Architecture Design and Access Control of e-Health Portals

Shuo Lu

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fullfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

January 2008

© Shuo Lu, 2008

A

Library and Bibliotheque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-40946-6
Qur file Notre référence
ISBN: 978-0-494-40946-6

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT
Architecture Design and Access Control of e-Health Portals

Shuo Lu

As an emerging form of enabling technology, Web-based e-Health portals provide patients
easier accesses to their healthcare information and services. We design and implement such
an e-Health portal which can integrate many backend medical services effectively. A major
challenge in designing such a system is to meet critical security requirements, such as the
confidentiality of patient data, the integrity of diagnosis results, and the availability of
healthcare services. In this thesis I address the issue from the access control perspective.
More specifically, 1 first propose a two-tier approach to access control for e-Health portals.
The approach supplements existing Role Based Access Control (RBAC) capabilities with a
rule-based access control module based on the classical Flexible Authorization Framework
(FAF) model. I study conflict resolution and interaction between the two modules. I also

address authentication for real-time services provided by remote service providers.

iii

ACKNOWLEDGEMENTS

First, 1 would like to express my truly thanks to my supervisor, Dr. Rachida Dssouli, for

her help, guidance and support to my study and research work in Concordia.

In addition, thanks to my co-supervisor Dr. Lingyu Wang with his kind suggestions and

help. I would also thank all group members, and my friends: Cody, Mario and Frenkie.

iv

To My Parents and Meris

Table of Contents

List of Tables

List of Figures

List of Acronyms

1

2

INTRODUCTION

1.1 Background e
1.2 Motivation L e
1.3 Contributions

1.4 Organization of the Thesis

RELATED WORK
2.1 Service-Oriented Architecture
2.2 Web Services
221 SOAP . .
222 WSDL
223 UDDIL . .. e
2.3 Portal
2.4 Flexible Authorization Framework
25 Kerberos e
2.6 Telemedicine and e-Health Systems
2.7 Access Control Models

viii

ix

NN = =

© e N o Ut R

ARCHITECTURE DESIGN OF THE E-HEALTH PORTAL SYSTEMS 18

3.1 Functional Requirements

vi

18

3.2 System Architecture Design oL

4 ACCESS CONTROL IN E-HEALTH PORTALS
4.1 Overview of Access Control in e-Health Portals
4.1.1 Related Factorso
4.1.2 Requirements e e e e
4.2 A Two-Tier Approach to Access Control
4.2.1 Problem Formulation
4.2.2 Solution Overview
423 RBACTier e
4.2.4 Complementing RBAC with Rules
4.2.5 Conflicts and Inconsistency
4.3 Inter-Portal Access Control
4.3.1 Portal Federation
4.3.2 User Authentication in e-Health Portals
4.3.3 Analysis of the Inter-Portal Authorization
4.3.4 Collaborative Inter-Portal Access Control

5 IMPLEMENTATION
5.1 System Deployment Platform
9.2 Medical Services. L
5.2.1 ECG Monitoring Service
5.2.2 BP Monitoring Service
5.3 Two-Tier Access Control
54 UseCases e
5.4.1 Web Service-based BP Monitoring Scenario
5.4.2 Applet-based ECG Monitoring Scenario

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

Bibliography

vil

23
23
23
24
26
26
27
29
30
35
41
41
42
44
46

48
48
48
49
50
51
57
57
58

62
62
62

64

List of Tables

4.1 Comparison of Authentication Solutions

viil

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Web Services Architecture L. oL 6
Exchanging Message with SOAP 7
A Simple Portal Platform oo 10
Simplified Description of Kerberos Protocol 12
Role Based Access Control Model 17
An Example Deployment of e-Health Portals Federation 20
A Service-Oriented Architecture for e-Health Portal 21
Two-Tier Access Control 28
V-RBAC for e-Health System Portal 29
Federated Portal 42
Cross-Domain Authentication with Kerberos 44
Patient Side ECG Monitoring Interface 49
Patient Side ECG Monitoring Interface 50
Medical Staff Side ECG Monitoring Interface 51
BP Monitoring Service Implementation 52
Components of the Access Control Engine 53
Snapshot of the Prolog Server 54
Sequence Diagram for Access Control Engine 55
Sequence Diagram for BP Monitoring Service 59

Sequence Diagram for Real Time ECG Monitoring Service on Behalf of Patients 60
Sequence Diagram for Real Time ECG Monitoring Service on Behalf of Medical

ix

List of Acronyms

ACL

ACM

AS

ASL

BP

CORBA

DAC

DCOM

ECG

EPR

FAF

GUI

HIS

HISA

JPF

KDC

LDAP

MAC

MVC

RBAC

RMI

RPC

Access Control Lists

Access Control Matrix

Authentication Server

Authorization Specification Language
Blood Pressure

Common Object Request Broker Architecture
Discretionary Access Control
Distributed Component Object Model
Electrocardiograph

Electronic Patient Record

Flexible Authorization Framework
Graphic User Interface

Health Information System
Healthcare Information System Architecture
Java Page Flow

Key Distribution Center

Lightweight Directory Access Protocol
Mandatory Access Control

Model View Controller

Role Based Access Control

Remote Method Invocation

Remote Procedure Call

SOA

SS

TGS

TGT

UDDI

WSDL

WSRP

XML

Service-Oriented Architecture

Service Server

Ticket Granting Server

Ticket Granting Ticket

Universal Description, Discovery and Integration
Web Services Description Language

Web Services for Remote Portlets

Extensible Markup Language

X1

Chapter 1
INTRODUCTION

1.1 Background

“e-Health is an emerging field in the intersection of medical informatics, public health and
business, referring to health services and information delivered or enhanced through the
Internet and related technologies” [Eys01].

The healthcare industry is undergoing fundamental changes. Examples of such changes
include a shift from hospital-centric services to a more ambulatory system (with homecare,
day care clinics, and so on) and the treatment of chronic diseases that actively involves the
patient himself/herself [Bis05]. The emergence of Web-based e-Health portals is a natural
result of such changes because such portals provide patients and healthcare professionals
easy accesses to information no matter where they are. According to a recent survey, most
patients say they are very interested in and capable of accessing healthcare information and

services via a Web-based portal system [Eys01].

1.2 Motivation

The design of e-Health portal is, however, particularly challenging due to its unique function-
ality and security requirements. First, a traditional design of portal systems will encounter
difficulties in integrating heterogeneous e-Health services implemented with different tech-
nologies. The complexity of such integration will make it difficult to extend an existing
system with new services. Second, a general purpose Web-based portal usually cannot meet

the security requirements of an e-Health portal system because the consequence of a security

breach is far more serious in the latter. For example, an inappropriate disclosure of patient
data will lead to privacy breaches and legal issues, whereas an improper modification to
diagnosis results or a denial of critical healthcare service may threaten a patient’s health or
even his/her life.

We address the above issues through the design and implementation of a secure Web-
based e-Health portal. To meet the functional requirements, we adopt a service-oriented
approach to the design of our portal. We then tackle various security issues involved in such
a design. More specifically, we outline our solutions for authentication and authorization
of users for local and remote services in different operating modes, for trust management
between patients and doctors using PKI and biometrics, and for preserving patients’ privacy
through preference negotiation and database technology. We also discuss implementation

issues of the proposed portal system.

1.3 Contributions

My contributions concentrate on the system architecture design and access control of e-
Health portal systems. In the architecture design, I adopt Service-Oriented Architecture-
based three-tier architecture, which includes portal server, portlet container, and service
container. In the design of access control, I design a two-tier access control mechanism,
which combines traditional role-based access control with rule-based access control [LHL'07]

[HLL*07] [LLH*08].
1.4 Organization of the Thesis
The rest of the thesis is organized as follows:

e Chapter 2 presents technical background and related work of e-Health system archi-

tecture and access control models.

e Chapter 3 discusses the functional requirements of our e-Health portal systems and

then describes my design of the system architecture.

e Chapter 4 mainly illustrates the requirements of access control in our e-Health portal
systems and discusses issues within existing access control models when applied to our
case and then proposes our two-tier access control model. Issues within the e-Health

portal federation are also discussed in this chapter.

e Chapter 5 gives the implementation details of the system architecture, some medical

services, and the access control engine.

e Chapter 6 draws conclusions of the thesis.

Chapter 2
RELATED WORK

This chapter describes the background related to our e-Health portals. Related work of

e-Health systems and access control model are also illustrated.

2.1 Service-Oriented Architecture

Service-Oriented Architecture (SOA) provides a uniform means to offer, discover, interact
with and use capabilities to produce desired effects consistent with measurable preconditions
and expectations [oas]. Many enterprise architects believe that SOA can help businesses
respond more quickly and cost-effectively to changing market conditions [Koc05].

SOA is a software system architecture, which enables various applications’ components
(exposed as services) to communicate with each others via well defined programming inter-
faces. Those interfaces are hardware platform, software platform and programming language-
independent. The most popular SOA implementation has been using the Web services
protocol stack. Such services are generally described by platform-independent XML docu-
ments, i.e. the Web Services Description Language (WSDL) which will be illustrated in the
next section. The services communicate with each other in messages defined in XML since
service consumers and providers may reside in heterogeneous environments, and they may
know nothing about each other. Services are generally published to a registry by service
providers, and consumers can discover and invoke the services regardless of their underlying
implementations.

Besides Web Service, there are many other protocols that can be used to implement the

SOA. Such as DCOM (Distributed Component Object Model, which is Microsoft specific),
RMI(Remote Method Invocation) and JINI (which are Java specific), and OMG’s CORBA
(Common Object Request Broker Architecture, which is platform and language indepen-
dent). CORBA has been successfully applied in various areas ranging from telecommunica-
tions, e-commerce, to healthcare etc. However, the biggest challenge faced by CORBA is
that it is hard to find a unique RPC middleware to support all the programming languages
and all the platforms at a reasonable price [GKS02]. CORBA only supports for UNIX and
Windows platform, and Visual Basic does not provide any support for CORBA and therefore

limits its usage.

2.2 Web Services

Web services provide a standard means of interoperating between different software applica-
tions running on a variety of platforms and/or frameworks [w3c]. Web services are applica-
tions that expose their business logic, data and processes through programmatic interface.
Unlike traditional Client/Server models, Web services generally use HTTP as the underlying
communication protocol which allows messages to go through most of the firewalls (most
of the firewalls’ setting allow the access to HTTP port). Web services do not provide users
with GUI (Graphic User Interface). However, developers can add Web services into their
Web page or applications and offer users with GUI which contains the functionalities of the
Web services.

The major advantages of implementing an SOA using Web services are that Web services
are very simple and programming language and platform-independent. Moreover, there
are many extended Web services specifications ranging from transactions, business process,
messaging, transport, security, metadata to performance, which are on their way toward
standardization. These provide enterprise-level integration in a standard way for services to
interoperate with each other without any incompatibility and at the same time ensures the
QoS and other requirements. As the three core specifications of the Web services protocol

stack, SOAP, WSDL and UDDI form the initial specifications for Web services. Figure 2.1

UDDI
Registry

Service . Invoke Service . Service

Requester SOAP Provider

Figure 2.1: Web Services Architecture

describes the architecture of Web services. In the following, each of them will be introduced

in details.

2.2.1 SOAP

SOAP is a protocol for exchanging XML-based messages between peers over computer net-
works. It provides a standard way to access Web services. SOAP is the foundation of the
Web services protocol stack and provides the basis upon which other abstract layers are
built. It generally uses the HTTP/HTTPS (other protocols like SMTP and XMPP can
also be used) as its underlying protocol. The major advantage of using SOAP over other
distributed protocols like GIOP/IIOP or DCOM is that SOAP with HTTP works well with
network firewalls, whereas other protocols are normally blocked by firewalls.

SOAP 1.1 was proposed to W3C in May 2000 [w3c|. Currently, W3C is working on SOAP
1.2. A SOAP message is an XML document which contains the following XML elements:
Envelop, Header, Body and Fault. The SOAP Envelop element is the root element of a SOAP
message. It is used to identify that the XML document is a SOAP message and encapsulates
all other XML elements. The SOAP Header element is optional and may contain application
specific information like security features. The SOAP Body element is required and contains
call and response information. The SOAP Fault element is optional and it represents error
information when processing the message. Each Fault element must contain a faultCode

element and a faultString element. The former one represents the code of the error and the

Request Message

SOAP ™ SOAP
Client < HTTP/HTTPs Server

Response Message

Figure 2.2: Exchanging Message with SOAP

latter one is used to provide the detailed information of the error.

Figure 2.2 depicts how SOAP messages exchanged between SOAP client and server. A
SOAP client (also termed as service requester) is an application that creates a SOAP message
containing the information needed to invoke remote methods in heterogeneous environments.
It could be a traditional program, Web services or any other server-based applications (such
as servlet, portlet etc.). A SOAP server (also termed as service provider) is a program
generally resides in the Web server that listens, distributes and interprets the received SOAP
messages. In Figure 2.2, the SOAP client sends a request (a SOAP message) to the SOAP
server via HTTP/HTTPs. After receiving this request, the SOAP server sends it to the
SOAP processor which resides in the server side and acts as an evaluator to validate this
request against the XML schema. If it is valid, the SOAP processor invokes the Web service.
Then the Web service processes this request and creates a response. After that, the SOAP
processor wraps this response with SOAP message format and sends the response SOAP
message back to the SOAP client over HTTP/HTTPs. Like the SOAP server, the SOAP
processor in the SOAP client will parse and validate this response message and present the

result to the SOAP client user interface.

2.2.2 WSDL

The WSDL (Web Services Description Language) is a specification recommended by W3C
[w3c|. The current draft version is 2.0. It is an XML-based language used for describing Web
services. Each WSDL document contains five major elements which describe three aspects
of Web services. The types, message and portType elements are used to describe what
tasks the service provides. The types element defines the data type used by Web services

(Generally, for maximum platform independent purpose, WSDL uses XML Schema syntax

7

to define data types). The message element defines the data elements within each operation.
These data elements can be compared to the parameters of a function call in traditional
programming languages. The portType element describes the operations that a Web service
can perform. It can be compared to a function in traditional programming languages. The
binding element defines the message format and underlying transport protocol details for
each port and the service element represents the location of the service. The main purpose
of the WSDL is to provide human readable and machine interpretable information about the

service.

2.2.3 UDDI

UDDI (Universal Description, Discovery and Integration), sponsored by OASIS [oas], is
a platform-independent, XML-based registry, which enables Web services implementations
to be published and discovered either within or between enterprises. A UDDI business
registration contains three components: White Pages (describes basic information about
the service provider, such as address, contact, and other identifiers), Yellow Pages (describes
services by industry categorizations, service type or geography information) and Green Pages
(describes technical information about services, such as interfaces and URL locations etc.).

UDDI eases enterprises to create a platform-independent and open architecture for quickly
discovering and publishing businesses and services via Internet. Enterprises can describe and
publish their services to the UDDI registry. Once an enterprise finds a potential business
partner, they can quickly and easily begin trading. As shown in Figure 2.1, the service
provider may publish its WSDL document in the UDDI registry and the service requester
may retrieve it by searching the UDDI registry according to the keywords described in the
above pages. When the service requester obtains the WSDL document for a service, it may

invoke it according to the elements described in the WSDL document.

2.3 Portal

With the expanding of enterprise and business, it is necessary to have a centralized applica-
tion that can integrate various applications and systems within the same place to share the
resources. It also provides various users with a single point to access all of the applications
over the Internet. All these can be achieved through portals. A portal lets users view each
application or Web page in its own window, called a portlet, and a single browser window
can contain one or multiple portlets. It is a collection of resources in an enterprise applica-
tion that can be displayed in customizable, personalized, and audience-specific views called
desktops [bea].

As the basic unit of portal, portlets are pluggable user interface components that are
managed and displayed in a portal. Portlets produce markup fragments and then these
fragments are aggregated into a portal page. Typically, a portal page contains a collection
of portlet windows, where each of them displays a portlet. Thus a portlet resembles a Web-
based application (such as a JSP, HTML page, Java Page Flow or Web services etc.) that
is hosted in local or remote portal servers. The Java Portlet Specification (JSR168) is a
standard that enables interoperability for portlets between different portals. This specifi-
cation defines a set of APIs for interaction between the portlet container and the portlet
addressing the areas of personalization, presentation and security [jsr]. Apache Pluto [plu]
is a reference implementation of JSR168. Also, there are many other vendors (such as BEA,
IBM, SUN, Oracle etc.) provide commercial implementations of the standard-compatible
portlet container.

As shown in Figure 2.3, it is a simple portal platform in which the portal integrates
multiple backend medical systems. The interfaces of these systems are represented in a
single browser window to clients. Administrators resided in the portal assemble, configure
and manage the portal via portal administration tools.

Some characteristics and benefits of portal solution are listed as follow:

o Intelligent resources integration: Integration of various enterprise applications, services

and processes together is key to developing an environment that fully supports business

BP Monitoring ECG Monitoring EPR Service
Service Providers ~ Service Providers Providers

Portal

Administrator

a & Clients

Figure 2.3: A Simple Portal Platform
processes.

Rendering content on different devices: By using portal technology, content can be

delivered to and displayed on multiple devices (such as PC, PDAs, smart phones etc.).

Personalization: The ability to serve dynamic response to the user based on personal

profiles.

Rapid, easy management of Web content: Portal administrator may easily modify, add

or remove content from the portal.

Single Sign-on: Portal is a place where a user can authenticate once and gain access

to the resources of multiple backend systems.

Federation: This feature enables a portal to include remotely distributed resources in
a standard way. It also reduces the cost for maintenance, testing and deployment and

increases the reuse of portal components and interoperability.

10

2.4 Flexible Authorization Framework

Many access control policies have been proposed and are widely applied in information
systems. However, in practice, only a specific policy (such as closed policy or open policy)
can be applied in a system, which cannot satisfy increasing access control requirements.
Thus, Flexible Authorization Framework (FAF) [JSSSO01] is proposed to allows multiple
access control policies to be applied within a single system. FAF allows positive, negative
and hybrid (both positive and negative) policies to be specified to allow or deny an access
in a powerful, declarative and flexible way. It also employs meta-policy to solve the conflict
resolution problem when hybrid policy is specified.

FAF employs four tiers of policies to manage access control [NZ]. The first stage includes
the description of subject and object hierarchies, and a set of authorizations according to
the protection requirements. In this stage, conflict problems may occur since both positive
and negative authorizations may be derived for executing an action on a given object, thus
a subject could be authorized and denied to perform the action at the same time. To solve
this problem, in the second stage conflict resolution policies are enforced. However, it is
possible that access is neither authorized nor denied. Thus, the third stage employs the
decision policies to make final decisions. Finally, integrity rules are used to identify and
remove errors that may arise in authorization specification.

Based on this framework, security administrators may use the Authorization Specifica-
tion Language (ASL), a stratified first-order logic language, to specify access control rules
according to the protection requirements. ASL syntax includes a set of stratified predicates.

The level of these predicates is corresponding to the stages stated above.

2.5 Kerberos

Kerberos is a network authentication protocol that is based on the Needham-Schroeder pro-
tocol. It is designed to provide strong authentication for client/server applications by using
symmetric key cryptography [mit]. The core of the Kerberos is the Key Distribution Center

(KDC), a trusted third party which contains two logical parts, i.e. an Authentication Server

11

Figure 2.4: Simplified Description of Kerberos Protocol

(AS) and a Ticket Granting Server (TGS). AS maintains a database to store the credentials
of users and issues users with Ticket-Granting Ticket (TGT) upon successful authentication.
TGS is used to issue users with Client-to-Server ticket upon receiving valid TGT. Kerberos
also enables mutual authentication (i.e. both the user and the server verify each other’s iden-
tity). A free implementation of this protocol is available from the Massachusetts Institute
of Technology [mit]. Figure 2.4 is a simplified description of Kerberos Protocol. It contains
three phases.

Phase A: The Authentication Service Exchange

1. The client sends a plaintext which contains the identities of the client and the server
to the AS.

2. The AS checks the identity of the client. If it is valid, the AS sends back the client
two messages: the client/ TGS session key (shared between the client and TGS) encrypted
using the user secret key and the TGT (which contains the client ID, client IP address, ticket
validity period, and the client /TGS session key) encrypted using the secret key of the TGS.
The user can get the session key by using his/her secret key to decrypt the first message.

Phase B: The Ticket-Granting Service Exchange

3. When requesting services, the client sends two messages to the TGS: the first one
contains the TGT and the ID of the requested service and the second one is an Authenticator
(which contains the client identity and a timestamp), which is encrypted by the client/TGS

session key.

12

4. Upon receiving the above two messages, the TGS decrypts the Authenticator using the
client /TGS session key and sends the following two messages to the client: client-to-server
ticket (which includes the client identity, client ip address, validity period and client/server
session key) encrypted using the service’s secret key and client/server session key encrypted
with the client/TGS session key.

Phase C: The Client/Server Authentication Exchange

5. In order to use the service, the client sends the following two messages to the Service
Server (SS): the first one is the client-to-server ticket which is encrypted using service’s
secret key and the second one is an Authenticator (which contains the client identity and a
timestamp) encrypted using client/server session key.

6. Upon receiving the client-to-server ticket, the SS decrypts it using its secret key
and increases the timestamp within the Authenticator by 1 and then encrypts it using the
client /server session key and reply to the client.

Finally, the client decrypts the reply using the client/server session key and checks the
value of the timestamp. If it is increased by 1, the client can begin to send the service request

to the server.

2.6 Telemedicine and e-Health Systems

The increasing demand for e-Health services has led to many research efforts [KGO06]. Dif-
ferent e-Health or other healthcare-related systems have been designed and implemented.
Some of them are used in special areas, such as trauma [CG04], cardiology [FGT'03],
neurosurgery |[RCWT98], pathology treatment [MMO04] etc. Some are used with special
purposes, such as emergency [SRK*04] [wet98], aecronautic cure [FKMO1], marine purpose
[CRCM97], patient monitoring [KPK*01] etc. With the advantages of wireless technologies,
there are also many wireless-based e-Health systems (i.e. m-Health system) emerging [EO05].
For complete surveys of m-Health, refer to [VPIt01] [PKV*02] [IJZ04]. The common fea-
ture of these systems is that they only provide limited or special services to users or as the

complement of the e-Health industry. Our goal is not to implement an e-Health system used

13

in a special area or for some purposes. Instead, we concentrate on proposing a framework for
general e-Health systems, which can integrate most of the existing healthcare applications,
modules or other healthcare related systems.

Many architectures have been proposed for telemedicine and e-Health system. In this
section, we give a brief review.

HISA (Healthcare Inforination System Architecture) [RS99] is a European pre-standard
for medical information systems that deals with the architecture of medicine information
system. Even though this architecture has no direct relationship to the field of e-Health, we
still can benefit from it. It adopts three-layer architecture and uses middleware (CORBA
and DCOM) technologies to develop distributed healthcare information systems to enable
different health centers to interoperate with each other on the basis of information consis-
tency.

Later, SAMTA [sam] developed an open scalable architecture for multimedia telemedicine,
applications which allows designers to efficiently use the network bandwidth. It classifies
services into medical services, technical services and physical services according to different
levels of complexity. This separation of services enables the technical details behind the
medical services to be hidden from users. Among these levels of services, medical services
are those offered to the user directly. Each service corresponds to one or more operations
in the real world. Technical Services do not have direct relationship with the medical field.
It only concentrates on network transmission, local services, security, compression and hu-
man interaction. Physical Services refer to the structures, protocols and services used by
the technical services. They are close to the underlying hardware and act as an interface
between the application and the environments (such as hardware and software platforms).

Authors in [tsi] proposed a Telemedicine System Interoperability Architecture which
contains two levels of interoperability. The first level concentrates on how to compose stations
within a telemedicine system and how to deliver the functionality within the station. This
level is based on three sets of interfaces: station-to-device, station-to-station and station

internal interfaces. The second level concentrates on how different stations can discover

14

each other within a system and then begin transactions. The goal of this level is to allow
independent systems to locate (discovery), negotiate (QoS parameters) and interoperate
each other. Each of these levels provides a number of features to support different aspects
of interoperability.

[XGL03] proposed a distributed framework of Web-based telemedicine system which
addresses two types of servers, i.e. Web servers and data servers. This framework is based
on CORBA technique.

[IMA06] proposed a SOA-based e-Health services architecture. It consists of six main
components for defining interactions among different layers. In this architecture, the con-
sumers include the hospital, medical staff, or other e-Health enterprise applications. Support
function layer is used to help consumers to discover, deploy, and invoke health services and
infrastructures. The control system layer enables the high availability, reliability, fidelity,
and QoS. The goal of this layer is to employ different algorithms to achieve the service dupli-
cation, fault tolerance, and load balancing. Infrastructures and services layer is a container
of health services. The security system provides the access control and other security func-
tionalities. And the management system concentrates on controlling the data flow from one
layer to another.

Moreover, [MS04] proposed the general access control requirements of Health Information
System (HIS). However, it is based on the small component-based HIS. There are also many
other research effort have been conducted with regards to the access control requirements
for the healthcare system [RE06]. Most of them concentrate on the access control of a
special subsystem, especially the Electronic Patient Record (EPR) system. However, the
analysis of the access control from our research is from the perspective of the e-Health

system integration.

2.7 Access Control Models

This subsection will focus on related work on access control models that can be applied to

e-Health portals.

15

The access control matrix (ACM) [W.71] is an early access control model which can be
represented by a triple <subject, object, right>. The object is an entity (such as file, process
etc.) that to be protected and the subject is the entity (such as user, process etc.) who wishes
to access the objects. The right specifies the operations that a subject is allowed to perform
on the desired object. Access control lists (ACLs) is a common way to implement the ACM.
Each object is associated with an ACL to indicate the access right that each subject is
authorized to perform action on the object.

In discretionary access control (DAC), accesses are assigned by the owner of objects.
DAC also allows a subject to pass its access permissions to another subject. Upon acquiring
the permission either directly or indirectly, this subject is authorized to access these objects.

Unlike DAC, Mandatory access control (MAC) is an access control model where the
permission of access is determined by the system, instead of the owner. In MAC, accesses
are based on security clearances and levels (sensitivity labeling or security labeling). If the
sensitivity level associated with the subject is equal or higher than the desired object, the
subject is allowed to access the object. MAC is generally used in multilevel systems such as
military information system.

Sandhu et al. proposed the RBAC model in 1996 [SCFY96]. The RBAC is an access
control model where permissions are assigned to roles rather than directly assigned to users
(refer to Figure 2.5). Roles are defined according to different job titles or functions, such
as Medical Staff, Patient, and Administrator etc. Users are assigned with roles based on
their responsibilities. The authorization of RBAC is split into two independent phases, i.e.
user-role assignment and role-permission assignment. Sandhu also specifies four conceptual
models derived from RBAC. RBAC-0 is the basic conceptual model which contains users,
roles, permissions and sessions. A user can establish a session to activate a set of the
roles to which the user is assigned. RBAC-1 encloses RBAC-0 and introduces the concept
of role hierarchy. Role hierarchy uses partial order to represent the inheritance between
roles which can reflect the structure of an organization in the reality. It also increases the

reusability of permissions by which senior roles can inherit permissions from a junior role.

16

Role Hierarchy

User-Role
Assignment

Permissions
Role-Permission

> Assignment
3

N N A
N . N :

Sessions * -

Figure 2.5: Role Based Access Control Model

RBAC-2 extends RBAC-0 with constraints, which add restrictions when assigning users or
permissions to roles, or in the activation of roles in sessions. Finally, RBAC-3 combines all
features provided by RBAC-1 and RBAC-2.

Besides the access control models stated above, grouping permissions can also be achieved
by using rule based access control. Generally, a rule consists of two parts: Left-Hand Side
(LHS) and Right-Hand Side (RHS) [FHO03]. The LHS represents a set of conditions and
the RHS stands for consequences. When those conditions on the LHS are true, actions
(conclusions) on the RHS can be executed. Here is an example of rule:

[F LHS (Conditions) THEN RHS (Conclusions)

Thus, rule based access control model allows subjects to access various resources based
on predefined rules. Rule engine is the core component of the model which is used to
interpret rules at runtime. After loading the rule set from the rule repository, the rule engine
will analyze conditions within rules and infer consequences. If consequences are positive,
all actions will be executed. On the other hand, executions will be denied. Compared
with RBAC, rules are less intuitive than roles and general non-technical administrators are

incapable to specify rules.

17

Chapter 3

ARCHITECTURE DESIGN OF THE
E-HEALTH PORTAL SYSTEMS

3.1 Functional Requirements

The design of e-Health portal aims to meet a collection of functional requirements as follows.
The first three requirements are in the point of view of users of the portal, whereas the last

four are about portal administrators or service providers.

o User Personalization. Users of an e-Health portal can create and save a personalized
page including only the content they would like to access. For example, a patient may

prefer seeing only the newsfeed in cardiology.

e Content Aggregation. Users of a portal can access related services on a single page,
regardless how many service providers are involved or how different those services are
implemented. Navigation elements should be provided such that users can easily switch

to a different page when necessary.

e Ease of Use. This requirement is particularly relevant to e-Health systems where
many users are seniors or have limited knowledge of computer technology and even the

installation of client-cide software may go beyond their capability.

e Backend Customization. Administrators of a portal can customize the source of ser-
vices provided by the portal using a content management system, and such modifica-

tions should be transparent to normal users.

18

e Interoperability. The portal must be able to seamlessly integrate heterogeneous medi-
cal services implemented on different platforms and with different technologies. Such

implementation details should be transparent to users of the portal.

e Extensibility. The integration of new services should imply minimal impact on the
normal operation of other services provided by the same portal. Downtime should
be minimized because the continuous availability of medical services may have direct
impact on patients’ health or life. Moreover, service providers should be able to inde-

pendently produce services and seamlessly plug them into the portal.

e Support of Different Service Modes. A medical service can run in real time, automation
or store-and-forward mode, and the portal should support all of above. Real time mode
service is a kind of service that different participators can interact with each other at
the same time. Generally, video and audio transmissions are involved in such kind of
service. Automation mode means the medical data users submitted is processed and
analyzed according to some sophistical algorithms automatically and the result will be
returned to users. Store-and-forward mode means medical data is sent to a station

where it is kept and examined at a later time by a medical staff.

3.2 System Architecture Design

We adopt the Service-Oriented Architecture (SOA) for the e-Health portal. Traditional
designs of software systems usually have difficulties in meeting the aforementioned func-
tional requirements. The interoperability among heterogeneous components requires a com-
plicated integration process, which then implies unacceptable downtime and efforts for the
integration. In contrast, the SOA exposes resources of each software component as standard-
conforming services that can be accessed without understanding the underlying implemen-
tation details.

The main components of our design are e-Health portals interconnected via the Web

Services for Remote Portlets (WSRP) protocol. The portals constitute an e-Health portals

19

——————Hospital A
ECG Monitoring Service
EPR Service

N\

Hospital
BP Monitoring Service
EPR Service
Weight measurement Service

Hospital C
Teleconsultation Service
EPR Service

News feed Service

¥
Portal Server B

Figure 3.1: An Example Deployment of e-Health Portals Federation

federation (in the reality, portal federation can also include systems with WSRP-enabled
components). Each e-Health portal is a Web-based application that provides users a unified
interface to all the services provided by these medical organizations. The portal allows its
users to personalize desired content through creating customized Web page, namely, portal
interface. Each portal interface also plays the role of a content aggregator by including a
collection of related services. Navigation elements inside each portal interface allow users to
easily navigate among different collections of services just like surfing the Web. In our design,
all client-side processing is supported either by the built-in functionalities of a standard Web
browser or through applets/activeX controls that are automatically downloaded and executed
in the browser. Users are not required to possess sophisticated computer skills in order to use
services provided by the portal. Figure 3.1 is a simple deployment of such federation, which
contains two e-Health portals. Portal A integrates medical services provided by Hospital A
and B, and Portal B contains three services provided by Hospital C.

More details of the proposed architecture are depicted in Figure 3.2. End users interact
through browser with the portal server via HT'TP or HTTPs. The portal server consists of
a portal engine and a portlet container. The main responsibility of the portal engine is to
aggregate content from different sources and to serve these content to multiple devices. The

portal engine also performs the role based access control (will be discussed in chapter 4) and

20

Browser

Applet/ActiveX
Control

HTTPs

Access Control Engine

Remote Portlet

WSRP

Portlet Container

/ Service Container \

LDAP

Proxy Portlet *

uDDl

ortal

EPR Portlet

En_uine

Medical News Feedback
Portlet

Weight Measurement Portlet

BP Monitoring Portlet

|
ovay
sanepaju| |EMO

Service Appointment Portlet

-
-

Service Search Portlet

(Ovg 8iny) [03LOY $S800Y paseg ajny

1SS JUFMINY-TAIX dVYOS

EPR System

Medical News
Feedback Service

Weight Measurement
Service

BP Monitoring
Service

Service Appointment
Service

Service Search
Service

vy

Teleconsultation Portlet

Kerberos
Server

ECG Monitoring Portlet

cesrenees

N

/

Portal Server

/

vy

Teleconsultation Server

ova 3Ny

ECG Monitoring
Server

21

Y,

Figure 3.2: A Service-Oriented Architecture for e-Health Portal

redirects users to appropriate portal interfaces.

A portlet container provides a runtime environment for portlets implemented according
to the Portlet API. In this container, portlets can be instantiated, used and finally destroyed.
The separation of portal interfaces from portlets allows portal administrators to easily cus-
tomize the source of services using a content management system.

Interoperability and extensibility are both inherent to the architecture because most of
the backend services (run in automation or store-and-forward mode, e.g. the BP monitoring
service is running in automation mode) can be integrated in a Web services manner. Service
provider (backend services) and service requester (portlet) can publish and find desired
medical services via UDDI, respectively. Once a new medical service is integrated into
the system, it can be described by a WSDL file and this file will be sent to the UDDI.
After discovering the binding information of the services via UDDI, service requester will
communicate with backend services through standard SOAP regardless of what kinds of
platforms are used in each side.

To access a service, a user connects to the portal server via a standard Web browser.
According to the user’s personalized settings and the entitlement, a portal interface is dis-
played with a collection of portlets inside it. When the user clicks on a button encapsulated
in a portlet, the corresponding action of the service will be performed at backend service
providers (which may be governed by a remote portal). As an exception, services run in real-
time mode (such as the ECG Monitoring service and Teleconsultation service) are allowed
to bypass the portal since they usually demand better performance than what SOAP can
provide. Thus, an applet or activeX control downloaded to the browser will perform the re-
quired actions on behalf of the users. From the above descriptions, the proposed architecture
clearly meets all requirements stated in Section 3.1.

There are also some other components in the architecture. Whose functionalities and

features will be described in following chapters.

22

Chapter 4

ACCESS CONTROL IN E-HEALTH
PORTALS

4.1 Overview of Access Control in e-Health Portals

4.1.1 Related Factors

The ultimate goal of access control is to decide whether an access request from a specific
user is allowed or denied. There are several factors related to the access control mechanism

in the e-Health portals.

Portal domain: A portal domain contains a portal server, which integrates backend

services, and a LDAP server which stores users’ credentials and attributes, etc.

e User roles: Roles are created for various job functions, and users are assigned to roles
based on their qualifications and responsibilities. Each portal domain has its own role
structure, which can either be hierarchical or flat. Each domain may also name their

role as needed.

e User: Users are the subject of access control. Each username is associated with only
one portal domain. The user credential and other user attribute values are stored in

this domain’s LDAP server. Users use services via associated portal interface.

e Hospitals and medical organizations: Generally, these are service providers. They can
either perform their own authorization or delegate all or partial authorization to the

portal server. Each provider may provide its services to one or more portal servers.

23

e Services: Service providers may expose their services as web services or traditional
application interfaces. They can either register their Web services with the UDDI or

negotiate with portal administrators and technicians for business collaboration.

e Actions: Traditional access control strategies are expressed in terms of read or write
accesses. It is generally applicable to file systems or database systems. However, the
service components and backend applications in our environment only expose one or
more interface methods and encapsulate internal details. These methods are more
complex than just read/write. So, actions in our system are service provider defined

operations, such as “start”, “read”, “update” or “submit” etc.

¢ Business policy: Business policy is a contract negotiated between service provider and

portal mangers. It is a human readable rule to guide access control rule decision.

e Condition restrictions: Condition restrictions are generally restrictions on environment

parameters such as time scope, IP address, role, server load or any other attributes.

4.1.2 Requirements

In this section, the requirements of access control for portal-based e-Health system environ-
ment is discussed.

1. In our system, services are provided by different hospitals or medical organizations
(refer to Figure 3.1: Hospital A provides ECG Monitoring and EPR services, and Hospital B
provides BP Monitoring, EPR and Weight measurement services). Each service encapsulates
one or more actions (taking ECG Monitoring service as an example, the service interface
provides patients with “Dis/connect to ECG Monitoring Server” actions) and we assume
that these services are independent of each other. Access control must be able to guarantee
that only authorized users can trigger the action when some conditional restrictions are
satisfied.

2. Access control for e-Health environment must be dynamic, that is, it should be possible

to specify and change policies at runtime depending on the environment dynamics and

24

changes in business policies. It is natural that service providers may change their business
policies. As a result, the access control policies should be updated accordingly. The access
control strategy must support dynamic policy changing without redeployment of the system.

3. Access control for e-Health environment should be able to deal with many users and
many service objects. Services may be removed and new services may be integrated into
the portal at any time. Moreover, the entitlement of individual or group of users may be
changed. Therefore, the design for authorization, assignment of access rights, and their
modifications should be easy.

4. Access control for e-Health environment must support both Browser/Server (B/S)
based and Client/Server (C/S) based applications. Generally, a portal is a Web based-
application (refer to Figure 3.2, the BP Monitoring, News Feedback, EPR, Weight mea-
surement services are Web-based services. Users submit their requests from corresponding
portlet and these requests will pass by the portal server). However, there are some real-time
audio/video services (refer to Figure 3.2, the ECG Monitoring and Teleconference services
are such services) could also be integrated into our system. The characteristic of such services
is that the data exchanged between end user and real time server bypasses the portal server.
Thus, the access control strategy should support both cases but in a uniform framework.

5. Access control should support active access, i.e. a subject’s permission can be effective
only with the right time scope, at a right location and/or under other constrains. In the con-
text of e-Health services, some of the services need appointments in advance (In Figure 3.2,
real-time ECG Monitoring service needs available medical staffs to monitor patients’ ECG
signal. So, patients must set up the appointment in advance). Once the appointment is
approved, the user can trigger the actions of the service when corresponding conditions are
met.

6. General users and service providers cannot freely change security attributes, such as
the access rights of services. Changing security attributes may induce an leak of information.
Only security administrators can do it (upon negotiation with service provider).

7. Access control must be enforced in a distributed manner. In a federated environment,

25

remote services from one or many portal servers are collected at runtime. There is no
centralized authorization for access control. Thus, access control becomes more complicated.
We assume that all e-Health system portals employ the same access control mechanism

proposed in this thesis.

4.2 A Two-Tier Approach to Access Control

4.2.1 Problem Formulation

Even though many access control models have been proposed, they do not completely meet
the requirements of the Web based e-Health portal environment. In this section, I first
illustrate why these models are inappropriate for our case.

Increases in the number of subjects and objects require an increase in the cost of managing
the ACL or ACM, which violates the requirement 3 stated in section 4.2.1.

DAC employs access policies determined by the owner of the resources (such as actions
or services). The owner decides who is allowed to access to the resources and what privileges
they have. According to our requirement 6, only the security administrator can have this
privilege. Moreover, in the context of our e-Health system, we cannot decide which resource
has higher security level than another. Thus, MAC is unsuitable for our system.

Many e-Health portal systems are built with off-the-shelf software components, such as
BEA WebLogic used in our implementation. As a widely accepted standard, the role-based
access control (RBAC) is typically a built-in feature of those softwares and can usually meet
the basic security requirements of simple applications. However, such RBAC features become
insufficient once applied to a complex environment like an e-Health portal (notice that the
limitations I shall describe are about the implementation of RBAC, but not in the RBAC
model itself [SCFY96]). An e-Health portal naturally demands access control capabilities
that go beyond the limited support of RBAC found in commercial software components.

First, accesses to medical services are usually subject to conditions that depend on specific
users instead of roles. For example, the real-time ECG monitoring service can only be

accessed by a registered patient during his/her appointment time. Enforcing the first half

26

of the requirement, that is only a registered patient can use the service, is straightforward
with RBAC. An administrator can create a role named “registered patient”, and assign the
permission to use the service to this role. Any user must thus activate the role in order to
use the service. However, to enforce the second half of the requirement, that is the service
can only be accessed during an appointment, is not as simple because appointment time is
unique for each patient. Such a user-specific requirement can be handled by constraints in
the original RBAC model [SCFY96]. However, as an add-on feature of RBAC, constraints
receive only limited support in many built-in RBAC modules. For example, WebLogic
only allows constraints to be specified for roles. In order to accommodate a user-specific
constraint, such as a patient’s unique appointment time, a separate role may have to be
created for every user, which leads to too many roles and essentially diminishes the value of
RBAC.

Second, some medical services may be intended for public accesses by any user with
only a few exceptions. That is, they are controlled by an open policy where accesses are
by default allowed unless explicitly denied. The negative permissions required for denying
accesses are supported in the RBAC model through constraints [San95]. However, the
implementation of RBAC in all commercial or freeware portal servers only supports positive
permissions. Moreover, the co-existence of both positive and negative permissions raises
some subtle issues like conflict resolution. The support for RBAC constraints found in many

commercial software components is typically insufficient for dealing with such issues.
4.2.2 Solution Overview

To remove the limitation of existing RBAC modules, we adopt a two-tier approach as shown
in Figure 4.1. We leverage the existing RBAC capability and supplement it with a rule-
based access control module. The RBAC tier provides coarser-grained control by assigning
users to roles and roles to portal interfaces (that is, collections of portlets). The rule-based
access control tier provides finer-grained control through user-specific conditions expressed
in logic rules. Informally, the RBAC tier determines whether a user can see a requested

service, whereas the rule-based access control tier determines whether the user can use the

27

Role Based Access Control Tier

Portal Portal Portal
Interface Interface sesssece interface
1 2 n
v||o|| O T
O O o] ()
& & E L N BN N B NN PS8 000 s O e 000 000 &
SIS Q

Rule Based Access Control Tier

Service Container

Figure 4.1: Two-Tier Access Control

service in a specific way. To trigger an action, such as starting a service, a user must first
activate an appropriate role, so RBAC will redirect the user to a portal interface containing
the requested portlet (service). After the user clicks on an action button on the portlet,
the rule-based access control engine verifies the legitimacy of this request against applicable
rules. Potential conflicts between positive and negative permissions are resolved based on
predefined meta-policies, as we shall discuss in more details shortly.

This design choice of using a two-tier model has advantages over other alternatives. First,
we can certainly stick to the RBAC model and supplement the existing module with full-
fledged support for constraints. However, this is possible only if the existing RBAC module
is fully extensible, which is usually not the case with commercial softwares. Moreover, the
administration of access control rules is usually less intuitive than with roles. Completely
discarding RBAC may thus render access control less manageable. Third, we can let the
portal server to simply pass the responsibility of access control to backend services. However,
this diminishes the very advantage of using a portal server, such as the central control of

acCcesses.

28

Sessions

Figure 4.2: V-RBAC for e-Health System Portal

4.2.3 RBAC Tier

Once a user logins the portal, the system will redirect the user from the login page to a
portal interface according to the role assigned and activated to the user.

This is a variation of traditional RBAC model (V-RBAC, Figure 4.2), in which we replace
the permission with portal interface and services, and extend the Role-Permission relation-
ship with Role-Portal and Portal-Service relationships. It is convenient for administrator

to:

1. User-Role assignment. If a user possesses multiple roles which are assigned to different
portal interfaces, the user must make a decision which interface s/he wishes to be

redirected. In other word, for each user, only one role can be activated in a session.
2. Portal Interface-Role assignment.

3. Service-Portal Interface assignment.

In the RBAC tier, each role is assigned with one portal interface and each portal interface
contains one or more portlets. We give the formal definition of the V-RBAC model as follows.

The model of this tier has the following components:

e U,R,PI,SE and S (users, roles, portal interface, service and sessions, respectively);

29

e PIA C PIXR, aone-to-many portal interface-to-role assignment relation. Each portal
interface can be assigned to multiple roles. However, each role can be only assigned

one portal interface.

e UA C U x R, a many-to-many user-to-role assignment relation. Each user can be
entitled multiple roles and each role can be assigned to multiple users. However, each

user can activate at most one role at a time.

e SEA C SE x PI, a many-to-many service-to-portal interface assignment relation.
Each service can be installed on multiple portal interfaces and each portal interfaces

may contain multiple services.

e User: S — U, mapping each session S7 to an individual user: user(Si) (the session’s

lifetime is a constant);

e Roles : S — 2% mapping each session Si to a set of roles: roles(Si) C {r | I’ <
7[(user(Si),r") € UA]}(this mapping can change with time) and session Si has the

permission to access the portal interface pi | (3r” < r)[(pi,r) € PIA].

4.2.4 Complementing RBAC with Rules

Once the user is redirected to an appropriate portal interface, s/he could use the services
provided on that portal interface. According to requirement 5, some of the services need to
make appointment in advance, such as the real-time ECG monitoring service (there must
be an available cardiologist). Once the appointment is approved by the coordinator, the
user’s requesting this service will be considered as valid upon some conditional constrain.
However, there are also many other kinds of services that do not need to make appointments
in advance but must meet some conditional constraints (such as Medical News Feed service).
Moreover, each service encapsulates a set of actions. In order to simplify and automate the
administration of access control by allowing the security administrator to specify what kind of
individual or/and combinational condition parameters that have to be met for triggering the

actions, we associate a set of rules with each action. It is convenient for security administrator

30

to specify rules if new services are integrated into the system or if business policies change.
Once a portlet or a backend application receiving a user’s request, the access control proxy
within the portlet will send a request (a triple <object, subject, action>) to the access
control engine, which will evaluate the rules associated with the action that the user wants
to perform. If the evaluation result is positive, the user can trigger this action. Otherwise,
the request will be denied.

Many languages can be used to express the security policy or rule specification. Logic-
based languages has been widely applied in the field of security policy specification [DBSL02].

To express fine-grained access control requirements as rules, we apply the classical Flex-
ible Authorization Framework (FAF) [JSSSO01] to our design of e-Health portals. FAF
employs stratified first-order logic to represent access control rules, which gives it a well-
defined semantics. User-specific conditions can be represented as a single rule with variables,
which will be instantiated on the fly for each request. Logic inferences based on pre-defined
meta-policies can easily handle conflict resolution between positive and negative permissions.
We extend FAF rules by defining application-specific predicates and meta-policies that are
especially suitable for e-Health portals.

We restate the formal definition of some concepts, notions and predicates used in this
thesis.

Definition 1: (Hierarchy). A hierarchy is a triple (X, Y, <) where:

(1) X and Y are disjoint sets

(2) <is a partial order on (X UY') such that each z € X is a minimal element of (X UY');
an element x € X is said to be minimal iff there are no elements below it in the hierarchy,
that isiff Vy € (X UY):y <a =y ==z [JSSSO1]

A hierarchy is used to capture the structure of data items, users/groups, and roles. In
our system, we capture the roles as a hierarchy RH = (¢, R, <g) where R is a set of roles
and x <p y if z is a specialization of y. A role is a specialization of another role if it refers to
more specialized activities. For example, Specialist, GP, Nurse can be seen as a specialization

of Medical-Staff. Similarly, we also capture the portal interface items in a hierarchy. Each

31

portal interface contains one or more portlets. Moreover, each portlet represents the interface
of a backend service. We use a triple PPH = (P, P;, <pipt) to capture this feature where
P, is a set of portlets. P; is a set of portal interfaces and <p;p; is a partial ordering such
that for any portlet x € Pt and portal interface y € Pi,z <p;p; y iff z is deployed on y.

Definition 2: (Authorization). An authorization is a triple of the form (o, s, < sign > a)
where 0 € AO (Authorization Objects), s € AS (Authorization Subjects), a € SA (Signed
Actions) and “sign” is either “+” or “”. [JSSS01]

Subject “s” is used to identify a user, a service consumer, a running process etc. Each
subject assumes the identity and the privileges of a single principal. In our system, the
subject refers to a user. Object “0” refers to a service. Action “a” refers to an operation
that a subject performs on an object, such as Read, Start, Appoint, etc. In our system, each
service encapsulates one or more actions. For each action, we may define a set of rules to
restrict the access to trigger the action.

In order to represent the rules, we first introduce some fixed predicates defined in ASL

[JSSS01], and then define our application-specific predicates.

e Predicate 1: cando(o,s,+/ — a)

The first argument of “cando” is an authorization object term, the second one is an
authorization subject term, and the last one is a signed action term. This predicate rep-
resents the accesses that the security administrator wishes to allow or deny (depending

on the sign associated with the action).

e Predicate 2: dercando(o, s,+/ — a)

Each argument of “dercando” has the same meaning as in the predicate “cando”.
This predicate represents authorizations derived by the system using logical rules of
inference. It can be used to express different kinds of implication relationships between

authorizations.

e Predicate 3: do(o,s,+/ — a)

32

This predicate also has the same argument as the “cando” and “dercando”. 'This
predicate is different from the above two predicates, it represents the accesses must be

granted or denied. Intuitively, “do” enforces the conflict resolution and access decision

policy.
ASL also applies two hierarchical predicates.

e Hierarchical predicate 1: in(z,y, H)

This predicate contains three arguments. The first two belong to elements of AOUAS
and the third one is a ground term equal to either PPH or RH. It represents the

ordering relationships in the PPH and in the RH hierarchies.

e Hierarchical predicate 2: dirin(x,y, H)

This predicate has the same argument as “in”. However, it represents the direct

membership relationships in the PPH and in the RH hierarchies.

Conditional predicates capture the possible conditional parameters that may need to be
taken into account by the access control system.
¢ Conditional predicate 1: isRole(s,role)

The first argument of “isRole” is an authorization subject term (it refers to a user in
our system) and the second one is a type term. This predicate represents whether the
subject “s” is entitled with “role”. We treat role as an attribute of a user.

e Conditional predicate 2: typeof (o, service — type)
The first argument of “typeof” is an authorization object term (it refers to a service
instance in our system) and the second one is a type term. This predicate represents
whether the object “0” belongs to the specified service type.

e Conditional predicate 3: isLeader(s, o)

The first argument of “isLeader” is an authorization subject term (it refers to a user

in our system) and the second one is an authorization object term. This predicate

33

represents whether the subject “s” is the leader of the service instance “0”. Generally,
this predicate is used in the teleconference scenario where a leader is needed to control

the conference.

Conditional predicate 4: status(o, status)

The first argument of “status” is an authorization object term (it refers to a service
instance in our system) and the second one is a type term. This predicate represents
whether the object “0” is in the specified “status”. Generally, this predicate represents
the status of appointment-based service instance, such as real-time ECG monitoring
etc. These statuses could be one of the following: unapproved(U), approved(A), run-

ning(R), finish(F) or canceled(C).

Conditional predicate 5: hasRegisteredService(s, o)

The first argument of “hasRegisteredService” is an authorization subject term (it refers
to a user in our system) and the second one is an authorization object term. This
(T3]

predicate represents whether the subject “s” has already registered with the service

object “0”.
Conditional predicate 6: timeValid(c,b,e)

The first argument of “timeValid” is a time/date term (it refers to the current time/date
of the server). The second and third ones are also time/date term, which represents the
upper and lower limit of the time scope. This predicate represents whether the current

[N

time “c¢” is in the time scope between appointed beginning time “b” and appointed

W N

ending time “e”.

Conditional predicate 7: service M ode(o, mode)

The first argument of “serviceMode” is an authorization object term (it refers to a
service instance in our system) and the second one is a type term. This predicate

”»

represents whether the service object runs the in mode of “m”, such as: real-time,

store and forward, or automated.

34

Based on specific requirements, we may define other conditional predicates in the access
control system.

Definition 3 (Authorization Rule): An authorization rule is a rule of the form:

cando(o, s, <sign>a) « L1...... Ln

where “0”, “s” and “a” are elements of AO, AS and SA respectively, n>0, <sign> is
either “+” or “”, and L1...... Ln are hierarchical and conditional predicates. [JSSS01]

Definition 4 (Derivation Rule): A derivation rule is a rule of the form:

dercando(o, s, <sign>a) «— LI1...... Ln

where“0”, “s” and “a” are elements of AO, AS and SA respectively, <sign> is either
“+” or “”, and L1...... Ln are either cando, dercando, done, hierarchical or conditional
predicates. All literals appearing in the body of a derivation rule must be positive. [JSSS01]

Definition 5 (Decision Rule): A decision rule is a rule of the form:

do(o, s, <sign>a) « Ll...... Ln

where Ll Ln are cando, dercando, and hierarchical and condition predicates. A
decision rule definitely decides whether a subject can be allowed, or denied to do the action
of the object. Intuitively, “do” rules model access decisions of the system on the user requests

to access objects. [JSSS01]

4.2.5 Conflicts and Inconsistency

When the portal server integrates a new service, the administrator should discuss with the
service provider and create a set of rules for each action according to the business policies.
However, this manual procedure may introduce problems, such as under specification (no rule
specified), over specification (conflicts occurred when both positive and negative rules are
specified for an action). In order to solve these potential problems, we employ meta-policies.
From the point of view of authorization specification, we identify three main categories of

meta-polices [JSSSO01]:

o Closed: Only positive authorizations can be specified. A user is authorized to access

only if s/he has been granted a positive authorization.

35

e Open: Only negative authorizations can be specified. A user is authorized to access

only if s/he has not been granted a negative authorization.

e Hybrid: Both positive and negative authorizations can be specified. However, in such
cases, conflicts may arise due to the coexistence of positive and negative authorizations.

The access control system must decide which of the authorizations should be allowed.

Conflict resolution rules make the design for resolving conflicts. The following are possible

solutions:

e No conflicts allowed: Coexistence of both positive and negative authorization is con-

sidered as inconsistent and therefore it is not accepted.

e Permissions take precedence: The access is authorized if both positive and negative
authorization coexist. In such cases, the positive authorization takes precedence over

the negative one.

e Denials take precedence: The access is denied if both positive and negative autho-
rization coexist. In such cases, the negative authorization takes precedence over the

negative one.

Next, we give examples of using the extended ASL to specify rule sets and to resolve
potential rules conflicts.

Scenario 1 (User-Specific Condition) Real time ECG monitoring can be started by users
who have appointed with the service, with the appointment request approved, and with the
start time of the service within the appointed time range. We use a closed policy as follows.

cando(o, s, +start) — typeof(o, ECG — Monitoring), hasAppointed(s, o),

status(o, approved),timeValid(o, begin, end),
serviceMode(o, real — time)

do(o, s, +start) « cando(o, s, +start)

do(o, s, —start) «—— do(o, s, -+start)

36

[1Pa)

The first rule states that a service “o” can be started by a user “s” if “0” is an ECG-
Monitoring service, “o” has been appointed for the user and approved (by a coordinator),
the service mode is real-time, and the current server time is between the appointed time
scope. The next two rules state that a user’s request for starting the service will be granted
if he/she has a positive authorization (given by the first rule), and he/she will be denied if
such a positive authorization is absent. That is, a closed policy is enforced. Clearly, this
single rule is enough for regulating accesses to the service by any number of users. The rule
will be instantiated by each user upon his/her request at run time.
Scenario 2 (Conflict Resolution) A medical survey is conducted to investigate the rela-
tionship between blood pressure and living locations in Canada with the participants age
between 40 and 60 except those who live in Yukon. We specify both positive and negative
permissions and a meta-policy for denials-take-precedence:
cando(Survey — LS, s, +submit) < ageBetween(s, 40, 60),
CountryLocation(s, Canada)

cando(Survey — LS, s, —submit) < CountryLocation(s, Canada),
ProvinceLocation(s, Yukon)

do(Survey — LS, s, +submit) « cando(Survey — LS, s, +submit),
— cando(Survey — LS, s, —submit)

do(Survey — LS, s, —submit) «— do(Survey — LS, s, +submit)

The first rule states that the people who live in Canada and whose ages are between 40
and 60 are authorized to complete the survey. The second rule states that those who live in
Yukon, Canada are not allowed participating in the survey. Conflicts will arise for those who
satisfy both rules. To resolve such conflicts, the next two rules together enforce the denials
taking precedence meta-policy.

Scenario 3 (Business Rule Changing) Medical magazine is a service that provides up-
to-date professional medical articles. According to the business policies, medical magazines
can be read by any authorized user unless explicitly denied. In such cases, we use the open

policy (only negative cando can be specified) since all users entitled with a non-anonymous

37

role can read the medical magazine, thus we do not need to specify the positive rule for
each authorized role. Open policy means if no negative policy is specified, then the access is
allowed.

cando(Med — Mag, s, —read) « isRole(s, anonymous)

do(Med — Mag, s, +read) <— cando(Med — Mag, s, —read)

do(Med — Mag, s, —read) «— do(Med — Mag, s, +read)

Suppose latter on the business policy is changed to be that the coordinator cannot read
the medical magazine. Then the administrator adds a rule to the rule set:

cando(Med — Mag, s, —read) < isRole(s, coordinator)

The above example shows that if we do not use the meta-policy (open policy), an ad-
ministrator may define a rule set by mistake as:

cando(Med — Mag, s, +read) « isRole(s, administrator)

cando(Med — Mag, s, —read) «— isRole(s, coordinator)

A user may be entitled to both “administrator” role and “coordinator” role at the same
time. Thus, both positive and negative authorizations will be issued. So, conflict occurs. By
using the open policy, the positive cando rule cannot be specified.

The two-tier approach inherits the advantage of both RBAC (to ease the administration
of access control) and rule-based access control (such as the support for conflict resolution).
However, we need to consider potential inconsistency that may arise between the two tiers.
For example, a user’s role may allow him /her to see a portal interface but some rules disallow
his/her requests for using a service on that portal interface. This situation is quite normal
(the reason of the denial may be, say, the absence of an appointment). On the other hand,
a user may be allowed to use a particular service by the rule-based access control but at the
same time he/she is denied for accesses to the portal interface containing the corresponding
portlet (service). This second situation is not desirable because the user will not be able to
use a service if he/she cannot even see it.

To model the phenomenon that a user must be able to see a portal interface before using

any of the services contained by the portal interface, we define a partially ordered set (poset)

38

< PUAUI, <> where P denotes the set of portlets, A the set of actions on portlets,
and I the set of portal interfaces. The relation <C P x A x I is defined so that holds for
each portal interface i, every portlet p on ¢, and every action a on p. That is, any action on
a portlet dominates portlet interfaces that contain the portlet. We incorporate this partial
order on authorization objects into our system through enforcing a consistency checking as
follows. For each positive permission on any action a on a portlet p, at least one of the
portal interfaces ¢ dominated by (containing) the portlet p must be accessible according to
current RBAC policies. The condition is enforced upon adding a positive permission in the
rule-based access control tier and upon removing a user-role or role-permission assignment
in the RBAC tier (an inconsistency between the two tiers can arise in those cases).

For example, there is a service “SE” that can be accessed by nurse. The security admin-
istrator may specify a set of rules like:

cando(o, s, +read) « isRole(s, nurse),typeof(o, SE)

do(o, s, +read) <« cando(o, s, -+read)

do(o, s, —read) —— do(o, s, +read)

However, the portlet of this service is not deployed on the nurse’s portal interface. The
result is that nurse can use this service but s/he cannot see the portlet.

To illustrate the rule inconsistency problem, we first describe the procedure to specify
rule set for services:

Step 1. The User-Role and Role-Portal Interface assignments have been specified in
advance and the assignment of Role-Portal Interface is seldom changed.

Step 2. The administrator places the portlet which encapsulates the service interface on
the appropriate portal interface. This step is called Portal Interface-Service assignment.

Step 3. The security administrator discusses the business policies with the business
provider.

Step 4. The security administrator selects the appropriate meta-policies for the rule set.

Step 5. Finally, the security administrator makes the rule set according to the business

policies.

39

In order to avoid the inconsistency between these two tiers, we propose a method that
translates V-RBAC policies into rule sets. When importing new rules or changing existing
rules in the Rule BAC tier, not only the conflicts of rule sets within the Rule BAC tier will
be checked, the inconsistency between translated rule sets and rule sets within the Rule BAC
tier will be checked, too. We give the method for translating the RBAC policies into rules
and for avoiding the inconsistency.

In the V-RBAC tier, the security administrator can specify policies like: The user who
is entitled to role R can access the portal interface PI. The following expression is the
translation of the RBAC policy to Rule-BAC rules.

cando(o, s, +access) — in(s, R, RH),in(o, PI, PPH)

The translated rule must be a positive rule. According to the business policy, the security
administrator may specify multiple rules as the rule above. We give some examples as follow:

cando(o, s, +access) «— in(s, patient, RH),in(o, patient —pi, PPH)

cando(o, s, +access) < in(s, nurse, RH),in(o, mstaff —pi, PPH)

cando(o, s, +access) — in(s, administrator, RH),in(o, admin —pi, PPH)

To avoid the inconsistency, our solutions are illustrated as follow:

1). The head of the authorization rule is positive.

Recall that in Figure 3.2, each portal interface is assigned to one or more roles and each
portal interface encapsulates one or more services. Thus, when specifying authorization
rules with positive head, if the rule body contains “isRole” or “typeof” predicates, the role
specified in the “isRole” predicate must be allowed to access the portal interface that contains
the service specified in the “typeof” predicate. And this service must be in the hierarchy
associated with the portal interface. In other word, the permission to see the portal interface
is the precondition of actions on the service deployed on that portal interface.

2). The head of the authorization rule is negative.

There is no inconsistency in such cases because a user is allowed to access a portal
interface does not imply s/he can take the action on the service deployed on the portal

interface.

40

3). The head of the authorization rule is hybrid.
If the security administrator specifies the hybrid policy for the rule set, only the positive

ones should be checked.

4.3 Inter-Portal Access Control

We have illustrated the architecture of the e-Health portal systems in chapter 3 and have
briefly introduced the e-Health portals federation. The two-tier access control approach we
proposed in the previous section is generally based on the system which contains only a
single e-Health portal. When multiple e-Health portals interoperate with each other, as an
e-Health portal federation, some problems may arise. In this section, firstly, we introduce
the concept of a portal federation, and then we discuss the user authentication issues in our
system. Finally, we demonstrate how to apply the two-tier access control approach to the

federated e-Health portals.

4.3.1 Portal Federation

A federated portal is a portal that includes remotely distributed resources. As shown in
Figure 4.3, a consumer is a Web application that collects remote portlets and offers them
in a unified portal to end users who use a browser to view and interact with the portal.
Typically, a consumer does not include the business logic, data, or user interface parts of a
portlet. It simply collects user interface markup delivered from producers and presents that
user interface to users. A producer is also a Web application, typically running on a remote
system from the consumer. The producer acts as a container for portlets that are offered
to consumer portals. The producer is where the user interface, data, and business logic for
remote portlets reside. While a consumer is administration centric, a producer is application

centric.

41

Producers Consumer End Users

HTTP/HTTPs
|————P

WSRP
(SOAPHTTP)

Figure 4.3: Federated Portal

4.3.2 User Authentication in e-Health Portals

Authentication is an important feature of access control. It is the process of determining
whether the user is who he/she claims to be. The authentication is performed before au-
thorization. The characteristics of Web-based and client-server-based authentication are
different, so we treat them differently. Portal is a Web-based application. User employs
a browser, such as Microsoft IE, to access the system. Considering that the users of our
system generally do not possess much knowledge of computer security, using IPSec (hard to
configure for both client and server side) and Client certificate (user may not know how to
use the certificate, and the use of certificate may bring extra cost) is impractical. The form-
based username/password authentication combined with one way SSL can provide mutual
authentication, and ensure data confidentiality and integrity at the same time. Therefore,
we choose such a common solution for Web-based authentication.

Another issue is authentication in the federated environment. In the federated portal
environment, we build trust relationship among portals. When users access the remote
portlet via WSRP, they do not need to authenticate themselves to the remote portal. In
other words, the producer always trusts that the request from the consumer is authenticated.

For the authentication of client-side downloadable applications, we compare potential
solutions in table 4.1. In contrast to other solutions, Kerberos can provide mutual authen-

tication, is transparent to users, and supports cross domain authentication, which is a very

42

Solutions Advantages Disadvantages

Password 1. Ease of use 1. Plaintext password trans-
based mission

2. Low performance overhead | 2. Users have to input the pass-
word by themselves

3. Multimedia server authenti-
cating the user may bring secu-
rity issues

4. Server cannot be authenti-
cated to users

IPSec 1. Transparent to users Hard to configure for both
client and server side

2. Suitable for real-time video
application authentication
Two-way SSL | Mutual authentication 1. Users may not know how to
obtain and use certificate

2. Extra cost for the certificate

Kerberos 1. Mutual authentication 1. Greater overhead on the
client
2. No password transmitted | 2. Kerberos is designed for use
between client and server with single-user client systems
3. Transparent to users 3. Require clock synchroniza-
tion

4. Cross domain (Inter-realm)
authentication

Table 4.1: Comparison of Authentication Solutions

important feature for distributed environments. Another reason is that delegation of authen-
tication to multimedia servers may introduce more security risks since the server will need
to know too many details about each portal domain’s authentication mechanism, which is
inflexible. We integrate the Kerberos client-side code into an applet and setup a Kerberos
server for each portal domain.

Figure 4.4 is a scenario for real-time ECG telemonitoring service authentication using
Kerberos. Patient and cardiologist. belong to different portal domains. They use the ECG
telemonitoring service provided by hospital A to perform real-time ECG telemonitoring. The
patient logins the portal server A. The browser will download the applet from the portal
server A automatically. Then, the applet will exchange multiple messages with Kerberos

Server (Realm A) for mutual authentication and finally get the service granting ticket. Like

43

Hospital A
ECG Monitoring Service
EPR Service

Kerberos Server (Realm A)

Patient

L Portal Server A y

WSRP

Kerberos Server (Realm B)

Hospital
Teleconsultation Service
EPR Service
News feed Service

Cardiologist

Portal Server B J

Figure 4.4: Cross-Domain Authentication with Kerberos

the patient, the cardiologist will exchange multiple messages with Kerberos Server (Real B)
to get the ticket for remote TGS (Realm A). The cardiologist then uses this remote TGS
ticket to get the cross-domain client-server ticket from Kerberos Server (Realm A). After

that, both patient and cardiologist can use the client-server ticket to access the service.

4.3.3 Analysis of the Inter-Portal Authorization

An e-Health system portal federation integrates existing, possibly distributed, heterogeneous
e-Health portal servers. We assume that every e-Health portal server employs the logic-
based rules to check whether for a given request, either a permission or a prohibition can
be inferred. This approach is straight forward in centralized systems or distributed systems
with a centralized control. In order to apply the two-tier access control model to the e-Health
system portal federation, we must also consider the following issues.

The consumer-side portal handles RBAC for users and redirects users to an appropri-
ate portal interface upon successful logins. When a user sends a service request from the
consumer-side portlet to the producer-side portlet, either the consumer-side or the producer-
side can handle the rule-based access control (in the following statement, we assume the

producer side handles the rule-based access control). However, some issues may arise in such

44

a case.

1. Predicate attribute naming inconsistency

To illustrate this issue, firstly we give an example. Userl that belongs to the Portal A
(consumer) wants to access the news feed service provided by the Portal B (producer). We
assume that the rule for “read” action is:

cando(News — Feed, s, +read) «— isRole(s, patient)

In order to evaluate the rule, Portal B must know which role Userl is entitled to. However,
the role assignment for Userl in the Portal A is “sickman”, which cannot be understood by
Portal B. We term such issue as attribute naming inconsistency. Such an issue can also arise
when both consumer and provider sides have different time/date formats, different service
status naming, or other discrepancies. Thus, we classify the attributes into two types, i.e.
consumer attribute and provider attribute. Provider attribute and consumer attribute mean
that predicate attributes can be directly acquired and understood by the provider side and
consumer side, respectively. However, each portal domain is autonomous, which results in
that some attributes cannot be directly acquired or are even incomprehensible. There are
two possible solutions.

The first solution is to specify a rule for each potential consumer and name the attributes
according to the naming criterion used in the consumer-side portal. When evaluating the rule
set, attributes should be transmitted from the consumer side to the provider side. Following
the above example, we should specify the rule as follows.

cando(News — Feed, s, +read) «— isRole(s, PortalA : sickman)

where “PortalA” means a potential consumer and “sickman” is a role name at the Portal
A (consumer) side.

The second solution is to employ a centralized server who acts as an attribute mapper to
translate the attribute naming from one domain to another. The drawbacks of this solution
are that it is inflexible and it requires to design a dedicate interface to send various attributes
values. It also has synchronization issues when any attribute mapping is changed at one side.

Common to the above two solutions is that different portals administrators should agree

45

on consistent attribute naming/format mapping schema in advance.

2. Restricted attribute

For example, Userl in Portal A wants to access a gynecology service provided by Portal
B. We assume that the access rule for the “start” action of this service in Portal B is:

cando(o, s, +start) «— isRole(s, patient),typeof(o, gynecology),

gender(s, female)

However, suppose due to privacy reason, portal A is not allowed to provide the gender

information of the user to portal B. We term such issue as restricted attribute. In such a

case, the provider side cannot finish the access control evaluation process.

4.3.4 Collaborative Inter-Portal Access Control

To solve the above issues, we split the authorization rule into two parts and use two new pred-
icates, i.e. partial authorization predicates pcando(o, s, +/ — a)(provider-side partial autho-
rization predicates) and ccando(o, s, +/ — a)(consumer-side partial authorization predicates)
to specify the two parts, respectively. We put these two partial authorization predicates in
both sides. The following shows an example of ECG telemonitoring service,
cando(o, s, +start) — isRole(s, specialist), serviceMode(o, real — time)
typeof(o, ECG — Monitoring), hasRegisteredSeruvice(o, s),
status(o, approved),timeValid(current, begin, end),
where “specialist” in the “isRole” predicate is at the consumer side. This value cannot
be acquired directly from the producer side. Values specified in the rest of the application-
specified predicates can be directly acquired from the producer side. Thus, the partial
authorization rules can be written as:
ccando(o, s, +start) «— isRole(s, specialist)
pcando(o, s, +start) — typeof(o, ECG — Monitoring),
hasRegisteredService(o, s),status(o, approved),
timeValid(current, begin, end),serviceMode(o, real — time)
The above example shows the case when positive authorization rule is specified. Both

ccando and pcando predicates must be positive. For negative authorization rules, we require

46

that ccando and pcando must both be negative. For the case of hybrid rules, we treat positive
and negative rules separately.

The next step is to make final authorization decision. It can be made either at the
consumer side or the provider side.

1. Authorization decision is made at the consumer side.

In such a case, the user’s request will be sent from the consumer side to the provider
side and the provider side evaluates the partial rule, i.e. pcando. Then the service will be
invoked and provider will return the consumer side with both the result of pcando and the
result of the service request. When the consumer side receives these two, it will evaluate the
ccando with the result of pcando and derive the combined cando and finally make a decision
with meta-policies. If the decision is positive, then returns the service result to the user,
otherwise returns error message.

2. Authorization decision is made at the provider side.

In such a case, the consumer side will evaluate the ccando and forward the result and the
user’s request to the provider side. Upon receiving the request, the provider will evaluate
the pcando with the result of ccando and derive the combined result for cando and finally
make a decision with meta-policies. If the decision is positive, the service will be invoked
and the service result will be returned to the consumer side and then passed to the user.

Otherwise, the error message is returned.

47

Chapter 5
IMPLEMENTATION

This chapter describes the implementation details of a prototype of the e-Health system
portal. The system is designed to integrate existing medical systems, application, and ser-
vices. We also illustrate the design and implementation of the access control engine and

some medical services.

5.1 System Deployment Platform

The overall system architecture is described in chapter 3. Recall that in Figure 3.1, our
prototype system contains two portal servers, that is, portal A and portal B. Portal A
integrates services provided by hospital A and B, and portal B integrates services provided
by hospital C. All hospitals provide the EPR service pointing to a centralized EPR system.

Our portal server utilizes the BEA Weblogic Portal 8.1, which provides enterprise portal
infrastructure for streamlined portal development. This framework includes a graphical
environment for developing portals, as well as browser-based assembly tools for business
experts. It also simplifies the production and management of customized portals, allowing
us to leverage a shared service environment to incorporate changes with minimal complexity

and efforts [beal. Figure 5.1 shows the homepage of the patient portal interface.

5.2 Medical Services

Our research group has designed and implemented ECG Telemonitoring service, Blood Pres-

sure (BP) Monitoring service, Teleconference service, and EPR system. I was responsible

48

Figure 5.1: Patient Side ECG Monitoring Interface

for the implementation of the ECG Telemonitoring service and BP Monitoring service.

5.2.1 ECG Monitoring Service

In our implementation, the ECG monitoring service is in real-time mode. For the automated
mode, sophisticated algorithms will be needed to analyze the ECG signals, which is out of the
scope of this research. The ECG monitoring service contains three components: a patient-
side applet, a medical staff-side applet, and an ECG monitoring server. This patient-side
applet is based on the toolkit ECGSYN [ecg], which is a realistic ECG waveform generator
in the PhysioNet toolkits. It can generate a synthesized ECG signal with user-settable mean
heart rate, number of beats, etc. PhysioNet is an Internet resource for biomedical research
and development sponsored by the NIH’s National Center for Research Resources. In real
world, the ECG signals should be gathered from the external medical devices which are
wired (such as USB, RS-232 etc) or wireless (WiFi, Bluetooth, IR etc.), and are connected
to a computer. For demonstration purposes, we use a ECG signal generator to simulate this
procedure. We also simplify the implementation of the toolkit and add our own features,
such as signal transmission, Kerberos functions, etc. The ECG monitoring server is a java-

based application that acts as a repeater to forward signals to the medical staff side and

49

ECG Monitoring BP Monitoring EPR

ECG Appointment Requests ECG Monitoring
4 Blectrocardiogram Siguals ECG) - e
Plot Ared

|
|

Rt |

@ o -0 <

Connect ECG Dindce:

Lonnect EC Server

FCO Manitoring Pationt Side Rpplet

Figure 5.2: Patient Side ECG Monitoring Interface

stores the ECG signal data into a database. Figure 5.2 and Figure 5.3 show the snapshots
of the patient-side and medical staff-side ECG monitoring interface respectively. When
a patient wants to use the ECG monitoring service, s/he needs to simply click a desired
appointment in the ECG appointment request panel, and the applet will be downloaded and
run in the patient’s local machine. The patient can then perform the monitoring via the

applet interface.

5.2.2 BP Monitoring Service

The architecture of the BF monitoring service is shown in Figure 5.4. The BP monitoring
service is implemented in Java. It exposes its functionality as Web services. In the portal
server side, the BP monitoring portlet acts as a service requester on behalf of the user. Unlike
traditional servlet or JSP, portlet is a container of servlet, JSP or Java Page Flow (JPF).
In our implementation, the JPF, a special Java file that uses a JPF file extension, the nerve
center of the portlet, is employed to separate the user interface code from navigational control
and business logic. User interface codes are placed in a set of JSP files, which render users

BP values input forms, diagnostic result, or any error information. Navigational control is

50

ECGApt . R : ECG Monitoring - Medical Staff Side Controller

£ Brectyavarndiogiam Siymals (ECT) [.-_-',Q_ e e e :
ot Area

[Refiesh |

fem -«

o the B serear

Figure 5.3: Medical Staff Side ECG Monitoring Interface

also implemented in a page flow’s single controller file. It utilizes a special JSP tag to invoke
an action with a hyperlink. When the link on a JSP file is clicked, the page flow runtime
detects the action and runs the navigational action method and controls user navigation
between those JSP pages. Business logic can be implemented either in the page controller
file, Java controls, or proxies called from the JPF file. In the implementation, business logic
is implemented as a stand alone service and is wrapped as a Web service. The service proxy
located in the JPF helps the portlet to locate and communicate with this service. The service
is also for demonstration purposes. The medical criteria data is collected according to the

US National Library of Medicine [bpl] and American Medical Association Report [bp2].

5.3 Two-Tier Access Control

The access control engine is a dedicated service that performs rule-based access control for
users’ requests. It contains three components, as shown in Figure 5.5. The core of the engine
is an evaluator, which acts as a reasoning system to validate the rule set. This component is
written in Prolog and runs in the Prolog server (as shown in Figure 5.6). Prolog is a simple

but powerful programming language developed at the University of Marseille [Rou75]. It is

51

BP Monitoring Portlet

BP Monitoring Java Page Flow

Java Server Pages
BP Values Y Diagnostic Error
Input Form Result Messages

B, S,

BP Monitoring Java Page Flow Control File

Service Proxy

Navigational
Control

<>

BP Monitoring Web service

BP Monitoring Service
Implementation

BP Criteria
DB

Figure 5.4: BP Monitoring Service Implementation

also a practical tool for logic programming. By using Prolog, we can write clear, readable,
concise, and error-free programs. There are many Prolog products on the market, which
includes open source (such as SWI-Prolog [swi], YAP-Prolog [yap]) and commercial ones
(such as SICStus Prolog [sic|). As a leading product, SICStus Prolog is a state-of-the-art,
ISO standard compliant Prolog development system [sic]. It is efficient and robust for
handling large amounts of data and large applications. It supports bi-directional interfaces
to C & C++, .NET and Java (in the current implementation, SICStus 4.0.1, the callback is
not supported for NET and Java). It also supports multiple platforms (such as Windows,
Linux, Mac etc.). Thus, the SICStus Prolog is used to implement the core of the engine.

Another important component of the engine is the predicates API, which implements all
required user-specific predicates used in our system. It is also responsible for collecting data,
such as Current Server Time, Server Load, Appointment Information, User Profile, etc., to
instantiate the variables in each predicate. This component is written in C++.

The third component is a Java application that sends request to and receives response
from the Prolog server and exposes the validation interface as a Web service which can

be invoked by access control proxies resided in applications. This component can also be

52

/—Access Control Engine

Appointment
Repository

Server Load
GMT Date/Time
etc.

Access Control
Engine Proxy

Predicates API :

Figure 5.5: Components of the Access Control Engine

implemented using other languages supported by SICStus, such as .NET, C or C4+.

Figure 5.7 is the interactions among the components involved in Rule BAC procedure,
as described below.

1. The access control proxy sends the authorization request to the access control engine.

2. Upon receiving the request, the interface component forwards it to the validator
(Prolog server).

3. According to the “action” tag in the request, corresponding rule set will be activated.
Each rule within the rule set contains one or more predicates. The evaluator will invoke each
predicate implementation via predicates APL

4-5. The predicates API may collect necessary data from databases or environment
parameters to instantiate variables within each predicate.

6. The predicates API returns to the evaluator with “True” or “False” after executing
the implementation of the predicate.

This procedure may occur multiple times until predicates API returns all predicates
executing result (as shown in 7-10).

11. After collecting all the results from the predicates API, the evaluator will perform the
inference procedure to obtain authorization decision and return the decision to the interface
component.

12. The interface component returns this decision back to the access control proxy, and
the proxy will enforce access control according to the decision.

Hereafter, we illustrate in details how the access control engine is configured, compiled

53

modale
foading
le

in wodu
in modale

ibrarysavi.po. ..

vi.pe in module avl,
in nodule tey
praloy 4.4.1/
worted inty y
ted inte
winl2-nt i modul;
sndes e, B

in module s

logheans

lvading foreign resar s prolog 4.6.1/1iheary
lvaded ¢ 3 Tibrarysfastew.po in nodu
nading ¢ ' ag 4. 7 Librargspeo loghe

d into prologhe

braryssocke
hirary/pro oy
ihrary/pro Logh
inle o
ctoy 1 du Y omeee 1U5156
Twe Moy 15

Figure 5.6: Snapshot of the Prolog Server

and linked under Windows XP SP2.

1. Software and System requirements: JDK 1.5, Microsoft Visual Studio 2005 Team
Suite with SP1, SICStus Prolog 4.0.1, MySQL 5.0.

2. MySQL Server in its original configuration. In the current implementation, the MySQL
database is used to store all necessary information, such as Appointment Information, User
Profile, etc.

3. Under the Windows environment, when compiling the database (MySQL 5.0) oper-
ation interface “x.cpp” file, we must include the following “x.h” files and must obey the
order:

include “myglobal.h”

include “mysql.h”

Moreover, we must also include “x_glue.h” to “x.cpp” file where “+” is identical to the
“x.cpp” prefix. This glue file will be generated by the Prolog compiler when compiling the
prolog program.

4. Visual Studio C++ 6.0 is not supported by SICStus 4.0.1 anymore since its compiler

54

Database:

Predicates AP]

Evaluator

Interface

Access Control Engine

Proxy

||||||||| = = e e e e
< w o0 o~

|||||| R EE gy D, S
\ ’
\ /
N 7

L N ~ =
~ —

12

Yy ___

Figure 5.7: Sequence Diagram for Access Control Engine

55

does not support some options that SICStus needed. Thus, as recommended, we choose the
Visual Studio C++ 2005 (VSC2005) as the default C+-+ program compiler. In order for
the SICStus prolog compiler and linker to locate the “cl.exe” of the VSC2005, the Windows
system environment variables must be set properly. Here is an example setting:

PATH = C:\ Program Files\ Microsoft Visual Studio 8\ VC\bin

5. Configuration of SICStus 4.0.1. The default configuration file of SICStus is “spconfig-
4.0.1”. Since the default setting for the VSC2005 linker sets the flag “SAFESEH” on, some
libraries used by MySQL is incompatible with the “SAFESEH” linker flag and this flag is
completely optional. Thus, we turn “SAFESEH” off by modifying the configuration file by
simply removing all occurrences of the “SAFESEH” flag. The following are two occurrences
of such flag:

WIN32_SPLD_CC SPECIAL=/link /NXCOMPAT /SAFESEH

SPLFR_SHLDFLAGS=-nologo -dll /INCREMENTAL:NO /SAFESEH /NXCOMPAT

Moreover, we should also set the path of the MySQL library as (where the path of the
library may be different according to the installation location):

SPLD_EXE_LIBS=D:\MySQL\lib\ opt\libmysql.lib kernel32.1ib user32.lib...

6. Setting the environment variables of JDK 1.5.

7. Compiling the project. In order to run the program in an environment that does not
have VSC2005, we must set the Manifest file for the project. Copy all “x.dll” and manifest
files from the “...Microsoft Visual Studio 8\VC\redist\x86 \Microsoft.VC80.CRT” folder to
the project folder where contains the “x.cpp” and “x.pl” files. Then rename the original
“Microsoft. VC80.CRT . manifest” to “x.dll.manifest” where “#” should be identical to the
name of the “cpp” file in step 3. Then execute the following command to compile the “cpp”
and “pl” file:

splfr —verbose —keep recollector.pl recollector.cpp

Then a “x.dll” file will be generated. The foreign resource will be imported by the Prolog

program automatically when the Prolog program is running.

56

8. Running the access control engine. Executing the following command to start the
Prolog server:

%sicstus -f -1 recollector —goal “main.”

After that, a Java application will communicate with the Prolog server and the interface
of this Java application will be exposed as Web service, and can be invoked by any access
control engine proxy deployed in any applications.

Notice that in this access control engine, many application-specific predicates are defined.
These predicates are implemented using C++ language (Predicates API). The return type
of these predicates is boolean. Thus, if a predicate is approved (or not), true (or false) will
be returned to the Prolog program. In Prolog, a rule is constructed by a rule head and a
body and the body contains one or more predicates and each predicate has a prefix operator
(positive or negative). If the logical operation of all predicates with their prefix operators
are approved then the head, i.e the goal will be approved. Otherwise, the goal cannot be
achieved. Each business policy can be represented as a rule set, which contains multiple rules
and meta-policies. The Java applicaiton hides the rule validation details and only exposes
one interface with few parameters. When the access control proxy wants to validate user’s

3

request, it only needs to provide the “object”, the “subject” and the “action” values.

5.4 Use Cases

In this section, two use cases will be given to demonstrate how access control works together
with e-Health services. The first is a Web service-based BP monitoring scenario, and the

second is an applet-based ECG monitoring scenario.

5.4.1 Web Service-based BP Monitoring Scenario

After the patient successfully logs in to the system, the portal engine will redirect the user
to the patient portal interface. By clicking the navigation bar on the portal interface, the
interface of the BP monitoring service will be rendered to the patient. This interface contains

two components, i.e. BP monitoring request history panel and the service panel. When the

57

patient clicks the desired request hyperlink in the request history panel, the service panel will
be activated to allow the patient to input the systolic and diastolic values (In reality, these
data should also be gathered directly from the BP measurement device installed on patients’
body). Figure 5.8 is the sequence diagram for BP monitoring service. The procedure of how
the messages interact among components within the portal and backend services is shown
as follows.

1. After the patient fills in the systolic and diastolic values and clicks the “Submit BP
Values” button, this request will be forwarded to the BP Monitoring Portlet.

2. Upon receiving this request, the portlet will get the necessary parameters from the
request, assemble a new authorization request, and send it to the access control engine.

3. According to the rule set defined for the “Submit BP Values” action, the access control
engine will evaluate this request, decide whether to allow the user to access, and then return
the decision back to the BP monitoring portlet.

4. If the authorization is negative, the portlet will show an error message to the patient.
Otherwise, it will contact the user profile database and fetch the gender and age information
for future usage.

5. The user profile database returns the gender and age information of the patient to the
BP monitoring portlet.

6. The BP Monitoring portlet assembles the BP values with gender and age information
as parameters, and invokes the service via SOAP.

7. The BP monitoring service will process this request and return the result to the
portlet.

8. Return the result to the patient.

5.4.2 Applet-based ECG Monitoring Scenario

Like the BP monitoring service, the ECG monitoring service user interface also contains
two panels, i.e. a request history panel and a service panel. When the patient clicks the
desired request hyperlink, the applet will be downloaded into the service panel, and all the

parameters used by this applet will be initialized. After that, the user can use the service

58

Browser BP Monitoring Portlet Access Control Engine User Profile BP Monitoring WS

1
—————

(18]

4

5

|

T
|
|
|
t
|
2
|
|
|
|
t
|
|
|
t
|
L
|
|
L
|
|
(
|
1
|

N]

T T
1 '
| t

|
| |
| l
r |
! |
1 |
= 1
| |
| {

1
| !
1 1
) l
) t
i I
1 N
I (
1 l
K]
| |
| |
1 |

l
1 l
1 (

Figure 5.8: Sequence Diagram for BP Monitoring Service

via the applet. Figure 5.9 shows the sequence diagram on behalf of the patient.

1. The ECG applet authenticates itself to the Kerberos server in term of the patient.

2. The Kerberos server returns the client-to-server ticket to the ECG applet. In step 1
and 2, we ignore multiple messages exchanged between the ECG applet and the Kerberos
server (for more details for how to get the client-to-server ticket, refer to chapter 2).

3. ECG applet uses the client-to-server ticket to authenticate itself and sends a request
to establish the connection for ECG signal transmission.

4. If the authentication is successful, the ECG monitoring server will send an autho-
rization request to the access control engine to confirm that this user is allowed to use this
service.

5. The access control engine returns the authorization decision to the ECG monitoring
server.

6. If the authorization is positive, the ECG monitoring server will accept the connection
to the applet. At the same time, the ECG monitoring server will check whether the desired
medical staff has connected to the server. If yes, the server will inform the patient-side applet
to send data.

7. Upon receiving the instruction, the patient-side applet will transmit ECG signal to

the ECG monitoring server.

59

ECG Applet Kerberos ECG Server Access Control Engine

: T T
I | :
| |

pr———————— ! !

| | |

I 2 | | |

 S— I |

t | |

! 3 I :

L 1 AN} |

1 ! ! 4 |

i | I !

| | e N

i | I

i

i I |

| I | 5 ‘

i | e

§ | |

| 6 i !

< T 1 i

1 7 l i

I I | |

r i 7l |

| I i !

| | I !

| I A l

I ! P i

| i | | X

| I | | ‘

| I i I !
| I " | !
| I | I |

I | X | |

i | ~_ | \

| | ~1 |

I |

| 8) :

[| \
|

I
I

\
I

|
)

N

Figure 5.9: Sequence Diagram for Real Time ECG Monitoring Service on Behalf of Patients

Figure 5.10 shows the sequence diagram in term of the medical staff.

1. The medical staff-side ECG applet authenticates itself to the Kerberos server on behalf
of the medical staff.

2. The Kerberos server returns the client-to-server ticket to the ECG applet.

3. ECG applet uses the client-to-server ticket to authenticate itself and sends a request
to establish the connection for ECG signal transmission.

4. If the authentication is successful, the ECG monitoring server will send an authoriza-
tion request to the access control engine to confirm that the medical staff is allowed to use
this service.

5. The access control engine returns the authorization decision to the ECG monitoring
server.

6. If the authorization is positive, the ECG monitoring server will accept the connection
to the applet. At the same time, the ECG monitoring server will check whether the desired
patient has connected to the server. If yes, the server will inform the medical staff-side applet

to prepare receiving data.

60

ECG Applet Kerberos ECG Server Access Control Engine

; .
! I '
| | |

> ! I

| I i

i 2 i i :

e | |

i | |

| 3 I |

| I 1 N)

1 |)

i i | 4 :

i) l——__ﬁ

! | I

I

I | | N

I | | > !

I | EE—

I

I | I

' 6 | :

N T 1 |

I I

i 7 I |

< T 1 1

) I I '

| | I |

I i A |

) I g |

| I i I |

I | | I ,

I | i I |

| I | | !

i | | | |

| | | | !

| I ~o | !
| | ~1 |
| | I !

| | I

K § | |

| I I |

I | | |

| | I |

| | |

Figure 5.10: Sequence Diagram for Real Time ECG Monitoring Service on Behalf of Medical
Staffs

7. Upon receiving the order, the medical staff-side applet will prepare receiving ECG
signal from the ECG monitoring server in sequence and display the data to the medical

staff.

61

Chapter 6

CONCLUSION AND FUTURE
WORK

6.1 Conclusion

Traditional designs of software systems failed to meet the requirements of our system. We
thus based our design upon a service-oriented architecture that can satisfy the stated func-
tional requirements. Our e-Health portals can integrate different medical services and appli-
cations. In our prototype system, real-time ECG monitoring service, BP monitoring service,
EPR system and Teleconsultation service have been implemented and integrated into our
e-Health portal.

We also pointed out limitations found in the access control module of many off-the-
shelf software components. Our solution was based on a two-tier access control architecture
that integrated existing RBAC modules with a rule-based access control extension. This
design inherited the advantages of both models and was cost-efficient. We also indicated
and proposed solutions for the inconsistency issue within the two-tier model, the predicate
attribute naming inconsistent issue, and the restricted attribute issue in applying our model

to a federation environment.

6.2 Future Work

The proposed architecture and access control mechanism have been formulated in the thesis.

Future researches are listed below:

62

1. Extend rule-based access control engine to enforce authorization of workflow-based
services.

2. Quality of Services (QoS) is an important factor to be considered. QoS includes the
scalability and performance of Web service-based services, the performance of the access
control engine, the delay, jitter, response time etc., of real-time services etc. In the future
work, we will investigate those QoS issues.

3. The WSRP standard does not address any security standard currently. Thus, for
the authentication of consumer, the authentication of end user to the producer, message

integrity and confidentiality should be enforced in a standard way.

63

Bibliography

[beal

[Bis05]

[CRCMY7]

[DBSLO02]

[E05)

[ecg]

[Eys01]

[FGT*03]

http://edocs.bea.com/wlp/docs81 /index.html.

G. Bisson. e-Health Portal and SNOMED for a More Personalized Integrated
EHR. Proc. UM2005 Workshop on Personalization for e-Health, 2005.

http://www.nlm.nih.gov/medlineplus/ency/article/003398.htm.
http://www.ama-assn.org/amal/pub/upload/mm/38/a-06csaph.pdf.

Yuechun Chu and Aura Ganz. A mobile teletrauma system using 3G networks.

IEEE Transactions on Information Technology in Biomedicine, 8(4), 2004.

W.J. Chimiak, R.O. Rainer, J.M. Chimiak, and R. Martinez. An Architec-
ture for Naval Telemedicine. IEEE Transactions On Information Technology In

Biomedicine, 1(1), 1997.

Nicodemos Damianou, Arosha K. Bandara, Morris Sloman, and Emil C. Lupu.

A Survey of Policy Specification Approaches. 2002.

Jovanov E. Wireless Technology and System Integration in Body Area Net-
works for m-Health Applications. Proceedings of the 2005 IEEE Engineering in
Medicine and Biology 27th Annual Conference Shanghai, China, 2005.

http://www.physionet.org/physiotools/ecgsyn/java/ecgsyn-java.html.

G. Eysenbach. What Is e-Health? Journal of Medical Internet Research, 3(2):e20,
2001.

J. Fayn, C. Ghedira, D. Telisson, H. Atoui, J. Placide, L. Simon-Chautemps,
P. Chevalier, and P. Rubel. Towards new integrated information and commu-
nication infrastructures in e-health: Examples from cardiology. Computers in

Cardiology, 2003.

64

[FHO3]

[FKMO1]

[GKS02]

[HLL*07)

[1LJZ04]

[jsr]

[1SSS01]

[KGO6]

[Koc05]

[KPK*01]

E. Friedman-Hill. Jess in action. rule-based systems in java. Manning Publica-

tions, Greenwich (USA), 2003.

Beltrame F., Boddy K., and P. Maryni. Adopting telemedicine services in the air-
line framework. IEEE Transactions on Information Technology in Biomedicine,

5(2):171C174, 2001.

Aniruddha Gokhale, Bharat Kumar, and Arnaud Sahuguet. Reinventing the
wheel? corba vs. web services. The 11th International World Wide Web Con-

ference, 2002.

Yuan Hong, Shuo Lu, Qian Liu, Lingyu Wang, and Rachida Dssouli. A hier-
archical approach to the specification of privacy preferences. Proc. 4th Interna-

tional Conference on Innovations in Information Technology (Innovations 2007),
IFEFEE, 2007.

R.S.H. Istepanian, E. Jovanov, and Y.T. Zhang. Guest Editorial Introduction to
the Special Section on M-Health: Beyond Seamless Mobility and Global Wireless
Health-Care Connectivity. IEEFE Transactions On Information Technology In
Biomedicine, 8(4), 2004.

http://jcp.org/en/jsr/detail?id=168.

S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian. Flexible Support
for Multiple Access Control Policie. ACM Transactions on Database Systems
(TODS), 26(2):214-260, 2001.

G. Kaur and N. Gupta. E-Health: A New Perspective on Global Health. Journal
of Evolution and Technology, 15(1):23-35, 2006.

C. Koch. A new blueprint for the enterprise. CI0 Magazine, 2005.

E. Kyriacou, S. Pavlopoulos, D. Koutsouris, A. S. Andreou, and C. Pattichis.
Multipurpose health care telemedicine system, Engineering in Medicine and Bi-
ology Society. Proceedings of the 23rd Annual International Conference of the
IEEE, 4:3544-3547, 2001.

65

[LHL*07]

[LLH*08]

[MAO6]

[mit]

[MMO04]

[MS04]

[NZ]

[oas]

[PKV*02]

[plu]

[RCW*08]

Shuo Lu, Yuan Hong, Qian Liu, Lingyu Wang, and Rachida Dssouli. Access
control for e-health system portal. Proc. 4th International Conference on Inno-

vations in Information Technology (Innovations 2007), IEEE, 2007.

Qian Liu, Shuo Lu, Yuan Hong, Lingyu Wang, and Rachida Dssouli. Securing
telehealth applications in a web-based e-health portal. Proc. 3rd International
Conference on Availability, Reliability and Security (ARES 2008), IEEE, 2008.

Omar W. M. and Bendiab A.T. E-Health Support Services Based on Service-
Oriented Architecture. IEEE Computer Society, 2006.

http://web.mit.edu/kerberos/ .

Brennan D. M. and Barker L. M. An interactive telemedicine system for remote
speech-language pathology treatment. Proceedings of the 26th Annual Interna-
tional Conference of the IEEE EMBS, 2004.

Evered M. and Bogeholz S. A Case Study in Access Control Requirements for a
Health Information System. Australasian Information Security Workshop 2004
(AISW 2004), Dunedin, New Zealand. Conferences in Research and Practice in
Information Technology, 32, 2004.

D. Wijesekera N. Zannone, S. Jajodia. Creating objects in the flexible autho-

rization.
http://www.oasis-open.org/.

C.S. Pattichis, E. Kyriacou, S. Voskarides, M.S. Pattichis, R. Istepanian, and
C.N. Schizas. Wireless Telemedicine Systems: An Overview. [EEE Antenna’s
and Propagation Magazine, 44(2), 2002.

http://portals.apache.org/pluto/.

C.J. Riedel, T.F. Choudhri, D. Wilson, N. Khanafer, A. Alaoui, W. Tohme, and
S.K. Mun. Telemedicine in neurosurgery: peri-operative management. Proceed-

1ngs of Medical Technology Symposium, IEEE, pages 80-82, 1998.

66

[RE06]

[Rou75]

[RS99]

[sam]

[San95)

[SCFY96]

[sic]

[SRK"04]

[swi]

[tsi]

[VPI*01]

W.71]

[w3c]

[wet98]

L. Rostad and O Edsberg. A Study of Access Control Requirements for Health-
care Systems Based on Audit Trails from Access Logs. Computer Security Ap-

plications Conference, ACSAC 06, IEEE, 2006.

P. Roussel. Prolog, manuel de rfrence et d’utilisation. Groupe Intelligence Arti-

ficielle, Facult des Sciences de Luminy, Universit Aix-Marseille 11, 1975.

Scherrer J. R. and Spahni S. Healthcare Information System Architecture (HISA)
and its Middleware Models. 1999.

SAMTA Project, http://samta.offis.de/.

R.S. Sandhu. Issues in RBAC. ACM Workshop on Role-Based Access Control,
1995.

R. S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access
Control Models. IEEE Computer, 29(2):38-47, 1996.

www.sics.se/sicstus/.

S. Shin, C. Ryu, J. Kang, S. Nam, Y. Song, T. Lim, J. Lee, D. Park, S. Kim, and
Y. Kim. Realization of an e-Health System to Perceive Emergency Situations.
Proceedings of the 26th Annual International Conference of the IEEE EMBS,
2004.

http://www.swi-prolog.org/.

The Telemedicine System Interoperability Architecture,
http://telemedicine.sandia.gov/.

S. Voskarides., C.S. Pattichis., R. Istepanian., E. Kyriacou., M.S. Pattichis., and
C.N. Schizas. Mobile health systems: A brief overview. 2001.

Lampson B. W. Protection. Proceedings of the 5th Princeton Conference on

Information Sciences and Systems, page 437, 1971.
http://www.w3c.org/.

World Wide Emergency Telemedicine Service (WETS). Telemat. Application
Programme Project HC-4025, 1998.

67

[XGL03] Yang Xiang, Qiwei Gu, and Zhengxiang Li. Computer-Based Medical Systems.
Proc. 16th IEEE Symposium, page 108 C 113, 2003.

[yap] http://www.ncc.up.pt/ vsc/yap/.

68

