IMPLEMENTATION AND VALIDATION OF THE
GENERAL INTERNET SIGNALING TRANSPORT PROTOCOL

Bo Gao

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements

for the degree of Master of Science (Computer Science) at
Concordia University

Montreal, Quebec, Canada

April 2008

©Bo Gao, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40936-7
Our file Notre référence
ISBN: 978-0-494-40936-7

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

Abstract

Implementation and Validation of the General Internet Signaling Transport Protocol
Bo Gao

The IETF NSIS Working Group was created in 2001 and the WG is trying to standardize an
IP signaling protocol using a two-layer signaling protocol suite, which was first introduced
by B. Braden. In 2002, Xingguo Song in the High Speed Protocols Laboratory in Concordia

University has done a verification using the formal modeling language SDL.

The main objective of the new signaling protocol suite is to overcome all of the drawbacks
(Complexity, Scalability, Mobility Support, Messaging Reliability, etc.) that the Resource
Reservation Protocol has. It should be applicable not only for Quality of Service but also

other signaling application protocols.

In 2003, the NSIS Working Group produced a two layer Framework, which consists of a
Transport Layer Protocol and several Signaling Layer Protocols. It also provided a premature
but concrete solution for the NSIS Transport Layer Protocol, which is known as the General
Internet Signaling Transport Protocol (GIST) now. While we were implementing the GIST,

the specification of GIST has evolved into a very well defined Internet-Draft.

The main objective of my thesis is to design and develop an implementation of GIST to
verify the GIST protocol stack and at the same time provide our own comments which could
be useful to the NSIS WG.

1il

Acknowledgements

I would like to thank Dr. Atwood for his support. His expertise in Networking and
Engineering helped me to finish the implementation. His valuable advice encouraged me to
finish my thesis. Things I learned both from him and from the project have already started to

benefit me and will continue into the future.

Also I would like to thank my parents, my wife and my son. Without their support, my thesis

would not be accomplished.

iv

Table of Contents

LISt OF FIZUIES 1.vvevvviieriiereinereniesien ettt ettt b et sbs bbbt bssba bbb eseebssbs b e b eneas viii
LISt OF TADLES 1..vviiciiiiireiie ettt ettt e st b et e s e s e s e sts e san e e sbb e sab b e sabe et r e e r e e eaaneebae s X
LISt OF ACTONYITIS 11evvivtievieireierieeiieriereirenieire e et eseeseesnesreeme st sis e e sane e sr s beera s b e e s sasebbs e s besbs et Xi
Chapter 1 INtroOQUCTIONeuveuveiscrrericiicriiie s e bbb 1
1.1 Signaling, Quality of Service, RSVP and Its Signaling Modelccccevvivivinnnnnnn. 1

1.2 The Constraints Of RSVPcccovvviiiiiiniiiini 2

1.3 Next Step In Signaling......c.cvvcivriiiiininiiniiniiin i 4

1.4 Motivation and Scope of the Thesis......cvvvirviininininii 5
Chapter 2 General Internet Signaling Transport Protocolccoevvviviiinivniiiiine, 7
2.1 The Requirements 0f NSIS ..o, 7

2.2 The Framework Proposed by the NSIS WG......ccoovvvvininniiiiiiiicnn 8
2.2.1 Two-Layer Model.........cocoviiiiiiiniiniiiiiiiiiiee i 8

2.3 The GIST (General Internet Signaling Transport Protocol)coccvevververiennnciinene, 9

2.4 Design Overview of GISTcooiiviiiiiiiiii 9
2.4.1 Message Transportation MOAEcccvveievienririeninenirineerineeiereseeeeseenense e snennns 10
2.4.2 The Message Routing Informationccecvvireriinenieneinnenineeceesecreneesieenens 10
2.4.3 GIST MESSAEZE ..cevvrerirriiiiiiiiiriiiiii ettt st e enane s 11
2.4.4 GIST Peer Relationshipccceoveveriineririenrenenineccecee e 11
2.4.5 Signaling SESSION....c.criviriiriiiiiiiiienie st 12

2.5 A SIMPle EXAMPLE ...oeiiiiiiiiiiieciiiecii ettt st sarae e e 13

2.6 GIST Message Processing OVEIVIEW........c.ccvvviiviiiniiiiniiiniiiinien e 15
2.6.1 The Interface between GIST and the Signaling Application.........c.cccoveerverreneenne. 15
2.6.2 Message Routing State and Messaging Association Stateccceeeveviereniennenne. 16

v

2.6.3 Message Reception, Processing and TransSmissioncocovrevniiiiinnininienne. 17

2.6.4 Message Routing State and Messaging Association State Maintenance................ 19
Chapter 3 Implementation.........cccvieeriiiineeeiiieie i 24
3.1 The Overall Structure of the Projectcoccvivereevenieneieeneireinesesceee e 24
KN 104 1< O PO TP TP 28
3.2.1 The Delta List of Timer EVENtsccccovvviirinieriininienioriiieeierenesreeenneneeseessenees 28
3.2.2 The Data Structure Used in GIST Timer........occvereririvienineviniiccieneneecniecnns 28
3.2.3 The Timer Posix threadcccoceeeiiiiiiniiiiiiiii i 31
3.2.4 INSETt @ TIMOT.c..vviiviieirirrerreeriesee ettt sab st sneseree s 34
3.2.5 DEIEte @ TIMET ..ecvvriiiiieieerreerirerieesiteeteeste st s e sanesbreesbaesebeessbeesaneesabessseesaretssbeneneeens 36
3.2.6 Clear All the Timers for a State Machine...........cccccevceririviriicenniciennereees 38
3.3 State MaACKINC......veiviveiiiiitereeie ettt st st e na e et neeenes 39
3.3.1 Querying Node State Machineccoccevervuiriinernienieeeierineneese e e 41
3.3.2 The Responding Node State Machineccccevveririnienenininricnencnenecnrecnnes 43
3.3.3 The Messaging Association State Machine...........cccooevivinviviiiiinninnnin. 45
3.4 State Machine Implementationcccveeriiriniiiinineniieeieesenie e 47
3.4.1 The GIST MESSAZEccvvverereirireriviaireeereireesiseesiresssresseesstesssesssssesseesssessssersnesssesass 49
3.4.1.1 GIST MeSSAE TYPE ...vevveriieriiiiiiiiiienriciteie ettt 50
3.4.1.2 Common HEAdETceviriiiireririieriiniriiererieie s seenes 53
3.4.1.3 TLV ODBJECLS....cvirreriiriieieeiiiietentesiesetestest et sbesiee s ssenbssseeseeeesaessasssensessensesens 54
3.4.2 The Pseudo Code of the Event Distributor.........c.cocevvenieiincniineniincnicnncnenne 56
3.4.3 The Implementation Of @istdemuxcccvivniviiriiniiniiiie e 61
3.4.4 The Implementation of the Querying Node State Machine...........c..ccecevveninnenee. 62
3.4.5 The Implementation of Responding Node State Machine............ccccoovvververcnrinnens 69
Chapter 4 Validationcccueecuieiiiiiieiiiieie ettt et sreesn e s b s ree s beeenees 74

4.1 The Test ToOl DESIZNEA......cccocivirriieieirierieenrse e 74

4.2 A Brief Introduction of Our GIST Implementation..........ccoceuverivererenininivnnnnnienien 79
4.3 Testing in a Networking EnvIironment.............cccverveerneeiniieeiiennenniensnesieeniisaneennenns 79
4.3.1 Testing With Four Hops and Two Flows without Mapping Table...........ccccovvneee. 80
4.3.2 Testing with Flow-Next Hop Mapping Tablecocceeimvinininenninnnieninieninenne 81
4.4 Normal Message Delivery and State Refreshing.........ccoocevveviiiniviiniiininncnienecnens 84
4.5 Messaging Association MUltipleXingc..ccoceveririrerieieneninnniennineneeneneseneneenens 85
4.6 Validation of Soft State TImMerScovvverririiirieriiii e 88
4.6.1 MA_Connect Timer Validation........c.ccovvirvenieninniiiinnieniicnnesis i eeesnenines 88
4.6.2 Refresh QNode Timer Validation.........covivvveriieneeninireniineenrenisesnessesessnesnens 89
4.6.3 No_Response Timer Validationcccocuevviiiririnieneneeenenienneseescsereeseeneeseennes 92
4.6.4 Inactive_QNode Timer Validationc..cccevvrcerineeennieiennnnereenenesesnneseecrerennes 95
4.6.5 Expire RNode Timer Validation.........ccovvvcrerininininnennienenenineneneosmesenenenenns 97
4.6.6 No_Confirm Timer Validationccocververiniinineiiniensinenesneneneeresesnnenesieneenes 99
Chapter 5 Conclusion and Future Workcccoviiririeniinininiiieneeeennsnens 102
5.1 CONCIUSION «...ovvviiirieriieriieieseenr e srne st s 102
5.2 FUUIE WOTK ..ottt b e s b senesaeneanes 102

vil

List of Figures

Figure 1: NSIS Protocol Stack.......ccocviiiiiiiiiiniiriinninniee st sne s s 9
Figure 2: A Simple GIST EXaMPIC.....ccvvvivveriiriiniiiriniriniiniiisiiiissesisresessessessesseseseessessenses 13
Figure 3: Message Sequence at State Setup.......ccccevieiniiniciiiinniiieee e 21
Figure 4: Overview 0f the PrOJECt........covviirineniininienienens e 25
Figure 5: Querying Node System ArchiteCturecocovvivieriverienieennnenieinecneeenesnesneniennne 26
Figure 6: Responding Node System ArchiteCturecccvevvevvirivinnenineninineniieenneneennesenene 27
Figure 7: A Delta List ..covevirieiriniiiiiniieieinniisenteieie et sesissesnaennes 28
Figure 8: INSErt @ TIMET ...ccvviveriuiriiiiiniiniieniiiiicienrerr s st senesrnenes 36
Figure 9: Delete @ Timer ... ccoveiiiiiiieeiireieenie ettt st e st s e et sen e s sresennes 38
Figure 10: Querying Node State Machinecccovveriiiirienimniienieeseeneeniesnenisnseesnenessessnaens 43
Figure 11: Responding Node State Machinec.ccccovvevrirneiiinrcniecneeninrniesreseeseesnaesieens 45
Figure 12: Messaging Association State Machine.........c.ccoveviriiireeriinieninsnienenirencnecenenens 47
Figure 13: Revised Querying Node State Machinecoccvvvveniinniiniinninniininnnenns 49
Figure 14: Ping Objects contained in NSLP Objectc.cccovvvviiniinniiiniinncincicee. 77
Figure 15: GIST Test without Flow-Next Hop Mapping Tablecccccevvvrvineriivencreironnennes 80
Figure 16: GIST test with Flow-Next Hop Mapping Table..........ccocovvrivievinineinnninieneenne 82
Figure 17: Normal Message Delivery and Soft State Refreshing.........c.ccocovvevviiininciinnnnn. 85
Figure 18: Messaging Association MultipleXing..........ccevuerrerereeinmrieniareresinenesienerneneeneennes 87
Figure 19: MA_Connect TIMETccoviiviiiiiiiniiiiiii s 90
Figure 20: Refresh. QNOAE TIMeTcceiiiiiiiiiiiiiiiieiireie ettt et st 91
Figure 21: No_Response Timer in the Awaiting Response State..........ccceeveviviiniinicniannnn. 92
Figure 22: No_Response Timer in the Awaiting Refresh State..........cccovvveviininiiniinnnen, 94
Figure 23: Inactive QNOGAE TIMET.......cccviiviriierieriieiresieieeiree e seeeseesnesieestee e eseessaesssesseessnes 96

Figure 24: Expire RNode Timer Time-out at Established State........c.ccccccovvvvevicnicnncninenn. 98

Figure 25: Expire_RNode Timer Time-out at Awaiting Refresh State............cccocvniciininnnn, 99
Figure 26: No_Confirm Timer Time-out at Awaiting Refresh State..........ccocvvvevvvicniininnens 101
Figure 27: Revised Messaging Association State Maching............ccvevevvvircnenininnnniennens 104

ix

Table 1: List of Events for GIST

List of Tables

--

List of Acronyms

ATM Asynchronous Transfer Mode

GIST General Internet Signaling Transport
IETE e Internet Engineering Task Force
LSP Label Switching Path

MA Messaging Association

MPLS Multi Protocol Label Switching
MRI Message Routing Information
MRM Message Routing Method

MTU e Maximum Transfer Unit

NAT Network Address Translation

NLI e Network Layer Information

NSIS Next Steps in Signaling

NSLP NSIS Signaling Layer Protocol
NTLP NSIS Transport Layer Protocol
POSIX Portable Operating System Interface
QOS Quality of Service

RAO Router Alert Option

RSVP o, Resource Reservation Protocol

SDL Specification and Description Language
SIP Session Initial Protocol

TLV Type Length Value

WG e, Working Group

X1

Chapter 1

Introduction

1.1 Signaling, Quality of Service, RSVP and Its Signaling

Model

In the telecommunication and networking area, signaling refers to the information exchange
concerning the establishment and control of a connection and the management of the
network, in contrast to the user information transfer. For example, Signaling System 7 is used
to set up the telephone calls rather than for transferring the user voice data. SIP (Session
Initiation Protocol) is used to set up Internet telephone calls, while the voice data is not

transported by SIP itself.

Achieving Quality of Service (i.e., providing better services to source data flows) requires
resource reservation control mechanisms. Quality of Service can provide different priority to
different users or data flows, or guarantee a certain level of performance to a data flow in
accordance with requests from the application program or the internet service provider
policy. Quality of Service guarantees are important if the network capacity is limited, for
example voice over IP and IP-TV, since these often require fixed bit rate and are delay

sensitive.

RSVP (Resource Reservation Protocol) [RFC2205] is a protocol that has been used by hosts
to request a specific QoS (Quality of Service) from the network and could be classified as an
Internet signaling protocol. RSVP can make resource reservations for both unicast and
multicast applications. The flow sender advertises the traffic characteristics along the unicast
or multicast routes, which are provided by routing protocols, to the flow receiver using a
“Path” message. These “Path” messages will set up “Path” state in each node along the way.
The Path state includes at least the unicast IP address of the previous hop node, which is used
to route the “Resv” message hop-by-hop in the reverse direction. The flow receiver will

initiate the Reservation Request by sending out “Resv”’ messages toward the flow sender

1

once it receives the “Path” message. These “Resv”’ messages will install the “Resv” state to

reserve the resources along the path.

Inside every RSPV aware node, RSVP communicates with two local decision modules:
admission control and policy control. Admission control determines whether the node has
sufficient available resource to supply the requested QoS. Policy control provides the
authorization for QoS request. If both checks succeed, the RSVP module sets parameters in a

packet classifier and packet scheduler to obtain the desired QoS.
1.2 The Constraints of RSVP

RSVP has been proved to be a very well designed protocol. It can support end-to-end
resource reservation for both Unicast and Multicast optimally. The design of RSVP
distinguished itself by a number of fundamental ways; particularly, soft state management,
two-pass signaling message exchanges, receiver-based resource reservation, and separation
of QoS signaling from routing [2]. The soft state approach can grantee that in the absence of
the refresh messages, the Resv and Path states can time out automatically and be deleted.
When the receiver issues the Resv request, the request will propagate to all of the routers in
the reverse direction of the data path. In this way, the RSVP requests could be merged,
resulting in a protocol that scales well when there are a large number of receivers [2]. RSVP
is not a routing protocol. It is using current and future routing protocol to send packets and

RSVP consults the local routing table to obtain routes.

However since it was published, many extensions have been added to it. The following are

some examples of RSVP extensions.
e DiffServ Interface

RFC2996 introduces a DCLASS Object to carry Differentiated Services Code Points
(DSCPs) in RSVP message objects [2].

e ATM interface

[RFC2379] and [RFC2380] define RSVP over ATM implementation guidelines and
requirements to interwork with the ATM (Forum) UNI 3.x/4.0 [2].

e MPLS Traffic Engineering

RSVP-TE specifies the core extensions to RSVP for establishing constraint-based explicitly
routed LSPs in MPLS networks using RSVP as a signaling protocol. RSVP-TE is intended
for use by label switching routers (as well as hosts) to establish and maintain LSP-tunnels

and to reserve network resources for such LSP-tunnels [2].
e Simple Tunneling

[RFC2746] describes an IP tunneling enhancement mechanism that allows RSVP to make
reservations across all IP-in-IP tunnels, basically by recursively applying RSVP over the

tunnel portion of the path [2].
e [Psec Interface

RSVP can support IPsec on a per-address, per-protocol basis instead of on a per-flow basis.
[RFC2207] extends RSVP by using the [Psec Security Parameter Index (SPI) in place of the
UDP/TCP-like ports [2].

e Refresh Reduction

[RFC2961] describes mechanisms to reduce processing overhead requirements of refresh
messages, eliminate the state synchronization latency incurred when an RSVP message is

lost, and refresh state without the transmission of whole refresh messages [2].

Some new deployments such as RSVP-TE are totally unrelated with what RSVP was
originally designed for [2]. RSVP’s transport mechanism, performance, security and mobile
capability need to be reevaluated. With more and more extensions added to it, some

constraints are emerging. The following are some specific constraints faced by RSVP.
o Complexity

RSVP was originally designed for multicast networks. In order to adapt to multicast
network, reservation style, scope object, and blockade state are used in the basic protocol.
RSVP not only needs to deal with QoS message transportation but also needs to deal with the
entire QoS message processing (e.g., communication with Policy Control Unit, Admission
Control Unit, Packet Classifier and Packet Scheduler).

e Scalability

RSVP suffers from the scalability problems as it is a per-flow based protocol and the number
of states is proportional to the number of RSVP sessions. Path and Resv states have to be

maintained in each RSVP router for each session.
¢ Mobility

In mobile networks, the movement of a mobile node may not properly trigger a reservation
refresh for the new path. Therefore, a mobile node may be left without a reservation up to the

length of the refresh timer [2].
e Message Reliability

RSVP does not have a good message delivery mechanism. If a message is lost on the wire,
the next re-transmit cycle by the network would be one soft-state refresh interval later. By
default, a soft state refresh interval is 30 seconds. Also, it does not separate the transport
functions from protocol processing. So a lot of effort has to be spent on per-session timer

maintenance, message retransmission and message sequencing.
e MTU Problems

An RSVP message must be fit entirely into a single non-fragmented IP datagram [2]. Routers
simply can not detect and process RSVP message fragments as IP packet reassembly can

only be done at the flow receiver.
1.3 Next Step In Signaling

The Next Steps in Signaling Working Group was formed in 2001 and is trying design an IP
signaling protocol for signaling information about a data flow along its path in the network.
The new IP signaling protocol could be used for Quality of Service and also for other

signaling applications.

The NSIS working group is concentrating on a two-layer signaling paradigm. The idea of
using two-layer architecture was first brought by B. Braden [6]. A NTLP (NSIS Transport
Layer Protocol) will transport the NSLP (NSIS Signaling Layer Protocol). This two-layer
model then can be used to separate the transport of a signaling protocol from application

signaling. It will allow for a more general signaling protocol to be developed to support

signaling for different services. In this way, modularity can be achieved. Also the extension
of signaling application protocol could be easily done without affecting the lower layer

transport protocol.

The lower layer transport protocol will try to use the current internet transport layer protocol
such as TCP. In this way, the NSIS protocol suite will be relieved from managing the
congestion avoidance, message retransmission and security. Problems such as the MTU

problem and the reliable transmission problem can be avoided then also.

The NSIS signaling suite will only consider the unicast flows now and thus will reduce the

complexity that the RSVP has.

The NSIS also take the mobility environment into consideration. Specifically, not like in
RSVP, where the flow is 1:1 mapping with session. NSIS could allow the update of the
flow:session mapping. A new flow can be added to a session and an old flow can be deleted
from it, effectively transferring the network control state between data flows to keep it

associated with the same session.

The Framework of NSIS proposed by NSIS WG can be found at [1].
1.4 Motivation and Scope of the Thesis

In 2002, Xingguo Song in High Speed Protocols Laboratory in Concordia University has
done a verification using formal modeling language SDL for the two-layer protocol
architecture. After that, the NSIS WG group proposed the Internet-Draft for NSIS Transport
Layer Protocol, which is known as GIST (General Internet Signaling Transport) protocol. A
lot of concepts needed to be verified and clarified against the specification. Questions such as
how good the GIST specification is and how difficult it will be if GIST is to be implemented
are a particular interest of the NSIS WG.

The main objective of my thesis is to design and develop an implementation of GIST to
verify the GIST protocol stack including the state machines proposed by NSIS WG and to

propose suggestions on GIST development.
The thesis project consists of four parts:

e Explanation of the NSIS framework and the GIST Internet Draft
5

Design of the software architecture for implementation of GIST including timer and state
machine

Development of an implementation of GIST using C/Linux

Validation of various GIST scenarios including various timers based on our

implementation

Chapter 2

General Internet Signaling Transport Protocol

2.1 The Requirements of NSIS

Bearing all of the problems of RSVP in mind, the NSIS WG analyzed the requirement of the
next generation internet signaling protocol and proposed a framework with a two-layer
protocol architecture. The following are the basic requirements for the Next Generation

Internet Signaling Protocol Suite.
e NSIS must be designed modularly

NSIS should be able to work over any kind of network. NSIS should be extensible in the
future with different add-ons for different environments or scenarios. It will not only support
QoS but also it should be easily extended to support other signaling applications such as

NAT and firewall control.
e NSIS should provide availability information on request

NSIS SHOULD provide a mechanism to check whether state to be set up is available
without setting it up. In some scenarios, e.g., the mobile terminal scenario, it is required to

query whether resources are available, without performing a reservation on the resource [3].
e The NSIS entities must be allowed to placed anywhere in the network.

The protocol must be able to work in any scenarios such as host-to-network-to-host, edge-to-

edge, and network-to-network. In the contrast, the standard RSVP can only work end-to-end.
e Automatic Release of State after Failure must be possible [3]

RSVP is using a soft-state timer to automatic release useless states. NSIS has to do the same

thing to prevent the stale states within the network while adding the robustness.

e NSIS states must be addressed independently of Flow Identification.

Various scenarios in the mobility area require this independence because flows resulting
from handoff might have changed end-points, etc., but still have the same service

requirements [3].
e NSIS must be scalable.

As NSIS needs to accommodate several signaling applications and also the use of signaling

by hosts will become universal, the scalability of state per NSIS entity must be achieved.
2.2 The Framework Proposed by the NSIS WG

In order to achieve a modular solution for the NSIS requirements, the NSIS protocol suite

consists of two layers.

2.2.1 Two-Layer Model

The NSIS protocol stack (Figure 1) consists of NTLP (NSIS Transport Layer Protocol) and a
number of NSLP (NSIS Signaling Layer Protocol). The NTLP proposed by NSIS WG is
known as GIST (General Internet Signaling Protocol).

The NSIS protocol stack works as follows:

When a message is ready to be sent out, it is passed to NTLP by one NSIS Entity along with
what flow it is for, the NTLP then gets it to the next NSIS Entity, where it is received. It is
the NTLP’s responsibility to find its peer. If there is an appropriate signaling application
locally, the receiving NSIS Entity will pass it upwards for further processing. The signaling
application then can generate another message to be sent out via NTLP. In this way, the
transport service provided by one NTLP instance can be used by many different signaling

applications and the modularity will be achieved.

'
NSIS Signaling Layer Protocol !
For MiddleBox 1

]

NSIS fmmmmmmmmemmmmmm e ono s syt

Signaling ! NSIS Signaling Layer ¢ ! NSIS Signaling Layer Protocol |
Layer 1+ Protocol For QoS ! v For... '
R S S '
NSIS Transport e
Layer

Figure 1: NSIS Protocol Stack

The NTLP on one NSIS Entity does not use any knowledge about addresses, capability or
statues of any other NSIS Entity another than its direct peer [1].

2.3 The GIST (General Internet Signaling Transport
Protocol)

The Internet Draft [4] gives a concrete solution for NTLP (NSIS Transport Layer Protocol,
which is known as GIST). We first give out a design overview of GIST, then a message

processing overview.
2.4 Design Overview of GIST

The GIST basically provides the Routing and Transport service to the Upper Layer.

2.4.1 Message Transportation Mode

GIST has two types of operation mode: Datagram Mode (D-Mode) and Connection Mode
(C-Mode).

Datagram mode is mainly used for small and infrequent messages. With Datagram mode, the
GIST provides an unreliable transportation service to the application layer signaling, which
means that the reliability will be taken care of by application layer signaling itself. The
Datagram mode is using UDP.

There is a special Datagram Mode, called Q-mode, which is used when no routing state
exists. The Q-mode message is usually used for peer discovery (e.g., Messaging Association
Setup). It is using an IP raw socket with a Router Alert Option so that the Routers in the data

path can intercept the message.

Connection Mode is mainly used for larger messages and can only be used between two
nodes with a peer relationship. The connection mode can provide a reliable transportation
service for the signaling application layer. Fox example, if the signaling message is so large
that it requires fragmentation, it must use C-mode. In order to transfer a signaling message to
the peer, the node must have a peer relationship with that peer. The relationship between
those two nodes is called a Messaging Association. The Messaging Association is totally

internal to the GIST.

GIST usually uses the three-way handshake in D-mode to set up the Messaging Association
and then transfers signaling messages with C-mode by the peer connection associated with

the Messaging Association.
2.4.2 The Message Routing Information

The baseline message routing functionality in GIST is that signaling messages follow a route
defined by an existing flow in the network, visiting a subset of the nodes through which it
passes [4]. The GIST design encapsulates the routing-dependent details as the Message
Routing Method.

The definition of Message Routing Method includes a MRI specification (Message Routing
Information), which includes at least the flow’s destination and source address. The MRI
10

always includes a flag to distinguish the directions the message flow can take, which is either
“downstream” or “upstream”. The definition of MRM includes a specification of the IP-level
encapsulation of the messages, which probe the network to discover the adjacent peers. The
signaling message is traveling in the same direction as the flow defined by the MRI. The
MRI is explicitly passed between signaling applications and the GIST. The signaling
applications must define which MRM they require. Signaling applications may use fields in
the MRI in their packet classifiers, if they use additional information for packet
classification, this would be carried at the NSLP level and so would be invisible to GIST.
Any node hosting a particular signaling application needs to use a GIST implementation that

supports the corresponding MRMs [4].

2.4.3 GIST Message

GIST defines six types of messages, which are Query, Response, Confirm, Data, Error and
MA-Hello. All signaling application data are carried in the payload of those messages. The
Query, Response and Confirm are used to set up the Routing State and Messaging
Association by Handshake. The Query Node will initiate the handshake by sending out the
Query with an IP raw socket, which is usually including a Router-Alert Option in the IP
header. The correct peer will intercept this Query and becomes the Responding Node. A
Query always triggers a Response in the reverse direction as the second message of the 3-
way handshake. The Responding Nodes usually install the Routing State until the Querying

Node returns a confirm message.

The Data message is used to carry and deliver the signaling application data. Error messages
are used to report errors. The MA-Hello message can be used as a keep-alive for the

Messaging Association protocols.

2.4.4 GIST Peer Relationship
Peering is the process whereby two GIST nodes create message routing states that point to
each other [4].

The peer relationship is set up by handshake between the Query Node and the Responding
Node. From the Querying Node’s view, the identity of the Responding Node is not known at

11

the time the Query is sent. Only after the Query is intercepted by a node along the path,
which also decides to send a Response to the Query Node, the peer relationship is then set

up. Nodes not hosting the NSLP just forward the Query transparently.

2.4.5 Signaling Session

GIST requires signaling applications to associate each of their messages with a signaling
session [4]. A signaling application provides the SID (Session Identifier) to GIST whenever
it needs to send out a message and the GIST will deliver the message received to the
corresponding signaling application when the received message has an SID that is associated
with the signaling application. All messages for the same flow may have the same session
ID. Messages for different flows could have the same session ID also. This could be useful in
mobile networks. When the Mobile Node moves from one access point to another access
point, its IP address may change, but the flow is still there and requires the same service
regardless of the different access network. By associating a different flow with the same

Session ID, the double resource reservation problem can be resolved

GIST does not perform any validation on how signaling applications map between flows and
sessions as the SID is passed by the signaling application. From GIST’s view, the SID is only

an opaque 128-bit number.

If messages have the same SID and they also need to be delivered reliably, they will be
delivered in order. In the routing state table, the triplet (MR, NSLP, SID) is the key.

12

2.5 A Simple Example

v

Flower GIST GIST Flower
Sender Nodel Node2 Receiver
............ >
xx.1.1 x.X.1.2 x.x.2.1 X.x.2.2 x.x.3.1 x.Xx.3.2
< _____________

-> Downstream

<- Upstream
All Interface IP Addresses have prefix 192.168.% *
The Flow=(Src IP,Src Port,Dst IP,Dst Port,Protocol)
=(192.168.1.1,1025,192.168.3.2,21,FTP)

Figure 2: A Simple GIST Example

The following is an example of GIST usage in a relatively simple signaling scenario. The
example is different from the one given in [4] as the message needs the reliable delivery
service from GIST.

Suppose that the signaling application is a RSVP-like signaling protocol and flow sender
192.168.1.1 wants to reserve the resource for the flow to the receiver 192.168.3.2.Thus the
flow is [192.168.1.1, 1025, 192.168.3.2, 21](Source IP, Source Port, Destination IP,
Destination Port). The signaling can take place along the entire end-to-end path, while the
role of GIST is only to transfer a signaling message over a single segment of the path
between neighboring resource-capable nodes [4]. GIST is always triggered by the local
signaling application. This example here only describes how the GIST delivers the signaling
message between two adjacent nodes along the path. We suppose a signaling message is

being processed above the GIST layer by the signaling application in GIST Nodel.

13

1, The signaling application on GN1 determines that this message is a simple description of
resources that would be appropriate for the flow. It also determines that the signaling
message needs to be delivered to the next downstream signaling application peer on the path

with reliability.

2, The message payload is then passed to the GIST layer in GN1, along with a definition of
the flow [192.168.1.1, 1025, 192.168.3.2, 21] and description of the message transfer
attributes (in this case, requesting reliable transmission). GIST determines for this particular
message that a Messaging Association needs to be set up for the message as it needs to be
delivered reliably. It then finds a free empty Messaging Association entry and queues the
signaling application data at this entry so that the data can be delivered to the signaling
application on GIST Node2 reliably once the Messaging Association is set up.

3, GNI1 therefore constructs a GIST Query, which will be used to initiate a Messaging
Association. The Query is encapsulated in a UDP datagram and injected into the network
with a destination address 192.168.3.2. At the IP level, the destination address is the flow
receiver, and an [P Router Alert Option (RAO) is also included.

4, The Query passes through the network towards the flow receiver, and is seen by each
router in turn as each Router must process message with IP Router Alert Option. GIST-
unaware routers will not recognize the RAO value and will forward the message unchanged,
GIST-aware routers that do not support the NSLP in question will also forward the message
basically unchanged, although they may need to process more of the message to decide this
[4].

5, The Query message is going to be intercepted by GIST Node2 finally and is going to try to
deliver the NSLP payload (in our case, it is empty) to the NSLP. NSLP will indicate to NTLP
on GN2 that a Messaging Association is needed between GN1 and itself. Then, GN2 is going
to issur a Response to GIST Nodel (it either can learn the GIST Nodel IP address from the
Query as there is a GIST Nodel’s interface address included in the Query, or can learn it
from a system call provided by the Operating System) and inside the Response, it includes
the transport layer protocol it wants to use for the Messaging Association (for example TCP)

and a listening point that it can accept the TCP request from GIST Nodel(for example, its IP

14

Address and TCP listening port). Both the Query and Response are Datagram-Mode

messages.

6, After GIST Node 1 receives the Response, it will take the initiative to set up the
Messaging Association. In our case, the GIST Nodel will set up a TCP connection with
GIST Node2. This TCP connection will be used for all data messages transferred after. Then
GIST Nodel will send out a Confirm message to GIST Node2 to confirm the Messaging
Association has been set up. Inside the Confirm message it can include the signaling
application Data which is already queued on this Messaging Association. At this point, the

three-way handshake has been finished.

7, From then on, all of signaling application messages either delivered from GIST Nodel or

GIST Node2 can be transported reliably with this Messaging Association.

2.6 GIST Message Processing Overview

Although we have given a simple example in section 2.5 to see how GIST works, the details

involved in this protocol are still worthy of more explanation.

2.6.1 The Interface between GIST and the Signaling Application

GIST is designed to provide a common transportation service to the different signaling
application layers. The signaling application’s data is transparent to GIST and the difference
between Datagram-Mode and Connection-Mode should not be visible at the signaling
application. In additional, message fragmentation and reassembly, small message bundling

and congestion control should not be visible at the signaling application either.

GIST will take whatever actions are needed to provide the services, which are determined by
the message transfer attributes provided by the signaling application. For example, if the
signaling application asked for reliable and secure message transfer, GIST will set up a
Messaging Association for it. Reliable message transfer means the message must be
delivered to the signaling application in the peer in order. If there is a chance that the

message was not delivered, an error must be indicated to the local signaling application

15

identifying the routing information for the message in question [4]. GIST implements
reliability by using an appropriate transport protocol within a Messaging Association, so
mechanisms for the detection of message loss depend on the protocol in question; for the

current specification, the case of TCP is considered.

In contrast, if the signaling application asks for unreliable transfer service, the GIST may
transfer the message one time, several times or not at all, with no error indication in any case.

The signaling application itself has to have its own mechanism for message reliability.
2.6.2 Message Routing State and Messaging Association State

Message Routing State:

GIST uses a Message Routing State table to maintain message routing state for every flow to
process the outgoing message. Each entry in the table tells how the message is to be routed,

the session being signaled for, and the signaling application itself.
The Message Routing State table is indexed by a key of triplet:
e Message Routing Information:

It includes the Flow Identifier(for example, flow sender’s Source IP and Source Port and
flow receiver’s Destination IP and Destination Port) , the direction in which to send the

message.

e Session ID

The Session ID with which the message should be associated.
e NSLP ID (NSIS Signaling Layer Protocol ID)

This is an IANA-assigned identifier associated with the NSLP that is generating messages for
this flow. The inclusion of this identifier allows the routing state to be different for different

NSLPs [4].

The routing information associated with a given {MRI, Session ID, NSLP IP} triplet in every

entry includes peer identity and a UDP port for a Datagram-mode message or a reference to a

MA for a Connection-mode message. Those entries are created by the GIST handshake

protocol. Each entry in the routing state table has an associated validity timer for how long it
16

can be considered accurate; when this timer expires, the entry must be purged if it has not

been refreshed.
Messaging Association State:

The GIST Node needs to maintain a Messaging Association State table which keeps all the

peer relationships between this node and other nodes. Every entry at least includes:
¢ A queue of messages that are queued for transmission while an MA is being established.

o A timer that tells how long the state can last before it is refreshed.

2.6.3 Message Reception, Processing and Transmission

The following describes the Message Processing part when a Messaging Association already

exists.
Message Reception:
e Message received in Connection-mode:

The Messaging Association will provide the complete message to GIST. The GIST will use
the received message to find the corresponding entry in the message routing table and let the

state machine stored in the entry deal with the received message.
e Message received in Datagram-Mode:

Just as with the Connection-mode, the GIST will use the received message to find the
corresponding entry in the Message Routing table and let the state machine deal with that

message.
e Message received in Query-Mode (the special Datagram-mode):

As the Q-mode message is sent out with an IP Router Alert Option with the flow receiver’s
IP as the destination IP address, it can be seen by each signaling node and be intercepted by
the appropriate peers. Unless there is a match between the NSLPID of received message and
the local signaling applications, it must be forwarded transparently. The different
significance between the RAO and the NSLPID values: the meaning of a message (which

signaling application it refers to, whether it should be processed at a node) is determined only

17

from the NSLPID; the role of the RAO value is simply to allow nodes to pre-filter which IP
datagram is a Q-mode GIST message [4].

Message Processing:

If a Query message is received, the GIST must ask the signaling application to see if the
signaling application wishes to become a signaling peer with the Querying Node. If the
receiving signaling application wishes to set up the Messaging Association with the Querying
Node, GIST must continue with the hand-shake to set up message routing state. If the
signaling application does not wish to set up routing state with the Querying Node, GIST

must propagate the Query and no message is sent back to the Querying Node.

While the receiving signaling application is processing the received signaling message, the
GIST on the receiving node can synchronously set up the Messaging Association by
handshake with the Querying Node.

For all messages other than Query, if the message includes an NSLP payload, the message

must be delivered locally to the signaling application identified by the NSLP ID [4].

Message Transmission:

Whenever a message is sent out, the GIST must make a decision whether the message must

be sent in C-mode or D-mode.

If the signaling application has requested reliable delivery the signaling message must sent

out in Connection-mode.

If the size of a GIST message (including the IP header, UDP header, GIST header, GIST
objects and any NSLP payload) exceeds a fragmentation-related threshold, it must be sent
over Connection-mode, using a Messaging Association that supports fragmentation and
reassembly (e.g., TCP). In the current GIST specification, the Datagram-mode message size
must not exceed the least of the following three quantities: the Path MTU to the next peer,
the first-hop MTU and 576 bytes.

18

For the connection-mode, GIST must not deliver messages for the same session over multiple
Messaging Associations in parallel. GIST will queue the message to the Messaging
Association first if there is an appropriate Messaging Association found from the routing
state table. If there is no appropriate Messaging Association, the message must be queued

while one is created.

If GIST has decided to send messages in Datagram-Mode and also the routing state already
exists, the message will be sent out with the normal D-mode encapsulation directly to the
address from the routing state table. If the message is a Query, the message will be sent out

using the raw IP socket with a Router Alert Option.
Node Not Hosting the NSLP:

If Nodes receive messages where they have no signaling application corresponding to the

message NSLPID, the messages must be forwarded transparently.

2.6.4 Message Routing State and Messaging Association State
Maintenance

The main responsibility of GIST is to manage the routing state and Messaging Associations.
Routing state is installed and refreshed by GIST handshake messages [4]. Messaging
Associations are set up by the normal procedures of the transport and security protocols that
comprise them, using peer IP addresses from the routing state [4]. Once a Messaging
Association has been created, its refresh and expiration can be managed independently from

the routing state [4].
Routing State and Messaging Association Creation:

A complete sequence of message exchange for GIST Routing state and Messaging

Association state setup is shown in Figure 3.

The initial message in any routing state maintenance operation is a Query sent from a
Querying Node. There is a router alert option so that the message can be intercepted at the
Responding Node. The MRI (Message Routing Information), SID (Session ID) and NSLPID
are identifiers for the flow, the session and the NSLP protocol. This triplet can be used to

index the message routing table. Query-Node Network Layer Information consists of the
19

Query Node’s interface IP address and UDP port number, which could be used by the

Responder to send the Response back.

Once a Query is received, the Responding Node must return a Response. The Response also
includes the Network Layer Information of the Responding Node, which could be used by
the Query Node to see if the Responding Node is already a known peer and to see if there is a
Messaging Association that is already set up with this peer and if that Messaging association
could be reused. If it is a new peer and also a Messaging Association is needed for this peer,
the Response must include a protocol stack for the possible Messaging Association. Through
the exchange of the stack-protocol and stack-config-data objects by Query and Response, the
Querying Node and Responding Node can make an agreement which transportation protocol
and transport layer secure protocol can be used in the Messaging Association setup. For the
current specification, only TCP and TLS are considered. The Querying node will always take
the initiative to set up the Messaging Association once the Querying node and the

Responding node have made the agreement.

After a Messaging Association has been set up, a Confirm message must be sent out by this
Messaging Association. At this point, we can say the Messaging Association for downstream
has been set up. The association can also be used in the upstream direction for the MRI and

NSLPID carried in the Confirm, after the Confirm has been received [4].

The Querying node must install the Responder address, derived from the R-Node Network
Layer info, as routing state information after verifying the Query Cookie in the Response [4].
The Responding node may install the Querying Node’s address as peer state information at

two points in time:
1. After the receipt of the initial Query, or
2. After a Confirm containing the Responder Cookie.

The Responding node should derive the peer address from the Q-Node Network Layer
Information if this was decoded successfully [4]. Otherwise, it may be derived from the IP

source address of the message.

20

[Q-N Stack-Proposal
Q-N Stack-Config-Data)
[NSLP Payload] e L [}

Querying Responding
Node(Q-N) Node(Q-N)
Query
== —————— "
Router Alert Option ! Routing State |
MRUV/SID/NSLPID 1 installed at the 1
Q-N Network Layer Infor | Responding '
Query Cookie 1 node(case 1) '
1
f 1
1 1

r
! The Responder can use an existing Messaging '
1 Association if available from here onwards to short- i
! circuit Messaging Association setup !
] 1

Response

A

MRUI/SID/NSLPID

R-N Network Layer Infor
Query Cookie
[Responder Cookie

[R-N Stack-Proposal
R-N Stack-Config-Data]
[NSLP Payload]]

-
! If a Messaging Association needs to be created, it is set i
1 up here and the Confirm uses it. '
]

Confirm

S N
—» ! Routing State '
1 installed at the !
MRUSID/NSLPID i Responding h
Q-N Network Layer Information 1 node(case 2) !
[Responder Cookie ' !

1

[R-N Stack-Proposal
Q-N Stack-Config-Data]
[NSLP Payload]]

Figure 3: Message Sequence at State Setup

Messaging Association Multiplexing:

A Messaging Association between two peers could be reused by different flow and sessions.

It is called Messaging Association multiplexing. Multiplexing ensures that the MA cost

21

scales only with the number of peers, and avoids the latency of new MA setup where
possible [4].

Messaging Association multiplexing is achieved by the Network-Layer-Information (NLI)

object, which is carried by Query, Response and Confirm messages.
The Network-Layer-Information consists of:
o Peer-identifier:

For a given node, this is an interface independent value with opaque syntax. It must be
chosen so as to have a high probability of uniqueness across the set of all potential peers, and
should be stable as least until the next node restarts [4]. For routers, the Router-ID, which is

one of the router’s IP addresses, may be used as one possible value for the Peer-identity.
e Interface Address:

This is an IP address through which the signaling node can be reached [4]. The Messaging
Association is associated with the NLI object that was provided by the peer in the Query,

Response and Confirm at the time when the Messaging Association was first set up.

Querying Node and Responding Node will check to see if there is a matching Peer-ID and
Interface address in the Messaging Association table after they first time receive the
Response, Query and Confirm. If they find that there is a matching one, a new Messaging
Association would not be set up. Rather, the Querying Node and the Responding node will

complete the rest of three-way handshake with this existing messaging-association.

Routing State Maintenance:

Each item of routing state expires after a lifetime that is negotiated during the
Query/Response/Confirm handshake [4]. The Network Layer Info (NLI) object in the Query
contains a proposal for the lifetime value, and the NLI in the Response contains the value the
Responding node requires [4]. A default timer value of 30 seconds is recommended [4]. In
our implementation the Inactive_QNode and the Expire_RNode are the timers for Querying
Node and Responding Node respectively. The Querying Node must insure that a Query is

received before the Expire RNode timer expires. Otherwise the Responding node may delete

22

the Routing State. Receiving the Query and Confirm will refresh the routing state at the
Responding Node for the corresponding flow, while receiving the Response will refresh the
routing state at the Querying Node for the corresponding flow. There is no mechanism at the
GIST level for explicit teardown of routing state [4]. However, GIST must not refresh
routing state if a signaling session is known to be inactive, either because upstream state has
expired, or because the signaling application has indicated via the GIST API that the state is

no longer required.

In [4], it also recommends that the refreshing handshake happens when between %2 and % of
the routing state validity time has elapsed since last successful refresh. In our

implementation, the refreshing timer is defined by the Refresh_QNode, which is 15 seconds.

Messaging Association Maintenance:

Messaging association state is another state kept by both Querying Node and Response Node.
There is a timer associated with this state, which is called the MA-Hello timer. During the
Messaging Association setup, the Querying Node and Responding node exchange their own
MA-Hold-Time timer as part of the Stack-Configuration-Data. A node may tear down that
Messaging Association if it has not received any traffic from its peer. A node that wishes to
keep the Messaging Association can send the MA-Hello to indicate this. In [4], 30 seconds
for MA-Hold-Time is recommended. Messaging association is not visible outside of the
GIST layer, therefore, even if GIST tears down and later re-establishes a Messaging
Association, signaling applications can not distinguish this from the case where the MA is

kept permanently open [4].

23

Chapter 3

Implementation

3.1 The Overall Structure of the Project

Our implementation is based on Linux and coded in C language as Linux is a POSIX-
compliant operating system. Our implementation is used for only validation right now and
could be extended to a full version in the future (please see Chapter 5: Conclusion and Future
Work) as the timers and state machine can be reused. We are using two threads for GIST.
One thread (Event Distributor) is responsible for collecting all messages from timer pipe,
from API pipe and from all TCP sockets in socket bank of the Messaging Association table,
IP raw socket (UDP socket in our case) and distribute all messages to different Querying

Node and Responding Node state machines.

As an IP raw socket is difficult to access in our environment, we are using a UDP socket
instead. It wouldn’t have any effect to our validation and also could be easily replaced with

the IP raw socket in the future.

The event distributor is using the “int select(int n, fd_set *readfds, fd_set *writefds, fd_set
*exceptfds, struct timeval *timeout)” system call with 500 ms as the timeout parameter to
read the messages and event. Then, it calls function “mrs_t * gistdemux(const gist_msg s *
)” to find the corresponding Querying/Responding Node state machine and passes the
received message to the corresponding state machine to deal with it according to the state

stored in the state machine.

Another thread (Timer Manager) is responsible for the timer management, which always
checks the most front element from a delta list and writes a message to the timer pipe if it
finds that some events have timed out. It is using one Mutex(pthread mutex_t mutex) to
protect the link-list. Those two threads are using a pipe for message passing. The timer
management thread is writing to the pipe and the Event Distributor is reading the time-out
event from the pipe and the message is flowing only in one direction from timer management
thread to the event distributor. Therefore, only one pipe is needed.

24

As both PIPE and FIFO are file descriptors in Linux system, there is no difference between a
pipe and the socket. So the event distributor can use the select system call, which can do the

I/O on multiple file descriptors simultaneously.

We also designed a very simple NSIS signaling application protocol for simulation and
validation, which is called NSIS Ping. The NSIS Ping is communicating with the GIST by
Posix FIFO. The NSIS Ping is only collecting the IP address of the nodes it passed by.

NSISPing
NSLP
A
fifo

‘ 3
Timer pipe Event
Management Distributor
Thread (State Machine) > GIST

Figure 4: Overview of the Project

The GIST event distributor is not only monitoring the PIPE and the FIFO but also other UDP
sockets and TCP sockets. Every Messaging Association has a TCP socket and the GIST also
has one UDP socket for sending and receiving Query and Response. The Responding Node

also has a TCP socket as the listening point. So the set of file descriptors that the select() is

25

monitoring includes FIFO, PIPE, TCP sockets for Messaging Association, UDP socket and a
TCP socket as listening point if it is a Responding Node.

The overall software architecture for the Querying Node is in Figure 5.

Routing state table

, 1
: : Timeout-event Messaging Associations table
')
')
' '
EEEEEETE Flow 1 Querying Node

- P
: o MAI (TCP socket)y f=-=-~ »
'
'
|
, Flow 2 Querying Node
jmmm————-- p| Fon 2 Queoine
' MA2 (TCP socket) ~ f===~-= »
|
|
i

Flow 3 Querying Node

| S »| FSM
. MA2(TCP socket) ~ f===== »
]
]
]
) Flow 4 Querying Node
| m - ’ FSM

Flow 5 Querying Node
sy Querying

A 4

Messages for Querying Node state machines Messages from TCP sockets associated with Messaging Associations

Event Distributor

2

|
[}
]
]
[}
'
m

Message from NSIS signaling application

Messages Flow

Figure 5: Querying Node System Architecture

From Figure 5, we also can see that one Messaging Association can be shared by different
Querying Node state machines.
26

The System Architecture for Responding Node is shown in Figure 6.

Routing state table Time-out event

Messaging Association table

1
1
|
'
1
]
'
1
I
i
!
e e e ee Flowl RespondingNode T __-p——————aaeu___ Vv lacaas
! ™ s ! MA1 TCP socket >
1
. '
'
1 ; i
_________ Flow2 Responding Node
E > FSM *' MA2 TCP socket ~ p====-= >
1 1
1 |
I 1
! Flow3 Responding Node J
R
; > Fsm ! MA2TCPsocket ~ f-----= >
) |
) |
1
e Flow4 Responding Node
! kM
|
0
l

Flow5 Responding Node
FSM

l]I{)istribudt;: al%\][ngoming MeS§gge to
esponding Node state machines . .
Event Distributor Messages from Messaging Associations

Message from NSIS signaling application

H

Figure 6: Responding Node System Architecture

As most routers deployed in the current Internet are using UNIX-based operating system, we
think that our implementation could be easily extended to an industrial version. The timer
management and state machine implementation would be reusable without much

modification.

27

3.2 Timer

As GIST is a soft state protocol, it needs timers to purge the stale routing state entries. Also
GIST needs several timers to handle Query and Response retransmission. The timer plays a
very important role in the system design. This section shows how a single thread can manage
all of the timers. The timer we are using in the project is similar to the one used by TCP.

Please refer to the Chapter 14 of [9].

3.2.1 The Delta List of Timer Events

We are using a delta list, which is a linked list, to store all of timers. Each item on the delta
list corresponds to a timer event that could expire in the future. In each delta item, there is the
t timeleft field, which gives the time at which the event should occur and all the events are
ordered by the time at which they will occur. The time stored in ¢_timeleft is relative time not
absolute time and is counted as milliseconds. For example, in Figure 7, the delta list contains
the events that will occurs at 500 milliseconds, 600 (500+100) milliseconds, 900 (600+300)
milliseconds, 1400 (900+500) milliseconds and 1600 (1400+200) milliseconds.

500 100 300 500 200

Figure 7: A Delta List

3.2.2 The Data Structure Used in GIST Timer

typedef enum{

TO No_Response,
TO_Refresh_QNode,

TO_MA_Connect

28

TO Inactive_QNode,
TO_Expire_RNode,
TO_No_Confirm

Jevent type;

#define No_Response 500 /*500 milliseconds*/
#define Refresh_QNodel 5000 /*15 seconds*/
#define MA_Connect 500 /*500 milliseconds*/
#define Inactive_QNode 30000 /*30 seconds */
#define Expire_RNode 30000 /*30 seconds*/
#define No_Confirm 500 /*500 millisecons*/
typedef struct event_messaging asscociation

{

event_type type,

int mrs_num,
Jevt;
typedef struct timer_node{
long t_timeleft; /*time for it to expire*®/
long t time; /*the time when this entry to queued*/
long t_pipe; /*pipe to sent the event™®/
evtt_evt, /*the message itself*/
struct timer_node * next;

Jtm_node;

29

typedef struct timer_list

{

pthread _mutex_t mutex;

int counter,

tm_node * tm_head;
Jtm_list ;

The event_type is the type of timers. We have 6 types of timer for both Querying Node and
Responding Node state machine (No_Response, Refresh_ QNode, Inactive QNode,
MA_Connect, Expire RNode, No_Confirm).

The timer No Response is used for Query retransmission in case there is no Response
received. No_Response is defined as 500 milliseconds and it will be dynamically increased at

the run time using a binary back-off exponential algorithm.

The timer Refresh_ QNode is used to indicate that how much time left to send out a Query for

refreshing the Responding Node.
The timer MA_Connect is used to wait for the Messaging Association to complete.

The timer Inactive_QNode indicates how long the state machine will wait after no traffic is
currently being handled before being refreshed. This is reset whenever the state machine
handles an NSLP Data message, in either direction. When it expires, the state machine may
be deleted. The period of the timer can be set at any time via the API (SetStateLifetime), and

if the period is reset in this way the timer itself must be restarted.

The timer Expire RNode indicates when the routing state stored by this state machine needs
to expire. It is reset whenever a Query or Confirm (depending on local policy) is received
indicating that the routing state is still valid. Note that this state cannot be refreshed from the

Responding Node.

The timer No_Confirm indicates that a Confirm has not been received in answer to a
Response. This is started whenever a Response is sent and stopped when a Confirm is

received.

30

There is a field mrs_num (message routing state number) in the evt type, it tells which

routing state machine created this timer.

Inside the timer_list type, there is a Posix Mutex type variable mutex. It is used for protecting
the delta list and for making certain that only one thread, which could be either event
distributor thread or timer thread, can access the delta list at a time. The variable mutex is
initialized to the constant PTHREAD MUTEX INITIALIZER. The variable mutex can be

locked and unlocked by following functions:
int pthread_mutex_lock(pthread _mutex_t *mutex),
int pthread_mutex_unlock(pthread _mutex_t *mutex),

int pthread_mutex_destroy(pthread_mutex_t *mutex),

If we try to lock a Mutex that is already locked by some other threads, pthread mutex_lock is
going to block until the Mutex is unlocked by pthread mutex_unlock.

3.2.3 The Timer Posix thread

int thread_timer()

{
long now, lastrun,
long delta;
tm_node* tm_ptr;
int old_counter;
tm_ptr=t_list.tm_head;
lastrun=get_time();
for(:;)
{

31

usleep(SLEEPTIME*1000),
Pthread_mutex_lock(&t_list. mutex);
if(t_list.tm_head==NULL) {
lastrun=get_time(),
Pthread mutex_unlock(&t list. mutex);
continue;
/
now=get _time();
delta=now-lastrun,
lastrun=now;,
old_counter=t_list.counter;
while((t_list.tm_head!=NULL)&&(t list.tm_head->t timeleft <=delta))
{
delta=delta-t_list.tm_head->t_timeleft;

/* a timer expires, we write that event to the timer pipe*/
Write(timer _pipe[l1],&t list.tm_head->t_evt,sizeof(evt));
tm_ptr=t_list.tm_head;

t list.tm_head=t_list.tm_head->next;

[free(tm_ptr);
t_list.counter--;

/
if(t_list.tm_head)
t_list.tm_head->t timeleft-=delta,

Pthread mutex_unlock(&t_list. mutex);
32

/

The timer thread is an infinite loop. Inside each run of the loop, the thread is sleeping 50
milliseconds and then it will lock the variable mutex for exclusive access of the delta list. In
each iteration, it will also compute the elapsed time from last run by subtracting the value of

lastrun from the current time, which is gotten from function get_time().

As long as the delta list is not empty, thread_timer will go to process the items on the delta
list. First the thread_timer compares the time remaining for the first item to expire with the
time that has elapsed. If it finds that the first item should have expired, it subtracts the time
left of that item from the delta, writes the event to the timer pipe and frees that item. The
second item will become the first item. Then it is going to process it. Variable delta always
contains a relative time, so timer_thread can compare it directly to the time stored in the

individual item.

When timer_thread finishes removing items that have expired, the delta list could be empty.
If the delta list is empty, no further processing is needed. However, if the delta list is not
empty, the time remaining for next item to expire must be greater than delta. In such cases,
timer_thread reduces the time of the remaining item by delfa before beginning the next cycle

of the delay.

long get time()

{
struct timeval t;
if(gettimeofday(&t, NULL)==0)
return(t.tv_sec*1000+t.tv_usec/1000);
else err_sys("gettimeofday error");
return -1;
/

The get_time will return the current system time in milliseconds.

33

3.2.4 Insert a Timer

int timer_insert(const evt * e,long timeleft)

{

/*node will be inserted into between prevp and p*/
tm_node * nodep, * prevp,* p;
nodep=prevp=p=NULL;

nodep=(tm_node *)malloc(sizeof(tm_node)),
nodep->t_timeleft=timeleft;
nodep->t_time=get_time();
memcpy(&nodep->t_evt,e,sizeof(evt));
nodep->next=NULL;

timer_clear(e);

Pthread_mutex_lock(&t_list. mutex);
t_list.counter++;

if(t_list.tm_head==NULL)

{
t_list.tm_head=nodep,
Pthread _mutex_unlock(&t list. mutex);
return 1;

/

for(prevp=NULL,p=t_list.tm_head,p;p=p->next)
{

if(nodep->t_timeleft < p->t_timeleft)

34

break,
nodep->t_timeleft-= p->t_timeleft;
prevp=p;
/
nodep->next=p;
if(prevp!=NULL)
prevp->next=nodep,
else t_list.tm_head=nodep,
ifip!=NULL)
p->t_timeleft -= nodep->t_timeleft;
Pthread _mutex_unlock(&t_list. mutex);

return 1;

/

The timer_insert first allocates a new item and then fills all of the fields of that item. The
parameter timeleft is the time remaining for this item to expire. Then it is going to clear the
same type of timer for the same routing state machine. So when we are inserting a timer, we
are actually restarting that timer. Then it will lock the mutex for exclusively access for the

delta list.

Next timer_insert must find out where it can insert that item into the delta list. When it passes
through the delta list, timer_insert subtracts the remaining times of the items on the delta list
from the time remaining for the new item to expire. When it finds the time whose remaining
time is greater the remaining time of the new item, the loop terminates. It then inserts the
node between the prevp and p. It then subtracts the remaining time on the p node to keep the

remaining time to be a relative time.

Please see the following example:

35

500

100 300 p{ 500 L[200

A 4

500

100 300 400

200

Insert a timer that expires 1000 milliseconds later

Figure 8: Insert a Timer

3.2.5 Delete a Timer

int timer_clear(const evt *)

{

tm_node * prev_tm_nodep,* tm_nodep;

long timespent;

Pthread mutex lock(&t list. mutex);

ifit_list.tm_head==NULL)/* it is empty*/

{

/

Pthread _mutex_unlock(&t list. mutex);

return -1;

prev_tm_nodep=NULL;

Sfor(tm_nodep=t_list.tm_head;tm_nodep!=NULL,tm_nodep=tm_nodep->next)

{

36

if((e->type==tm_nodep->t_evt.type)&&(e->mrs_num==tm_nodep-
>t evt.mrs_num))
{
timespent=get_time()-tm_nodep->t_time,
if(prev_tm_nodep!=NULL)
prev_tm_nodep->next=tm_nodep->next;
else t_list.tm_head=tm_nodep->next;
/*adjust the time value of next node in the link list*/
if{tm_nodep->next/=NULL)
tm_nodep->next->t_timeleft+=tm_nodep->t_timeleft;
Pthread _mutex_unlock(&t list. mutex);
t_list.counter--;
free(tm_nodep);
return timespent,;
/
prev_tm_nodep=tm_nodep,
/
Pthread _mutex_unlock(&t list.mutex);
return -1;

/

First the timer_clear lock the mutex for exclusive access to the delta list. Then it will go
through the delta list and try to find the desired item to delete. After it finds that desired item,

it will update the delta list. It will need to adjust the next node’s expire time.

Following is an example to delete a timer:

37

500 100 L 500 »| 200

500 100 800 200

Delete a timer which expires at 900 milliseconds later

Figure 9: Delete a Timer

3.2.6 Clear All the Timers for a State Machine

int timer_delall(const int mrs_num)

{
evt temp;
event_type i,
for(i=TO_No_Response,;i<=SEND;i++)
{
temp.mrs_nuUm=mrs_num,
temp.type=i,
timer_clear(&temp);
/
return 1;
/

38

The timer_delall is very straightforward and it just deletes all of timers of the desired state

machine.
3.3 State Machine

In the GIST specification [4], the authors recommend four different state machines: Node
level state machine, Querying Node state machine, Responding Node state machine,

Messaging Association state machine.
Node level state machine:

It is responsible for the processing of events that can not be directed towards a more specific
state machine, for example, inbound messages for which no routing state currently exists.
This machine exists permanently, and is responsible for creating per-MRI state machines to

manage the GIST handshake and routing state maintenance procedures [4].
Querying Node State Machine:

It is responsible for sending out Query and Confirm, receiving Response and initiating the
state refresh. It is also responsible for delivering and receiving NSIS signaling application

protocol data.
Responding Node State Machine:

It is responsible for receiving Query and Confirm, and sending out the Response to finish the
three-way handshake state setup. It is also responsible for delivering and receiving NSIS

signaling application protocol.
Messaging Association State Machine:

Managing the TCP connection and make sure the TCP connection is not shut down.

The specification of the state machine is using a lot of events which could have prefix rx_,
tg , er_or to_. The rx_ represents the incoming messages. The tg_ represents APl/lower

layer triggers. The er_represents error conditions. The to_ represents the time out event.

Below is a list of those events, which are specified in [4]:

39

Table 1: List of Events for GIST

Name

Meaning

rx_Query

A Query received.

rx_Response

A Response received.

rx_confirm

A Confirm received.

rx_MA-Hello

A MA-Hello message has been received (not implemented).

tg NSLPData

A signaling application has requested data transfer.

tg_Connected

The protocol stack for a Messaging Association has completed

connection setup.

tg RawData GIST wishes to transfer data over a particular Messaging Association.

tg MAIdle GIST decides that it is no longer necessary to keep a Messaging
Association open for itself.

er NoRSM A “No Routing State” error was received.

er_MAConnect

A Messaging Association protocol failed to complete a connection.

er_MAFailure

A Messaging Association failed.

to No Response

A Response has not been received.

to_Inactive_QNode

Time-out event for the Q-Node to be removed as there hasn’t been any

traffic for a certain time.

to_Refresh_QNode

Timeout event to indicate the routing state should be refreshed.

to No_ Confirm

Time-out to retransmit the Response as Confirm has not been received

for a certain of time.

to_Expire_RNode

Timeout event for Responding Node to be removed as it has not been

refreshed for a certain time.

to_Send Hello

Timeout event to indicate that a MA-Hello message should be sent to

the peer. (This timer is not implemented in our implementation.)

40

to_No_Hello Timeout event to indicate how long it is since the last No_Hello is
received from the peer. (This timer is not implemented in our

implementation.)

to MA_Connect This is a new timer we added in our implementation. It indicates how
long it is since the Querying Node has tried to set up the Messaging
Association with the Responding Node.

3.3.1 Querying Node State Machine

There are three states in the Querying Node State Machines: Awaiting Response, Established
and Awaiting Refresh.

Whenever a signaling application protocol sends a signaling message for a new flow, a
Query Node State Machine is created for that flow. Then a Query is sent out and the
No_Response timer is started and the Querying Node is transferred to Awaiting Response
state. If a Response is received, the No_Response timer will be stopped and a Confirm will
be sent out to finish the three-way handshake. The Querying Node state machine transfers to
the Established state. Determined by the message attributes that the signaling application
asked for, if there is a need for the Messaging Association, a Messaging Association also will
be set up after the Response is received. Also if reliable transportation is need, the data from
signaling application will not be sent out until the Messaging Association is set up and
signaling application data will be queued for the pending Messaging Association before it is
set up. If there is no Response received after the maximum retries of sending Query, the state
machine will be deleted for that flow and an error will be reported back to the signaling

application for that flow.

Once the Querying Node State Machine is in Established state, the Refresh QNode and
Inactive_QNode are started. In this state, data messages from signaling application and
Responding Node can be received and sent out normally and also whenever such data
messages are received, the Inactive_QNode will be restarted. Any Response received in this
state will be ignored. If the Refresh QNode expires, the state will transfer to Awaiting

Refresh state and a Query is sent out for refreshing the state machine.
41

Once the Querying Node state machine is in the Awaiting Refresh state, the state machine is
waiting for a Response. Same as in the Established state, data messages from signaling
application and Responding Node can be received and sent out normally and also whenever
such data messages are received, the Inactive QNode will be restarted. If there is no
Response received after maximum retries of sending Query, the Querying Node state
machine will be deleted. If a Response is received, the state machine will transfer to the

Established state.
There are three timers related to the Querying Node state machine:
e No_Response

This timer is used to determine when to resend the Query when there is no Response. It is set

to 500 milliseconds in our implementation. It is stopped whenever a Response is received.
e Refresh QNode

This timer is used to determine when to send a Query for refreshing the state machine. It is

set to 15 seconds in our implementation. It is restarted whenever a Response is received.
e Inactive_QNode

This timer indicates when the state machine needs to be deleted if there is no traffic being
handled by the state machine. When this timer expires, the state machine must be deleted. It

is set to 30 seconds in our implementation.

42

tg_NSLPData

Sent Query
Start No_Response timer

Idle

rx_Response

IF(MA is needed)
create one

queue NSLP Data IF(R Flag is set)

send the Confirm
send queued data to peer
pass data to NSLP

R,

stop No_]

1g_NSLPData
timer

start Retresh ONode timer

send data to the peer
restart Inactive_QNode timer

rx_Data
y pass data to NSLP
restart Inactive_Qnode timer
rx_Response
Awaiting Resp Established
IF(MA is needed)
create one

IF(R flag is set)

send the Confirm
send queued data to peer
pass data to NSLP
stop No_Response timer
start Refresh_QNode timer
start Inactive_QNode timer

to_No_Response

IF (retries < threshold)
resend Query

rx_Response

to_Refresh_QNode

IF(MA is needed)

create one
IF(R flag is set)

send the Confirm
send queued data to peer
pass data 10 NSLP
stop No_Response timer
restart Refresh_QNode timer
restart Inactive ONode timer

send query
start No_Response timer
ston Refresh ONode timer

to_No_Response

IF (retries > threshold)
destroy itself

tg_NSLPData

send data to the peer
start Inactive_QNode timer

to_No_Response

Death TF (retries > threshold) Awaiting Refresh

destroy itself

to_Inactive_Qnode rx_Data

destroy itself pass data to NSLP

start Inactive_Qnode timer

Querying Node State Machine

Figure 10: Querying Node State Machine

3.3.2 The Responding Node State Machine
There are also three states for the Responding Node state machine: Awaiting Confirm,
Established and Awaiting Refresh.

When a Query is intercepted by the Responding Node, depending if a Confirm is needed (if

the R: reply flag is set in the Response, that means a Confirm is needed for that Response) or

43

not, the state machine could transfer either to Awaiting Confirm or Established. If a Confirm
is needed, the state machine transfers to Awaiting Confirm state. In the Awaiting Confirm
state, if a message is received from NSLP, the data will be queued for a connecting MA. If a
data message is received from the peer, a “No routing error” is sent back to the peer. If a
Query is received from Querying Node, that means the last Response the Responding Node
sent out might have been lost and a Response needs to be resent. If a Confirm is received, the

state machine transfers to the Established state.

In the Established state, if a Confirm is received, the Confirm will be silently ignored. If a
data message is received from the Querying Node, the data will be passed to NSLP for
further processing. If a data message requested for transfer from NSLP, the data will be
packed in a GIST Data type message and sent to the peer. It is possible that a Query is
received in this state if a Confirm is not required for a Response. If a Query is received, a
Response with R = 0 will be sent out and the Expire RNode timer will be restarted. If a
Query is received and a Confirm is also needed for a Response, the state machine will

transfer to Awaiting Refresh state and the No_Confirm timer is started also.

In the Awaiting Refresh state, the data requested for transfer from NLSP will be packed in
GIST data type message and sent to peer. The GIST Data message received from the peer
will be passed to the NSLP for further processing. If a Confirm is received, the state machine
transfers to Established state and the No_Confirm timer will be stopped and Expire RNode
timer will be started and any data in the Confirm will passed to the NSLP for further

processing.
There are two timers used in the Responding Node State Machine:
e Expire RNode

It indicates when the routing state should be purged out before it is going to be refreshed by

its peer. This timer is set to 30 seconds in our implementation
e No_ Confirm

It indicates that there is no Confirm so far being received for the Response. This timer is set

to 500 milliseconds in our implementation.

44

x_Query
_Query Idle
If(Confirm is not required)
send Response) pass data to NSLP
restart No_Confirm timer start Expire_RNode timer
rx_Data
_Query rx_Confirm
m_Data silently ignore pass data o
send Response) Y NSLP
send “No Routing state” restart No_Confirm timer
error message
rx_Confirm h J
. pass NSLP Data to the NSLP .
Awaiting send stored Data message Established
stop No_Confirm timer
Confirm restart Expire_RNode Timer
tg NSLPData to No Confirm rx NSI.PData
N) ible wh
queue the message IF(retries < threshold) gg,?ﬁﬁﬁgo:%&%sfl e when send the data message
send response .
start No_Response timer send Response with R=0
restart Expire_RNode timer
rx_Confirm rx_Query
to No Confirm pass NSLPData to the send Response
NSLP restart No_Confirm timer
IF(retries > threshold) send stored Data message
destroy itself stop No_Confirm timer
to No Confirm
NSLPDat:
b aid IF(retries < threshold)
send the data message send response .
start No_Response timer
to No Confirm i
Death IF (retries > threshold) Awaiting
destroy itself
Refresh
t
_Query x Data
to Exnire RNode pass data to
d itself send Response NSLP
estroy itse restart No_Confirm timer

Responding Node State Machine

Figure 11: Responding Node State Machine

3.3.3 The Messaging Association State Machine

The Messaging Association state machine has three states: Awaiting Connection, Connected
and Idle. Following is an example of the operations of the Messaging Association State

Machine in the Querying node.
45

After the Messaging Association state machine is created and a connection will be initiated,
the state machine transfers to the Awaiting Connection state. In this state, any message

passed to the Messaging Association for transmission will be queued on it.

After the connection with the peer has been completed, the state machine will transfer to

Connected state and a SendHello timer will be started.

The Connected state indicates that the messaging machine is ready to use. If the SendHello
timer expires, a MA-Hello message will be sent out to ensure that the peer does not tear the
Messaging Association down. If a MA-Hello is received from the peer, a MA-Hello reply
will be sent back to the peer. In this state any data passed to the Messaging Association for
transmission will be sent out to the peer and also the SendHello timer will be restarted as it
indicates that the GIST on the node itself still has traffic for delivery. If all of the Routing
State machines have indicated that they will not need this Messaging Association, a
tg MAIdle is triggered and the state machine will transfer to /dle state and a NoHello timer
will be started.

In the Idle state, if the NoHello timer expires and that means the peer would not like to keep
the Messaging Association open too. So the Messaging Association can be torn down and it
will be destroyed. If there is any data requested for transmission or any data received from

the peer, the state machine will transfer to the Connected state.
There are two timers used by the Messaging Association state machine:
e SendHello

When SendHello expires, it indicates that an MA-Hello message should be sent to the remote

node.
¢ NoHello

When this expires, it indicates that the Messaging Association should destroy itself as no

MA-Hello has been received from the remote node for a period of time.

46

tg_RawData

transmission

queue the message for later

{ Birth l

tg RawData

pass the message to transport layer
if the NoHello timer was running, stop it
restart SendHello

rx_MA_Hello

to_SendHelto

IF reply requested
send MA-Hello
restart SendHello timer

send MA-Hello message
restan SendHello timer

y

tg_Connected

Awaiting
Connection

Pass outstanding queued message to transport layer
stop any timers controlling connection establishment
start SendHello timer

er_MAConnect

report failure to routing state machines and
signaling applications
destroy itself

Connected

/{
J

A

rx Message

pass the message to transport layer
if'the NoHello timer was running, stop it

rx_MAldle

tg_RawData

stop SendHello timer
start NoHello timer

pass the message to transport layer
if the NoHello timer was running, stop it

restart SendHello

rx_Message

pass the message to transport layer
if the NoHello timer was running, stop it

Death

to_NoHello

A
Idle

report failure to routing state machines and
signaling applications
destroy itself

er_MAFailure

signaling applications
destroy itself

report failure to routing state machines and

Figure 12: Messaging Association State Machine

3.4 State Machine Implementation

Our implementation is a little bit different from the one in [4]. In our implementation, the
Messaging Association state machine is not implemented. Rather we added a MA_Connect
at Querying Node for Messaging Association setup. The Messaging Association is only
created at the three-way handshake phase. After that, if the TCP connection associated with

the Messaging Association is broken, the TCP connection will not be reestablished rather

47

L

rx_MA-Hello

If reply requested
send MA-Hello
restart NoHello timer

they will be report back to NSIS signaling application layer. It is up to the NSIS signaling
application layer to decide how many messages have been transmitted and how many
messages are left for transmission. In the implementation, we find the connect() system call
is a blocking call by default. So we must change it to a non-blocking call and also we add
another state: Waiting MA (Messaging Association) to the Querying Node state machine and
add another timer: MA Connect to the state machine. The Waiting MA state and
MA Connect together in our implementation replace the whole Messaging Routing state

machine. Please refer to Figure 13.

If the Querying Node state machine, which is in Awaiting Response, receives a Response, the
state machine will transfer to the Waiting MA and try to use the connect() system call to set
up a TCP connection with the Responding Node. Before the connect() system call is called,
the socket has to been created as a non-blocking socket. Whenever MA Connect timer
expires, the state machine will check to see if the number of times this timer has expired is
greater than a threshold. If it is still less than a threshold, the connect() system call will be
retried. If it returns “EISCONN?”, that means the socket has been connected and the state
machine will transfer to “Established” state. Otherwise the MA Connect timer will be

started.

In this way, there are no blocking function calls in both the Querying Node and Responding
Node while the Messaging Association still could be kept open by the periodic Confirm.

48

rx_Response
tg_NSLPData
Idie send the Confirm
send Query tg_NSLPData send queued data to peer
start No_Response timer pass data to NSLP
vena NIQT P Nata send NSLP data stop No_Response
start Inactive_QNode timer start Refresh_Qnode timer
start Inactive_QNode timer
tg_Data
(rx_Response && MA could be reused) pass data to NSLP
start Inactive_QNode timer
send the Confirm [+
A 4 send queued data to peer
— pass data to NSLP
" stop No_Response timer Established
Awaiting Response start Refresh_QNode timer
start Inactive_QNode timer
R
A
(rx_] && MA couldn’t be reused) to_MA_Connect tg_ MA_Connected /
to_No_Response -
send the Confirm
. IF(MA is needed) IF (retries <Maxretries)
i;&?}; ;ythrwhold) Initiate the MA setup retry the connect
stop No_Response timer o
start MA_Connect timer to_Refresh_QNode

send Query
start No_ResponseR timer
stop Refresh_QNode timer

to_No_Response
. rx_Resporise
IF (retries > threshold)
destroy itself send the Cpnfirm
send quendd data to peer
pass data tb NSLP
lo_MA_Ccnnec/ stop No_HResponse timer
IF (retries eshold; start Retregh_QNode timer
(dwy&ﬁf) siart Inactjve_QNode timer
tg_NSLPData
send NSLP data
start Inactive_QNode timer
to_No_Response
Death Awaiting Refresh

1F (retries >Maxretries)

destroy itself
$ [T
to_Inactive_QNode tg_Data ’
destroy itself pass data 10 NSLP
start Inactive_QNode timer
Querying Node State Machine

Figure 13: Revised Querying Node State Machine

3.4.1 The GIST Message

All of the GIST Messages begin with a common header, followed a sequence of TLV (Type
Length Value) objects. There are six types of messages required for GIST.
GIST-MESSAGE = Query / Response / Confirm / Data / Error / MA-Hello

49

3.4.1.1 GIST Message Type

For convenience, in our implementation we add two more types of message: one for Data
passed by the NSLP and another one for the time-out event. Those two new types of
messages can make our functions for state machines more consistent. So the messages type

definition in our implementation is as follows:
typedef enum{
GIST QUERY=0),
GIST RESP=1,
GIST CONFIRM=2,
GIST DATA=3,
GIST ERROR=4,
GIST MAHELLO=S,
GIST NSLP DATA=6, /*we create a new message type for Data from GIST*/

GIST TIMEOUT=7 /* we create a new message type for time-out event®/

} gist_type;

As it is too long to give the definition of every message type in C code, all other messages
are specified in a high level ABNF format

Query: A Query is always sent in D-mode, with a Router Alert Option. In addition to the

common header, it contains certain mandatory control objects
Query = Common-Header
[NAT-Traversal-Object |
Message-Routing-Information
Session-Identification

Network-Layer-Information
50

Query-Cookie
[Stack-Proposal Stack-Configuration-Data |
[NSLP-Data]

The R flag of common header in the Query message must be set as a Query always elicits a
Response. In out implementation, we don’t have the NAT-Traversal-Object now as it

wouldn’t affect our validation.
Response:

Response = Common-Header
[NAT-Traversal-Object]
Message-Routing-Information
Session-Identification
Network-Layer-Information
Query-Cookie
[Responder-Cookie

[Stack-Proposal Stack-Configuration-Data]]
[NSLP-Data]

The Response must include the Message-Routing-Information of the Responding Node,

which would be used for setting up the message routing state in the Querying Node.
Confirm:

A Confirm must be sent out in the C-mode and must also be sent before other messages for

this routing state.
Confirm = Common-Header
Message-Routing-Information
Session-Identification

Network-Layer-Information
51

[Responder-Cookie
[Stack-Proposal
[Stack-Configuration-Data]]]

[NSLP-Data]

GIST Data Message: The GIST Data message is used to transport the NSLP data message
without modifying the GIST state.

Data = Common-Header
[NAT-Traversal-Object]
Message-Routing-Information
Session-Identification
[Network-Layer-Information]

NSLP-Data

Error: An Error message reports the error determined at the GIST level.
Error = Common-Header
[NAT-Traversal-Object]
[Network-Layer-Information]

GIST-Error-Data

MA-Hello:

This message is always sent in C-Mode and on the Messaging Association. It only contains a

Common Header and a Hello-ID.

52

MA-Hello = Common-Header

Hello-1ID

The following NLSP Data message and timer-out event message are added by us in our

implementation.
NSLPData:
The NSLP Data message is used to pass data from the NSLP to the GIST for transportation.
NSLP Data = Common Header
NSLP ID
Session-Identification
Message Routing Information
Life Time for Querying Node or Responding

NSLP Object

GIST Time-Out event:

The GIST Time-Out event message is used to wrap the time-out event so that the

implementation of the functions for the state machines can be consistent.
GIST Time-Out Event = Common Header

Time Out Event

3.4.1.2 Common Header

The first object in all types of GIST messages is the common header. The common head
includes a type field and the length of the message beside the common header itself. It also
has a hop count to prevent infinite message looping. The common header is defined in C

code as follows:

53

typedef struct

{
unsigned int version:8;
unsigned int hops:§;
unsigned int length: 16, /*length after the common header*/
unsigned int nsipID. 16;
unsigned int type:8; /* GIST type*/
unsigned int s_f:1; /* IP source address is the same as the signaling source address*/
unsigned int v _f:1; /* a reply of this message is explicitly requested*/
unsigned int e_f:1; /* if the message was explicitly routed*/
unsigned int:5 ;

Jemn_hdr_t; /*common-header type*/

The #ype in the common header defines the type of the message.

3.4.1.3 TLV Objects

All of the data following the common header are encoded as a sequence of type-length-value
objects. Each object can occur at most once. Which object can be included in the message is
determined by the message type and the encapsulation mode (C-Mode, D-Mode and Q-
mode). All of the following TLV object definitions can be found in [4].

Message-Routing-Information (MRI): Information sufficient to define how the signaling

message should be routed through the network [4].
Message-Routing-Information = message-routing-method
method-specific-information

Session-Identification (SID): The GIST session identifier is a 128 bits, cryptographically

random identifier chosen by the node that originates the signaling exchange [4].

54

Network-Layer-Information (NLI): This object carries information about the network
layer attributes of the node sending the message, including data related to the management of
routing state [4]. This includes a peer identity and IP address for the sending node. This peer
identity can be used for Messaging Association reuse. When the Querying Node receives a
Response from Responding Node, it will check the peer-identity in the Response to see if
there is already a Messaging Association for this peer. When the Responding Node receives a
Confirm from the Querying Node, it will check the peer-identity of the Confirm to see if
there is already a Messaging Association for this peer. It also includes IP-TTL information to
allow the IP hop count between GIST peers to be measured and reported, and a validity time

(RS-validity-time) for the routing state [4].
Network-Layer-Information = peer-identity
interface-address
RS-validity-time
IP-TTL

Stack-Proposal: This field contains information about which combinations of transport and
security protocols are available for use in messaging associations. In our implementation,

only TCP is considered.
Stack-Proposal = 1*stack-profile
stack-profile = 1*protocol-layer

Each protocol-layer field identifies a protocol with a unique tag; any additional data, such as
higher-layer addressing or other options data associated with the protocol, will be carried in a

MA -protocol-options field in the Stack-Configuration-Data TLV [4].

Stack-Configuration-Data (SCD): This object carries information about the overall

configuration of a messaging association.
Stack-Configuration-Data = MA-Hold-Time

0*MA-protocol-options

55

The MA-Hold-Time field indicates how long a node will hold open an inactive association;
MA-protocol-options fields give the configuration of the protocols (e.g., TCP, TLS) to be

used for new messaging associations [4].

Query-Cookie/Responder-Cookie: A Query-Cookie is contained in a Query and MUST be
echoed in a Response; a Responder-Cookie may be sent in a Response, and if present MUST
be echoed in the following Confirm. Cookies are variable length bit strings, chosen by the

cookie generator [4].

Hello-ID: The Hello-ID is a 32-bit quantity that is used to correlate messages in an MA-
Hello request/reply exchange. A non-zero value MUST be used in a request (messages sent

with R=1) and the same value must be returned in the reply (which has R=0) [4].

NSLP-Data: The NSLP payload to be delivered to the signaling application. GIST does not
interpret the payload content [4].

GIST-Error-Data: This contains all the information to report the cause and context of an

error [4].
GIST-Error-Data = error-class error-code error-subcode
common-error-header
[Message-Routing-Information-content |
[Session-Identification-content |
0*additional-information

[comment |

3.4.2 The Pseudo Code of the Event Distributor

All of GIST messages including timer event, NSLP data message, GIST data message,
Query, Confirm, Response are distributed to either Querying Node or Responding Node state

machine.

The pseudo code of event distributor of the Querying Node:

56

Jor(:;)
{
Add all of the file descriptors into the reading file descriptor set (readingfdset)
if((result=Select(maxfd+1, &readingfdset, NULL,NULL, &timv))>0)
{

if(the timer pipe is ready for reading)
{
reading the timer event from timer pipe

wrap the timer event into a gist_msg_s type variable rmsg

call gistdemux to find the corresponding message routing state entry

/* mrsp=gistdemux((gist_msg_s *)rmsg); */

call the corresponding function according the state stored in the state machine
/* gistqqswitch[mrsp->qstate] (mrsp,(gist_msg s *)rmsg);*/
} else if (the NSLP fifo is ready)
{
reading the data message from the NSIS signaling application layer
call gistdemux to find the corresponding message routing state entry

call the corresponding function according the state stored in the state machine

} else if{l UDP socket is ready)

{

reading the GIST message from the UDP socket
57

call gistdemux to find the corresponding message routing state entry

call the corresponding function according the state stored in the state machine

}else
{
for(TCP socket in TCP sockets bank associated with Messaging Association)
{
if(any one is ready for reading)
{

reading the GIST message from the Messaging Association
call gistdemux to find the corresponding message routing state entry
call the corresponding function according the state stored in the state
machine
Jelse if (anyone is ready for close)
{
close the socket, and find the corresponding MA
notify all of state machines stored in message routing state table using
this MA that it has been closed.
/
} /*end of inner for ¥/
} /*end of if ¥/

} /*end of the select*/

} //end of for loop

58

The “mrsp=gistdemux((gist_msg s *)rmsg),” 1is used to find the corresponding message
routing state entry. The “gistqqswitch/mrsp->qstate] (mrsp,(gist_msg s *)rmsg)” is used to
call the corresponding functions according to the state stored in the state machine. Also the
select() can be used to detect if the peer has closed a TCP socket. If the peer has closed the
TCP socket, the MA associated with the TCP socket is set to free to use and all of the

message routing state machines associated with the MA must be notified.

The pseudo code of event distributor of the Responding Node:
Jor(::)
{
Add all of the file descriptors into the reading file descriptor set(readingfdset)
if{(result=Select(maxfd+ 1, &readingfdset, NULL,NULL, &timv))>0)

{

if(the timer pipe is ready for reading)

{

read the timer event from timer pipe

wrap the timer event into a gist_msg_s type variable rmsg

call gistdemux to find the corresponding message routing state entry

/* mrsp=gistdemux((gist_msg s *)rmsg); */

call the corresponding function according the state stored in the state machine
/* gistqqswitch[mrsp->qstate] (mrsp,(gist_msg s *)rmsg);*/

} else if (the NSLP fifo is ready)

59

reading the data message from the NSIS signaling application layer
call gistdemux to find the corresponding message routing state entry

call the corresponding function according the state stored in the state machine

} else if(UDP socket is ready)
{
reading the GIST message from the UDP socket
call gistdemux to find the corresponding message routing state entry

call the corresponding function according the state stored in the state machine

} else if{ the TCP listening socket is ready)

{

accept the incoming connection request

put the new socket and peer address into a Messaging Association

/

else {

Jfor(TCP socket in TCP sockets bank associated with Messaging Association)

{
if(any one is ready for reading)

{
reading the GIST message from the Messaging Association

call gistdemux to find the corresponding message routing state entry

call the corresponding function according the state stored in the state

machine
60

Jelse if (anyone is ready for close)
{

close the socket, and find the corresponding MA
notify all of state machines stored in the message routing state table using

this MA that it has been closed.

/
} /*end of inner for */
} /*end of if ¥/

} /*end of the select*/

} //end of for loop

The Responding Node event distributor is very similar to the Querying Node event
distributor. One difference is that Responding Node needs to detect when a new TCP

connection request is coming.

3.4.3 The Implementation of gistdemux

The gistdemux finds the correct message routing entry for the incoming GIST events.
The gistdemux for the Querying Node:

Because we use a static array to store the message routing entries, the gistdemux just
sequentially searches the table by comparing the MRI in the incoming message and the MRI
stored in the message routing entry. Whenever it finds a match, it just returns the message

routing entry in the table.

The only exception is when a NSLP Data Message is received, it is first to search the
message routing table to try to find a matching entry. If it could not find it, it must find a new

and free message routing entry to store the corresponding state machine.
The gistdemux for the Responding Node:

61

The gistdemux is very similar with the one on the Querying Node. It just sequentially
searches the table by comparing the MRI in the incoming message and the MRI stored in the
message routing entry. Whenever it finds a match, it just returns the message routing entry in

the table.

When a Query is received by the Responding Node, the Responding Node needs to use the
Message Routing Information to search if there is a matching message routing entry
corresponding to this MRI. If it could not find one, it will create the Responding Node state

machine and pass the Query to the Responding Node state machine.

When a Confirm is received, the Responding Node will use the peer identity (the IP address
of the Querying Node) to search the Messaging Association table to see if there is already a

Messaging Association for this peer so that the Messaging Association can be reused.

3.4.4 The Implementation of the Querying Node State Machine

The Querying Node state machine is very straightforward, for every state there is a
corresponding function and we define an array of function pointers and the array is indexed
by the states. So the event distributor can call the corresponding function according to the

state stored in the message routing state entry.
typedef enum
{
GISTQS BIRTH=0,
GISTQS WRESP=1,/* waiting response */
GISTOS WMACO=2,/* wait Messaging Association to finish */
GISTQS ESTAB=3,
GISTQS WREFR=4, /* waiting refresh */
GISTQS DEATH=S5
Jgistgstate; /* GIST Querying Node state */
/*the Querying Node state machine functions™*/

62

int qbirth(mrs_t * ,gist msg s *);
int qwresp(mrs_t * ,gist msg s *);
int gwmaco(mrs_t * ,gist msg s *),
int qestab(mrs_t * ,gist msg s *);
int gwrefr(mrs_t * ,gist msg s *);
int qdeath(mrs_t * ,gist msg s *),
int (* gistgqswitch[5])(mrs_t * ,gist_ msg s *)=
{
qbirth,qwresp,qestab,qwrefr,qdeath
r
Below we give out the pseudo code of every function:
qbirth:

The gbirth is responsible to send out the query whenever it receives some data from the NSIS

signaling application layer.

int gbirth(mrs_t * mrsp,gist_msg s * msgp)

{
IF(msgp is a NSLP Data type message)
{
queue the message to the message routing entry
send out the query
start No_Response timer
transfer state machine to Awaiting Response state
/
/

63

gwresp: In the Awaiting Response state, the state machine is waiting for the Response. If a
Response is received the function is going to check to see if there is a Messaging Association
that can be reused. If there is not a Messaging Association that can be reused, the function
will start a new TCP with the Responding Node. If the TCP connection can not be finished
right away, the state machine will transfer to the Waiting MA state.

int gwresp(mrs_t * mrsp,gist_msg_s * msgp)
{

IF (msgp is a Response)

{

IF(there is no Messaging Association associated with this message routing entry)
check to see if there is a Messaging Association that we can reuse by comparing
the peer identity contained in the Network Layer Information in the Response
IF(there is no Messaging Association that we can reuse)

{
find a free Messaging Association entry
associate this Messaging Association with the message routing state entry
create the socket for the new Messaging Association
associate the socket with this Messaging Association.
set the socket to non-block socket
initiate the TCP connection to the Responding Node
IF(TCP socket connection is not finished right away)
{
delete the No_Response timer
start the MA_CONNECT timer

transfer the state machine to Waiting MA state
64

return

/

JELSE

reuse the Messaging Association and associate it with the message routing state entry
set the non-blocking socket to a blocking socket
send out the Confirm and all of the queued data
} ELSE IF(msgp is a No_Response time-out event)
{
IF (times we resent the Query has been greater than the threshold)

{

remove all of timers associated with this message routing state entry
destroy the state machine
} ELSE
{
resent the Query

restart the No_Response timer

/

return 0;

/

qwmaco: In the Waiting MA state, the state machine is waiting for the Messaging Association
to finish. If a MA_Connect timer expires in this state, the function will retry to connect the
Responding Node to establish the Messaging Association. If the times we have retired are

greater than the maximum times allowed, the state machine will be destroyed.

65

int gwmaco(mrs_t * mrsp,gist_msg s * msgp)
{
IF((msgp is a MA_Connect time-out event) &&(retries < threshold))
{
try to call the connect() system call to establish the TCP connection
if{(connection is successfully established)
{
set the socket to blocking socket
send out the confirm
send out all of the queued data
start Refresh_(QNode timer
start Inactive_QNode timer
} ELSE
{
set retries to zero
delete all of timers for this routing state

destroy the state machine stored by this routing state entry

/

gestab: In the Established state, the state machine can send data to and receive data from

NSIS signaling application layer protocol normally. It also can send data to and receive data

from Responding Node normally.

66

int gestab(mrs_t * mrsp,gist msg_s * msgp)
{
IF(msgp is a Data type message received from the Responding Node)
{
pass the message to the NSIS signaling application layer
restart Inactive_QNode timer
} ELSE [F(msgp is a Refresh_QNode time-out event)
/
send Query to the Responding Node
start No_Response timer
state machine transfer to Awaiting Refresh state
} ELSE IF(msgp is a Response)
{
send out the Confirm to the Responding Node
stop No_Response timer
start Refresh_QNode timer
start Inactive_QNode timer

} ELSE IF(msgp is a NSLP Data)

{
pack data into a GIST Data message and send it to the Responding Node

restart the Inactive_QNode timer

/

67

gwrefi: In the Awaiting Refresh state, the state machine can send data to the NSIS signaling
application layer protocol and Responding Node normally just as in the Established state.
The state machine can also receive data from NSIS signaling application layer protocol and

Responding Node normally just as in the Established state.
int gwrefr(mrs_t * mrsp,gist_msg s * msgp)
{
IF(msgp is a Response)
{
send out the Confirm
delete the No_Response timer
restart Refresh_QNode timer
restart Inactive_QONode timer
} ELSE IF(msgp is a NSLP Data)
{
pack data into a GIST Data message and send it to the Responding Node
restart the Inactive_QNode timer
JELSE IF(msgp is a Data type message received from the Responding Node)
{
pass the message to the NSIS signaling application layer

restart Inactive_(QNode timer

68

3.4.5 The Implementation of Responding Node State Machine

The Responding Node state machine is also very straightforward, for every state there is a
corresponding function and we define an array of function pointers and the array is indexed
by the states. So the event distributor can call the corresponding function according to the

state stored in the message routing state entry.

typedef enum

{
GISTRS _BIRTH=0,
GISTRS_WCONF=1,
GISTRS ESTAB=2, /* Established */
GISTRS WREFR=3, /* Awaiting Refresh */
GISTRS DEATH=4

} gistrstate; /* gist Responding Node state */

int rbirth(mrs_t * ,gist msg s *);

int rweonf(mrs_t * ,gist msg s *);

int restab(mrs_t * ,gist_msg s *),

int rwrefr(mrs_t * ,gist msg s *);

int rdeath(mrs_t * ,gist msg s *);

int (*gistrrswitch[5])(mrs_t * gist_msg s *)=

{ <

rbirth,rwconf,restab,rwrefr,rdeath
I

Below we give out the pseudo code of every function:

69

rbirth: In the Birth state, the state machine is just created and is passed with a Query message

from the Querying Node. The state machine will reply with Response.

int rbirth(mrs_t * mrsp,gist_ msg s * msgp)

{
IF(msgp is a Query)
{
send the Response to the Querying Node
start the No_Confirm timer
state machine transfer to Awaiting Confirm state
/
/

weonf’: In the Awaiting Confirm state, the state machine is waiting for a Confirm. Once a
Confirm is received, the Data contained in the Confirm would be passed to signaling

application data layer.
int rweonf(mrs_t * mrsp,gist_msg_s * msgp)
{
IF(msgp is a Confirm)
{
send the data contained in the Confirm to the NSIS signaling application layer
protocol
state machine transfers to Eestablished state
delete No_Confirm timer
start Expire_RNode timer

} ELSE [F(msgp is a time-out event)
70

IF(retries < threshold)
{
resend the Response
restart No_Confirm timer
} ELSE
{
set retires to 0
delete all timers of this routing state entry

destroy the routing state machine

restab: In the Established State, the state machine can send and receive both GIST Data
message and NSLP Data normally.

int restab(mrs_t * mrsp,gist_ msg s * msgp)
{
IF(msgp is a GIST Data type message received from the peer)
{
pass the message to the NSIS signaling application layer
} ELSE IF(msgp is a NSLP Data message received from the signaling application Layer)
{
send the data to the Querying Node
} ELSE [F(msgp is a Query)

71

send out the Response
start No_Confirm timer
transfer to the Awaiting Refresh state
} ELSE IF(msgp is a Confirm)

{

silently ignore the message

/

rwrefr. In the Awaiting Refresh state, just like in the Established state, the state machine can

receive and send the GIST Data message and NSLP Data message normally.
int rwrefr(mrs_t * mrsp,gist_msg s * msgp)
{
IF(msgp is a Confirm)
{
transfer the data contained in the Confirm to the NSIS signaling application layer.
stop No_Confirm timer
start Expire_RNode timer
transfer state to Established state

} ELSE IF(msgp is a GIST Data received from the peer)
{
pass the data to the NSIS signaling application layer
} ELSE IF(msgp is a NSLP Data type message)

{
72

send the Data in a GIST Data message to the peer
} ELSE IF(msgp is a No_Confirm timer event)

{

IF (retries < threshold)
{
resend the Response
start No_Confirm timer
} ELSE
{
set retries to zero
delete all of the timers of this state machine

destroy the state machine itself

73

Chapter 4

Validation

By designing several testing scenarios we are able to confirm the correct operation of the
GIST protocol stack. Firstly, our program is tested in our lab network, which consists of
multiple machines, as our implementation can accommodate any number of machines in a
network. The environment is not the same as the real internet network but we have made it
as close as possible by simulating a Flow-Next Hop mapping table. Secondly, for the state
machines, we designed the scenarios based on different type of timers. For every timer, there
is a scenario corresponding to what will happen if the timer expires and there is also a
scenario corresponding to what will happen if the timer never expires. Finally, we also
designed a scenario to test how well the implementation is performing with the successful
message delivery and a scenario to see if our implementation can achieve the Messaging
Association multiplexing. All scenarios are supplemented with a diagram, which is drawn
based on the specification of GIST. The testing would reveal if all of timer are defined

properly or not and also reveal how well the specification of GIST is defined.

In order to simulate the Signaling application protocol, we designed a small NSLP Ping
client to validate the GIST specification. The output of the state machine and timer can either
be printed on the screen or to a log file, which could be analyzed later. Validation is done by

matching the diagram with the messages written to the log file.
4.1 The Test Tool Designed

In order to verify the GIST specification defined by [4] with our implementation, we
implemented a simple NSLP Ping protocol, which can be treated as a NSIS signaling
application layer protocol. The NSLP Ping will send out a ping message along the flow path
and every node within the path will add its own IP address and the time at which the message

is received.

typedef struct

74

unsigned int ipadd[1];
unsigned int times[2];

} ping obj t;

typedef struct
{
unsigned int version.8; //=1
unsigned int hops:8;
unsigned int length:8;
unsigned int objs:8,;/*2 number of objects every hop should add*/
unsigned int iptype:16; /*=1 for IPv4 address*/
unsigned int iplen:16,/*=16 for IPv4*/
unsigned int tstype:16,/*2*/
unsigned int tslen:16,/*=8%/

char data[l];

} ping t;

typedef struct

{
unsigned int ab_f:2;
unsigned int:2 ;
unsigned int type:12;

unsigned int. 4 ;
75

unsigned int length:12; /* length after the gen_obj _hdr_t */

} gen _obj hdr_t;

typedef struct

{
gen _obj hdr t;
char data[l];
Jnslp _obj t;

The ping_t will be packed into the NSLP Object. Please see Figure 14.

76

objhdr \

version | length | length | objs \
iptype | iplength
tstype | tslength
~
ipaddr =
4
. =
times 3
~
g g
- S
'U_ =)
R =
N\ I -
ipaddr @
g
B
times > E.
4]
‘Q
&
IF‘

J

Figure 14: Ping Objects contained in NSLP Object

Suppose the GIST Querying Node’s IP address is 132.205.96.51 and the GIST Responding
Node’s IP address is 132.205.96.49. The output on the Ping client in a successful message

delivery scenario will be as follows
Hop 0 :inet_ntoa(*((struct in_addr *)&pobjp->ipadd[0]))=132.205.96.51
FriNov 202:04:51 2007

usec: 97766

Hop 1 :inet_ntoa(*((struct in_addr *)&pobjp->ipadd[0]))=132.205.96.49

77

Fri Nov 202:04:53 2007
usec: 744594

As there are only two nodes along the path, so we only have HopO and Hop1 here. Inside the

Ping message we can see the first hop’s IP is 132.205.96.51 and the time it receives the Ping

message is “Fri Nov 2 02:04:51 2007 wusec: 97766” and the Hop 1’s IP address is
132.205.96.49 and the time it receives the Ping message is “Fri Nov 2 02:04:53 2007
usec: 744594”.

In the following scenarios, we are using the Ping client to simulate the signaling application

protocol, which asks for signaling message transport service from GIST.

The NSLP Ping has two parameters which are as follows:
--type=initiator/forwarder/receiver

Through this parameter you can specify which kind of node of the Ping application is. For
example if you start Ping as “./nslpping --type=initiator --flow=192.168.9.170r”, the NSLP
ping application will start to send a message to the GIST on the same machine using a Pipe
and then wait for the reply from the GIST. If you start NSLP Ping as “/uslpping --
type=forwarder”, the Ping application will wait for an incoming Ping message and adds its
own IP address to it once it receives one and then passes the message back to the GIST for
the next hop. If you start the Ping as “./nslpping --type=receiver”, the NSLP Ping application
will wait for an incoming Ping message from GIST and adds its own IP address to it once it
receives one and then changes the Direction Flag in the Message Routing Information from
Downstream to Upstream and passes the message to GIST. A more specific example how to

start those two applications will be given in section 4.3.
--floOW=2XX. XXX XXX. XXX

The xxx.xxx.xxx.xxx stands for the destination IP address of the flow for which the signaling

is about.

78

4.2 A Brief Introduction of Our GIST Implementation

The GIST can accept three parameters, which are as follows:

--prev=previous hop.: This parameter is not used by current implementation and will be

determined later.

--next=next hop: The parameter next hop is the default next hop for flows if a next hop

could not be located in the Flow-Next Hop mapping table.

--file=filename. Filename is the name of the file which contains the Flow-Next Hop

mapping table.

After the GIST receives a message from the signaling application, it will check the mapping
table to see if it can find a destination IP address of a matching flow ID. If one is found, then
it will use the next hop from the mapping table. If one couldn’t be found, the next hop that is

entered through the parameter will be used.

For example, the GIST is running on a machine whose name is dikjstra.cs.concordia.ca. It

has a mapping table with content as below:

192.168.9.170 tux.encs.concordia.ca
192.168.9.171 knuth.cs.concordia.ca.

The 192.168.9.170 is the destination IP address of the first flow and tux.encs.concordia.ca is
the next hop for it. While /92.168.9.171 is a destination IP address of another flow and
knuth.cs.concordia.ca is the next hop for it. For all of other flows whose destination IP
addresses couldn’t be found in the Flow-Next Hop mapping table, GIST will use

knuth.cs.concordia.ca as their next hop.
So, the command to start GIST in diskstra.cs is:

“./gist --next=knuth.cs --file=dijkstra.txt”
4.3 Testing in a Networking Environment

As our program is in user-space, we are using UDP to simulate the IP and using a Flow-Next

Hop mapping table instead of accessing the Router-Alert-Option directly. The mapping table

79

can let each GIST choose the next hop for a specific flow dynamically. The previous hop is
determined dynamically after the Responding Node receives a Query. So our implementation

can accommodate any number of machines in the network.

All of tests are performed in our networking lab on Linux machines. We will illustrate the

scenarios of both simple test and complex test and every test case has a topology.

4.3.1 Testing With Four Hops and Two Flows without Mapping

Table

The following test case is performed with 4 hops for 2 different flows.

honesty.encs mccarthy.cs dijkstra.cs knuth.cs

NSLP NSLP NSLP NSLP
Flowl Flowl Flowl Flowl
Flow2 Flow2 Flow2 Flow2

\4 \ 4 A\ 4 A\

GIST GIST GIST GIST
Querying Querying, N > Querying, ‘- Responding

Responding Responding

Flow 1:192.168.9.170
Flow 2:192.168.9.171

Figure 15: GIST Test without Flow-Next Hop Mapping Table

Commands to start the NSLP Ping and GIST on each machine are list below:
[honesty]>./gist --next=mccarthy.cs
[honesty]>./nslpping --type=initiator --flow=192.168.9.170

[honesty]>./nslpping --type=initiator --flow=192.168.9.171

80

[mccarthy.cs]>./gist --next=dijkstra.cs

[mccarthy.cs]>./nslpping --type=forwarder

[dijkstra.cs]>./gist --next=knuth.cs
[dijkstra.cs]>./nslpping --type=forwarder
[knuth.cs]>./gist

[knuth.cs>./nslpping --type=receiver

In this test case the NSLP Ping is used by two flows with destinations 192.168.9.170 and
192.168.9.171. The NSLP Ping messages for both flows travel from honesty.encs through
mccarthy.cs and dijkstra.cs to knuth.cs and then travel back through dijkstra.cs, mecarthy.cs
finally to homesty.encs. The NSLP Ping message finally is sent back to NSLP Ping. The

Messaging Association multiplexing between every two adjacent hops is achieved.

4.3.2 Testing with Flow-Next Hop Mapping Table

The following test case is performed on a more complicated topology with 6 machines and
every machine is using a Flow-Next Hop mapping table. The content of Flow-Next Hop

mapping table of every machine is shown in the following diagram.

81

honesty.encs ux.encs
NSLP Flowl NSLP
A A
v - ¥
mecarthy.cs dijkstra.cs
honesty.encs NSLg JNSLP tux.encs
132.205.96.51 132.205.2.193
GIST ‘GIST
Flow:192.168.9.170 A
Next:mccarthy.cs
\4 Y
mccard‘xiy.cs Messsaging Association dijkstra.cs
132.205.45.130 Multiplexing 132.205.45.131
GIST GIST
Flow:192.168.9.170 |« »| Flow: 192,168.9.170
tacitus.encs Next: dijkstra.cs Next: tux.encs h]ijusﬁll, .];:s
Flow2 Flow:192,168.9.171 Flow: 192.168.9.171
Next: dijkstra.cs Next: knuth.cs
\ 4
tacitus.encs knuth.cs
132.205.2.195 132.205.45.133
GIST GIST
Flow:192.168.9.171
Next:mccarthy.cs

Figure 16: GIST test with Flow-Next Hop Mapping Table

The command to start GIST and NSLP Ping on every machine is as follows:
[honesty]>./gist --file=honesty.txt

[honesty]>./nslpping --type=initiator --flow=192.168.9.170

[tacitus]>./gist --file=tacitus.txt

[tacitus]./nslpping --type=initiator --flow=192.168.9.171

[mccarthy]>./gist --file=mccarthy.txt

[mccarthy]>./nslpping --type=forwarder

[dijkstra]>./gist --file=dijkstra.txt

[dijkstra] ./nslpping --type=forwarder

[tux]>./gist --file=tux.txt
82

[tux]>./nslpping --type=receiver

[knuth]>./gist --file=tux.txt

[knuth]>./nslpping --type=receiver

The output seen from honesty.encs for the flow 192.168.9.170 is as follows:
Hop 0:132.205.96.51 Sat Mar 15 20:47:29 2008 usec: 654911

Hop 1 :132.205.45.130 Sat Mar 15 20:47:29 2008 usec: 654992

Hop 2 :132.205.45.131 Sat Mar 15 20:47:29 2008 usec.: 684275

Hop 3 :132.205.2.193 Sat Mar 15 20:47:29 2008 usec: 685243

Hop 4 :132.205.45.131 Sat Mar 15 20:47:29 2008 usec: 693926

Hop 5 :132.205.45.130 Sat Mar 15 20:47:29 2008 usec: 691443

We can see the NSLP Ping message is traveling from honesty.encs through mccarthy.cs and
dijkstra.cs to tux.encs and then traveling back through dijkstra.cs and mccarthy.cs to

honesty.encs.

The output seen from facitus.encs for the flow 192.168.9.171 is as follows:
Hop 0:132.205.2.195 Sat Mar 15 20:47:42 2008 usec: 283037

Hop 1 :132.205.45.130 Sat Mar 15 20:47:42 2008 usec: 287241

Hop 2 :132.205.45.131 Sat Mar 15 20:47:42 2008 usec: 295044

Hop 3 :132.205.45.133 Sat Mar 15 20:47:42 2008 usec.: 298213

Hop 4 :132.205.45.131 Sat Mar 15 20:47:42 2008 usec: 306855

Hop 5 :132.205.45.130 Sat Mar 15 20:47:42 2008 usec: 303946

We can see the NSLP Ping message is traveling from tacitus.encs through mccarthy.cs and
dijkstra.cs to knuth.cs and then traveling back through dijkstra.cs and mccarthy.cs to

tacitus.encs.

83

4.4 Normal Message Delivery and State Refreshing

In this scenario, we are testing if the state machine is performing well with successful
message delivery and state refreshing as we are expecting. The following output would be
expected to be observed in the log file after we started Querying Node, Responding Node and
the Ping Client.

NSLP Ping client in the Querying Node sends out Ping message to the GIST and waits for a
Ping message to be sent back. The Querying Node will first set up a Messaging Association
with the Responding Node. Then it will send the data within the Confirm message, which
will be sent over the newly established Messaging Association. After the Responding Node
receives the Confirm and it will pass the data in the Confirm to Ping client for further
processing. The Ping client will add the IP address of itself and the time it received the
Confirm and pass the message to the GIST. The GIST will construct a GIST Data message
and send that Data message over the Messaging Association to the Querying Node. The
Querying Node then passes the data contained in the GIST Data message to the Ping client.
The Ping client will then print out the message. This is the first data exchange between
Querying Node and Responding Node. After that both Querying Node and Responding Node
will be periodically refreshed. The refresh is initiated by the Refresh QNode timer
expiration. Whenever this timer expires, a Query will be sent out. The Query will elicit a
Response, which will refresh the Querying Node. A Confirm will be sent out to Responding
Node after receiving the Response. The Responding Node will be refreshed then. The
Querying Node could be in the Established or Awaiting Refresh state. The Responding also
could be in the Established or Awaiting Refresh state. A normal GIST Data message can

always be delivered in both ways. Please see Figure 17 for a more detailed description.

The output observed on the log file including all of timer events and message received for
both Querying Node and Responding Node are the same as we expected from Figure 17 and
the Ping message is successfully coming back with two IP addresses and two time stamps
added in it. Please note that if a timer has a cross on it, it means the timer never expires,

because it is already either restarted or removed after some new events.

Using the TCP as the transport protocol, the MTU problem that the RSVP has can be solved.

84

Ping Application of GIST of GIST of Ping Application of
Querying Node Querying Node Responding Node Responding Node
sendmessage
Query
4
e '
'
Response |
'
'
to_No_Response :i |
}
1
'
MA setup |
to_MA_Connect — - o wem - :
]
to_No_Confirm '
]
Confirm with Data ¢
> recvmessage :
» 1
to_Inactive_QNod '
Inactive X X '
— sendmessage)
GIST Data t
recvimessage < '
kF]
< 7\]
<]
X] to_Refresh_QNode '
X to_Expire_RNode :
[}
aaE]
'
<& Query 1
to_Inactive QNod | » :
'
sendmessage recvmessage '
GET Data o :
]L sendmessage !
GIFT Data H
1
< , !
\ < |
N 4F to_No_Response |
'
1
[}
to_Inactive_QNod X Response :
|
to_No_Confirm :
i > |
'
Confirm :
’ < :
/ |
. -
to_Inactive_QNod :
)
]
]
)
N]
)
to_Refresh_QNode X ‘\
-

Figure 17: Normal Message Delivery and Soft State Refreshing

4.5 Messaging Association Multiplexing

In this scenario, we are testing the Messaging Association Multiplexing where a single

Messaging Association could be used by multiple flows. Multiplexing insures that the MA

A timer removed before expiration

E:

A timer expires

>

messages send over TCP socket

B
»

messages send over UDP socket

Peap St suryoews J)ejs S |,

cost scales only with the number of peers and avoids the latency of new MA setup.

85

When the Querying Node receives a Response that contains the Network Interface
Information (Interface Address and Peer Identity) of the Responding Node, the Querying
Node will check the Messaging Association table to see if there is a Messaging Association
with that Responding Node. If there is already a Messaging Association with the peer, the
Confirm will be sent out of along the Messaging Association. When the Confirm is received
by the Responding Node, it also used the peer address identity in the NLI object of the
Confirm message to see if there is already a message association established with the peer.
Actually, when the Messaging Association is supposed to have been established at the time
Querying Node initiated the TCP connection. So Messaging Association Multiplexing is

achieved. Please see the Figure 18 for a more detailed description.
The approach is given as follows for testing Messaging Association Multiplexing:

First we start both the Querying Node and Responding Node. Then we started the Ping client
twice for two different flows (192.168.9.171 and 192.168.9.170 respectively).

The output observed in the log file is the same as we expected from the Figure 18. The output
we observed is that the first entry is allocated for the flow 0 and the second entry is allocated
to flow 1. Both the first entry and second entry of message routing table are pointing to the
same Messaging Association number, which is the first entry in the Messaging Association

table.

86

Ping Application of GIST of GIST of Ping Application of

Querying Node Querying Node Responding Node Responding Node
Sendmessage of flow 0
» Query of flow 0
Ll
Response of flow 0
to_No_Response
MA setup for MA 0
to_MA_Connect — - . s
- recvmessage of
Confirm with Pata of flow 0 flow 0
g
Ll
sendmessage of
GIST Patalof flow 0
flow (| P
recvmessage of flow 0 l
<=
”
sendmessage of
flow 1
» Query $f flow 1
L
Resjonsg of flow 1
to_No_Response
MA reuesed Confirm yith Data jof flow 0 recvmessage of
b flow 1
’ 3
[iFyx‘ of
GIST Patg of op 1
recvmessage of flow 1 &
flow 1 o
¢
gl
-
to_Refresh_QNode for flow 0)
| X to_Expire_RNode for flow 0
to_Inactive_QNode for flow 0
<—i X
to_Refresh_QNode for flow 1 X to_Expire_RNode for flow 1
to_Inactive_QNode for flow 1 i
”i e
Ml 7

Figure 18: Messaging Association Multiplexing

87

4.6 Validation of Soft State Timers

As the timers are playing an important role in a soft state protocol like GIST, the following
scenarios are to validate all the timers we implemented for Querying Node and Responding
Node. If a Messaging Association could not be set up due to timer expiration or a state
machine is torn down due to the timer expiration, an error message will be indicated back to

the signaling application.
4.6.1 MA_Connect Timer Validation

In this scenario, we are testing the MA_Connect timer. The MA_Connect timer is used to set
up the TCP connection with a non-blocking socket. It is used on the Querying Node after
receiving the Response. The Querying Node will try to initiate the TCP connection with the
Responding Node. If the listening point on the Querying Node is not ready, after six
expirations of the MA Connect timer, the state machine stored at that routing state entry will
be removed. Please see Figure 19 for a detailed description. The dashed line in Figure 19

represents that the state machine is already dead and removed.

Meanwhile, if the Responding Node is brought up, the TCP connection will still be
successfully established. The MA_Connect is used with a binary back-off exponential
algorithm. The initial time value is set 500 ms and then the timer will be set to 1s, 2s, 4s, 8s,
16s and 32s respectively after each expiration. If the connection still could not be established
after about 63.5 seconds the state machine will be removed. An error message will be

returned to NSIS Ping application to state the error.
The approach of this scenario is provided in the following.
o We first started the Querying Node, while the Responding Node is not started.
We observed that the state machine is removed because of the MA_Connect timer

expiration.

88

e We first started the Querying Node, while the Responding Node is not started yet. After
30 seconds, we then started the Responding Node.

We observed that the Messaging Association still can be established successfully.

4.6.2 Refresh_QNode Timer Validation

In this scenario, we are testing the Refresh QNode timer. Whenever the Refresh QNode
timer expires, a Query is supposed to be sent out. The state machine is supposed to transfer to
Awaiting Refresh. The state machine is then waiting for a Response from the Responding

Node. Please refer to Figure 20.
The approach is explained as following:

We both started the Querying Node and Responding Node at the same time, after the
Messaging Association is established, we observed the both Querying Node and Responding
Node periodically refreshed due to the Refresh QNode timer expiration.

The output of this scenario observed in the log file is the same as what we are expecting from

Figure 20.

89

Pin GIST of GIST of Ping Application of
g Querying Node Responding Node Responding Node
sendmessage
g Query
»
Response g
to_No_Response
to_No_Confirm
tried MA setup

to_MA_Connect i
tried MA setup

to_MA_Connect } tried MA setup

to_MA_Connect tried MA setup

%

to_MA_Connect tried MA setup

to_MA_Connect tried MA setup

- s -
to_MA_Connect tried MA setup

to_MA_Connect

LG5I

Figure 19: MA_Connect Timer

90

Ping Application of GIST of GIST of Ping Application of
Querying Node Querying Node Responding Node Responding Node
sendmessage
> Query
»
1 ! Response
to_No_Response u l
MA setuo
to_MA_Connect - - amw ses maa
to_No_Confirm
Confirm with Data
>| recvmessage
; >
X to_Inactive_QNode sendmessage
to_Refresh_QNode GIST Data
recvmessage ‘ >
”
X to_Expire_RNode
< Duery
P
Response
onfirm
>
b
-
to_No_Confirm
X to_Inactive_QNode
P 4
< 7

Figure 20: Refresh_QNode Timer

91

4.6.3 No_Response Timer Validation

In this scenario, we are testing the No Response timer. The Querying Node state machine is
waiting for a Response when it is in Awaiting Response or Awaiting Refresh. We validated

both of them.

Pin GIST of GIST of Ping Application of
g Querying Node Responding Node Responding Node
sendmessage Q
uery
Ll
|
to_No_Response Query :
'
)
to_No_Response & Q] :
uery ' 1
Y :
Lt} '
| '
to_No_Response 3 Query : :
i)
»' [
L}]
1)
to_No_Response 3 Query : :
i :
») '
» '
' '
' '
to_No_Response Query : :
|]
» '
]]
| |
to_No_Response ' '
Query ' (
> i
| |
' '
to_No_Response ' !
3 : :
) '
' '
) 1
1 '
)

Figure 21: No_Response Timer in the Awaiting Response State

When the state machine is in Awaiting Response, the binary exponential back-off will be

used for No_Response timer. The Query will be resent at most six times by defaulit.

92

When Querying Node state machine is in Awaiting Refresh, if we killed the Responding
Node, normally the Inactive QNode will expire earlier than the No_Response timer. This is
because whenever a Query is retransmitted, a binary exponential back-off will be used. The
initial timer value is T1=500ms, which the back off process can increase up to a maximum
value of T2 seconds. The T2 in our implementation is 64 * T1. So if the state machine is
removed due to the expiration of No Response timer, the time that has elapsed at least is
equal 0.5s + 1s + 2s + 4s + 8s + 16s +32s = 63.5 seconds. While the Inactive_QNode timer is
only 30 seconds in our implementation. So in order to let the No_Response timer expire
before the Inactive QNode, we change the T2 = 16 * T1. So the No_Response timer will
expire at 15.5 (0.5+1+2+4+8 = 15.5 seconds) seconds. Please see Figure 22 below.

The approaches are provided below for both test cases of testing the No_Response timer:
e No_Response timer expiration when it is in Awaiting Response state:

We modified the Responding Node and let it terminate automatically after receiving the first

Querying. Then we started both Querying Node and Responding Node.

We observed the state machine is removed due to the No_Response timer expiration at the

Quering Node.

e No Response timer expiration when it is in Awaiting Refresh state:

We modified the Responding Node to let it terminate after it sent the GIST Data message
back. We also changed the T2 for No_Response timer to 16 seconds.

We observed that the state machine in Querying Node is removed due to No_Response timer

expiration.

93

X
X
to_MA_Connect %

Confirm with Data

to_Refresh_QNode

recvmessage

Ping Application of GIST of GIST of Ping Application of
Querying Node Querying Node Responding Node Responding Node
sendmessage
» Query
Response
to_No_Response
MA setup

No_Confirm timer

to_No_Response

to_No_Response

to_No_Response

to_No_Response

to_No_Response

to_Inactive_QNode

. recvmessage
X >
sendmessage
GIST Data
X to_Expire_RNode
\
)
- Query i
W]
»n'
»)
)
} Query :
‘:
]
]
]
ue: |H
3 Q ry !
o !
Ll
]
]
} Query :
>
1
'
3 Query :
]
|-y
L
} Query
»
}]

Figure 22: No_Response Timer in the Awaiting Refresh State

94

4.6.4 Inactive_QNode Timer Validation

In this scenario, we are testing the Inactive QNode timer. The expected behavior is as

follows.

In our implementation, the Inactive_QNode timer is set to 30 seconds, just as we mentioned
in section 4.4.3, normally in the Awaiting Refresh state, the Inactive QNode timer always
expires earlier than the No Response timer if the Responding Node is down already.
Theoretically, if Responding Node is down, when Querying Node state machine is in
Established state, the state machine will transfer to the Awaiting Refresh state. The
Inactive_QNode will expire at the time when the Querying Node state machine is in Awaiting

Refresh state.
The approach is given as follows for testing Inactive_QNode timer:

We started both the Querying Node and Responding Node at the same time. After the
Responding Node replied the first GIST Data message, it would terminate itself.

We observed that the Querying Node state machine is removed when the Inactive_ONode

timer expires at the Awaiting Refresh state

The results we observed from this scenario are the same as we expected.

95

Ping Application of GIST of GIST of Ping Application of
Querying Node Querying Node Responding Node Responding Node
sendmessage
* Query
Q Response
to_No_Response |
MA setup
to_MA_Connect — — e e

No_Confirm timer

Confirm with Data recvmessage
A%
—
X g
sendmessage
to_Refresh_QNode GIST Data o
i
iCCV [V N\
X to_Expire_RNode
< ‘)
)
Query '
1
!
»
1
to_No_Response Query !
1
l
n!
L]
|
to_No_Response '
No. ue !
Query +—X
|
)

[
P

|\
N

'
to_No_Response to_tnactive_QNode
'

to_No_Response

o s oo [Rue] [Rae] [aed T

Query
ot
L]
'
1
to_No_Response H
Query H
o
”
'
'
to_No_Response Query :
»
Lapd
'
)
to_No_Response Query N
o
Lapd
|
|
|
|
'
]

Figure 23: Inactive_QNode Timer

96

4.6.5 Expire_RNode Timer Validation

In this scenario, we are testing the Expire RNode timer.

The Expire RNode timer is set to 30 seconds by default in our implementation. It could
expire when the state machine is either in Established or Awaiting Refresh state. The
Expire RNode is first started when the state machine is transferring from Awaiting Confirm
to the Established state. If the Querying Node is out of service after the Responding Node
receives the Confirm, the Expire RNode will finally expire and the Responding Node state

machine will be removed finally.

The approach is given as follows.

e Expire_ RNode expiration at Established state:

We modified the Querying Node so that the Querying Node terminates itself after it receives
the GIST Data from Responding Node. Then we started both the Querying Node and
Responding Node.

The output observed on the log file for this scenario shows that the Responding Node state
machine is removed because of the expiration of the Expire RNode timer, which is the same

as what we are expecting from Figure 24.

97

Ping Application of GIST of GIST of Ping Application of
Querying Node Querying Node Responding Node Responding Node

sendmessage

Query

Response

to_No_Response ﬁl

MA setup
4
— L — L] — -
to_MA_Connect % E‘ to_No_Confirm
Confirm with Data
> recvmessage
dl
to_Refresh_QNode X — >
sendmessage
to_Inactive_QNode i: ¢
GIST Data
recvmessage : X to_Expire_RNode
dl
-
<

to_Inactive_QNode

Figure 24: Expire_RNode Timer Time-out at Established State

When the Responding Node state machine is in the Awaiting Refresh state after receiving the
Query, if the Querying Node is out of service, the Expire RNode will finally expire and the

Responding Node state machine will be removed finally.
The approach is given as follows.
e Expire RNode expires at Awaiting Refresh state

We modified the Querying Node so that it would terminate itself after its Refresh_ QNode
expires and the first Querying for refreshing is sent out. Then we started both the Querying
Node and Responding Node.

The messages observed in the log file are the same as we are expecting from Figure 25.

98

Querying Node

Ping Application of

GIST of
Querying Node

GIST of
Responding Node

Ping Application of
Responding Node

sendmessage

to_No_Response

to_MA_Connect

Query

Response

gk

MA setup

onfirm with Data

to_No_Confirm

recvmessage

A |

end

to_No_Confirm

to_Expire_RNode

>
tb_Refresh_QNode S
XK §isT Dara
recvmessage +*
/N

< Query
|
|
| S
'

to_Inactive_QNode ' A; Response
|8
L]
)
: Response }
! €—
L]
|
: Response &
<
%
'
'
! Response 3
e
.
'
]
]
'
'
'
i
'
'
—X
'
'

Figure 25: Expire_RNode Timer Time-out at Awaiting Refresh State

4.6.6 No_Confirm Timer Validation

In the scenario, we are testing the No_Confirm timer.

99

The No_Confirm time can either expire at Awaiting Confirm state or at Awaiting Refresh
state. We validated both cases and the output is the same as what we are expecting. However,
we only give a diagram for the case when the state machine is in the Awaiting Refresh state.
The Response retransmissioﬁ is using a binary exponential back-off algorithm. The initial
timer value is T1=500 ms, which the back off process can increase up to a maximum value of
T2 seconds. The T2 in our implementation is 64 * T1=32 seconds. Just as we have done with
the timer No Response, we modified the T2 = 16*T1 = 8 seconds. Therefore, the
Responding Node state machine will be removed when No_ Confirm timer expires five times

(0.5+1+2+4+8=15.5 seconds, which is shorter than the Expire RNode timer 30 seconds).
The approach is given as follows.
e No_ Confirm timer expiration at Awaiting Refresh state:

We first modified the T2 to 16 seconds for No_Confirm timer and also modified the code so
that it would terminate itself after it sends out the first Query for refreshing after expiration of

Refresh QNode timer. Then we started both the Querying Node and Responding Node.

The output observed in the log file is what we are expecting from Figure 26.

100

Ping Application of GIST of GIST of Ping Application of
Querying Node Querying Node Responding Node Responding Node

sendmessage

Query

v

Response

to_No_Response

el
D

MA setup
to_MA_Connect
I N - - .
to_No_Confirm

Confirm with Data

»\ recvmessage
>
to_Refresh_QNode sendmessage
X GIST Data l¢
recvmessage |
}; to_Expire_RNode
Query
|-
»
il
to_No_Confirm
L
}5 Response
d
al

Response

A

X

Response
to_Expire_RNode

Response

A

Response

MEMEMES

Lod Jod

to_No_Confirm

!

Figure 26: No_Confirm Timer Time-out at Awaiting Refresh State

101

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Our main purpose of the implementation is to validate the specification of GIST Internet
Draft [4]. We tested our implementation in a scaled network by simulating a Flow-Next Hop
mapping table.We validated the Messaging Association multiplexing and all of the soft state
timers. All of the results are what we are expecting. From this point, we can say the
specification of GIST is already well defined. Through the implementation, some minor
issues are clarified by the authors of the Internet Draft and we also made some

recommendations.

The two layer approach taken by GIST makes adding other signaling application very easy as
it is designed with modularity in mind. Leaving the reliable message transmission security
and congestion control to the existing transport layer like TCP relieves the GIST from
managing message transmission load. It also greatly reduces the GIST complexity. The
Messaging Association multiplexing used by GIST can minimize the number of peer

relationships and it is very resource efficient.

Through the implementation, we learned how to put timer management and state machine
together to construct a soft-state protocol like GIST. We also give out the specific timer
management and state machine implementation. We believe that our implementation will be

useful for the implementers in the future.

5.2 Future Work

In our implementation, we did not implement the Messaging Association state machine
recommended in [4] as we found that the Confirm message is normally sent out every 16
seconds for refreshing and it is barely enough to keep the TCP connection of the Messaging

Association active. Rather we added a new timer MA Connect to the Querying Node state

102

machine in order to detect the connection failure. So we left implementation of the

Messaging Association state machine for future work.

In the specification of Messaging Association of section 6.4 of [4], the author said that
“Timers may also be necessary to detect connection failure (e.g., no incoming connection
within a certain period), but these are not modeled explicitly”. Considering the TCP case, as
it is the only one explicitly defined in the Messaging Association, it is better to add such a
timer to detect the connection failure especially in the Querying Node when the connect()
system call is a blocking call by default. If we change it to non-blocking, we must need a way
to detect when the connection could be established. So we explicitly added a new timer
MA_Connect timer to the Messaging Association state machine. In the future, it would be

useful to the implementer. Please see Figure 27.

103

tg RawData

queue the message for later

transmission
\ R

Birth

g RawData

pass the message to transport layer
if the NoHello timer was running, stop it
restart SendHello

x_MA_Hello to_SendHello
to_MA_Connect
IF reply requested send MA-Hello message
TF (retries < threshold) send MA-Hello restart SendHello timer
retry the connect restart SendHello timer
te Connected

Awaiting
Connection

stop any timers

Pass outstanding queued message to transport layer

start SendHello timer

Con

nected

to_MA_Connect

IF (retries > threshold)
destroy itself

A 4

iy

rd rd
X Message

pass the message to transport layer
if the NoHello timer was running, stop it

tg RawData

pass the message to transport layer
if the NoHello timer was running, stop it
restart SendHello

X Message

pass the message to transport layer
if the NoHello timer was running, stop it

to_NoHello

signaling applications
destroy itself

‘ Idle

report failure to routing state machines and L

x MAldle

stop SendHello timer
start NoHello timer

er MAFailure

report failure to routing state
signaling applications
destroy itself

hines and

Figure 27: Revised Messaging Association State Machine

104

x MA-Hello

If reply requested
send MA-Hello
restart NoHello timer

Bibliography

[1] R. Hancock, G. Karagiannis, J. Loughney, S. van den Bosch, “Next Steps in Signaling
(NSIS): Framework”, RFC 4080, June 2005

[2] J. Manner, X. Fu, “Analysis of Existing Quality of Service Signaling Protocols”, RFC
4094, December, 2004

[3] M. Brunner, Ed, “Requirements for Signaling Protocols”, RFC 3726, April 2004

[4] H. Schulzrinne, R. Hancock, “GIST: General Internet Signaling Transport”, draft-ietf-
nsis-ntlp-11, August 2006

[5] C. Dickmann, I. Juchem, S. Willert , X. Fu, “A stateless Ping tool for simple tests of
GIMPS implementations”, draft-juchem-nsis-ping-tool-02

[6] B. Braden, “A Two-Level Architecture for Internet Signaling”, <draft-braden-2level-
signaling-01>, IETF, November 2002

[7] Braden.,, R. Ed., et. al.,, “Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification”, RFC 2205, September 1997.

[8] H. Schulzrinne, R. Hancock, “GIST: General Internet Signaling Transport”, draft-ietf-
nsis-ntlp-00, Octobor 2003

[9] Douglas E. Comer, David L. Stevens, Internetworking with TCP/IP Volume II: Design

Implementation and Internals, Prentice Hall, 1998

[10] Douglas E. Comer, David L. Stevens, Internetworking with TCP/IP Volume I

Principles Protocols and Architecture, Prentice Hall, 2000

[11] W. Richard Stevens, UNIX Network Programming Volume 2: Interprocess

Communications, Prentice Hall, 1998

[12] W. Richard Stevens, UNIX Network Programming Volume 1: Networking APIs,
Sockets and XTI, Addison-Wesley, 1998

105

[13] Michael J. Donahoo, Kenneth L. Calvert, TCP/IP Sockets in C, Practical Guide for
Programmers, Morgan Kaufmann, 2000

[14] W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley,
1994

[15] W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation, Addison-
Wesley, 1995

[16] T. Sanda, X. Fu, S. Jeong, J. Manner, H. Tschofenig, “Applicability Statement of NSIS
Protocols in Mobile Environments”, draft-ietf-nsis-applicability-mobility-signaling-07.txt,
July 9,2007

[17] T. Tsenov, H. Tschofenig, X. Fu, C. Aoun, E. Davies, “GIST State Machine”, draft-ietf-
nsis-ntlp-statemachine-04.txt, July 2007

[18] J. Manner, G. Karagiannis, A. McDonald, “NSLP for Quality-of-Service Signaling”,
draft-ietf-nsis-qos-nslp-15.txt, July 2007

[19] M. Stiemerling, H. Tschofenig, C. Aoun, E. Davis, “NAT/Firewall NSIS Signaling
Layer Protocol (NSLP)”, draft-ietf-nsis-nslp-natfw-15.txt, July 2007

[20] H. Chaskar, Ed. “Requirements of a Quality of Service (QoS) Solution for Mobile IP”,
RFC 3583, September 2003

[21] H. Tschofenig, D. Kroeselberg, “Security Threats for Next Steps in Signaling (NSIS)”,
RFC 4081, June 2005

[22] H. Tschofenig, R. Graveman, “RSVP Security Properties”, RFC 4230, December 2005

[23] C. Shen, H. Schuzrinne, S. Lee, J. Bang, “NSIS Operation Over IP Tunnels”, draft-ietf-
nsis-tunnel-03.txt, September 2007

106

