code
segments
N
PreProcessor
) 4 . ¢ v
o /) N
SiPL] GIPL procedural
code | code code
segments | segments segments
. / .
| I
i
A 4
SIPLparser GiPLparser ProcedureClassGenerator
v
(/ SIPL
AST
=
v
SIPLtoGIPLtranslator X
_/ GIPL
TN\AST /
[Y
TypeSystem SemanticAnalyzer/Translator
GIPSYtypes » <
™

GEER

Figure 7: GIPC Structure

36

on since the first implementation [35] to create Java-language parsers and ASTs for
source grammar files. The Java Compiler Compiler tool implements the same idea
for Java, as do lex/yacc [28] (or flex/bison) for C ~ reading a source grammar
they produce a parser that complies with this grammar and gives you a handle on
the root of the abstract syntax tree. The GIPL, Indexical Lucid, JLucid, Objec-
tive Lucid, PreprocessorParser, and DFGGenerator parsers are generated with the
JavaCC/JJTree parser generation tools. JavaCC requires a grammar specification
of the target programming language, written in the syntax of JavaCC. Thus we first
provide the concrete syntax of Lucx with the expressions for context, context calculus

operators and tag set, as shown in Figure 8.

Elimination of Left Recursion JavaCC is a LL(K) [28] parser generator, al-
though left recursion could be eliminated by setting a particular LOOKAHEAD in-
teger value, the efficiency of parsing a source program would then be decreased, since
the parser has to ‘look ahead’ for more than one token when there’s an ambiguity
in the grammaf. ‘Thus we modified the grammar to remove the left recursion|32] to

make Lucx grammar LL(1). Following is some examples of removing left recursion:

Example 13 An Example of eliminating left recursion
tagset ::= ordered finite ({ { INTEGER to INTEGER }
| { INTEGER to INTEGER step INTEGER })
| ordered infinite ({ INTEGER to INF+ }
| { INTEGER to INF+ step INTEGER }
| { INF- to INTEGER }
| { INF- to INTEGER step INTEGER }
| { INF- to INF+ })
After modification, the grammar changed into:
tagset ::= ordered finite { INTEGER to INTEGER (e | step INTEGER) }
| ordered infinite ({ INTEGER to INF+ (¢ | step INTEGER) }
| { INF- to(INTEGER (¢ | step INTEGER)| INF+) })

Building up the Lucx Syntax Tree Although JavaCC is a top-down parser,
JJTree constructs the parse tree from the bottom up. To do this it uses a stack where

it pushes nodes after they have been created. When it finds a parent for them, it pops

37

Term
Term1
E1

Tail
factor

context
context_simple
maicro_context
contert_set
unary

Q

QTail

tagset

i

i

I

i ——i

WO

.

(if E then Eelse E) E1| # E E1| Term E1
factor Terml

e| (x| /|%]|and) Term Terml

e |(+|-|or) Term E1
(<|>|>|<=|==|t=) EEIl

QEE!

where () El

(fby | asa | upon

isSubContext | difference | intersection
projection | hiding | override | union) EI
Tail E1

e | LE(, E)*1(E(, E)¥)

ID | INTEGER | FLOAT | STRING | (E)

unary

context

context _ simple | context _ set
[micro_context (, micro_context)*]

E:FE

{ context_simple (, context_simple)*}

(first | next | prev | iseod) E

(dimension ID (, ID)* tagset ; }(Q)* | (ID QTail = F ;)(Q)*
e | [ID (,ID)* 1(ID (,ID)¥)

ordered finite ({ E (, E)*}

{ INTEGER to INTEGER }

{ INTEGER to INTEGER step INTEGER })
ordered infinite ({ INTEGER to INF+ }

{ INTEGER to INF+ step INTEGER)

{ INF- to INTEGER }

{ INF- to INTEGER step INTEGER }

{ INF- to INF+ })

unordered finite { E(, E)*}

i

Figure 8: Concrete Lucx Syntax

38

the children from the stack and adds them to the parent, and finally pushes the new
parent node back. The stack is open, which means that you have access to it from
within grammar actions: you can push, pop and otherwise manipulate its contents
however you feel appropriate.

Each node is associated with a node scope. User actions within this scope can
access the node under construction by using the special identifier jjtThis to refer to
the node. This identifier is implicitly declared to be of the correct type for the node,
so any fields and methods that the node has can be easily accessed.

A scope is the expansion unit immediately preceding the node decoration. This
can be a parenthesized expression. When the production signature is decorated (per-
haps implicitly with the default node), the scope is the entire right hand side of the
production including its declaration block.

By specifying grammar expansions and node scopes for each Lucx non-terminal,
an Lucx AST is built. Listing 4.1 is an example of building the node E. It first lists all
the grammar expansions on the right hand side of E, then in the node scope section,

it specifies the tree building operations.

4.1.2 Extension of Semantic Analyzer

In [48], Wu provided the implementation of Semantic Analyzer with well-established
semantic analysis. It was designed to recognize only GIPL, as other SIPLs were
all supposed to be translated into GIPL. However, because of Lucx’s uniqueness in
context and context calculus, the translation route cannot be applied to Lucx. Thus
we adapt the Semantic Analyzer with the minimum changes to make it aware of the
concepts of context and context calculus.

The Semantic Analyzer has a mechanism of traversing the AST generated by the
front-end layer in a top-down, depth first manner. It uses the Dictionary, which keeps
all the identifiers and their attributes to do type checking, rank analysis, and function
elimination [48]. Finally, the filled Dictionary, which is essentially the representation

of éompiled AST, will be fed to GEE as the resource for final execution.

Type Checking for Lucx Except the common type checkings as within the other
Lucid programming languages, Lucx has its unique type checking schema because of

the notion of context and context calculus operators. Note that here in the Semantic

39

void E() : {}

{
try
{
(ID() <ASSIGN> E()E1()) #ASSIGN E1() //Grammar rules
[(<IF> E() <THEN> E() <ELSE> E() <FI>) #IF E1()
[(<WHEN> E()) #1ASH E1()
|Term() E1()
| ((<PLUS> #POSI | <MINUS> #NEGE) Term())
{
// Operation on the nodes.
SimpleNode midNodel = (SimpleNode)jjtree .popNode();
SimpleNode midNode2 = (SimpleNode)jjtree.popNode();
SimpleNode node = sign(midNodel, midNode2);
jjtree .pushNode(node) ;
}
E1()
catch(ParseException e)
{
countErrors();
System . err. println (”Lucx Parser: ” + e.toString());
}
}

Listing 4.1: An example of building up JJTNode

Analyzer at compile time, we only deal with simple expressions because we could
have encountered some complex expressions, initiating other intensional commands
requiring even distributed evaluation, which cannot be determined at compile time. In
those cases, the semantic analysis should be delayed to the runtime execution engine.
For example, if we have an expression of [d : (¢ @ [f : 2])], which is a simple context
whose tag value requires the result of evaluating another intensional expression. The
tag type cannot be determined at compile time, thus we defer type checking for these
complex expressions to the engine side. The following is the list of type checking that

should be performed on Lucx programs.

o Tag Value Validity: to check if the tag value in a given context is valid for the

tag set declared.

e Operands Validity: to check if the operands, in other words, context objects are

40

valid for the computing context calculus operator.

For the first checking, we define a method called checkTagValueInContext (SimpleNode
pTagValue) inside the SemanticAnalyzer class, which takes a tag value node in a
micro context as parameter. This method makes a reference to the tree, finding the
dimension identifier in the micro context, looking it up in the Dictionary, and gets the
tag set declared in that dimension. Then we instantiate an object of the tag set with
all its attributes. After that, we call the set membership method defined in the tag set
class to do the actual semantic checking. The checkTagValueInContext (SimpleNode
pTagValue) is called in the main check() method, which traverses the tree and does
type checkings. Thus every time the check() method traverses the tree and meets
MICRO_CONTEXT node, it first checks the validity of the dimension identifier, then if the
tag value node is a simple expression, for example, a constant, in other words, string
or numeric literal, checkTagValueInContext (SimpleNode pTagValue) is called.

For the second checking, when we start traversing the tree and meet the context
calculus operator nodes, it checks to see if the two operands are of the same type, for
example, the operands of difference should be both Simple Context or Context
Set and also note that certain operators such as projection and hiding require the
operands to be context and DimensionSet.

The current engine cannot deal with user defined functions directly, thus we have
a mechanism of function elimination [48]. Because Lucx semantics is an extension to
the GIPL semantics, the function in Lucx would also follow this routine. However, in
the current function elimination mechanism, recursive functions cannot be managed.
Our team is working on design a new generation of runtime execution engine to

actually support all the functions instead of flattening them.

4.2 Design and Implementation of Context Classes

Because of the consideration of execution efficiency and the importance of context,
we decide to define context as a data type, with all the context calculus operators
implemented inside it. The data type is represented by a Java class as any other types
inside the type system. Now we present the original design of GIPSY Type System
by Serguei Mokhov. '

41

GIPSYInteger - : GPSYDouble GIPSYEmbed
%ointegervakie : nteger ®oDoubleValue : Double WoEmbedValtie : Object
SGPSYhieger) *GIPSYDouble) - SGIPSYEmbed()
*GPSYhteger) : SGIPSYDouble(SGIPSYEmbed()
*GPSYinteger) SGIPSYDouble() SGIPSYEmbed()
*getVaiie() . : Sgetvalua(y Sgetvalue(): : ;
SoString() YoSiring() *toString(y
*getEnclosedType Object(} *getEnclosedTypeObject() *getEnciosedTypeObject)

< :

P

\, /
N 9 e
\ /

, \ GIPSYType /
N GIPSYObject
SiPSYBoolean ostrLexeme : String / @oObjectvalis -jomm
%oBooieanvalue : Boolean STYPE_INT it = 0 e -
STYPE_DOUBLE :int=1. ¢ °
*GIPSYBoolean) STYPE_STRING : int =2 .2:,5,2182’,233
°GIPSYBoolean() oTYPE_BOOLEAN :int=3 Sgetvalue() -
:GIPSYBoohan() | STYPE_CHARACTER :Int = 4 -1 Yostring()
getValue() ~n | OTYPE_ARRAY 1infl =5 L e
Stostring DN STYPE_OBJECT :int= 6 getEnclosedType Ohlect()
*getEnclosedTypeObject() STYPE_VOID :imt=7" e
i oTYPE_EMBED :Int=8
T STYPE_IDENTIFER :int=9 GIPSYArray:
OTYPE FLOAT:int=10 . ‘. ‘
GIPSYVoid ®oType ;int=-1 T YGIPSYANTay()
: B RS 1 SGIPSYAmay()
SGIPSYVoid() “getlaxeme() v YGIPSYANay(
<7 NoString() AN *GIPSYAray()
/ Y Ssatl oveme() AN StoString()
:getTypoEnunevalon() . | Yengthg
'g_etEnclosadTypeObjacl() ~ ®getBaseType()
/ getType() ~
7 q K .
Yad at AN
GIPSYCharacter - GIPSYFioat GPSYSting GIPSYIdentifier
WoCharacterValue : Character. ZoFatiakie - Flod i%oStringValus - String LsiridentiflerValue : Sting
SGIPSYCharacter(} *GPSYFloat() SGIPSYStrin °
90 GIPSYidentifior()
:GIPSYCharacler() SGPSYFloat() : SGIPSYString() *GIPSYldentifier()
JGIPSYCharacter) *getvalue() *getvalue(y Sgetvalue(y
%goeé\t/:'::?)() ':IOSIrhg() : :tuSIring() Sostring)
(. ! Object j *)
SgetEnclossdTypeObject) getEnclosed Type Object() getEnclosedTypeObject(); gelEnciosedTypeObjed(

Figure 9: GIPSY Type System.

4.2.1 An Overview of the GIPSY Type System

According to [31] The structure of GIPSY Type System before introducing context
is shown as Figure 9

Each class is prefixed with GIPSY to avoid possible confusion with similar defi-
nitions in the java.lang package. Primitive types, such as Long, Float, etc. are
wrapped around the corresponding Java object wrapper classes. Every class keeps
a lexeme (a lexical representation) of the corresponding type in a GIPSY program
and overrides toString() to show the lexeme and the contained value. These types
are extensively used by the Preprocessor, imperative and intensional (for constants)
compilers, the SequentialThreadGenerator, and SemanticAnalyzer for the general

type of GIPSY program processing, and by the GEE’s Executor [31]. All the GIPSY
data types extend the generic GIPSYType.

42

4.2.2 Design of Context Classes

As presented in Chapter 3, there are two types of context: Simple Context and
Context Set. Note that as described in Chapter 3, the semantics of Context Set
has not been proved in Lucid and thus integreted in GIPL semantics. However, we
still embed it as a type variant because of potential future need, see Chapter 6 for
more details about this issue.

We define the abstract class Context as the parent class for both Simple Context
and Context Set. Inside the parent class, there’s an attribute oSet, which keeps all
the Micro Context elements for Simple Context and Simple Context elements for
Context Set. It also has a generic method size() to return the size of oSet, which
represents the size of the Context. Note that if the size()==0, it represents an empty
context. There’s also a set of abstract signatures for context calculus operators.
add (), remove () and getChild() are operators used to manipulate the components.

MicroContext is the atomic component of SimpleContext. It consists of an object
of Dimension and an object of GIPSYType to represent the tag value.

SimpleContext is the child of Context, it has the actual implementation of all
the context calculus operators on simple context. It is also the component of Context
Set.

Context Set also inherits Context and overwrites the context calculus operators.
It is the composition of SimpleContext.

According to the inheritance hierarchy and component and composition relation-
ship among MicroContext, SimpleContext and ContextSet, we apply composite
design pattern [29, 38, 20] here, where SimpleContext is the leaf, Context is the
component and Context Set is the composition. Figure 10 shows the structure of
context classes. The composition Context Set can add or remove component dynam-
ically. According to the definitions of context calculus operators on context set, most
of them rely on implementation of their counterparts on simple context. Thus by
applying composite pattern, the implementations of them can be achieved by calling

the actual immplementation of context calculus operators on SimpleContext.

43

o
%oSet ; Vector
Ssizef)
Sequals()
SjsSubContext()
Sdifferencey)
“intersectioni)
MicroContext Sprojectionj) 10.n
©oDimension : Dimension. | *hdngy)
&0Tag : GIPSYType Coventde)
Sunion()
*getDim() Sadd()
SgetTag(Sremove()
o SgetChik()
\ Pl N
4 7 y
/ \
x,! / Y
N1 / \\ 40
SimpleContext ContexiSet
Ssize() size()
equals() Yequals()
:lssubConlext() :IsSubConte)d()
difference(} difference()
“Intersection() Sintersection()
f"gysijec!lon() :gggjecﬂon()
idin in
"oven?é)e() “‘overr?s)e()
:union(_) “union()
addy() Caddi)
“remove() Sremove()
*getChildg) *getChild()

Figure 10: Context Classes

4.3 Implementing Context Calculus in the GIPSY

After designing context classes, now we have a solid container of the context calculus
operators. In this section, we provide the algorithms for implementing those opera-
tors, which are isSubContext, difference, intersection, hiding, projection, override and
union. Those operators apply on both Simple Context and Context Set. Context
Set is the composition of Simple Context, as specified in Chapter 3, the definitions
of these operators on Context Sets are mostly performing the computation on each
pair of Simple Context components. In this section, we don’t list all the algorithms

for implementing context calculus operators on Context Set, please refer to appendix

for more details.

4.3.1 1sSubContext

This method takes an object of Simple Context as parameters and returns a boolean

value. If this context is an empty Simple Context, then the result is always true

44

because empty context is the sub context of any context. And if the parameter
contains less Micro Context elements than this context, the result is always false
because no subset contains more elements than the superset. Otherwise, if every
Micro Context in this context has a match in the parameter, the result returns true;

otherwise, false.

boolean isSubContext(SimpleContext pC)

if (this.size () == 0)

return true;
if(pC.size() < this.size()) //It includes the case where pC.size() ==

0

return false;
else{

boolean flag;

for(int i = 0; i < this.size(); i++){

flag=false;
for(int j = 0; j < pC.size(); j++){
if (pC.micro_context(j) == this.micro_context(i)){
flag=true;
break;
}
if(flag = false)
break;
}

return flag;

Listing 4.2: Algorithfn for implementing isSubContext on simple context

4.3.2 difference

This method takes an object of Simple Context as parameter and returns a new
computed Simple Context object. The result is basically Micro Contexts in this
Simple Context but not in the parameter. We use an object of Simple Context to
keep the result of computation. Initially, it is a copy of this Simple Context. Here
we invoke the élone() method in Java, because later on we would change the content
of the result object. All the Java objects are reference variables, if we simply use the
assign operator ‘=", the two variables(the first parameter and the result) will make

reference to the same memory location, thus either one changes, the other would be

45

affected. That’s not safe for both sides. So we use clone() to make a copy of this
Simple Context. Then it compares each Micro Context in this Simple Context with
that of the parameter, if a match is found, the current Micro Context is removed from
the result Simple Context. Note that if every Micro Context in this Simple Context

is also inside the parameter, the result is an empty Simple Context.

SimpleContext difference (SimpleContext pC){
SimpleContext result=this.clone();

if (this.size () = 0)

return result;

if (pC.size () = 0)

return result; //return the result immediately without going into

the loop

for(int i = 0; i < this.size(); i++){

for(int j = 0; j < pC.size(); j++){
if(pC. micro_context(j)==this.micro.context(i)){
result .remove(this.micro_context (i));

}
}
}

return result;

}

Listing 4.3: Algorithm for implementing difference on simple context

Recall that the difference set of two context sets is computed by ‘differentiating’
every pair of simple contexts in both of the context sets. If all the resulting simple
contexts are empty context, then the result is an empty context set, but if there’s at
least one non-empty simple context, the result doesn’t contain empty simple context.
Here we give the algorithm as an example for all the other operators, as they are

implemented in the similar way.

4.3.3 1intersection

This method takes an object of Simple Context as parameter and returns a new com-
puted Simple Context object. By definition, the complementary set of intersection is

difference, thus we design the algorithm as shown in the following listing.

4.3.4 projection

This method takes a set of Dimension objects as parameter and returns a new com-

puted object of Simple Context. It compares the Dimension objects inside the set

46

ContextSet difference (ContextSet pS){
ContextSet result=mew ContextSet();
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pS.size(); j++){
SimpleContext tempResult=difference(this.simple_context (i), pS.
simple_context (j));
if (tempResult.size () != 0) //if all the tempResult.size()==0, the
result is an empty context
result .add(tempResult);

}
}

return result;

}

Listing 4.4: Algorithm for implementing difference on context set

SimpleContext intersection (SimpleContext pC){
return this.difference(this. difference (pC));
}

Listing 4.5: Algorithm for implementing intersection on simple context

with those in the context object, if they are equal, the Micro Context would be added
to the result Simple Context.

SimpleContext projection(Vector dimSet){
SimpleContext result = new SimpleContext;
for(int i = 0; i < dimSet.size(); i++){
for(int j = 0; j < this.size(); j++){
if(this.micro_context(j).dimension == dimSet.dimension (i))
result.add(this. micro_context(j));
}

}

return result;

}

Listing 4.6: Algorithm for implementing projection on simple context

4.3.5 hiding

This method takes an Object of Simple Context and a set of Dimension objects as
parameter and returns a new computed object of Simple Context. According to the
definition, the complementary set of hiding is projection, thus we implement hiding

as follows.

47

SimpleContext hiding(SimpleContext ¢, DimensionSet dimSet){
return(difference(c, projection(c, dimSet)));
}

Listing 4.7: Algorithm for implementing hiding on simple context

4.3.6 override

This method takes an object of Simple Context as parameter and returns a new
computed object of Simple Context. It’s composed of three parts: micro contexts in
the parameter whose dimensions are common in both simple contexts, micro context

in this Simple Context and in the parameter whose dimensions are unique.

SimpleContext override (SimpleContext pC){
SimpleContext result = new SimpleContext () ;
boolean flag=false;
SimpleContext uniqueMCInC2=pC. clone () ;//micro contezts whose
dimensions are unique in pC
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pC.size(); j++){
if(this. micro_context(i).dimension == pC.micro_context(j).
dimension)

flag=true;
result .add (pC. micro_context(j));
uniqueMCInC2 . remove (pC. micro_context (j));

}

if(flag = false)
result .add(this.micro_context(i)); //Add the micro contexts whose
dimensions are unique in this

flag=false;
}
for (int k = 0; k < uniqueMCInC2.size (); k++)
{

result .add (uniqueMCInC2. micro_context (k));
}

return result;

Listing 4.8: Algorithm for implementing override on simple context

4.3.7 union

This method takes an object of Simple Context as parameter and returns a new

computed object of Simple Context or Context Set. There’s possibility of involving

48

elimination of non-simple context, for example [f:1, e:1, d:2] union [e:2, d:1, t:4]. If
there’s no Dimension object in common, then the result is simply the combination of
two simple contexts. However, if there is, the result should be an object of Context
Set. We define a set of helping methods to translate the non-simple context into
Context Set. wunion on context sets are different than the other context calculus
operators on context set because it has a mechanism of eliminating higher-order set.

Because of the lengths of the algorithms, we list them in appendix.

4.4 Design and Implementation of Tag Set Classes

After we derive the notion of tag set from the definition of context, it should also be
a type variant inside the type system, because the instantiation of context objects
depend on the tag set types. Thus in the following subsections, we present the design

and implementation of tag set classes inside the GIPSY.

4.4.1 Design of Tag Set Classes

As stated above, there are four kinds of tag sets. They are organized as shown in
Figure 11. The TagSet class is an abstract class and it’s the parent of all of tag set
classes. It has a data field iEzpressionType to distinguish different expressions under
the same tag set type(eg. There are three kinds of expressions under Ordered Finite
Tag Set). It also has two abstract method signatures of equals() and isInTagSet().
The latter is the set membership method that must be implemented over all types of
tag sets.

There is also a group of interfaces for keeping the type information, for exam-
ple, the class OrderedFiniteTagSet should implement the I0rdered and IFinite
interfaces. Such mechanism also provides the facility of adding and defining proper
operators inside proper tag set classes. Such as getNext(poTag), which takes a tag
object as parameter and returns the next tag value in the dimension, should be valid
only for ordered sets. Then only the tag set classes implement the I0rdered interface
should give the concrete implementation for this method. And since the length of
finite set can be determined, in IFinite interface, a signature of size() is specified.

All the concrete tag set type classes inherits the TagSet class and have their own

data fields and operators defined as the following subscction.

49

Sequial

SisinTegSet()

5ot ExpressionT ype()

SgetExpiessionType(-
2,

SOUATTN N
\ ~.
H ~
/AN
] \ S
OrdsrednfnitoTagSel| | UnordsredrinkeTegSel. | [UnordersdifintaT agiel
pper: I ®anumeratadElements 1.3 Striny
Rjowar: it b il
Dstep : Int *sizel) s,
~ - “gelEnumaratedEloments() ’g‘;::.F.‘:;:)mnRopuumallnm)
‘gthrevIous() Sequais() SistTagSet()
"getext(y SisinTagSel()
getUpper() StagAl) /. I
*getEnuieratedElement() :9"—0‘“'\) *getindex() / ;
Sequals() ‘sllShPﬂ Vi S Ve H
“IsinTagSeig squals() " AN
Staghty X YisnTagSet() p4
Sgetindex() 4 \o‘@m _./)\ . /N
S AN / N i
§ / " / N\ I
»’5,7'3" \.\ S hN / ‘\,—"‘1
o N R W
& W [}
IOrdered rF‘“"‘ Infinke Wnordered
SgetPrevious() Ssizeg)

SgeiNext()

Figure 11: Tag Set Classes

4.4.2 Implementation of Operators on Tag Sets

A tag set is attached to a dimension, it specifies all the possible tags in that dimen-
sion. When a context is declared as <dimension:tag> pairs, certain checks should be
performed to determine if the tag value is valid for the dimension. Thus it is necessary
to define set membership method over all tag set types. Here we also provide equality
method for each type of tag sets. And because the nature of each type of tag set varies,
there are different operators allowed on certain tag sets. For example, it is reasonable
to perform getNext () or getPrevious(), namely tag set index switching operators,
on ordered tag set, however, the performance of such operators on unordered tag
set would be invalid since there’s no fixed order in an unordered sequence. As de-
scribed earlier in Chapter 2, there are four types of tag set, which are ordered finite
tag set, ordered infinite tag set, unordered finite tag set and unordered
infinite tag set. Here we still follow this category while specifying the implemen-

tations.

4.4.2.1 Ordered Finite Tag Set

There are three kinds of expressions for this tag set type, we use iEzpression Type ==

0 to represent expression as dimension d :ordered finite {rat, bull, tiger,

50

rabbit}; iExpression Type == 1 to represent expression as dimension d : ordered
finite {1 to 100}; and iExpressionType == 2 to represent expression as dimension
d : ordered finite {2 to 100 step 2}. We provide set membership method,
equality method and the applicable tag set index switching method for each of them.
Also note that for the set membership method and index switching methods, since
an actual tag value parameter could be any kind of object of GIPSY types, we make
it GIPSYType [31]. And because this methods are implemented inside the tag set

type class, we use this to represent the tag set itself.

Set Membership

o If iExpressionType == 0, isInTagSet() returns true if and only if the given

parameter is equal to one of the tag values inside the tag set as enumerated.

o If iExpressionType == 1, isInTagSet() returns true if and only if the given
parameter is greater than or equal to the lower boundary and smaller than or

equal to the upper boundary.

o If iExpressionType == 2, isInTagSet() returns true if and only if the given
parameter para is greater than or equal to the lower boundary [, and smaller
than or equal to the upper boundary, if the step is positive; or smaller than or
equal to the lower boundary and greater than or equal to the upper boundary
if the step is negative; and that ((para —) mod p) = 0 in both cases, where p is
the step specified.

The algorithm is giving in Listing 4.9

Equality

o If iEzpression Type == 0, equals() returns true if and only if all the enumerated
elements in both tag sets are equal. Note that because we use Vector in Java
to contain the enumerated elements, we call the equals method of Vector to
implement our equality method. Since the equals method in Vector is imple-
mented based on the order that the elements are listed, it is appropriate for our

requirement,.

o1

boolean isInTagSet (GIPSYType poTag)
{
boolean result = false;
switch(this.iExpressionType){
case : 0 {
for(int i = 0; i < this.size(); i++){
if (poTag = this.tagAt(i))
result = true;
}

break;
}
case : 1 {
if (poTag >= lower && poTag <= upper)
result = true;
break;

case : 2 {
if(step > 0){
if (poTag >= lower && poTag <= upper && (poTag~lower) mod step

result = true;
}
else {
if (poTag <= lower && poTag >= upper && (poTag—lower) mod step
result = true;
}
break;

}

return result;

}
}

Listing 4.9: Algorithm for implementing isInTagSet on ordered finite tag set

52

o If iExpressionType == 1, equals() returns true if and only if the lower and upper

boundaries of the two tag sets are equal respectively.

o If iExpressionType == 2, equals() returns true if and only if the lower and upper

boundaries and the steps of two tag sets are equal respectively.

The algorithm is listed in Listing 4.10.

boolean equals(Object otherObject)

{
boolean result = false;
if (otherObject instanceof OrderedFiniteTagSet){
switch(this.iExpressionType){
case : 0 {
if ((OrderedFiniteTagSet)otherObject.expressionType == 0 &&
(OrderedFiniteTagSet)otherObject . getEnumeratedElements () . equals (
this.getEnumeratedElements()))
result = true;
break;
}
case : 1 {
if ((OrderedFiniteTagSet)otherObject.expressionType — 1 &&
(OrderedFiniteTagSet)otherObject . getLower ()=this.getLowewr () &&
(OrderedFiniteTagSet)otherObject . getUpper ()=this.getUpper())
result = true;
break;
case : 2 {
if ((OrderedFiniteTagSet)otherObject.expressionType = 2 &&
(OrderedFiniteTagSet)otherObject.getLower ()=this.getLower () &&
(OrderedFiniteTagSet)otherObject.getUpper ()==this.getUpper() &&
(OrderedFiniteTagSet)otherObject . getStep ()==this.getStep ())
result = true;
break;
}
}
}

return result;

}

Listing 4.10: Algorithm for implementing equals on ordered finite tag set

Index Switching Operators

o If iExpressionType == 0, getPrevious() or getNext() returns the next element

of the given tag parameter in the enumeration.

53

o If iExpressionType == 1, getPrevious() or getNext() returns parameter-1 or
parameter+1 within the range of tag set. Note that for now we only consider

the sub set of integers for this expression.

o If iExpressionType == 2, getPrevious() or getNext() returns parameter-step or
parameter+step within the range of the tag set. Note that for now we only

consider the sub set of integers for this expression.

The algorithms are listed in Listing 4.11 and Listing 4.12.

GIPSYType getPrevious (GIPSYType poTag)

GIPSYType result = null;
if (isInTagSet (poTag)){
switch(this.iExpressionType){
case : 0f
if (!poTag.equals(this.tagAt(0))) //the parameter is not the first
element
result = this.tagAt(getIndex (poTag)-1);
break;
}
case : 1{
if (poTag !'= lower)
result = poTag—1;
break;
}
case : 2{
if (poTag !'= lower)
result = poTag—step;
break;
}
}
}

return result;

}

Listing 4.11: Algorithm for implementing getPrevious on ordered finite tag set

4.4.2.2 Ordered Infinite Tag Set

Although we call this type of set ‘infinite’, in the actual implementation, there
should be a way to handle this ‘infinity’ to make it ‘infinite’ allowed by the avail-
able storage resources. For now we only consider Integer as the type for a tag

value, thus the infinity is actually represented by either Integer .MIN_VALUE of Java

54

GIPSYType getNext (GIPSYType poTag)

GIPSYType result = null;

if (isInTagSet (poTag)){

switch(this.iExpressionType){

case : 0{
if ('poTag. equals (this.tagAt(this.size ()-1))) //the parameter is
not the last element
result = this.tagAt(getIndex(poTag)+1);

break;

case : 1{
if (poTag != upper)
result = poTag+1;
break;

case : 2{
if (poTag != upper)
result = poTagtstep;
break;

}
}
}

return result;

}

Listing 4.12: Algorithm for implementing getNext on ordered finite tag set

for minus infinity or Integer.MAX_VALUE for plus infinity. There are five kinds of
expressions for this type, we use iExpressionType == 3 to represent expression as
dimension d : ordered infinite {2 to INF+}; iEzpressionType == 4 to repre-
sent expression as dimension d : ordered infinite ’{2 to INF+ step 2}; iFz-
pressionType == 5 to represent expression as dimension d : ordered infinite
{INF- to 100}; iEzpressionType == 6 to represent expression as dimension d :
ordered infinite {INF- to 100 step 2} and iFzpressionType == 7 to represent
the entire stream of integers. The set membership, equality and tag set index switch-

- ing methods are defined and implemented as the following:

Set Membership

o If iExpressionType == 3, isInTagSet() returns true if and only if the given
parameter is greater than or equal to the lower boundary and less than or equal
to Integer.MAX_VALUE.

55

o If iFxpressionType == 4, isInTagSet() returns true if and only if the given
parameter para is greater than or equal to the lower boundary [and less than
or equal to Integer .MAX_VALUE and that ((para —) mod p) = 0, where p is the
step specified.

o If iEzpressionType == 5, isInTagSet() returns true if and only if the given
parameter is less than or equal to the upper boundary and greater than or
equal to Integer.MIN_VALUE.

o If iErpressionType == 6, isInTagSet() returns true if and only if the given
parameter para is less than or equal to the upper boundary u and greater than
or equal to Integer .MIN_VALUE and that ((u — para) mod p) = 0.

o If iEzpressionType == 7, isInTagSet() returns true if and only if the given
parameter is greater than or equal to Integer.MIN_VALUE and less than or
equal to Integer.MAX VALUE.

See appendix for the algorithm.

Equality

o If iExpressionType == 3, equals() returns true if and only if the lower boundaries

of two tag sets are equal..

o If iEzpressionType == 4, equals() returns true if and only if the lower boundaries

and the steps of two tag sets are equal respectively.

o If iExpressionType == 5, equals() returns true if and only if the upper bound-

aries of two tag sets are equal.

o If iExpressionType == 6, equals() returns true if and only if the upper bound-

aries and the steps of two tag sets are equal respectively.

o If iExpressionType == T, equals() returns true if the two tag sets are of the

same expression type.

See appendix for the algorithm.

56

Index Switching Operators

e If iFxpressionType == 3 or 5, getPrevious() or getNext() returns parameter-1

or parameter+1 within the range of tag set.

o If iExpressionType == 4 or 6, getPrevious() or getNext() returns parameter-step

or parameter+step within the range of tag set.

o If iExpressionType == 7, getPrevious() or getNext() returns parameter-1 or

parameter+1 within the range of tag set.

See appendix for the algorithms.

4.4.2.3 Unordered Finite Tag Set

The set membership method returns true if and only if the given parameter is equal
to one of the tag values inside the tag set. The equality method returns true if and
only if all the enumerated elements in both tag sets are equal. Note that the equality
of two unordered sets has nothing to do with the order that the tags are listed, thus
this algorithm is different from the equals method in Ordered Finite Tag Set. Set

index switching operators are not applicable on this type.

{

boolean isInTagSet (GIPSYType poTag)
for(int i = 0; i < this.size(); i++)

if (poTag = this.tagAt(i))
return true;

}

return false;

}
}

Listing 4.13: Algorithm for implementing isInTagSet on unordered finite tag set

4.4.2.4 Unordered Infinite Tag Set

Please refer to Chapter 6 for more details.

o7

boolean equals(Object otherObject)

if (!otherObject instanceof UnorderedFiniteTagSet)
return false;
else{
if ((UnorderedFiniteTagSet)otherObject.expressionType!=this.
expressionType)
return false;
else{
boolean flag
Vector enuml = this.getEnumeratedElements ()
Vector enum?2 (UnorderedFiniteTagSet)otherObject.
getEnumeratedElements () ;
for(int i = 0; i < enuml.size(); i++)

false;

flag = false;
for(int j = 0; j < enum2.size(); j++)
{
if (enuml.elementAt(i).equals(enum2.elementAt(j)))
flag = true;
break;
}
if(flag = false)
break;
}
return flag;

}
}
}

Listing 4.14: Algorithm for implementing equals on unordered finite tag set

4.5 Embedding Context and Tag Set Classes into
the GIPSY

In order to keep the components of type system in a concise manner, the context class
structure has two major changes while being embedded into GIPSY Type System.
First change is replacing Micro Context class with Dimension class. As described
earlier, a context is actually a collection of <dimension : tag> pairs, thus in order
to build context classes, we also present Dimension class. The Dimension class has
an object of type GIPSYIdentifier called oDimensionName to specify the dimension
object’s name and oTagSet to keep the information of the tag set attached to it. It

also has a reference oCurrentTag, which is set to the current tag value inside the

58

GPSYhteger GIPSYDouble GIPSYEmbed - GIPSYContent
WolntegerVahuse : Integer %oDoubleVaiue : Double UooEmbedvakie : Object - | [&oSel : Vacter
%iContexiType:: it
*GIPSYinteger() “GIPSYDouble() SGPSYEMbed() YSIMPLECONTEXT it =0
*GIPSYinteger() *GIPSYDouble() PGP SYEMbed() PCONTEXTSET iinmi=1 - °
*GIPSYInteger() *GIPSYDouble() G SYEmbed(-
“getvVatue(} “getValue(s Sgetvakie(®setSet()
StoString() Stostring)) Sostrngl) SgetSet -
“getEnclosedTypeObject() SgetEnclosedTypeObject() SgetEnclosedT ypeObject | *skza(y L
N e Vi :getEnclosodepoobhd()
N & . T N
AN GIPSYType SisEmptyConitext()
GIPSYBoolean ai®stiLexome : String 1 | SaddElement)
SBosieavaiie Busican STYPE_INT :int=0 L7 oGbjectvatus : Object YamovsElement)
: O;YPE_D_?UBLE B IER] i oPoYOR :!umoveElemem()
>, 2TYPE_STRING :int =2 ject() cloat() ..
«,g:ﬁgzg"g;::"" STYPE_BOOLEAN :inf = 3 *GIPSYObject() . m,.uoeumemno
‘stmvszma:g “TYPE_CHARACTER : int = 4 [ogetvawe() T SgeiDImansions()
Sgetvaiuet) STYPE_ARRAY (It =5 o String “gatTags)
“tgomnn 0 i OTYPE_OBJECT :int= 6 -*geiEnclosed TypeObjeck) YsSubContext(y
Pl STYPEVOID:ImM=7 % Sdifferencai)
STYPE_EMBED :int= 8 :1;0730:"0»0
©TYPE_IDENTIFIER : Int = : ojectlo
i STYPE_FLOAT : it = 10 R, GIPSYAnay. | ‘Nmm i O T’?s?r' --------- S
e STYPE_CONTEXT :it=11 [~ . : Soverridel) ExprossionTypo :
GIPSYVoid WType Jint = -1 e YGIPSYATaYY "o o
e R | JSpSvAnayl) StransiateContexiSet) .. . e
GIPSYVold()| i Sgeilesemey TR ‘Glpsvmnam &1 g il - EWSM{J Topod
<, Stosting® . GIPSYANay) SpuHARNC oambination(oo
/i OselLexemeq) . “oStingo, . #romoveDuplicately - - gelEx e
/’ *getTypeEnumeration() M :"“9"'0 .)
SgetEnclosedTypeObject() | getBaseType(), i
“getType) ~ : Dlmms!'un
A N .
Y N 2
GPSYCharacter GiPSYFloa) GIPSYSifing - w:?ﬂ;’;"’"""”“
RoC Vale : Cl %oF Float YoStiingVaiue : String GIPSYidentifler SooCunentTag
VostidentilerValue - Sting'
:spsvcnmaer() *GIPSYFioat) *GIPSYSiring() : " S5atDimensianName(y
eg:gcnamum *GIPSYFioat() *GIPSYString() GIPSYidentifter(y e *getDimensionhame)
o Nh’ Sg 5 *getvalua() SGIPSYIdentier() “setTagSet()
sgeNvakieg “toString(“05tring() Sgetvaiueq) getTagSet)
Josubgo SgeiEnclosedTypeObjact); SgetEnclosedTypeOhject() Hostringy SselCunrentTag(y
_~getENclosedTypeObject() . | SgetEnclosed TypeObjacio)] SgetCurrentTago
equalst)
Sishu)
‘galEnclosedTypeOb}ect()

Figure 12: Embed context class into GIPSY

dimension, by adding this field, the notion of micro context can be expressed and
consequently, replaced by Dimension.

The second change is merging all the context types including simple context and
context set into a new class called GIPSYContext. We modified the representation
of context classes as shown in Figure 12. Now we keep the context type informa-
tion in the attribute of iContextType. By this means, we still keep the notion of
composite design pattern cohesively expressed inside the GIPSYContext class. We
put GIPSYContext under gipsy.lang package, and group all the tag set classes and

Dimension class into gipsy.lang.context package.

4.6 Summary

In this Chapter, we present the implementation of Lucx’s context and context cal-
culus. First, we provide the construction process of Lucx compiler; then we present

the design and implementation of context type and context calculus in the GIPSY.

59

Finally, the implementation of tag set types and a set of methods for the types are
specified.

60

Chapter 5
Testing

In order to prove the correctness of the implementation, we present the testing mecha-
nism in this Chapter. There’s already an existing testing infrastructure in the GIPSY,

we follow its design to perform test on Lucx’s parser, semantic analyzer and context

type.

5.1 Testing Infrastructure for Lucx

There are three main modules in GIPSY: the General Intensional Programming Com-
piler (GIPC); the General Eduction Engine (GEE), and the Run-time Iteractive Pro-
gramming Environment (RIPE). Accordingly, we now have 3 main test packages
which are tests.GIPC, tests.GEE and tests.RIPE. We follow this infrastructure to
put testing for Lucx compiler under the tests.GIPC. intensional.SIPL.Lucx pack-
age. We also introduce another unit testing package tests. junit, where all the tag
set classes and context class are tested. Figure 13 shows the package overview of

testing for Lucx.

5.2 Testing for Lucx Parser

As described in Chapter 3, Lucx has extended the syntax of GIPL by introducing the
notation of <dimension : tag> pair in expressions to allow context to be manipulated
as first class value. A set of context calculus operators and the concept of tag set are

also added to the original GIPL syntax. Here, the tests mainly focus on testing these

61

. H i . o

igipsy.tesis GIPC intension: igipsy iests GIPC Intansio igipsy tests.jomk;

§ oLSIPLLUCx. SyniaxTest | {1SPLLucxSemanticTest ;U-v-cmwg
i : = T T \

§
. SemanticAnalyzat
&iCount : ind S N
SoDictionary - Dictionary oxt S s e
‘Rttam : Dictionarytem BoSot Vottor : T Tagset
; Lcumant.: Dictionarytem WoiConiexType : Int A xpressionType : int
: o Mk; o “SIMPLECONTEXT :int= 0
LucxPese o a¢) SCONTEXTSET oot = | - *
o BtunTable : Hashiable .. ‘m?i‘é’sm
:II"F.MF;W : 'llm Reumitem : Functiontem - Tsmsat) SsolExpresslonType()
ree : ParsesSh &p_name : Stting SgeiGet) “gelEpressionTypeq
b S s o
'p_Iype : SgatEnclosed TypeOb)
SgetErorCount() %_crlry:slmploNode ‘?q.i'::o“ ety
im 2 Stringl} SEmptyContexti)
:é(')‘) SPara : Stingll “aidElemento
>Termiy * 0
gelErmorCountsy S1amoveElement
STormiy “takel cloar(y ’
b ::llmha-ﬂ:ndlono SnseriElementit
s 1Dimenshot
SunOpy SwaversaTree() ‘:ﬁaw: i
tblOv() “check(y SisSubContext(y
comext() *1ypeCheck() Sttt encel)
 Gagseg - SchockTagvakseinContextiy “inteis ectiond)
ScheckContextCalcuius() Sprojactiont)
*Nding()
Sovenides)
“uniong
@nansiste ContoxtSet{)
©bulidCommonCombination():
SDURINIC Smbinstion)
idremoveDuplicate()

Figure 13: Testing Infrastructure for Lucx

new features in the syntax. We provide Lucx source code in .ipl files as the input of

the parser. Design and statistics of test cases are given below:

Context As First Class Value The goal for this kind of testing is to see if context
can be used as first class value in Lucx expressions. We created six test cases to test

the following aspects.
e Simple Context in the first expression and back-compatibility with Lucid op-
erators:

In Listing 5.1, the Simple Context expression [d : 2] is used in the first ex-
pression of Lucx program, and in order to show Lucx’s back-compatibility with

Lucid operators, there are Lucid operators fby and #.

e Context Set in the first expression and back-compatibility with Lucid opera-
tors:
It’s similar with the first test case, the only difference is that the context type
is Context Set.

e Simple Context in where clause; complex expression in context expression and

compatibility with if clause.

62

/x This is to test Simple Context in the first expression
and back—compatibility with Lucid operators

*/
n@[d: 2]
where
dimension d;
n = 42 fby #d + 1;
end

Listing 5.1: Simple Context As First Class Value Samplel

In Listing 5.2, the Simple Context expression is in the where clause, and its tag
expression is another # expression. This test case also has an if clause, to check

the compatibility with old versions of Lucid.

/x This is to test Simple Context expression in where clause
complex ezxpression in Context expression
and compatibility with if clause

*/

n

where

dimension d;
n = if #d <=0 then 22
else (n+1) @ [d : (#d-1)]
fi;

end

Listing 5.2: Simple Context As First Class Value Sample2

e Context Set in where clause; complex expression in context expression and

compatibility with if clause.
It’s similar with the first test case, the only difference is that the context type

is Context Set.

e Simple Context with more than one micro contexts and is used as a function

parameter

e Context Set with more than one Micro Context and is used as a function

parameter

It’s similar with the first test case, the only difference is that the context type
is Context Set.

63

/* This is to test Simple Context with more than one Micro Context
used as function parameter
*/
1
where
dimension d;
dimension e;
I=getl [d, e]([d : 1, e : 2]);
getl [d , e](cxt)
where
x = x @ cxt;
end;
end

Listing 5.3: Simple Context As First Class Value Sample3

Context Calculus In the following paragraph, context calculus expressions are
tested. We have two test cases for each operator, one is on Simple Context and the
other is on Context Set. And we also have some test cases over complex context
calculus expressions. Here we don’t list all the test cases for each operator, but give
some typical examples. .

Listing 5.4 shows the test on complex context calculus operator expression. List-
ing 5.5 shows the test on context calculus expression being used as a parameter of a

function call.

n@ ([d :2,e: 3, f: 3] intersection [d : 2] union [f :4, d : 5])
where ‘
dimension d;
dimension e;
dimension f;
n = 34 fby n+1;
end

Listing 5.4: Context Calculus Test1

Tag Set Types Testing in this part is mainly to show that each type of tag set
declaration can be parsed and an appropriate AST can be generated. Here we only

present one example, because the rest is similar to this one.

64

/* This is to test context calculus expression
used as function parameter
*/
I
where
dimension d;
dimension e;
I=getl [d, e]([d : 1, e : 2] intersection [e : 2]);
getl [d , e](cxt)

where
x = x @ cxt;
end;
end
Listing 5.5: Context Calculus Test2
n @ [d : red]
where
dimension d : unordered finite {red, green, blue};
end

Listing 5.6: Tag Set Test

5.3 Testing for Semantic Analyzer

As stated in the implementation chapter, two main testing points are the validity of
context calculus operators and tag values inside a context. And note that because
Lucx does not follow the traditional translation path, but extend the existing Seman-
tic Analyzer by adding some new functions to manipulate Lucx nodes in the AST,
its backward compatibility should also be checked to see if this modification has any
affect on the original Semantic Analyzer. The testing points are listed in the following

paragraph.

e Backward Compatibility:
We borrowed test cases presented by Aihua Wu, who created the Semantic
Analyzer class to support GIPL. See details in [48].

e Dimension Variable Definition:

The testing point is that the dimension variable used inside a context expression
is either not defined or redefined. When it’s not defined, it’s either not declared

in the where clause, the variable with the same name is not declared as a

65

dimension variable or the declaration of the dimension variable is in a different

scope. This is shown in Listing 5.7, Listing 5.8 and Listing 5.9.

There are two cases of dimension variable redefined: First is the dimension
variable is defined in the same scope for more than once. The other possibility
is that the variable is defined again in a different scope. The first one would yield
a semantic error, because there is a name conflict in the dictionary. However
the second one would not because different scopes has their own name space in

the dictionary. They are shown in Listing 5.10 and Listing 5.11.

n @ [d:2]
where
n=42;
end

Listing 5.7: Dimension Variable Not Defined Samplel

n @ [d:2]

where
d=12; //Although d is defined, it is not a dimension wvariable.
n=42;

end

Listing 5.8: Dimension Variable Not Defined Sample2

n @ [d:2]
where
n=42;
where
dimension d;
end;
end

Listing 5.9: Dimension Variable Defined In A Different Scope

((#d)—1Hn
where
dimension d;
dimension d : unordered finite nonperiodic {red, green};
n=12;
end

Listing 5.10: Dimension Variable Redefined

66

((#d)-1)+n
where
dimension d;
n=((#d)-1)
where
dimension d;
end;
end

Listing 5.11: Dimension Variable With Same Name In Different Scope

e Context Calculus Type Checking

As described in the implementation Chapter, type checking here is to see if two
operands of a context calculus operator are of the same context type, or if the
operand is valid, eg. The second parameter of projection must be a dimension
set. We have three test cases for each operator: one for the operands which are
both Simple Context, second for both Context Set and the last for an error
type mismatch scenario. Note that, as the reason stated in the implementation
Chapter, here we only check the operands whose expressions can be determined
at compile time. We present one example of the test case, the rest is similar to

this one.

n @ ([a:1] difference {[a:2]})
where
dimension a;
n=1; ‘
end

Listing 5.12: Context Calculus Operator With Operands Type Mismatch

e Tag Validity

Semantic analysis here mainly checks if the tag value in a context expression is
inside the tag set declared in the where clause. We have two test cases for each
tag set type, one is the normal case, which means that all the tag values inside
a context expression are inside the declared tag set; the other is the reverse.

Here we provide one example of the test case.

67

n @ [a:1, b : red]
where
dimension a;
dimension b;
n=1;
end

Listing 5.13: Tag Value Not Inside Tag Set

5.4 Unit Testing for Context Class and Tag Set

Classes

Unit testing is the key approach to test-driven development, which allows you to
incrementally implement your application with less possible side-effects. There are
many implementation dependencies among context calculus operators, meaning that
the implementation of one operator might involve in that of another. Thus here we
adopt the unit testing strategy and use the facilities provided by Junit. Figure 14

shows the structure of test classes over GIPSY Context class and Tag Set classes.

5.4.1 Test Over GIPSYContext Class

The test is mainly focus on context calculus operators. The general strategy is to
instantiate two possible operands for an operator, which mostly are two objects of
GIPSYContext and also the expected result, which is also an object of GIPSYCon-
text. Then we invoke assertEquals(Object expected, Object actual) method
provided by Junit framework to see if the result after computation of a context cal-
culus operator is the same as the expected result. In the following paragraph, we
provide some examples of union operator according to the test routines listed below.
Note that we have test cases over both Simple Context and Context Set. Here we
only present examples on Simple Context to avoid redundancy. Here we use ® to

represent empty context.

e Empty Context and Empty Context

The expected and actual results of union two empty Simple Context are both

an empty Simple Context.

¢ Empty Context and Non-empty Context

68

SfName
“assenTruel)
“asserfFase()
e __i SassertNul)
| GIPSYContexiTest 7 casserNotNull
S SYConte e assertEquals(y) *
. e CassertSame()
L e Sralig)
| “testEqualsi) g 5 P N
| AtestisSubContext(y / h!
3,‘:::},’,:‘::;:’;,‘;:20 __ OrderedifiriteTagSetTest [SrderedFintteTagSelTost " UnorderedFinleTagSel Test
StestProjection() &1estObj1 : OrderedinfiniteTagSet| [®tesiOb]i : OrderedFiniaTagsel, | &lesiObjl - OrderedFinieTagset
i festHiding() ::estomz : Orderedinfinite TagSet gesmbiz : OrderedFinite TagSet :ji'estOij : OrderedFiniteTagSet
 StestOverride() estTag : GIPSYType estTag : GIPSYType estTag : GIPSYType
{ Mtestunion() StestEquals() “restEquals(| MtestEquals()
YestisinTagSet() “testisinTagSet() -
StestGetPrevious() HestGetPrevious() o
4 “testGelNext() “testGetNext) .~
GIPSYContext ; -
®oSet s Vector i e)
®iContextType : int i // e
PSIMPLECONTEXT :int=0 T gs.;t 7
©¢CONTEXTSET :ini=1 a e
. GAExpressionType - it UnorderedlnﬂnheTagSil
:selSeli) S : SfunctionRepresentation : String
etSet(uals) G
635290 0 623,,739(56(;) :getFuncﬂonRapresentation(’) :
“getEnclosedTypeObject() SsetExpressionType(), Jequalsy]
Saquals() PgetExpressionType(} Ve isinT agSet()
SisEmptyContexty - | Lo - et »
:addElemenI() - W
removeElement(} niteTagSet ™ .
:vemoveElemern{) Q)UP'?:'?::FH eTagse S .
clear() . P
:InsenElememAl() :‘;‘;’:’: Ir:1m :ll;::;id:lrll:nﬂeTagSel
Qg:ﬁxzashns() ®enumeratedElement : Vector glower int o .
:ﬁ;::’,??;’“o “getPrevious() e Seizog
13 ; }
:Inlerssction() Zglez*eN()ex'O :'Be:zi\"f;ms() :gMFm t 0
Sprojsction SgatUpper) °thUp ér() equals(
hiding() g) getipp “isInTagSet()
IS > Sgetlower() getLower()
Joverride) getStep(Sgetstep() :lag:n()
9:.:':;:2“50““”3“0 “getEnumeratedEiement(y ®equals()]./getindex))
; inati ®equals(y ~74 2sInTagSet() .
ShuildCommonCombinationy| | (pIES > o -
@buildACombination() .‘5 agset(S " -
SremoveDuplicate) JagAty)) 7 A

*getPrevious()
“getNext()

Figure 14: Unit Testing for Tag Set and GIPSYContext

69

For example, we instantiate an object of Simple Context, whose size is zero
to represent an empty Simple Context; and also a non-empty Simple Context
object of [d:1,e:2], the expected and actual results are both [d:1,e:2]. Note that
for some context calculus operators, the order of presenting two parameters

might generate different results. For example, we have the test case ® difference
[d:1,e:2] = @, however, [d:1,e:2] difference ® = [d:1,e:2].

A Context and Itself For example, we have two Simple Context object which
are both [d:1,e:2], then both the expected result and the actual result are all
[d:1,e:2].

A Context and Its Proper Subset

Under this category, one test object is the proper subset of the other. For
example, we have a test case: [d:1,e:2] union [d:1] = [d:1,e:2].

Two Contexts With Some Common Dimension Elements But Not All

As shown in Chapter 3, union operator over Simple Context has some unique-
ness here. The result is no longer a Simple Context but a Context Set. For
example, we have the test case [d : 1,e:2, f: 3l union[e:4, f:5,g:6] =
{ld:1,e:2,f:3,9:6],[d:1,€e:2, f:5,g:6],[d:1,e:4, f:3,g:6],[d: 1,
e:4, f:5, ¢9:6]} '

Two Contexts With All The Common Dimension Elements

The test case here is similar to the previous one.

Two Contexts With No Common Dimension Elements

For example, we have test case: [d: 1, e:2] union [f:3,9:4 =[d:1,e:2,
f:3,9:4

5.4.2 Test Over Tag Set Classes

Test here is mainly focus on testing tag validity checking method isInTagSet and

proper operators on tag set such as getPrevious and getNext. It is achieved by

instantiating a tag value object of GIPSYType, and also an object of different tag set

types. Then we invoke assertEquals(Object expected, Object actual) method

70

provided by Junit framework to see if the result after computation of the above

operators is the same as the expected result.

5.4.2.1 Test Over isInTagSet

We have both the true and false scenarios of this method for each type of tag set.

5.4.2.2 Test Over getPrevious() and getNext()

We have three types of test cases here over each tag set type:
e The parameter tag is inside the tag set and it’s not the boundary
e The parameter tag is the boundary

e The parameter tag is not inside the tag set

5.5 Summary

In this Chapter, we present test strategies and test cases for tests over Lucx compiler,
context calculus operators and tag sets. There are some limitations in testing these

components, which will be discussed in Chapter 6.

71

Chapter 6
Conclusion

Along the path of evolution, Lucid has adopted more and more innovative features
to adapt to gain in generality and adapt to different application domains. Lucx,
as one of the evolution steps, has contributed to the family in introducing context
as first class value and a set of context calculus operators. From this regard, Lucx
is innovative because of the uniqueness and importance of the notion of context
in intensional programming. Here we provide a summary of implementing Lucx’s

context and context calculus into the GIPSY.

6.1 Extending the GIPC

GIPSY is an intensional programming language framework within which the Lucid
family of intensional programming languages is compiled and executed. Thus, the
first step of implementing Lucx is to provide its compiler. Following the design of
GIPSY framework, all the compilers should be integrated to the GIPC layer. Lucx
follows the same route.

The construction of Lucx compiler consists of the following steps: First, derive
the concrete syntax of Lucx according to [44], which extends GIPL by introducing
context calculus expressions. The grammar is then modified to remove all the left
recursions and translated into the specification that can be accepted by JavaCC as
input to generate the parser for Lucx. And finally the semantic checking for Lucx,
including checking for context calculus and tag value validity were done by extending

the existing Semantic Analyzer. Syntactically and semantically, Lucx is an extension

72

to the GIPL; therefore, it owns those new features and also inherits old features of
GIPL. So we take both scenarios into consideration while designing the test strategies.
Syntactically, the backward compatibility was tested by enclosing the existing GIPL
expressions and operators into Lucx programs; new features such as context as first
class value in an expression, context calculus operators and tag set types are all
fully tested. Both backward compatibility and new features in the syntactic tests
accomplished positive results with proper ASTs generated. Semantically, backward
compatibility was examined by referring to the existing well-defined test cases; and
the new type checking including type checking for context and its calculus operators
and type checking for valid tag value were also properly tested. The results of these
two checking points are also positive in that the corresponding error messages are
correctly displayed and the output objects of the GEER are properly filled with all
the attributes.

6.2 GIPSY Type System

Although all the SIPLs have their unique syntax and other special features, there
is a set of general types shared among all of them. Even though in most of the
cases, those types are not explicitly declared in the source code at syntactic level, at
runtime, the evaluation of expressions would resort to the actual type of variables or
literals. The goal of constructing a Type System is to include all the general types
among the SIPLs and thus provide the facility for their runtime evaluation. As the
notion of contezt is a general property of all the intensional programming languages,
a data type representing it has been embedded into the type system. So the current
type system has a new variant of GIPSYContext, and also a set of tag set classes and

dimension class, which are the key attributes when defining a context.

6.3 Context Calculus

Similar to a set of arithmetic operators performed on numeric values, context calculus
operators are a set of operators performed on context values. They are implemented
inside the GIPSYContext class and can be called on instantiated context objects.

These operators can be performed on both simple context and context set to generate

73

new computed contexts. Because simple context is a collection of micro contexts
and context set is a collection of simple contexts, the essential notion under the
implementation of context calculus operators is the set theory. The correctness of
this implementation is tested using the unit testing strategy. We performed the tests
by instantiating two context objects with many interesting and exceptional scenarios,
such as empty contexts, etc. Then we specified the expected result and called the
context calculus operators via the instantiated context objects to see if the result
matched what we expected. When we implemented context calculus in the GIPSY,
we also introduced tag set types and a set of possible operators on the tag set. Those
operators were also tested following the unit testing strategy. We first instantiated tag
set objects, then we specified certain tag values to include interesting or eceptional
scenarios. For all the test scenarios discussed in Chapter 5, we obtained positive

results.

6.4 Discussions and Limitations

In this section, we discuss our approach and results and highlight their limitations.
Lucx was defined theoretically. From a certain number of aspects, GIPSY was not
compatible with the theoretical vision of Lucx as persented in Wan’s thesis. This

section presents some of the interesting discussions that we had when incorporating
Lucx into the GIPSY.

6.4.1 Context Set: Motivation and Limitations

Motivation As defined in the GIPL semantics, Lucid works fine with simple con-
text, in other words, a point (P) in the context space at both syntactical and seman-
tical level. And the result of evaluating an expression under certain context yields a
single value. However, there might be certain needs to evaluate an expression at a set
of points in the context space in order to increase computation granularity and save

communication time in case of distributed evaluation.

Limitation Although the notion of context set would permit to increase granularity
by grouping related demands/values, the evaluation of an expression at a contezt set

yields a set of values, which cannot be manipulated in our current implementation.

74

Thus to sum up, there’s definitely a need to have context set in Lucid. The only thing
needed to be done is to embed operational semantics of context set into the current

execution engine.

6.4.2 The Concept of Box

In [44], there is also a notion of Boz. a Box is a set of contexts, all of which have
the same dimension set and the tags corresponding to the dimensions in each context
satisfy a given constraint. It is a special kind of context set. We haven’t implemented
box into the GIPSY because of the following reasons: First, the semantics of box
has not been proved. A simple context is actually a point in the context space,
and context set is a set of discrete points. However, according to the definition, a
box can be a continuous region. Semantically, such continuity has not been formally
proved. Second, the context elements inside a box are determined by the user-defined
constraint. Thus we have to find a mechanism to translate Box notation into context
set. However, user-defined constraints could be in any form. For example, it could
be logical expressions, mathematic functions and so many more. So what kinds of
expression should be allowed and then what kinds of translation routines should be

provided are still open issues.

6.4.3 The Unordered Infinite Tag Set

Since such a kind of tag set is infinite, we cannot list all the tag values, and also it is
unordered, there’s no rule to show what the trend of possible tags is. In order to define
such a tag set, the user has to provide a function to generate all the tag values. This
function could be an intensional function or imperative function. If it is an intensional
function, then theoretically it could be flattened by the Semantic Analyzer provided
the function is not recursive, but what if the function has to be recursive? And if
it is an imperative function, then Lucx somehow becomes hybrid Lucid. Its syntax
and semantics all have to be modified to include imperative features. However, such
modifications are providing nice new features or adding more complexity is still under

discussion.

75

6.4.4 Test On Context Calculus

Although we provided elaborated test cases for context calculus operators, it is still
a simulation of the actual evaluation. The actual execution of context calculus oper-
ators should be performed in the execution engine at runtime, however, since we do
not have a fully working engine currently, here we can only assume that after instan-
tiation of context object, the implementation of context calculus operators satisfies

our expectation.

76

Chapter 7

Future Work

7.1 The New Generation Of Execution Engine

The final stage of executing a Lucx program is at the runtime execution engine side.
The notion of context is represented by a String value in the current engine, because
there was no explicit context type in the system. Ongoing efforts have been making
to adapt the engine to fully context-awareness. Now we already replace all the String
representation of context with the newly added GIPSYContext type. In the future,
the engine will also be able to evaluate context calculus operators and also perform

runtime semantic checking over contexts.

7.2 Formal Verification of Context Set and Box
Theory

The proof of semantic rules for Context Set and Box has to be conducted formally, a

way of manipulating a set of values returned by an expression should be figured out.

7.3 More Possibilities Of Tag Set

We now have Ordered, Unordered, Finite and Infinite keywords to define tag sets.
There is great possibility that when we expand our domain of application, more

keywords would be included to describe the new properties of tag set.

77

Bibliography

In Proceedings of the 4th annual IEEE international conference on Pervasive

Computing and Communications Workshops. IEEE Computer Society, 2006.

Edward A. Ashcroft and William W. Wadge. Lucid - A Formal System for
Writing and Proving Programs. volume 5. SIAM J. Comput. no. 3, 1976.

Edward A. Ashcroft and William W. Wadge. Erratum: Lucid - A Formal System
for Writing and Proving Programs. volume 6(1):200. SIAM J. Comput., 1977.

Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural language
with iteration. In Communication of the ACM, pages 519-526. ACM, July 1977.

Barendregt and Hendrik Pieter. North-Holland Pub. Co. ; sole distributors for
the U.S.A. and Canada Elsevier North-Holland, New York, 1984.

Rudolf Carnap. Meaning and Necessity: a Study in Semantics and Modal Logic.
University of Chicago Press, Chicago, USA, 1947.

Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented
programming: an overview of ContextL. In Proceedings of the 2005 symposium

on Dynamic languages, pages 1-8. ACM, October 2005.

Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding of
Context and Context-Awareness. Graphics, Visualization and Usability Center
and College of Computing, 1999.

Yi Min Ding. Bi-directional Translation Between Data-Flow Graphs and Lucid
Programs in the GIPSY Environment. Master’s thesis, Department of Computer
Science and- Software Engineering, Concordia University, Montreal, Canada,
2004.

78

[10] Jordi Docter, Carlo Alberto Licciardi, and Marco Marchetti. The Telecom In-
dustry and Context Awareness. In Proceedings of the International Conference
on the Management of Mobile Business. IEEE Computer Society, 2007.

[11] D. Dowty, R. Wall, and S. Peters. Introduction to Montague Semantics. D.
Reidel, Dordrecht, The Netherlands, 1981.

[12] Raganswamy Jagannathan Edward Ashcroft, Anthony Faustini and William
Wadge. Multidimensional, Declarative Programming. Oxford University Press,
London, 1995.

[13] A. A. Faustini and R. Jagannathan. Indexical Lucid. In Proceedings of the
Fourth International Symposium on Languages for Intensional Programming,
Menlo Park, California, 1991.

[14] Abraham A. Fraenkel. Abstract set theory. New York, Amsterdam : North-
Holland Pub. Co., fourth revised edition, 1976.

[15] Jean-Raymond Gagné and John Plaice. Demand-Driven Real-Time Computing.
World Scientific, September 1999.

[16] D. Gallin. Intensional and Higher-Order Modal Logic: With Applications to
Montague Semantics. North-Holland, Amsterdam, The Netherlands, 1975.

[17] R. Gold and C. Mascolo. Use of Context-Awareness in Mobile Peer-to-Peer Net-
works. In Proceedings of the 8th IEEE Workshop on Future Trends of Distributed
Computing Systems. IEEE Computer Society, 2001.

[18] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus. In Theoret-
ical Computer Science, volume 266, pages 249-272. ACM, September 2001.

[19] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Pro-
gramming. Journal of Object Technology, USA, 2008.

[20] Allen Holub. Holub on patterns : learning design patterns by looking at code.
Berkeley : Apress, 2004.

[21] Raganswamy Jagannathan and Chris Dodd. GLU programmer’s guide. Technical
report, SRI International, Menlo Park, California, 1996.

79

[22] Raganswamy Jagannathan, Chris Dodd, and Iskender Agi. GLU: A high-level
system for granular data-parallel programming. In Concurrency: Practice and

Ezperience, volume 1, pages 63-83, 1997.

[23] Roger Keays and Andry Rakotonirainy. Context-Oriented Programming. In
Proceedings of the 3rd ACM international workshop on Data engineering for

wireless and mobile access, pages 1-8. ACM, September 2003.

[24] S. Kripke. Naming and Necessity. Harvard University Press, Cambridge, MA,
1980.

[25] Saul A. Kripke. A Completeness Theorem in Modal Logic. 1959.

[26] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, (16):83-94, 1963.

[27] Seymour Lipschutz. Schaum’s Outlines of Theory and Problems of Set Theory
and Related Topics. New York : McGraw-Hill, second edition, 1998.

[28] Kenneth C. Louden. Compiler Construction: Principles and Practice. PWS
Publishing Company, 1997. ISBN 0-564-93972-4.

[29] Steven John Metsker. Design patterns in Java. Upper Saddle River, NJ :
Addison-Wesley, 2006.

[30] Serguei Mokhov and Joey Paquet. General Imperative Compiler Framework
within the GIPSY. In Proceedings of PLC2005, Las Vegas, Nevada, USA, pages
36-42. CSREA Press, June 2005.

[31] Serguei A. Mokhov. Towards Hybrid Intensional Programming with JLucid,
Objective Lucid, and General Imperative Compiler Framework in the GIPSY.
Master’s thesis, Department of Computer Science and Software Engineering, |
Concordia University, Montreal, Canada, October 2005. ISBN 0494102934.

[32] Robert C. Moore. Removing Left Recursion from Context-Free Grammars. In
1st Meeting of the North American Chapter of the Association for Computational

Linguistics. Association for Computational Linguistics, April 2000.

80

[33]

[34]

[36]

[37]

[38]

[39]

[40]

Joey Paquet. Scientific Intensional Programming. PhD thesis, Department of
Computer Science, Laval University, Sainte-Foy, Canada, 1999.

Joey Paquet, Peter Grogono, and Ai Hua Wu. Towards a Framework for the
General Intensional Programming Compiler in the GIPSY. In 19th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2004). Vancowver, Canada. ACM, October 2004.

Chun Lei Ren. General Intensional Programming Compiler (GIPC) in the
GIPSY. Master’s thesis, Department of Computer Science and Software En-

gineering, Concordia University, Montreal, Canada, 2002.

The GIPSY Research and Development Group. The GIPSYwiki: Online GIPSY
collaboration platform. Department of Computer Science and Software Engi-
neering, Concordia University, Montreal, Canada, 2005. http://newton.cs.

concordia.ca/~gipsy/gipsywiki.

David Sands. Computing with contexts: A simple approach. In Second Workshop
on Higher-Order Operational Techniques in Semantics (HOOTS II). Electronic

Notes in Theoretical Computer Science, 1998.

William C. Wake Steven John Metsker. Design patterns in Java. Upper Saddle
River, NJ : Addison-Wesley, 2006.

Lei Tao. Warehouse and Garbage Collection in the GIPSY Environment. Mas-
ter’s thesis, Department of Computer Science and Software Engineering, Con-

cordia University, Montreal, Canada, 2004.

Emil Vassev and Joey Paquet. A Generic Framework for Migrating Demands
in the GIPSY’s Demand-Driven Execution Engine. In Proceedings of PLC2005,
Las Vegas, Nevada, USA, pages 29-35. CSREA Press, June 2005.

Emil 1. Vassev. General Architecture for Demand Migration in the GIPSY
Demand-Driven Execution Engine. Master’s thesis, Department of Computer

Science and Software Engineering, Concordia University, Montreal, Canada, Oc-
tober 2005.

81

[42] Sreenivasa Viswanadha and Contributors. Java Compiler Compiler (JavaCC) -
The Java Parser Generator. java.net, 2001-2005. https://javacc.dev.java.
net/.

[43] William Wadge and Edward Ashcroft. Lucid, the Dataflow Programming Lan-
guage. Academic Press, London, 1985.

[44] Kaiyu Wan. Lucz: Lucid Enriched with Contert. PhD thesis, Department of
Computer Science and Software Engineering, Concordia University, Montreal,
Canada, April 2006.

[45] Kaiyu Wan, Vasu Alagar, and Joey Paquet. Lucx: Lucid Enriched with Context.
In Proceedings of PLC2005, Las Vegas, Nevada, USA, pages 48-14. CSREA
Press, June 2005.

[46] Wikipedia. Contezt-aware pervasive systems — Wikipedia, The Free Ency-
clopedia. 2007. http://en.wikipedia.org/wiki/Context—-aware_pervasive_

systems.

[47) Wikipedia. Lambda calculus — Wikipedia, The Free Encyclopedia. 2007. http:

//en.wikipedia.org/wiki/Lambda_calculus.

[48] Ai Hua Wu. Semantic Checking and Translation in the GIPSY. Master’s thesis,
Department of Computer Science and Software Engineering, Concordia Univer-
sity, Montreal, Canada, 2002.

[49] Ai Hua Wu, Joey Paquet, and Peter Grogono. Design of a Compiler Framework
in the GIPSY System. In Proceedings 15th IASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS 2003), volume 1, pages
320-328. International Association of Science and Technology for Development,
November 2003.

82

Appendix A

Source Listing For Context

Calculus Operators

boolean isSubContext(SimpleContext pC)
{
if(this.size() = 0)
return true;
if(pC.size () < this.size()) //It includes the case where pC.size () ==
0

return false;
else{
boolean flag;
for(int i = 0; i < this.size(); i++){
flag=false;
for(int j = 0; j < pC.size (); j++){
if (pC. micro_context(j) == this.micro_context(i)){
flag=true;
break;
}

if(flag == false)
break;

return flag;

Listing A.1: Algorithm for implementing isSubContext on simple context

83

boolean isSubContext(ContextSet pS)

if(this.size() = 0)

return true;
if (pS.size() < this.size()) //It includes the case where pS.size() ==

0

return false;
else{

boolean flag;

for(int i = 0; i < this.size(); i++){

flag=false;
for(int j = 0; j < pS.size(); j++){
if (pS. micro_context(j) == this.micro_context(i)){
flag=true;
break;
}
if (flag = false)
break;
}

return flag;

Listing A.2: Algorithm for implementing isSubContext on context set

SimpleContext difference (SimpleContext pC){
SinipleContext result=this.clone();

if (this.size () == 0)

return result;

if (pC.size() = 0)

return result; //return the result immediately without going into

the loop

for(int i = 0; i < this.size(); i++){

for(int j = 0; j < pC.size (); j++){
if (pC. micro_context (j)==this. micro_context(i)){
result .remove(this.micro_context(i));

}
}
}

return result;

}

Listing A.3: Algorithm for implementing difference on simple context

84

ContextSet difference (ContextSet pS){
ContextSet result=new ContextSet ();
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pS.size(); j++){
SimpleContext tempResult=difference(this.simple_context(i), pS.
simple_context (j));
if (tempResult.size () != 0) //if all the tempResult.size()==0, the
result is an empty context
result .add (tempResult);

}
}

return result;

}

Listing A.4: Algorithm for implementing difference on context set

SimpleContext intersection (SimpleContext pC){
return this.difference (this.difference (pC));
}

Listing A.5: Algorithm for implementing intersection on simple context

ContextSet intersection (ContextSet pS){
ContextSet result=new ContextSet ();
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pS.size(); j++){
SimpleContext tempResult=intersection (this.simple_context(i), pS.
simple_context (j));
if(tempResult.size() != 0) //if all the tempResult.size()==0, the
result is an empty context
result .add (tempResult);

}
}

return result;

}

Listing A.6: Algorithm for implementing intersection on context set

SimpleContext projection{Vector dimSet){
SimpleContext result = new SimpleContext;
for(int i = 0; i < dimSet.size(); i++){
for(int j = 0; j < this.size(); j++){ -
if(this. micro_context(j).dimension = dimSet.dimension(i))
result .add(this. micro_context(j));

}
}

return result;

}

Listing A.7: Algorithm for implementing projection on simple context

85

ContextSet projection(Vector dimSet){
ContextSet result=new ContextSet () ;
for(int i = 0; i < this.size(); i++){
SimpleContext tempResult=projection (this.simple_context (i), dimSet
);
if (tempResult.size () != 0) //if all the tempResult.size ()==0, the
result is an empty context
result .add(tempResult);

}

return result;

}

Listing A.8: Algorithm for implementing projection on context set

SimpleContext hiding(SimpleContext ¢, DimensionSet dimSet){
return(difference (¢, projection(c, dimSet)));
}

Listing A.9: Algorithm for implementing hiding on simple context

ContextSet projection(Vector dimSet){
ContextSet result=new ContextSet();
for(int i = 0; i < this.size(); i++){
SimpleContext tempResult=hiding(this.simple_context(i), dimSet);
if (tempResult.size () = 0) //if all the tempResult.size ()==0, the
result is an empty context
result .add (tempResult);

}

return result;

}

Listing A.10: Algorithm for implementing hiding on context set

86

SimpleContext override (SimpleContext pC){
SimpleContext result = new SimpleContext () ;
boolean flag=false;
SimpleContext uniqueMCInC2=pC. clone ();//micro contezts whose
dimensions are unique in pC
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pC.size(); j++)}{
if (this.micro_context(i).dimension == pC.micro_context(j).
dimension)

flag=true;
result .add(pC. micro_context(j));
uniqueMCInC2 . remove (pC. micro_context (j));

}

if(flag == false)
result.add(this.micro_context(i)); //Add the micro contezts whose

dimensions are unique in this
flag=false;

}
for(int k = 0; k < uniqueMCInC2.size(); k++)

result .add (uniqueMCInC2. micro_context(k));

}

return result;

}

Listing A.11: Algorithm for implementing override on simple context

ContextSet override (ContextSet pS){
ContextSet result=new ContextSet();
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pS.size(); j++){
SimpleContext tempResult=override(this.simple_context(i), pS.
simple_context(j)); '
if (tempResult.size () != 0) //if all the tempResult.size()==0, the
result is an empty contert
result .add(tempResult);
}
}

return result;

}

Listing A.12: Algorithm for implementing override on context set

87

Context union (SimpleContext pC){
//Note that the return type is generic
//Assume we have [f:1, e:1, d:2] union [e:2, d:1, t:4]
SimpleContext resultl;
ContextSet result2;
boolean isContextSet=false;
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pC.size(); j++){
if(this.micro_context(i).dimension == pC.micro_context(j).
dimension && this.micro_context(i) != pC.micro_context(j)){
//[e:1, d:2] union [e:1] is a simple context: [e:1, d:2]
isContextSet=true;

break;
}
if (isContextSet = true)
break;
if(isContextSet == false){

//No dimension in common, result is the combination ¢l and c2.
for(int i = 0; i < this.size(); i++){
resultl .add(this.micro_context(i));
}
for(int j = 0; j < pC.size(); j++}
resultl .add(pC. micro_context(j));

//remove duplicates e.g. [e:1, e:1, d:1] becomes [e:1, d:1]
resultl .removeDuplicateContext () ;
return resultl;

}

else

//There are common dimensions, the result is a mon—simple context
//A function is called to translate it into a context set
result2=translateContextSet (this, pC});

result2 .removeDuplicateContext () ;

return result2;

Listing A.13: Algorithm for implementing union on simple context

88

ContextSet translateContextSet (SimpleContext pCl, SimpleContext pC2){
//collection of micro contexts in pCl, pC2 having common dimensions
Vector commonMCl, commonMC2;

//collection of micro contexts in pCl, pC2 having no common dimension
Vector uniqueMC1l, uniqueMC2;
//[e:1, e:2] or [d:1, d:2]
Vector interMicroContext_i;
//collection of interMicroContext_i: {[e:1, e:2],[d:1, d:2]}
Vector interMicroContext;
//{le:1, d:1], [e:1, d:2], [e:2, d:1], [e:2, d:2]}
ContextSet commonCombination;
J/{f:1, e:l, d:1, t:4]...}
ContextSet result;
for(int i = 0; i < pCl.size(); i++){
for(int j = 0; j < pC2.size(); j++){
if(pCl. micro_context (i).dimension==pC2. micro_context(j).dimension)

commonMC1. add (pCl. micro_context (1)) ;
commonMC2. add (pC2. micro_context (j));
interMicroContext_i.add(pCl. micro.context (1
interMicroContext_i.add (pC2. micro_context (
interMicroContext.add(interMicroContext_i);
break;

}

))s
))s

}

//build commonCombination {[e:1, d:1],[e:1, d:2]...}

//pointer for combining all the possible micro contexts in
interMicroContext

int iniposition=0;

//any simple context element of the context set commonCombination

SimpleContext midReslt;

buildCommonCombination (interMicroContext , commonCombination, midResult
, iniposition);

uniqueMCl=getUniqueMCs(c1, commonMC1);

uniqueMC2=getUniqueMCs(c2, commonMC2);

//build the final result {[f:1, e:1, d:1, t:4]...}

result=buildAllCombination (uniqueMC1 , uniqueMC2 , commonCombination) ;

return result;

}

Listing A.14: Algorithm for implementing helping method translateConteztSet for
unton on simple context

89

void buildCommonCombination(Vector pInterMicroContext, ContextSet result

, SimpleContext pMidResult, int pPosition){

//Passing by reference is used, thus wvoid the return type
if (pPosition=pInterMicroContext.size ()){

}

//Finish one path of combination: eg.[e:1, d:2]

result .add (pMidResult. clone());

//Prepare to start another way of combination:

//eg. if pMidResult=[e:1, d:1], then after this, pMidResult=[e:1]
//waiting for the construction of pMidResult=[e:1, d:2]
pMidResult.removeElement (pMidResult . lastElement ());

return;

else{

}
}

//Constructing the possible combination
Vector tempSC=plnterMicroContext.elementAt(position);
position-++;
for(int i = 0; i < tempSC.size(); i++){
MicroContext tempMC = tempSC.elementAt(i);
pMidResult . add (tempMC) ;
//Call buildCommonCombination to finish one path of combination
//eg: if pMidResult=[e:1], the call would add [d:1],
//thus making pMidResult=[e:1, d:1]
buildCommonCombination (pInterMicroContext , result , pMidResult,
pPosition);

}

if (pMidResult. size ()!=0){
//1f no micro context left, the recursive call ends.
//Preparing for the next combination:
//eg. if pMidResult=[e:1], this operation clears it,
//waiting for the nexzt path of [e:2,...]
pMidResult . removeElement (pMidResult . lastElement ()) ;
return;

}

Listing A.15: Algorithm for implementing helping method buildCommonCombination
for union on simple context

90

ContextSet buildAllCombination(Vector pUniqueMCl, Vector pUniqueMC2,
ContextSet pCommonCombination) {
ContextSet result;
for(int i = 0; i < pCommonCombination. size (); i++){
SimpleContext tempSC=pCommonCombination.simple.context (i);
for(int p = 0; p < pUniqueMCl.size (); p++){
//eg. tempMC=[f:1]
MicroContext tempMC=pUniqueMCl.elementAt(p);
//insert [f:1] before [d:1, e:1] etc.
tempSC . insertElement At (tempMC, p);
}
for (int q = 0; q < pUniqueMC2.size (); q++){
//eg. tempMC=[t:}]
MicroContext tempMC=pUniqueMC2.elementAt(q);
//append [t:4] after [d:1, e:1] etc.
tempSC . add (tempMC) ;

result.add (tempSC);

}

return result;

}

Listing A.16: Algorithm for implementing helping method buildAllCombination for
unton on simple context

Vector getUniqueMCs(SimpleContext pSC, Vector pMicroContext_p){
Vector microContext_l;
boolean picked=false;
for(int p = 0; p < pSC.size(); p++){
MicroContext tempMCl=pSC.micro_context(p);
for(int q = 0; q < pMicroContext_p.size (); q++){
MicroContext tempMC2=pMicroContext_p.elementAt(q);
if (tempMCl = tempMC2) {
picked=true;
break;
}

if (picked==false){
microContext_l.add (tempMC1) ;
}

else
picked=false;
}

return microContext_l;

}

Listing A.17: Algorithm for implementing helping method getUniqueMCs for union
on simple context

91

ContextSet union(ContextSet pS){
DimensionSet interDimSet;
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pS.size(); j++){
for(int k = 0; k < this.simple_context(i).size(); k++){
for(int 1 = 0; 1 < pS.simple_context(j).size(); 1++){
if(pS.simple_context(j).micro_context(l)= this.simple_context
(1).micro_context(k))
interDimSet .add(this.simple_context(i).micro_context(k));

}
}
}
}
ContextSet X1;
for(int i = 0; i < this.size(); i++){
for(int j = 0; j < pS.size(); j++){
X1.add(union(this.simple_context (i), hiding(pS.simple_context(j),
interDimSet)));
}
}

ContextSet X2;
for (int j = 0; j < pS.size(); j++){
for(int i = 0; i < this.size(); i++){
X2.add(union(pS.simple_context(j), hiding(this.simple_context(i),
interDimSet))); :
}
}

for(int t = 0; t < X2.size(); t++){
X1.add(X2.simple_context (t));
}

X1.removeDuplicateContext () ;
return X1;

Listing A.18: Algorithm for implementing union on context set

92

Appendix B

Source Listing For Tag Set Types

93

boolean isInTagSet (GIPSYType poTag)

boolean result = false;
switch (this.iExpressionType){
case : 0 {
for(int i = 0; i < this.size(); i++){
if (poTag == this.tagAt(i))
result = true;
}

break;
}
case : 1 {
if (poTag >= lower && poTag <= upper)
result = true;
break;

case : 2 {
if(step > 0){
if(poTag >= lower && poTag <= upper && (poTag—lower) mod step
result = true;
}
else {
if (poTag <= lower && poTag >= upper && (poTag—lower) mod step

result = true;

}

break;

}

return result;

}
}

Listing B.1: Algorithm for implemehting isInTagSet on ordered finite tag set

94

boolean equals(Object otherObject)
{
boolean result = false;
if (otherObject instanceof OrderedFiniteTagSet){
switch(this.iExpressionType){
case : 0 {
if ((OrderedFiniteTagSet)otherObject.expressionType = 0 &&
(OrderedFiniteTagSet)otherObject . getEnumeratedElements () . equals (
this.getEnumeratedElements ()))
result = true;
break;
}
case : 1 {
if ((OrderedFiniteTagSet)otherObject.expressionType = 1 &&

(OrderedFiniteTagSet)otherObject . getLower ()==this: getLowewr () &&

(OrderedFiniteTagSet)otherObject . getUpper ()==this.getUpper())
result = true;

break;

}

case : 2 {
if ((OrderedFiniteTagSet)otherObject.expressionType == 2 &&
(OrderedFiniteTagSet)otherObject . getLower ()==this.getLower () &&
(OrderedFiniteTagSet)otherObject . getUpper ()==this.getUpper () &&
(OrderedFiniteTagSet)otherObject . getStep ()==this.getStep())
result = true;
break;

}
}
}

return result;

}

Listing B.2: Algorithm for implementing equals on ordered finite tag set.

95

GIPSYType getPrevious(GIPSYType poTag)

GIPSYType result = null;
if (isInTagSet (poTag)){
switch(this.iExpressionType){
case : 0{
if (!poTag.equals(this.tagAt(0))) //the parameter is not the first
element
result = this.tagAt(getIndex(poTag)-1);
break;
}
case : 1{
if (poTag !'= lower)
result = poTag—1;
break;
}
case : 2{
if (poTag != lower)
result = poTag—step;
break;

}
}
}

return result;

}

Listing B.3: Algorithm for implementing getPrevious on ordered finite tag set

96

GIPSYType getNext(GIPSYType poTag)

GIPSYType result = null;
if (isInTagSet (poTag)){
switch(this.iExpressionType){
case : 0f
if (!poTag.equals(this.tagAt(this.size()—1))) //the parameter is
not the last element
result = this.tagAt(getIndex(poTag)+1);
break;

case : 1{
if (poTag != upper)
result = poTag+1;

break;

case : 2{
if (poTag != upper)
result = poTagtstep;
break;

}
}
}

return result;

}

Listing B.4: Algorithm for implementing getNext on ordered finite tag set

97

boolean isInTagSet(GIPSYType poTag)
{ boolean result = false;
switch(this.iExpressionType){
case : 3 {
if (poTag >= lower && poTag <= Integer .MAXVALUE)
result = true;
break;

case : 4 {
if (poTag >= lower && (poTag—lower) mod step==0 && poTag <= Integer

.MAX VALUE)
result = true;
break;

}

case : 5 {
if (poTag <= upper && poTag >= Integer .MIN.VALUE)
result = true;
break;

}

case : 6 {
if (poTag <= upper && (upper—poTag) mod step==0 && poTag >= Integer

.MIN_VALUE)
result = true;
break;

}

case : 7 {
if (poTag >= Integer .MIN.VALUE && poTag <= Integer .MAXVALUE)
result = true;
break;

}

return result;

Listing B.5: Algorithm for implementing isInTagSet on ordered infinite tag set

98

boolean equals(Object otherObject)

boolean result = false;
if (otherObject instanceof OrderedInfiniteTagSet){
switch(this.iExpressionType){
case : 3 {
if ((OrderedInfiniteTagSet)otherObject.expressionType = 3 &&
(OrderedInfiniteTagSet)otherObject . getLower. equals (this.getLower))
result = true;
break;
}
case : 4 {
if ((OrderedInfiniteTagSet)otherObject.expressionType = 4 &&
(OrderedInfiniteTagSet)otherObject . getLower ()==this . getLower () &&
(OrderedInfiniteTagSet)otherObject.getStep ()==this.getStep())
result = true;
break;
}
case : 5 {
if ((OrderedInfiniteTagSet)otherObject . expressionType = 5 &&
(OrderedInfiniteTagSet JotherObject . getUpper ()==this.getUpper())
result = true;
break;
}
case : 6 {
if ((OrderedInfiniteTagSet)otherObject . expressionType == 6 &&
(OrderedInfiniteTagSet)otherObject.getUpper ()==this.getUpper ()&&
(OrderedInfiniteTagSet)otherObject . getStep ()==this.getStep())

result = true;
break;
}
case : 7 {
if ((OrderedInfiniteTagSet)otherObject.expressionType == 7)
result = true;
break;
}
} .

}

return result;

}

Listing B.6: Algorithm for implementing equals on ordered infinite tag set

99

GIPSYType getPrevious (GIPSYType poTag)

GIPSYType result = null;
if (isInTagSet (poTag)){
switch(this.iExpressionType){
case : 3{
if (poTag != lower)
result = poTag—1;

break;
}
case : 4{
if (poTag != lower)
result = poTag-step;
break;
}
case : 5{
if(poTag != Integer .MIN.VALUE)
result = poTag—1;
break;
}

case : 6{
if (poTag != Integer .MIN.VALUE)
result = poTag—step;
break;

case : 7{
if(poTag != Integer .MIN.VALUE)
result = poTag-—1;
break;
}
}
}

return result;

}

Listing B.7: Algorithm for implementing getPrevious on ordered infinite tag set

100

GIPSYType getNext (GIPSYType poTag)

}

GIPSYType result

null;

if (isInTagSet (poTag)){

}

switch(this
case 3{
if (poTag
result
break;
}
case : 4{
if (poTag
result
break;

case 54
if (poTag
result
break;

case : 6{

if (poTag

result
break;

case : 7{
if (poTag
result
break;

}

.iExpressionType){

!= Integer .MAXVALUE)
= poTag+1;

!= Integer .MAXVALUE)
poTag+step;

!= upper)
= poTag+1;

!= upper)
poTag+step;

!= Integer .MAXVALUE)
= poTag+1;

return result;

Listing B.8: Algorithm for implementing getNext on ordered infinite tag set

101

