Integrated Sorting, Noise Estimation, Object Detection and

Contour Analysis on one FPGA for Video Object Segmentation

Kumara Ratnayake

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Electrical and Computer Engineering) at
Concordia University

Montréal, Québec, Canada

June 2007
(© Kumara Ratnayake. 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34453-8
Our file Notre référence
ISBN: 978-0-494-34453-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

iii
ABSTRACT

Integrated Sorting, Noise Estimation, Object Detection and
Contour Analysis on one FPGA for Video Object Segmentation

Kumara Ratnayake

Although solutions for robust video processing methods, such as compression or
segmentation. have been considerably investigated using general-purpose processors
(GPPs), these software implementations are too slow to achieve real-time performance
due to the computational complexity and memory bandwidth involved in present
complex video processing methods. As such, efficient hardware accelerations are in-
evitable for fast video systems. The state-of-the-art field programmable gate arrays
(FPGASs) fill the gap between very inflexible. but high performance ASICs and flexi-
ble, yet performance-constrained GPPs. Thus, FPGAs are increasingly employed on
hardware platforms in many signal and video processing applications.

This thesis proposes an FPGA-based architecture that integrates four video process-
ing methods (sorting, noise estimation, object detection, and contour analysis) on one
FPGA. which takes a video signal and outputs a contour filled video sequence along
with the corresponding contour chain codes. The proposed architecture aims at seg-
menting moving objects in video signals. A video object segmentation consists of
several steps: pre-processing (e.g., noise estimation), object detection (i.e., separa-
tion of objects and background), and contour analysis. The proposed architecture is
simulated. synthesized and verified for its functionality, accuracy and performance on
an actual hardware platform consisting of a Xilinx Virtex-4 SX35 FPGA.

Compared to related work, our architecture obtains orders of magnitude perfor-
mance improvements utilizing minimal hardware resources and power, and possesses
key algorithmic features. which are inherently required in many video processing ap-

plications.

v

Acknowledgments

This thesis is based on three years of research on my part, but would not have been
possible without inspiration, education and support from a number of people.

Fil;St. I would like to express my deepest appreciations and gratitude to my su-
pervisor Dr. Aishy Amer. Her guidance and support have been instrumental in my
success. With your enthusiasni. inspiration. and great efforts to explain things clearly
and simply, you helped me to succeed in this wonderful research world. Thank you for
guiding me through the writing of all the reports, papers and, of course, this thesis,
and for all the corrections and revisions made to each of them.

I would like to thank all my colleagues at VidPro for their support: Chang Su,
M. Ghazal, Firas, Francois, El Helali, Hanif, Julius, Bin and Ken.

Last, but not least, I am forever indebted to my entire family for their love,

understanding, endless patience and encouragement when it was most required.

To my daughter Melina Seneli Ratnayake.

vl

Contents

List of Figures ix
List of Tables xii
List of Notations xiii
1 Introduction 1
1.1 Motivation 1
1.2 Summary of Related Work 4
1.2.1 Noise Estimation and Sorting 4

1.2.2 Object Detection 6

1.2.3 Object Contour Tracing and Filling 7

1.3 Background on FPGAs 8

1.4 Overview of Contributions 12

1.5 Thesis Outline L. 13

2 A Modified Counting Sort Algorithm and its FPGA Implementation 15

2.1 Introduction 15
2.2 Related Work Review 17
2.3 A Modified Counting Sort Algorithm 19

2.4 Proposed Sorting Architecture 21

CONTENTS vil

241 TEMPORAL KEY MANAGEMENT Module 22
2.4.2 Architecture of the HISTOGRAM UNIT 23
2.4.3 Architecture of the INITIAL ADDRESS CONTROL Module . 24

244 OUTPUT INDEXING Module 24

2.5 Simulation and Verification Results 25
2.6 Synthesis and Implementation Results 26
2.6.1 Implementation 26

2.6.2 Comparison to the Existing Methods 27

2.7 Chapter Summary 29

3 Improved FPGA-based Implementation of Noise Estimation 30
3.1 Introduction 30
3.2 Related Work Review L. 31

3.3 Overview of the Reference Noise

Estimation Algorithm L. 31
3.4 Proposed FPGA-based Architecture 33
3.5 Implementation Results 34
3.6 Chapter Summary 35

4 FPGA-based Implementation of Spatio-Temporal Object Detection 36
4.1 Introduction 36
4.2 Overview of the Reference Spatio-Temporal

Object Detection Algorithm 37
4.3 Proposed Pipelined Architecture

and Implementation 39

4.3.1 Proposed DMA Architecture 40

4.3.2 Scalable Motion Detection Implementation 41

CONTENTS viil

4.3.3 Spatio-Temporal Thresholding Architecture 42
4.3.4 Morphological Edge Detection Architecture 44
4.4 Design Verification. Synthesis and
Implementation Result 45
4.4.1 Verification L o 45
4.4.2 Synthesis Result o000 47
4.4.3 Comparison to the Existing Methods 47
4.5 Summaryo 48
5 A Real-Time Implementation of Chaotic Contour Tracing and Fill-
ing of Video Objects on Reconfigurable Hardware 49
51 Introduction 49
5.2 Related Worko 50
5.3 Overview of the Reference Contour Tracing and Filling Algorithm . . 52
5.3.1 Tracing Algorithm L. 52
5.3.2 Filling Algorithm 54
5.4 Proposed Architectureo 55
5.4.1 Architecture of HIGH-SPEED CACHE 55
5.4.2 Architecture of CONTOUR TRACING Module 57
5.4.3 CONTOUR FILLING Architecture 59
5.4.4 Improved DMA Architecture 60
5.4.5 Pipeline Scheduling 0000 61
5.5 Experimental Results L. 62
5.5.1 Verification 62
5.5.2 Synthesis and FPGA Implementation 63
5.5.3 Comparison to the Existing Methods 64
5.6 Summary 65

6 Conclusion and Future Work

Bibliography

67

70

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Proposed FPGA-based Implementation of Video Object Segmentation. 3

Typical FPGA Design Flow. 10
Overall System Level Sorting Architecture. 22
Detailed Circuit Diagram of the Sorting Architecture. 23
Complexity comparison between a CPU and FPGA. 25
Simulation environment with VHDL Testbench and C/MATLAB. . . 26
Sample comparison between VHDL and MATLAB results. 27
Internal FPGA resources utilization. 29
Proposed Architecture of the Noise Estimation Algorithm. 33
Block Diagram of the Object Detection [1]. 38
System-Level Architecture of Object Detection. 40
High-Level Architecture of Spatio-Temporal Threshold. 42
Architecture of Intensity Histogram Analysis Module. 43
Threshold Estimator Architecture. 44
Circuitry for Morphological Edge Detection. 45

(a) 54th frame in the captured video sequence, (b) segments with the

reference C implementation. and (¢) FPGA segments. 45

LIST OF FIGURES

4.8

5.1
5.2
9.3
5.4
9.5
0.6
0.7
2.8

(a) Comparison between software and hardware implementations with
PCP objective measure 2], and (b) difference of total pixels between

softwarc and hardware implementations Dpw. « o o o o o o 0oL

Contour Tracing Algorithm {1].
System-Level Architecture of Contour Tracing and Filling.
Scalable Architecture of the HIGH-SPEED CACHE.
Overall Schematic of the CONTOUR TRACING Module.
Contour Bit Stream Structure.
Architecture of the Contour Filling Module.
Overall Pipeline Timing of the Proposed Architecture.
Subjective comparison between the FPGA and software implementa-
tion results - (a) 54th frame in the captured video sequence. (b) Spatio-
temporal object segmentation of [1], (¢) Contour tracing results with C,
and with the proposed FPGA implementation (d), (e) Contour filling
with C. and with the proposed FPGA implementation (f).
(a) Comparison between software and hardware implementations with
PCP objective measure [2], and (b) difference of total pixels between

software and hardware inplementations Apyp. - - - o 0 0 0oL

xi

xi1

List of Tables

2.1
2.2

2.3

3.1

Original Counting Sort Algorithm [3]. 20
Proposed Modified Counting Sort Algorithm. 21
Performance and area comparison for sorting 128 keys of 8 bits with [4]

and proposed method.o o000 28

Architectural and Performance Comparison of the Noise Estimation

Implementation between [5] and the Proposed Method. 35

LIST OF NOTATIONS

List of Notations

General Acronyms

1D

2D
ASIC
CCL
CIF
CLB
DCM
DMA
DSP
EDIF
FIR
FHV
FPGA
GPP
HDTV
10
LUT
NTSC
PAL
RAM
SNR
SRAM
SBSRAM
DRAM
DDR
BOM
RTL
VHDL
VLSI

One Dimensional

Two Dimensional

Application Specific Integrated Circuits
Connected Component Labeling
Common Intermediate Format
Configurable Logic Blocks

Digital Clock Manager

Direct Memory access

Digital Signal Processing

Electronic Design Interchange Format
Finite Impulse Response

Formal Hardware Verification

Field Programmable Gate Array
General Purpose Processor

High Definition Television

Input Output

Look Up Tables

National Television Standards Committee
Phase Alternate Line

Random Access Memory

Signal to Noise Ratio

Static RAM

Synchronous Burst SRAM

Dynamic RAM

Double Data Rate

Bill Of Materials

Resistor Transistor Level

Very high speed integrated circuit Hardware Description Language

Very Large Scale Integration

xiil

LIST OF NOTATIONS X1v

Sorting and Video Noise Estimation

a; Unsorted Keys

d; Stably Sorted Keys

I ; Pixel Intensity at Position (i.j)

1% Block Size

EBn Block Homogeneity Measure

op, Block Variance

IBh Block Sample Mean

o4 Reference Variance

t, User Defined Homogeneity Threshold
Image Global Noise Variance

Object Segmentation

n Current Discrete Time Instant
AD(n) Absolute Frame Difference
I(n) Current Frame

R(n) Reference Frame

BK(n) Background Frame
I(n—1) Previous Frame
D(n) Spatially-Filtered Frame

T, Global Spatial Threshold

Wi kth Consecutive Non-Overlapping Block

K Number of Consecutive Non-Overlapping Blocks
L Number of Sections in W, Histogram

Lk Mean Value of W,

a Noise Scaling Factor

Epy(n) Hardware Result (Frame)

E..(n) Software Result (Frame)

JAV Absolute Different between the Ep,(n) and Eg,(n)
PCP Product of Correctly Classified Proportions

LIST OF NOTATIONS

Contour Tracing and Filling

E(n)
Di

p’lU
Do

Ps

Gaps Free Edge Image

A Point in an 8-Neighborhood
White Point

Background (Black) Point
Starting Point

Current Point

Previous Point

Searching Direction
Current Contour
Previous Contour
Current Contour List,
Previous Contour List
Current Contour Point
Next Contour Point

Xv

Chapter 1

Introduction

1.1 Motivation

The computational complexity involved in today’s complex video processing algo-
rithms [6-10] make virtually impossible to achieve real-time performance on general
purpose scquential processor-based systems. Thus, an efficient hardware accelera-
tion is inevitable. There exists three possible hardware-based solutions: 1) parallel
computing, 2) Application Specific Integrated Circuit (ASIC), and 3) FPGAs. The
parallel computing gives the highest flexibility among the three solutions, but heat
dissipation and area are all increased. Traditional full custom ASIC provides the
highest processing speed with minimal power consumption, but suffers from longer
development time and expensive engineering cost. In contrast, emerging FPGAs with
embedded multipliers, memory blocks and high pin counts, are increasingly employed
on hardware platforms in many signal/video processing applications [11]. Moreover,
FPGA reconfigurability is an attractive feature which allows an FPGA-based systems
to be adopted for an another purpose.

Video object segmentation, which classifies pixels of a frame into multiple moving

regions, plays a key role in many video processing applications such as video compres-

1.1. MOTIVATION 2

sion, video surveillance, machine vision, and enabling techniques such as object-based
motion estimation. Video object segmentation methods [12] can be classified based on
their automation, spatial accuracy, temporal stability, and computation load. Compu-
tationally expensive methods give, in general, accurate results while low-computation
methods may fail. However, few of the methods are tested on a large number of
videos, throughout long videos, on noisy videos, images with artifacts, and without
parameter tuning.

The non-parametric object segmentation method, described in [1], features low
computation and noise and temporal stability. These features forgo spatial accu-
racy, e.g., at object boundaries. Such a method is most appropriate to applications,
e.g., video surveillance, where stability under varying conditions is of more concern
than accurate object boundaries. Consequently, the video object segmentation algo-
rithm [1] first estimates the noise [13] to ¢ffectively detect moving video objects from
background and then performs contour tracing and filling of these detected objects.

In this thesis, we propose a real-time, robust, scalable, and compact FPGA-based
architecture and its implementation of video object segmentation algorithm [1]. Our
finding to the existing related work confirms that the proposed architecture is much
more feasible and cost effective. Furthermore, performance analysis shows that our
hardware approach achieves an order of magnitude performance improvement over the
existing pure software-based implementations. Fig.1.1 illustrates a high-level block
diagram of the proposed FPGA-based implementation of the video object segmen-
tation. Note that the output of the proposed system is an image of filled objects
and the corresponding contour chain codes. Therefore, final results of the FPGA are
presented in chapter 5.

Noise is inevitable in video signals due to video acquisition, processing, and trans-

mission. Noreover, noise can significantly affect the performance and effectiveness

1.1. MOTIVATION 3

EXPANSION CARD
FRAME GRABBER
DIGITAL '
VIDEO | | CAMERA FRAME
VF CAPTURE
PCIIF ‘
SPATIO-TEMPORAL
OBJECT DETECTION
oo HOSTEC CONTOUR
] 1 TRACINGAND
1 muzne s
DISPLAY & USER APP 1 '

Figure 1.1: Proposed FPGA-based Implementation of Video Object Segmentation.

of many video processing algorithms, such as edge detection, object segmentation,
motion estimation, and video filtering [13]. Thus, measuring noise, through noise
estimation algorithms. in a corrupted video signal and adapting the video process-
ing algorithms accordingly is fundamental and important feature for stable video
processing systems.

In general, the noise estimation algorithms use spatial or temporal image charac-
teristics to measure noise. Temporal noise estimation methods require one or more
previous frames, and are more computationally intensive, while most of the spatial
methods rely on intra-frame block-based variance or smoothing. The intra-field block-
based noise estimation method [13] gives reliable estimates both in highly noisy and
good quality images. This homogeneity-based technique utilizes a novel homogeneity
measure, by taking image structure into account, rather than variance alone to deter-
mine if a block is homogeneous. Moreover, the methods requires to sort 10% of the
block variances with respect to the homogeneous measure. The main computational

bottleneck of the noise estimation algorithm [13] resides in this sorting process.

1.2. SUMMARY OF RELATED WORK 4

Sorting (in ascending order) is a process to rearrange a given set of keys ag, a4,...,
any_1 into a set do=a,,. di=a;,, dy_1=a;, , such that dy <, d; <, ... |, <
dy-1. Furthermore, sorting is stable if d;=d;;1. then ;< 1,41, i.e., for each pair of
consecutive equal keys in the sorted list, the order that they were presented in the
unsorted set is preserved. Sorting a large volume of integer data is computationally
intensive and is often required in diverse applications such as video processing [13]
and ATM switching [14]. Software-based implementation for sorting large volume of
data is still slow for real-time applications.

Contour tracing is a method that links connected neighborhood pixels in a binary
edge frame. whereas contour filling fills the region inside a contour with a specific
gray-level value. uniquely labeling each objects in an image. Contour tracing and
filling are a fundamental element in many video and image processing applications
such as object segmentation [1], medical image processing [15], computer vision [16]

and pattern recognition [17].

1.2 Summary of Related Work

This section summarizes the architectures and implementations of video noise estima-
tion, sorting, video object detection, video object contour trace and filling on FPGA

and VLSI devices. Detailed related work review is given in chapters 2, 3, 4 and 5.

1.2.1 Noise Estimation and Sorting

To the best knowledge of the author, only Lapalme, in [5], has presented an FPAG-
based architecture for estimating noise in digital video, but [5] requires a significant
amount of FPGA resources. runs at a slower speed, and employs two SRAM devices.

In contrast. the proposed architecture outperforms [5] significantly and avoids the

1.2. SUMMARY OF RELATED WORK 5

utilization of external SRAM modules, which increase the area, cost, power and
verification time of the overall video processing system.

Much research has been carried out implementing parallel sorting algorithms on
VLSI recently, but very little emphasis has been put on FPGA-based implementa-
tions. Most of the FPGA-based architectures. which are based on pure comparison
sorting algorithms, require an enormous of silicon area when sorting has to be per-
formed on a very larger volume of data.

A hybrid implementation of a hardware sorter is studied in [18]. Here, the ar-
chitecture is split into a sequential merge sorting algorithm running on a sequential
processor, and a systolic insertion sorting algorithm running on a Xilinx XCV1000
FPGA co-processor. Huang et al. propose another architecture in [4] for merge-
sorting networks with a fixed size Batcher’s sorting network. However, performance
of this architecture is considerably low for applications that require real-time sort-
ing performance such as in [13]. Another VLSI architecture is presented in [14],
which sorts small continuous data sequences up to 256 kevs and partially sorts longer
sequences. The architectures in [14.18] are based on comparative based sorting meth-
ods, therefore implementing them on FPGAs require more resources (area) than the
proposed architecture based on a modified counting sort.

In signal processing, sorting is widely used in rank-order filters which are preferred
over linear filters {19]. Here, the complexity of sorting is relatively small as the
resolution and the number of data becomes small and no stable sorting is required.
Several FPGA implementations for median filters have been presented [19-22] each of
them exploiting different approaches for sorting architectures. Maheshwari et al. [19)
propose a simple approach to a 3x3 median filter implementation on an FPGA, by
sorting the elements in the 3x3 kernel vertically, horizontally and diagonally. In [20].

a bit serial sorting algorithm and implementation are introduced for a general purpose

1.2. SUMMARY OF RELATED WORK 6

median filter on an FPGA. Hamid et al. [21] present a genetic algorithm on a Xilinx
Spartan-II FPGA device to optimize the tasks of the soft morphological filter (SMF),
whercas Fahmy et al. [22] proposce an efficient implementation of one dimensional (1D)
median filters based on cumulative histogram approach. Although implementation
in [22] can process 72 MPixels/s for 8 bit pixel depth. it is not extended to 2D median
filters. Moreover, achieving timing constraints on the implementation [20] can be very
difficult for higher pixel depths. due to the nature of the priority encoder. Although
the comparative methods proposed in [19-22] can theoretically be extended to sort
a large number of keys, implementation of such methods on a resources constrained

hardware such as FPGAs would not be feasible due to the large silicon area required.

1.2.2 Object Detection

The method described in [23] demonstrates how a number of object detection algo-
rithms can be implemented on FPGAs with dyvnamic reconfigurability feature. An-
other FPGA implementation for segmenting text in images is in [24]. Experimental
results show that this algorithm implemented in FPGA achieved a speedup of close
to 250 compared to a general purpose CPU implementation. However. [24] runs at 5
MHz which is well below the real-time performance. The study in [25] partially in-
volves FPGA-based implementation of image segmentation based on the resistive-fuse
network model. An extensive comparison between FPGA and DSP implementations
of image classifier for object detection is in [26]. Although the performance of the
FPGA implementation significantly overpasses that of the DSP implementation, its
performance and scalability is heavily limited and embedded by the hardware plat-

form chosen.

1.2. SUMMARY OF RELATED WORK 7

1.2.3 Object Contour Tracing and Filling

Agi et al. in [27] propose a full custom VLSI CMOS design for extracting contours,
by attempting to minimize the memory usage by partitioning the input frame into
smaller regions and distributing these regions to an array of processing elements
(PEs). Each PE in [27] consists of its own memory and a contour tracing unit. and
uses a 2x2 window for extracting partially completed contour lists. However. the
technique in [27] fails to produce completed contour tracing, unless a full object can
be completely stored in the relatively small processing memory. A parallel VLSI
architecture consisting of N + 1 processing elements for generating the chain codes
of object contours in a binary frame with N raws is presented in [28]. The algorithm
proposed in [28] completes contour extraction in 3N cycles, but heavy parallel memory
access required in [28] makes its architecture virtually infeasible to implement with
presently available memory devices.

Although studies have been carried out to implement Connected Component La-
beling, CCL, algorithms on hardware [29-33], no previous work has been dedicated
on, to the authors’ best knowledge, FPGA-based contour filling methods. The CCL
methods assign a label to a pixel such that its adjacent and identical pixels have
the same label. As such, the CCL algorithms can only label filled objects imposing a
significant constraint in many video processing applications. A CCL architecture pro-
posed for by Rasquinha et al. in [29] using N processing elements for A x N image.
In [30], Crooks et al. present an FPGA architecture for CCL, which requires scanning
iteratively the input and intermediate images until no change in the resulting image
occurs. However, [30] achieves real-time performance only for images with simple ob-
jects, and therefore, fails to completely label real video objects in applications such as
video surveillance. Another VLSI architecture. consisting of four processors, for CCL

is presented by [31]. and Jablonski et al. [32] present an implementation of Classical

1.3. BACKGROUND ON FPGAS 8

CCL in Handel-C language. A fast and parallel VLSI architecture for object labeling
in binary images, using a 3x4 window, is presented by Shyue et al. in [33]. The CCL
can be exploited for parallelism, but contour filling methods are inherently sequen-
tial, therefore implementing sequential contour filling algorithms are more challenging

than CCL on parallel hardware devices such as FPGAs.

1.3 Background on FPGAs

Historically, FPGAs were known as prototyping and integration devices for lower vol-
ume digital systems due to their higher cost and lower performance. However, deep
sub-micron (e.g., 65-nm copper CMOS) silicon process technology has dramatically
changed in recent years allowing new levels of integration onto reprogrammable chips
with more features and capabilities. Consequently, state-of-the-art FPGAs have al-
ready exceeded densities of tens of million system gates operating at speeds surpassing
400 MHz, and therefore these are increasingly employed in digital embedded system
as a compromise to inflexible full-custom ASIC devices and performance-constrained
sequential processors.

It is, however, noteworthy to mention disadvantages of FPGAs when compared to
the ASICs. The fact that an ASIC is designed from scratch for a specific task allows
optimizing the area, speed and power up-to the gate-level. This level of optimiza-
tion is not available for FPGAs, since the FPGA devices are already manufactured
by the FPGA vendors. Thus, for a given algorithm implemented on an FPGA lags
behind the same implementation on an ASIC in silicon area, performance and power
dissipations. Moreover, a unit cost of an FPGA is relatively higher than an ASIC
having the same functionality, hence it is difficult to justify to design embedded sys-
tems with FPGAs for high-volume applications such as those in consumer markets.

However. in this thesis we have chosen FPGAs over ASICs for the implementation

1.3. BACKGROUND ON FPGAS 9

because FPGAs provide the ability to change the hardware entity with their inherent
reconfigurability feature allowing the FPGA-based platform to be upgraded or en-
hanced throughout the product life time after the deployment. Furthermore, ASICs
are intrinsically based on high-risk methodology requiring massive volume to recoup
the Non-Recurring Engineering (NRE) costs required to create an ASIC at the begin-
ning. Hence, FPGAs’ flexibility with low risk and shorter development cycles make
them as the optimal choice for a hardware implementation.

Widely known and available SRAM-based FPGAs can be configured, reconfig-
ured or partially reconfigured by writing a bit-stream to the FPGAs, depending on
the application requirements. In general, FPGAs are fabricated with matrices of few
fundamental building blocks: configurable logic blocks (CLBs), embedded multipli-
ers (or digital signal processing slices - DSP48E), blocks of random access memory
(BRAMs), clock buffers (BUFGs), clock synthesizers (DCMs). and programmable
interconnection network among these elementary components. Additionally, some
FPGA families include hard-processors such as PowerPC in Xilinx Virtex4FX family.
Throughout this thesis, we have used FPGAs from Xilinx and not Altera or any other
vendors, primarily because Xilinx FPGAs possess some architectural features such as
the ability to configure four input Look-up-tables (LUTS) into sixteen shift registers
(SRL16) and availability of hardcore PowerPC processors, which are not present in
FPGAs, for e.g., from Altera.

Synchronous or combinatorial logic circuits are implemented by configuring CLBs,
which, in Xilinx Virtex-5 FPGAs [34], are comprised of two slices cach containing
four LUTSs and four flip-flops. Each DSP48E slice contains a twos complement 25x18
multiplier and a 48-bit signed adder/accumulator. Excessively available DSP48Es are
ideal for parallel implementation of many signal and video processing functions such

as IR filters, 2D convolution and correlation. BRAMs are 36 Kbit true dual-port

1.3. BACKGROUND ON FPGAS 10

memory blocks which are programmable from 32Kx1 to 512x72, in various depth
and width configurations or can be configured to operate as two, independent 18
Kbit dual-port memory blocks. These BRAMs are extensively utilized from simple

first in first out (FIFO) memories to line buffers and histogram computations.

a D
r — — —» SPECIFICATION
| \ y
|
[
{

!

—)
HIGH LEVEL
MODELING

\. S

FAIL

Figure 1.2: Typical FPGA Design Flow.

Fig. 1.2 illustrates a typical FPGA design flow, which, throughout this thesis
work, has been used. Starting with specification defined in floating point C/C++ for
all algorithms - noise estimation, sorting, object detection and contour tracing and
filling - we model a virtual hardware with fixed-point C/C++ and MATLAB. These
fixed point high-level models are extensively analyzed to formalize the final hardware
design correlate mazimally with the original specification. In addition, parallelism of
the video processing algorithms are explored.

The high-level models are then coded and formally verified in a hardware descrip-

tion language - VHDL, which is extensively used as one of the modern approaches

1.3. BACKGROUND ON FPGAS 11

of designing digital circuits. Due to the complexity and scale of the hardware de-
signs targeted to video processing systems, it is vital to perform vigorous verification
through formal hardware verification (FHV) methods to ensure that the final design is
relatively bug-free. We have modeled a verification platform that automates most of
the formal verification tasks by combining high level languages, such as C/C++ and
MATLAB., with VHDL test-benches. The state-of-the-art VHDL simulation tools
allow co-simulations with MATLAB, which provides a higher level of verification
environment, facilitating simulation of the design modules such as sorting quickly.
Moreover, our verification platform accepts, not just a mere set of VHDL stimuli,
but a video sequence which is passed through the synthesizable hardware design. The
resulting data, composed of a video sequence and/or contour chain codes, are then au-
tomatically compared with the high level specification, originally written in C/C++.
In addition, the environment generates various objective and subjective measurements
of the hardware result, which facilitate comparing the intended hardware design with
the original specification.

The VHDL codes are then svnthesized with Synplicity Synplify, which translates
the design into a technology specific netlist file format - Electronic Design Inter-
change Format (EDIF). Synthesis reports provide approximate timing and resources
utilization of the target FPGA. If the synthesis results are not satisfactory, the design
may require more optimization for area and timing, or, in some instances, changes to
specification and overall architecture.

The place and route tools (Xilinx ISE) take the EDIF netlist and map into appro-
priate fundamental building blocks, for e.g., CLBs. Once the design has been placed,
the tools perform an iterative routing procedure to interconnect the mapped blocks
producing a routed design with minimal interconnection delays. Here, static timing

verifications are performed and critical paths of the circuits are analyzed to improve

1.4. OVERVIEW OF CONTRIBUTIONS 12

the overall design performance. The routed FPGA design is then programmed into
the FPGA to verify its functionality. In system verification tools, such as Xilinx
Chipscope Pro”?" [35]. are thoroughly used throughout the course of prototyping and
circuit debugging. In the case of the routed design does not meet the timing, area
and power. or if it is not functional correctly in real hardware in accordance with the
specification or design goals. the complete design flow may require running a number

of iteration, even from the specification level.

1.4 Overview of Contributions

The following list states which parts of this thesis are original to the knowledge of

the author at the time the proposed methods of this thesis were developed !:
e A hardware-friendly modified counting sort algorithm.

e A single-chip scalable and compact FPGA-based architecture of the proposed
counting sort algorithm which specifically addresses the issue of sorting large

volume of integer or fractional data.

e An improved FPGA-based noise estimation where the following improvements

have been made:

— Excludes highly undesirable external SRAM.

— Removes 53% BRAM utilization in logorithmic computation.

1At the time of this thesis publication, four papers based on this thesis are published in the
Proceedings of:

o the 2006 IEEE International Conference on Image Processing (object detection) [36],
o the 41st IEEE Conference on Information Sciences and Systems (sorting) [37],
o the 2007 IEEE International Conference on Image Processing (contour tracing) [38], and

e the 2007 IEEE International Conference on Svstems, Man, and Cybernetics (contour filling)
[39].

1.5. THESIS OUTLINE 13

— Integrates into one FPGA device where video object detection and contour

tracing and filling are implemented.
e A scalable and compact architecture for FPGA-based object detection.

e An implementation of chaotic contour tracing and filling of video objects on

FPGA.

Various referenced architectures and implementation for sorting, video noise esti-
mation, object detection and contour tracing and filling are studied, and their char-

acteristics and performance are analyzed and compared with the proposed methods.

1.5 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 presents the proposed FPGA-based implementation of modified count-
ing sort algorithm which is utilized in the implementation of spatial video noise es-
timation. Section 2.2 describes the related work to both sorting large volume. The
modified counting sort algorithm and its adaptation to the FPGA implementation,
verification and results are described in section 2.3 through 2.6.

In chapter 3, we outline an efficient hardware architecture in section 3.4 of the
reference homogeneity-based noise estimation algorithm, which is described in section
3.3. The improvements of the proposed architecture and results are discussed in
section 3.5.

Chapter 4.1 proposes a robust real-time. scalable and modular FPGA-based im-
plementation of a spatio-temporal video objects detection. Section 4.2 outlines the
reference algorithm and section 4.3 depicts the proposed architecture. Section 4 con-

tains Verification and svnthesis results are given in section 4.4.

1.5. THESIS OUTLINE 14

In chapter 5, we propose novel FPGA-based architecture and its implementation
of contour tracing and filling of video objects. Section 5.2 describes the related
work and section 5.3 gives an overview of the contour tracing and filling algorithms
[8]. Our proposed architecture is outlined in section 5.4, while section 5.5 contains
experimental results. Note that the output of the proposed system is an image with
filled moving objects, and their corresponding contour chain codes. Therefore, final
results of the FPGA are presented in chapter 5.

Chapter 6 concludes the thesis and suggests future work.

15

Chapter 2

A Modified Counting Sort
Algorithm and its FPGA

Implementation

Many video processing algorithms, such as video noise estimation [13]. often require
sorting large volume of data. This chapter proposes a single-chip scalable and compact
FPGA-based architecture of a modified counting sort algorithm, which specifically

addresses the issue of sorting large volume of integer or fractional data.

2.1 Introduction

Sorting (in ascending order) is a process to rearrange a given set of keys ag, a;,...,

an_; into a set dp=a;,, dy=a;, ... , dy_1=a;,_, such that dy <, d; <, ... |

AN

dy_1. Furthermore, sorting is stable if d;=d;.;, then ;< 4,44, i.e., for each pair of
consecutive equal keys in the sorted list, the order that they were presented in the
unsorted set is preserved.

Sorting a large volume of integer data is computationally intensive and is often

2.1. INTRODUCTION 16

required in diverse applications such as video processing [13] and ATM switching [14].
Software-based implementation for sorting large volume of data is still slow for real-
time applications, hence hardware acceleration is inevitable. Although parallel com-
puting based solutions are inherently very flexible, heat dissipation and area are all
increased. Designing a full-custom ASIC chip provides the highest processing speed
with minimal power consumption, but requires a longer design cycle, expensive engi-
neering cost, and is extremely inflexible. FPGAs, which fill the gap between general
purpose sequential processors (GPPs) or parallel computers and ASICs are, therefore,
utilized in many embedded systems. Evolving high-density FPGA architectures, such
as those with embedded multipliers, high number/amount of memory blocks and high
pin count, make FPGAs as an ideal solution for accelerating heavy number crunching
operations such as those required in video processing.

The choice of an optimal sorting algorithm and adapting it to FPGAs are critical
to have an optimized compact implementation. In applications that require sorting,
it is most likely that sorting is a very small part of the whole application [13,10].
The use of dedicated sorting chips is not a choice in cost-sensitive system designs as
this would increase bill of material (BOM) costs. Implementing comparative based
sorting methods [14, 18] would consume an enormous amount of FPGA resources.

In this chapter, we propose a modified counting sort algorithm [3] and an archi-
tecture such that it is well suited for an FPGA-based implementation. The primary
motivation for designing a compact and efficient implementation for sorting large data
volumes comes from the need to gain real-time performance in video processing algo-
rithms [13,40]. The noise estimation algorithm in [13] requires to sort approximately
8000 fractional keys (variances) in real time, which is 33 ms for a standard video
source running at 30 frames/s. The number of keyvs to be sorted could be well over

8000 for higher video frame sizes such as HDTV video resolution, and sorting is a

2.2. RELATED WORK REVIEW 17

very small part of [13] and many other video processing applications [40]. Hence a
scalable, real-time and compact implementation for sorting variable and large volume

of data is needed.

2.2 Related Work Review

In recent years, much research has been carried out implementing parallel sorting
algorithms on ASICs, but very little emphasis has been put on FPGA-based imple-
mentations. Most of the FPGA-based architectures are based on pure comparison
sorting algorithms. The area and time complexity becomes an enormous issue when
sorting has to be performed on a very larger volume of data.

Studies carried out in [18] investigate trade-off of cost versus performance for a
hybrid sorting algorithm of large data. This hybrid sorting algorithm is split into a
sequential merge sorting algorithm running on a sequential processor, and a systolic
insertion sorting algorithm running on a Xilinx XCV1000 FPGA co-processor at 66
MHz. Results in [18] show that having an FPGA as a co-processor improves the
overall performance of the hybrid sorting algorithm up to a speed-up factor of 4.
Furthermore, this speed-up factor is increased up to 100, using as many as 16 FPGA
co-processors to sort 4096 keys.

Huang et al. propose a hardware design architecture in [4] for merge-sorting net-
works with a fixed size Batcher’s sorting network. The number of sorting data N can
be increased by modifying an address controller which controlls the memory accesses
and increasing the amount of memory. However, performance of this architecture is
considerably low for applications that require real time sorting performance such as
n [13]. Our proposed architecture achieves a significant speed-up factor of 165 when
compared to the architecture presented in [4].

A VLSI architecture presented in [14] sorts small continuous data sequences up

2.2. RELATED WORK REVIEW 18

to 256 keys and partially sorts longer sequences. Here, a regular architecture based
on a chain of basic sorting units (BSU) is introduced which can handle a maximum
operating frequency of 50 MHz.

The architectures in [14, 18] are based on comparative based sorting methods,
therefore implementing [14, 18] on FPGAs would consume more FPGA internal re-
sources (slices) than the proposed architecture.

In video processing, sorting is widely used in rank-order filters which are preferred
over linear filters [19]. Here, the complexity of sorting is relatively small as the
resolution and the number of data becomes small and no stable sorting is required.
Several FPGA implementations for median filters have been presented [19-22] each
of them exploiting different approaches for sorting architectures.

Maheshwari et al. [19] have taken a simple approach to a 3x3 median filter im-
plementation on a Xilinx XC series FPGA. The elements in the 3x3 kernel are first
sorted vertically. followed by horizontally, thereby producing the median in the center
of the 3x3 kernel.

A bit serial sorting algorithm, similar to Quicksort, is introduced in [20], and
a general purpose median filter is implemented on a Xilinx XC4010E FPGA. The
implementation is very compact, occupying only 15 CLBs, but achieves real-time
performance of 25 fps for 512x512 8 bits/pixel.

Hamid et al. [21] present a genetic algorithm on a Xilinx Spartan-11 FPGA to
optimize the tasks of the soft morphological filter (SMF). The genetic algorithm im-
plementation essentially cbnsists of a quick parallel sort algorithm, Biotonic Megasort.
The maximum speed that the design can run is 56 MHz and it consumes about 87%
slices in the FPGA.

Fahmy et al. [22] propose an efficient implementation of one dimensional (1D)

median filters based on the cumulative histogram of the input samples. The imple-

2.3. A MODIFIED COUNTING SORT ALGORITHM 19

mentation can process 72 MPixels/s for 8 bit pixel depth. The main drawback of [22]
is that it is not extended to 2D median filters. Achieving timing constraints on the
nnplementation may be very difficult for higher pixel depths, due to the nature of the
priority encoder.

For sorting a large number of keys, although the comparative methods proposed in
[19-22] can theoretically be extended, implementation of such methods on a resources
constraint hardware such as FPGAs would not be feasible due to the large silicon area

required.

2.3 A Modified Counting Sort Algorithm

In this section, we describe the proposed modified hardware-oriented sorting based
on the counting sort algorithm [3] invented in 1954.

Table 2.1 lists the steps of a pseudo code of the original counting sort algorithm [3].
It starts sorting NV integer elements by first counting the number of occurrences for
every element in the input unsorted array, A[0..N — 1]. The 'rank’ of each element is
then determined by counting the number of elements less than or equal to the element
being considered, and is stored in the array C[0..2¥ — 1]. Each element in the input
array is read from the ’right’ and put in the array D[0..N — 1] (which contains the
sorted elements) at the location stored in the array C[0..2% — 1]. At first, the array
C[0..2F — 1] provides the position of sorted array D[0..N — 1] for the first distinct
element read from the array A[0..N — 1]. If there are multiple occurrences for any
element in A[0..N — 1], the next position is obtained by simply subtracting one from
the corresponding location in C]0..2% — 1], and the new result is stored back into the
array C[0..2F — 1]. Once all the elements in the input array are read and scanned for
the location of the array D[0..N — 1] from the array C[0..2* — 1], the array D[0..N — 1]

contains the stably sorted elements.

2.3. A MODIFIED COUNTING SORT ALGORITHNM 20

Table 2.1: Original Counting Sort Algorithm [3].

Input : A[0..N — 1], N integer keys in the
range of 0,...2% — 1 to be sorted.

Output : D[0..N — 1]. Sorted kevs.
1: // Initialize array B[0..2¥ — 1] to 0.
2 B[O..Qk —1] <0
3: // Count same integers in A[0..N — 1]
4: fori —0to N—-1do
5: BlA[i]] « B[A[]]] +1
6
7
8
9

. // Initialize C[0..2% — 1] and set C[0] =0
: // Compute the rank of each elements in A[0..N — 1].
for i< 1to2F — 1 do
Cli] — Bli]+ C[1 — 1]
10: // Read each element from array A[0..N — 1]
// starting from right and place them in D[0..N — 1]
// at the position given by the content of C[0..2F — 1].
11: for i — N —-1to 0do
12: DI[C[A[i]]] « Alf]
13: ClAfT]] « C[A[]] -1
14: return(D[0..N — 1])

We propose two modifications to this algorithm so that it is well suited for a

hardware implementation. First. the array C[0..2%¥ — 1] is computed as
C(i)=)Y B(j) for ie{0,..N-1} . je{0,.,i}. (2.1)

With this modification C[0] = B(0), whereas in the original algorithm C[0] = 0.
Second, instead of using a decrementor in the step 13 of Table 2.1 (C[A[]] «
C[A[i]] — 1). the modification requires an incrementor (C[A[i]] «- C[A[i]] + 1), which
adds no additional cost in terms of hardware resources, timing or design complexities.
The proposed modified algorithm is listed in Table 2.2.
The direct hardware implementation of the sorting algorithm [3] requires reading
the array A[0..N - 1] in the reverse direction (right to left) as it was written to. For

applications which require real-time performance, ability to stream data continuously

2.4. PROPOSED SORTING ARCHITECTURE 21

Table 2.2: Proposed Modified Counting Sort Algorithm.
Input : A[0..N — 1], N integer keys in the
range of 0....2% — 1 to be sorted.
Output : D[0..N — 1], Sorted keys.
1: // Initialize array B[0..2% — 1] to 0.
2. Bl0.2F 1] — 0
// Count same integers in A[0..N — 1]
fori«<—0to N -—1do
BJAJi]] < B[A[i]] +1
// Initialize C[0..28 — 1] and set C|0] = B|0]
for i« 1to 2 1do
Cli] < Bli] + C[i — 1]
// Read each element from array A[0..N — 1]
// starting from left and place them in D[0..N — 1]
// at the position given by the content of C[0..2F — 1].
10: for i< 0toN—-1do

11 D[CAL]]] — A[1]
12: ClA[I]] < [7]l +
13: return(D]0.. 1])

is an important factor. If a memory is read in the reverse order. then all the data
in that memory must be read before the next data can be written. unless additional
logic 1s implemented to handle reverse reading efficiently. This means that the overall
throughput of the system is reduced by 50%. However, if the data can be read in
the same order as it is written to (in a First In First Out (FIFO) fashion), then
this problem is eliminated and design complexities and resources are both reduced.
The proposed modifications to [3] allow us to use the array A as a FIFO, hence
the proposed architecture is able to continuously stream unsorted keys without any

timing or additional area overheads.

2.4 Proposed Sorting Architecture

This section describes the proposed architecture of a single chip FPGA implementa-

tion for the counting sort algorithm described in the previous section. Fig. 2.1 depicts

2.4. PROPOSED SORTING ARCHITECTURE 22

the overall system level architecture, which takes the unsorted keys x;,2=1,... N as
input and outputs stably sorted keys z;. A more detailed block diagram is shown in
Fig. 2.2. It can be seen that the implementation performs a number of tasks to stably
sort a set. of unsorted input keys. The input keys are butfered in the TEMPORAL KEY
BUFFERS since all the data in a sequence is required to complete counting the same
integers in A[0..N — 1] (building a histogram), which is performed in the HISTOGRAM
UNIT. Once the histogram is computed, INITIAL ADDRESS CONTROL module reads
the histogram and generates the initial starting addresses (C[i], step 8 in Table 2.2).
In the next step. the Direct Memory Access (DMA) reads the data from the TEM-
PORAL KEY BUFFERS and indexes into to the INDEXING RAM based on the address
stored in the INIT ADDR RAM. The detailed description of each module is given in

the next sections.

/ N

s
/

DATA BUS
X. I o i\ P |z
i ! START | 1
DMA | HISTOGRAM ’ P \
—> 4 ADDRESS | | INDEXING —»
CONTROLLER P
1COMPUTATION l CONTROL | | {
Iy

[2 T A A

\} CONTROL BUS)
%

Figure 2.1: Overall System Level Sorting Architecture.

2.4.1 TEMPORAL KEY MANAGEMENT Module

The core of the TEMPORAL KEY MANAGEMENT module is the DMA controller that is
responsible of moving input data between the memory and the appropriate processing

nodes at high speed to sustain real-time performance. Our implementation performs

2.4. PROPOSED SORTING ARCHITECTURE 23

{ TEMPORAL KEY i :(HISTOGRAM HISTOGRAM UNIT
! MANAGEMENT } :|_CONTROLLER |
: ; Pl - “»1 ADD |-
: TEMPORAL -KEY B (’._2
BUFFERS P
: A . Y bia
: D REG J—
D ADDRA
el LIt e Fy
DMA N BIN: | DOB
CONTROLLER T
: - SHIFT i
B f L AND
fops i | count
cw P>
g% X
=} H
: = >
Lo 4 P
Ze Y 1 ADDR3 INIT
Be o' 1] INDEXING g - ; TN
< 1= - RAM < ADDR ﬁ)
&k : D RAM +/
o] P
& . } INITIAL
: . ADDRESS
: D CONTROLLER
{OUTPUT INDEXING | }INITIAL ADDRESS CONTROL —

Figure 2.2: Detailed Circuit Diagram of the Sorting Architecture.

the histogram computation as new data is being arrived and are written into the
TEMPORAL KEY BUFFERS by the DMA. While the previous set of data is being sorted
at the back-end of processing, it is necessary to read those data from the TEMPORAL
KEY BUFFERS while the new data is being written. Our DMA architecture manages

these data transfers seamless to the other processing nodes.

2.4.2 Architecture of the HISTOGRAM UNIT

We implemented histogram computation using a number of concatenated dual-ported
Block of RAMs (BRAMs) in order to support sorting higher resolution integers. The
architecture is scalable and flexible since the implementation automatically computes
the minimum required BRAMs and concatenates them at design compile time. The
port A of the BRAMs is dedicated for histogram computation while port B is used for

reading it out and clearing the content of the memory at the end of a sequence. The

2.4. PROPOSED SORTING ARCHITECTURE 24

SHIFT AND COUNT module counts co-occurrence of 3 consecutive keys so that reading
data from an address of the RAMs is avoided while writing to the same location. The
HISTOGRAM CONTROLLER controls all controlling logic required in the HISTOGRAM

UNIT.

2.4.3 Architecture of the INITIAL ADDRESS CONTROL

Module

The INITIAL ADDRESS CONTROL module is responsible for computing the starting
addresses for each unsorted keys which are stored in the TEMPORAL KEY BUFFERS.
These starting addresses, stored in the INIT ADDR RAM are used to address the
INDEXING RAM of the OUTPUT INDEXING unit. For each histogram bin, the output
of the HISTOGRAM UNIT is added to the content of the INIT ADDR RAM. Once the
addresses for all the bins are computed, the INITIAL ADDRESS CONTROLLER triggers
the DMA to output unsorted keys. For each unsorted keys, corresponding starting
addresses are retrieved from the INIT ADDR RAM and used to address the INDEXING
RAM. Furthermore, the content at the corresponding location in the INIT ADDR RAM

is subtracted by one, which becomes the next starting address.

2.4.4 OUTPUT INDEXING Module

At this final sorting stage, the unsorted keys are written in the INDEXING RAM. The
write addresses to the INDEXING RAM are obtained from the INITIAL ADDRESS CON-
TROL module. Once the DMA has transferred a complete set of keys, the content
of the INDEXING RAM is stably sorted keys. which are read by the OUTPUT CON-
TROLLER sequentially. Moreover., OUTPUT CONTROLLER clears the content of the

INDEXING RAM at the end of each sequence.

2.5. SIMULATION AND VERIFICATION RESULTS 25

2.5 Simulation and Verification Results

The modified counting sort algorithm was implemented in C on a PC with an Intel
Pentium-IV 2.4 GHz processor for performance comparison between software and
hardware implementations. Simulation results are shown in Fig. 2.3 for k = 12, where
k is the number of bits in V. The execution time for the FPGA implementation
includes data load and result unload time. The proposed FPGA implementation
achieves greater than an order of magnitude performance improvements over the

software implementation for N > 10000.

2.75

-'M@QMK CFI’U ’ | | | | l I | /g

2.5 | =g FPGA
225} /]

[72] 2r f i
£ yd

c 1757 /f@ .
(é) 1.5+ ;"" B
o 125} f{ 1
= ’

T

o]

wn

N

Figure 2.3: Complexity comparison between a CPU and FPGA.

The video noise estimation algorithm [13], written in C, produces variances V;,i =
1,...N,N € Z of 3x3 or 5x5 blocks in an image, which are required to be sorted for
further processing. As it can be seen from Fig. 2.4, a part our verification process
consists of using these variances as test stimulus x; to the VHDL testbench of the

proposed sorting design, Unit Under Test (UUT), through the NJATLAB environment.

2.6. SYNTHESIS AND IMPLEMENTATION RESULTS 26

C MATLAB VHDL TOP LEVEL
Xi " TESTBENCH

Calculate variances (V,.) V. |x;=Nrandom keys or Vl. — §o 2 UUT

of 3x3 and/or 5x5 blocks |—> v, =sort{x;) z - E - SRTING

in images with different Evaluatelz, -y, | R o AI{6§};]’§‘1I;I(A*’IFJL'RE

spatial resolutions [1] Ploty,, z;and (lz,- v, 1)

Figure 2.4: Simulation environment with VHDL Testbench and C/MATLAB.

Further verification was performed by using MATLAB to generate N random keys,
and setting them as stimulus for the UUT. The sorted keys z; from VHDL environment
are then compared with the appropriate MATLAB sorted keys ;. We have extensively
run this simulation with different number of N and verified the accuracy of our
immplementation. For instance, we obtained large and different amount of elements
(V;) with [13] by using images with different spatial resolutions and setting the block
size to 3x3 or bxb.

A Virtex II-Pro evaluation board was used for actual hardware verification. We
sent x; and read-back z; through a parallel port and result were successfully verified
with ;.

Fig. 2.5 reveals that the sorted elements z; obtained from the proposed imple-

mentation are identical to the MATLAB sorted elements ;.

2.6 Synthesis and Implementation Results

2.6.1 Implementation

The proposed architecture was synthesized with Synplicity Synplify 7.3. and placed
and routed targeting an XC2VP20 FPGA with Xilinx ISE 6.3 Alliance place and
route tool. The synthesis and place and routed implementation results indicate that
the complete architecture is very compact occupying only about 15 % of slices and

about 30 % of the BRAMs for 12 bits wide (integer or fractional). 16K (16384) kevs.

2.6. SYNTHESIS AND INPLEMENTATION RESULTS 27

Furthermore, the proposed design was synthesized for various values of k, and Fig.
2.6 depicts the FPGA resources utilization. Note that the proposed architecture is
single-chip solution for sorting a large number of keys and it uses internal BRAMs for
local data storage. Hence. BRAM utilization is directly proportional to k, however the
slices usage remain very low. The proposed architecture was easily routed constraining
a 7.5 ns clock cycle. hence the design can be clocked at 133 MHz with the slowest
FPGA speed grade (-5). At a 133 MHz clock, Xilinx XPower tools to estimated 1.8

W power dissipation of our design for a toggle-rate of 50 % .

1000 7 T T T T T T
=i VHDL Result
—&— MATLAB Result
ERROR
800 :
x‘\
U>)\ 600 - - .
g MATLAB Resulty. ‘f o
o 080"
<))
£ 400t]
(@] B
2 o < VHDL Simulation Result z
200+ N
1.ef VEnoriz-y)]

0 1000 2000 3000 4000 5000 6000 7000 8000
i

Figure 2.5: Sample comparison between VHDL and MATLAB results.

2.6.2 Comparison to the Existing Methods

Table 2.3 lists performance and architectural differences between the proposed method
and the architecture described in [4]. Notice that [4] is a 0.35pum CMOS based ASIC

architecture, therefore timing and area optimization can be performed better than

2.6. SYNTHESIS AND INPLEMENTATION RESULTS 28

Table 2.3: Performance and area comparison for sorting 128 keys of 8 bits with [4]
and proposed method.

Ref [4] Proposed
Max Clock 50 MHz 133 MHz
Sorting Time 158.72 us 0.962 us
Area (Memory) | 128 Bytes 640 Bytes
Gates 3185 Gates approx. 9000 Gates
Architecture 0.35pum CMOS | FPGA

on an FPGA. For comparison purpose we have chosen 128 keys of 8 bits for our
implementation and verification in order to match with the test vectors used in the
reference method [4]. As it can be seen from Table 2.3, the performance of our
proposed method is significantly higher (165 times faster) than [4]. Although the
area complexity of the proposed method is higher than in [4]. our implementation
does not utilize considerable amount of resources on presently available FPGAs.

Furthermore. the proposed architecture contains many advantages over the sorting
architecture presented in {18]. which requires a CPU processor in addition to an FPGA
to complete the sorting. For sorting very large number of keys in real-time, the
technique described in [18] would require multiple FPGAs. In contrast, our proposed
architecture is a compact and based on a single chip FPGA device which is capable
of sorting a large number of keys.

The comparative methods presented in [14,19-22] can be extended to sort a large
number of keys on a resources unconstrained hardware platform such as a dedicated
ASIC. However, this would increase both the cost and complexity of the overall im-
plementation, specially when sorting is a very small part of a complete application

such as in video processing [13.40].

2.7. CHAPTER SUMMARY 29

20 T T T T T

& BlockRAMs

[1slices (100s)
16+ .
12} .

Resources utilization

EN

|

1

;hhﬁh

Figure 2.6: Internal FPGA resources utilization.
2.7 Chapter Summary

In this chapter, we proposed a modified counting sort algorithm and a novel. scal-
able and compact single chip FPGA architecture for stably sorting a large volume of
integer and fractional keys in real-time for video processing applications. The pro-
posed architecture of the sorting is scalable to gain higher throughput by trading off
only the FPGA internal memory resources. The proposed implementation was suc-
cessfully verified on an actual hardware platform that consists of a Xilinx XC2VP20
FPGA. Sorting performance comparisons showed that the proposed implementation
is significantly better than the existing methods. Furthermore, when compared to
pure software implementation for large N, we obtained a speed-up factor of more
than 10 with the proposed architecture. In addition, an efhicient noise estimation

implementation which eliminates the need of SRAM was proposed.

30

Chapter 3

Improved FPGA-based
Implementation of Noise

Estimation

In this chapter, we outline an improved FPGA-based noise estimation implementation
of Lapalme’s et al. [5]. The focus of this thesis is to implement and integrate all of
the core video processing algorithms (video noise estimation, moving object detection,
and contour analysis) required in the moving video object segmentation [1], into one

FPGA. As such, it is imperative to device an efficient hardware architecture.

3.1 Introduction

The effectiveness of video processing systeins heavily depend on the amount of un-
wanted noise contained in a corrupted video signal due to, for e.g., video acquisition,
processing, storage or transmission. Hence, reducing the noise in video signals by
means of noise estimation algorithms is an active research field. The state-of-the-art

noise estimation methods calculate the level of noise. and facilitate the video process-

3.2. RELATED WORK REVIEW 31

ing algorithms to enhance the quality of video sequences to the amount of noise
present. Thus. a noise estimation algorithm, such as [13], which reliably estimates
noise both in highly noisy and good quality images, is imperative to demodulate vital
content from a corrupted video sequence. Intra-field and block-based noise estima-
tion method proposed in [13] finds the noise variances of a set of blocks classified as
the most homogeneous blocks to estimate the global image noise variance. The algo-
rithm [13] requires to sort large amount of data, which is the primary computational

bottleneck in its hardware as well as software implementations.

3.2 Related Work Review

Except the architecture proposed in [5], no previous studies have been carried out on
FPGA-based implementation of noise estimation algorithms, to the best knowledge
of the author. Although, Lapalme’s FPGA implementation [5] of the reliable spatial
video noise estimation algorithm [13] runs real-time, it requires a significant amount
of FPGA resources and runs at a slower speed. The motivation to improve the
architecture [5], by means of the proposed modified counting sort algorithm comes
from the need to integrate the proposed improved noise estimation implementation
with other high-level video processing tasks, described in the chapters 4 and 5, within

a single FPGA device.

3.3 Overview of the Reference Noise
Estimation Algorithm

In this section we outline the noise estimation algorithm [13]. The spatial noise

estimation method [13]. which produces reliable estimates, finds homogeneous regions

3.3. OVERVIEW OF THE REFERENCE NOISE
ESTIMATION ALGORITHM 32

by taking image structure into account. To reject structured blocks the algorithm [13]
first divides the image into equal blocks of the size W x W. For each block, a
homogeneity measure £py, is then computed using eight high-pass directional filters.
The mask of the horizontal direction scanning window on the image function I for

W =5 is illustrated in Eq. 3.1.

Ly=—I(i-2)—I1(i—-1)+4xI{)—I(G+1)—I(i+2). (3.1)

The homogeneity measure £p, is obtained by adding the absolute values of all
eight high-pass directional filters.

The variance a%, of each block is then calculated with

> 6. 5) = psn)

9 (1.5)eWs;

= 3.2
Here, upy, is the sample mean defined as
> I3
(1.7)eWy;
Mo = " (3.3)

The homogeneity measures £py, is sorted and variances g%, corresponding to the
top 10% of sorted &gy, are selected. However, only the variances satisfying the con-

dition given in Eq. 3.4 are averaged to obtain the global noise variance (estimation)

2

O

llog(ogy,) — log(ohpp)] < t,. (3.4)

In Eq. 3.4, 0%5r is defined as a reference variance, which chosen as the median of
the variances of the three most homogeneous blocks, and ¢, is a user defined threshold

value.

3.4. PROPOSED FPGA-BASED ARCHITECTURE 33
3.4 Proposed FPGA-based Architecture

The improvements achieved to the FPGA implementation presented in [5], primarily
with the proposed modified counting sort algorithm described in sections 2.3 and 2.4
are outlined next. Fig. 3.1 illustrates the overall architecture of the noise estimation
algorithm. Primary improvement was obtained by adopting the proposed modified
counting sort algorithm described in sections 2.3 and 2.4 to [5]. The FPGA implemen-
tation in [5] requires two external SRAM memory modules for sorting. SRAMs are
costly and increase the physical area and power consumption of the overall system.
Thus it is highly desirable to minimally use these devices, except for other processing
tasks, which inherently require the utilization of SRAMs for their implementation,
such as HIGH-SPEED CACHE for contour tracing and filling described in chapter 5.
Moreover, [5] implements logarithmic computation by means of a large look-up table,
which requires more than 53% of BRAMs in the implemented FPGA device. In the
proposed implementation. we employ an efficient logorithmic arhitecture [41], which
utilizes zero BRAMSs but only two multipliers and few slices.

WxW
WINDOW

LINE BUFFERS

BUFFER 0

BUFFER 1

I(n) —» BURLL tn
‘ WINDOW o T
BLOCK Bh VARINACE - 2
~ VARIANCE > ram OREF

WxW ‘ A
WINDOW ‘ |

HIGH PASS
FILTER 7

READ)\
ADDRESS

}———>» SORT 2
SBh n

Figure 3.1: Proposed Architecture of the Noise Estimation Algorithm.

3.5. IMPLEMENTATION RESULTS 34

As can seen in Fig. 3.1, LINE BUFFERS are utilized with BRAMSs, which gen-
erate W x W blocks. In the 2D LOW-PASS FILTER block, the sample mean ppy
is produced and passed BLOCK VARIANCE module which computes the variance
0%,. These block variances are then stored in the VARIANCE RAM. A set of eight
HIGH-PASS FILTERS produces directional filters, and absolute value of the result
of the directional filters are summed to produce the homogeneity measures £p,. The
proposed modified counting sort algorithm described in detail in sections 2.3 and 2.4 is
implemented in the SORT module, which sort the gy, and indexes of the 10 % most
homogeneous blocks are sent as the read address to the VARIANCE RAM, which
outputs corresponding ppp and pgpepr. LOG/SELECT block finds the logarithmic
value of jtp;, and piggpr, which are compared to an application-dependent threshold as

seen in Eq. 3.4 to select only the valid varinces. These varinces are are then summed

2

n-

in the accumulator to obtain the global noise variance (estimation) o

3.5 Implementation Results

Although the proposed architecture is ultimately implemented on an Xilinx Virtex-4
FPGA, in order to do a fair comparison, we synthesized the our architecture to the
same FPGA (XC2V4000) used in [5]. Table 3.1 lists performance and architectural
differences between the proposed method and the architecture described in [5]. Table
3.1 exemplifies that the timing performance of our proposed method is improved by
three fold. Furthermore, our method does not require external SRAMs, which brings
many advantages as noted in 2.4, instead it utilizes FPGA internal BRAMs for the

proposed sorting implementation.

3.6. CHAPTER SUMMARY

35

Table 3.1: Architectural and Performance Comparison of the Noise Estimation [m-
plementation between [5] and the Proposed Method.

Lapalme et al. [5] | Proposed
Max Clock 40.5 MHz 127 MHz
BRAMs 72 89
Slices 4600 5200
External SRAM | Required No

3.6 Chapter Summary

In this chapter, we proposed an improved FPGA-based architecture of video noise

estimation. Although the proposed implementation requires slightly more BRAMs

and slices than the referenced implementation, it achieves a three-fold performance

improvements and avoids utilizing external SRAM modules which increase the area,

cost. power and verification cycle of the overall physical system. Furthermore, the

proposed noise estimation implementation is integrated with other high-level post

video processing algorithms forming a real-time video processing system for moving

video object segmentation.

36

Chapter 4

FPGA-based Implementation of

Spatio-Temporal Object Detection

4.1 Introduction

Object detection plays a key role in many video processing applications such as surveil-
lance or machine vision. However, the computational complexity involved in object
detection makes it difficult to achieve real-time performance on a general purpose
CPU or DSP. There exists three main architectural approaches to this challenge 1)
Application Specific Integrated Circuit (ASIC), 2) parallel computing, and 3) FPGAs.
Evolving high density FPGA architectures such as those with embedded multipliers,
memory blocks and high I/O (input/output) pin count make FPGAs an ideal solution
in video processing applications [11,42,43].

The work in [23] demonstrates how a number of image detection algorithms can
be implemented on FPGAs. The dynamic reconfigurability feature of the FPGAs
allows to reconfigure a part or complete FPGA within a fraction of a microsecond,
and the paper shows how multiple image processing algorithms can be sequentially

applied to the image by using the same FPGA.

4.2. OVERVIEW OF THE REFERENCE SPATIO-TEMPORAL
OBJECT DETECTION ALGORITHM 37

Another FPGA implementation for segmenting text in images is in {24]. Exper-
imental results show that this algorithm implemented in FPGA achieved a speedup
of close to 250 compared to a general purpose CPU implementation. However, this
implementation runs at 5 MHz which is well below the real-time performance.

The study in [25] partially involves FPGA-based implementation of image detec-
tion based on the resistive-fuse network model.

An extensive comparison between FPGA and DSP implementations of image clas-
sifier for object detection is in [26]. Although the performance of the FPGA imple-
mentation significantly overpasses that of the DSP implementation, its performance

and scalability is heavily limited and embedded by the hardware platform chosen.

4.2 Overview of the Reference Spatio-Temporal

Object Detection Algorithm

An object detection method categorizes pixels of a frame into two regions: object
pixels and background pixels. Video object detection methods [12] can be classified
based on their automation, spatial accuracy, temporal stability, and computation
load. Computationally expensive methods give, in general, accurate results while
low-computation methods may fail. However, few of the methods are tested on a
large number of videos, throughout long videos, on noisy videos, and without para-
meter tuning. We select the non-parametric detection method in [1] due to its low
computation and noise and temporal stability. These features forgo spatial accuracy,
e.g., at object boundaries. Such a method is most appropriate to applications, e.g.,
video surveillance, where stability under varying conditions is of more concern than
accurate object boundaries. Furthermore, the method described in [1] is well suited

for hardware implementation such as a modern FPGA due to its modularity. simplic-

4.2. OVERVIEW OF THE REFERENCE SPATIO-TEMPORAL
OBJECT DETECTION ALGORITHM 38

ity and reduced resources requirements. Fig.4.1 illustrates the block diagram of the
method [1] which consists of three main modules: motion detection, spatio-temporal

thresholding, and morphological edge detection.

MOTION DETECTION |
AD(n) SPATIAL SPATIAL ;
A%i?_blém L | AVERAGE || MAX '
FILTER FILTER :
R(n) D(n)
2 | T(n-1
NOISE o]
(m)—p» ESTIMATION l z -
EDGE B(n) T'(n)

E(n -]
n) 44— DETECTION THRESHOLDING

Figure 4.1: Block Diagram of the Object Detection [1].

The motion detection finds first the absohite frame difference. AD(n) at time
instant n, between the current I(n) and a reference frame R(n). R(n) can be either
a background BK (n) or the previous frame /(n — 1) in a video sequence. AD(n) is
then spatially filtered by both an average and a max filter.

In the thresholding module, a global spatial threshold T is first computed as fol-
lows. The spatially-filtered frame D(n) is divided into K consecutive non-overlapping
blocks, Wi,k € {1,..K}. The histogram of each W) is split into L equal sections.

The most-frequent gray-level g, of each histogram section is found and

Ty = (4.1)

L
where)\, = Z g and gy is the pixel average of .. Note that T, is obtained using
=1

4.3. PROPOSED PIPELINED ARCHITECTURE
AND IMPLEMENTATION 39

block local and global data. T, is then proportionally adapted to the noise variance
o2 using

T. =T, + a.0* (4.2)

where 0 < a < 1 and ¢? is estimated using [13]. This noise-adapted 7} is then
quantized to maintain spatio-temporal stability where quantization down to three
levels yields good results [1]. The quantized threshold 7 is passed through a memory
system that holds the threshold of the previous frame and determines the threshold
T(n) based both on new quantized threshold 7; as well as the previous threshold
T(n — 1). Finally, D(n) is globally thresholded by T(n) creating a binary frame
B(n).

To extract object boundaries, the edges E(n) in B(n) are detected in the mor-
phological edge detection module. Here, a 2x2 square kernel is moved over the entire
B(n) and if the result of Boolean AND operation on these four binary pixels is false.
then the output pixels are set to white if their corresponding pixels in the input frame
are white, otherwise output pixels are set to black [1]. The method in [1] requires
E(n) to pass through a contour tracing and filling algorithm to label the objects.

which is described in detail in chapter 5.

4.3 Proposed Pipelined Architecture
and Implementation

The overall system level architecture of the FPGA design is illustrated in Fig. 4.2. It
consists of a Direct Memory Access (DMA) module and three main processing blocks

for motion detection, spatio-temporal thresholding and morphological edge detection.

4.3. PROPOSED PIPELINED ARCHITECTURE
AND IMPLEMENTATION 40

EXTERNAL
DDR MEMORY

' DDR MEMORY
! INTERFACE . MOTION
Locmnn- ; ______ : DETECTION
ACQUISITION |: . S
FRAME R D— SPATIO-
0 B DMA TEMPORAL
SEGMENTED T ADAPTATION
FRAME i i
i 4

REGISTERS EDGE

CONFIGURATION } P BINARY
DETECTION

.

Virtex Il Pro XC2VP20

Figure 4.2: System-Level Architecture of Object Detection.

4.3.1 Proposed DMA Architecture

An cfficient management of data transfers within a system is the key to any real-time
hardware implementation. In our implementation. we designed a scalable and versa-
tile DMA architecture that can be easily configured by a simple set of registers. The
proposed DMA consists of 4 KB deep First In First Out (FIFO) memories connected
to each read and write DMA channels, a DMA controller (DMACTLR) to manage
these FIFOs, and a DDR memory controller. A write transfer to the memory is
initialized by filling the corresponding write FIFO (up-to a maximum of 2 KB), and
sending a request to DMACTLR. Whenever a read FIFO is half empty, a read request
is automatically initialized. An internal cache memory is used to store the addresses
and transfer descriptions of each DMA channel. A round-robin arbitrator arbitrates
all parallel requests from each channel and serves the selected DMA channel.

Our architecture for motion detection and the DMA is scalable in that motion

detection can be configured into the two modes (background BK(n) and previous

4.3. PROPOSED PIPELINED ARCHITECTURE
AND IMPLEMENTATION 41

I(n — 1) frame) on-the-fly. In the former case, the DMA is programmed to store
the acquired frame as the background frame in the memory and it continuously read
the background frame and sends it to the motion detection module along with I(n).
In the later case, the DMA transfers newly arrived I(n) to the memory for future
processing as well as to the motion detection module. At the same time, the DMA
reads /(n — 1) that was stored in the memory (during the last frame time) and sends
it to the motion detection module. The output frame D(n) of the motion detection is
routed back to the memory and to the spatio-temporal thresholding node. The spatio-
temporal thresholding block takes a full frame time to compute a threshold, hence it
is necessary to buffer the frame being processed in the memory until a vahd threshold
is available. Within this duration, the previous motion-detected frame is read from
the memory and is sent to the last processing block for morphological edge detection.
The proposed DMA architecture manages all these massive data parallelism in such

a way that is seamless to any of the processing blocks.

4.3.2 Scalable Motion Detection Implementation

The absolute difference frame AD(n) is computed by a simple subtractor and its
absolute value is routed to the spatial average and max filters. We architectured the
spatial filters to be flexible and scalable in number of ways: 1) our implementation
can change the size of the both filters from any configuration between 1x1 and 5x5
on-line, and 2) the frame resolution is programmable allowing to support different
video cameras. The architecture is designed in a modular manner, so that future
design expansions can be easily feasible. For instance, if the design has to support a
video camera with more than 2 KB line width, it can be achieved by using multiple
instances of the existing modules. We also minimized the memory bandwidth that

would require to write and read previous lines for two-dimensional filters by using

4.3. PROPOSED PIPELINED ARCHITECTURE
AND INPLEMENTATION 42

mternal BRAMs as line butfers.

4.3.3 Spatio-Temporal Thresholding Architecture

The high-level architecture designed for the spatio-temporal thresholding is shown in
Fig. 4.3. Notice the the noise variance ¢2 is obtained from the architecture presented

in the chapter 3.

2
O,
> IHAO < ¢
T
D(n)—»BE > HA1 [~ g — = STA T
T : Y
D 71
> IHAM-1 ™ T(n-1)

Figure 4.3: High-Level Architecture of Spatio-Temporal Threshold.

The novelty of this architecture is that it does not require any external memory
to extract the individual blocks. The block extractor (BE) splits the motion-detected
data into M vertical blocks, which are then fed into A Intensity Histogram Analysis
(IHA) modules. Each IHA generates p; and A, for the corresponding block. The
Threshold Estimator (TE) takes those values to produce T, for Spatio-Temporal
Adaptation (STA) module. The STA consists of an adder that adds T, to a weighted
value of noise variance to get T, and two priority encoders. The first encoder produces
T, by quantizing T, down to three quantization levels which are defined with three
user programmable registers. The second priority encoder selects T'(n) according to

T, and T(n — 1).

4.3. PROPOSED PIPELINED ARCHITECTURE
AND IMPLEMENTATION 43

Architecture of the IHA Module

The THA consists of two main processing nodes - Intensity Average and Histogram
Analysis which compute pp and), respectively, and a Controller and an Address
Generation unit, that generates the signals required to control these processing nodes.

The overall architecture is shown in Fig. 4.4. In the Intensity Average module, we

|
[- '
it ACC (X —» REGI ->,uk :
, i

J '

i |

[HIST j
. (9»5 REG2
—P‘—{— 9 DUAL
? PORT

| ADDRESS
| GENERATION
AND CONTROL

Figure 4.4: Architecture of Intensity Histogram Analysis Module.

used a multiplier as a divider to obtain the average value. Hence, the resources
usage is minimal and the result of the average is obtained with less pipelined delay
when compared to a pure divider usage. Histogram Analysis block first calculates the
histogram of the input frame using a BRAM and an adder. After the entire frame
data for a W x H block is entered, the histogram will be available in the BRAM.
When the histogram is sequentially read, Reg 2 holds the maximum value within an
interval [,l € {1,..L}, and Reg 3 keeps the corresponding gray value, g,. Once the

complete histogram is read, g,y is accumulated over the entire intervals, and the result

4.3. PROPOSED PIPELINED ARCHITECTURE
AND INMPLEMENTATION 44

of)\; will be stored in the Reg 4.

Architecture of the TE Module

The architecture of the threshold estimator is shown in Fig. 4.5. The inputs, px and

-
~ :
: AN |
— S v
vl O . S e I .
wooooo §i~~hﬁ+ —J‘ ACC - (X REG1 \—»
.~ L X 'Y l X
w2 R
= J !
- T
3.

Figure 4.5: Threshold Estimator Architecture.

A, to the TE block arrive in serially. This allows us to use two multiplexers to select
the appropriate operands to the accumulator, which minimizes the resources usage.

After all the data of an entire frame has arrived, T, will be available in the REGI.

4.3.4 Morphological Edge Detection Architecture

The architecture of the morphological edge detection is shown in Fig. 4.6. The
Morphological Engine (ME) evaluates the Boolean condition (see Section 2). On the
output, we configured an internal BRAM as a Dual Port Line Buffer (DPLDB) to keep
track of the partially estimated edge frame, hence ME can access and modify the
content of the DPLB without degrading its access time. Once ME has accessed and
modified the entire line in the DPLB twice, the content of the DPLB is E(n). This is

read from DPLB and sent to the DMA to transfer to the output port of the FPGA.

4.4. DESIGN VERIFICATION. SYNTHESIS AND

IMPLEMENTATION RESULT 45
18]
B(n) ——P» LINE BUFFER p ME —P %
—
o i
f" o5
— m
LINE BUFFER g
ADDRESSING o
CIRCUITRY

Figure 4.6: Circuitry for Morphological Edge Detection.
4.4 Design Verification, Synthesis and

Implementation Result

4.4.1 Verification

We simulated the proposed design with a video sequence. “Hall” (300 frames of 352
pixels x 288 lines) to thoroughly verify the integrity of our implementation. We
used a background frame as a reference (see Fig. 4.1). Fig. 4.7 is an example result
obtained with the FPGA simulation and the reference C software implementation

which subjectively reveals that both results are closely identical.

(b) ©

Figure 4.7: (a) 54th frame in the captured video sequence, (b) segments with the
reference C implementation, and (c) FPGA segments.

In addition, we used two objective measures to compare our implementation re-
sults Ej,.(n) with the reference C results E,,(n).

Product of Correctly Classified Proportions, PCP [2] is a widely used objective

4.4. DESIGN VERIFICATION, SYNTHESIS AND
IMPLEMENTATION RESULT 46

measure to evaluate binary images, and is calculated as follows: The basic of a clas-
sification based objective measure is C'45, the number of pixels belonging to class A
that have been classified as class B. For binary images. (A, B) = (0.1). and ¢p; is
true positives (T'P), cgo is the true negatives (T'N), ¢y is the false positives (F'P).

and c¢yg is the false negatives (F'N). PCP is then:

TP+ TN

PCP =
¢ TP+ FP+TN+ FN

(4.3)

Here E,,(n) serves as the ground-truth data. We can see in Fig. 4.8(a) that
Epw(n) is extremely close to Eg,(n). Notice that if PCP = 1, then both results

are identical (Ep,(n) = Es(n)) and if PCP = 0, then they are inverse (Ep,(n) =

Eop(n)). We also computed the sum of the pixels that are different between the
results of the proposed implementation and reference C implementation as Ap, =

S |Epw(n) — Eq(n)], and Fig. 4.8 (b) shows that maximum of Ay, is 15 pixels.

25 50 75 100 125 150 175 200 225 250 275 300
Frame

Figure 4.8: (a) Comparison between software and hardware implementations with
PCP objective measure 2], and (b) difference of total pixels between software and
hardware implementations Ap,,.

4.4. DESIGN VERIFICATION, SYNTHESIS AND
INPLEMENTATION RESULT 47

We have also successfully tested the accuracy and performance of the proposed

implementation on an actual FPGA of a frame grabber using a high-speed camera.

4.4.2 Synthesis Result

We have designed and simulated the proposed FPGA architecture for the spatio-
temporal object detection algorithm in VHDL and synthesized with Synplicity Syn-
plify 7.3. The synthesized design was then placed and routed for XC2VP20 FPGA
with Xilinx ISE 7.1 Alliance tool. The implemented design occupies approximately
60% of the area of an XC2VP20 FPGA (37 % of slices, 27 % of LUTs (look up tables).
59 % of BRAMs, and 9 % of multipliers). Xilinx XPower tools estimated the power
dissipation of the implementation to be less than 2 W for a toggle-rate of 50 % . The
design is easily able to run up to 133 MHz, which means that it takes only 7.5 ms to
complete object detection of 1024x1024 frame (including input frame load and result
frame unload timing), which is more than sufficient for current and near future video

processing applications.

4.4.3 Comparison to the Existing Methods

The architecture presented in [24] runs at 5 MHz and it takes 360 ms to segment
a 1024x1024 frame. In contrast, our architecture achieved a significant higher clock
rate of 133 MHz, hence it takes only 7.5 ms to complete segmenting a 1024x1024
frame, including input read and output write timing. Moving data between memory
and FPGA affects the scalability and the overall performance of an implementation.
Our versatile DMA architecture is more generic and scalable than the data movement

procedure presented in [26].

4.5. SUMMARY 48

4.5 Summary

This chapter proposed a novel, robust, scalable and modular FPGA architecture for
real-time spatio-temporal object detection. We used advanced design techniques such
as heavy pipelining and data parallelism, hence achieved an optimal speed of 133 MHz
while utilizing minimal hardware resources. Furthermore, our architecture avoids
many re-designing efforts by its inherent scalability and adaptivity, for instance, many
of the algorithm specific parameters such as spatial filter size can even be programmed

on-the-fly.

49

Chapter 5

A Real-Time Implementation of
Chaotic Contour Tracing and

Filling of Video Objects on

Reconfigurable Hardware

5.1 Introduction

Contour tracing is a method that links connected neighborhood pixels in a binary
edge frame, whereas contour filling fills the area inside a contour with a specific
integer value, uniquely labeling each objects in an image. Contour tracing and filling
are a fundamental element in many video and image processing applications such as
video surveillance [1], medical image processing [15], object based video coding, e.g.,
MPEG-4 and MPEG-7, [44], computer vision [16] and pattern recognition [17].
Although solutions for robust contour tracing and filling methods have been con-

siderably investigated using the state-of-the-art general purpose sequential processor-

5.2. RELATED WORK 50

based systems [1, 6, 8-10], these software-based implementations are too slow to
achieve real-time performance due to the computational complexity involved in the
contour tracing and filling algorithms. As such, an efficient hardware acceleration is
inevitable. Traditional full custom Application Specific Integrated Circuits (ASICs)
suffer from longer development time and expensive engineering cost. Parallel process-
ing machines consume enormous amount of power and occupy large physical area.
In contrast, emerging FPGAs with embedded multipliers, memory blocks and high
pin counts, are increasingly employed on hardware platforms in many signal/video
processing applications [11]. Moreover, FPGA reconfigurability is an attractive fea-

ture which allows the system to be adopted for another purpose.

5.2 Related Work

A full custom VLSI CMOS design for extracting contours is presented by Agi et
al. in {27]. Here, authors attempt to minimize the memory usage by partitioning
the input frame into smaller regions and distributing these regions to an array of
processing elements (PEs). Each PE in [27] consists of its own memory and a contour
tracing unit, and uses a 2x2 window for extracting partially completed contour lists.
However, the method described in [27] fails to produce completed contour tracing,
unless a full object can be completely stored in the relatively small processing memory.

Chia et al. [28] propose a parallel VLSI architecture which consists of N + 1
processing elements for generating the chain codes of object contours in a binary
frame with N raws. The algorithm proposed in [28] can complete contour extraction
in 3N cycles, assuming the input binary frame is already stored in memory. How-
ever, in order to complete tracing in 3N cycles, [28] requires simultaneous reading
of all N raws and simultaneous writing of chain codes to memory. Moreover. final

contours are generated by accessing memory in a random fashion. Contour tracing

5.2. RELATED WORK o1

methods inherently involves random data movements between memory and contour
extraction unit(s). Thus, performance and feasibility of implementing a given contour
tracing architecture or algorithm depend heavily on the efficiency of the memory and
the robustness of the memory data accessing mechanism. Hence, the technique as
presented in [28]. the architecture is virtually infeasible to implement with presently
available memories.

Moreover, the conventional contour tracing algorithms used in [27,28] do not have
the intelligent features present in [1] method and subsequently in our proposed im-
plementation. These characteristics, required in many video processing applications,
include detection and elimination of dead contour branches and noisy contours.

Some ctforts have been dedicated to implement Connected Component Labeling,
CCL, algorithms on hardware [29-33], however, no previous studies have been con-
ducted on. to the authors’ best knowledge, FPGA-based contour filling methods. The
CCL methods assign a label to a pixel such that its adjacent and identical pixels have
the same label. As such, the CCL algorithms can only label filled objects, which is
a significant constraint in many video processing applications, specially ii] video sur-
veillance [1]. In such applications, only the object contours (edges) are available due
to the result of pre-processing algorithms, such as motion detection [1], and therefore,
contour filling is required to uniquely label each objects.

A systolic architecture is proposed for CCL by Rasquinha et al. in [29], which
uses N processing elements for MxN image. Crooks et al. [30] present an FPGA
architecture for CCL, which requires scanning iteratively the input and intermediate
images until no change in resulting image occurs. However, [30] achieves real-time
performance only for images with simple objects, and therefore, fails to completely
label real video objects in applications such as video surveillance. Another VLSI

architecture. consisting of four processors, for CCL is presented by [31], and Jablonski

5.3. OVERVIEW OF THE REFERENCE CONTOUR TRACING AND FILLING
ALGORITHM 52

et al. [32] present an implementation of Classical CCL in Handel-C language. A
fast and parallel VLSI architecture for object labeling in binary images, using a 3x4
window, is presented by Shyue et al. in [33].

The primary rationality to select CCL over contour filling for hardware implemen-
tations in [29-33] would have been the fact that CCL can be exploited for parallelism,
but contour filling methods are inherently sequential. Thus, implementing sequential
contour filling algorithms are more challenging on parallel hardware devices such as

FPGAs.

5.3 Overview of the Reference Contour Tracing

and Filling Algorithm

5.3.1 Tracing Algorithm

The gaps free edge image. F(n). produced with spatio-temporal motion detection
followed by morphological edge detection [1] consists of object contours (white points,
Pw) and a background (black points, p,). The goal of a contour tracing algorithm
is to link the white points. p,. into a group. Unlike conventional contour tracing
algorithms, [1] extracts contours of all closed complex objects while deleting dead or
inner branches, and excluding contours of noisy objects. The detection and exclusion
of such contours are important and necessary in video surveillance and other video
processing applications, hence, we select {1] for our FPGA implementation. However,
inherent sequential nature of [1] brings some challenges to its implementation on
parallel hardware devices such as FPGAs. In addition, the process of excluding a
contour in [1] requires manipulating previous frame contours. As such, an efficient
method of retrieving appropriate contours of previous frame is needed. We propose

an efficient cache architecture. in the FPGA, to overcome the sequential issue and

5.3. OVERVIEW OF THE REFERENCE CONTOUR TRACING AND FILLING
ALGORITHNMI 53

a robust mechanism to access previous frame contours stored in a memory without
interfering the core processing units.

A block diagram of the tracing method [1] is depicted in Fig. 5.1. More detailed
description of this referenced algorithm can be found in [1]. As can be seen from Fig.

5.1, the algorithm can be partitioned into five sub modules, which are briefly outlined

next.
Em)
(n) o | [DELETE
START POINT NEIGHBORS BRANCHES
2 »
AX e
N ‘ ~ ~—— e
: v CONDITIONAL
C(n) "7 BRANCHING
SELECT CLOSE
< CONTOUR CONTOUR C(n-1)

Figure 5.1: Contour Tracing Algorithm [1].

Locating A Start Point (Rule 1): The edge image. E(n). is scanned in raster
mode (from left to right and from top to bottom) until an unvisited white points.
Pw. Which has at least one unvisited neighbor is found. If such a p,, exists, then set
starting point, ps;, = p,,, set current point, p., = p, and perform Rule 2.

Finding the Rightmost Neighbor Points (Rule 2): The tracing technique
in [1] is performed in anti-clockwise direction searching for a rightmost neighbor of the
current point in an 8-neighborhood, p;. The current searching direction, d,, is defined
by the direction from the previous point, p,. to the current point. The direction to
the rightmost neighbor of a current point, which depends on d;, is formulated in Eq.
5.1. The algorithm searches up-to five and six rightmost neighbors for even and odd
value of d;, respectively. If a rightmost neighbor is present, then p. is labeled visited,

Pp = Pe, Pe = pi. and Rule 4 is executed, otherwise p. is a dead branch and deleted

5.3. OVERVIEW OF THE REFERENCE CONTOUR TRACING AND FILLING
ALGORITHM 54

by performing Rule 3.

{ds + 6+ [(ds + 1) mod 2]} mod 8 (5.1)

Deleting Dead Branches (Rule 3): Rule 3 eliminates current point p. from
E(n), sets p. = p, and p, to its previous neighbor, and finally activates Rule 2.

Contour Closing (Rule 4): If p. = p, or p. is labeled visited, the current
contour, C,, being traced is closed. In both cases, Rule 4 removes all the points of
the C, from E(n) and perform Rule 5. Furthermore, if p, is labeled visited, remaining
dead points of C, are eliminated from E(n). If C, is not closed, then Rule 4 stores
coordinate and the chain code of p. and activates Rule 2.

Contour Selection (Rule 5): In this rule, C, is verified with three measures
before adding C. to the contour list, C(n). C. is not added to C(n) if 1) current
contour length, P, is too small, or 2) P, is small and has no corresponding contour
in the previous contour list, C(n — 1), or 3) C, resides in an already traced contour,
C,. causing a low spatial homogeneity of the object of C,.

Although the method described in [1] records contours in both the chain code and
the point coordinates, we use chain code in our implementation since the chain code

requires less memory for storage.

5.3.2 Filling Algorithm

Contour filling [7] follows spatio-temporal motion detection and contour tracing [1].
Notice that, unlike conventional contour tracing algorithms, [1] extracts contours
of all closed complex objects while deleting dead or inner branches, and excluding
contours of noisy objects, which are important characteristics required by many video

processing applications.

5.4. PROPOSED ARCHITECTURE 55

The reference filling algorithm [7] utilizes chain code information obtained dur-
ing the tracing to fill every closed contours C; € C(n), one by one, with a unique
label. It analyzes the chain codes of current and next contour points (cc; and ce;y1,
respectively) to determine whether the point right to the current contour point is a
seed. When a valid seed is found, filling continues rightwards until reaching the next
contour point in the same scan-line. A seed point is only selected for the following
two cases:

(1) cc; = {5 or 6 or 7} and (cci4q > cc; mod 5), or

(2) cc; ={0or 1} and cc;4; = 7.

Furthermore, internal contours are filled with zero, and on the completion of the

filling process for all ;. the result is a labeled gray-level image.

5.4 Proposed Architecture

Fig. 5.2 exemplifies our proposed system level architecture of contour tracing and
filling. We have also integrated the proposed FPGA-based implementation of object
detection and noise estimation presented in chapters 4 and 3 respectively. as a front-
end processing engine for our proposed architecture. The proposed contour tracing
and filling architecture consists of HIGH-SPEED CACHE, CONTOUR TRACING
and CONTOUR FILLING modules. In addition, we have improved the robustness

of our Direct Memory Access (DMA) module, presented in chapter 4.

5.4.1 Architecture of HIGH-SPEED CACHE

The performance of the any sequential contour tracing and filling architecture is
heavily determined by the efficiency of the memory and its data transferring mech-

anism. The algorithm [1] demands reading a 3x3 window randomly from memory.

5.4. PROPOSED ARCHITECTURE 56

SPATIO-TEMPORAL
OBJECT
___ »i MEMORY
INTERFACH SEGMENTATION
e ey Ky
=R
CONTOUR | Z |
TRACING | =
ACQUISITION Vol |
— - 4
FRAME : gz}"’ < Z |
e §E | 3 |
: . — =,
itk DMA | | miGnspeep | © |
FILLED FRAME | ! Ei] 2
=N ! CACHE S
AND CONTOUR < =+ ;
CHAIN CODES s s g é §
...... | % |
CONFIGURATION § ! 3
EXTERNAL REGISTERS | CONTOIR | & |
SRAM % FLuNG | 5
MEMORY & S
Virtex-4 SX35 s,

Figure 5.2: System-Level Architecture of Contour Tracing and Filling.

Intuitively, Static-RAM (SRAM) devices are ideal for random access applications,
however, contour tracing requires reading a 3x3 window as fast as possible, ideally in
one clock cycle. SRAM needs 3 clocks (1 clock/1 raw) and accessing 3 bits in a raw
deflates the SRAM bandwidth, as the data bus of conventional SRAM is significantly
greater than 3 bits. Thus, we propose a scalable, efficient and high speed cache ar-
chitecture by exploiting FPGA memory blocks (BRAMs), which is depicted in Fig.
5.3. Main attributes of our cache are: 1) simultaneous read and write of 16 pixels
in each direction, 2) 4.8 GBits/s aggregate throughput and 3) scalability with O(n)
area complexity.

In order to complete contour tracing and filling of one frame, cache is sequentially
required to 1) store E(n), 2) read START PIXEL ARRAY (SPA), 3) generate 3x3
WINDOW, 4) write reconstructed contour traced frame (RT(n)) and 5) read contour
traced frame (CT(n)). Our proposed cache has four HIERARCHICAL MEMORY

STACKS, HMS. which consists of four BRAMs constructed as dual port with 1 bit

5.4. PROPOSED ARCHITECTURE 57

CT(n) €——— HIERARCHICAL MF&MORY STACKS

STACK 0 L+ 18K x 1bit
RT(n)—p STACK1 |-° 13K x 1bit
STACK 2| 18K x 1bit
STACK 3 | *~..| 18K x Ibit

e

CONTROLLER 16:9 MUX " 16:4 MU
. | ;
33 START

PIXEL
WINDOW ARRAY

Figure 5.3: Scalable Architecture of the HIGH-SPEED CACHE.

wide and 18K deep. We write the first line of E(n) in HMSO. the second in HMS1,..,
the fifth in HMS0 and so on. In the same sequence, we store four pixels in the four
BRAMs of each HMS. The main motivation for storing in such a sequence is that it
facilitates reading any 16 pixels in one clock cycle. The CACHE CONTROLLER,
CACTRL, schedules E(n), CT(n), RT(n), 3x3 WINDOW. and SPA by managing
all addressing and read/write controls to each HMS and controlling the three MUXs.
As it is shown in the Sec. 5.4.5, the total scheduling pipeline, in clock cycles, is
< 7N, where N is the total number of pixels in one frame. Thus, total access time

required in the cache is less than 4.9 ms for a CIF frame, when the FPGA is running

at 150MHz clock.

5.4.2 Architecture of CONTOUR TRACING Module

As illustrated in Fig. 5.4, most of the functionality of the proposed CONTOUR
TRACING are controlling various contour tracing events. ADDR GEN perform rule
1 of [1], and generates direct cache addresses. DCA, based on the pixels in SPA
and controls signal received from the two controllers, WINDOW CTRL and CHAIN
CODE CTLR. WINDOW CTRL takes 3x3 WINDOW and determines if the tracing

5.4. PROPOSED ARCHITECTURE 58

rules 2-5 are valid by means of a Finite State Machine (FSM) and some trivial logic

employed to evaluate rule 5.

SPA 3x3 WINDOW
(IIT] A(;)EDNR
DCA —
S e
=
HEADER 2
'H 4P FIFO

CCH = Pkl 8
Z
CCD = =
<
=
CCA = o

Figure 5.4: Overall Schematic of the CONTOUR TRACING Module.

As the the name implies, the CHAIN CODER produces Chain Code Streams
(CCS) of the contours. We write CCS, while they are being produced, to the DDR
memory. A CCS already written to the memory may not be valid if it is a dead
branch or Rule-5 caused it to remove. therefor, such a CCS should be identified, and
be excluded from the contour list. We adopted headers (CCH) and tails for CCS
as well as for the Chain Code Frame (CCF) starting with 0x8 nibble as a marker
followed by header descriptors. Moreover, we intentionally use 4 bits for chain codes
which are from 0x0 to 0x7, therefore, header marker 0x8 can be easily distinguished.
Fig. 5.5 defines a complete chain code bit stream. When a CCS belongs to a dead
branch, CHAIN CODER sets a flag in the CCH. On completion, of contour tracing
of a full frame, CHAIN CODER extracts the header descriptors to remove any CCS
of dead branches, and reconstructs contour traced frames RT'(n) in the cache. RT(n)

is transfered to the DMA along with the chain codes as the final output.

PROPOSED ARCHITECTURE 29

G
e

Chain Code Frame (CCF)
CCFHEADER [CCF___ | CCF TAIL |

-

w
-~
-

Chain Cedes (CC) "~ ==-.
cC 5 CCI ‘ -------] CCn-Z I\Ccn—]—’

e

-
-
-

— — = ~—Chain Code Segment (CCS) ™ «
| CCSHEADER | CCSPAYLOAD [CCSTAIL |

Figure 5.5: Contour Bit Stream Structure.

5.4.3 CONTOUR FILLING Architecture

Contour filling requires to fill each contours, one after another, with a unique label
by traversing on its contour. For a given point on the contour, when a seed point is
found. filling is started rightwards until reaching the next contour point in the same
scan-line. A seed point is determined (see Sec. 5.3.2) based on the current and next
chain codes. cc; and ce; ;1 respectively.

We propose a simplified architecture for the contour filling, which utilizes the
HIGH-SPEED CACHE and a bank of external SRAM. First, we reconstruct each
contour, one by one, in the HIGH SPEED CACHE and each contour is labeled in the
external SRAM bank. which consists of a 16 bits data-bus and a 20 bits address-bus.
Furthermore. the SRAM bank physically runs at 166 MHz. Notice that we selected
SRAM over DDR DRAM, for the contour filling implementation, primarily, to avoid
drastic bandwidth reduction due to the DRAM page mises. Hence, SRAM utilization
improves the overall processing throughput of the system architecture.

Fig. 5.6 exemplifies the architecture of the labeling process. The circuitry requires
to buffer chain codes in the CC FIFO to synchronize with the contour traced objects
(C'T(n)) which is streamed from the HIGH SPEED CACHE. PE-0 and PE-1 modules,
comprising of a few comparators, take cc; and c¢;y1 and determine whether the point
right to the current contour point being considered is a seed. This decision is passed

to a controller. LABEL GEN CTRL (LGC), which controls write-data and write-

5.4. PROPOSED ARCHITECTURE 60

- ~\
5 PE'o ’(0 ™\
6 . 1 PE-1
7 Reeo cc;
cci PE-1
5
L
./
CODES
o ——» ADDR, .«
=) <«—»DATA, v
g
PE-1

Figure 5.6: Architecture of the Contour Filling Module.

address to the SRAM. The write-data remains unchanged within a contour and is
modified for each contour. The SRAM has 16 bits data-bus, thus it allows to label
up-to 64K objects within a frame.

Moreover, LGC schedules all the access to SRAM in the correct order: 1) clear
the memory, 2) write labeled objects and 3) read labeled frames. [7] labels contours
within a contour, therefore LGC may require to modify a given location multiple
times. However, we assume that in real video sequences, the maximum number of
contours inside an outmost contour is two. Hence, in the worst case scenario, the
number of write access to a given location is four, including clearing. This formulates
the theoretical lowest processing limit of the labeling module to be 327 frames/s for
CIF video resolution, which is greater than the overall throughput of the proposed

contour tracing and filling architecture.

5.4.4 Improved DMA Architecture

An efficient management of data transfers within a system is the key to any real-time

hardware implementation. In our implementation, we designed a scalable and versa-

5.4. PROPOSED ARCHITECTURE 61

tile DMA architecture that can be easily configured by a simple set of registers. The
proposed DMA consists of 4 KB deep First In First Out, FIFO, memories connected
to each read and write DMA channels, a DMA controller (DMACTLR) to manage
these FIFOs, and a DDR memory controller. A write transfer to the memory is
initialized by filling the corresponding write FIFO (up-to a maximum of 2 KB), and
sending a request to DMACTLR. Whenever a read FIFO is half empty. a read request
is automatically initialized. An internal cache memory is used to store the addresses
and transfer descriptions of each DMA channel. A round-robin arbitrator arbitrates
all parallel requests from each channels and serves the selected DNMA channel.
Furthermore, the DMA presented in chapter 4 constitutes the ability to access a
memory location with an address provided by a processing unit, while paying special
attention to minimize the performance overhead caused when a small amount of data

is accessed from the memory. This feature facilitates updating the header of an

already stored chain code by the CONTOUR TRACING.

5.4.5 Pipeline Scheduling

Fig. 5.7 shows the overall timing of the proposed architecture. Intuitively, the number
of clock cycles required to complete contour tracing and filling for a full frame appears
to be 8V, where IV is the total number of pixels in one frame. However, this is true
only for the first frame in a video sequence, since reading the current filled frame from
the SRAM can be performed while storing the next edge frame E(n) in the cache, in
parallel. Thus, the maximum pipeline delay of the proposed architecture is 7N clock
cycles, or 4.9 ms (204 frames/s) for the CIF video resolution, based on a 150 MHz

processing clock running on the FPGA.

5.5. EXPERIMENTAL RESULTS 62

TRACING FILLING < 8N
= >
: WRITE
HIGH-SPEED & READ SPA & READ
STORE E(n) RECONSTRUCTED
CACHE 3x3 WINDOW CONTOURS CONTOURS
- N/8 »imin 2N, mnax 3=\1> N/8 wa iR N, max 31\’>
EXTERNAL L EAR MEMORY NO OPERATION (NOP) FILLED
SRAM L = : s LABELS
- S FRAME
= . | » | |
N min N, max 3N N

N = Number of Pixels in One Frame

Figure 5.7: Overall Pipeline Timing of the Proposed Architecture.

5.5 Experimental Results

5.5.1 Verification

We verify the integrity of the proposed design, by simulating the Hall video sequence.
which consists if 300 frames of 352 pixels x 288 lines. The edge frames produced
with the result of contour tracing of FPGA simulation and the reference C software
implementation for the 54th captured frame in the Hall video sequence is shown in
Fig. 5.8.

To verify the result of our proposed FPGA implementation objectively with the
software implementation, we used the Product of Correctly Classified Proportions [2],
PCP, measure which is widely known and used as an objective measure for evaluating
images. Serving software contour-filled frames C F},,(n) as the ground-truth data, Fig.
5.9 (a) shows that the PCP is close to 1 and always above 0.9 for the 300 frames of
Hall video sequence. Notice that when a binary image is identical to the ground-truth
frame, then PCP is 1. Thus, contour-filled frames produced by FPGA, CFj,(n). are
very close, if not identical. to the C'Fy,(n).

Morcover, we enumerated the sum of the white pixels, Ay, in the absolutely

difference frames, |CFp(n) — CFg.(n)|. Fig. 5.9 (b) illustrates that Ay, > 23 for

EXPERIMENTAL RESULTS 63

o
o

OBJECT SEGMENTATION

~
|
!
|
!
!
|
|
|
|
|
!
!
!
J

|
i
|
!
!
!
)

(b)

Figure 5.8: Subjective comparison between the FPGA and software implementation
results - (a) H4th frame in the captured video sequence. (b) Spatio-temporal ob-
ject segmentation of [1]. (¢) Contour tracing results with C, and with the proposed
FPGA implementation (d), (e) Contour filling with C, and with the proposed FPGA
implementation (f).
Hall video sequence.

Furthermore, we have successfully verified the actual functionality, accuracy and

performance of the proposed FPGA implementation on a frame grabber.

5.5.2 Synthesis and FPGA Implementation

We have coded and simulated the proposed architecture in VHDL, synthesized and
implemented to a Xilinx Virtex-4 SX35 FPGA. The implemented architecture oc-
cupies 9% of registers, 7% of LUTs (look up tables), 12 % of BRAMs, and 1% of
multipliers of the FPGA. Our proposed-constrained implementation achived a clock
rate of 156 MHz, and consumes 1.25 W for a toggle-rate of 50%. On the actual hard-
ware platform, we set the processing clock in the FPGA to 150 MHz, which enabled
the FPGA to capture and complete contour tracing and filling at 204 frames/s (in

4.9 ms) for the CIF video resolution.

5.5. EXPERIMENTAL RESULTS 64

0.98 |
N |
& 0.96
& 004}

0.92

0.9

50 100 150 200 250 300

25 50 75 100 125 150 175 200 225 250 275 300
Frame

Figure 5.9: (a) Comparison between software and hardware implementations with
PCP objective measure [2], and (b) difference of total pixels between software and
hardware implementations Ap,.

5.5.3 Comparison to the Existing Methods

The full custom VLSI CMOS design for extracting contours presented by Agi et al.
in [27] fails to trace complete contours of large objects and requires an external post
processor to link partially completed contours. Having an external post processor in
addition to the core contour tracing circuitry increases cost, power, and physical area.

The hardware architecture presented in [28] is fundamentally infeasible to imple-
ment due to its requirements of random and simultaneous memory access. Currently
available memories do not possess greater than two read/write ports, but [28] requires
a minimum of N(>> 2) ports to read simultaneously N raws of a frame. Further-
more, additional simultaneous, random and fast accesses to the memory are required
in [28] when each raw produces partially completed chain codes, and these are read
and linked to create the final chain codes. As a result of this heavy memory access
requirement, [28] needs an enormous amount of pins. which are not currently available

even on the largest FPGA.

5.6. SUMMARY 65

The architectural requirements needed in [27,28] prevail having realistic hardware
acceleration methods for contour tracing. In contrast, we exploited heterogeneous
resources readily available on FPGA devices, adopted them in our architecture and
devised a real hardware solution. Both [27,28] need N contour processing units,
whereas our method consists of only one tracing unit. Moreover, [27,28] lack key
contour tracing features such as deleting dead branches and removing noisy contours,
and therefore, [27,28] are not suitable for video applications such as video surveillance.

Although some efforts {29-33] have been dedicated to implement CCL algorithms
on hardware, to the authors’ best knowledge, the work presented in this thesis is the
first study carried out in implementing contour filling methods on FPGAs. Notice that
CCL algorithms requires filled objects as input, imposing a significant constraint in
many video processing applications, specially in video surveillance [1}. Moreover, CCL
can be exploited for parallelism, but contour filling methods are inherently sequential.
Thus. implementing sequential contour filling algorithms are more challenging on
parallel hardware devices such as FPGAs.

Moreover, for CIF video resolution, the reference contour tracing and filling al-
gorithms [1,7,8] require 475 ms, on an average, when implemented in C++ on a
single processor, Linux based PC, with Intel P4@2.4GHz and 768MB of memory. In
contrast, our proposed FPGA implementation executes in less than 4.9 ms, accom-
plishing approximately an order of magnitude performance improvement over the

software implementation.

5.6 Summary

In this chapter, we proposed a robust real-time, scalable and compact FPGA-based
architecture and its implementation of contour tracing and filling of video objects.

Intentional use of heterogeneous resources in FPGAs, and advanced design techniques

5.6. SUMMARY 66

such as heavy pipelining and data parallelism enabled us to achieve an impressive
throughput of 204 frames/s, while consuming minimal power and resources. We
verified our proposed implementation on an actual Virtex-4 SX35 FPGA platform for
its functionality. accuracy and real-time performance. We showed that, compared to
the existing hardware-based methods, our proposed solution is much more feasible,
cost effective, and possesses key features such as deleting dead contour branches and
exclusion of noisy contours, which are required in many video processing applications.
Furthermore, when compared to a pure software-based implementation, we obtained

a speed-up factor of ten-fold with the proposed architecture.

67

Chapter 6

Conclusion and Future Work

The core focus of this thesis, has been the acceleration of video object segmentation
algorithms on reconfigurable FPGAs.

In this thesis, we proposed an efficient implementation based on one FPGA, which
integrated four video processing methods : sorting. noise estimation, object detection,
and contour analysis. Our proposed architecture aimed at segmenting moving objects
in video signals. which consists of, noise estimation, object detection (i.e., separation
of objects and background). and contour analysis.

We., first, proposed an FPGA-based architecture for stably sorting a large volume
of integer and fractional keys in real-time for video noise estimation. The proposed
architecture is scalable to gain higher throughput by trading off only the FPGA inter-
nal memory resources. Sorting performance comparisons showed that the proposed
implementation is significantly better than the existing methods.

The thesis proposed an improved FPGA-based implementation of a noise estima-
tion method. which achieved significant performance and area improvements over an
existing method.

A novel, scalable and compact FPGA architecture for real-time spatio-temporal

object. detection was proposed followed by an architecture and its implementation of

68

contour tracing and filling of video objects. These architectures were integrated with
the noise estimation implementation on one FPGA device.

There were numerous outfalls encountered during the course of the proposed
FPGA implementation. The intricate sorting needed in the video noise estimation
method was unprovable for an implementation on resources-constrained hardware
such as an FPGA. Consequently. we proposed a modified counting sort algorithm,
which is well suited for hardware implementation for sorting large integer or fractional
data. Moreover, video processing algorithms, which can be well explored for paral-
lelism (e.g., connected component labeling). are generally implemented on FPGAs.
As such, contour tracing and filling methods, which are inherently sequential are
more challenging to architect on parallel hardware devices, as these methods demand
fast, random, and heavy data movements between memory and processing units. In
this thesis, we proposed a novel implementation of these sequential chaotic contour
tracing and filling algorithms by cfficiently exploiting FPGA resources. We proposed
an cfficient architecture for a pixel cache, which is centrie to the efficiency of the pro-
posed contour tracing and filling implementations. Main attributes of proposed cache
were: 1) simultaneous read and write of 16 pixels in each direction, 2) 4.8 GBits/s
aggregate throughput and 3) scalability with O(n) area complexity. In addition, an
efficient management of data transfers of the proposed architecture was unenviable.
These data transfers include simultaneous read/write access to memory (e.g., back-
ground subtraction), input and output video signal transfers, synchronizing frames,
e.t.c. In our implementation, we designed a scalable and versatile DMA architecture,
configured by a simple set of registers, that handled the necessary data movements
efficiently among the sources and sinks without degrading the performance of any
core processing elements.

Intentional use of heterogeneous resources in FPGAs, and advanced design tech-

69

niques such as heavy pipelining and data parallelism enabled us to achieve an im-
pressive performance, while consuming minimal power and resources. We verified
our proposed implementations on an actual Virtex-4 SX35 FPGA platform for its
functionality, accuracy and real-time performance.

We showed that, compared to the existing hardware-based methods, our proposed
solutions are much more feasible, cost effective. and possess key algorithmic features.
which are inherently required in many video processing applications. Furthermore,
when compared to pure software-based implementations, we obtained orders of mag-
nitude performance improvements with each of the proposed architectures.

Thresholding affects severely on the efficiency of the video object segmentation,
thus a possible future work to the proposed architecture includes implementing a
better but more complex thresholding method such as the Eular method to calculate
the threshold value. Another extension would be to implement and integrate other
post video processing algorithms such as video object analysis and tracking. Also,
the proposed implementation can be extended to calculate the object features. such
as perimeter, centre of gravity. area, color or shape, by analyzing the results of the

contour tracing and filling.

70

Bibliography

i

A. Amer, “Memory-based spatio-temporal real-time object segmentation.” in Proc.
SPIE Int. Symposium on Electronic Imaging. Conf. on Real-Time Imaging (RTI), vol.
5012, pp. 10-21. Jan. 2003.

P. L. Rosin, “Thresholding for change detection,” Computer Vision and Image Un-
derstanding, vol. 86, pp. 79-95, 2002.

H.H. Seward, “Information sorting in the application of electronic digital computers to
business operations,” M.S. thesis, Massachusetts Institute of Technology (MIT). 1954.

C. Y. Huang, G. J. Yu, and B. D. Liu, “A hardware design approach for merge-sorting
network,” Proceedings of the 2001 IEEE International Conference on Circuits and
Systems, vol. 4, pp. 534-537, May 2001.

F-X. Lapalme, A. Amer. and C. Wang, “FPGA architecture for real-time video noise
estimation,” in Proc. IEEE Int. Conference on Image Processing (ICIP). pp. 3265-
3260, Oct. 2006.

T. Pavlidis, “Contour filling in raster graphics,” in Proc. ACM Annual Conference on
Computer Graphics and Interactive Techniques, pp. 29-36, Aug. 1980.

F. Achkar, “Hysteresis-based selective gaussian-mixture model for real-time back-
ground update and object detection,” M.S. thesis, Concordia University, Montreal.
Quebec, Canada, Nov. 2006.

A. Amer, Object and Event Extraction for Video Processing and Representation in On-
Line Video Applications, Ph.D. thesis, INRS-Telecommunications (Institut national de
la recherche scientique), Montreal, Dec. 2001.

F. Chang, C.J. Chen, and C.J. Lu, “A linear-time component-labeling algorithm using
contour tracing technique,” Computer Vision and Image Understanding, vol. 93, pp.

9206220, Feb. 2004.

F. Chang and C.J. Chen, “A component-labeling algorithm using contour tracing tech-
nique,” in Proc. IEEFE International Conference on Document Analysis and Recogni-
tion, pp. 741-745, 2003.

C. T. Huitzil and M. A. Estrada, “Real-time image processing with a compact FPGA-
based systolic architecture,” Elsevier Journal of Real-time Imaging, vol. 10. pp. 177-
187, 2004.

BIBLIOGRAPHY 71

2]

[13]

[23]

[24]

[25]

D. S. Zhang and G. Lu, “Segmentation of moving objects in image sequence: A
review,” Springer Circuits, Systems and Signal Processing (Special Issue on Multimedia
Communication Services), vol. 20, pp. 143-183, 2001.

A. Amer and E. Dubois, “Fast and reliable structure-oriented video noise estimation,”
in Proc. IEEE Transactions on Circuits and Systems for Video Technology, vol. 15,
pp. 113-118, Jan. 2005.

A.A. Colavita, A. Cicuttin, F. Frantik, and G. Capello, “SORTCHIP: A VLSI im-
plementation of a hardware algorithm for continuous data sorting.” IEEE Journal of
Solid State Circuits, vol. 38, pp. 1076-1079, Jun. 2003.

B. van Ginneken, B.M. ter Haar Romeny, and M.A. Viegever, “Computer-aided diag-
nosis in chest radiography: A survey,” IFEEE Transcations on Medical Imaging, vol.
20, no. 12, pp. 1228-1241, Dec. 2001.

L. C. Sanz and D. Petkovic, “Machine vision algorithms for automated inspection of
thin-film disk heads,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 10, no. 6, pp. 830-848, 1988.

D.H. Ballard, Computer Vision. Prentice-Hall, Englewood, New Jesey, 1982.

M. Bednara, O. Beyer. J. Teich, and R. Wanka, “Tradcoff analysis and architec-
ture design of a hybrid hardware/software sorter,” IEEE International Conference on
Application-Specific Systems, Architectures, and Processors, pp. 299-309, Jul. 2000.

R. Maheshwari, S.5.S.P. Rao, and P.G. Poonacha, “FPGA implementation of median
filter.” Proceedings on VLSI Design, pp. 523-524, Jan. 1997.

K. Benkrid, D. Crookes, and A. Benkrid, *“Design and implementation of a novel
algorithm for general purpose median filtering on FPGAs,” International Symposium
on Clircuits and Systems, vol. 4, pp. 425-428, May 2002.

M.S. Hamid and S. Marshal, “FPGA realisation of the genetic algorithm for the
design of gray-scale soft morphological filters,” International Conference on Visual
Information Engineering, pp. 141-144, Jul. 2003.

S.A. Fahmy, P.Y K. Cheung, and W. Luk, “Novel FPGA-based implementation of me-
dian and weighted median filters for image processing,” IEEE International Conference
on Field Programmable Logic and Applications, pp. 142-147, Aug. 2005.

D. Demigny, L. Kessaland, R. Bourguiba, and N. Boudouani, “How to use high speed
reconfigurable FPGA for real time image processing,” in Proc. IEEE Conference on
Computer Architecture for Machine Perception, pp. 240-246, 2000.

N.K. Ratha, A.K. Jain, and D.T. Rover, “FPGA-based high performance page layout
segmentation,” Proceedings of the 1996 Great Lakes Symposium on VLSI, pp. 29-34,
Mar. 1996.

T. Nakano, T. Morie, and A. Iwata, “A face/object recognition system using FPGA
implementation of coarse region segmentation.” Annual Conference of the Society of
Instrument and Control Engineers (SICE), vol. 2. pp. 1552-1557, 2003.

BIBLIOGRAPHY 72

[26]

[27]

(28]

34]

[35]

[36]

[37]

[38]

P. McCurry, F. Morgan, and L. Kilmartin, “Xilinx FPGA implementation of an im-
age classifier for object detection applications,” International Conference on Image
Processing, vol. 3, pp. 346-349, 2001.

I. Agi, P. J. Hurst, and A. K. Jain, *A VLSI processor for parallel contour tracing,” in
Proc. IEEE Transactions on Signal Processing, vol. 40, no. 2, pp. 429-438, Feb. 1992.

T. L. Chia, K. B. Wang, L..R. Chen, and Z. Chen, “A parallel algorithm for gener-
ating chain code of objects in binary images,” Information Sciences Informatics and
Computer Science, vol. 149, no. 4, pp. 219-234, Feb. 2003.

A. Rasquinha and N. Ranganathan, “C3L : A chip for connected component labeling,”
Tenth International Conference on VLSI Design, pp. 446-450, Jan. 1997.

D. Crookes and K. Benkrid, “FPGA implementation of image component labeling,”
Proceedings of SPIE, vol. 3844, pp. 17-23, Aug. 1999.

Z. Chen K.B. Wang, T.L. Chia and D.C. Lou. “Parallel execution of a connected
component labeling operation on a linear array architechture,” Euromicro Symposium
on Digital System Design, pp. 387-393. Sep. 2004.

M. Jablonski and M. Gorgon, “Handel-¢c implementation of classical component la-
belling algorithm,” FEuromicro Symposium on Digital System Design, pp. 387-393,
Sep. 2004.

S.W. Yang et al., “VLSI architecture design for a fast parallel label assignment in
binary image.” IEEE International Symposium on Circuits and Systems, vol. 3. pp.
2393-2396, May 2005.

Xilinx Inc., Virtez-5 Family Overview - LX . LXT, and SXT Platforms, On line,
http://direct.xilinx.com/bvdocs/publications/ds100.pdf, 2006.

Xilinx Inc., Xilinz Chipscope Pro, On line,
http://www xilinx.com/ise/optionalprod/cspro.htm, 2006.

K. Ratnayake and A. Amer, “An FPGA-based implementation of spatio-temporal
object segmentation,” in Proc. IEEE Int. Conference on Image Processing (ICIP), pp.
3265-3268, Oct. 2006.

K. Ratnayake and A. Amer, “An FPGA-based architecture of stable-sorting on a
large data volume: Application to video signals,” in Proc. 41st IEEE Conference on
Information Sciences and Systems, (Accepted) Mar. 2007.

K. Ratnayake and A. Amer, “Sequential, irregular and complex object contour tracing
on FPGA.” in Proc. IEEE Int. Conference on Image Processing (ICIP), (Accepted)
Sep. 2007.

K. Ratnayake and A. Amer. “A Real-Time Implementation of Chaotic Contour Tracing
and Filling of Video Objects on Reconfigurable Hardware.” in Proc. IEEE Interna-
tional Conference on Systems. Man. and Cybernetics. (Accepted) Oct. 2007.

BIBLIOGRAPHY 73

[40]

[41]

[42]

43]

F. Dufaux and J. Konrad, “Efficient, robust, and fast global motion estimation for
videocoding,” IFEE Transactions on Image Processing, vol. 9, no. 3, pp. 497-501,
Mar. 2000.

H. Kim, B-G. Nam, J-H Sohn, and H-J Yoo, “A 231MHz, 2.18mW 32-bit logarithmic
arithmetic unit for fixed-point 3D graphics system,” in Proc. IEEE Asian Solid-State
Circuits Conference(A-SSCC), pp. 305-308, Nov. 2005.

C. Rambabu, 1. Chakrabarti, and A. Mahanta, “An efficient architecture for an im-
proved watershed algorithm and its FPGA implementation,” In Proc. IEEE Interna-
tional Conference on Field-Programmable Technology, pp. 370-373, Dec. 2002.

K. V. Asari, T. Srikanthan, S. Kumardemi, and D. Radhakrishnan, *“A pipelined
architecture for image segmentation by adaptive progressive thresholding,” Journal of
Microprocessors and Microsystems, vol. 23, pp. 493-499, 1999,

H. Tsuji, S. Saito, H. Takahashi, and M. Nakajima, “Estimating object contours from
binary edge images,” in Proc. IEEE Int. Conference on Image Processing (ICIP), vol.
3, pp. 453-456, Sep. 2005

