A TYPE SYSTEM FOR THE ERASMUS LANGUAGE

NIMA JAFROODI

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE & SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoORrR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

JANUARY 2008

© NiMA JAFROODI, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40941-1
Our file Notre référence
ISBN: 978-0-494-40941-1

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

Abstract

A Type System for the Erasmus Language

Nima Jafroodi

Our objective is to construct a suitable type system for the Erasmus language by under-
standing the notion of type in programming languages, present a model of typed, polymor-
phic programming language that reflects recent research in type theory. This type system
gives us a strong tool to explain the behavior of this language in a consistent framework by
modeling features such as cells, processes, ports, protocols, messages, and message passing,
which are the main heart of this programming language.

The Erasmus language belongs to process oriented programming languages which is
being developed by Peter Grogono at Concordia University and Brian Shearing at The
Software Factory in England. This language is mainly based on cells, processes and their
interactions and like object oriented languages; it provides both a framework and a mo-
tivation for exploring the interaction among the concept of type, data abstraction, and
polymorphism. We develop a A-calculus-based model for this type system that allows us to
explore these interactions in the simple setting.

The evolution of languages from untyped universes to monomorphic and polymorphic
type systems is reviewed. Different type systems of different programming languages are
discussed and the mechanism for polymorphism such as overloading, coercion, subtyping,

protocols satisfaction, and parameterization are also described.

il

The typed A-calculus is augmented to include binding of types by quantification as well as
binding types by abstraction. This typed A-calculus is augmented by universal quantification
to model generic functions with type parameters, bounded quantification to provide explicit
subtype parameters. In this way we obtain a simple and precise characterization of a
powerful type system that includes abstract data types, parametric polymorphism, and
subtyping relations in a single consistent framework.

This augmented typed A-calculus is then used for the type system of the Erasmus lan-
guage with which we are able to describe the features of this language, and a proof technique

that will let us reason about the model.

v

Acknowledgments

I would like to acknowledge Dr.Peter Grogono who directed me to wide range of resources.
His advice and patience is much appreciated. I would also like to thank my parents and my

sister who support me in every aspect of my life.

Proofs of programs are too boring for the social process of mathematics to work. —Richard

DeMillo, Richard Lipton, and Alan Perlis, 1979.

Contents

List of Figures ix
List of Tables X
1 Introduction 1
1.1 Objectivesand Goals o v i i e 2
1.2 Organization i it e e 2
2 Problem and Motivation and Proposal 4
3 Theoretical Background 6
3.1 Components and Compatibility 6
3.2 Types . v o e e e e e 8
3.3 Degrees Of Strictness And Sophistication 9
34 TypeSystems e 12
3.5 Typed Languages and Untyped Languages 13
3.6 Execution EITors« . . i it e e e e e e e 14
3.7 Safe and Well Typed Programs v v v v v v v i i e 15
3.8 Characterization v i i e e e e e e e 17

vi

3.9 Fomalizing Type Systems 19
3.10 The Language Of Formal Type Systems 21
3.10.1 Judgments e e e e e e 21
3102 TypeRules o e 22
3.10.3 Type Derivations« . L 23
3.10.4 Subtyping e e e e e e e e e 23
3.10.5 Type Equality 24

3.11 Different Kinds of Type Systems 25
3.11.1 Untyped Lambda Calculus 25
3.11.2 First Order Type Systems« o v v v v i i v v v 28
3.11.3 Second Order Type Systems « . v v v v v v v v v v v v e v v 28

4 Types In Erasmus 31
4.1 Topand Bottom Types i i i it 33
4.2 BasicTypes o o e e e e 33
4.3 Function Types o o v i i e e e e e e e 36
4.4 Reference Type o« 0 i i i i e e e e e e e e e e e e 39
4.5 Pairand Tuple Types o i i i i it i it e e e e 40
4.6 Map And Array Type o o i e e e e 42
4.7 Record Type i i i i e e e e e e e e 45
4.8 Statements 47
4.9 Variable Declaration 0 o 48
4.10 Expressions with Binary Operators 50
4.10.1 Multiplicative and Additive Operators 51

vii

4.10.2 Assignment Operators v v v v i e 56

4.10.3 Relational and Equality Operators 58

4.10.4 Logical Operators o v v i v v v v 59

4.11 Conditional Statement o o e 59
412 Loop Statement L e e 60
4.13 While and Until Statements o 0oL 61

5 Erasmus As a Process Oriented Language 63
5.1 MeSSages i i e e e 65
5.1.1 Subtyping for Messages e 67

5.2 Protocols e 68
5.2.1 Tracesand TracesSets. i 74

5.2.2 Protocol Equality o e 7

5.2.3 Protocol Satisfaction oo o 86

53 Ports. e e e 91
5.4 Closures v o it e e e e e e 94
5.5 Cells . o v v e e 96
5.5.1 Example 1: “Hello World!” 97

5.5.2 Example 2: Standard Input and Output 98

5.5.3 Link 103

6 Conclusion and Future Work 105
Bibliography 108

viii

List of Figures

1 Varieties of polymorphism 10
2 Safetyand Typed o o e e e e 17
3 Client/server communication 67
4 Subtyping Rules For Messages v o v v v v v i i v oo 68
5 Protocolsandtraces e 75
6 Maximum and Minimum number of messages 80
7 Communicating with the Keyboard and Screen 101

ix

List of Tables

10

11

12

13

14

15

16

17

Typerulesfor Nat oo i e 23
Subtype relation is partial order o oo 24
Judgments for Erasmus e 32
Type Rules for Type Top o o v v v v i e e e e e e 33
Syntax of Basic Types In Erasmus 35
Type Rules for Basic types in Erasmus 35
Syntax Of Function Types In Erasmus 36
Type Rules For Function Types In Erasmus 38
Type Rules for Erasmus i 40
Syntax of Pairs and Tuples In Erasmus 41
Type Rules and Subtyping Rules For Pair and Tuple Types 42
Syntax of Fo . v v o o e e e e e e e e e e e 43
TypeRulesof Fo o 0 i 0 o e e e e e e e 43
Syntax Of Map And Array In Erasmus 44
Type Rules For Map And Array Types In Erasmus 45
Syntax for Records e 46
Type Rules for Erasmus 0 o0 i i e 46

13

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Type Rule For Sequences v i 48

Syntax For Variable Declaration 49
Type Rules for Declarations in Erasmus 49
Syntax of F» with Bounded Universally Quantified Types 53
Syntax of Fy with Bounded Universally Quantified Types 53
Type Rules for Multiplicity and Additive Operators 54
Arithmetic Conversions o e 55
Type Rules for Assignment in Erasmus 56
Type Rules for Assignment in Erasmus 57
Type Rules for Relational and Equality Operators 58
Type Rules For Logical Operators 59
Type Rules for Conditional Statement 60
Syntax For Loop Statement 60
Type Rules for Loop Statements in Erasmus 61
Syntax For While and Until Statements 61
Type Rules For While and Until Statements in Erasmus 62
Type Rulesfor Erasmus it o, 66
Syntax of Protocolsin Erasmus oo 70
Type Rules for Protocolsin Erasmus 73
Defining Protocols by Trace Sets 76
Syntax Of Ports In Erasmus oo v v v i 91
Type Rules for Port in Erasmus 93
Type Rules for Closures in Erasmus 95

xi

Chapter 1

Introduction

Erasmus project is a process oriented programming language which is being developed by
Peter Grogono at Concordia University and Brian Shearing at Software Factory in England.
Like object oriented programming languages, Erasmus project provides both a framework
and a motivation for exploring the interactions among the concept of type, data abstraction,
and polymorphism. This process oriented programming language is mainly based on cells,
processes and their interactions, and provides a full control over these interactions, which
contrast with the object models in which an object doesn’t provide a full control over the

sequences in which method calls and events may hit an object.

The study of types and type systems has become one of the most important fields with
major applications in the software engineering, language design, high performance compiler
implementation and security. The formal type systems give us a mathematical model that
can describe the features of programming languages; and a proof technique that will let us

reason about the model.

1.1 Objectives and Goals

Our objective in this thesis is to first cover and describe the core topics and notations
commonly used for describing type systems and then to construct and design a suitable
type system for the Erasmus project that reflects recent researches in the type theory. This
includes designing a formal type system, mathematical model, for checking type correctness
and protocol satisfaction for the Erasmus project. Via this type system we will then be able
to explain and describe all the behaviors of the Erasmus project in a consistent framework
by modeling features such as cells, processes, ports, message passing and protocols which

are the main heart of this process oriented language.

1.2 Organization

Chapter 2 will describe our problem and the motivation for the research presented in this

thesis. We will then describe our proposal and its benefits.

In Chapter 3, we will explain some important and fundamental concepts commonly used
for describing type systems, and we will seek to find the answers to the questions such as:
What do we mean by the notion of type in programming languages? What is really a type
system and what do we expect from it7 What do we mean by the notions of component and
their compatibility? What are typed and untyped languages, and what are their differences?

Furthermore, we will discuss the expected properties of a type system and how it can be
formalized, as an example how a type system can be extended by the notion of subtyping

and polymorphic approachs.

In Chapter 4, we will design and construct a suitable type system for the Erasmus lan-
guage by reviewing a spectrum of simple types, pair and tuple types, array and map types,
reference types, function types, and record types. We then formalize this informal type syS—
tem by providing the appropriate judgments, which are formal assertions about the typing
of programs, type rules, which are implications between judgments, and subtype relations
for the types defined in our language. This type system will be then augmented by the ap-
propriate type rules for statements such as conditional statements, arithmatic expressions

and etc.

Chapter 5 introduces messages, protocols, ports, closures, and cells, which are the main
heart of the Erasmus project, and we will then expand and formalize our previous type
system with the appropriate type rules and subtype relations. Besides, we will provide
some algorithms for checking protocol equality and protocol satisfaction, which enable us

to describe the cells’ interactions in a consistent framework.

Finally, Chapter 6 summarizes the achievements and the future works.

Chapter 2

Problem and Motivation and

Proposal

Modern software engineering recognizes a broad range of formal methods for helping en-
sure that a system behaves correctly with respect to some specification, implicit or explicit,
of its desired behavior. On one end of the spectrum are powerful frameworks such as Hoar
logic, algebraic specification languages, model logics, and denotational semantics. These
can be used to express very general correctness properties but are often cumbersome to use
and demand a good deal of sophistication on the part of programmers. At the other end are
techniques of much more modest power - modest enough that automatic checkers can be
built into compilers, linkers, or program analyzers and thus be applied even by programmers
unfamiliar with the underling theories. One well-known instance of this sort of lightweight
formal methods is model checkers, tools that search for errors in finite-state systems such
as chip design or communication protocols. Another is run-time monitoring, a collection

of techniques that allow a system to detect, dynamically, when one of its components is

not behaving according to specification. But by far most popular and best established

lightweight formal methods are type systems which is the central focus of this thesis.

Formal type systems are the mathematical model that can describe the features of pro-
gramming languages by providing us with a technique for checking the type correctness
of a program, and let us reason about the model. Therefore, this issue motivates us to

understand the notions of types, and type systems.

We start from an informal typed language, and we design a formal type system for
the Erasmus project to explain the behavior of this language in a consistent framework.
Several type systems have been developed for proving that a system behaves correctly.
We use typed-lambda calculus for the type system of the Erasmus project. This typed-
lambda calculus includes the higher order functions which enable us to explain the behavior
of this process oriented language in the simple settings. We then augment this typed-
lambda calculus with the notion of universal quantification which enables us to model
generic functions with the type parameters, we also augment this typed lambda calculus
with the notion of bounded quantification to provide explicit subtype parameters to model

ports, and closures in a consistent framework.

We also provide an algorithm for protocol satisfaction which includes reduction of infi-
nite traces sets. Via this algorithm we are able then to explain the behaviors of the cells

interactions.

Chapter 3

Theoretical Background

As the first step through our goals, we first look at some motivational issues, such as the
need for plug-in compatible components and the different ways in which compatibility can

be judge.

3.1 Components and Compatibility

The eventual economic of the object-oriented, process-oriented, and component-based
software industry will depend on the ability to mix and match parts selected from different
suppliers. Thus, the notion of component compatibility will play an important role in these
languages. These components are categorized into two fundamental groups which are given

below:

e The client (component user) who has to make certain assumptions about the way a

component behaves in order to use it.

e The server (component provider) who has to build something in the way that can

satisfy the expectations of its clients.

But how can one say that these two view points are compatible? The notion of type has
been used to judge the compatibility in software. To better judge the compatibility between

the components it is useful to categorize the compatibility into two fundamental ways:

e Syntactic Compatibility: the components provide all the expected operations.

o Semantic Compatibility: the components operations all behave in their expected ways.

As for the syntactic and semantic compatibility, a component must provide type names,
function signatures, and interfaces, and it also must provide the logical axioms, state se-
mantics, and the proofs to show that these operations behave in their expected ways.

These two view points of compatibility are so important that should be taken into the
considerations while designing programming languages and their type systems. There are
some spectacular examples failure due to the type-related software design faults, such as the
Mars Climate Orbiter crash and the Ariane-5 launch disaster. These two examples clarify
the differences between the two different kinds of incompatibility.

In the case of the Mars Climate Orbiter, the failure was due to the inadequate character-
ization of syntactic type, resulting in a confusion of metric and imperial units. Output from
the spacecraft’s guidance system was reinterpreted by the propulsion system in a different
set of measurement units, resulting in an incorrect orbital insertion maneuver, leading to the
crash. In the case of the Arian-5 disaster, the failure was due to the inadequate characteri-
zation of semantic type, in which the guidance system of the aircraft needlessly continued
to perform its pre-launch self-calibration cycle in which the emission of the larger diagnos-
tic code than expected caused an arithmetic overflow in the data conversion intended for

propulsion system, which raised an exception terminating the guidance system.[16]

3.2 Types

To summarized so far, we’'ve mentioned that the syntactic and semantic type compatibil-
ity of the components in the programming languages play an important role. For reasoning
about the syntactic and semantic type compatibility of the components in a programming

language we need an adequate definition of type.

What is a type?

Actually there is no unique definition of type. There are various definitions of type

according to the perspective of different viewers.

e Realist: A type is a set of values.

e Idealist: A type is a conceptual entity whose values are accessible only through the

interpretive filter of type.
e Beginning Programmer: Isn’t a type a name for a set of values?
o Intermediate Programmer: A type is a set of values and operations.

e Advanced Programmer: A type is a way to classify values by their properties and

behavior.
o Algebraist: A type is an algebra, a set of values and operations defined on values.

e Type Checker: Types are more practical than that, they are constraints on expressions

to ensure compatibility between operators and their operand(s).

Our definition of types is also simple and close to the perspective of advanced program-
mers. To define the term type, it is useful to clarify the notion of values. A value is said to
be anything that may be evaluated, stored, incorporated in a data structure, passed as an
argument or returned as a result.

A program variable can accept a range of values during the execution of a program. This
range of values is called type of that variable. As an example a variable z of type boolean
accepts only the values true or false during the running of program. Only if x is variable
of type boolean then the boolean expression not(x) have a sensible meaning in every run of
the program. Therefore, the notion of type is a way to classify values by their properties

and behaviors.

3.3 Degrees Of Strictness And Sophistication

The notion of type has been used to judge the compatibility between components, but

how strictly must a component matches into the interface in which it is plugged?

Monomorphism Conventional typed languages, such as Pascal which is a strongly typed
language, are based on the idea that functions and procedures, and hence their operands,
have a unique type that is, a variable can accept a value of the exactly the same type. This
concept is known as monomorphism (literally, one form), and such languages are said to be

monomorphic [6, 14, 186].

Polymorphism Monomorphic programming languages may be contrasted with polymor-
phic languages in which some values and variables may have more than one type. These

polymorphic (literally, having many forms), allowing variables to receive values of more

than one type. Moreover, polymorphic functions are functions whose operands can have
more than one type, and polymorphic types are types whose operations are applicable to

values of more than one type [3, 6, 14, 16].

The polymorphic properties increase the generality of an interface which allows a wider
choice of components to be substituted, which are said to satisfy the interface. A simple
approach to interface satisfaction is subtyping. This is where an object of one type may
safely be substituted where another type was expected. This involves no more than coercing
the subtype object to a super type object and executing the super type’s functions. Then
the coerced object will behave exactly the same as the super type object. As an example; in
C++ passing two SmallInt as an argument to the add function that accepts two Integers.
The function is expecting two Integer values, but it could handle subtype of Integers and
convert them. Also, a simply-typed first order calculus (with subtyping) is sufficient to
explain this behavior.

It is useful in this place to distinguish between four kinds of polymorphism. These kinds

of polymorphism are given in Figure 1 below.

((parametric
universal <
| inclusion
polymorphism
(overloading
ad-hoc X
L | coercion

Figure 1: Varieties of polymorphism

10

Parametric polymorphism is obtained when a functions works uniformly on a range of
types, and these types exhibit normally some common structure. Inclusion polymorphism
models subtypes and inheritance. These two kinds of polymorphism are classified as the
two major subcategories of universal polymorphism which will normally work on an infinite
number of types (all types having a given common structure) [6, 17, 22].

We shall call the more complex, polymorphic approach ad-hoc polymorphism which is
obtained when a function works, or appear to work, on several different types which may
not exhibit a common structure, and may behave in unrelated ways for each type. This
is where one type is replaced by another, which also systematically replaces the original
functions with new ones appropriate to the new type. A second order calculus is sufficient
to explain this behavior [5, 6, 16, 17].

In overloading the same variable name is used to denote different functions, and the
context is used to decide which function is denoted by a particular instance of the name.
A coercion is instead a semantic operation which is needed to convert an argument to the
type expected by a function, in a situation which would otherwise result in a type error.
Moreover, the functions that exhibit parametric polymorphism are called generic functions
[6, 16, 17].

According to the materials mentioned above, there are three different degrees of sophis-
tication when judging the compatibility of a component with respect to the expectations of

an interface in programming languages:

e Correspondence the component is identical in type and its behavior exactly matches

the expectations made of it when calls are made through the interface.

o universal-polymorphism the component is more specific type, but behaves exactly like

11

the more general expectations when calls are made through the interface.

e ad-hoc-polymorphism the component is a more specific type and behaves in ways that

exceed the more general expectations when calls are made through the interface.

3.4 Type Systems

As with many terms shared by large communities, it is difficult to define “type systems”
in a way that covers its informal usage by the programming language designers and imple-
menters. A large percentage of errors in programs are due to the application of operations
to the objects of incompatible types. Type systems have been developed to help the pro-
grammer to detect these errors. The fundamental purpose of a type system is to prevent
occurrences of execution errors during the run time of a program. This informal definition
motivates to study the type systems but needs more clarifications. When this property
holds for all program fragments, we say that a language is sound, or more strictly, the type
system of a language is sound. Moreover, when well developed, the type system provides
conceptual tools with which to judge the adequacy of important aspect of language defi-
nitions such as components compatibility. There are lots of programming languages which
are proved to be unsound such as C, C'++. These programming languages allow a program
to crash at the run time even though it is judged acceptable by the type-checker [6, 16].

As a formal definition of a type system we can say that: “A type system is a tractable
syntactic method for proving the absence of certain program behaviors by classifying phrases
according to the kinds of values they compute.” [14].

This definition has some crucial aspects. First, it identifies types as a tool for reasoning

about the program. Second, this definition emphasizes on classification of terms according

12

to the properties of the values that will be computed during the run time.

3.5 Typed Languages and Untyped Languages

Languages that variables can be given types are called typed languages, and the languages
that don’t restrict types for their variables are called untyped languages. Untyped languages
don’t have types for their variables, or in another world they have a universal type that
contains the whole range of values defined in the language [5]. Therefore, in an untyped

language operations may be applied to inappropriate arguments, and the results may be:
[5]

e A fixed arbitrary value

A fault

An exception

Unspecified behavior

The untyped A-calculus, pronounced “lambda calculus”, is the extreme case of untyped
languages that none of these fails never occur. In the untyped lambda calculus the opera-
tions are function applications and the values are functions, therefore the operations never
fail [5, 6, 14].

The responsibility of the type system is to track the types of all variables and in general
is to track all the expressions in the language. Thus, a type system accepts an expression
if there is a type associated with it otherwise fails it.

To be more precise about the definition of a typed language and an untyped language,

we can say that a language is a typed language by the virtue of the existence of a type

13

system for it, whether or not the types are in the syntax of the program. Otherwise is an
untyped language. A typed language is said to be explicitly typed if the types are part of the
syntax of the program, otherwise is said to be an implicitly typed. As an example languages
such as ML, and Haskel are implicitly typed languages, and C++ and Java are said to be

explicitly typed languages [5, 6].

3.6 Execution Errors

There are different kinds of execution errors according to their aspects. One of the most
obvious aspects of execution errors is the occurrence of an unexpected behavior software
fault, such as an illegal instruction fault or an illegal memory reference fault. However,
there are some more execution errors that result in data corruption without any immediate
symptoms. Also there are some software faults such as division by zero or dereferencing nil
which is not allowed in most type systems.

Therefore to define our terminology about the errors, we categorize execution errors into

two fundamental kinds: 5]

e Trapped Errors: the ones that cause the computation to stop immediately such as

division by zero, or accessing an illegal address.

o Untrapped Errors: the ones that go unnoticed for a while and may cause unexpected
behavior. Such as accessing a legal address er. accessing data past the end of an
array’, or jumping to the wrong address ex. memory there may or may not represent

an instruction stream.

l«Static elimination of array-bounds checking is a long standing goal for type system designers. In
principle, the necessary mechanisms are well understood, but packaging them in a from that balances
expressive power, predictability and tractability of type checking, and complexity of program annotations
remains a significant challenge” [14].

14

3.7 Safe and Well Typed Programs

To summarize so far, we mentioned that it is helpful to distinguish between two kinds
of execution errors which may occur during the running time of a program. The first ones
were those that cause computations to stop immediately, trapped errors, and the other ones
were those that go for a while and later may cause arbitrary behaviors, untrapped errors.

A program fragment is said to be safe if it doesn’t let the untrapped errors to occur.
Accordingly a language is said to be a safe language if all the program fragments were safe,
otherwise, it is said to be an unsafe language. Therefore, safe languages rule out all the
untrapped errors during the execution of the program, and it is one of the important facts
of a language.?

Typed languages and untyped languages check safety in completely different ways.
Typed languages perform safety at both before the execution of the program, at compile-
time, static checks, and during the execution of the program, at the run-time enviroment,
dynamic checks. Untyped languages perform safety at the run-time environment, dynamic
checks.

Although, safety must be considered as one of the most important factors of a program-
ming language, the type system of a language must also rule out some trapped errors as
well as untrapped ones, such as division by zero or etc. Thus, for any given language, we

designate a subset of all possible errors that may occur, and call it forbidden errors. The

2%Yet another point of view focuses on portability; it can be expressed by the slogan, ” A safe language
is completely defined by its programmer’s manual.” Let the definition of a language be the set of things the
programmer needs to understand in order to predict the behavior of every program in the language. Then
the manual for a language like C does not constitute a definition, since the behavior of some programs (e.g.,
ones involving unchecked array accesses or pointer arithmetic) cannot be predicted without knowing the
details of how a particular C' compiler lays out structures in memory, etc., and the same program may have
quite different behaviors when executed by different compilers. By contrast the manual of Java, Scheme, and
ML specify (with varying degrees of rigor) the exact behavior of all programs in the language. A well-typed
program will yield the same results under any correct implementation of these languages” [14].

15

set of forbidden errors contains all the untrapped errors and a subset of trapped errors. A
program is said to be well-behaved if it doesn’t allow forbidden errors to occur, otherwise is
said to be not well-behaved or equivalently ill-behaved. Moreover, a language is said to be
strongly checked if all the programs have good behaviors, or it is said to be not-checked if
not all the programs have good behavior.

Accrding to the materials mentioned above, strongly checked languages have the follow-

ing properties:

e They must rule out all the untrapped errors.

e They also must rule out all the trapped errors defined in their set of forbidden errors.

e Other trapped errors may occur, and it is the responsibility of the programmer to

take care of them.

The process of checking well behaved programs is called type-checking, and the algo-
rithms that perform this checking is said to be a type-checker.

Typed languages ensure good behavior by performing static and dynamic checks to rule
out all the untrapped and trapped errors defined in the forbidden set. These languages are
said to be statically checked. Moreover, untyped languages enforce type checking at the run
time environment, and they are said to be dynamically checked languages. A program that
passes the type checker is said to be a well-typed; otherwise is said to be an ill-typed.

As it is obvious, a well-typed program is also safe, because it also rules out all the
untrapped errors that may occur during the execution of the program. Even statically
checked languages may perform some dynamically checks to obtain safety, for example

array bounds must in general be tested dynamically, but these languages are still statically

16

checked, because the dynamic type tests are defined on the basis of the static type system.
That is, the dynamic test for type equality are compatible with the algorithms that the

type checker uses to determine type equality at compile time [5, 6, 14].

3.8 Characterization

So far, we’ve clarified the notions of safe and unsafe programming languages as well as
typed and untyped languages. With these notions in mind, there are four different kinds
of programming languages. As we can see in Figure 2, programming languages such as ML
and Java are safe and typed languages, but C which is a typed languages is belonged to
the unsafe languages. LISP and Assembler languages are the examples of the untyped

languages with the difference that LISP is a safe language, but Assemblers are not.

Typed | Untyped
Safe | ML,Java LISP
Unsafe C Assembler

Figure 2: Safety and Typed

Studying these areas, arises these questions: Should programming languages be safe?
and should languages be typed?

To answer these questions, we must take a look at the properties of being safe and being
typed. Safety produces fail-stop behavior in case of execution errors, reducing debugging
time. It also guarantees the integrity of run time structures, and therefore enables garbage

collection [5]. Garbage collection ® reduces the code size and the code development time.

3To be type-safe, a language must have garbage collection or otherwise restrict the allocation and de-
allocation of memory. Specifically, it must not allow dangling pointers across structurally different types.

17

Finally, we can say that safety has emerged as a necessary foundation for system security,
particularly for systems that load and run foreign code such as operating system kernels
and web browsers.

Safety and safe languages have been studied for many years, but nowadays software
engineers pay more attentions to the safety, because safety produces more security which is
one of the main goals of the current languages.

Although, a lots of untyped programming languages are safe, but it is obvious that
production codes in an untypes language can be maintained with great difficulty. The ad-
vantage of untyped languages is their flexibility. The programmer has complete control over
how a data value is used but must assume full responsibility for detecting the application
of operations to objects of incompatible type. Though, it has been proven that even an
unsafe typed language is much better than safe but untyped languages [5, 6].

All we have discussed above let us to consider that a language should be both safe and
typed. A language is a typed language by the virtue of the existence of the type system
for it, thus a type system should be employed. Moreover, we mentioned that a language is
well typed if it doesn’t allow forbidden errors to occur, thus safety is an implied property
of being well typed. But what should be the properties of a type system?

These are the basic properties of a type system:

e A type system should be verifiable; there should be an algorithm which ensures that

a program is well-behaved. The type system must rule out all the forbidden errors

This is because if a typed language (like Pascal) required that allocated memory be explicitly released, and
a dangling pointer still points to the old memory location, then a new data structure may be allocated in
the same space with the slot the pointer refers to but point to a different type. For example, if the pointer
initially points to a structure with an integer field, but in the new object a pointer field is allocated to the
place of the integer, then the pointer field could be changed to anything by changing the value of the integer
field (via dereferencing the dangling pointer. Because it is not specified what would happen when such a
pointer is changed, the language is not type safe. Most type-safe languages satisfy these restrictions by using
garbage collection to implement memory management.

18

before the execution of the program, and shouldn’t allow some untrapped errors to

occur accidentally.

e A type system should be transparent; a programmer should be able to predict if the
program is well behaved, and if the program fails at the type check level then the

failure reason must be evident.

e A type system should be enforceable; the type checking must be done statically as

much as possible, otherwise the good behavior must be check dynamically.

Though, a type system which has these properties could be employed for programming
languages. But still there is a problem according to the type system and that is, when
a type system is defined how can we guarantee that well behaved program are really well
behaved? Equivalently how can we be sure that the type rules of a program don’t allow
ill-behaviors to occur accidentally?

Formal type systems are the mathematical characterizations of the informal type system
described in the programming language manuals. Formalizing a type system gives us tools
to prove that a well typed program is really well behaved. If such a proof holds for all the
well typed programs then the type system is said to be sound. Therefore, a formal type

system is the key to prove the soundness of it.

3.9 Fomalizing Type Systems

There are some steps towards formalizing a type system which are given below:
First step of formalizing a type system is to describe its syntax, describing the syntax of

a type system is to describe the types and terms. Types express the static knowledge about

19

the program, and terms (statements, expressions, and other program fragments) express
the algorithmic behavior.

The second step towards formalizing a type system is to define the language scoping
rules. Scoping rules of a language clarify the occurrences of the variables according to the
areas in which they are defined. The scoping needed for a program is said to be static if the
binding of identifiers are to be done at the compile time. The static binding of identifiers
is said to be the lexical scoping otherwise is said to be dynamically scoping.

Scoping can be formally specified by defining a set of free variables of a program fragment
which specifies how variables are bound in the declarations. When well developed, then the
substitution of types and terms can be defined.

The third step in formalizing a type system is to define the type rules as a has-type
relation, which is in the form of M : A, pronounced as term M has type A. This could be
regarded as set’s membership relation M € A. we can also assume that M belongs to set A
if the term M has type A. Moreover, some programming languages require the definition
of subtyping relations in the form of T' <: 7", pronounced type T is subtype of type T". It
could be regarded as a substitution of different types but related. Also some programming
languages need to define the equal-type relation in the form of T' = T”, pronounced as type
T and T’ are equal.

Type rules cannot be formalized without defining a fundamental ingredient which is not
defined in the syntax of the language. This fundamental element is static type environment
which records the types of free variables during the processing of program fragments; they
correspond closely to the symbol table of the compiler during the type checking phase. Type

rules are always formulated with respect to the static type environment. For example in the

20

has — type relation M : A is associated with the static type environment I' which contains
the information about the free variables of M and A. it is written in fullas T M : A
meaning term M has type A in the environment I

The final step in formalizing a type system is to define the semantics as a relation

has-value between terms and collections of results, values.

3.10 The Language Of Formal Type Systems

To summarize so far, we mentioned that a language is said to be typed by the virtue of
the existence of a type system for it, and we also mentioned that a formal type systems are
the mathematical characterization of the informal type systems described in the language’s

manuals. Formal type systems are the keys to prove the soundness of a language.

3.10.1 Judgments

Type systems are described by a particular formalism. Actually the description of a type
system starts with the collection of the formal context called judgments. A typical judgment

is in the form of:

Judgment Commentary

ko o is an assertion; the free variables of ¢ are declared in I'.

In this context, I" is said to entails o, where I" is the static type environment. The most

important judgments to construct a type system are:

N I is well-formed(i.e., it has been properly constructed)

'M:A M has type A in the type enviroment I'

21

Note that any given judgment are either valid or invalid. As an example, the judgment
“I" F true : bool” is a valid judgment and the judgment “I" F true : Int” is an invalid

judgment. Validity of judgments formalizes the notion of well typed program.

3.10.2 Type Rules

Another step in formalizing a type system is to define the type rules of the language.
Type rules assert the validity of a certain judgment on the basis of other judgments which

are known to be valid. Typical type rules are in the form of:

'hrFoi...TW Fon

o [TYPE RULE NAME]

Each type rule is written as a number of premises above the line and a conclusion below
the line. The number of premises could be zero or more. A type rule is called an aziom if

doesn’t have any premises, and it is called a theorem otherwise. The most important axiom

is:

¢|_—<> [Exnv ¢]

This axiom asserts that the empty enviroment ¢ is well-formed. If the promises hold
valid then the conclusion is valid, and we say that from the premises we infer the conclusion.

Thus any judgment can be proved to be valid or invalid with some type rules. As an example

for theorems, Table 1 defines Nat by these type rules:

22

r-¢

m [VAL N = 1,2,3,. .]

'+ M :Nat, ' N : Nat
' M+ N :Nat

[VAL +]

Table 1: Type rules for Nat
3.10.3 Type Derivations

A derivation in a given type system is a tree of judgments with the leaves at the top
and the root in the bottom, where each judgment can be obtained immediately from the
judgments above it by some rules of the type system. A judgment is wvalid if it can be
derived from some valid jedgments by some given type rules. The problem of discovering
the derivation for a term is called the type inference problem.

As an example of validity, it is easy to prove that the judgment “T" F 142 : Nat” is valid.

ek [VAL N, Fo [VAL N]
'F1+2:Nat

3.10.4 Subtyping

In the most component based languages, types are ordered by the subtype relation <:,
and it is one of the approaches to interface satisfaction. Typically, an element of a type can
be considered also as an element of any of its supertypes, thus allowing a value (object) to
be used flexibly in many different typed contexts [17, 18].

Consider the type A and B, we write A <: B and say that A is a subtype of B and
B is said to be a supertype of A. The intuition is that, any element of type A is also an

element of type B equivalently an element of type A is acceptable in any context in which

23

an element of type B is expected. This property of subtyping is called the subsumption
rule.
The subtype relation is partial order meaning that it should be reflezive, transitive, and

antisymmetric. These relations are described in the Table 2 below.

7T [REFLEXIVE] any type is a subtype of itself
. <i43<’?c’<: ¢ [TRANSITIVE] if 4 <:Band B <:C then A is also subtype of C
A <:AB’—BB<: 4 [ANTISYMMETRIC| if A <: B and also B <: A then they are equal

Table 2: Subtype relation is partial order

The subtype relation defines relations over types of a programming language, and pro-

vides a wider choice of data to be substitute in a program.

3.10.5 Type Equality

As mentioned in the previous sections, programming languages need to define the relation
equal-type.
Consider, the following two kinds of type:
type X = int
type Y = int
Some programming languages compare types with their given type names, in these lan-

guages type X, and Y are not equal because of their distinct type names. In languages that

types are compared by their names, the equal type relation is based on name equivalences.

24

On the other hand, some programming languages compare type by the means of comparing
their structures. In these languages, type X and Y are said to be equal because of their
equal structure. The equal type relation is called structural equivalence if the type system
compares the types by their structural instead of their type names. Most programming

languages use the benefits of both name equivalence and structure equivalences.

3.11 Different Kinds of Type Systems

In this section we will explain different methods for designing and constructing a type
system. This includes explaining the properties of the type systems ranging from untyped-
lambda calculus to the typed-lambda calculus such as the first order type systems, and the

second order type systems.

3.11.1 Untyped Lambda Calculus

Untyped lambda calculus or equivalently pure lambda calculus, A-calculus, is the method
which is used in some functional programming languages such as ML, and Haskell. In
the A-calculus operations are functions and arguments are function applications, therefore
operations never fail. “Untyped” actually means that there is only one type, and here the
only type is the function type [5, 6, 14, 22].

Lambda calculus has been invented by Alonzo Church in 1920’°s, and is a formal system in
which all computations are reduced to functions and function applications [7]. In mid 1960s,
Peter Landin observed that all the complex programming languages can be understood by
formulating it as a tiny core calculus capturing the language essential mechanism, together

with a collection of convenient derived forms whose behavior is understood by translating

25

them into the core [11]. The core language that Landin used was lambda calculus.

The lambda calculus is one of the large numbers of the core languages that have been
used for the same purposes. pi-calculus, w-calculus, is the other example of core languages
which has been invented by Milner, Parrow, and Walker for defining the semantics of
message-based concurrent languages [13]. The other example is Abadi and Cardelli’s object
calculus in 1996 for object oriented languages [1].

The reasons that we concentrate on introducing the lambda calculus is that, the lambda
calculus can be enriched in variety of ways, and it gives us the basic ideas for introducing
other type systems such as the first order type system and the second order type system
which are used by the most programming languages.

Procedural or functional abstraction is an essential key for any programming languages.
It is a wise idea to define a function, with or without parameters, to calculate something and
call this function and instantiate its arguments as many times as we need in our program
instead of writing the calculation each time. As an example, consider that we need to

calculate this expression:

(T*6¥5*A*3%2¥1) + (6*5*4*3*2*1) + (5%4*3%2*1)

Therefore, instead of writing the repetitive expressions like above, we can define a function

Factorial by this definition:

Factorial(n) = if n = 0 then 1 else n * Factorial(n-1)

The intution is that for each n the function Factorial yields the factorial of n as a result.
Thus if we write “An.” as the shorthand for “ the function that for each n, yields ...,” then

we redefine the definition of Factorial as:

26

Factorial = An. if if n = 0 then 1 else n * Factorial (n-1)

The A-calculus embodies this kind of function definition and application in the purest
possible form. In the A-calculus everything is a function, arguments are functions and the
results are also in the form of functions. In the A-calculus there are only three kinds of
terms. A variable z by itself is a term, the abstraction of a variable z in term ¢ is written

Az.t is a term, and also the application of a term M to term N, written M N, is a term.

In the A-calculus an occurrence of the variable z is said to be bound if it occurs in the
body t of the abstraction Az.t. Moreover, Az is said to be a binder. An occurrence of z is
said to be free if it occurs in a position where it is not bound by an enclosing abstraction
on z. Moreover, a term which doesn’t have any free variables is said to be closed. A closed
term is also called combinator.[14]

As an example, the occurrence of z in Az.zy is bound and the occurrence of z in Ay.zy

is free.

In the A-calculus there are no built in constants or primitive operators. All the constant
and operators are functions and the term computations are function applications. Each
step in the computation is to rewrite an application whose left hand side is an abstraction
and the right hand side is a term to be substitute for the bound variable defined in the

abstraction. As an example Az.t (y) means substitute variable z by y in the body of ¢

which can be shown as:

Aot (y) = [z y]t

27

A term of the form Az.t (y) is said to be a redex “reducible expression” and the operation

of rewriting a redex with the above method is called full-3-reduction.

3.11.2 First Order Type Systems

Most of the procedural based programming languages type systems, are called first order
type system. The first order type systems lack the type parameterizations and type abstrac-
tions which are the features of the second order type systems [5, 6, 14]. This type system
includes the higher order functions. Pascal and Algol68 are the examples of the languages

with the rich first order type systems while FORTRAN and Algol60 have poor ones.

The first order type system also called system F, is similar to the untyped or pure lambda
calculus. Functions in the first order type systems are in the form of Az : A.M in which z
is the bound variable of type A, and M is the body of the function. The main difference
between the first order type system and the pure lambda calculus is a type annotation for
the bound variable. The step from Az.M to A\x : A.M is typical of any progression from an
untyped language to a typed language [6].

A type A — B is said to be a function type with the domain type A to the range type
B, or equivalently A — B is said to be a type of a function with the arguments of type A

and results of type B.

3.11.3 Second Order Type Systems

Many modern languages such as Java and C# uses the second order type system. These
languages include constructions for type parameterization, and type abstractions, or both.

Type parameters can be found in the module system of several languages, where a generic

28

module, class, or an interface is parameterized by a type to be supplied later. As an
example C# uses type parameters at the class and interface level. C + + template are
somehow similar to type parameters, but with the different methods. Polymorphic untyped
languages such as ML, and Haskell use type parameters pervasively just at the function
level, as explained before. These advanced features can be so called second order type

systems [5, 6, 14, 19].

Typically second order type systems extend first order type systems with the notion of
type parameters. In the second order type systems, a new term AX.M is defined and
asserts that the type identifier X can be replaced by any arbitrary types, equivalently it is
a function with the argument X which stands for any arbitrary types with the program M
in which type X may occur. As an example, consider the identity function id in the first
order type systems, Az : A.z, this function accept an identifier z of type A and returns it
as a result. In the second order type system this identity function can be defined for all the
types by this format, AX. Az : X.z. Therefore, one can instantiate the type variable X with

any arbitrary type. This method is one of the characterizations of polymorphic languages.

The second order type systems are also called system F2. Second order type systems
extend first order type systems with the notions of universally quantified types [5] which
enriches first order A-calculus with parameterized types, [6], Bounded Quantification [6]
which enriches first order A-calculus by providing explicit subtype parameters, Ezistential
Quanification [5, 6], and F-Bounded Polymorphism [3, 21] which enriches first order M-

calculus to provide a basis for typed polymorphic functions.

29

The type of a term AX.M is written VX.A meaning that for all X, the body M has
type A. Let us consider the identity function provided before as an example, “id = AX.M”
where M = Az : X.z, therefore the type of the function id is VX.X — X. In the F2 systems
we drop the basic types, since we are now use type variables as the basic types. It turns
out that we can construct any types with the system F2 by using the Existential types.

The scope rules of system F2 can be defined similar to the system F1. This means that
in Az : A.M, Az. binds z inside A, and also in AX.M it binds type variable X in the body

M.

30

Chapter 4

Types In Erasmus

In this Chapter, we will construct the type system of the Erasmus project by describing
the syntax of terms and types used in this language, and then we will formalize this type
system by providing appropriate judgments, type rules, and subtyping rules according to

the types we define.

Like any other programming languages, Erasmus language provides some basic types as
well as pair and tuple types, function types, array and map types, record types, reference

types, and facilitates for constructing an arbitrary number of record types.

As we mentioned in the previous chapter, one of the steps towards formalizing a type
system is to describe the equal-type relation in the language, therefore the possible rela-

tionships between two types 71 and T in Erasmus language are:

31

T =15 : Ty and Ty are equal types
T <: Ty : T is a subtype of Th
(no symbol) : Ti and T, are unrelated

Erasmus language enforces type equality by using two methods. The first method is
that all types except protocol types are compared by name eguivalence that is; types are
compared by their names not by their structures. One the other hand, Erasmus language
enforces protocols equality by comparing their structures rather than their names which is

briefly explained in the protocols section.

As mentioned before, one of steps towards formalizing a type system for a programming
language is to describe the syntax of types and terms, and the other is to define some
appropriate judgments with the appropriate type rules. The type system of the Erasmus
project is based on the typed-lambda calculus. Therefore, the appropriate judgments needed

for this type system are given in Table 3 below.

ko ' is well formed enviroment

'-A A is well formed type in '

'-M:A M is well formed term of type A in I’
'rA<:B A is a subtype of B in the enviroment I'

Table 3: Judgments for Erasmus

32

4.1 Top and Bottom Types

It is useful in theory to have a bottom and top types in a programming language [14].

The name of the top type in Erasmus is any, with the following principal rule.

Tko
TF any [T-ANY]
T'+T
TFT < any [T-SUB-ANY]

Table 4: Type Rules for Type Top

Moreover, the name of the bottom type in Erasmus language is none. The none type has

no values. we can assume that ext! none = ¢.

4.2 Basic Types

Erasmus provides some basic types, these basic types are:
BasicTypeName = Void | Bool | Integer | Decimal | Float | Text.
These symbols are the keywords of the grammer, and following are their properties:

e The type Void has woid as its value. It is useful to have such a type as a filler for

uninteresting arguments and results.
e The type Bool has two values. These are true and false and are the keywords.

e The type Integer has integers in any range(not exceed the available memory) as its

values.

lext T is the set of all values having type T. As an example ext Bool = {true, false}

33

e The type Decimal is represented by values of the form N x 107° in which N is an

Integer and s is a positive integer with limited range (e.g 0 < s < 255).

e The type Float is represented by values with adequate range and precision for most

purposes.

e The type Text has strings of ASCII characters as its values. The empty string is a

value and there is no bound on the length of strings other than available memory.

Each basic types has a default value, and null value. The null value is used to indicate

that no value is presented. The default values of basic types are shown below:

Standard Type Default Value

Bool false
Integer 0
Decimal 0.0
Float 0.0
Text »n

The syntax of these basic types are given in Table 5, and Table 6 shows the appropriate

type rules with subtyping relations for these basic types..

34

Ti= types vi= values
Void type Void void constant void
Bool Boolean type | true constant true
Integer Integer type | false constant false
Decimal Decimal type nv numeric values
Float Float type tv Text values
Text Text type
ti= terms
void constant void | true constant true
false constant false
X identifier
Table 5: Syntax of Basic Types In Erasmus
I'kFo T'kFo
— |[T- T-VaA D
'+ Void [T-Vorp] '+ void : Void [T-Var Vo]
'ko I'ko
I' - Bool [T-Boot] I' F true : Bool [T-VAL TRUE]
I'ko 'ko
——— [T-INTEGER T-VAL FALSE
'+ Integer [} ' false : Bool []
I'kFo I'o
—— X [T-DE T-SuB INT-DE
I' - Decimal [g I' - Integer <:Decimal [T-Su I
ko T'kFo
—— [T-F T- INT-F
' Float [LOAT] I' - Integer <:Float [T-SuB INT-FLOAT]
'ko 'ko
_ [T-T T- F -D
['F Text [EXT] I' - Decimal <:Float [T-SuB FLOAT-DEC]

Table 6: Type Rules for Basic types in Erasmus

35

4.3 Function Types

Since the type system of the Erasmus language is mainly based on the typed-lambda
calculus, the most interesting types are functions. The syntax Az : T.e is equal to a
function with the body e and with the function parameter x of a specific type T. The

lambda abstraction automatically bounds the variable z in the body e.

Moreover, Erasmus langauge provides some built-in functions which are the keywords of

the grammar. These built-in functions are:

FunctionName = int | float | text

These functions accept an argument and if applicable convert them into the type of their
function name. For example int(e) converts e into integer, and if successful, returns the
result. Table 7 shows the syntax of function types and the appropriate type rules are given
in Table 8. (These built-in functions can also be described by using the Bounded Universal

Quantification which will be introduced later.)

Tu= types
T — Tp function type

ti= terms
ATt function abstraction
tt function application
X identifier
int(t) built-in function
float(t) built-in function
text(t) built-in function

Table 7: Syntax Of Function Types In Erasmus

36

Note that type rule (T-Env) is used to extend an environment I to a larger environment
Iz : A, provided that A is a valid type in I" that is, we are careful to keep variables and
types distinct in our enviroments. The type rule I',z : A+ M : B means that the term M
has type B in our static enviroment I" with the assumption that the variable z has type A.

The type rule (T-Sub-Fun) indicates the subtyping relation between fucntion types and
needs more explanations. For a substitute function F; : D; — R; to behave exactly like

the original function F5 : Dy — Ry the following conditions must hold true:

e F1 must be able to handle at least as many argument values as Fy could accept; we

express this as a constraint on the domains (argument types): Dy <: D; and

e F} must deliver a result that contains no more values than the result of F} expected;

we express this as a constraint on the codomains (result types): R; <: Rs.

Thus, the codomain is also a subtype, but the domain is a supertype. For this reason,
we sometimes say that the domains are contravariant (they are ordered in the opposite
direction) and the codomains are covariant (they are ordered in the same direction) with

respect to the subtyping relationship between the functions [17].

One of the most important responsibilities of a type system is to ensure that no forbidden
errors will ever occur. Therefore, it is useful in this place to introduce a new term called
wrong and augment the operations semantics with the rules that explicitly generate wrong
in all the situations where the present semantics get stuck [14]. One can assume wrong as
the set of all run-time errors. These type rules are shown by the letter E within our type
system. As an example the rule “E-intWrong” in the Table 8 indicates that the built-in

function “int” doesn’t accept a boolean value or a Text value which is not an integer as

37

— [T-ENV]

'ko
I'F A,z ¢ dom(T)
T,z:AFo [T-ENV X]
Fiz:AFo
Dz:AbFx:A [T-VaL x]
F'FATHB

TEr S B [T-FUNCTION]

Iz:AFM—A
'FAXz:AM:A — B

[T-VAL FUNCTION]

I'rM : A—-BI'FN: A
I'FMN: B

[T-FUN APPL]

'FDy <: D1, 'FR;1 <: Ro
I'D; —» Ry <: Dy — Ry

[T-SuB-FUN]

I'FE : A/A € {Integer, Decimal, Float, Text}
I'Fint(E) : A — Integer

[T-FuNc INT]

'FE : A, A € {Integer, Decimal, Float, Text}
'+ float(E) : A — Float

[T-FuNcC FLOAT]

I'E : A, A € {Decimal, Float, Integer, Bool, Text}
T'Ftext(E) : A — Text

[T-FunNc TEXT]

I'EM : Bool, Bad(Text)
int(M) — wrong

[E-INTWRONG]

'FM : Bool,Bad(Text)
float(M) — wrong

[E-FLOATWRONG]

Table 8: Type Rules For Function Types In Erasmus

38

its argument. Therefore passing any bad arguments to this function will be evaluated to

wrong.

From now on in this article, we omit the wrong evaluation rules from our type system
and we will assume that all the situations which are not defined in our type system will be

evaluated to wrong.

4.4 Reference Type

Name binding in programming languages is the association of values with identifiers, but
in most programming languages the mechanisms for name binding and those for assignment
are kept separate. As an example we can have variable x whose value is the number 5, or a
variable y whose value is a reference, or a pointer to a mutable cell whose current content
is 5. What is the difference? The difference is that we can add x to another number, but
not assign to it. We can use y to assign a new value to the cell that it points to by writing
y := 7, but we can not use it directly as an argument to a function. Instead we can explicitly
dereference it to obtain its value [14].

In Erasmus as well as most of the languages every variable name refers to a mutable
cell, and the operation of dereferencing a variable to obtain its current contents is implicit.
Strictly speaking, most variables of type T should actually be thought of as pointers to
cells holding values of type ref T, reflecting the fact that the contents of a variable can be

either a proper value or the special vale Null.

Therefore, an element of ref (A) is a mutable cell containing an element of type A. A new

cell can be allocated by (Val Ref), and explicitly dereferenced by (Val Deref). Reference

39

types are useful in assignment and passing arguments by reference. As an example consider
the assignment of two variables in the form of z := y, in this case y is implicitly dereferenced
to obtain its value, then this value will be copied to the address associated with x which is

not dereferenced.

Thus, we are justified to define a new type called reference type and augment it into our

existing type system. Table 9 shows the appropriate type rules for the reference types.

kA
TFrer A [T-REFERENCE]
C'FM: A

I'Fref M : ref A [T_VAL REF]

I'EM: ref A
I'Hderef M : A

[T-VAL DEREF]

Table 9: Type Rules for Erasmus

4.5 Pair and Tuple Types

An immediately useful construction which we do not yet have is the notion of a pair of
values, < a,b >, possibly taken from different types A and B. The type of a pair is also
known as a product type, or Cartesian product, since there are A x B possible paring of
element ¢ € A and b € B. Pair types are useful in describing the functions with multi

arguments.

40

Tuple types are the extended case of pair types, or equivalently pair types are the special
case of tuples. Instead of having two elements in the pair types, we can have as many
elements as needed in tuple types.

Adding pairs and tuples to the simply typed lambda-calculus involves adding two new
forms of pairing, witten t =< ty, tg,...,t, >, and projection, written 7y (¢) for the first pro-
jection from ¢ and m,(¢) for the n’th projection plus one new type constructor, T1 X ... X Tp,.

The syntax of pairs and tuple types are given in Table 10 below.

Tu= types vi= values

Ty x Ty Pair type | <v,v> pair value

Ty xTo x...x T, Tuple type | < v,...,v > tuple value

L
n>1

ti= terms

<tt> pair

<t,...,t> tuple

N’
n>1
mi(t) projection

Table 10: Syntax of Pairs and Tuples In Erasmus

And the appropriate type rules with the subtyping relations for these types are given in

Table 11 below.

41

I'rm: MIkFn: N
'F<n,m>:NxM

[T-PAIR]

I'e: N XM
'Fme): N, Fm(e): M

[T-PAIR PROJECTIONS]

T'rta @ TG
'kE<zy,..o,zp> ¢ Tix...xT,

[T-TUPLE]

I'Fe: Ty x...xT,
Tk me):Th,...,mp(e) : Ty

[T-VAL TUPLE]

T'FN <N, T'FM <: M’
'HF(e: NXM <:(e’: N x M)

[T-SuB-PAIR]

THT,<:T)

TF G : Tix..xTp <: (e : T|x..xT) [T-SuB TUPLE]

Table 11: Type Rules and Subtyping Rules For Pair and Tuple Types

4.6 Map And Array Type

The types described in this section are defined by the programmers from a small set of
construction rules. maps are used to construct tables which can be accessed by indexing.
As an example, arrays are the map type in which index is an integer. A map type is defined
in terms of two other types: a domain type or indexr type, and a range type. In Erasmus

maps are shown within this syntax “Domain Type indexes Range Type”.

In order to explain the type rules for maps, we need a second order type system, system F.
Second order type system extend first-order type systems with the notion of type parameters.
A new kind of term written AX.M, indicates a programme M that is parameterized with

respect to a type variable X that stands for an arbitrary type.

42

Corresponding to the new term AX.M we need to define a new type which is known as
universally quantified types [6, 20]. The type of a term AX.M is written VX.A, meaning
that for all types X, the body M has the type A(here M and A may contain occurrences

of X).

Free variables for F; types and terms can be defined in the usual fashion, that is, VX.A

binds X in A and AX.M binds X in M.

Following table augments the appropriate syntax of the system F» into our type system.

Tu= types
X type variable
vX.A universally quantified type
ti= terms
x variable
AX.M polymorphic abstraction
MA type instantiation

Table 12: Syntax of F»

The appropriate type rules of F; are given in Table 13 below.

T, X+ A
m [T-FORALL]
IN'XFM: A

TT Xl vxd [L-VAL FUNCTION Fj
ILX+-M:VX.A T'+B

T+ MB : [B/X14 [T-VAL APPL Fj]

Table 13: Type Rules of Fy

Note that the type rule (T-Val Appl F3) instantiates a polymorphic abstraction to a

43

given type, where [B/X]A is the substitution of B for all the free occurrences of X in A.
As an example, consider an id function which has the type VX.X — X, then by (T-Val

Appl F3) we have that id A has type [A/X](X —» X) = A — A.

Now let’s get back to the map and array types. As mentioned above the syntax of maps
in Erasmus is “Domain Type indexes Range Type. This type could be explained by the

universally quantified types, that is:

T: indexes Tp = AD.(AR.D - R):VD.(YRD—R) = D—R

As an example Array(T) could be explained by:

Array(T) = Mz :T.(Integer — T): Integer — T.

Note that maps are the first class values, they are legal values which can be passed and
returned from functions and stored in data structures. Therefore, the indexing operator
returns a reference type meaning that it is an l-value and could be used in assignments.
Therefore, we use the symbol “—” to make a distinction between map tyes and function

types [14]. Table 14 below contains the formal definitions of map types.

Ti= types
T=D—R Map type

tu= terms
T indexes T map abstraction
Integer indexes T array abstraction
t[t] indexing operator

Table 14: Syntax Of Map And Array In Erasmus

And the appropriate type rules for map and array types are given in Table 15 below.

44

I'+D,R

TFp R (M7

' Integer, 'R
I' - Integer — R

[T-ARRAY]

I'M: D~ R
I''x : DF M[x]: zref R

[T-VAL Map]

I'FDy <: D;,'FR; <: Ry
I'D; — Ry <: Dy — Rp

[T-SuB MAP]

Table 15: Type Rules For Map And Array Types In Erasmus

4.7 Record Type

A record is a set of finite pairs; consider pairs as mappings from labels to values, for ex-
ample {< name,” John” >, < age, 25 >, < Studentld,”5746” >,...} then we can say that
a record is a set of finite mappings from labels to values. Since a record has this clear, we

are justified to introduce a new syntax.

ParentType = [{FieldDeclaration}, ‘]".
ChildType = Typeldentifier ‘[’ { FieldDeclaration}, ‘]’.
FieldDeclaration = [transient | Fieldldentifier ¢’ TypeEzpression.

Table 16 shows the syntax and Table 17 shows the type rules with subtyping rules for

the record types.

45

Ti= types

{an:T1,...,0;: T3} record type
ti= terms

{a1=1t1,...,05 = t;} record

t.oy projection
vii= value

{a1=v1,...,0; = v;} record value

Table 16: Syntax for Records

Fl"aitA,Ff'ﬁiZ'E
THA{a1~ B1,...;an— Gu}i{ar:Th,. .. an : Tn}

'FR:{a1:Th,...,an:Tp}
' Ro;: T;

[TYPE RECORD]

[VAL RECORD]

FI—P:{al:Tl,..u,an:Tn},C:P{an.*_]_ :Tn+l,...’an+m:Tn+m}
THFC:{e1:Th,. . 0n+m : Tntm}

[CHILD-REC]

PI—P:{O{]_:Tl,...,an:Tn},r‘_C:P{an_g_l:Tn+1,-..,an+m:Tn+m}
T <P [SuB CHILD]

Table 17: Type Rules for Erasmus

46

The type rule “Type Record” indicates that if there is a set containing some mappings
from labels to values then this set has the type record. Moreover, the type rule “Val Record”

introduce the operator “.”

on the records which gives us a tool for describing the type of
the record eliminations. As it is obvious in the syntax of records, a record type may be a
parent type or a child type. One can assume records as equal to sets, thus every operation
which is acceptable on the parents are also acceptable on their children. The type rule

“Sub Child” indicates a subtyping relation between record types that is, the type of a child

record is always a subtype of its parent.

4.8 Statements

Statements include declarations and actions. A sequence is a series of statements that
are executed consecutively. One of the steps in formalizing a type system is to define its
scoping rules of the language.

A sequence defines a scope. The variable introduced by a declaration is visible from the
point of the declaration to the end of the sequence containing the declaration. Following

the usual conventions for nested scopes, outer scopes are accessible from inner scopes.

47

Sequence = Statement;
Statement = skip
| exit
| until Expression
| while Ezpression
| Declaration
| Instantiation
| Expressions with Binary Operators
| Conditional
| Loop

| Select

Following is the appropriate type rules for introducing sequences.

'+ 51,85 :Void
'k (S1;82) : Void

[T-SEQUENCES]

Table 18: Type Rule For Sequences

4.9 Variable Declaration

The syntax for the variables declarations in Erasmus project are given in Table 19 below.
If the expression contains a colon and a type, it is a declaration, but if it contains an
assignment operator and an expression and a colon and a type then it is an initialized

declaration. The type rules for a declaration and an initialized declaration are given in

48

Table 20.

VarDeclaration = VariableName [“” [Mode] Type |[“:=" Rvalue].
Mode = copy | share | alias
tiu= terms

X identifier

t: declaration

t: T :=v initialized declaration

t: MT declaration with mode
M:= mode

copy keyword copy

share keyword share

alias keyword alias

Table 19: Syntax For Variable Declaration

— Ali‘,j::fl-d:m(r) [T-ENV X] | f%%% [T-DECL]
[x:AF (xr:‘,x:cigyoA) . Void [T-DeCL 1]
Ix:AF (}{I:nx:s‘;‘l:r(e> A): Void [T-Dect 2]
T,x:AF (x};,xa:fi:so D veiq [I-Dect 3]
LxAPM BITE < 8 [INIT DECL]

Iix:AF (x

A

M) : Void

The type rule “Env x” expands our type system and the type rule “Decl” indicates that

variables declarations are the well formed terms in our static environment. Same as before,

Table 20: Type Rules for Declarations in Erasmus

we are careful to keep variables and types distinct in our enviroments.

49

4.10 Expressions with Binary Operators

Binary operators act on two operands in an expression. The binary operators in the

Erasmus project are:
e Multiplicative Operators
— Multiplication (*)

— Division (/, div)

— Modulus (mod).
e Additive Operators

— Addition (+)

— Subtraction (-)
e Relational and Equality Operators

— Less than (<)

— Greater than &)

Less than or equal to (<=)

Greater than or equal to (>=)

Equal to (=)

Not equal to (!=)

e Logical Operators

— Logical And (and)

50

— Logical Or (or)

— Logical Not (not)

e Assignment operators

— Assignment (=)

— Addition assignment (+=)

— Subtraction assignment (-=)
— Multiplication assignment (%=)
— Division assignment (/=)

— Modulus assignment (%=)

Each binary operators acts on two operands, that is:

‘‘Left Operand’’ ‘‘Operator’’ ‘‘Right Operand’’.

4,10.1 Multiplicative and Additive Operators

It is useful in this place to indicate that the infix notation z + y is an abbreviation for
the functional notation + (z) (y). The symbol + should be viewed as an abbreviation for
a pure lambda calculus expression for numbers. This is same for other binary operators as

well.

+ Mz X)ANy:Y)(z+y)

One should pay attention that these operators accept operands from different types. As
an example the operator + accepts arguments of type Float, Decimal, Integer, Text,

and the operator * accepts arguments of type Float, Decimal, Integer.

51

Now consider the following example for the operator +.

30 + 4
3 + 40

3.0 + 4.0

Here the ad-hoc polymorphism of + can be explained in one of the following ways:

e The operator + has four overloaded meanings, one for each of the four combination

of argument types.

e The operator + has two overloaded meanings, corresponding to Integer and Float
addition. When one of the argument is of type Integer and the other is of type Float

then the Integer argument is coerced to the type Float.

e The operator + is only defined for Float addition, and other types are coerced into

the type Float.

In the Erasmus type system we use bounded universal quantification, coercion, and over-

loading to explain the behavior of these generic functions.

Bounded universally quantification is some how same as universally quantified types with
subtyping. A new kind of term written A[X <:Y].M, indicates a programme M that is
parameterized with respect to a type variable X which is subtype of type variable Y. Note

that X and Y stand for an arbitrary types.

Therefore, corresponding to our new term, the type of a term A[X <:Y].M is written

VX <:Y.A meaning that for all types X which are all subtypes of type Y, the body M has

52

the type A. Here X ranges over all subtypes of Y in the scope M.

Table 21 given below augments the appropriate syntax of bounded universally quantifica-

tion into our type system.

Ti= types

X type variable

VX< Y.A bounded universally quantified type
tou= terms

X variable

AX <: YI.M polymorphic abstraction

MA type instantiation

Table 21: Syntax of F; with Bounded Universally Quantified Types

The appropriate type rules for bounded universal quantifiers are given in Table 22 below.

INX<:A+B
r'-vX<:AB

[T-FORALL]

L X<:AFM:B
FFAX < AM:VX<:AB

[T- VaL BQT1]

'FM:VX<:ABTHA <A
TF MA : [A/X|B

[T- VAL BQT2]

rFA< ANLX<:A+B<: B
TF (VX <:A.B) < (VX <: 4'.B"))

[T-SuB FORALL]

Table 22: Syntax of F, with Bounded Universally Quantified Types

53

According to the bounded universally quantification the type rules for multiplicative and

additive operators are given in Table 23 below.

' X <:Float,'F Y <:Float,'F X <Y
Lz: X,y:YF(z+4vy): VX <:Float.VY <:Float. X XY — Y

[T-OPRT-NUMERIC +]

Pz:TexttF x:Text I',y: Text - y: Text
'k (z+y): Text

[T-OPRT-TEXT +]

' X <:Float , 'Y <:Float,['F X <:Y

T-OPRT -

Nz: X,y:YF (r—y): VX <:Float.VY <:Float. X xY — Y [T-0]

' X <:Float,'F Y <:Float,I'F X <Y, TF X <Y (T-OPRT *]
Tz: X,y: Y+ (z*y): VX <:Float.VY <:Float. X XY — Y

' X <:Float, 'Y <:Float,'F X <Y

[T-OPRT /]

Iz: X,y: Y+ (z/y) : VX <:Float.VY <:Float.X XY — Y
- :F1 + :
I'F X <:Float, '+ Y <:Float [T-OPRT DIV]

Ie: X,y:YF (z div y) : VX <:Float.VY <:Float.X x Y — Integer

Table 23: Type Rules for Multiplicity and Additive Operators

Note that within these type rules the operator + has two overloaded meanings, one for
type Text, and one for numeric types. We used the notion of bounded universally quantified
types to describe the behavior of the operator + for numeric values. The type rule “Oprt-
Numeric +” indicates that the + operator accepts types which range over all subtypes of

the type Float.

Most binary operators cause conversions of operands and yield results the same way. The
way these operators cause conversions is called “usual arithmetic conversions”. Arithmetic
conversions of operands of different native types are performed as shown in the Table 24.
As an example in the arithmatic statement 2 + 2.5 the first argument, 2, will be coerced to

its corresponding Float type.

54

Conditions Met Conversion

Either operand is of type Float Other operand is converted to type Float

Preceding condition not met and ei- | Other operand is converted to type Decimal
ther operand is of type Decimal

Preceding conditions not met (none | Both operands are Integers and no conversion needed
of the operands are of floating

types).

Table 24: Arithmetic Conversions

The multiplicative operators take operands of arithmetic types. The modulus operator
(mod) has a stricter requirement in that its operands must be of Integer type. The conver-
sions covered in Arithmetic Conversions are applied to the operands, and the result is of

the converted type.

The modulus operator yields the remainder given by the following expression, where e; is
the first operand and e is the second: e; — (e1/e2) * e2, where both operands are of integer
types. Moreover, division by 0 in either a division or a modulus expression is undefined and

causes a run-time error.

55

'+ S:T,T € {Float,Decimal, Integer}
S/0 — wrong

[E-DI1VISION BY 0]

T'k §: Integer
S mod 0 — wrong

[E-MoDULUS BY 0]

4.10.2 Assignment Operators

In the Erasmus language an assignment is in the form of vi=e. Note that in the assign-
ment in the form of v:=e, the lvalue v must be a reference type, and rvalue e must be a

subtype of the l-value v. The type rule for the assignments is given in Table 25.

I'kviref T,'Fe:T’,T? <: T
I'Fvi=e : Void

[STAT ASSIGN]

Table 25: Type Rules for Assignment in Erasmus

Moreover, the assignment operators + =, etc., expand to regular assignment statements,

as shown below:

V4+=e = v:i=Vv-+e
Vv-=e = vi=v-e
Vi=e = vi=vxe
v/=e = vi=v/e
vih=e = vi=v%e

The type rules for these assignment operators are given in Table 26 below.

56

I'Fviref T,T'Fe:T’, T’

I'Fv+t=e : Void

I'tviref T,TFe:T’, T’

I'Fv-=e : Void

T'kFviref T,TFe:T°, T’

I'Fvx=e : Void

I'tviref T, 'Fe:T’, T’

I'Fv/=e : Void

I'kviref T,TFe:T°, T’

T'Fv %=e : Void

[STAT ASSIGN 1]

[STAT ASSIGN 2]

[STAT ASSIGN 3]

[STAT ASSIGN 4]

[STAT ASSIGN 5]

Table 26: Type Rules for Assignment in Erasmus

57

4.10.3 Relational and Equality Operators

The appropriate type rules for relational and equality operators are given in Table 27

below.
T'F X <:Float,I' Y <:Float
T-OPRT-NUM
Dz: X,y:YF (z<y): VX <:Float.VY <:Float.X x Y — Bool [T-Oprr-Num <]
T'F X <:Float,I'F Y <:Float
. T-OpPRT-NUM
Fe: X,y:YF (z>y): VX <:Float.VY <:Float.X X Y — Bool [T-0 >
' X <:Float,'F Y <:Float
: T-OPRT-NUM <=
De: X,y: Y+ (z<=y): VX <:Float.VY <:Float.X x ¥ — Bool []
I'F X <:Float,I'F Y <:Float (T-OPRT-NUM >=]
z: X,y: Y+ (z>=y): VX <:Float.VY <:Float.X X Y — Bool -
' X <:Float, ' Y <:Float
. T- -NuM !=
Nz: X,y:YF (2! =y) : VX <:Float.VY <:Float.X x Y — Bool [T-OPRT-NuM 1=]

I'z:TextF x:Text I',y:Text F y: Text

' (z < y) : Text x Text — Bool

[z:Text -z :Text I',y: Text F y : Text

[T-OPRT-TEXT <]

Iz :TextbFx:Text I',y: Text - y: Text

I'F (z > y) : Text x Text — Bool

[T-OPRT-TEXT >]

I'F (z <=y): Text X Text — Bool

Iz :Text bk x:Text I',y: Text - y: Text

[T-OPRT-TEXT <=]

I'F (z >=y) : Text x Text — Bool

D,z:TextFz:Text I'y: Text - y : Text

[T-OPRT-TEXT >=]

'k (z! = y) : Text x Text — Bool

[T-OPRT-TEXT !=]

Table 27: Type Rules for Relational and Equality Operators

58

4.10.4 Logical Operators

¢

Logical operators are ‘‘and’’, ‘‘or’’, and ‘‘not’’. The ‘‘not’’ operator has the

“‘or’? operator has the lowest. As usual, precedence can

highest precedence and the
be overridden by parenthesis. The first order type system is required to construct these

operators. The type rules for logical operators are given in Table 28.

'+ Bl,Bg : Bool

TF (B, and By): Bool [T-OPRT-AND)]
T FF&&B 1B 23:5?;1001 [T-OPrT-OR]
r I—P(:otB :BB)o:ol;.ool [T-OPRT-NoOT]
BBy Bl g Opar =

I' B, B : Bool T-B-OpRT 1]

' (B; !'= Bj):Bool

Table 28: Type Rules For Logical Operators

4.11 Conditional Statement

The syntax of conditional statements are given below.

Conditional = if bool then Sequence

{elif bool then Sequence}

[else Sequence] end.

59

The first order type system is required to explain the behavior of the if statement. The

type rules for conditional statements are given in Table 29.

'+ B:Bool,I' §:Void
'+ (if B then S end) : Void

[STAT IF]

T'F By,Bs :Bool, ' - 51,5; : Void
'k (if B; then S; elif By then S end) : Void

[STAT ELIF]

I'+ By, By : Bool,I' - 5y, 59,85 : Void
' (if B; then S; elif By then S; else S3 end) : Void

[STAT ELSE]

Table 29: Type Rules for Conditional Statement

The rules “Stat IF”, “Stat EIIF”, and “Stat Else” indicate that these conditional state-

ments are well formed terms in our static enviroment I

4.12 Loop Statement

Erasmus language provides one kind of loop statements. This statement is in the form

of:

Loop = loop Sequence end.
tu= terms
loop t end loop statement
exit keyword exit

Table 30: Syntax For Loop Statement

60

The sequence in a loop statement is executed repeatedly until one of its statements
executes an exit statement. Note that the erit statement is allowed only within a loop or
loopselect statement. Moreover, Erasmus language provides the usage of while statement
only within the declaration of loop statement. The type rlues for these loop statements are

shown in Table 31.

'+ S:Void
I'F (loop S exit end):Void

[T-STAT LOOP-EXIT]

'k S:Void
I'F ((loop S end) : Void)

[T-STAT LOOP]

Table 31: Type Rules for Loop Statements in Erasmus

4.13 While and Until Statements

The while and until statements are, effectively, macros:

While = while C = if not C then exit end.
Until = until C = if C then exit end.
ti= terms

while t while statement
until t until statement

Table 32: Syntax For While and Until Statements

The while and until statements are only allowed within the loop statement. In the loop
statements with while or until, the body of loop will be executed repeatedly until its while

or until statement executes the exit statement. Table 33 shows the type rules for while and

61

until statements.

'+ B:Bool, '+ 51,55 : Void
Tk (loop Si; until B; Sy end):Void

[T-STAT LOOP-UNTIL]

' B:Bool,I'F S1,85: Void
I'F (loop Si; while B; Ss end):Void

[T-STAT LOOP-WHILE]

Table 33: Type Rules For While and Until Statements in Erasmus

62

Chapter 5

Erasmus As a Process Oriented

Language

Erasmus language is a process oriented programming language which is mainly based
on cells and their interactions. In this chapter we will explain the main concepts of the
Erasmus project such as messages, protocols, ports, closures, and cells. We will then expand
and formalize our previous type system with the syntax, appropriate type rules, and the
subtyping relations of these fundamental concepts. We will also provide some algorithms
for protocol satisfaction and protocol equality which enables us to compare the protocols

and to explain the behaviors of cells.

Object-oriented languages are becoming increasingly popular for the development of soft-
ware systems of all kinds, ranging from small web-based applications to large server-side
applications. The concept of the objects gives a power to software engineers through their
desire goal, as an example modern object-oriented languages such as Java contain features

such as exception handling, dynamic binding, extensive control of visibility, and threads.

63

Although these features add to a language’s expressive power and provide many benefits
from a software engineering point of view, they also make it more difficult to implement
a language efficiently. One of the main difficulties of an object oriented languages is that
in the object model, an object doesn’t provide a full control over the sequence in which

method calls and events may hit an object.

Erasmus language is a process oriented language in which all the objects are cells and the
behaviors of cells could be explained by their processes. These cells may interact with each
other and have the full control over their interactions which contrast with the object model.
Therefore in this section we will concentrate on introducing Erasmus language as a process
oriented language by finding the answers to the questions such as what do we mean by the
notion of cells, processes, messages, protocols, and ports and within these explanations we
will expand our type system with the appropriate syntaxes , type rules, and the subtyping

relations.

An execution of the Erasmus project comprises cells and their interactions. A cell could
be as small as a single character or as large as a distributed system. Each cell has its own
attributes and behaviors, and has a full control over them which contrasts with the object
model in which provides week control over the sequences in which methods calls and events
may hit an object. The behavior(s) of a cell are fully determined by its processes. Generally
talking, Erasmus project is based on cells and their communications; these communications

take place within the processes of cells by the means of messages.

The eventual economic success of the component-based software industry depends on

the ability to mix and match parts selected from different suppliers. The components of

64

Erasmus project are cells. Cells are either servers or clients or could be both. Servers and
clients may link together and interact with each other by the means of messages. Protocols
are used to define not only the structure of the messages that may flow between cells but
also their allowable sequences. These communications between a server and a client must

be done in a way that:

e The server side must accept all the queries sent by the client.

e The client side must accept all the replies sent by the server.

5.1 Messages

As mentioned earlier, an execution of Erasmus langauge comprises cells and their inter-
actions, two cells may link together and interact that is; the sequences of information may

exchange between them. The unit of these interactions is called messages.

When two cells link together, one becomes a server and the other becomes a client. The
client side sends queries to the server side, and the server side sends replies back to the
client. These queries and replies are called messages. A message may or may not contain

data. A message which doesn’t contain data is called a signal.

Messages are defined by their names and the types of data they are carrying; they also
can carry the data of different types. Messages are defined by m : T, U, ... where m is its
name and T, U, ...are the types of the data it carries, and signals are defined by just their
names. In the Erasmus project the declarations for messages are only allowed just within

protocols.

65

According to the materials mentioned above and by taking the direction of the communi-
cations between cells into our consideration, it is useful in this place to distinguish between

four kinds of messages flowing between cells.

Therefore, we categorize messages into four groups which are given below:

1. A query signal s sent from a client to a server.

2. A reply signal “s sent from a server to a client.

3. A query message m : T sent from a client to a server.

4. A reply message “m : T sent from a server to a client.

Table 34 shows the typing rules for the messages. Note that the type rule “Type Mes-
sage” defines m as a send message that is; the direction of this message during the com-
munication between two cells is from a client to the server. Moreover, the type rule “Type
Reply Message” defines “m as a reply message indicating that the direction of this message

during the communications is from a server to the client side from which made a request.

A
I'm:AFm: A

[T-SEND MESSAGE]

THA
T,"m:AF "m: A

[T-REPLY MESSAGE]

Table 34: Type Rules for Erasmus

66

Note that the definitions of messages are same as the definition of variables, but the

definition of messages are only allowed within the scope of protocols.

5.1.1 Subtyping for Messages

Figure 3 shows a communication between a server and a client.

Client Server
me: T — ms: 1"
“ne: U’ — “ng: U

Figure 3: Client/server communication

In this figure the client side sends a query message m. of type T to the server. The
server side expects a query message m; of type T" from a client. Therefore, in order for this
communication to take place first the message identifier m, must be equal to the message
identifier mg that is m, = mg, and second the type of the message m. must be a subtype
of the type of the message m, that is, T <:T". On the other side, when this server recieves
a message(s) from a client, it sends a reply message "n, of type U back to the client side.
Same as above, the client side expects a replay message “n. of type U’. Thus, in order for

this communication to take place n, = ns, and U must be a subtype of U’, U <: U".

Sending messages from a client to a server, and from a server to a client work exactly like
functions, Thus the use of covariant and contravariant is obvious. Formally, the subtyping

rule for queries and replies are given by the following inference rules:

67

mczms T<:T,
(me:T) <:(mg:T")

[SUB-QUERY]

Me = My T<:T
(‘mg: Ty <: ("me: T)

[SUB-REPLY]

Figure 4: Subtyping Rules For Messages

According to these inference rules, we say that a message m. of type T, defined in the
client cell, is a subtype of the message mg of type T defined in the server cell, if and only
if m, = mg and T, <: T;. Similarly we say that a reply message “m/ of type T, defined in
the server cell is a subtype of a reply message “m/ of type T, defined in the client cell if

and only if m) = m/, and T} <: T_.

5.2 Protocols

To summarize so far, we mentioned that Erasmus language is a process oriented language
which is actually based on cells and their interactions. These interactions are called messages
and they may flow between two connected cells. Messages may carry data from a cell to
another and the direction in which these data are sent indicates whether a cell is a client or
a server side. Typically a send message from a client to a server is shown somehow similar
to the variable declaration, m : T, in which m stands for the message identifier and T stands
for the type of data it carries, and a reply message from a sever to a client is shown with the
circumflex symbol in front of the variable declaration, that is "m : T. Note that message

definitions are only allowed within the definition of protocols.

68

In this section we will introduce a new concept called protocol and we will expand our

previous type system with the appropriate type and subtyping rules.

Definition protocol is an expression which specifies both the structure of messages and
also their allowable sequences. For any messages and signals, there is a corresponding
protocol which specifies the single allowable sequence, just the message itself, send exactly
once. Therefore, we use the symbol [m] for protocols which contains the single allowable

sequence.

In Erasmus project, protocols are defined by their names and their allowable sequences,
consist of sequences of messages which the protocols allows. Message names must be unique
within the definition of a protocol. The syntax of protocols are shown in Table 35. Following

is an example of a protocol of a cell in the Erasmus language.

prot = [inp: Integer , "inp : Integer |

In this example prot is a protocol of a cell(s) which is both a client and a server. This
protocol allows a cell(s) to send (or receive) a message inp of type Integer followed by a

reply message “inp of type Integer.

Protocols are either single allowable sequences defined above, or could be constructed

©“. ¢4|37

inductively by using the operators(“;” , , “77, “¥”, “47). Protocols which are
constructed inductively by using these operators are called composite protocols. Therefore,

a protocol expression may be preceded by Multiplicity that indicates how often it may be

sent.

69

ProtocolDefinition

ProtocolName “=" Protocol

Protocol = ProtocolName | “[* ProtocolEzpression “]”.
ProtocolEzpression = UAY] VariableDeclaration
| [Multiplicity] ProtocolEzpression
| {ProtocolEzpression};
| {ProtocolEzpression} |
| ‘(‘ ProtocolExpression‘)‘.
Multiplicity = DR
tu= terms
[on =t1,...,an =ty] protocol
t.oy protocol projection
7t multiplicity
*t multiplicity
+t multiplicity
t1;to composit protocol with ;
t1 | to composit protocol with |
Ti= type

[a1: T,y op Ty

type protocol

Table 35: Syntax of Protocols in Erasmus

70

Protocol Operators As mentioned above, other protocols are constructed inductively

using operators. In the following consider p; and ¢;, i = 1,2,..., as protocols.

e 7p is a protocol specifying that p occurs once or not at all.

e xp is a protocol specifying that p occurs zero or more times.

e +p is a protocol specifying that p occurs one or more times.

e p| g is a protocol specifying that either p or ¢ occurs once.

e p; g is a protocol specifying the sequence consisting of p followed by gq.

e

Note that the operator “;” has higher precedence than

“”, and the multiplicity operator
has higher precedence, followed by sequencing. Parentheses may be used to override (or

confirm) precedence. For example, *(p1;p2 | g1;g2) is equivalent to *({p1;p2) | (¢1;92)) but

is not equivalent to *(p1; (p2 | 41); ¢2)-

The operator

“” is commutative and associative. Protocols such as p1 |p2 |-+ | pn are
unambiguous and invariant under permutation of the p;. Also, p|p = p.

The operator “;” is associative. Protocols such as p1,pa, -+, pp are unambiguous.

Trivial Protocol Although the protocols defined above are sufficient for programming
languages, but from a mathematical point of view it is useful to define some protocols which

will be never used, but the concept is useful in theory.

e The empty protocol, written ¢, corresponds to all the unconnected cells.

e The null protocol, written €, corresponds to the communication between a pair of

connected cells in which only empty sequence is allowed. The definition of protocol

71

null in Erasmus is : null = [];

Protocols are different from types; they have an extra, temporal, dimension compared
with the types. The type of protocols could be described by record types, but there are
some operators defined on protocols which records don’t accept, also the subtyping rule for
protocols are different from records; therefore we are justified at this moment to define a
new type called protocol type, and augment its type rules to our previous type sysmtem.
Similar to the record type this new type consists of a sequence of mappings from labels to

ki

values called messages. The symbol “[]” is used in our type system to indicate a protocol

type that makes it different from the symbol of record types which is “{}”.

The type rules for constructing protocols are given in Table 36 below. As usual the
first two type rules indicate that the empty protocol and the null protocol are well formed
terms in our static environment I'. The type rule “T-Protocol” construct a new type called
protocol type. Moreover, the type rules for protocol operations and multiplicity indicate
that composite protocols made by these operators are well formed terms and have the type

protocol in our static environment T.

In the Erasmus language two cells can only and only link together and communicate if
and only if the protocol of the server side satisfies the protocol of the client side. The
intution is that, a server side must accept all the queries sent by a client and the client
side must accept all the replies sent back by the server. These conditions hold true if the
protocol of the server side satisfies the protocol of the client side. Note that this relation is
not symmetric therefore we call it satisfaction instead of compatibility. Thus, “ps satisfies

”

.’ written p, <:ps, means that, in some sense, p. is “smaller” than ps. Therefore, similar
Y Ds; s y P D)

72

T'kFo

P [T-EMPTY PROTOCOL)

I'ko

F}_—ez—[‘T [T‘NULL PROTOCOL]

Fl—ai:Ai,I‘l—ﬂi:Ti
Tkl Br,.ccan Bplifon i Th, ..., an 0 T

[T-PROTOCOL]

Chpifar:Th,...,an : Ty
't poa;:ref T;

[T-PROT-PROJECT)|

Trhpifar:Th,.c an:Th),q: [0f : T, ..., 0 : Ty

T-MULTI-;
'+ (pg) | |
I‘)—p [al :T]_,...,Otn:TnLq: [Oéi :T{""’a%:TA] [T'MULTI'H
I'(plg)

I‘]—p:[alel,...,an:Tn] ?

T [T-MULTI-?]
I’l—p:[ale]_,...,an:Tn] *

o [T-MULTI-*]
Chp:lar:Th,...,0n Ty [T-MULTI--i-]

L'k +p

Table 36: Type Rules for Protocols in Erasmus

73

to the other types in our type system we should be able to define a subtyping relation,

satisfaction, for protocols.

As mentioned eralier, Erasmus language enforces type equality for all types instead of
protocols by the means of name equivalences that is two types are equal if and only if they
have a same names. As an example two record types are equal if they have equal names,
there is also a subtyping relation between records if and only if one of them is a parent and
the other is a child. But on the other side, Erasmus project compares protocols by their
structures(their traces sets) meaning that two protocols are equal if they have the same

structures(same traces sets).

In order to define the satisfaction relation between protocols, we need to define some

important concepts which are given in the following sub-sections.

5.2.1 Traces and Traces Sets

Traces are a sequence of events happened up to the moment of time according to a
process, [9]. These processes are communications between connected cells, therefore traces
in Erasmus project are defined as the sequence of messages, that may flow between a pair

of cells during their connections.

The symbol for traces is <>. Thus, the trace consisting of messages mi,mao,ms,... is

written < mi, mo, m3,... >.

If a trace t belongs to the sequence of messages allowed by a protocol p then we say that

t respects p. Figure 5 shows, for each protocol operator applied to messages, the traces

74

that respect the protocol. To be easier to read we omit the types of the messages in the

following figure.

Protocol Traces

[m] (m)

?[m] (), (m)

[ma] | [m2] = [my1 [ma] | (m1), (ma)

[ma]; [ma] = [mi;ma] | (ma, me)

*[m] <>7 <m>7 m’m bl m7m’m>’
+[m] (m), (mym), (m,m,m),

Figure 5: Protocols and traces

There are some operations defined on traces which are given below:

e Concatenation Traces may be concatenated. The concatenation of trace ¢ and s

is written t.s. For example, if ¢t =< mi,mg > and s =< mg,myg > then t.s =<

mi, M2, M3, M4 >.

e Power Traces may be powered. The power of trace t by n, read ¢ (n times), is
written ¢*. For example, if t =< m1, mg > then t2 = t.t =< my, mg, my, mg > and

t" =< my, mg, My, Ma, ... >.

Definition 7 (p) is the set of all traces that respects a protocol p.

For example, if m is a message, then:

T([m]) = {(m)},
7(m) = {(), (m)}.

75

Like traces we are able to define concatenation and power on 7(). The concatenation

operator is extended for trace sets S and T as follows:

ST = {st|scSandteT}.

Trace sets may also be powered, that is:

° = {()}

™ = {T.T...T}.
N’
n times

Since traces sets are sets, we use conventional set-theoretic notation (€, C, U, etc.) to
write expressions involving traces and trace sets. Using trace sets, we can provide formal
definitions for the protocol operators introduced before, as shown in Table 37 below. As

usual, m is a message and p, ¢ are protocols, and T and S are traces sets.

T(¢) = {} T(Im}) = {(m)}

T(e) = {()} T() =T(p)V{()}

T(p)°={()} T(plg=TpUT(9)

T(p)"=.7(p)...7(p) T(p;q) = T(p).T(q)
n time

ST={st]|seS asnd teT} T(*p) = Up»o T (p)"

Table 37: Defining Protocols by Trace Sets

76

5.2.2 Protocol Equality

As mentioned before, Erasmus project uses name equivalences for type comparisons but
when it comes to protocols it uses structure equivalences instead. To understand why
protocols comparison is based on the structural equivalences it is useful in this place to

distinguish between two different equalities called intension and extension equality.

Intension and Extension The intension of an expression is its syntactic form; its ez-
tension is its value in some appropriate mathematical space. In mathematics, equality is
usually defined between extensions rather than intensions.

For example, consider the expressions 3 x (4+5) and 3 x 4+ 3 x 5. Normally, we would
say they are equal, because both expressions yield 27 when evaluated; this is extensional
comparison. If we were concerned with the time required to calculate them, however, we
would consider them unequal, because the first requires two operations but the second
requires three operations; this is intensional comparison.

The distinction is important when computation is involved. Consider sets S1 and Sa

defined by:

Si = {n|nisprime}nN{n|n<20}

Sy = {2,3,5,7,11,13,17,19}.
These sets are equal but, in order to prove this, we must reason with their intensions. We
cannot reason with their extensions, because the first component of S; is an infinite set.

With this in mind, we define equality of protocols (intensions) in terms of equality of

their traces (extensions). Therefore, for any given protocols p and ¢, p = ¢ if and only if:

1. T(p) =T(q)

7

2. The subtyping rules for any send messages and replies in Figure 4 must hold true,

that is:

e For any send message m of type T in p, there must be a send message in g with

the same message identifier and the same type.

e For any reply query "m of type T in p, there must be a replay message in g with

the same identifier and the same type.

Note that traces may have unbounded size, therefore following are some definitions with
which we are able to compare protocols by comparing their traces sets even if their traces

sets have infinite number of elements.

Definition Protocol p is an infinite protocol if it’s traces set has infinite number of allow-

able sequences, that is, p is infinite if and only if |7 (p)|= oo.

Acoording to the definition of infinite protocols following rules are trivial.
e xp and +p are infinite protocols becasue |7 (xp)| = oo and |T (+p)| = oo.

e If protocol p is an infinite protocol then for any protocols ¢, z and ... the composite

protocol p’ = p; q; z;... is an infinite protocol.

e If protocol p is an infinite protocol then for any protocols ¢, z and ... the composite

protocol p’ =p|q|z]... is an infinite protocol.

e No other protocol is an infinite protocol.

Definition Protocol p is said to be nullable if {) € T (p).

78

Acoording to the definition of nullable protocols following rules are trivial.

e Protocol ¢ is nullable because T () = {()}.

For any protocol p;, i > 0, The composite protocol p; | pn | €] ... is nullable.

If p is a protocol then ?p is nullable because 7p = p | €.

If p is a protocol then *p is nullable because *p = +p | €.

If protocols p;, 2 > 0 are nullable then py;pa;. ..oy is nullable.

No other protocol is nullable.
Note that it is possible for a protocol to be both infinite and nullable.

Definition Consider p as a protocol, then Ny, (p) is equal to the maximum number of
messages that p can send or receive during communication periods, accordingly Npin(p) is
the minimum number of messages that p can send or receive.
For example:
p=|m:T;m :T'|m" : T"| = Npaz(p) = 2, Nmin(p) = 1.
S ——
Mazx

Figure 6 shows the maximum and minimum number of messages for the given protocols,

and the ways to compute this number for any composite protocol. As usual, m is a message

and p,q are protocols. Note that by using these rules we are able to compute the N,

maximum and minimum number of messages, for any given compisite protocol.

As mentioned before, Erasmus language compares two protocols by first comparing their

traces sets, and second by comparing the types of their messages and reply queries defined in

79

Nmaz(¢) = 0 Nmin(¢) = 0

Nmaz(€) = 1 Ninin(€) = 1

Npaz(m]) = 1 Nmin([m]) = 1

Nmaz(p|@) = maz{Nmaz(P); Nmaz(@)} | Nmin(p| @) = min{Nmin(p), Nmin(a)}
Nmaz(®79) = Nmae(p) + Nmaz(9) Nuin(039) = Nmin(P) + Nmin(9)
Nmaz(?P) = Nimaz(p) Nmin(?p) = 1

Nmaz(*p) = o0 Nmin(xp) = 1

Nmez(+p) = o0 Nmin(+p) = Nmin(p)

Figure 6: Maximum and Minimum number of messages

their scopes. But traces sets may have unbounded size which makes it difficult to compare
them. Therefore, we are justified in this place to introduce a new concept called finite
reduction, and the goal of this concept is to reduce the size of protocols traces sets to make

it possible for comparision.

Definition For any protocol p there is a corresponding protocol 7 called finite reduction
of p in which protocol 7 contains all the allowable sequences defined in the protocol p except

the multiplicity operator +.

Following is an example of finite reduction of protocols p and gq.
p=+(mi1:Tiyme:Ta)) = 7 = [my:Tiyme: T

g=x(my:T;my:To)) = [m1: Tysmy : Ty | e

Ql
il

According to the definition of 7 following terms are trivial.

80

The last three rules indicate that if there is a multiplicity symbol in the definition of
protocol p, then protocol 7 is equal to the definition of p without the multiplicity symbol.
Within these rules given above, one is able to construct the finite reduction of any given

protocol.

To summerize so far, two protocols are said to be equal if they have equal structures,
and by defining protocols with their traces sets we are able then to compare these sets in
order to find out their equality, but the traces sets may have unbounded sizes which makes
it difficult to compare them, therefore we introduced a new but important concept called
“finite reduction” which gives us a strong tool for comparing protocols. The usage of this

concept is to reduce the size of traces sets of infinite protocols.

Theorem 1 (protocol equality) There is an algorithm that, given two protocols p and g,

determines whether p = q.

Proof: Two protocols are equal if their traces sets are equal, and the subtyping rules for

their send and reply messages hold true. Therefore, instead of comparing their allowable

81

sequences we can compare their traces sets, that is p = q if and only if : (V below means

for all)

1. T(p) =T(q)
2.VmTep=>mTeq
3. V' mT ep= "mT €q

Algorithm A; given below is the algorithm in which given two protocols p and g returns

true if p = ¢ or false otherwise.

Algorithm A;

1. If for any two protocols p and g we have |7 (p)| # oo # |T(q)|, then these two protocols

are equal if the following statements hold true.

(8) T(p) € T(g) and T(q) € 7 (p).
(b) Vm:T € p=>mT € q.

(c) VmT ep="mT €q.
2. if |T(p)| = oo and |7 (q)| # oo or vice versa then they are not equal.

3. If both of protocols p and p’ are infinite protocols then go through these steps:

(a) Find Nz (D) and Nipgaz (7).
(b) Create the sets ¥ = U,]:f;"f”@ T(P)" and ¥’ = f;"f”(ﬁ) T(@)".

() If T(g) C ¥ and T(p) C ¥’ then p = ¢ if:

82

e YmTep=>mTEeq.
o V'mT €ep="mT €q.

e For any signal message s € p, there is a signal message s € q.

This algorithm is both sound and complete that is:

e This algorithm is sound if given any protocols p and ¢ returns true if p = ¢ and false

otherwise.

e This algorithm is complete if given any protocols p, g such that p = ¢, returns true.

Proof of soundness Steps (1) and (2) are the direct conclusion of the set theoretical
concepts, that is, two sets are equal if and only if all the members of one are also the
members of the other.

To prove the soundness of step (3) we should prove that:

1) i 7@ U@ TE)n then 7(g) C T (p)
2 i 70 cUime® T(gr then T(p) C 7(q)
(8) if (1) and (2) hold true then 7T (p) = 7 (q).

To prove this we use the following lemmas.

Lemma 1 If p is a protocol then 7(p) C 7 (p).

Proof If p is not an infinite protocol then by the definition of 7 we have p = p which implies
that T(p) = T(p). Now consider p is an infinite protocol, thus it is obvious that p has the
multiplicity operator “+” in its definition, and there is a protocol ¢ that p = +q where ¢ is

not an infinite protocol. Therefore,

83

T(p) = T(+qg) = T(g)...-.T(g) (1)

n times, n>0
) = T(xqg) = T(9) (2)
Thus, (1) and (2) imply that 7(p) C T(p). |

Lemma 2 If p is an infinite protocol then for any set A C 7 (p), A.A C T(p) where dot
between two A’s is concatenation.

Proof: protocol p is an infinite protocol and is in the form of p = +p. Therefore, the traces
set of protocol p is the n times concatenation of 7(p). Thus, for any element (z) € 7 (p) we
have (z,z) € T(p) which lead us to the proof in which for every set A such that A C T(p)

we have A.A C T(p). n

n

Lemma 3 If p is an infinite protocol then lim, .7 (B)" = T(p).

Proof: p is an infinite protocol, therefore it is in the from of p = +p. Therefore:

T(p) = T(+D) = T(BPB...;P)
N, e’
n times, n>0
= T(®)....T(p) = T@E"=°
n times, n>0
= limp—e7 (B)"

|
Therefore, by using these three lemmas we are able to prove that the third rule works

in the way as expected, that is; for any two given infinite protocol p and ¢ if 7(g) C

84

2Zi*@ T(p)" then:

)

lemma 1,3 = ,]:’Zf”@ T®)" C T(p)

lemma 2 = limp~7 (@" S T(p)

= T(g) ST(p)

Similarly if 7(7) C U,21 Nmaz (P) T (@)™ then T(p) C 7 (q) which implies that 7 (p) = T(q).

Thus, if the subtyping rule for messages and replies holds true, then we have p = q. |

Proof of completeness The proof for steps (1) and (2) are obvious. To prove that
this algorithm is complete for the third step, we have to prove that if p = g then 7(g) C
Nmaw Nmaz
2" @ T(p)" and T(p) € UpZi*® T(@)".

7@ ¢ UN'"”(q T(P)" , then we can prove that 7(§) € 7 (p) = T (q) which is a con-

tradiction. Therefore, consider that 7(3) & UNm“‘”(q) T(@)" and T(q) C UN"“””(Q)+1 T(@)"

then:
) T@ g U @700 = 3t e T@) st. t ¢ U@ 7 (p)n
@ T@ Uz T = T@) € UnZt"® T(p) UT(p) =@+
(3) fromél)v@) te T(p)Nmam(a)"'l

trace t belongs to both 7(g) and 7 (p)Vme=@+1; therefore following statements are true:

te T(g) = Npin(@) < It| € Nmaz(2) (1)

t € T(p)Nmes@+!l = [Npoo(7) + 1] X Nmin(P) < [t £ [Nmaz (@) + 1] X Nmaae (@) (2)
From (1) and (2) we have [Npmaz(Q) + 1] X Nppin(P) < |t| € Npmaz(§) which is a contradiction,
and implies that 7(g) € Un;"l‘n@ﬂ T()".

85

Accordingly, 7(7) € Us>; T(P)™ = T(p) = T(q) which is a contradiction. Therefore, if
we couldn’t produce 7(g) by Nmaz(7) times concatenation of 7 (P) then we are not able to
produce it at all. Thus, if p = g then 7(g) must be a subset of U,I:[:f”(q) 7(p)™.

The proof of the other side is the same. |

5.2.3 Protocol Satisfaction

To summerize so far, we mentioned that an execution of Erasmus project comprises cells
and their interactions, two cells may link together and communicate. For these cells to
communicate, their protocols must be compatible meaning that there must be a relation
between their protocols. Therefore like the other types, we should be able to define a
subtyping relation for protocols. Since the relation is not symmetric, we call it “satisfaction”

rather than compatibility.

The intuition is that; if a client C with protocol p, is linked to a server S with protocol

ps, then pg satisfies p. if;
1. S responds to all queries sent by C, and

2. C accepts all the replies sent by S.

To see that satisfacion is different from equality, we note that S may provide services
that C never uses. Thus, “ps satisfies p.”, written p, <: ps, means that, in some sense, p. is
“smaller” than p;.

In the previous section we defined equality of protocols by the equality of their traces

sets. Using the same convection, we define protocols satisfaction as follows:

Definition Protocol p is a subprotocol of ¢, written p <: ¢ if and only if:

86

e T(p) C T(q).

eVYm:Tep Im:T" € qsuch that T" <: T

oV 'm:Tep 3'm:T € gsuch that T <: T".

Theorem 2 The satisfaction relation is partial order.

Proof: A partial order is reflexive, transitive, and antisymmetric. Thus <: is:

o reflerive, because

Tp)ST(p) =p<:p

e transitive, because

p<:pandp'<iq = T(p) S T(p)and T(p') C T(q)
= T(p) S 7(q)

= p<:iq.

e antisymmetric, because

p<:pandp <ip = T(p) CT()and T(p') C T(p)

Theorem 3 (protocol satisfaction) There is an algorithm, given two protocols p and g

decides whether p <:q or g <:p, or p = g, or there is no relation at all.

87

Following is the algorithm that given two protocols p and ¢ decides whether p <: g or

g <:p, or p = q, or there is no relation at all.

Algorithm A,
1. If for any given protocols p and g, |T(p)| # oo # |T(¢)| then:

(a) Find the traces sets of both protocols, 7 (p) and T (g).
(b) p<:qif:
e T(p) CT(g).
e Vm:T €p, Im:T € qgsuch that TV <: T.
e V'm:Te€p 3I'm:T € gsuch that T <: T".
(c) g<:pif:
e T(g) S T(p).
eVm:Te€gq Im:T € psuch that T" <: T.
eV'm:Teq 3I'm: T € psuch that T <:T".
(d) If p<:qand qg<:p then p=gq.
2. Otherwise, follow these steps:
(a) Find T(p) and 7 ().

(b) Find Npez(P) and Npao (7).

(c) Create the sets ¥ =me=(@ UT(®)" and ¥ =] +) UT@".

n=1

(d) ¢g<:pif T(g) C ¥ and,

88

eVm:Teq Im:T' € psuch that T" <: T

eV'm:Teq I'm:T € psuch that T <:T".
(e) p<:qif T(p) C ¥ and,

eVm:Tep Im:T € gsuch that T <: T.

eV m:Tep I'm:T € gsuch that T <: T".

(f) (e) and (d) hold true then p = gq. [|

Similar to proof for protocols equality, this algorithm is also both sound and complete.

Following rules are direct conclusions of the definition of protocols satisfaction. V/ p;

stands for the alternation p; | pa |- -+ and Ap; to stand for the sequence p1; po;. . ..

1. For repetition, we have the obvious rules:

€ <. xp
€ <. 7p
p < %*p
p < 7
p < +p

2. For alternation, a protocol is satisfied by any protocol with a non-empty subset of

alternatives. Formally:

Vo < \/p iR#Band RCS.
i€R jes

89

3. The subprotocol relation extends over each operator:

FFp<:p]
T'Foxp <:xp/
'Fp<:pjfories 2]
I Ap < A
ieS iesS
T+ p; <:p| for i
pi<:p,foriesS 3]

't \Vop < Vo

€S ieS
Theorem 4 There exists a minimum (“bottom”) protocol, L,, such that, for any given

protocol p, Lp <:p.

Proof: Define 1, equal to 1, = ¢. Therefore, for any given protocol p:

T(Lp) = T(o)={}

Theorem 5 There exists a mazimum (“Top”) protocol, Tp, such that, for any given pro-

tocol p, p <: Tp.

Proof: For any variable identifier z; defined in our enviroment, define T, as equal to
Tp=x*[(Va;: any)|(V z;: any)] where \/zi means the union of all variable names.
Therefore, for any given protocol p, it is obvious that p <: T,. Same as the Top type “any”

this protocol is just useful in theory. [|

90

5.3 Ports

The features we have defined up to now - function types, record types, pair and tuple
types, reference types, protocol types, and subtyping- are sufficient to build up a collection
of programming idioms supporting objects, ports and closures. Therefore, in the following
sections we will introduce these concepts and we will implement their behaviors by using

the types and the type rules we've defined recently.

A cell accesses protocols within ports. A port declaration introduces a port name and
associates a protocol with it. The syntaxe of ports are given in Table 38. Note that the
symbol ‘+:’ indicates that the port is associated with a process or a cell that provides to
protocol, that is, it is a server. The symbol ‘-’ indicates that the port is associated with
a process or a cell that needs to protocol, that is, it is a client. Moreover, the symbol ‘::’
indicates that no particular direction is associated with the port; it is used to declare a port

that links a server to a client.

PortDeclaration = PortName (‘+:" | -’ | “t") Protocol

ti= terms

t+:t port provider
t-it port need
tut port link

t. projection

Table 38: Syntax Of Ports In Erasmus

91

The type of a port is a Cartesian product, pair type, of A x B where A belongs to the
set PORT-TYPE and B is a protocol type. The set PORT-TYPE consists of two types. These
two types are PORT-PROVIDER and PORT-NEED and are the keywords of the grammar. The
only defined value for these is zero, and the following subtype relation is defined on these

two types.

PORT-NEED <: PORT-PROVIDER

The symbols + : and — : in the syntax of ports are functions that generate ports. These

two functions can be described by the first order lambda calculus as follows.
+: = Ap:far:T1,...0n:Ty).(< 0: PORT-PROVIDER, p >)
—: = Ap:feq:Th,...0n: Tp].(< 0: PORT-NEED, p >)
Therefore, v+ : p and v— : p are abbreviations for v : (+ :)(p) and v : (— :)(p), and they

have the following types.

(+:) : [a1:Ti,...0n:Ty] =< PORT-PROVIDER, [a1 : T1,...an : Tp] >

(=:) ¢ [oa:Ti,...an:Ty] =< PORT-NEED, [: T, ...qn : Tp] >

If v is a port then the indexing operator could be explained as follows:

vy = m(v).a;

As mentioned above, ports have pair types, therefore the subtyping rule for ports are
the same as the subtyping rule for pair types. Therefore, for any given protocol p; and po,

the following rule is trivial.

92

'Fpi<:po
'k (v—:p1) <: (v—:p2)

[T-SuB-PORTS-1]

F|—p1 <:p2
L'k (v+:p1) <: (v+: p2)

[T-SUB-PORTS-2]

Ff“pl <:po
Tk (v——:p1) <: (v+ : p2)

[T-SUB-PORTS-3]

Moreover, if v is a port then the indexing operator could be explained as follows:

v, = m(v).o

The link operator :: is a function that links closures together. Table 39 below shows the

appropriate type rules for the ports.

Chp:lon:Th,...,0n: Ty
T'Fout+:p

[T-PORT PROVIDER]

Chp:ilar:T,...,an: Ty
'Fov—:p

[T-PoRT CLIENT)]

Php:flar:Th,...,an : Ty
TFovup

[T-PORT LINK]

Crhp:lon:Th,...;on:Tp), T Hout:p
I'Fv.a;:ref T

[T-VAL PORT|

'k p<ipo
Ik (v1— :p1) <: (vo+ : p2)

[T-SuB PORT]

Table 39: Type Rules for Port in Erasmus

Note that the type rule “T-Port Provider” indicates that if variable p has a protocol type

then v:+p is a well formed term in our static environment. This holds true for the type

93

rules “T-Port Client” and “T-Port Link”. Moreover, the type rule “T-Val Port” indicates
that if variable p is a protocol type with a field « : T then v.a is a well formed term and

has a type ref T in our static environment.

5.4 Closures

As mentioned before, an execution of the Erasmus project comprises cells and their
interactions. Each cell may have some processes that describe the behavior of a cell. A
closure is a process that may be parameterized by variables and ports. The port declarations
come first, followed by a bar (“|”), and then a sequence that determines the behavior of the

process.
Closure = | ‘{’ { Declaration} ; ‘|’ Sequence’|’.

when the closure is instantiated, it is given arguments corresponding to its parameters.

Instantiation = (Cell | Closure) ‘(" {PortName|VarName}, ‘)’

A closure can be passed around, even sent across a network, and will perform as adver-
tised provided that it is given appropriate arguments. The types defined in the previous
sections are sufficient to describe the closures. As an example a closure without a port and

with ports could be explained as:

94

{1S} A-:Void.S : Void — Void

{v+:p|S} = Az:<Port-Provider, Protocol_Type>.S

: <PORT-PROVIDER, Protocol_Type> — Void

{v—:p]| S} Az : <PORT-NEED, Protocol.Type>.S

: <PORT-NEED, Protocol_Type> — Void

Therefore, closures are fucntions that accept ports as their arguments and execute their
body. Thus, a closure in the form of ¢ = {A: T |S: Void } is an abbreviation for
AA : T.S which has a function type, and could be explained by bounded universally quanti-

fied types. Table 40 given below shows the appropriate type rules for closures.

'+ S :Void
I'F {|S}:Void — Void

[T-CLOSURE WITHOUT PORTS]

' F T <: <PORT-PROVIDER, T,> 'k S:Void
I'+{v:T|S}: (VI" <:<PORT-PROVIDER, Tp>).T’ — Void

[T-CLOSURE-WITH-PORT]

+C: (VT <: <P0RT-PROVIDER,TP>).T — Void
TF C(T)

[T-CLOSURE-INST)

Table 40: Type Rules for Closures in Erasmus

As shown in Table 40 above, a closure has a function type. Therefore, the subtyping rule
for closures is same as the subtyping rule for functions. Note that the behavior of a closure
that accepts both ports and variables as its arguments could be explained same as above

by using the bounded universally quantified types.

95

5.5 Cells

To summarize so far, we have constructed our type system by introducing some appropri-
ate types such as basic types, record types, function types, protocol types and etc. By using
these types we explained the types of ports and closures. In this section we will introduce
a new concept called cells, and we will concentrate on explaining the behaviors of cells by
using the features we have introduced in the previous chapters. Moreover, some appropriate

examples and diagrams are also given to make it easier to understand these behaviors.

As mentioned earlier, an execution of Erasmus language comprises cells and their inter-
actions. A cell could be as small as a single character or it could be as large as a distributed
system. The behaviors of cells are explained by their processes. Cells and their processes
may communicate with each other through their protocols. Protocols are expressions which
specify the structure of messages as well as their allowable sequences. We also mentioned

that cells access protocols within ports.

The syntax of a cell in the Erasmus language is given below:

Cell

CellNamel|‘('{ Declaration} ‘| { Declaration|Instantiation} ¢)’

Instantiation = (Cell — Closure) ‘(’{PortName|VarName} ‘)
Note that the port and variable declarations written before the bar are from outside the

cell.

Cells in the Erasmus project could be regarded as object generators. A cell is just a
function that generates data structure encapsulating some internal state and offering access

to this state via a collection of methods. The internal state is typically organized as a

96

number of mutable instance variables (or fields) that are shared among the methods and

inaccessible from the outside of a cell.

Following are the examples in which we will explain the behaviors of cells by using the

features discussed before.

5.5.1 Example 1: “Hello World!”

The simplest possible Erasmus program consists of a process definition

proc = { | stdout := "Hello, world!" };

a cell definition that instantiates the process

cell = (proc());

and an instantiation of the cell

cell();

In this example cell is a function that first generates an object with the method proc
and then instantiates this method which prints the “Hello World!” on the screen. By using
the features discussed before we are able to describe the behavior of this cell. Therefore,

the type of cell could be explained as:

97

F : TYPE(proc)
Void — Void
F2 = /\.Z'ZFl.{y=w}

(Void — Void) — {y: Fi}

F3 = Az : F1.(Fa(z).y())
F; — Void

cell = A__:Void.(F3 (proc))
Void — Fj3

F is the type of the closure proc, and F» is a function that accepts a method and
generates a record containing that method. Moreover, F3 is a function that first accepts a
method then generates a record containing that method and then instantiates that method.
Note that how we use the first order lambda calculus to bind proc in the record. Therefore,

cell could be defined as a function that instantiates F3 with proc.

5.5.2 Example 2: Standard Input and Output

In this example we try to describe the behavior of a cell that links its two closures that
wish to communicate. The keyboard and screen servers combine to give a full interface for

simple tests. Here are the protocols.

kbprot = [*(“kbd: Text) 1;

scprot = [*(scr: Text) J;

kbprot is a protocol that sends the reply message “kbd of type Text zero or more times,

and scprot is a protocol that sends the message scr of type Text zero or more times.

98

And the keyboard server is:

keyboard = { p +: kbprot |
loop
p-kbd := stdin
end

};

keyboard is a process which has a port p as its argument. This process can access the
protocol kbprot through the port p. The port p is a port provider which indicates that it
provides something. The body of this process is a loop which reads the input screen and
stores it in p.kbd.

The screen server is similar:

screen = { p +: scprot |
loop
stdout := p.scr

end

};

Similarly screen is a process which has a port p as its argument. This process can access
the protocol scprot through the port p. The port p is a port provider which indicates that
it provides something. The body of this process is a loop which prints the values stored in
p.scr.

The following process uses the keyboard and screen servers to conduct a dialog with the

user:

99

dialog = { pk -: kbprot; ps -: scprot |
loop
ps.scr := "What is your name? ";
name: Text := pk.kbd;
ps.scr := "Hello, " + name + "!\n";
end
+;
dialog is a process which has a port pk and a port ps. This process can access the
protocol scprot and kbprot through the ports ps and pk. These ports are port need which
indicate that they need something. The body of this process is a loop that first sends a
Text message, “What is your name”, to the screen by using the ps port, and then waits
to read a Text message from pk port to store it in variable name, and at the end sends a

message, “Hello, + name + ! ” by using the ps port.

The main cell runs all of these processes:

mainCell = (
pk :: kbprot; ps :: scprot;
keyboard(pk); screen(ps); dialog(pk, ps);

)

mainCell();

mainCell is a cell which has two link ports pk and ps, and three processes keyboard,

screen, and dialog. The function mainCell() instantiates the cell which links processes

100

that share common port(s). In this example, mainCell() link keyboard and screen pro-
cesses to the dialog process. Note that only those processes which share common port(s)
could be linked together.

Programs with several protocols and processes are easier to understand if accompanied
with a diagram. Figure 7 is a diagram corresponding to the program discussed in this
section. The enclosing cell is drawn as a thick blue outline.! The outline has no ports,
corresponding to the fact that a complete Erasmus program is a “closed world”.

The processes are drawn as red rectangles. Their boundaries contain ports labelled “+”
for servers and “—” for clients. Conventionally, we put the local port names inside the
process boxes and label the connecting link with the protocol. The names that the cell uses

to link the processes are not shown, although they could be.

kbprot scprot

keyboard diakog acreen

mainCell

Figure 7: Communicating with the Keyboard and Screen

Following is the explanation for the behavior of this program. As usual consider S as a

term which has type Void.

If this document is printed without colour, you can recognize cell outlines because they are thicker and
have rounded corners.

101

The types of the closures are:

keyboard = Az :<PORT-PROVIDER, [x("kbd : Text)]>.S

<PORT-PROVIDER, [x("kbd : Text)]> — Void

screen = Az :<PORT-PROVIDER, [x(scr: Text)]>.8

<PORT-PROVIDER, [*(scr : Text)]> — Void

dialog = Az :<PORT-NEED, [x("kbd : Text)]>.(Ax : <PORT-NEED, [*(scr : Text)]>.8)

<PORT-NEED, [*("kbd : Text)]> — (KPORT-NEED, [*(scr : Text)]>— Void)

and the type of the main cell that runs all of these processes is: (TP(t) stands for the
type of the term t)
R = Az :<TP(keyboard) ,TP(screen),TP(dialog)>.

{z1 = m(z), 22 = m2(x), z3 = m3(x)}

<t1,...,tn >— {1 : TP(keyboard), as : TP(screen), a3 : TP(dialog) }

mainCell = A__:Void.

(

Link (keybord,dialog);
Link(screen,dialog);
F)(<keyboard,screen,dialog>).z; (pk)
F(<keyboard,screen,dialog>).z2 (ps)

Fj(<keyboard,screen,dialog>).z3 (pk,ps)

)

Void — Void

102

Therefore, mainCell links and instantiate the closures.

5.5.3 Link

As shown in the Figure 7, two closures and cells could link together and communicate.

@,

The syntax “:” in a port definition is used to indicate a link port which links closures and
cells together. As mentioned in the section portl, we defined the type of a port as a Cartesian
product, pair type, of A X B where A belongs to the set PORT-TYPE and B is a protocol
type. We also mentioned that the set PORT-TYPE consists of two types PORT-PROVIDER and
PORT-NEED. It is useful in this place to add a new type called PORT-LINK to this set with

the following attributes.

e it is the keyword of the grammar.

o the only defiend value for this type is zero.

e PORT-LINK <:PORT-NEED <:PORT-PROVIDER.

Therefore, the type of a link port v :: p is v :< PORT-LINK, TYPE(p) >.

Following are the conditions in which two closures could be linked. In the following C;

and Cy are closures.

1. (1 and C; must share a common link port, and must accept the link port as their

argument.

2. C) must be a client closure. (it must contain a port need)

3. C must be a server closure. (it must contain a port provider)

4. the type of C; must be a subtype of the type of Cy that is, Cq1 <: Cs.

103

Following is an example in which mainCell() links two closures A and B together and

runs the program. As usual the types of S and S’ are Void, and p, p/, and p” are protocols.

=
]

{v+:p | 8}

B={v’=-:p | 8}

mainCell = (pl :: p’’ ; A(pl) ; B(pl););

mainCell();

According to the conditions above A and B could be linked together if the following

steps hold true.

1. p’? <:p which implies pl <: v.

2. p’’ <:p’ which implies pl <: v’.

3. v’ <:v which implies B <: A.

104

Chapter 6

Conclusion and Future Work

The Erasmus language discussed in this document is being developed by Peter Grogono
at Concordia University and Brian Shearing at The Software Factory in England. The
Erasmus language is a process oriented language which is mainly based on cells and their
interactions.

We constructed a suitable type system for this programming language which makes it to
be both safe and well-typed. We started by describing some fundamental concepts such as
the notion of type in programming languages, the need for the existence of a type system,
and the different ways in which a type system can be constructed. The evolution of type
languages from untyped universes to typed universes was also reviewed.

Some notations commonly used for describing type systems such as judgments, which are
formal assertions about the typing of programs, type rules, which are implications between
judgments, and derivations, which are deductions based on type rules were also explained.

The A-calculus is used for the type system of this programming language. We started

with the first order lambda calculus and augmented our type system with a broad spectrum

105

of simple types, record types, function types, map and array types, reference types. We
also formalized our type system by providing appropriate type rules with subtyping rlues
for these types.

Universal quantification was introduced to model parametric polymorphism. Accord-
ingly, we augmented our type system with the universally quantified types which enrich our
type system to model generic functions with type parameters. We also augmented our type
system with bounded universal quantification which enriches our type system by providing
explicit subtype parameters. We used the second order lambda calculus to describe the
behavior of these concepts.

Messages, protocols, ports, closures, and cells which are the main heart of the Erasmus
language were also explained, and we augmented their type rules with their subtyping rela-
tionships into our previous type system. Protocols satisfaction was introduced to indicate
a relationship between compatible protocols. We introduced traces sets and used them to
compare protocols (protocols satisfaction). An algorithm was also given for this reason,
and we proved that this algorithm is both sound and complete. The second order lambda
calculus was used to explain the behaviors of these concepts and their sutyping relationships
in a consistent framework.

A link function was also introduced to explain the behaviors of cells during the com-
munication periods. We also explained the conditions in which two (or more) cells are able
to link together and communicate, but it needs future works. The syntax of the Erasmus
language was also explained while we were constructing the type system. We also provided
some examples to clarify how these concepts could join together and make an Erasmus

program.

106

Future Work In conventional typed languages, the compiler assigns a type to every
expression and sub expression. However, the programmer does not have to specify the type
of every sub expression of every expression: type information need only be placed at critical
points in a program, and the rest is deduced from the context. This deduction process is
called type inference. Typically, type information is given for local variables and for function
arguments and results. The type of expressions and statements can then be inferred, given
that the type of variables and basic constants is known.

Type inference is usually done bottom-up on expression trees. Given the type of the
leaves (variables and constants) and type rules for the ways of combining expressions into
bigger expressions, it is possible to deduce the type of whole expressions. For this to work
it is sufficient to declare the type of newly introduced variables. Note that it may not be
necessary to declare the return type of a function or the type of initialized variables.

The ML language introduced a more sophisticated way of doing type inference. In ML it
is not even necessary to specify the type of newly introduced variables. The type inference
algorithm still works bottom-up. The type of a variable is initially taken to be unknown.
The instantiation of type variables is done by Robinson’s unification algorithm [10], which
also takes care of propagating information across all the instances of the same variable,
so that incompatible uses of the same variable are detected. Introductory exposition of
polymorphic type inference can be found in [4].

The best type inference algorithm known is the one used in ML and similar languages.
This amounts to saying that the best we know how to do is type inference for type systems
with little existential quantification, no subtyping, and with a limited (but quite powerful)

form of universal quantification. Moreover, in many extensions of the ML type system the

107

type-checking problem has been shown to be undecidable.

Type inference reduces to type checking when there is so much type information in a
program that the type inference task becomes trivial. More precisely we can talk of type
checking when all the type expressions involved in checking a program are already explicitly
contained in the program text, i.e., when there is no need to generate new type expressions
during compilation and all one has to do is match existing type expressions.

We probably cannot hope to find fully automatic type-inference algorithms for the type
system we have presented in this document. There is actually one problem, which is however
shared by all polymorphic languages, and ﬁhis has to do with type checking side-effects.
Some restrictions have to be imposed to prevent violating the type system by storing and
fetching polymorphic objects in memory locations. Examples can be found in [12] and [2].
There are several known practical solutioné to this problem [8, 15] which trade off flexibility

with complexity of the type checker.

108

Bibliography

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1996.

[2] A. Albano, L. Cardelli, and R. Orsini. A Strongly Typed, Interactive Conceptual
Language, Transactions on Database Systems. Journal of the ACM, 12(1):230-260,

June 1985.

[3] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell. F-
bounded polymorphism for object-oriented programming. ACM Press, Addison-Wesley,

1989.

[4] Luca Cardelli. A Semantics of Multiple Inheritance. Information and Computation,

76(2/3):138-164, February/March 1988.
[5] Luca Cardelli. Type Systems, chapter 103. CRC Press, Boca Raton, FL, 1997.

[6] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and

Polymorphism. ACM Computing Surveys, 17(4):471-522, December 1985.

[7] Alonzo Church. The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics

Studies). Princeton University Press, Princeton, NJ, USA, 1985.

109

[8] Luis Manue! Martins Damas:. Type Assignment in Programming Languages. PhD

thesis, University of Edinburgh. 1985.

[9] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666-677,

1978.

[10] J.A.Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal

of the ACM, 12(1):23-49, Jan 1996.

[11] P. J. Landin. Correspondence between ALGOL 60 and Church’s Lambda-notation:

part I. Commun. ACM, 8(2):89-101, 1965.

[12] M. Gordon and R. Milner and C. Wadsworth. Edinburgh LCF, volume 78 of Lecture

Notes in Computer Science. Springer, 1979.

[13] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes,

Parts I and II. Technical Report 86, 1989.

[14] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[15] R.Milner:. A proposal for Standard ML, Proc. Symposium on Lisp and Functional
Programming, Austin, Texas, . Journal of the ACM, New York, pages 184-197, August

6-8 1984.

[16] Anthony J. H. Simons:. The Theory of Classification, Part 1: Perspectives on Type
Compatibility. Journal of Object Technology, 1(1):55-61, May-June 2002. www.jot.fm/-

issues/issue_2002_05/columnb.

110

[17]

[18]

[20]

[21]

[22]

Anthony J. H. Simons:. The Theory of Classification, Part 4: Object Types and Subtyp-
ing. Journal of Object Technology, 1(5):27-35, November-December 2002. www.jot.fm /-

issues/issue_2002.11/column2.

Anthony J. H. Simons:. The Theory of Classification, Part 5: Axioms, Assertions
and Subtyping. Journal of Object Technology, 2(1):13-21, January-February 2003.

www.jot.fm/issues/issue_2003_01/column2.

Anthony J. H. Simons:. The Theory of Classification, Part 6: The Subtyping Inquisi-
tion. Journal of Object Technology, 2(2):17-26, March-April 2003. www.jot.fm/issues/-

issue_2003.03/column?.

Anthony J. H. Simons:. The Theory of Classification, Part 7: A Class is a Type
Family. Journal of Object Technology, 2(3):13-22, May-June 2003. www.jot.fm/issues/-

issue_2003_05/column?2.

Anthony J. H. Simons:. The Theory of Classification, Part 8: Classification and In-
heritance. Journal of Object Technology, 2(4):55-64, July-August 2003. www.jot.fm/-

issues/issue_2003.07/column4.

C. Strachey. Fundamental Concepts In Programming Languages. August 1967. Lecture

Notes for International Summer School in Computer Programming, Copenhagen.

111

