A Framework for Hypothesis Generation and

Knowledge Discovery in Medical Domain Literature

Raheleh Shiri-Varnaamkhaasti

A Thesis
in
The Department
of ,
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
at
Concordia University

Montreal, Quebec, Canada

December 2007

© Raheleh Shiri, 2007

3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-40953-4
Qur file Notre référence
ISBN: 978-0-494-40953-4

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Framework for Hypothesis Generation and Knowledge Discovery in

Medical Domain Literature

Raheleh Shiri-Varnaamkhaasti

The vast amount of information in medical domain and health sciences collected in
databases such as MEDLINE is growing rapidly. There has been increased interest in
discovering the so-called new public knowledge from such databases. Swanson proposed
an approach, called the ABC model, for mining Undiscovered Public Knowledge (UPK)
in medical literature. Since its introduction, several attempts have been made in adopting
and using the ABC model. Extensibility would be a key feature making it easier to
develop future extensions. Noting the increased interest in using the model, we
investigate properties of a desired framework which can be easily extended and
enhanced. The exploratory nature of UPK discovery requires that the data mining tools be
interactive and flexible. Also, the large amount of data to be processed needs to be
handled efficiently. We identify three basic requirements: flexibility, extensibility, and
interactivity, and show they can be realized by taking advantage of the pipes and filters
architecture. The efficiency of our framework is due to allowing concurrent execution of
multiple threads, provided as an additional benefit of our architectural design. We have
designed and implemented a running prototype, ExaminMED, which provides various
features such as possibility of choosing filters, adding or removing terms, and comparing
and combining the results of various searches. The proposed framework has essential

ingredients as an effective tool for UPK discovery.

1ii

ACKNOWLEDGEMENTS

First and fore-most, I want to thank God for giving me all that was required to complete
this thesis. I would not have been able to accomplish this without his grace.

I would like to express my deep gratitude to my supervisors, Dr. T. Radhakrishnan and
Dr. S. P. Mudur, for their continuous support, encouragement, guidance, and valuable
advice. I learned a great deal from them. It has been a privilege to work under their
supervision.

I would especially like to thank my loving parents, husband, brother, and sister for
believing in me and giving me the love, motivation, encouragement, and support that I
needed to complete this thesis. I am grateful for all their sacrifices. I thank them from the
bottom of my heart!

Last but not least, I thank my former and present lab-mates for the useful discussions we

had in the lab and also for their help in different development stages of this thesis.

iv

TABLE OF CONTENTS

LIST OF FIGURESccocotitiiiiinieeineetstetete ettt ettt ettt eae e vii
LIST OF TABLES ...ttt ssebeve s sr b sssbe s esesssesssossnas viii
CHAPTER 1: INTRODUCTIONccooiiiiiieriisietieieteeeiereeneser et s sse s 1
1.1 Motivating EXamPpIe.........ccccveirirerineirieesieereetee ettt ettt eseessananan 3
1.2 Problem Statementccceotererieiriirienieiiriteieeerestee ettt et st see e ssesreneneenes 4
1.3 Thesis CONtIIDULIONSoceueririiririiiiereretreeeet ettt 7
1.4 Organization Of the TRESISc.cceerereririininrieiseeeiee et ene 9
CHAPTER 2: BACKGROUND AND RELATED WORKcccooevevivireeieeeeieecaae 10
2.1 Knowledge Discovery and Text Mning........c..ccoeeveveeeereeevenieeeeeteerereeereeessesnenns 10
2.2 MEDLINE and BiOTEXE.......coceeeiriniiiririiieieterinteeee sttt ee e erennene e 12
2.3 Pipes and Filters Software ArchiteCturec.ocooovveviveieieiicieeeceeeeeeeeeee 13
2.4 MeSH and UMLS ONtOlOZIES.......cuvveurerriririrrrierierereeeeereteeese et 14
2.4.1 MESH ONOIOZYviiuiiniieiiiieeienienitentiesteniestessiesaeetsesseeereeseenessreestseseeeseeeeens 15
2.4.2 UMLS ONEOLOZY -...evevenirieisiereieteeereeeetetiesete ettt sttt eaesesene s 17

2.5 Swanson’s ABC MOdEL........c.ccueuiivinineininieiieierctesereese e 22
2.5.1 Weeber’s DAD-SYSIEIMccuecverinieriinirtenieniere sttt eee st ereereere et eee s 26
2.5.2 Srinivasan’s Profile-based Approach..............c.ccoeivveieeieeeeeeeeeneeeeeereeeen, 27
2.5.3 Y00’s BiO-SDKDSc.ooiiiiiiiiiniriricietstnieetreesteesst ettt 29

2.6 Possible IMPIOVEMENLSc..coouiieriiriieieieieiteteieriteeereseeeesseste e seese e ease s eeseesennas 31
CHAPTER 3: OUR PROPOSED FRAMEWORKcccocevviiririreriniiinineieeerereeseseneens 33
3.1 Framework DESCIIPHONc.ccouiviiriririiieiecieceete ettt eee e ens e sa e enes 33
3.2 SyStem ATCRILECLUIE.....c.coviveririeeireteieteeeieeee ettt ettt e e 43
3.2.1 Access and Transformation of MEDLINEcccccovvveverivinineeceesecvcee, 45
3.2.2 Relational Database Management System (RDBMS)........ccccoeveevvvvvviennennnne. 46
3.2.3 Unified Medical Language System Knowledge Source Server (UMLSKS)... 51
3.2.4 The Main MOQUIEc.ccoveeriruiiniiinieinieinieenesr et 52
3.2.5 Simple Graphical User Interface..........ccoeeeivnresrererieenicreeeceeeeceeeeeeeeen, 52
CHAPTER 4: FEATURES AND ADVANTAGES OF ExaminMED..............c............. 55
4.1 User Interaction Features and AdVantagesc.ccceeveueereereerenneriireeeeeeeeenenennns 57
4.1.1 Flexibility in Selecting Desired Filtersc.coeivieeeicreerecreeeeeeeececveeeee 58
4.1.2 Refining Returned ReSUltSccccoceviriviienininenieeeeeeeeeie e 60
4.1.3 Saving and Combining Search Results using SQL..........c..ccoevivvieiiievinenne. 63
4.1.4 Viewing Corresponding TEImS........cccceevrrierereniereerenerneiniesiensesesesenenerererenns 69
4.1.5 SOTting TEIMS. ...ccveouiuiriirieieiniereisiere et ettt re et et neseees 71

4.2 Computational Features and Advantages.............ccveeeeeeerieereereenreineeeereeeereenneneas 72
4.2.1 Flexibility Due to Pipes and FIlterscccccoovveeivieieiericeececccceea, 73
4.2.2 CONCUITENCY SUPPOIT ..c.vvirvriiiriririieniertenreeeseenteeseeseestesssesseasssesssessesssesseensessees 74
4.2.3 Use of Database Technology to Store and Access MEDLINE........................ 74

4.3 Non-Functional Features and Advantagesc.cocoevevveerierieceeeevereseeeresseseeseennes 75
4.3.1 EXIENSIDILY o.ovviiiiiiciiiecicecctee ettt 75
4.3.2 USADIIILY ...ttt ettt 76
4.3.3 SCalabilitycceoiiiiiriiiie e et erea 77
CHAPTER 5: IMPLEMENTATION AND EVALUATION.........coceoteiereieeeeereereereeens 78

5.1 Implementation DEtails..........ccooiiiiiiiiiiiiiiiiiiii 78

5.2 Comparison of Various Versions of the Softwarecc.ccccereveiiniiiiiiiecnincnnn. 80
5.3 Correctness and USETUINESSccceveieiriniinieinirieirieieeee et 87
5.3.1 COITEONESS .eenvvreeenerrinivrersiereeeressereeeesreessseessssessissessssnesessssessonsasenssnesssneesssaeens 87
5.3.2 Evaluation of USEfUlNesscocueerieriiiniiiiiiiie ettt 92
CHAPTER 6: CONCLUSION AND FUTURE WORKccocoovieiiiiieieccreeeeceeeee 95
6.1 Summary and COonCIUSIONccceivtiriiiiriiiiiieeeeee et e e eae e e e 95
6.1.1 Interactive, Flexible, Extensible, and Concurrent UPK Discovery 95 .
6.2 FULUIE WOTK ..ottt et e s b e sbae et e s e s abessabessseesneenes 99
6.2.1 Sharing Results among EXPErtsccocvvirvininniiniienniiniiiccienecieccrcenieens 99
6.2.2 Using Specialized Ontology instead of MeSH and UMLScccccocee. 100
6.2.3 Paralle] ProCesSingc..ceieerieiriieiienie ettt 100
LIST OF REFERENCESoootititirinitintenieeiestestestesaesiesssesanessesssessaassaesnsanssessanses 102

vi

LIST OF FIGURES

Figure 2-1. Tree structure of Cardiovascular DiS€ases.........ccccvvvviiinniriiniiinininieniiecnnee 16
Figure 2-2. Semantic types in UMLSoooiiiiiiiiiiiiieecrreeeecveene e s 19
Figure 2-3. “Biologic Function” Semantic Type Hierarchyccccovvveveininienceniennans 21
Figure 3-1. Arrangement of pipes when semantic type filtering is included.................... 38
Figure 3-2. Arrangement of pipes when semantic type filtering is excluded................... 39
Figure 3-3. Process Flow Diagram using Semantic Filteringccccoovvvevciereniiinnincenne. 42
Figure 3-4. Process Flow Diagram not using Semantic Filtering........c.c.coccevcveeeinininnnen. 43
Figure 3-5. ExaminMED System ArcChiteCtUure.........cceevviiiiereireenireninereeeriressaeesnessnesenns 44
Figure 3-6. Database Table Names and Their Relationships...........cccocvvvvvvinivenncennnennenn. 48
Figure 3-7. Graphical User INterfacecccocceviviiiiiniiieiiniiinccicneenee e 54
Figure 4-1. Results Displayed for the Raynaud Disease Examplecccccoeevevecvenenennn. 58
Figure 4-2. Semantic Filter not Selected........coorievimviiniinieiiniiiiireereereere e sneseeeens 60
Figure 4-3. Removing the B-term “Hypertension”..........ccccceveeveenerneerenienivenreeneenienenns 62
Figure 4-4. Combining Results Windowccccivviiviininniniiiinicniiinencneeseenneceenieens 64
Figure 4-5. Combining Results QUETYccccceviniiniiiiniininineniiceneneese e 65
Figure 4-6. Results of Query: “Migraine Disorder and Raynaud Disease”...............c...... 67
Figure 4-7. Pipe Setup for Query “C1 AND C27 ..ottt 68
Figure 4-8. Pipe Setup for Complex Combinations.............cceeevuerveerieesiernenieeneeneenrennens 69
Figure 4-9. B-terms Corresponding to COItiSONEcccevveceerereirrinrenieneeinrenrenreneeneeneeene 70
Figure 4-10. SOrted A-TEIMS c...veeriviiiiiiiieiieeeiteeeiree ittt seiite e sereeeeeaeeseseaeesebeeesanas 72
Figure 5-1. GUI of Versions 1 and 2 of the Prototype.........cceccevverienieneesercrsieeeesnennn 83

vii

LIST OF TABLES

Table 2-1. ARROWSMITH’s Sample Output for the Migraine-Magnesium Example ... 25

Table 3-1. Conceptual Database Design..........ccceeveuerererererieirererereresceeeeeee s 49
Table 5-1. Classes and Their Main Functionaliti€sc.cccoocvevevveveeeeeieeeeeeeeanen 80
Table 5-2. Runtimes for Different Versions of our Implementationceceevevenene. 86
Table 5-3. Semantic Types for B-terms and A-terms Produced by our Prototype 89
Table 5-4. Number of Co-occurrence Entries of Top-twenty A-terms with Raynaud

Disease in PUDMECccoouiieiiiiniiicicnincnses et 91

viii

1X

CHAPTER 1
INTRODUCTION

The amount of knowledge in different scientific areas is continually growing at a fast
pace. For example, in the areas of life sciences and biomedicine, biomedical
bibliographic information has been collected for decades and recorded as texts in
databases such as MEDLINE, PubMed Central, and BioMed Central [22]. Presently,
MEDLINE is the most comprehensive online information system in these areas, with
over 16 million records covering the fields of medicine, nursing, pharmacy, dentistry,
veterinary medicine, and health care. It also contains information on much of the
literature in biology and biochemistry, and even fields that have no direct medical
connection, such as molecular evolution. MEDLINE is compiled by the U.S. National
Library of Medicine (NLM), and is freely available on the Internet and is searchable, e.g.,
through PubMed. About 10,000 articles are added to the database per week. Considering
the huge size of the database, it is but natural to assume that it contains unnoticed and
hidden information, which may possibly be discovered using suitable data mining tools
and techniques.

The concept of Undiscovered Public Knowledge (UPK) was first introduced by Don
Swanson about 20 years ago [17]. The idea is that undiscovered knowledge can be
generated and revealed by mining knowledge bases. In the biomedical domain, the
amount of available information is so vast that the domain tends to divide itself into
multiple specialties. The inevitable result of this division is the mutual isolation of the

different specialties. Therefore, it is possible that by considering the different mutually

isolated sub-areas together, one may discover new knowledge, UPK, which was never
documented, and hence supposedly not known before. The ABC model, proposed by
Swanson, is a well established approach to hypothesis generation and UPK discovery and
is described as follows. Given a concept C, suppose there is a collection of bibliographic
literature indicating that some other concepts B are related to C. Also suppose there is a
different collection, which is in complete isolation from the first one, containing
information that relates the B concepts to yet another set of concepts, say A. Further
suppose there is no literature which records or claims any direct correlation between the
given C and A concepts. It is then possible to hypothesize that there is an unknown
connection between C and A, through the B concept. In other words, since the medical
literature confirms a C-B connection and a B-A connection, a ciinical researcher may
suspect an hither-to unnoticed C-A connection which can be validated or rejected after
investigation and/or performing further clinical tests. Finding relationships between such
C, B, and A concepts may not be easy for humans noting the fact that the size of the
knowledge base is huge. With the help of a proper software tool, however, the B and A
concepts for a given C concept can be identified and presented to the user for further
exploration and insight. The design and development of such software forms the main
focus of our investigation in this research. Once these concepts are identified, the user
may hypothesize a hidden connection using his/her domain knowledge.

Many researchers have tried to replicate, improve, and extend Swanson’s ABC model for
UPK discovery [16, 20, 22]. While specific software programs have been individually

developed in these endeavors, they all have their limitations for wider application.

In this work, we propose a flexible, extensible, and interactive framework which applies
the ABC model and supports hypothesis generation and knowledge discovery.
Considering the purpose for which the software is built, the framework should fulfill
certain requirements. We next illustrate the ideas through an example and further
motivate our work. This is followed by a formal problem statement. Thesis contributions

and the organization of the thesis document are presented at the end of this chapter.

1.1 Motivating Example

As mentioned above, MEDLINE is a very large database with millions of articles and
bibliographic information in biomedical and health sciences. It is too difficult a task, in
general, for humans to discover new knowledge that possibly exists in these articles for
the purpose of UPK discovery. Let us suppose, for example, that a clinical researcher is
interested in investigating about Raynaud Disease. Searching in PubMed using the
keyword Raynaud Disease returns 5152 articles, 3537 of which contain this term as a
major heading. Reviewing all these articles in hope of discovering new knowledge
hidden in the vast amount of information can be hectic, time-consuming, and perhaps
impossible for humans due to restrictions such as time constraints and large search space.
Now, suppose the researcher wishes to identify articles that are “connected,” for having
some information on Raynaud Disease, with that of a non-communicating set of articles.
This task is even more complicated than just searching one set of articles. It is this task
of looking for new, undiscovered knowledge which can be made feasible and can be

facilitated with the help of computers, as was first demonstrated using the ABC model.

The ABC model has proven to be an effective approach for searching large biomedical
databases such as MEDLINE in order to discover hidden unknown knowledge. Multiple
unnoticed links have been discovered through this innovative idea, such as the discovery
of the connection between Raynaud Disease and Dietary Fish Oils and also the
connection between Migraine Disorders and Magnesium Deficiency through various B
concepts. Analytical and mining tools and techniques can be used for hypothesis

generation, which are then validated or rejected through further investigation.

1.2 Problem Statement

A software tool designed for hypothesis generation and knowledge discovery should have
certain characteristics for being effective and useful. It should be flexible, interactive, and
user friendly. It should also be able to process and present the required information in a
reasonable amount of time and in an easy to understand manner.

The flexibility requirement for such a software system is to allow the user to experiment
with and explore the available data through the features included in the software.
Flexibility is even more appreciated when the software is interactive, since it gives users
easier access to the different options and control over the system in the discovery process.
Even though a computer system can help significantly in dealing with large amounts of
data, we still believe that human intelligence is irreplaceable in this context. In other
words, we need a software system that automates some of the steps in the hypothesis
generation process, while still benefiting from the expertise, experience, and intelligence

of the user. Therefore, a software developed to support hypothesis generation should be

interactive and user-centered. Since not all the users are computer experts, such software
should be easy to learn and use. This is especially important for the users in our context
who are medical experts and who may not afford to spend much time learning to use such
software along with its various features. Having a user-friendly interface is crucial for the
success of such software, hiding the complex functionalities, design, and implementation
details of the system.

Since the literature in biomedical area is vast, it is important to be able to deal with this
huge and rich source of knowledge in an efficient way, and provide the researchers with
meaningful results in a reasonable amount of time. As some steps in the discovery
process may not be completely dependent on each other and may overlap, having
multiple threads of processes can significantly improve the system performance by
allowing the threads to execute concurrently.

There are other related issues which are also important in our context and deserve special
attention. Considering the huge data size, it is possible that the results of various search
operations are also large. As the number of terms to be processed could be large, it would
be beneficial to use multiple filters in order to prune the B and A concepts in Swanson’s
ABC model before presenting the results to the user. As a result, the user is provided with
fewer but more meaningful and interesting terms to consider for further analysis and
processing. For convenience, a desired system can present each result immediately after it
is produced to allow early involvement of the user by browsing and absorbing the results,
while the system continues computing to produce further results. This “pipelining” of

returning the results to the user, as they are produced, and browsing the results by the

user is important in particular when the number of B and A terms involved for a given set
of C terms is large.

Another useful feature in this context, we believe, is to store the search results in a
database. This can be a basis to provide a mechanism that the user can use to combine
desired search results, done through easy formulation of database queries and their
evaluation.

In summary, our aim in this thesis is two-fold. On the one hand, our goal is to support
medical doctors through an interactive software system in their task of creating
hypotheses and potentially discovering UPK as part of their research. On the other hand,
the goal is to build an extensible software framework, which can easily enable others in
the future to make substantial improvements to the UPK discovery process. In such
hypothesis formulation processes, medical experts use both the published medical
literature and their own intuitions from clinical experience. The supporting interactive
system’s requirements are:

(a) Flexible at the system architecture level to provide an extensible software
framework

(b) Effective user interface that is Easy to learn and Easy to use (doctors are too busy
and find little time to learn technologies that do not benefit them right away)

(c) Incremental response from the system while processing a very large database so
that the computational power of the computer in very large database search, and
human intelligence and intuition in the formulation of hypotheses .can be
combined sooner than later in a cycle

(d) Flexible at the end user level to explore options

(e) Quick real time response while working with MEDLINE-like database for trying
out different alternatives

(f) Ease with which the researchers can save intermediate outcomes and resume later
and/or share their findings easily with fellow researchers.

As the above scope is too large, some of these requirements, for example e and f are not
directly addressed but suggested as future work in continuation of this thesis work.
Creating an extensible software framework is very useful considering the many attempts
made by researchers to improve Swanson’s basic ABC model in the past. A flexible and
extensible framework makes it simple to add new components and elaborate further on

the basic idea without needing to build a new software tool from scratch.

1.3 Thesis Contributions

Due to the growing nature of the MEDLINE database, devising a software system to
efficiently mine the vast amount of biomedical information for discovering new hidden
knowledge is of great importance. Although using computers can help in dealing with
this large amount of data, we believe that the discovery process can and should be
improved by allowing human interaction, to effectively discover meaningful, previously
unknown, and hidden knowledge. One can device a framework that can easily be
improved and extended, while taking advantage of computer technology for the purpose
of UPK discovery. We define a framework as a basic conceptual structure which
proposes a solution to a complex problem. It can also be viewed as a solution

methodology.

Noting the nature of this application which is exploratory, we propose a flexible,
extensible, and interactive framework, which also allows concurrency as an additional
feature. In order to make this possible, we first view the ABC model as the process of
filtering information in the knowledge-base. While in its simplest form, this filtering can
be viewed as a single pipeline of two filters parameterized by the C and B terms, it is
easily generalized using the well known “pipes and filters” design pattern. The pipes and
filters architecture allows us to provide a flexible system which gives the user more
freedom and control while interacting with the software. This flexibility is important
upon noting the exploratory nature of UPK in the vast field of medical sciences. The
system incorporates semantic knowledge into the ABC model in order to identify a more
meaningful set of B-terms and A-terms, related to a user input C-term. We have
developed a running prototype, ExaminMED (EXploring And MINing MEDline), of the
proposed framework. In the system prototype, for illustration and experimentation
purposes, we have implemented four filters for pruning the B- and A-terms, two of which
are co-occurrence filters and the other two are semantic filters. The pipes and filters
architecture allows us to easily add new filters and/or modify existing ones, and thus
provides the possibility of creating a flexible and extensible framework at the architecture
level. The users may choose the desired filters, save the search results in an RDBMS, and
combine the results of various searches through our simple graphical user interface. The

framework also allows users to combine or eliminate filters.

1.4 Organization of the Thesis

The rest of this work is organized as follows. In Chapter 2, we discuss background and
related work. Chapter 3 presents our work, ExaminMED, which is an extensible
framework for Swanson’s ABC model. We discuss technical details of the proposed
framework, including its architecture design. Chapter 4 discusses the features and
functionalities of the proposed framework and its advantages. In Chapter 5, we present
implementation details and experimental evaluation using a running prototype system.
Our final chapter contains concluding remarks as well as possible directions for future

work.

CHAPTER 2
BACKGROUND AND RELATED WORK

In this chapter, we provide a background and review of previous work related to the topic
of this thesis. This includes review of data and text mining domains followed by a brief
introduction to the MEDLINE database and a tool which transforms it from XML into a
relational database management system (RDBMS). A description of pipes and filters
software architecture comes after that. A brief introduction to ontologies which we will
use to add semantic knowledge-based filters to aid in the hypothesis generation process
then follows. We review Swanson’s ABC model and its variants that are published after
his first research publication in the year 1986, which provide the basis for our research
and development in this work. Finally, we identify the requirements of a UPK discovery

system, which we elaborate more on in Chapter 3.

2.1 Knowledge Discovery and Text Mining

The amount of scientific knowledge is growing at phenomenal rate. Advances in
technology have made this huge amount of data available in digital form for further
analysis and processing. Data mining has attracted a lot of attention as it attempts to
extract previously unknown and potentially useful information hidden in data [5]. Taking
advantage of the data that is already available and analyzing and understanding it are the
main purposes of data mining tools and techniques, allowing important decisions and

discoveries to be made based on information-rich data.

10

It is important to note the difference between data mining (DM) tools and information
retrieval (IR) tools. DM tools aid the user in analyzing and understanding the data, while
IR tools are simply used to retrieve information that is of interest to the user as it appears
in the database. In other words, DM tools are used to discover hidden patterns or
knowledge not stored in the database explicitly and not known previously, while IR tools
are used to find information and return to the user.

Data mining, also called knowledge discovery from databases (KDD), usually involves
analyzing and extracting information from structured data, that is, data stored in
databases. The biomedical literature we are dealing with in this work is usually stored in
text format and such text data must be either structured or amenable for computer
processing for the purposes of data mining. Data in natural language text is unstructured
in general, or it is semi-structured as it contains some fields such as title, authors,
publication dates, and so on. But the main components in our context of biomedical
domain, such as abstracts and contents, are unstructured texts presented in some natural
language, English in our case. The main challenge of text mining is to mine unstructured
texts.

Traditional text mining approaches have certain limitations. One limitation is that they do
not consider semantics in their mining process. For example, they consider “cancer”,
“tumor” and “neoplasm” to be different terms, while they are semantically related in one
or more ways. This relation is not taken into account in traditional text mining algorithms
[22]. Making use of domain knowledge and available ontologies is the main idea of
semantic text mining. Information stored in ontologies includes semantic knowledge such

as synonyms, and relationships between different concepts in a certain domain. In the

11

biomedical domain, there are a number of ontologies available, which we will consider in
our work to improve the search performance. Examples of such ontologies include MeSH

and UMLS, which are described in detail in Section 2.4.

2.2 MEDLINE and BioText

The MEDLINE database we will use in order to demonstrate our work consists of a
collection of medical journal papers gathered by the National Library of Medicine (NLM)
and indexed using MeSH terms, which are described in section 2.4. The texts in
MEDLINE journal articles are read by NLM indexers and key terms are extracted in
order to provide a rough sketch of what the text is about. Indexing is a basic technique
used to facilitate efficient search and mining process. The 2007 MEDLINE database, for
example, consists of 538 compressed zip files named ‘medline07n0001” through
‘medline07n0538’, each containing data in XML format. MEDLINE contains articles
published between the years 1865 and 2007 and ordered by publication date [11].

Querying MEDLINE in XML format is difficult, therefore the team at California
University has designed and developed a software system called BioText [15] to parse
the XML files and load the data contents into DB2 -- the IBM RDBMS. Relational
databases with their sophisticated storage and indexing mechanisms, and with powerful
query processing and optimization components make it possible to index and query very
large databases. This explains the choice of RDBMS to store and manage the converted

XML-formatted MEDLINE database. The above team have designed a database schema

which is publicly available from their website [3]. BioText creates the database tables

12

based on the schema and populates them with the data obtained by parsing MEDLINE.
BioText can be used in a number of software and hardware platforms. It is available in
both Perl and Java and has different versions [15]. It can load MEDLINE into IBM DB2

as well as into Oracle 9i. Its different versions can run on both Sun and Intel processors.

2.3 Pipes and Filters Software Architecture

One of the aims of this Master’s thesis is to create a flexible and improved software
implementation of the well known ABC model of Swanson for the purposes of human
centered interactive discovery of potentially new hypothesis by medical doctors. For this
purpose, as already mentioned earlier, we have employed the pipes and filters software
architecture. The pipes and filters software architecture is an architectural pattern which
can be used in systems that process a stream of data. Its main components are filters,
which perform some operations on the stream of incoming data, and pipes which direct
the filtered data to the next stage filter in a sequence and finally to the output screen [4].
Each filter is a separate and distinct processing module that can refine, transform, or
enrich the data it receives. It may also perform a combination of refinement,
transformation, and enrichment on its input data. The filters may execute concurrently as
long that they have data to process. Each filter is dependent only on the output of the
previous filter. Two kinds of filters exist: active and passive. Active filters pull data from
the input stream and push data onto the output stream, and run as separate processes or

threads. Passive filters on the other hand need to be activated by function or procedure

13

calls. Pipelines are usually linear, meaning that the data is processed linearly and the
pipes do not form cycles.

The pipes and filters architectural pattern is suitable for systems that are developed by
several developers, decomposed into several independent processing modules, or are
likely to undergo requirement changes later. We found that this architecture is suitable for
our application since the required processing can be divided into independent steps. In the
next chapter we will elaborate more on our work which will explain our choice of using

pipes and filters in developing our prototype software framework.

2.4 MeSH and UMLS Ontologies

Ontology is a data model that represents the various concepts considered relevant to a
domain and the relationships that exist between those concepts [21]. The Unified Medical
Language System (UMLS) and Medical Subject Headings (MeSH) are well-structured
ontologies which are built for the purpose of sharing and reusing biomedical knowledge.
They support ways of standardizing the meanings of medical terms and making sure
everyone in the medical community has the same understanding about the meanings of,
and relationships between the concepts in the domain. These ontologies are also used to

allow computer assistance in biomedical research.

14

2.4.1 MeSH Ontology

MeSH is the National Library of Medicine’s (NLM) controlled vocabulary thesaurus. The
articles in the MEDLINE database are indexed using MeSH terms. Hence, each record in
MEDLINE has certain MeSH terms associated with it giving an idea about the content of
that particular record.

MeSH terms are organized into hierarchical tree structures, in which each term can
appear in more than one position in the trees. In total, 15 broad subject categories are
represented in the tree structures each of which are further divided into more specific sub-
categories. Figure 2-1 illustrates the tree structure for Cardiovascular Diseases, a sub-

category of which is Raynaud Disease. [6]

Cardiovascular Diseases [C14]
Vascular Diseases [C14.907]

Aneurysm [C14.907.055] +
Angiodysplasia [C14.907.075] +
Angiomatosis [C14.907.077] +
Angioneurotic Edema [C14.907.079]
Aortic Diseases [C14.907,109] +
Arterial Occlusive Diseases [C14.907.137] +
Arteriovenous Malformations [C14.907.150] +
Arteritis [C14.907.184] +
Capillary Leak Syndrome [C14.907.218]
Cerebrovascular Disorders [C14.907.253] +
Diabetic Angiopathies [C14.907.320] +
Embolism and Thrombosis [C14.907.355] +
Erythromelalgia [C14.907.375]
Hand-Arm Vibration Syndrome [C14.907.440]
Hemorrhoids [C14.907.449]
Hepatic Veno-Occlusive Disease [C14.907.460]
Hyperemia [C14.907.474]
Hypertension [C14.907.489] +

15

Hypotension [C14.907.514] +

Ischemia [C14.907.553] +

Peripheral Vascular Diseases [C14.907.617]

Phlebitis [C14.907.681] +

Pulmonary Veno-Occlusive Disease [C14.907.690]
¥ Raynaud Disease [C14.907.744]

CREST Svyndrome
[C14.907.744.500]

Retinal Vein Occlusion [C14.907.760]

Scimitar Syndrome [C14.907.780]

Spinal Cord Vascular Diseases [C14.907.790] +
Superior Vena Cava Syndrome [C14.907.800]
Telangiectasis [C14.907.823] +

Thoracic Qutlet Syndrome [C14.907.863] +
Varicocele [C14.907.903]

Varicose Veins [C14.907.927] +

Vascular Fistula [C14.907.933] -+

Vascular Hemostatic Disorders [C14.907.934] +
Vascular Neoplasms [C14.907.936]

Vasculitis [C14.907.940] +

Venous Insufficiency [C14.907.952] +

Figure 2-1. Tree structure of Cardiovascular Diseases [13]

MeSH records corresponding to research articles have three basic types: Descriptors,
Qualifiers, and Supplementary Concept Records (SCRs). Descriptors are the main
headings that are used to index MEDLINE records. They provide a brief description of
what the article is about. Qualifiers are subheadings which are used in conjunction with
Descriptors to indicate what aspect of a particular subject the article addresses. For
example, “Liver” is a Descriptor and “Drug Effects” is a Qualifier. Thus, an article with
the qualifier “Liver/drug effects” indicates that the theme of the article is not about liver

in general, but about the effects of drugs on liver. Finally, SCRs are used to index

16

chemicals, drugs and other substances [10]. In our work, we deal mainly with

Descriptors.

2.4.2 UMLS Ontology

Many other biomedical ontologies are also available, a list of which can be found in Open
Biomedical Ontologies (OBO) [14]. The National Library of Medicine (NLM) attempted
to build UMLS to facilitate the development of computer systems that can process
biomedical literature as if they “understand” the health sciences and biomedicine
language [22]. All the major biomedical ontologies or vocabularies including MeSH are
integrated in UMLS. NLM has produced the UMLS knowledge source and software tools
to assist software developers in building biomedical and health-related applications. The
UMLS has three knowledge sources: (a) the Metathesaurus, (b) the Semantic Network,
and (c) the SPECIALIST Lexicon [8]. We will briefly explain the Metathesaurus and the

Semantic Network components, which we will be using in our work.

2.4.2.1 UMLS Metathesaurus

The Metathesaurus is a very large database which contains information about biomedical
concepts, their various names and synonyms, and relationships between the concepts. It is
a multi-purpose and multi-lingual vocabulary database obtained by integrating over 100
biomedical source vocabularies. The Metathesaurus is organized according to concepts or

meanings. If a concept has different contextual meanings associated with it in different

17

source vocabularies, all of them are included in the Metathesaurus, even if there are
inconsistencies among them. In other words, the Metathesaurus does not represent a
single view of the biomedical world, but multiple views as they appear in different source
vocabularies, which may be useful for different tasks. Each concept in the Metathesaurus
is associated with one or more ‘semantic types’. For example the semantic type “Disease

or Syndrome” is assigned to the concept “Migraine Disorder.”

2.4.2.2 UMLS Semantic Network

The purpose of the UMLS Semantic Network is to consistently categorize the concepts in
the Metathesaurus in a meaningful fashion and to determine the relationships between the
concepts. The Semantic Network consists of 135 semantic types and 54 ‘semantic
relations’. The semantic types in the UMLS Semantic Network are illustrated in Figure 2-
2. The hierarchy illustrates the semantic types in the network as well as the ‘isa’ relation

between them.

18

Entity
Physical Object
Organism
Plant
Alga
Fungus
Virus
Rickettsia or Chlamydia
Bacterium
Archaeon
Animal
Invertebrate
Vertebrate
Amphibian
Bird
Fish
Reptile
Mammal
Human
Amnatomical Structure
Embryonic Structure
Anatomical Abnormality
Congenital Abnormality
Acquired Abnormality
Fully Formed Anatomical Structure
Body Part, Organ, or Organ Component
Tissue
Cell
Cell Component
Gene or Genome
Manufactured Object
Medical Device
Research Device
Clinical Drug

[Entity] (continued)
[Physical Object] (continued)
Substance
Chemical
Chemical Viewed Functionally
Pharmacologic Substance
Antibiotic
Biomedical or Dental Material
Biologically Active Substance

Neuroreactive Substance or Biogenic Amine

Hormone
Enzyme
Vitamin
Immunologic Factor
Receptor
Indicator, Reagent, or Diagnostic Aid
Hazardous or Poisonous Substance
Chemical Viewed Structurally
Organic Chemical
Nucleic Acid, Nucleoside, or Nucleotide
Organophosphorus Compound
Amino Acid, Peptide, or Protein
Carbohydrate
Lipid
Steroid
Eicosanoid
Inorganic Chemical
Element, Ton, or Isotope
Body Substance
Food

[Entity] (continued)
Conceptual Entity
Idea or Concept
Temporal Concept
Qualitative Concept
Quantitative Concept
Functional Concept
Body System
Spatial Concept
Body Space or Junction
Body Location or Region
Molecular Sequence
Nucleotide Sequence
Amino Acid Sequence
Carbohydrate Sequence
Geographic Area
Finding
Laboratory or Test Result
Sign or Symptom
Organism Attribute
Clinical Attribute
Intellectual Product
Classification
Regulation or Law
Language
Occupation or Discipline
Biomedical Occupation or Discipline
Organization
Health Care Related Organization
Professional Society
Self help or Relief Organization
Group Atiribute
Group
Professional or Occupational Group
Population Group
Family Group
Age Group
Patient or Disabled Group

Event
Activity
Behavior
Social Behavior
Individual Behavior
Daily or Recreational Activity
Occupational Activity
Health Care Activity
I.aboratory Procedure
Diagnostic Procedure
Therap eutic or Preventive Procedure
Research Activity
Molecular Biology Research Technique
Governmental or Regulatory Activity
Educational Activity
Machine Activity
Phenomenon or Process
Human caused Phenomenon or Process
Environmental Effect of Humans
Natural Phenomenon or Process
Biologic Function
Physiologic Function
Organism Function
Mental Process
Organ or Tissue Function
Cell Function
Molecular Function
Genetic Function
Pathologic Function
Disease or Syndrome
Mental or Behavioral Dysfunction
Neoplastic Process
Cell or Molecular Dysfunction
Experimental Model of Disease
Injury or Poisoning

Figure 2-2. Semantic types in UMLS [7]

19

The nodes in the Semantic Network represent the semantic types and the edges represent
the semantic relations between the types. Each semantic type is connected to the network
by at least one semantic relation. The semantic types and relations are organized into a
hierarchy. The semantic types may have hierarchical (e.g., “isa”) or associative (e.g.,
“associated-with”) relationships with each other. The Semantic Network covers and
categorizes a broad range of domains. Some types are more general and broader than
others and therefore appear at a higher level in the hierarchy. If an exact semantic type of
a concept in Metathesaurus is not in the Semantic Network, it is assigned the most
specific semantic type that is available. For example, the semantic type “Manufactured
Object” has two children in the network, “Medical Device” and “Research Device.”
Manufactured devices in the Metathesaurus that are neither medical devices nor research
devices are assigned “Manufactured Device” as their semantic types.

Figure 2-3 illustrates the “Biologic Function” type hierarchy in the Semantic Network

and Figure 2-4 exhibits the “affects” relationship in the hierarchy [9].

20

Biologic
Function

Physiologic Pathologic
Function Function

_— |

Organism | | Organ or Cell Molecular Cell or Disease or | | Experimental
Function Tissue Function | | Function Molecular Syndrome model

Function Dysfunction of Disease
Mental Genetic Mental or | | Neoplastic
Process Function Behavioral Process
Dysfunction

Figure 2-3. “Biologic Function” Semantic Type Hierarchy [9]

[manages’ ‘treats] [disruptsl ‘complicates] [interacts_withl [prevents’

Figure 2-4. “Affects” Semantic Relation Hierarchy [9]

By making use of the UMLS Metathesaurus and Semantic Network, our goal in this
thesis is to enable supplementing of the ‘C’, ‘B’, or ‘A’ terms in the ABC model so as to
be able to extract useful and previously unknown knowledge from the biomedical
literature with the assistance of the human intelligence in the interactive loop. A desired

tool we plan to develop towards achieving this end goal supports experts to form and test

21

hypothesis while interacting with the system. This is the main idea of “discovery of UPK
(unpublished public knowledge) research” to generate potentially testable hypothesis.

UPK research is described next.

2.5 Swanson’s ABC Model

Swanson defines two bodies of knowledge to be non-communicating if they do not cite
each other and they are not co-cited in the literature. He defines two sets of literatures to
be complimentary if together they provide information that is not apparent from each one
of them looked at separately. UPK discovery is the idea of discovering previously
unknown knowledge by combining the information contained in complimentary and non-
interactive literatures. This idea can be made explicit with the help of a model. The basic
idea of the ABC model is that if one set of literature states that concept C is related to
concept B in some way, and another set which is non-communicating with the first one
claims that concept B and concept A are related, then by combining these pieces of
information, one may suspect the implied connection between C and A. More
specifically, let us suppose that C is a disease, B is a characteristic of C, and A is a
substance that affects B. Then it is possible to hypothesize that substance A may have
some bearing, e.g., cure or worsen, on disease C by affecting characteristic B. The
hypothesis can then be tested in clinical labs and confirmed or rejected later. This
capability to hypothesize is important upon noting the vast amount of knowledge in

biomedical and health sciences domain.

22

During the years, numerous hidden links have been discovered using this idea and they

were later tested and have led to product and service developments. Examples include the

discovery of the connection between Raynaud Disease and dietary fish oil [18], and the

discovery of 11 hidden links that relate Migraine and Magnesium [18].

Swanson and Smalheiser developed a software system called ARROWSMITH which

serves as an aid in the UPK discovery process [19]. The basic steps of the algorithm they

used in ARROWSMITH are as follows:

Algorithm- ARROWSMITH:

1.

6.

7.

Take as input the term C in which the user is interested to discover something
about.

Search the biomedical literature for article titles related to C, i.e., containing C.
This identifies and generates the BC literature.

Use a list of stop-words generated by the user to select B-terms from the titles of
the articles in the BC literature.

For each B term, search the biomedical literature for article titles related to B.
This generates the BA literature.

Use a list of stop-words generated by the user to select A-terms from the article
titles in the AB literature.

If A and C are not co-cited together in the literature, keep A.

Rank the A-terms based on the number of B-terms that connect them to C.

The list of stop-words may consist of biomedical terms that are too general, for example

‘irradiation’, as well as non-biomedical and linguistic terms such as prepositions and

adverbs, which may appear in the titles of published articles. The reason why

23

ARROWSMITH only considers article titles as opposed to the abstract and full text is
that in the biomedical domain, titles are very descriptive of the contents of the articles. A
later version of ARROWSMITH uses MeSH terms in order to recognize synonyms when
matching the terms, as opposed to exact-word matching. The output of ARROWSMITH
is composed of two columns containing a pair of article titles at each row, assumed
related, which can provide clues to new hypotheses when considered together. Table 2-1
illustrates a sample output for the migraine-magnesium example. Titles which have
important keywords in common are placed together to suggest existence of a hidden link
to the user. For example, a title in the migraine literature is: “Stress and Type A behavior
are associated with migraine.” The corresponding title in the magnesium literature is:
“Stress and Type A behavior lead to body loss of magnesium.” These two titles put
together may suggest that magnesium-deficiency causes migraine, through the “Stress

and Type A behavior” link.

24

‘Argument 1 Argument 2
(migreine Weraturs) tmm:m mm}
1. a;smwrmamm 1. b\sm\wwﬁm
‘are associated with mi- lead to body loss of magne
graine. s!um ‘ e
2.8 Exmsm vascular tone and 2. b) Magnesium can reduce vas-]
reactivity may Increase sus- cular tone and reactivity.
ceptibility to migraine. , 4
3 a mmm -3 by Magnesium is g natural cal-
: mmm
4, b} High levels of magnesium in
The axtracellular cerabval
fiuid can inhibit spreading
cortical depression in ank-
. mals,
5. b) Magnesium deficiency
immﬁmmmﬂ
8. b) Magnesium can suppress
7. a) mmuigafmpa- 7. by Magnesium can inhibit sero-
tients are abnormally sensi- tonin-induced contractions
tive 1o sevolonin release. of vascular smooth muscle.
8. a) Substance Pmaybea 8. b) Magnesium can suppress
cause of head pain in'mi- Substance P activity,
g, }mmmmm 9. b) Magnesiun Bzmnmm'
a & agr
(PG) release can aggravate mmmm
WM’NMW aing,.
o. a) mmmmmw 10. b) Magnesium has anti-inflam-
_inflammation of the cerebral - matory properties.
1. mmm pl 1.8 M
n nj hypoxﬁmay ay & . agnesium can protect
mm migraine. agﬂmmmm

Table 2-1. ARROWSMITH’s Sample Output for the Migraine-Magnesium Example [18]

ARROWSMITH is an interesting and useful software tool which automated some of the
steps involved in the discovery process. However, its major limitation is its strong
dependence on human involvement. As evident from the above illustrative example,
ARROWSMITH relies much on human intervention in generating the list of stop-words
and pruning the B-terms in order to find meaningful and truly new links between A- and
C-terms. In addition, human intervention is required in deciding on a specific category
for the A-terms. In other words, the user should have a rough idea about what category

25

the A-terms belong to. Also, as the number of terms grows, the number of associations
and relationships between them grows exponentially. Therefore, the system would return
a very large number of titles in general which would be difficult for the user to go
through to find truly meaningful and potentially new links. Many attempts have been
made by people to overcome the shortcomings of ARROWSMITH while incorporating
the basic idea of the ABC model. We trust that the problem of human intervention should
be a balance with a “golden mean” between two extremes (complete automation versus

complete manual approach).

2.5.1 Weeber’s DAD-System

Using the UMLS Metathesaurus and Semantic Network can help overcome or minimize
the drawbacks of ARROWSMITH. In the bio-medical domain, it is usually more
meaningful to consider a combination of terms, as opposed to single terms. Using single
words to represent the knowledge is an oversimplification, according to Weeber. Weeber
and his team [20] developed the DAD-system (Disease-Adverse drug reaction-Drug, or
vice versa) which uses MetaMap, a tool designed by Aronson et al. at NLM [1], to map
terms in the biomedical text to UMLS concepts. Use of UMLS concepts, instead of plain
text, can serve four purposes: reduce the number of B-terms and A-terms produced by the
system, make sure the B’s and A’s are biomedical terms, exclude the dependence on the
list of stop-words, and consider synonyms and textual variants in the search process [20].
After mapping the text to UMLS concepts, they use the Semantic Network as a tool for

filtering the results. The filtering is performed in order to reduce the search space to a

26

manageable size. It should be noted that there could be a possible miss in this reduction
of search space. The semantic types that are used for filtering are query-dependent and
are determined by the user, based on his/her interests. At different stages of the process,
different filters may be used. As an example, semantic types such as “Biologic function”,
“Cell function”, “Physiologic function”, and “Phenomenon or process” are used as type
restrictions to prune out B-terms in the Raynaud Disease example, while “Vitamin”,
“Lipid”, and “Element, ion, or isotope” are types that are used to filter A-terms if the
user is interested in dietary factors. The DAD-system considers two concepts to be
associated if they occur together in the titles of biomedical articles. The concepts are
filtered using semantic types, ranked based on concept frequency, and finally presented to
the user for further analysis, exploration, and testing [20]. The presentation of the results
is similar to that of ARROWSMITH. Article titles that contain A-B and B-C concepts are
displayed next to each other to facilitate the hypothesis generation process. For example,
the titles “Blood Viscosity and Raynaud Disease” and “Reduction in blood viscosity by

eicosapentaenoic acid” are placed next to each other.

2.5.2 Srinivasan’s Profile-based Approach

The ABC model has also been applied by Srinivasan for a similar purpose [16]. They
build a profile from MEDLINE topics based on the MeSH terms for ranking the B-terms
and A-terms. Srinivasan defines a profile as a set of MeSH terms representing a topic.
The profiles they generate are weighted vectors of MeSH terms for various topics. The

weights are computed using different weighting schemes, for example term frequency

27

multiplied by inverse document frequency (TF*IDF). The topics may be single words,
such as Tylenol, or a group of words, for example Calcium channel blockers.
Furthermore, they use the semantic knowledge incorporated in UMLS to enrich the
profiles. The weights are computed within the context of a semantic type. Therefore, each
profile becomes a vector of weighted MeSH vectors, one for each semantic type. Their
algorithm takes three inputs: the C-term of interest, a set of semantic types used for
filtering B-terms (ST-B), and a set for filtering A-terms (ST-A). Then they search
PubMed for C and build its profile, limited to ST-B, and select the top ranked MeSH
terms among the terms in the profile. The result gives B-terms, which are searched in
PubMed and a profile is built for each one based on ST-A. Next, they sum up the weights
of each MeSH term in the profiles and compute a combined profile. If the MeSH terms
have not already occurred with C, they are kept as A-terms. Unlike Swanson and Weeber,
Srinivasan’s goal is to display, for each semantic type in ST-A, a ranked list of MeSH
terms, as opposed to displaying titles and sentences next to each other. They believe that
ranking the terms within each semantic type allows users to choose to keep or eliminate
semantic type filtering. By looking at the first few terms in each semantic group, the user
may find the top ranked MeSH terms without considering the semantic types to which
they belong [16]. Also, B-terms are profiled and searched automatically, while Swanson
and Weeber’s approaches required human intervention in selecting B-terms. Srinivasan
has also demonstrated that using the indexed MeSH terms in MEDLINE produces results

competitive to the free-text based approach taken by Weeber.

28

2.5.3 Yoo’s Bio-SbKDS

As stated earlier, the UMLS Semantic Network contains semantic types and semantic
relations which represent relationships between the various semantic types. In the related
literature we reviewed so far, only the semantic types were used if semantic knowledge
was taken advantage of. Another researcher, Yoo made use of the semantic relations as
well as the semantic types for filtering the B-terms and A-terms [22]. He built the
software system called “Bio-SbKDS (Biomedical Semantic-based Knowledge Discovery
System)” which uses the UMLS Metathesaurus and the Semantic Network in order to
prune and filter the terms and suggest more meaningful A-terms to the user. Bio-SbKDS
is a fully automated approach to knowledge discovery, i.e., no user interaction is required
other than providing the starting input at the beginning of the process. Yoo claims that the
system does not depend much on the expertise of the user and is able to generate fewer
but more meaningful connections between the concepts in the biomedical domain. The
semantic knowledge maintained in the Semantic Network of UMLS is used to reduce the
search space while capturing meaningful yet novel connections.

For this system, the user needs to provide the following information as input: the C-term,
its role, and three semantic relation filters. The output is a set of A-terms that may be
linked to C-term through the various B-terms. A C-term is the term in which a user is
interested in discovering something about. The role of C could be subject or object. For
example suppose the user enters “Raynaud Disease” as C-term and wants to discover A-
terms that “treat” or “prevent” the disease. Then the role of C would be “object” because
A treats C. Therefore, A’s role is “subject” and C’s role is “object.” Finally, the semantic

relation filters include semantic relations between A and C, B and C, and also A and B.

29

Based on the input provided by the user, Bio-SbKDS first generates the semantic type
filters for the B- and A-terms. Next, it searches MEDLINE through the PubMed interface
to find articles containing the C-term. It then extracts MeSH terms in those articles and
uses the semantic type filter for B-terms to prune these terms. Once all the B-terms are
generated, Bio-SbKDS searches each B-term against MEDLINE, and once again the
MeSH terms in those articles are extracted. A technique, proposed by Yoo, which is
named “Bi-Decision Maker”, is also used to filter the B- and A-terms further.

Bi-Decision Maker is used to further qualify the B- and A-terms. Suppose, for example,
that C-term is “Raynaud Disease.” We expect B to be symptoms of the disease and A to
be something that relieves those symptoms. Therefore, B is some negative concept while
A is positive. Determining whether the MeSH terms are positive or negative is achieved
through analyzing the definitions of these terms. Yoo’s method assigns a weight between
-5 and 5 to each MeSH term based on its definition. Terms with a negative weight are
considered negative and those with a positive weight are positive. For example, a B-term
that was retrieved by Bio-SbKDS was “Nifedipine”, which was dropped because they
were looking for negative terms while Nifedipine’s definition consisted of a few positive
statements such as “Vasolidator”, “useful”, “anti-anginal”, and “lower blood pressure.”
However, “Blood viscosity” had a negative weight and hence kept since it contained
statements such as “morbidity” and “disorder” in its definition. Note that not all MeSH
terms can be weighed properly because around 6% of the terms do not have definitions in
NLM and also some have definitions which are neither negative nor positive.

In order to rank the A-terms, all combinations of top ranked B-terms are searched against

MEDLINE. A weight is assigned to each combination, which represents the sum of

30

counts of elements in the combination. With this search strategy, A-terms that are related
to more B-terms have higher ranks and are more strongly related to the initial C-term
because they have co-occurred with more B-terms. In other words, those A-terms in the
Raynaud Disease example that can relieve more than one symptom in the B list are
ranked higher in the list.

To summarize, Bio-SBKDS is a fully automated approach to knowledge discovery. It
does not require human intervention except at the beginning of the process where input is
needed. However, we believe that human intelligence is not completely replaceable by
any automated system. Computers should just be used as ‘assistive tools’ in the human
endeavor. Human intuition in the knowledge discovery process can improve hypotheses
generation by pruning automatically generated terms and exploring the results. Also,
some of the steps in the algorithm can be executed in parallel, but Bio-SbKDS performs
the steps sequentially. Our goal is to build a semantic-based system that aids researchers
in the hypothesis generation phase and at the same time allows the researcher to intervene
and contribute to the derivation of the results, while taking advantage of the pipes and
filters architecture. Such a system has complementary advantages of both systems while
it does not rely on humans as much as Swanson’s ARROWSMITH system, and is not

fully automated as Yoo’s Bio-SbKDS.

2.6 Possible Improvements

As mentioned earlier, there have been attempts to adopt and extend Swanson’s ABC

model to overcome some of its limitations or meet specific needs. There is an obvious

31

need for extensibility since we suspect that yet more extensions will come about in the
future. Therefore, judging from past experiences where many extensions to Swanson’s
ABC model were proposed, we believe that creating an extensible framework is required
and can indeed be useful.

Furthermore, all previous work in this endeavor has been hard-wired with little or no
flexibility. Providing flexibility is essential due to the exploratory nature of UPK
discovery. By providing more flexibility, we leave the user’s hands free and allow
him/her to be more creative in the exploration process.

In addition, since the discovery of UPK is an exploratory task, it is important to involve
the user in various stages of the process and allow the user to get involved and interact
with the system while benefiting from the advantages of automating some steps in the
data mining task.

Finally, because of the vast amount of information that is processed, we believe that
providing concurrent execution of steps wherever possible can be an additional benefit,

although it is not a requirement.

32

CHAPTER 3
OUR PROPOSED FRAMEWORK

In the previous chapter we discussed Swanson’s ABC model and its variations. In this
chapter, we use this model as a basis to design and develop a framework, ExaminMED,
for semantic mining of MEDLINE. ExaminMED is an interactive system which allows
the users, essentially medical domain experts and researchers, to use their expertise and
intelligence in a knowledge discovery process. More importantly, it is a framework which
easily allows others to modify and potentially improve the system in the future.

This chapter is organized as follows. First, we present our framework, the underlying
algorithm and its search approach. We then present the architectural design of
ExaminMED, which uses the proposed algorithm, and a detailed explanation of its

underlying components.

3.1 Framework Description

As mentioned at the end of the previous chapter, we identified three requirements that a
UPK discovery system should support. These include extensibility, flexibility, and
interactivity. We believe that the pipes and filters architecture is suitable for our
framework and we can benefit from a number of its advantages to fulfill the
aforementioned requirements. The main advantages of using the pipes and filters

architecture are easy enhancement, flexibility, efficiency, maintainability, reusability,

33

decoupling, and extensibility [2, 4]. It also provides concurrency, which is an additional
benefit.

The following is the pseudocode of the algorithm used in ExaminMED.

Algorithm Main (CTerm, CRole, CB-relationFilter, BA-relationFilter, CA-relationFilter:
BTerm, ATerm)
Input: CTerm: a C-term.
CRole: the role of the C term. // values = {subject, object}
CB-relationFilter, BA-relationFilter, CA-relationFilter: semantic relation filters.

Output: list of BTerms and ATerms found.

Main:

If semantic filtering is desired then

{
Get CTerm, CRole, CB-relationFilter, BA-relationFilter , CA-relationFilter;
Find semantic type of CTerm; // called ST_C
Generate possible semantic types of BTerms and ATerms; // called ST_B and ST_A
Define Pipes using Co-ocBFilter, SemBFilter, Co-ocAFilter, and SemAFilter filters;
Activate Pipes using the input CTerm, ST_B, and ST_A;

}

else // semantic filtering is not desired

{
Get the CTerm,;
Define Pipes using Co-ocBFilter and Co-ocAFilter filters;

Activate Pipes using the input CTerm;

}
End Main;

34

Algorithm ActivatePipes (CTerm, ST_B, ST_A)
Input: CTerm; the user input C-term.
ST_B and ST_A: lists of semantic types generated by main algorithm.

Output: BTerm, ATerm: lists of B-terms and A-terms that match CTerm

ActivatePipes:
Activate Co-ocBFilter by feeding CTerm into the pipe;

End ActivatePipes;

Algorithm Co-ocBFilter (CTerm)
Input: CTerm; user input C-term.

Output: BTerm; B-terms that occurred with CTerm.

Co-ocBFilter:
Read CTerm;
Find synonyms of CTerm from UMLS;

Query MEDLINE for MeSH terms that co-occurred with CTerm or its synonyms; //called
potentialBTerm

For each potentialBTerm
{

Activate semBFilter by passing potentialBTerm to it through the pipe;

}
End Co-ocBFilter;

Algorithm semBFilter (potentialBTerm, ST_B)
Input: poterntialBTerm: passed to semBFilter through co-ocBFilter.

ST_B: list of semantic types generated by main algorithm.

Output: BTerm: lists of B-terms that match CTerm and have the appropriate semantic type.

35

SemBFilter:

For each potentialBTerm

{
Get the semantic type of potentialBTerm from UMLS; // called semB
If semB exists in ST_B then
{
BTerm = potentialBTerm;
Display BTerm;
Activate co-ocAFilter by passing BTerm to it through the pipe;
}
}
End SemBFilter;

Algorithm Co-ocAFilter (CTerm, BTerm)
Input: CTerm; user entered C-term.
BTerm: passed to co-ocAFilter through semBFilter.

Output: ATerm; A-terms that occurred with BTerm.

Co-ocAFilter:
Read BTerm;
Find synonyms of CTerm from UMLS;

Query MEDLINE for MeSH terms that co-occurred with BTerm or its synonyms; // called
potential ATerm

For each potential ATerm
{
If potential ATerm has not co-occurred with CTerm then
Activate semAFilter by passing potentialATerm to it through the pipe;

}
End Co-ocAFilter;

36

Algorithm semAFilter (potentialATerm, ST_A)
Input: poterntial ATerm: passed to semAFilter through co-ocAFilter.
ST_A: list of semantic types generated by main algorithm.

Output: ATerm: lists of A-terms that match BTerm and have the appropriate semantic type.

SemAFilter:

For each potential ATerm

{

Retrieve the semantic type of potential ATerm from UMLS; // called semA

If semA exists in ST_A then

{
ATerm = potential ATerm;
Display ATerm;
}
}
End SemAFilter;

The basic search algorithm in ExaminMED is adapted from the Bio-SbKDS system
which implements Swanson’s ABC model. However, by benefiting from pipes and filters
as our software architecture, we believe we have substantially improved the performance
of the original algorithm. We add concurrency by having each filter in the pipes and
filters architecture perform as a separate thread. In addition, the search results can be
saved in the database for further analysis and processing. We also provide the option of
combining the results of multiple searches through formulating SQL queries against the

results stored in the database. Also, while Bio-SbKDS is non-interactive and presents all

37

search results to the user at once as a batch, we allow user interaction and provide the
results as soon as they are retrieved by the system. This allows early interaction,
incremental control and reflection on the part of the user. User interaction is also made
possible by allowing the user to choose desired filters, e.g., the user may choose to
eliminate semantic filtering if that is what suits his/her needs. This flexibility is possible
due to the incorporation of the pipes and filters architecture. Other than improving the
performance, using the pipes and filters architecture allows us to provide a framework
that can easily be enhanced and extended. More filters can be added as needed without
needing to modify the other components.

Currently there are four filters implemented in our framework: coocBFilter, coocAFilter,
semBFilter, and semAFilter. The first two are co-occurrence filters for B-and A-terms
while the last two are semantic filters for these terms. The pipes are set differently
depending on the user’s choice. If the user selects semantic filtering, all the above four

filters are connected through the pipes, as illustrated in Figure 3-1.

Figure 3-1. Arrangement of pipes when semantic type filtering is included

If the user chooses not to incorporate semantic filtering, only the co-occurrence filters are
set through the pipes. Figure 3-2 demonstrates the arrangements of the pipes in case
semantic filtering is not desired. This flexibility is a natural consequence and advantage
of the architecture of our system that is based on pipes and filters. This basis provides

38

more opportunities for users to interact and explore, as it takes into account his/her inputs
and interests. Using different filtering mechanisms may lead to formulating interesting

hypotheses.

AAAAAAAAA C-Termi- v A= T @I}l

Figure 3-2. Arrangement of pipes when semantic type filtering is excluded

If semantic filtering is desired by the user, ExaminMED takes the following inputs:

1. C-term: the starting term from which the user is hoping to find unknown link(s)

2. role of the C-term: this role could be subject or object

3. The semantic relation filters: they include filters between C and B, between B and

A, and between C and A

The user initiates the search process by clicking the “Search Medline” button. This
establishes a connection between the system component and the UMLS in order to
identify and retrieve ST_C, the semantic type of the input C-term. To determine the
semantic types, ST_B, of possible B-terms, a search in the local database is performed to
identify those semantic types which have at least one of the relations present in the C-B
relation filter with ST_C. For example, if C has the semantic type “Disease or Syndrome”
and the C-B relation filter includes the relation “process_of”, and C’s role is “object”,
then “Cell Function” is added to the ST_B list as a potential semantic type of B-terms,
since the UMLS semantic network indicates that “Cell Function” is a “process_of”
“Disease or Syndrome.” On the other hand, if the role of C-term was assigned as

“subject”, then “Biologic Function,” instead, would have been added to ST_B since

39

“Disease or Syndrome” is a “process_of” “Biologic Function.” If the semantic type is
“too general”, it is eliminated from the ST_B list. In our implementation, the semantic
types appearing in the first three levels of the semantic network hierarchy are
heuristically considered to be too general.

To get the semantic types, ST_A, of A-terms, we proceed as before but using the C-A
relation filter. The ST_A list is then extended to include other semantic types that follow
through an ISA relation with the semantic types in the ST_A list, if they are not too
general. As an example, suppose “Pharmacologic Substance” is in the ST_A list. The
semantic network indicates that there is an ISA relationship between this term and
“Chemical Viewed Functionally.” Therefore, the semantic type “Chemical Viewed
Functionally” is added to the list ST_A. For each element semB in ST_B, if semB has at
least one relationship in the B-A relation filter with any element in ST_A in the semantic
network, we keep semB. Otherwise semB is dropped from the ST_B list. Next, the same
is done to eliminate any semantic type in ST_A which has none of the relationships listed
in the B-A relation filter with any element in the ST_B list. This step is known as mutual
qualification. The final step in finding the semantic types of B- and A-terms is to remove,
from the ST_B list, those semantic types that also appear in ST_A. At this stage, the
semantic types of B- and A-terms are determined and are ready to be used by
ExaminMED to prune out semantically irrelevant terms.

The pipes are then set properly in order to indicate which filters communicate with each
other and with what data. In this case, as shown in Figure 3-1, all the four filters are
connected through the pipes, since using semantic filtering was desired. Once the C-term

is fed into the pipes, the coocBFilter submits queries to MEDLINE in order to find all

40

major MeSH headings (terms) that have co-occurred with the given C-term. This yields a
list of potential B-terms, each of which is passed to semBFilter for further pruning. The
semantic types of each B-term b are then retrieved by semBFilter through accessing the
UMLSKS. If these semantic types are present in the ST_B list, then b is displayed to the
user right away and is at the same time passed through the pipes to coocAFilter. Once
coocAFilter receives a B-term, it queries MEDLINE to find potential A-terms, that is, all
major MeSH headings that have co-occurred with that particular B-term but not with the
initial C-term, which the user entered. The potential A-terms, once identified, are passed
to semAFilter for further qualification. The semantic types of the potential A-terms are
retrieved through UMLSKS, and if they appear in the ST_A list, the corresponding A-
terms obtained are presented to the user. Figure 3-3 presents the above process steps in

our proposed framework.

41

Match

es éfSemantic type >«
_filter?

Figure 3-3. Process Flow Diagram using Semantic Filtering

If the user is not interested in pruning the terms based on their semantic types, then the

only input required is the starting concept, the initial C-term. In this case, ExaminMED

42

connects to its local MEDLINE database and retrieves all the articles which contain the
given C-term. All the major indexed MeSH headings in the retrieved articles are
extracted and displayed to the user as B-terms. Each B-term b is then searched against
MEDLINE, following the same steps as the initial C-term, and all major MeSH headings

which co-occurred with b but not with the C-term are returned as A-terms. The process

flow, when semantic filtering is not used, is presented in Figure 3-4.

Yes YEeS

{ocourred with
NCterm? o

"""""" e NG

Figure 3-4. Process Flow Diagram not using Semantic Filtering

3.2 System Architecture

In this section, we present the overall architecture of the system we developed. We also
introduce its various modules and components and explain how they interact with each

other.

43

Figure 3-5 shows the architecture of ExaminMED. As can be seen, it includes the
following modules or components: MEDLINE database in XML format, BioText XML
transformer, MEDLINE database in a relational database management system (RDBMS),
UMLSKS server, the main engine or control module, and a simple graphical user

interface (GUI).

BicText XML Trons

MEDLINE i XML £

Figure 3-5. ExaminMED System Architecture

Since MEDLINE is available in XML format, it is first transformed into tables in our
relational database developed using the IBM DB2 RDBMS, which supports efficient
query processing and search operations needed in our work. We also use BioText, a tool

developed at Berkeley, for transforming MEDLINE into these tables [3]. The GUI we

44

developed facilitates user’s interaction with the system. Upon user’s request, the system
queries MEDLINE, while making use of the UMLS ontology, and returns the results to
the user through the GUI, once they are ready. The main engine, which implements the
processing steps and our approach explained above, connects to the UMLSKS, takes the
input provided by the user, and poses queries to MEDLINE after communicating with the
UMLS ontology to obtain synonym and semantic information. The results are returned to
the user via the GUL In what follows, we describe the components of the framework in

detail.

3.2.1 Access and Transformation of MEDLINE

PubMed provides a web-based user interface and search engine which allows users to
query the MEDLINE database online. However, it does not directly allow certain
operations and queries that can be supported by RDBMS technology [15]. For example,
in order to prevent server overload, PubMed limits the number of queries a user can
perform in a given time interval. Also, queries whose results are large in volume should
be performed at nights or on weekends. Storing a local copy of MEDLINE selectively in
an RDBMS can give us greater control and does not have the limitations of querying
MEDLIME through the PubMed interface.

As we did, users interested in querying a local copy of MEDLINE are required to obtain
a license and provide NLM (National Library of Medicine) with contact information as
well as information regarding the intent and kind of activities for using MEDLINE.

Licensees may then download the MEDLINE database in XML format via FTP. In order

45

to be able to use RDBMS technology, we used the Java version of the BioText software
to transform the database from XML format into a local relational database, for which we
used IBM DB2. The main reason for using DB2 was to take advantage of RDBMS
technology for storing, indexing, and querying large databases, such as MEDLINE. The
powerful query processing and optimization techniques built in database systems make
them attractive and useful especially when dealing with large databases. Another
advantage of using RDBMS technology in our work is that it is usually easier to query a
relational database than XML-formatted data. Relational databases are more standardized
for structured data and support SQL (Structured Query Language), which is a
“declarative” query language [15]. Finally, to formulate complex queries and combine
search results in our work, we were interested in storing additional information such as
the search results for various C-terms. All these requirements were accomplished in our

work through using relational database technology.

3.2.2 Relational Database Management System (RDBMS)

The database schema used in BioText is made available in the Internet. The schema was
designed using Document Type Definition (DTD) for MEDLINE, which defines the
structure of the data in the XML files. The database schema includes 19 database tables,
some of which have parent-child relationships. We have added two new tables to this
database for specific needs in our application. Figure 3-6 shows these tables and their
relationships. As the figure demonstrates, our database consists of 21 tables, 17 of which

reference the main table, medline_citation, by referencing its primary key, PMID

46

(PubMed Identifier). Medline_mesh_heading_qualifier references the attributes PMID
and descriptor_name in table medline_mesh_heading. The two new tables we added to

the database are medline_sem_relations and medline_search_results.

Medline_sem_relations stores the semantic relations between the semantic types in the
UMLS semantic network. UMLS provides this information in text format. We parsed the
text file and populated the medline_sem_relations table accordingly. Our algorithm uses
the information in this table to find the allowable semantic qualifiers of the B- and A-
terms. This information could also be obtained through the UMLS API, which is
explained in the next sub-section. However, for efficiency reason and to save processing
time, we decided to store this information locally in our database and query it easily when
needed. Since our prototype allows users to save and combine the search results, we also
introduced the table medline_search_results. More explanation about the tables, their

schemas and use follows.

47

~ medline_author

]

ne_gen:

¥

e_symbol_list

medline_citation |\

Figure 3-6. Database Table Names and Their Relationships

48

Table Name

Table Attributes

medline_citation

pmid, date_created, date_completed, date_revised, issn,
volume, issue, pub_date_year, pub_date_month,
pub_date_day, pub_date_season, medline_date,
journal_print_yn, coden, journal_title, iso_abbreviation,
article_title, start_page, end_page, medline_pgn,
abstract_text, copyright_info, article_affiliation,
article_author_list_comp_yn, data_bank_list_comp_yn,
grantlist_complete_yn, vernacular_title,
date_of_electronic_publication, elec_pub_official_date_yn,
country, medline_ta, nlm_unique_id, xml_file_name,
number_of_references, keyword_list_owner,
citation_owner, citation_status

medline_author

pmid, last_name, fore_name,first_name, middle_name,
initials, suffix, affiliation, collective_name,
dates_associated_with_name, name_qualifier,
other_information, title_associated_with_name

medline=chemical__list

pmid, registry_number, name_of_substance

medline_gene_symbol_list

pmid, gene_symbol

medline_kezword__list

medline_mesh_headin
medline_mesh_heading_qualifier

pmid, keyword, keyword_major_yn

pmid,descriptor_name,descriptor_name_major_yn

pmid, descriptor_name, qualifier_name,
qualifier_name_major_yn

medline_comments_corrections

pmid, ref_pmid, note, type, ref_source

medline_citation_subsets

pmid, citation_subset

medline_article_publication_type

pmid, publication_type

medline_article_language

pmid, language

medline_grant

pmid, grant_id, acronym, agency

medline_data_bank

pmid, data_bank_name, accession_number

medline_personal_name_subject

pmid, last_name, fore_name, first_name, middle_name,
initials, suffix, dates_associated_with_name,
name_qualifier, other_information,

title_associated_with_name

medline_citation_other_id

pmid, source, other_id

medline_citation_other_abstract

pmid, type, copyright_info, abstract_text

medline_space_flight_mission

pmid, space_{flight _mission

medline_investigator

pmid, last_name, fore_name, first_name,
middle_name, initials, suffix, affiliation

medline_general_note

pmid, owner, general_note

medline_sem_relations

left_side, relation, right side

medline_search_results

cterm, bterm, aterm, sem_filter, keep_term

Table 3-

1. Conceptual Database Design

49

The conceptual database design includes the relations (or tables) listed in Table 3-1. The
primary key attributes are underlined and shown in bold, while foreign keys are shown in
italic.

Our system prototype mainly queries the medline_mesh_heading,
medline_sem_relations, and medline_search_results tables. Medline_mesh_heading
contains information about the descriptors of MeSH headings in each entry in
MEDLINE. This information is the result of indexing MEDLINE articles by NLM
experts and indicates the content of the articles. We use the indexed MeSH terms to
extract co-occurrence relations. Two MeSH terms are known to co-occur (with each
other) if they are indexed in the same article as major headings.

Table medline_sem_relations contains the semantic relations between the various
semantic types as indicated in the UMLS semantic network. This table is used to
construct the ST_B and ST_A lists, which respectively are allowable semantic types for
the B- and A-terms.

Finally, table medline_search_results stores the results of the user’s interaction with the
system upon request. A record is added to the table for each A-term retrieved. Attribute
cterm represents the C-term in question. The second attribute, bterm, in this table
contains the B-term that has occurred with the A-term in the aterm column. Attribute
sem_filter records whether semantic filtering was used in deriving the A-term, and may
have the values ‘y’ or ‘n’, denoting yes and no, respectively. The final attribute,
keep_term, indicates whether the user chose to keep or discard a particular A-term while
interacting with the system. The possible values for this attribute are ‘y’ and ‘n’,

indicating keep and discard, respectively. For example, removing Hypertension from the

50

list of B-terms results in deleting the term Adrenalectomy from the list of A-terms. Thus,
if semantic filtering was used and the user deleted Hypertension from the B-terms, then
we create tuple (raynaud disease, hypertension, adrenalectomy, y, n) in table

medline_search_results.

3.2.3 Unified Medical Language System Knowledge Source Server
(UMLSKS)

The UMLSKS, provided by NLM, provides access to the three data sources in UMLS,
namely the Metathesaurus, the Semantic Network, and the SPECIALIST Lexicon.
UMLSKS can be accessed through the Internet, an XML-based socket programming
interface, and an Application Programming Interface (API). Our system accesses the
UMLSKS through the UMLS API, which is written entirely in Java. It provides
developers with an extensive query facility and uses XML to request data from UMLS. It
also provides Java developers with about 40 convenient functions to access detailed
information contained in the three data sources [12].

The API that connects our system to UMLSK is based on Java’s Remote Method
Invocation (RMI) communications protocols. RMI allows methods of remote java objects
to be invoked from other Java virtual machines. We also invoke in our system the
methods provided in UMLSKS. For knowledge discovery process, ExaminMED uses the
methods provided by the API to retrieve concept unique identifier (CUI), semantic types,
and synonyms for C-, B-, and A-terms, which reside in the Metathesaurus. In UMLS,
each CUI is associated with one or more semantic types. To find the semantic types of

each term, we first need to retrieve its CUI through the API. We then pass the CUI to the

51

appropriate method in the API along with other necessary arguments. Finally, the method

returns the semantic types in the form of an array.

3.2.4 The Main Module

This is the main module of our system which implements the algorithm and various
search operations discussed above. It is also responsible for communicating with the
other components. It receives user inputs, including C-term, via the GUI, queries the
relational database for C, and finds relevant articles in which C has occurred as a major
MeSH term. The major MeSH terms that appear in those articles are retrieved and their
CUI are found. It also finds semantic types and synonyms through the UMLSKS, checks
whether the semantic types match the ones in the ST_B list, and returns the B-terms
through the GUI if they match the semantic type criteria. The search process continues in
the same way in order to find relevant A-terms. Finally, the results are presented to the
user through the GUIL

In the case where no semantic filter is selected, the main module can retrieve all the
needed information directly from the RDBMS. It interacts with UMLS’s Metathesaurus

only when it is looking for synonyms of terms.

3.2.5 Simple Graphical User Interface

Our prototype system has a very simple and easy to use graphical user interface (GUI),

which supports and facilitates user interactions with the system. The user enters the C-

52

term (s)he is interested in, accompanied by other inputs required by the system, including
three relation type filters, and the role of the C-term. The resulting A-terms found are
returned to the user in a way that is easy to read and comprehend.

It is important to keep in mind that the users of ExaminMED are medical specialists in
general and not computer experts. They are often very busy and thus have limited time to
spend on learning the software and how to use it. Also, they often face stringent time
constraints thus requiring the explorations to be fast enough and easy enough to use.
Therefore, it is important that the results be presented in a suitable and easy to understand
manner, and in a reasonable amount of time. The goal is to allow medical specialists and
researchers to focus more on hypothesis generation and discovering the unknowns rather
than spend more time on learning to use the interface or manipulate the search results
returned. This is why a very simple, easy to learn, and user-friendly interface is desired,
and developed in our work. Figure 3-7 illustrates the GUI in our system. We elaborate on

this interface and describe its functionalities in the next chapter.

53

.

associateT:l_with
brings.: about

assesses. effect: of
catries out

branch_ of

.
“11\5
.

.

54

ical User Interface

Graph

associated Jwith

analyzes
ibranch_of
carries:out

w
a
a
o
a
w
L=
[T)
w0
]
i
0
.
%)
(il
40

7

3

_ tbrings_about

e

-

ssesses_éffect of

ExaminMed

igure

F

CHAPTER 4
FEATURES AND ADVANTAGES OF ExaminMED

In the previous chapter, we proposed a framework, ExaminMED, which we implemented
as a prototype for evaluation purposes. In this chapter, we present a prototype of the
proposed framework, which is developed to illustrate the ideas, compare its features with
existing systems, and demonstrate its advantages. The prototype developed implements a
‘semi-automatic’ solution to hypothesis generation and knowledge discovery in medical
domain literature. We used records in MEDLINE as test data for our prototype. We used
the idea behind Swanson’s ABC model and proposed a framework which replicates an
extension of this model, while containing various useful functionalities not present in
existing systems. We used the pipes and filters architecture in the design of the system
which makes it flexible and extensible, and allows concurrency through generation and
execution of multiple threads, each of which is a filter. ExaminMED is interactive and
allows user intervention. This exploratory interaction is an important characteristic of our
system, as in our case the human intelligence is not completely automatable and
replaceable by computers. We make use of the knowledge of the domain experts in order
to limit the search to more meaningful B-terms and A-terms, and possibly generate valid
hypotheses. Our simple and effective user interface is the key in supporting this ‘human
centered computation’ and receives inputs from the user and provides appropriate output
in an incremental and easily ‘digestible’ fashion.

Our system differs from similar existing software tools in four major ways.

55

1. All the previous work which we reviewed directly used PubMed for querying
MEDLINE. We have used a local copy of MEDLINE in an RDBMS to improve
indexing and querying the data under the constraints of creating a local copy. This
also eliminates some of the limitations that come with interfacing through
PubMed.

2. Our framework is based on pipes and filters architecture which provides
flexibility, extensibility, concurrency, the possibility of parallel execution, and
other advantages that naturally come with incorporation of pipes and filters,
which we will explain later in more detail. More importantly, incorporating this
architecture allows us to create a framework, as opposed to typical software,
which allows easy modification and improvement to the underlying system while
assisting the UPK discovery task.

3. We also allow users to combine the results of different C-terms through using the
Boolean operators AND, OR, and NOT. More complex filtering and combing
results can be supported as SQL queries and evaluated using the database in our
system. We elaborate this feature of our system in the next sub-section.

4. Medical researchers are the extremely busy people who have no time to learn
either the database structure or a complex Ul interface. They are often pressed for
time and batch processing and in ordinate delays in iterative cycle could
discourage them. The effective user interface that we have created is yet another
positive aspect of our framework.

In the following section and sub-sections, we highlight the user interaction,

computational, and non-functional features and advantages of ExaminMED.

56

4.1 User Interaction Features and Advantages

Figure 3-7 showed a screenshot of the graphical user interface in our system prototype. It
consists of sub-windows some of which have slide bars, buttons, combo box, and a drop-
down list for selection purposes. Once the stage by stage progression of the ABC model,
i.e., progressing from the input C-terms to the target A-terms, is understood, the UI is
very intuitive to work with. The user interface provides various features and advantages,
such as flexibility in choosing filters, freedom of refining results, saving and combining
search results, demonstrating corresponding terms, and sorting results based on specific
criteria. To demonstrate the features in action, we submit the following input to
ExaminMED, the output of which is shown in Figure 4-1:

C-term: Raynaud Disease

Role: object

Semantic type filtering: selected

C-A relation filter: treats, prevents

C-B relation filter: process_of, result_of, manifestation_of, causes, affects

B-A relation filter: interacts_with, produces, complicates, affects

57

L

Hypertension ; ' i Adrenal Cortex Hormones
Nitroglycerin ‘ Wadrenialectomy
Scleroderma, Systemic Adrenacorticotropic Hormone
 [5¥philis, Congenital ‘ Antacids

Anemia; Hemolytic . »\: tinti-Bacterial figents
| \ Arteries
|Blogd Proteins
{Bone Marrow
Cholinesterases
Cold
{Cortisone
ibenizvichlarethaming
icumarol
lectric Stimulation Therapy

Figure 4-1. Results Displayed for the Raynaud Disease Example

4.1.1 Flexibility in Selecting Desired Filters

The GUI provides a check box for each of the filtering mechanism that ExaminMED
provides. The user may select the desired filters which are to be used for pruning the B-

terms and A-terms. ExaminMED then arranges the pipes so that only the desired filters

58

are connected and used in the pruning process. This flexibility at the user level allows the
user to have more control over the system and provides a means to experiment with the
results of different combinations of filters and perhaps obtain more meaningful and
refined results. For example, the user can choose not to use the semantic type restrictions
or wish to further explore the results of a search with or without the semantic type filters.
In other words, the user has indirect control over the pipelines and how they are set and
arranged.

Currently, ExaminMED provides two types of filters, namely co-occurrence filters and
semantic filters. It is necessary for the co-occurrence filters to be present in all searches
since the relationship between two terms is established through the co-occurrence of the
terms in the literature. In other words, co-occurrence is the relationship that links the A-B
and B-C terms. The involvement of the semantic filters, however, is not mandatory, but
optional, in the UPK discovery process and therefore the ExaminMED gives the user the
option to eliminate semantic filtering as desired.

For example, a user may want to view the B-terms and A-terms without considering their
semantic types and strictly base the search on co-occurrence relations. In this case, (s)he
can choose to eliminate the semantic type filter and investigate a larger number of terms,
which have not been pruned by the semantic filters. In Figure 4-2, the results are shown
in the case where the user chose not to use semantic filtering. Clearly, the number of
remaining B-terms and A-terms is larger in this case since no semantic filter is applied
(13 B-terms and 563 A-terms without semantic filtering versus 5 B-terms and 51 A-terms

with semantic filtering).

59

|affects
analyzes
 lassesses_effect of
&E‘ associated_with
branch_of
brings_-about
B _ [carries_ouk

. {Sympathectomy. o ‘; Abdomen
_{Hypertension ‘ ladrenal Glands
vibration o
Nitroglycetin
Psychosomatic:Medicine
Calculi
Extremities
Scleroderma, Systemic
Hand ‘ (theri ‘
Syphilis, Congenital _ [Arthiitis; Rheumatoid
Occupational Health
Angiography

Figure 4-2. Semantic Filter not Selected

4.1.2 Refining Returned Results

As mentioned earlier, our system allows human intervention and interaction to take
advantage of the expertise of the user and also to allow exploring the results for

generating possibly new valid hypotheses. Since UPK discovery is an exploratory task,

60

ExaminMED provides the option of refining the terms by adding/removing them from the
list. The user may want to eliminate one or more B-terms perhaps because they are not
interesting or related to what (s)he has in mind. If the user is certain that some particular
B-terms are not of interest, removing them may significantly reduce the number of A-
terms which may be further explored by the user. When a B-term b is removed, all the A-
terms that co-occurred with b are removed unless the A-term a had also occurred with
other B-terms, in which case a is not removed. The removed B-term, b is moved to the
leftmost list in the interface and the label above the rightmost list demonstrates the total
number of A-terms that have been removed. For example, consider Figure 4-1 which
showed the case where the C-term is Raynaud Disease. If the user decided that
Hypertension is not as interesting B-term, (s)he can remove it by simply selecting this
term in the list and then clicking the “Remove” button. Originally, Hypertension co-
occurred with 177 A-terms in our local database. After applying the semantic filter, 39 A-
terms remain in the A-term list. However, not all these terms are removed when the user
eliminates Hypertension. Cortisone, for example, occurs with “Hypertension”,
“Scleroderma, Systemic”, and “Anemia, Hemolytic,” hence it continues to remain on the
list after removing Hypertension. Figure 4-3 shows the GUI when Hypertension is
removed from the list together with all the 36 A-terms that appeared only with this term.

The removed B-terms are displayed on the leftmost list in the GUI. These B-terms and

their corresponding A-terms can be returned to the original lists by selecting the terms
and clicking the “Add” button. This is useful in case the user wants to perform “if-then”

types of queries to investigate co-occurrence relationships in the results when some B-

61

terms are removed. In this case it is desired to get back the terms that are temporarily

removed.

’@ExaminMe& »

assesses “effect. of
associated_with

§§ Scleroderma; Systemic
| I5yphilis, Congenital
Aniemia, Hemalytic

p-Aminosalicylic Acid
Agglutinins

Figure 4-3. Removing the B-term “Hypertension”

62

4.1.3 Saving and Combining Search Results using SQL

The user may save the results in text files and also in the database for future reference.
The saved text files reflect the latest interactions of the user, which includes the C-, B-,
and A-terms, as well as the terms that were removed by the user and whether or not
semantic filtering was performed in that particular search. This information is also saved
in the database. The saved information can be used later for combining the results of
various C-term searches through AND, OR, and NOT operations. Other functions and
operations can also be added to the framework in the future. Presently, the logical
operations are incorporated as examples to illustrate the idea. Figure 4-4 illustrates the

GUI that appears upon requesting to combine the results of various searches.

63

aynaud disease

ion

Figure 4-4. Combining Results Window

The user can click on a C-term as the first operand, and then choose a desired logical
operator from the list, followed by the second operand chosen from the list. The text field
at the bottom of the window displays the corresponding relational query. For example,
the user may click on “Migraine Disorder” as the first term, then click the AND button,

and then choose “Raynaud Disease” as the second term. In this case, the text field

64

displays the following text: “Migraine Disorder AND Raynaud Disease,” as
demonstrated in Figure 4-5. By clicking the “Enter” button, a new window appears which
shows a list of all A-terms that the two individual searches of Migraine Disorder” and
“Raynaud Disease” had in common. If the operator used is OR, instead of AND, then all
the A-terms associated with “Migraine Disorder” would be displayed as well as those

associated with “Raynaud Disease.”

ropic: Hormone:
osaminidase
Yomy
Hzole

on

rd Compounds

Figure 4-5. Combining Results Query

65

/

Before requesting the system to process the query, the user can choose whether or not the
system should take his/her interactions into consideration by selecting/deselecting the
“Consider user interaction” checkbox. If the checkbox is selected, then the terms which
were eliminated by the user will not contribute to the results. Also if, for example,
semantic filtering was intended during the search, only those A-terms that matched the
semantic type criteria would be presented to the user. In Figure 4-6, we demonstrate the
result of the query: “Migraine Disorder AND Raynaud Disease.” In this case, the user’s
interactions with the system were not considered. Thus, the 92 A-terms which are
displayed are those which these two C-terms had in common without using any semantic

filtering.

66

 Iproduces
 Iproperty iof
| lresultof
 Ispatially: related. to
<urrounds

kerporally related to

Lung Nedplasims
Peptic lcer
Skin

15kin Disgases
Tubsrculdsis
{Aorka

jAtteries

Todine

liodine Isotopes

g‘ Kidney

 Eropic Hormone
Mediastinum

| josarhinidase

Figure 4-6. Results of Query: “Migraine Disorder and Raynaud Disease”

By allowing the user to combine the results obtained by searching various C-terms, our
system provides more complex filtering. In a way, we are providing multiple pipes whose
results merge in the last step depending on the user’s request. For example, suppose that
the user wishes to combine the results of two earlier searches conducted and saved using

the two C-terms C; and C,. That is, the user is interested to evaluate C; AND C,,

67

assuming that the semantic filtering used in the two searches was desired. The result of
this combined query can be essentially expressed by setting up two pipes as shown in

Figure 4-7.

I ”A1f

—results-~~>

Figure 4-7. Pipe Setup for Query “C1 AND C2”

In general, the filters that the C-terms are fed into need not be the same. Each C-term
may go through various different filters and the resulting A-terms can be combined
through the desired operation. Also, the combining operator OP shown on the right in this
figure could be AND, OR, and NOT, as well as more complex functions and
combinations. In addition, a complex combination can involve many C-terms and
operations as desired. Figure 4-8 illustrates this point. In this figure, each C-term is fed

into appropriate pipes and its results are combined as defined by the user.

68

 Filtery

Figure 4-8. Pipe Setup for Complex Combinations

4.1.4 Viewing Corresponding Terms

It may be interesting for the user to know which B-terms and A-terms correspond with
each other and get a feel for which B-terms and A-terms appeared together in MEDLINE
for analysis purposes. The user can see which A-terms occurred with which B-terms, and
vice versa by either placing the curser on that particular term or by selecting the term and
clicking on the “Corresponding A-term” or “Corresponding B-term” buttons. In the first
case, a tooltip appears which contains the list of all A-terms (B-terms) that have co-

occurred with that B-term (A-term). In the second case, a new window pops up which

69

displays the list of co-occurring terms. Figure 4-9 illustrates an example, showing the B-

terms that have appeared with the A-term Cortisone.

Hypertension
Scleroderma; Systemic

Cholinesterases

Cold

Cortisons
Dibenzyichlorethamine
Dicumarol

Electric Stimulation Thetapy
Electrolytes

(Gonadotropins

Hepatin

Figure 4-9. B-terms Corresponding to Cortisone

70

4.1.5 Sorting Terms

As the ExaminMED screenshots illustrate, the GUI contains two lists which display the
B-terms and A-terms that have passed the filters. The lists are updated each time a new
term is retrieved. The user is notified once the whole database is searched and the result
is provided to the user through the GUIL Once the search process is complete, the user
may sort the results which appear on the list.

ExaminMED keeps track of the number of articles in which each term appears. The “Sort
B-Terms” button sorts the B-terms based on the number of articles in which they
appeared with C-term. We suspect that a higher ranked B-term is perhaps more strongly
related to the C-term in question. The “Sort A-Terms” button, on the other hand, sorts the
A-terms based on the number of B-terms they have co-occurred with. We have chosen
this sorting scheme because perhaps A-terms with a higher number of B-terms linking
them to the input C-term indicate a stronger relationship with the C-term and are more
strongly connected to it. Figure 4-10 shows the interface where the A-terms are listed. As
the figure illustrates, Cortisone is rated as highest because it co-occurred with three B-
terms in the local database. The second top-ranked term shown is Adrenocorticotropic
Hormone, which has co-occurred with two B-terms, namely Hypertension and Anemia,

Hemolytic.

71

-

M i ,

L

assesses effect ‘of
associated. with
branch_of
brings_about
carries_out

_ [Hypertension
§f‘ Nitroglycerin . . iAdrencicorticotropic Hormone
. Scleroderma; Systemic .| iHyalurorioglucosaminidase
 15yphilis, Congerital ladrenal Cortex Hormones
{Anemia, Hemolytic ‘ . |ndrenalectomy
| |Antacids
| {anti-Bacterial Agents

o

G

aan

i

Figure 4-10. Sorted A-terms

4.2 Computational Features and Advantages

In this section we discuss various computational features and advantages provided by

ExaminMED. These include flexibility at the user level as well as architectural level,

72

efficiency, which is achieved through concurrent execution of various stages of the

process, and use of RDBMS technology for storing and accessing MEDLINE.

4.2.1 Flexibility Due to Pipes and Filters

Our framework provides two levels of flexibility which can be taken advantage of,
namely flexibility at the user interface level, which was discussed in 4.1.1, and flexibility
at the architectural level. By using the pipes and filters architecture, both kinds of
flexibility can be achieved.

We recall that at the user interface level, we allow the users to choose among the various
pruning mechanisms and thus provide a flexible system with more freedom for users
while conducting their explorations for potential hypothesis generations. Flexibility is an
important quality that a UPK discovery system should support, since the task is an
exploratory one and the more flexibility we provide, the more ‘user-centered’ the system
is. Flexibility allows more freedom to the user for exploring and experimenting with
various search options.

At the architecture level, our system can be easily enhanced by replacing existing filters
with new ones or combining already available filters. The use of pipes and filters
architecture also allows rapid prototyping and maintainability, since filters can be easily
recombined, replaced, and reused. Our framework can benefit from these advantages to

provide the possibility for enhancement and improvement.

73

4.2.2 Concurrency Support

Concurrency is another additional benefit provided by pipes and filters. This architecture
allows concurrent execution of the filtering steps as each step is performed by a filter
which is an independent component and runs as a separate process or thread. Hence,
multi-threading, and as a result efficiency, are other benefits of using this architecture.

Since the filters in ExaminMED can operate independent of each other, they can execute
concurrently as separate threads as long as their required input is available. In our
framework, filtering occurs concurrently when computing B-terms and their
corresponding A-terms, in a pipeline fashion. This allows early interaction of the user
while the system is busy computing more terms. This incremental response is useful upon
noting the size of the database, and thus the large number of terms that needs to be
processed and returned to the user as output. It is more convenient for the user to view
each result right away as it is produced, rather than being bombarded with the complete
and possibly large set of terms at once after the search process terminates. This feature
allows the user to reflect on a smaller number of terms while more results are being

produced by the system.

4.2.3 Use of Database Technology to Store and Access MEDLINE

As noted previously, existing hypothesis generation systems query MEDLINE through
PubMed’s web-based interface and search engine. While useful, using PubMed poses

certain limitations, such as server overload. For instance, users may enter a limited

74

number of queries within a given time interval, queries which produce large results
cannot be performed other than during the nights and weekends to avoid server overload.

Storing MEDLINE in an RDBMS in our work allows greater control and higher query
ranges supported by this technology. Database technology supports management of large
data and efficient query processing and optimization. A wide variety of queries can be
performed in relational database systems, some of which are not possible or not easy to
perform through PubMed [15]. Queries that are hard to formulate and evaluate in
PubMed can be easily expressed in SQL. For example, MEDLINE can be queried to rank
journals based on the number of articles in those journals which contain a certain MeSH
term. Also, DB2 allows indexing of text in the database by using the keyword

CONTAINS, which is not part of the standard SQL language.

4.3 Non-Functional Features and Advantages

This section presents the non-functional features and advantages which ExaminMED
provides. The following sub-sections discuss extensibility, usability, and scalability

issues addressed by ExaminMED.

4.3.1 Extensibility

One of our main goals in this thesis was to build a framework which can be easily
extended. We realized the need for such framework after learning about the various

attempts made by researchers to extend the basic ABC model proposed by Swanson. The

75

pipes and filters architecture provides extensibility, since new filters can be easily added
to the system and connected to other filters through the pipes in a rather straightforward
manner. The possibility of easy addition of filters is due to decoupling, which is the
derived advantage of using the pipes and filters architecture. Decoupling is the result of
having independent filters which do not communicate with or depend on each other
except through the data stream in the pipes, as is the case for our application. Therefore,
adding new filters does not affect the rest of the system and only requires setting the
pipes properly to connect the new filters to other existing ones. This quality makes pipes
and filters a suitable architecture for creating a software framework designed for
applications such as ours. Also, the framework can be extended to operate on databases
other than MEDLINE. As long as the criteria for relating terms in the database are

defined, ExaminMED can apply the ABC model for UPK discovery.

4.3.2 Usability

The discovery of UPK is an interactive and ‘user-centered’ task. Therefore, it is crucial to
consider user needs and restrictions when designing and developing software that is
intended to be interactive. So far, all systems that implement the ABC model for
hypothesis generation have either relied too heavily on the user or have completely
eliminated human interaction. ExaminMED provides a trade-off between the two options.
We allow the user to interact with the system if (s)he chooses to do so. If the user decides
not to interact with the system, the system can still perform the computation and yield

meaningful terms.

76

ExaminMED is a user-centered software framework which allows the user to easily
explore and experiment with the results for the hypothesis generation task. As mentioned
before, our prototype provides the possibility of choosing desired filters, refining results,
saving and combining search results, sorting results, and viewing corresponding terms, all
of which allow the user to be actively involved in the UPK discovery process. We
elaborate more on this feature in the following chapter where we discuss the usefulness of

ExaminMED.

4.3.3 Scalability

Due to the architectural basis of ExaminMED, concurrent execution of multiple threads,
each of which representing a filter, is possible since the filters are decoupled and do not
depend on one another. In addition to concurrency advantage, concurrent computation
can be realized through pipeline processing or parallelism, when multiple resources
including CPUs are available, resulting in increased performance. With multiple CPUs,
ExaminMED can scale to larger databases, such as the entire MEDLINE. For example,
one CPU may execute the first filter, while others execute the next filters once the
required input is available to them. We remark that while we rely on database technology
to store and search large amount of data efficiently, the performance of the proposed
system when processing the B-terms and A-terms to identify co-occurrences is not
dependent on the size of the database, but on the number of these co-occurrences and

associations between the terms.

77

CHAPTER 5
IMPLEMENTATION AND EVALUATION

In the previous chapters we proposed a flexible, extensible, concurrent, and interactive
framework based on Swanson’s ABC model, for which we also proposed using pipes and
filters as the architectural design and discussed the advantages of our approach. We have
developed a running prototype and performed experiments to illustrate our ideas and
evaluate various aspects of the system. This chapter reports our implementation details

and experimental results.

5.1 Implementation Details

Our prototype system is developed using the JBUILDER 2006 IDE, and implemented in
Java version 1.6.0, with over 2700 lines of code. We use the IBM DB2 version 1.9.0 as
the database management system to store, query, and manage our local MEDLINE
database. Our prototype runs on a conventional desktop, with Intel Pentium 4 CPU at
2.80 GHz, 1GB RAM, single-threaded, and running Windows XP.

Since our main objective in implementing a prototype system was to evaluate the
proposed ideas for an experimental investigation, we only store and use a relatively small
portion of MEDLINE, as opposed to the entire database. We made the decision to use a
subset of the database mainly because of the fact that the large amount of time required to
transform all the entries in MEDLINE from XML format into the RDBMS is not

available within the scope of a master’s thesis prototyping. As a reminder, the MEDLINE

78

database is distributed in over 500 XML files, each of which takes several minutes to
transfer to relational tables in DB2. Demonstrating that the prototype produces
meaningful results with a portion of MEDLINE is considered enough to show that it can
be scaled up with proper techniques. Our database consists of 76,839 entries, each
representing a MEDLINE article; the whole MEDLINE includes about 16 million entries.
The entries in our database are extracted from the first 6 MEDLINE XML files. From our
understanding, the MEDLINE XML files and their contents are not organized according
to any particular criteria, and hence in a way the articles in our database are not chosen on
any specific basis to avoid biased results.

Our prototype consists of 11 java files, 10 of which contain a single class each. They are
introduced in Table 5-1. Of these, 8 classes extend Java’s Frame class and are developed
and used as interfaces to display different information to the user upon request. For
instance, one of these frames, coocResults, displays the corresponding B-terms for the A-
term selected by the user. The modules ConnectToDatabase, DBFacade, and Main are
the only java classes in our implementation that do not have an inheritance relationship
with other java library classes.

The main class is MainFrame which basically implements the core algorithm, and
contains 6 other classes, namely mainThread, producer, coocBFilter, coocAFilter,
semBFilter, and semAFitler, each of which extends Java’s Thread class and runs as a
separate thread. Class mainThread is responsible for connecting, through the pipes, the
various filters chosen by the user. If the user selects the option of including semantic
filtering in the pruning process, then mainThread connects the filters producer,

coocBFilter, coocAFilter, semBFilter, and semAFitler through the pipes. On the other

79

hand, if the user has not selected semantic pruning, the only filters participating in the

pruning would be instances of producer, coocBFilter, and coocAFilter.

Class Functionality

ChooseSemType Pops up if C-term has multiple semantic types associated
with it. It allows the user to choose a desired semantic
type.

CombinationResult Shows the A-terms obtained by combining the results of
various C-terms using AND, OR, and NOT operators.

Combine Pops up when the “Combine Results” button is clicked. It
displays the C-terms available in the database and allows
the user to express queries for combining the results.

ConnectToDatabase This class creates the connection between the application
and the database management system.

CoocResults Pops up when the “Corresponding A-terms” and
“Corresponding B-terms” buttons are clicked to show the
MeSH terms that have co-occurred with the selected
terms.

DBFacade This class implements the Facade Pattern as all the
database queries are posed there.

Done Notifies the user when the requested process is completed.

EnterTerm Pops up when the “Search Medline” button is clicked
without entering a C-term.

Main Starts the application and causes the main frame to pop up.

MainFrame This class is where the main frame and the algorithms are
implemented.

NoResults Pops up if the semantic relation filters result in an empty

ST_B or ST_A list, or if there are B-terms or A-terms
found.

Table 5-1. Classes and Their Main Functionalities

5.2 Comparison of Various Versions of the Software

To evaluate our framework and study the impact of each of its main features, we have

also implemented three versions for comparison purposes. These developments also

provide a basis to compare our work with existing systems. More specifically, our

80

intention is to evaluate and analyse how providing interactivity and using the pipes and
filters architecture affect the performance of the system by comparing various aspects,
such as speed, in the case of the three different versions.

1. The first version implements the Bio-SbKDS algorithm.

2. The second version uses pipes and filters to create and execute the different

processes, but it is non-interactive.
3. The third version is ExaminMED, which uses pipes and filters and also supports
extensive user interactions.

In the first version, which implements the Bio-SbKDS algorithm, all the B-terms that
correspond to the input C-term are computed before any A-term is searched for. For the
input ¢, the algorithm first generates the semantic types ST_B and ST_A, which are used
to prune the results and are based on the semantic relations selected by the user, and then
searches in MEDLINE for those B-terms that have co-occurred with ¢ and have passed
the semantic filters. Once all such B-terms are found, Bio-SbKDS uses each B-term b and
performs a search in MEDLINE for A-terms that have co-occurred with » and whose
semantic type is listed in ST_A, the corresponding semantic type filter. We remark that
Bio-SbKDS has only one thread of control and the steps are executed sequentially. That
is, there is no notion of concurrency, even though there are steps that are somewhat
independent and could run concurrently. This is why all B-terms are computed before it
begins its search for any A-term. Also, Bio-SbKDS is fully automated and hence does not
allow any human intervention during processing other than the user input at the
beginning. This in particular means that the user does not have the option or opportunity

to add or remove B-terms. Another limitation of Bio-SbKDS is that it does not provide

81

filtering option to users to influence the processing of the system. Our first
implementation, which simulates Bio-SbKDS, does not need to keep track of which B-
terms co-occurred with which A-terms. It suffices to only store the number of B-terms
that co-occurred with each A-term. For example, for the A-term Cortisone, we only store
the value 3, as this A-term has co-occurred with 3 terms in the B-terms’ list. Our first
version is simpler also due to its sequential nature and limited functionalities.
Accordingly, its interface is slightly different and simpler, in fact. This interface is shown
in Figure 5-1. Unlike ExaminMED, Bio-SbKDS does not provide concurrency,
interactivity, extensibility, and flexibility with regard to filtering techniques, and does not
support combination of filters through combining search results. As can be seen in
Figure 5-1, there is no need for the “Add” or “Remove” buttons since Bio-SbKDS does
not support interactivity. Also, there is no option for the user to choose the desired filters.
It does not store the results in a database. The option of combining search results and
hence supporting more complex filters is not available in Bio-SbKDS, and hence not

present in our first version.

82

¢ Enamin™Med

adjacent_to

e
[=]
-
P
L)
al
e
T
W
gom
N
AR
oo
c A
T

assesses. effect of

GUI of Versions 1 and 2 of the Prototype

Figure 5-1

itecture,

d filters arch

akes use of the pipes an

10n m

lementat

imp

.

The second version of the

ion allows

, this vers

10n

implementat

first

ike our

ive. Unl

u

terac

till non-in

1S S

but

b

1ters

includes four fi

101N

implementat

. This

iple threads

It

concurrency by creating mu

83

which are connected through the pipes. The filters consist of a co-occurrence filter and a
semantic filter for B-terms, and a co-occurrence filter and a semantic filter for A-terms.
Once a B-term passes both filters, it is searched against MEDLINE to find its
corresponding A-terms. Meanwhile, more B-terms are retrieved. This version is not
interactive and hence the user may not add or remove terms, choose the filters, or
combine search results. Its interface is similar to that of the first version, shown in Figure
5-1.
The third version of the implementation is that of ExaminMED, described in detail in the
previous chapters. This implementation follows the pipes and filters architecture,
supports interactivity, and incorporates multi-threading and concurrency. Since we found
it useful to present the corresponding B-terms and A-terms to the user, we had to keep
track of this information. To store this information, we used a two-dimensional array,
which we called ABTerms. Each column in ABTerms is dedicated to a B-term; the top
entry in this column contains the B-term, and each of the other entries in this column
records the corresponding A-terms.
In terms of results, all three implementations produce identical results. However, they
differ in execution times due to their different functionalities and features. Our goal in
this section is to study, analyze, and compare the running time of each version to verify
(a) whether the concurrency provided by the pipes and filters architecture results

in efficiency and reduces execution time, and

(b) how the overhead of providing interactivity affects execution time.

84

For this, we used two C-terms, Raynaud Disease and Migraine Disorders, as inputs to
these three versions. Table 5-2 presents different execution times for these versions in
various scenarios for the aforementioned C-terms. The different scenarios include (1)
simple architecture or using pipe and filters, (2) interactive or non-interactive, and (3)
using semantic filters or not using them. The first row in this table represents different
scenarios and versions for which we measured the run times. The three left-most columns
show the time measured when using semantic filtering. When semantic filtering was
included, approximately 0.93 minutes of the reported runtimes was spent to calculate the
ST_B and ST_A lists, the allowable semantic types of B-terms and A-terms.

When semantic filtering is not selected, the prototype runs significantly faster. This is
also apparent in the runtimes demonstrated in Table 5-2. There are three main reasons for
this noticeable difference in execution time. The first obvious reason is that the system is
not required in this case to use any semantic type, as there was no semantic filtering
selected. The second reason for increased efficiency in this case is that the system does
not need to connect to UMLSKS to retrieve the semantic types of the terms stored in the
database, since there is no need to prune terms according to their semantic types. Finally,
the system avoids the necessity to check the semantic type of each term since any B-term
or A-term is displayed to the user, no matter of what semantic type it is.

Table 5-2 indicates that the first version runs faster compared to the third version. It is
important to note that this is not due to the overhead of incorporating pipes and filters in
the third version. Rather, it is because unlike the third version, the first version is non-
interactive and hence simpler, and provides less functionalities, all of which result in

lower execution time. In order to verify our claim, we used the second version to perform

85

the same search operations. Recall that the second version is non-interactive and uses
pipes and filters. Using the same C-terms as inputs to the second version, the executions
time measured were less than corresponding search by the first version. These
experiments confirm our idea that using pipes and filters can results in increased
efficiency of our system prototype. The reduced execution time is mainly due to the
concurrent execution of multiple threads, which is provided by pipes and filters. The
system begins producing A-terms once a B-term is passed through both filters. Therefore,

B-terms and A-terms are produced concurrently, which makes the system more efficient.

Version 1/ Version 2/ Version 3/ Version 3/
Semantic Semantic Semantic no Semantic
Filtering Filtering Filtering Filtering
Raynaud 2.38 1.84 2.60 0.23
Disease
Migraine 2.73 2.12 2.93 0.39
Disorders

Table 5-2. Runtimes (in minutes) for Different Versions of our Implementation

Table 5-2 also shows that the search for Migraine Disorders in each case took longer to
execute compared to that of Raynaud Disease. This is because Migraine Disorders co-
occurred with more B-terms. Specifically, when semantic filtering was not applied,
searching Migraine Disorders resulted in 20 B-terms and 656 A-terms, while Raynaud
Disease occurred with only 13 B-terms and 563 A-terms.

Applying semantic filters resulted in 5 B-terms and 41 A-terms for Migraine Disorders.
Searching for Raynaud Disease in the same case resulted in 5 B-terms and 51 A-terms.
To explain why the search for Migraine Disorders still took longer to perform, it suffices

to note that even though the number of B-terms is the same and the number of A-terms

86

for Migraine Disorders are fewer than that of Raynaud Disease, the system still has to
process a'larger number of B-terms for Migraine Disorders, i.e., 20 B-terms versus 13 B-
terms. In general, in all three versions, a larger number of B-terms results in longer
execution time, since more data needs to be processed.

We expect that as the database grows, the second and third versions of our
implementation will outperform the first version. This is because the benefits of
concurrency will be more visible with larger amounts of data. The first version has only
one thread of control and processes the steps sequentially. For data of limited size, this is
acceptable. However, as the amount of data in the database grows, the time needed to
sequentially process the data increases. Taking advantage of having multiple threads of

control enhances the system performance, especially when the database is large.

5.3 Correctness and Usefulness

In this section we discuss bases for correctness of our framework and its usefulness.

5.3.1 Correctness

To show correctness of our implementation, we need to ensure (1) correctness of the
semantic types generated based on the user input, and (2) relevancy of the A-terms
returned. As explained in the previous chapter, selecting semantic types explicitly is not
required in our prototype to perform its operation. Instead, the user chooses the semantic

relations between C and B, B and A, and C and A. The semantic relations are then used

87

by the system to generate the semantic types based on the information in the UMLS
Semantic Network. We follow the Bio-SbKDS algorithm proposed by Yoo [22] as a basis
for correctness of our system, described as follows. We used the same semantic relations
in Bio-SbKDS and compared the results with ours.
For the C-term Raynaud Disease, whose semantic type is “Disease or Syndrome,” we
entered the following semantic relations as did Yoo:

C-A relation filter: treats, prevents

C-B relation filter: process_of, result_of, manifestation_of, causes, affects

B-A relation filter: interacts_with, produces, complicates, affects
Our implementation produced almost identical semantic types to that of Bio-SbKDS. Our
system found 26 semantic types for B-terms and 14 for A-terms. These semantic types
are shown in Table 5-3. Bio-SbKDS produced the same semantic types for A-terms. As
for the semantic types of B-terms, it produced 25 of the 26 semantic types found by our
system. This is because Bio-SbKDS eliminates “Disease or Syndrome” from ST_B, since
it is the semantic type of the C-term. We remark that the algorithm in Bio-SbKDS
excludes the semantic type of the C-term from being in the ST_B list. We took a
conservative approach here and decided not to eliminate such semantic types, since after
all, the user has a final say on which term to keep or eliminate.
In general, our first version which implements Bio-SbKDS produces the same semantic
types as does Bio-SbKDS. This establishes the first basis for correctness of the semantic
types produced by our system. Similar to Bio-SbKDS, our system finds semantic types
through semantic relations, which are provided as input by the user. In other systems,

however, users provide semantic types directly as input, rather than semantic relations.

88

Allowable Semantic Types of B-terms
(ST_B List)

Allowable Semantic Types of A-terms
(ST_A List)

Cell Function

Antibiotic

Cell or Molecular Dysfunction

Pharmacologic Substance

Disease or Syndrome

Therapeutic or Preventive Procedure

Experimental Model of Disease

Chemical Viewed Functionally

Genetic Function

Biologically Active Substance

Mental Process

Biomedical or Dental Material

Mental or Behavioral Dysfunction

Enzyme

Molecular Function

Hazardous or Poisonous Substance

Neoplastic Process

Hormone

Organ or Tissue Function

Immunologic Factor

Organism Function

Indicator, Reagent, or Diagnostic Aid

Pathologic Function Neuroreactive Substance or Biogenic
Amine

Physiologic Function Receptor

Acquired Abnormality Vitamin

Congenital Abnormality

Amino Acid, Peptide, or Protein

Carbohydrate

Chemical Viewed Structurally

Eicosanoid

Element, Ion, or Isotope

Inorganic Chemical

Lipid

Nucleic Acid, Nucleoside, or Nucleotide

Organic Chemical

Organophosphorus Compound

Steroid

Table 5-3. Semantic Types for B-terms and A-terms Produced by our Prototype

According to Yoo, the semantic types generated by Bio-SbKDS, and thus our prototype,
are similar to those selected by experts.

To test the correctness of their systems, authors of similar work search in MEDLINE
articles published prior to the discovery of certain knowledge, to check whether their
systems could correctly identify the known links. For example, the connection between

Dietary Fish Oil and Raynaud Disease was discovered in 1986. To investigate whether

89

the systems can discover this link through the ABC model, Bio-SbKDS searches the C-
term Raynaud Disease in MEDLINE articles publish before 1986. The results show that
Fish Oil is indeed among the top-ranked A-terms retrieved by the system.

Since our database contains only a small portion of MEDLINE, we are not able to
conduct the same kind of tests performed by Yoo and some other researchers. This is
because many of the relevant terms which should ideally appear in our results do not
reside in our local database, and thus will not be processed by our system. For example, a
manual search which we conducted shows that our local database contains only one
article whose indexed MeSH terms include Fish Oils, and that particular article has no
other indexed terms. Therefore our system would have no way of connecting Fish Oils to
the C-term Raynaud Disease through a B-term. Thus, in order to evaluate whether the A-
terms retrieved by our system are indeed meaningful A-terms and are in fact related to
the corresponding C-terms, we used PubMed and manually looked for the C-term
accompanied with the top twenty A-terms retrieved by the system to verify whether the
connection suspected by our system is meaningful. For example, in order to verify
whether the connection between the C-term Raynaud Disease and the A-term Cortisone
is a valid and known connection, we search Raynaud Disease and Cortisone together in
PubMed. The result of this search indicated that MEDLINE contains five articles which
have both terms as indexes and thus contain both terms together. Table 5-4 shows the
result of manually entering, in PubMed, Raynaud Disease and the top twenty A-terms
identified by our system. As the table indicates, 90% of the terms were relevant, as they
had appeared at least once with Raynaud Disease. This analysis is yet another basis for

concluding correctness of our system for identifying this valid link. Although this

90

connection was known, our system identified it as a new and unknown connection,

because our local partial MEDLINE database did not contain any of the articles that

contain the two terms together. Other A-terms retrieved by our system have also co-

occurred with Raynaud Disease in numerous articles.

A-term Number of entries where A appeared
with C in PubMed

Adrenal cortex hormones 77
Adrenocorticotropic hormone 3
Adrenalectomy 9
Hyaluronoglucosaminidase 2
Antacids 4
Arteries 489
Anti-bacterial agents 50
Blood proteins 51
Bone marrow 31
Castration 27
Cholinesterases 2
Cold 847
Dibenzylchlorethamine 0
Dicumarol 2
Electric stimulation therapy 19
Electrolytes 4
Gonadotropins 10
Heparin 60
Homeopathy
Hydantoins 1

Table 5-4. Number of Co-occurrence Entries of Top-twenty A-terms with Raynaud Disease in

PubMed

The B-terms and A-terms retrieved by ExaminMED conform to that of the first version,

and thus to Bio-SBKDS. This is natural and expected. Although the queries posed to the

database look different at first glance, they are essentially the same and thus, produce

similar results, as expected. In the first version, we posed a query in which all the B-

91

terms are searched at the same time using the OR operator to merge the results. In
ExaminMED, each B-term is searched in a separate query and the results are all
displayed once they are retrieved. Therefore, the end results are similar because in SQL
applying the OR operator to the B-terms in a single query is the same as applying it to the

results of individual queries of each B-term.

5.3.2 Evaluation of Usefulness

The usefulness of the proposed software solution from the point of view of end users was
not planned as a part this master’s research. We note that a formal usability study in our
context is an important future research. However, we informally discuss the usefulness of
ExaminMED.

To informally evaluate usefulness of our prototype, we review the features presented in
chapter 4 and see if they address the requirements defined in the outset, in section 1.2. It
is important to evaluate whether or not ExaminMED addresses the needs of target users
and considers their specific characteristics and limitations. Our target users for this
system are doctors and clinical researcher with limited and valuable free time. Since there
are a limited number of specialists available at hospitals and the number of patients they
have to visit on a regular basis is high, the doctors are high on demand. Therefore they
have a time constraint and it is important that the results be delivered to them as quickly
as possible and the system can be used conveniently. In our design process, we took this
fact into consideration and addressed this issue by allowing the results of each search to

appear in the interface as soon as they are retrieved. This allows the user to reflect on the

92

retrieved B-terms and A-terms while the process continues to run in the background to
produce the remaining related terms. Considering the large amount of data to be searched
as a response of the user query, it is a very useful feature to provide partial results to the
user as early as possible while the system is busy computing more results.

In addition, learning to use the system is not as time consuming and is fairly
straightforward. In order for the users to be able to make use of ExaminMED, they need
to comprehend the basics of the ABC model. Once the basics are understood, the fairly
simple GUI is easy to use. This is especially important for our specific users who, as
mentioned before, are busy and cannot afford to spend much time learning the software.
This, however, may need a thorough usability test which is outside the scope of this
research.

As for selection of semantic types, while we could allow users to directly choose the
semantic types for B-terms and A-terms, due to the doctors’ time constraint, we believe it
would be more desirable for them to select among the 54 semantic relations rather than
the 134 semantic types. Selecting items from smaller lists would be more affordable to
the users. Also, we believe it is cognitively easier to think of semantic relations as
opposed to exact semantic types. According to Yoo, the semantic types automatically
produced by Bio-SbKDS, and thus by our prototype, are very similar to those chosen
directly by experts in similar existing systems.

Also, the users are probably not computer experts and may have little knowledge about
databases. It is thus important to provide a user friendly interface to query the database

and display the results in a presentable way.

93

Furthermore, the flexibility provided by our system allows the user to experiment with
different settings and supports users’ interaction. For example, by allowing the user to
select the desired semantic types, we eliminate restrictions and allow the user to get
involved easily and freely.

Also, the concurrency which ExaminMED provides is useful upon noting the vast
amount of information that needs to be processed. As the number of terms grows, the
need for concurrency becomes more apparent since it significantly improves performance
in terms of runtime.

Finally, after conducting research on the ABC model and its various extensions, we
found it useful to build a framework which is not hard-coded and can be extended easily
so that new filters, features, and functionalities can be added in a straight-forward manner

and without much modification to the rest of the implementation.

94

CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Summary and Conclusion

In this work, we studied the issue of discovering Undiscovered Public Knowledge (UPK)
from medical literature by suggesting an interactive, flexible, extensible, and concurrent
framework of Swanson’s ABC model based on a semantic notion. We designed and
developed an interactive prototype, ExaminMED, which makes use of the pipes and
filters software architecture to search the MEDLINE database to discover previously

unknown knowledge.

6.1.1 Interactive, Flexible, Extensible, and Concurrent UPK Discovery

The main goal in this research was to design a flexible, extensible, and interactive
framework for UPK discovery using the ABC model. We identified the need for a
software framework since the ABC model was extended by various researchers, all of
whom developed software from scratch. An extensible software framework allows
software developers to reuse existing components of the software and simply incorporate
the new idea without needing to make much modification to the rest of the software.

To demonstrate the abilities of the framework, we followed the Bio-SbKDS algorithm to
create a semantic-based version of Swanson’s ABC model. The semantic knowledge

incorporated in our prototype is extracted from two well-known ontologies, MeSH and

95

UMLS. Unlike Bio-SbKDS, which is completely automated, ExaminMED is semi-
automated and interactive. We provide various features and functionalities to our users to
facilitate the discovery process. Since the task of discovering UPK is exploratory, it is
important to allow the users to interact with the prototype. ExaminMED is flexible
enough to allow the user the freedom to perform exploratory tasks such as choosing
desired filters, combining the results of various searches, and experimenting with
different combinations of terms.

We used the pipes and filters architecture in the design of our prototype system to benefit
from the advantages that come naturally with this architecture, including flexibility,
extensibility, concurrency, and possibly parallel processing in future implementation.
Currently, we have implemented two co-occurrence filters and two semantic filters for
pruning the B-terms and A-terms. The use of the pipes and filters architecture allows easy
addition of new filters and/or modification of existing ones. Moreover, it allows users to
combine or remove filters easily. This flexibility is very useful, considering the
exploratory nature of UPK in the vast amount of medical literature. We verified
correctness and usefulness of our proposed framework by comparing it to existing
systems. Our experiments and analysis of the results indicate that our framework
produces answers which conform to PubMed data. As further explained below, this is
important upon noting that the database used in our implementation and experiments is
just a small portion of the entire MEDLINE database.

As input to the prototype system, the user enters a C-term and three semantic relation
filters. Our system will then perform a search in the MEDLINE database, looking for

concepts that have not co-occurred with the given C-term but are potentially related to it

96

through a third concept, a B-term. Analysis of the newly discovered concept relations
may result in generation of new hypotheses by the user. If the hypothesis proves to be
valid after clinical investigation or verification by an expert, then we say new knowledge
is discovered. This capability to hypothesize is important noting the huge amount of
information in the medicine and health sciences domain. Ontologies and semantic
knowledge can also improve the search quality by retrieving more meaningful concepts
and pruning a large number of terms present in the database. Our prototype allows the
user to select and use suitable filters for the UPK discovery process. We also store, in the
database, the results of the queries and searches. This information is used by our system
to allow users to explore the results using the database technology and also allows
formulation of complex queries using SQL by combining the results of various C-terms,
if desired.

One of our goals in this research was to build a working prototype to illustrate the
proposed ideas, as opposed to developing a complete software product. We only used a
small portion of MEDLINE and illustrated sample queries to explore the search resulits.
Since the database is not complete, our prototype may retrieve A-terms that are already
known in some MEDLINE articles to be correlated to the input C-term, however, because
those articles are not in our small sample database, our framework identified the A-C
connection as a new one, which in itself was interesting for us to re-discover. In order to
test correctness of the results, we manually search the connection of the C-term with top-
ranked A-terms in PubMed, which is the web-based interface to the entire MEDLINE.
Our running prototype was successful in discovering some of these “known” relations,

indicated by co-occurrence of the C-term and A-terms in MEDLINE. In other words, the

97

A-terms retrieved by our prototype are meaningful in that they were known to be related
to the C-term in the literature.

We have also compared our results with those produced by similar systems. We found
that for every relevant term discovered by other existing software, our prototype was also
able to identify and retrieve the term if it was present in our local, incomplete database.
As per semantic filtering, we compared our semantic type filters with those implemented
in Bio-SbKDS. Our experiments and results indicated that ExaminMED generated all the
semantic types produced by Bio-SbKDS. This is also another indication of correctness of
our implementation since it implements the same algorithm for semantic filter generation
used in Bio-SbKDS.

In our work, we used the BioText tool for parsing the MEDLINE database, available to
licensees in XML format. We also used the tool to load the parsed entries into our local
database, for which we used the IBM DB2, a relational database management system, to
store and retrieve the transformed MEDLINE data. Each medical article in MEDLINE is
indexed by domain experts to reflect the main concepts addressed by the article. As part
of query processing and search, ExaminMED uses these indexes to find co-occurring
terms more efficiently. After the semantic types are verified to match the semantic filters,
the concepts which have not directly co-occurred with the input C-term but indirectly
through a third item are found and presented to the user through a simple user interface
we developed. The user may then explore the results further and suggest new hypotheses.
Our experiments and interactions with the developed system prototype indicate that the
proposed ideas are promising and useful in practice. Also, due to its use of pipes and

filters architecture, the proposed framework is flexible and extensible, important in the

98

concerned application for being exploratory in nature. The particular choice of pipes and
filters architectural design allows efficient implementation through concurrency and
possibly parallel processing, if desired. The advantages of using the pipes and filters
architecture in our design conformed to the requirements which we identified for such
systems. Therefore, by using this architecture, we have met the requirements of our

prototype.

6.2 Future Work

There is much more that can be done in this endeavour to improve and enhance our
proposed framework for discovery of UPK. In this section we highlight some potential
future work related to this research, including result-sharing among experts, building and

employing more specialized ontologies, and providing parallelism.

6.2.1 Sharing Results among Experts

Currently, our prototype assumes only one user. This can be extended to a network in
which multiple users and experts can access the software, interact with it, and share their
results and experiences. By allowing this type of information sharing, the hypothesis
generation process may improve since an expert may think differently than another, and
sharing their expertise and ideas may be of benefit to them. Each user may use different

filters, add or remove different terms, and combine the results of different searches in

99

his/her own unique way. Sharing this information and allowing users to discuss different
decisions made when interacting with the system may prove to be useful for knowledge

discovery process. Experts may benefit from other experts’ ideas and experiences.

6.2.2 Using Specialized Ontologies instead of MeSH and UMLS

Currently, our system benefits from two existing and well-known ontologies, namely
MeSH and UMLS. While these are fairly large and relatively complete ontologies, they
do not contain highly domain-specific terms for various medical specialties. Making use
of a more specialized ontology may be useful when experts are interested in discovering
unknown information in that particular expert domain. Building domain-specific
ontologies, which can be queried and used instead of MeSH and UMLS, can boost
discovery opportunities in medical domain, resulting in far better and more economical

health care systems and human well-being.

6.2.3 Parallel Processing

As mentioned previously, in our current implementation different steps of the algorithm
are processes created as independent threads, when possible, and executed. When
multiple processors are available, multi-threading can turn into multi-processing, when
there are multiple resources. Parallel processing would make the discovery process in our
context faster and more efficient. Each processor can execute the algorithm on specific

chunks of the MEDLINE database and the results can be merged when retrieved.

100

Considering the size of MEDLINE, dividing this data among various processes can
improve performance significantly. More work is required before this can be realized,
however, the point to emphasis here is that the ideas proposed and the design decisions
made in our development in this research make parallel processing a possible natural
choice for further development of this work in particular when extending it to a large

network of expert users and labs.

101

LIST OF REFERENCES

1. Aronson, A.R., “MetaMap: Mapping Text to the UMLS Metathesaurus,” 2006.

2. Bashiiui, “Pipes-and-Filters Pattern - An architectural design pattern,”
http://www.codeproject.com/KB/architecture/PipesAndFilters.aspx, February
2006.

3. “BioText Software for Download,” University of California, Berkeley,

http://biotext.berkelev.edu/software.html, 2007.

4. Cunningham, H. C., “Pipes and Filters Architectural Pattern,”
http://ftp.cs.olemiss.edu/~hce/softArch/notes/pipes.html, March 2004.

5. Han, J., Kamber, M., “Data Mining Concepts and Techniques,” 2000, pp.1.
6. Life Sciences Library, McGill University, “MeSH,”

http://www_health library.megill.ca/help/guides/biomed/mesh/, February 2004.

7. National Library of Medicine, “UMLS 2004AB Documentation,”
http://www.nlm.nih.gov/research/umls/META3 current_semantic_tvpes.html,
November 2003.

8. National Library of Medicine, “About the UMLS Resources,”

http://www.nlm.nih.gov/research/umls/about _umis.html, May 2006.

9. National Library of Medicine, “Unified Medical Language System,”
http://www.nlm.nih.gov/research/umis/META3 Figure 1.html, May 2006.

10. National = Library of Medicine, “Medical Subject = Headings,”
http://www.nlm.nih.gov/mesh/ , October 2007.

11. National Library of Medicine, “2007 MEDLINE/PubMed Baseline Distribution,”

http://www.nlm.nih.gov/bsd/licensee/2007 stats/baseline _doc.html, December

2006.

12. National Library of Medicine, “Unified Medical Language System Knowledge
Source Server (UMLSKS) Fact Sheet,”
http://umlsks.nlm.nih.gov/kss/serviet/Turbine/template/admin%2Cuser%2CFactS

heet.vm, May 2007.

102

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

National Library of Medicine, “Mesh Descriptor Data,”
http://www.nlm.nih.gov/cgi/mesh/2007/MB_cgi, 2007.

Open Biomedical Ontologies, http://obo.sourceforge.net/main.html.

Oliver D.E., Bhalotia G., Schwartz A.S., Altman R.B., Hearst M.A., “Tools for
Loading MEDLINE into a Local Relational Database,” BMC Bioinformatics, 5,
pp. 146-157, October 2004.

Srinivasan, P., “Text Mining: Generating hypotheses from MEDLINE,” Journal

of the American Society for Information Science, Vol. 55, No. 5, pp. 396-413,
March 2004.

Swanson, DR., “Undiscovered Public Knowledge,” Library Quarterly, Vol 56, No
2, pp. 103-118, 1986.

Swanson, DR., “Medical Literature as a Potential Source of New Knowledge,”
Bull Med Libr Assoc, Vol 78, No 1, January 1990.

Swanson, DR., Smalheiser, NR., “An Interactive System for Finding
Complementary Literatures: A Stimulus to Scientific Discovery,” Artificial
Intelligence, Vol 91, No 2, April 1997, pp. 183-203.

Weeber, et al, “Using concepts in literature-based discovery: Simulating
Swanson’s Raynaud-Fish Oil and Migraine-Magnesium Discoveries,” Journal of
the American Society for Information Science and Technology, Vol. 52, No. 7,
pp. 548-557, 2001.

Wikipedia, “Ontology (Computer Science),”

http://en.wikipedia.ore/wiki/Ontology %28computer_science%?29, 2007.

Yoo, L, “Semantic Text Mining and its Application in Biomedical Domain,” PhD

Thesis, Drexel University, July 2006.

103

