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Abstract

Multiple Sink Positioning in Sensor Networks

Shahab Mihandoust

‘We study the problem of positioning multiple sinks, or data collection stops for a mobile
sink, in a sensor network field. Given a sensor network represented by a unit disc graph
G = (V, E), we say a set of points U (sink node locations) is an h-hop covering set for G
if every node in G is at most h hops away from some point in U. Placing sink nodes at
the points of a covering set guarantees that every sensor node has a short path to some
sink node. This can increase network lifetime, reduce the occurrence of errors, and reduce
latency. We also study variations of the problem where the sink locations are restricted to be
at points of a regular lattice (lattice-based covering set), or at network nodes (graph-based
covering set).

We give the first polynomial time approximation scheme (PTAS) for the h-hop cover-
ing set problem, the h-hop lattice-based covering set problem, and the A-hop graph-based
covering set problem. We give a new PTAS for the lattice-based disc cover problem, based
on a new approach deriving from recent results on dominating sets in unit disc graphs. We
show that this gives a (3 + €)-approximation algorithm for the disc cover problem, and gives
the first distributed algorithm for this problem. We give a (5 + €)-approximation algorithm
for the h-hop covering set problem in unit disc graphs, that does not require a geometric
representation of the graph. Finally, we give a (3+¢)-approximation algorithm for the hA-hop

covering set problem for unit disc graphs that runs in time quadratic in the number of nodes

iii



in the graph, for any constant € and h. In addition to showing how well a lattice-based
approach for a disc cover problem approximates the optimal solution, we prove a geometric
theorem that gives an exact relationship between the side of a triangular lattice and the
number of lattice discs that are necessary and sufficient to cover an arbitrary disc on the

plane.
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Chapter 1

Introduction

Wireless sensor networks have been an active area of research for the last several years since
the desire for wireless connectivity has grown drastically. According to MIT’s Technology
Review magazine, sensor networks are “one of the ten technologies that will change the
word”. The important recent technological developments which influence the advancement
of wireless sensor networks, and make research on these networks more important, are firstly
the growth in semiconductor technology, which causes smaller and cheaper computing units,
secondly the miniaturization of energy capacity, and fast recharging capabilities, and finally
the system-on-a-chip (SoC) integration technology that enables micro sensors, on board
processors, and wireless interfaces to be integrated at a very small scale.

The applications envisioned for wireless sensor networks range from industrial control
and monitoring, home automation and consumer electronics, security and military sensing,
to health monitoring. An example of wireless industrial control could be the control of
commercial lighting, where a flexible wireless system can deliver a strong control on turning
on and off the lights in industrial units or controls the dimming of them. Another example of

industrial monitoring is the heating, ventilating, and air conditioning (HVAC) of buildings.



A wireless HVAC system, using wireless thermostats and humidistats (sensors), monitors
the heat load generated by people in a building (which is a very dynamic parameter), and
provides a balanced heating and air conditioning in the area. A home version of a HVAC
system can also be an example of a home automation application as well as using wireless
sensor networks for other controlling tasks such as light and sound. Locating and identifying
targets for a potential attack is an example of a military application. In addition, athletic
performance monitoring and at-home health monitoring such as daily blood sugar check are
two classes of health monitoring applications. There exist other applications for wireless
sensor networks such as intelligent agriculture and environmental sensing or asset tracking
and supply chain management. For each of these applications there are several examples,
some of which are listed and explained briefly in [5].

The devices used in sensor networks perform both a sensing function, and a data col-
lection function. In the proposed architectures for sensor networks, sensor nodes must
self-organize to form a multi-hop network, and all collected and relevant data must be sent
to a sink node, which is connected to a wired backbone network. This gives an overview
on the functions and elements of a networks which should meet the requirements of the
applications mentioned above. These requirements of specific applications may also dictate
that sensor networks should have some features such as low power consumption, low cost,
ease of availability, mobility, and security.

Some of the criteria to evaluate the performance of sensor networks include message
latency and data throughput. Depending on the application, each of these features may
become an important factor. Our assumption is that sensor nodes are expected to be
deployed in the thousands, and thus need to be very low cost devices. This means that

they operate on limited battery power, which can translate to both limited computational



power, and low transmission power. Since replacing the batteries may not be feasible or
cheap in many applications, increasing the lifetime of the sensor network is one of the most

important research challenges in the area.

1.1 Lifetime of Sensor Networks

Sensor nodes of sensor network are expected to be deployed in the thousands; they may
be deployed to an area which is not accessible, or recharging the batteries of the sensor
may not be cost effective. Therefore, extending the lifetime of a sensor network becomes an
important area of research when the goal is to prolong the functionality of such a network.
There exist different definitions for the lifetime of a network. One definition is the time that
the first sensor node in the network fails because it is out of energy. The other definition
extends the previous definition; lifetime of a network is the time for which the network can
keep its connectivity.

Saving the energy in a sensor network can be discussed from different points of view.
Clearly, the choice of the network communication protocols to be used influences the over-
all energy dissipation in a network. These protocols can be designed to minimize energy
consumption, achieve fault tolerance, and perform local collaboration to reduce bandwidth
requirements. For example, in comparison with conventional communication protocols,
LEACH [12] provides evenly distributed energy load by means of localized coordination of
subareas in the network (clusters) and local compression to reduce global communication

The other example is MAP (Medial Axis Based Protocol) which captures both geo-
metric and topological features of a sensor network and provides an appropriate geometric
abstraction of the network whose consequence is an excellent load balance [4].

Another mechanism to reduce energy requirement are the sleep and wake up schemes,



which are implemented on top of the MAC protocol. Different schemes such as on demand
[31], scheduled rendezvous [1], and asynchronous schemes [28] can be applied in different
situation. For example, in on demand scheme, a node wakes up only when it receives a
packet from a neighbor. In scheduled rendezvous, all the neighboring nodes wake up at a
same time, periodically, for any potential communication. Unlike the first two schemes in
asynchronous schemes nodes act independently to wake up for communication.

The topology of the network also affects the issue of energy saving. Two factors are
quite relevant to contributing to reduce the lifetime in a sensor network. First, the energy
consumed in routing to the sink is proportional to the number of hops in the route. Thus,
nodes that are far away from the sink node, deplete energy at all the intermediate nodes
in the path to the sink. Secondly, nodes that are close to the sink node have to forward
packets on behalf of all other nodes in the network, and are therefore at risk of running
out of battery power sooner than other nodes. One proposal to increase the lifetime of
these networks is therefore to increase the density of nodes around the sink node; some
percentage of these nodes close to the sink would be in sleep mode, waiting to take over
when the other nodes die, and thereby keeping the network operational. This, however,
does not address the first issue of long paths causing energy to be spent at many nodes
in the network. Another proposal to increase the lifetime of these networks is to create
multiple sink nodes, which can either be static or mobile. The second approach of using
multiple sinks is of our interest in this work and we will explain it in more detail.

In such an architecture with multiple or mobile sinks ; each sensor node would then send
data only to the nearest sink node. Thus the distance from a sensor node to its preferred
sink node would be smaller than in the single-sink case. Additionally, the burden of the

nodes close to the sink node would be shared by many more nodes. [9, 30, 20, 27, 16, 32]



explore this idea, and we look at some these approaches in the next sections. Apart from
increasing the lifetime of the network, using multiple sinks or mobile sinks can reduce the
error rate, and latency since they reduce the number of hops to be traveled by each packet

of data, and can handle a sparse and otherwise disconnected network [16].

1.2 Mobile Sinks

We consider the lifetime as an important issue in wireless sensor networks; therefore, mo-
bility of the sink in such a network is proposed as a solution to save more energy in terms
of multi-hop routing and to prolong the network lifetime.

For the first time Gandham et al. [9] developed the idea of having a mobile sink.
Since the location of a mobile sink influences the multi-hop communication of sensor nodes
an‘d the mobile sink, they proposed an integer linear programming model to determine the
location of mobile sinks which aims at minimizing the energy consumption per node plus
minimizing the total energy consumption in a given time. Wang et al. in [30] also look at
this problem with a different objective function which concerns the overall network lifetime
directly instead of indirectly from minimization of energy consumption at each node.

Mobility can be applied to not only a sink but also relays. Relays are optional elements
in a sensor network that can facilitate the task of multi-hop routing. Relays are limited in
number and they can be recharged and therefore their energy can be considered unlimited
in calculations [29]. They can be injected to a sensor network, then they move around in
the area where the network is deploye(i, and they carry the data collected by sensor nodes.
The consequence is that sensor nodes will be less involved in multi-hop routing. Mobility
is so beneficial in such an extension that even a two-dimensional random walk for mobility

of MULEs (Mobile Ubiquitous LAN Extensions), such as cars and animals (this can be an



example of relays) increases the network performance and lifetime where the idea is to save
energy by having single-hop communication from a sensor to mule which is passing by [27].

There are some drawbacks in using mobile sinks. For example, all the nodes in the
networks have to be aware of the position of the sink since the goal of the network is to
deliver the data to the sink. In contrast, a mobile relay is only responsible for multi hop
routing, and therefore, other sensor nodes do not require to know its place. When a mobile
relay passes by a sensor, it can carry the data which is available in that sensor and deliver
it to a sensor which is closer to the sink. Thus, sensors between the source and destination
of the relay do not get involved in multi hop routing. The other drawback of using mobile
sinks is that it may not be possible for the sink to communicate with the backbone all the
time, while the relay does not have such a task at all. Wang et al. in [29] believe that
the approach which uses mobile relays instead of mobile sinks is more robust since a relay
failure does affect the lifetime but not the functionality of the network while a sink is the
user of the data provided by sensors, and its failure is a malfunction.

Although there are some disadvantages coupled with mobile sinks, Wang et al. in [29]
compare the lifetime for different approaches to show that using a mobile sink outperforms
all other approaches including mobile relays. In addition to the lifetime improvement as
the premier advantage of using a mobile sink, mobility has other advantages according to
A. Kansal et al. in [16]. The second advantage is the data fidelity. It is obvious that when
the number of hops in multi-hop routing increases, the probability of error increases. In
addition, static nodes spend less energy since the retransmission required due to errors is
reduced when the error rate is smaller. The third advantage is that in some situations the
data rate can be increased via decreasing latency. This does not mean that data travels

faster over the links but the capacity of the sensor network will be increased because of



carrying data physically in a mobile node. This advantage may be more applicable for
mobile relays rather than mobile sinks. The fourth advantage is handling disconnectivity
of sensor networks. As a result, static sensor nodes can reduce their transmission range
to a lower value, and still communicate through smaller connected networks. Some other
advantages of using mobile elements are finer time synchronization, security enhancement,
and calibrating a localization system. Two issues about which to be concerned with regard
to mobility are the motion control of mobile elements and the influence of speed on data
collection, and each of them can be discussed extensively but are beyond the scope of this
work.

In this thesis our goal is to find an optimal set of positions for a mobile sink to stop in the
sensor network as a means to optimize the multi-hop routing in the network. Calculating
the duration of each stop, or the routes or velocities between stops is beyond the scope of

this work.

1.3 Multiple Sink Positioning

The basic motivation for developing the system architecture of a multiple sink sensor net-
work is very similar to the motivation of having mobile sinks. Two main drawbacks of a
static single sink sensor network, which are the bottleneck problem and the energy consump-
tion in multi-hop routing, are the main reasons for looking at a multiple sink architecture,
but there are also other issues to be considered. In [9] the problem of locating multiple
sinks in the network in order to maximize the lifetime of the network while the number of
multiple sinks is minimized was initially proposed. We look through the problems around
multiple sinks in this section more closely.

Given a single sink sensor network, it is possible that the sink fails in the network.



A multiple sink network solves this shortcoming if such a situation is a possible scenario.
Although the efficiency of a multiple sink architecture is very much the same as the mobile
single sink in terms of the bottleneck and multi-hop routing problems, latency is the point
of difference. Given a single mobile sink in a network, sensor nodes have to collect and store
the data till the mobile sink moves to the closest stop point to the node. In fact not only
can data delivery be delayed in this situation, but there is also the possibility of loss of data
because of buffer overflow.

In fact, multiple sinks are beneficial in the above scenarios, but the possibility of having
such an architecture depends on the application. An agricultural scenario is an example
where using multiple sinks is applicable, since the network can be considered as a large scale
network, and it is better to divide the network to a number of clusters to obtain a scalable
network [26]. To deal with the routing in such a network different routing algorithms are
also available such as ELBR and PBR which attempt to balance the energy consumption
of sensor nodes [22].

If we use the multiple sink sensor network architecture, the issues that should be con-
sidered include finding the best sink locations. In the scenario that there exist a fixed
number of sinks, clustering algorithms to find the efficient clustering of the sensor nodes
can solve the problem. The method of k-mean clustering in [14] which is classified as a
non-hierarchical clustering method or the generic method of self organizing maps, which is
a general purpose unsupervised learning algorithm [17], are different alternatives. But these
solutions all take the number of clusters or the number of multiple sinks as a parameter.

If we consider the number of multiple sinks as a variable, then the natural question which
arises is to find the minimum number of sinks to achieve a desired lifetime for the network.

Sometimes there exists a specific period during which the network should be functional.



For example, in an agricultural application the field must be monitored until the harvest.
Assuming that there exist such a knowledge about the lifetime of the network, it is possible
to start with one sink and estimate the network lifetime, then increment the number of
sinks until the desired lifetime is achieved. We recall that if we know the number of sinks in
the network it is possible to use the clustering method as an alternative to find their best
locations.

However, it may not be possible to estimate accurately the lifetime of the sensor network
in advance. Also, rather than achieving a specific lifetime, the goal may be to maximize the
lifetime as much as possible. In other words, it is possible to have a scenario where there
is not any prior knowledge about the number of sinks or the lifetime of the network. Then
the question in such a scenario is to find the minimum number of sinks in the network while
maximizing the network lifetime. Oymen has categorized the problems mentioned above in
[26] and introduces the solutions existing in the literature for each of them.

In this thesis we are interested in question of finding the minimum number of sinks to
maximize the lifetime. In multi-hop routing, if we limit the maximum number of the hops
that a piece of data should travel to reach a sink, it can yield a significant saving in energy.
The question we pose therefore, is to find the minimum number of sinks and their locations
on the sensor network field, so that every packet has to travel at most h hops to reach a

sink.

1.4 Problem Statement

In this work, we are interested in the problem of where to position the multiple sink nodes
in order to further the goal of lifetime maximization. More specifically, suppose we want to

ensure that the distance between a sensor node to its nearest sink is never more than some



specified number of hops, say h. How many sink nodes should we place in the sensor field
to guarantee this, and where should we place them? In the case of a mobile sink, we could
think of the problem as finding the number and positions of “data collection stops” to be
made by the mobile sink so that every sensor node is within A hops of a data collection
stop.

For a sensor network which is scattered in an area I, there exists a link between two
sensors, if each of them stays in the transmission range of the other. We assume there is
only one type of sensor in the network, and therefore the transmission range of all sensors
is the same; thus, if one sensor stays in the transmission range of another sensor, then there
is a link between the two sensors. This means that the network can be represented as a
unit disc graph where nodes are the sensors on the plane and node u is connected to node v
by an edge if u lies in the unit disc centered at v. The unit disc represents the transmission
range of v.

We define the h-hop covering set problem as follows: given a unit disc graph G = (V, E),
where V represents the set of sensor node locations, find the minimum-sized set of new
points U (sink node locations) such that every node in V can reach a point in U using
at most A hops. Apart from the edges in G, a sensor node can also reach in one hop a
sink node which is within FEuclidean distance one from it. Another way of describing the
same problem is: given a unit disc graph G = (V, F), find the minimum-sized set of new
vertices/points U, such that U would be an h-hop dominating set in G’, the unit disc graph
obtained by augmenting G with U in the natural way (any pair of nodes in the augmented
graph at distance less than 1 from each other is connected by an edge).

Depending on the actual application, it may not be feasible to place a sink node at any

arbitrary position in the field. So we also consider two constrained versions of the problem.

10



In the first version, which we call the lattice-based covering set problem, we constrain the
sink node positions to be at the points of a triangular lattice. The other constrained version
of the problem investigated here, which we call the graph-based covering set, requires sink
nodes to be placed at the nodes of G.

Given a set V' of n points in the plane, a disc cover for V is a set of points U such
that every point in V falls inside a unit disc centered at some point in U. In other words,
every point in V is within distance one of some point in U. A disc cover whose elements
are restricted to be a subset of points on a regular lattice is called a lattice-based cover.

Given a set of points V, the disc cover problem is to find the minimum sized disc cover
for V. The lattice-based disc cover problem is to find a minimum sized lattice-based disc
cover for V. We denote the size of an optimal disc cover for V by |DC (V)| and an optimal
lattice-based disc cover by |LDC(V)|. The disc cover problem has been studied extensively
in [21, 11, 13, 3, 2]. The lattice-based disc cover problem was explained in [21]. We present
these ideas in detail in chapter 2.

Recall that a unit disc graph is a graph G = (V, E) where each element of V' can be
mapped to a point in the plane in such a way that (u,v) € F if and only if ||u — v|| < 1.
A 1-hop covering set for the unit disc graph G = (V, E) is a set of points U in the plane
such that every element of V is within Euclidean distance 1 of some element of U. Put
another way, U is a dominating set in the graph &' = (V', E’) where V! = V U U, and
E'=FEU{(z,u) |z € V,uelU,|u—v| <1}. An h-hop covering set for G is a set of points
U such that for every node v € V, there exists a v' € V such that v is within A — 1 hops of
v’, which in turn is within Euclidean distance 1 of an element of U. Once again, U can be
seen as an h-hop dominating set in the graph G augmented by the set U.

A covering set whose elements are constrained to be the points of a lattice is called a

11



lattice-based covering set. A covering set for a graph G whose elements are constrained to
be the vertices of the graph itself is called a graph-based covering set which is exactly the
third version of the problem wherg the constraint is put the sinks on the same places as
sensors.

In summary, given a unit disc graph G, the covering set problem is to find a minimum
sized covering set for G. The lattice-based covering set problem is to find a minimum sized
lattice-based covering set for G. The graph-based covering set problem is to find a minimum
sized graph-based covering set for G. We denote the size of an optimal A-hop covering
set of G by |CS[h](G)|, the size of an optimal h-hop lattice-based covering set for G by
|[LCS[h](@)|, and the size of an optimal h-hop graph-based covering set for a graph G by
|GCSRI(G)].

A 1-hop covering set for the unit disc graph G = (V, E) is the same as a disc cover
for V. In [15] this is shown to be NP-hard. Therefore, the h-hop covering set problem is
also NP-complete. Since the 1-hop graph-based covering set problem is the same as the
minimum dominating set problem, it is also NP-complete. In the lattice-based covering
set problem, the number of lattice points is independent of the number of points to be
covered. Since the covering discs are centergd on lattice points, it is possible to find an
optimal lattice-based 1-hop covering set in time linear in n and h-hop covering set in time
quadratic in n. However, the constant factors for these optimal algorithms involve terms
that are exponential in the size of the sensor network field. Therefore, we are interested
in approximation algorithms for these problems to make the algorithm independent of the
size of the field.

Given an approximation algorithm A for the h-hop covering set problem let C4(G)

be the size of the cover produced by A on the graph G. Then the performance ratio of
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algorithm A is given by mamga%[‘,—fﬁ%j. The approximation ratios of algorithms for the

lattice-based and graph-based covering sets are defined similarly. Certain problems admit
approximation algorithms that run in polynomial time and that have a performance ratio

of 1+ ¢ for any € > 0.

Definition 1 [ Polynomial Time Approximation Scheme (PTAS) ] [7]

An approximation scheme for an optimization problem is an approzimation algorithm that
takes as input not only an instance of the problem but also a value € > O such that for any
fized €, the scheme is an approximation algorithm with relative error bound €. We say that
an approximation scheme is a polynomial-time approximation scheme if for any fixred e > 0

the scheme runs in time polynomial in the size n of its input instance.

1.5 Summary of Contributions

In the previous section we introduced the problems we study in this thesis. In this section

we list all of our results and they will be discussed in detail in the following sections.

1. We give the first PTAS for the hA-hop covering set problem, the h-hop lattice-based

covering set problem, and the h-hop graph-based covering set problem.

2. We give a new PTAS for the lattice-based disc cover problem, based on a new approach
derived from recent results on dominating sets in unit disc graphs. We show that this

gives a (3 + €)-approximation algorithm for the disc cover problem, and give the first

distributed algorithm for this problem.

3. We prove that the PTAS for the A-hop graph-based covering set problem can be used

to derive a (5 + €)-approximation for the h-hop covering set problem. This algorithm
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Algorithm Approximation | Time Complexity

1 hop (shifting strategy) [13] 1+ 52 O(¢£? Z\/ﬁ]z n2leV2] + h
1-hop (based on dominating set) [24] V | 5(1 + ¢) O(n), e=0(21ogi)
1-hop (based on PTAS for 3(1+¢€) O(ein)
lattice-based problem){21]
1-hop (based on PTAS for 3(1+¢) O(can)
lattice-based problem)* V
h-hop (Algorithm 1, with £ > h)* (1+5)2 O(C?maz([€v/2]°, n)n2leV21 +1)
2
h-hop (Algorithm 2) * (1+4$)? O(Pmaz([hev/2]°, n)n2 MV +1)
h-hop (based on PTAS for 5(1+4¢) O(ncs)
graph-based problem)* V
h-hop (based on PTAS for 3(1+€) O(can?)

lattice-based problem)* V

Table 1: Summary of results for h-hop covering set problem for unit disc graphs. ¢; and
c2 are functions of €, while ¢3 and ¢4 are functions of € and h; none of them depends on =,
the number of nodes in the graph. * refers to results obtained in this thesis. V refers to
algorithms that have a distributed implementation

does not require knowledge of the geometric representation of the unit disc graph,

unlike all other algorithms for the covering set problem.

4. We prove that the PTAS for the h-hop lattice-based covering set problem can be used
to derive a (3 + €)-approximation for the h-hop covering set problem. This algorithm
runs in time O(c3n?) where c3 is a function of € and A, but does not depend on the

number of nodes in the graph.

Our results for the covering set problem, along with previously known results are sum-
marized in Table 2. As is shown in the table, the better approximation ratio we achieve,

the worse time complexity is forced.

1.6 Outline of Thesis

In Chapter 2, we review the literature on the disc cover and dominating set problems. In
Chapter 3, we describe our algorithm for the h-hop covering set problem and analyze the

performance ratios and running times. Chapter 4 explains the geometric theorem which
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is used in chapter 3, and finally, Chapter 5 talks about the conclusions of this thesis and

points to directions for future work.
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Chapter 2

Related Work

In Chapter 1, minimizing the lifetime of a sensor network was introduced as an important
problem in the area of sensor networks. Different approaches were introduced to increase the
lifetime of a sensor network. These approaches are different according to the application,
size, and cost of a sensor network. Among these approaches we are interested in using
multiple or mobile sinks since having multiple or mobile sinks saves energy in terms of
multi-hop routing, as well as avoiding a bottleneck at the sink node.

As mentioned in Section 1.4, the 1-hop version of our problem has already been studied
as the disc cover problem, in which the goal is to find a set of covering discs on the plane for a
given set of points. Also, the 1-hop graph-based covering set is identical to the dominating
set, which is a well known graph-theoretic problem, which has been extensively studied.
Our results originate from some of these known results and techniques, which we present in
some detail in this chapter.

Hochbaum and Maass present a unified and powerful approach for the disc cover problem
called the shifting strategyin [13]. In Section 2.1, their approach is introduced and discussed.

Franceschetti, Cook and Bruck introduce a lattice-based solution to this problem in [21] to
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reduce the running time of the approach of [13]. Since the work in [21] is a solution for the
1-hop lattice-based multiple sink positioning problem (lattice-based disc cover problem),
which we discuss in Section 3.2.1 , Section 2.2 contains some details of this work. Next, the
graph-based version of the problem is the same as the dominating set problem; in section
2.3 we describe the algorithm of Nieberg and Hurink [24] for dominating sets in unit disc

graphs, and we explain how it can be implemented in a distributed manner [19].

2.1 Covering and Packing Problem

Given a set of points in the plane, identifying a minimally-sized set of discs that cover all the
points is a strongly NP-complete problem, as stated in Garey and Johnson’s comprehensive
review of this concept [10]. For the first time, [13] presented an algorithm with bounded
approximation ratio for the disc cover problem. This means for a fixed § > 1, the ratio of
the size of the solution delivered by the algorithm, and the size of an optimal solution for the
problem does not exceed §. Assuming that § = 1+ ¢ for € > 0 the functional dependence of
the running time of the algorithm on the size of the input and % is polynomial. Therefore,
their scheme is said to be fully polynomial.

The fundamental technique of the algorithm in [13] is the shifting strategy. Section 2.1.1
describes this technique and the conditions for its applicability. This section also explains
how this technique delivers a d-approximation ratio. Section 2.1.2 explains the PTAS for

the disc cover problem based on the shifting strategy. Section 2.1.3 explains the limitations

of the shifting strategy which leads to another approach which is discussed in Section 2.2.
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2.1.1 Shifting Strategy

The shifting strategy is a divide-and-conquer approach that bounds the approximation ratio
for the disc cover problem. This strategy approximates the optimal solution; the difference
of the size of the solutions with an optimal one is known as the error. For a given set
of points the algorithm provides a number of solutions with different errors and the best
solution should be selected among them.

We assume that we are given n points in a set N that are scattered in an enclosed area
I on a plane. This gives a two dimensional input to the shifting strategy. * The goal is to
cover all the points in NV with a minimum number of discs of diameter D. Let ¢ be called
the shifting parameter. The approximation ratio and the running time of the algorithm
using the shifting strategy both depend on parameter £. In the first step, the area I should
be subdivided into vertical strips of width D which are left closed and right open. Observe
that £ consecutive strips of width D make a larger strip of width ¢ x D (Figure 1). As we
consider these groups of strips of size £ x D we can make ¢ different partitions on I such
that in each of these ¢ partitions, I is divided into groups of width £x D. Each partition can
be derived from the previous partition by shifting all boxes of width £ x D in the previous
partition to the right (or left) by a distance D. After shifting ¢ times we will end up with
the first partition that we started from. This means that we can make ¢ distinct partitions
on I which are denoted as Si, S2,---,.Sp.

Assume that A is an algorithm that delivers a solution for the disc cover problem when
we apply it on a bounded area such as any strip of width D, and Z4 denotes the size of
the solution delivered by A. The value r4 denotes the ratio of Z4 to |OPT| where |OPT)|

is the size of an optimal solution for the problem.

! Although this strategy is not limited to 2-dimensional metrics on a plane, we do not discuss higher
dimensions as it is out of our context.
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Figure 1: ¢ consecutive strips of width D make a larger strip of width £ x D

For a given partition S; among ¢ partitions, A(S;) is the algorithm that applies algorithm
A separately to each of the strips in S; and then delivers the union of all discs as a solution to
the entire problem. Although this may not be an optimal solution, it is a feasible solution to
the disc cover problem which is defined on I. In fact, we can find such a feasible solution for
the problem ¢ times as we have £ partitions; therefore, we have a set of solutions of disc cover
sets which are delivered by A(S1), A(S2), -, A(S¢). The solution given by shifting strategy,
called Sy4, is the minimum-sized solution in the set A(S1), A(S2),:--,A(S¢). Now we can
provide the Shifting Lemma by Hochbaum and Maass , which shows that the performance

ratio of the solution delivered by the shifting strategy for the disc cover problem is (1 + %).

Lemma 1 (Shifting Lemma) [13]

rsa STa(l+3) )

where A is a local algorithm, and £ is the shifting parameter.

This lemma and its proof with details are provided in [13]. This lemma explains the
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fact that the approximation ratio of a shifting algorithm which is applied to find a disc
cover set, is at most (1 + 1) worse than the best solution which is delivered by algorithm
A on all partitions. If we assume that A delivers an optimal solution then we could prove
that the approximation ratio of the shifting strategy is not worse that (1 + %). In other
words, if A delivers an optimal solution, it means that r4 = 1, and therefore rg, < 1+ %

or Z%4 < (1+ })|OPT).

2.1.2 PTAS for disc cover problem

In the previous section the shifting lemma is discussed and it is shown that the approxima-
tion ratio of the shifting strategy to find a disc cover set is at most (1 + 712')- In this section
it is shown that this approximation ratio can be achieved in polynomial time, and therefore
the shifting strategy is a PTAS to solve the disc cover problem. This work is done in [13]

for arbitrary dimensions.

Theorem 1 [18] For any. finite dimension d > 1, there is a polynomial time approximation
scheme H? such that for every given natural number £ > 1, which is the shifting parameter,
the algorithm Hgl delivers a cover of n given points in d-dimensional FEuclidean space by
; ; - - . d 4, d[evd]®+1 ) d
d-dimensional balls of given diameter in O(£ [E\/EI 2n ) steps with (1 + 1/€)

approximation ratio.

Since our algorithm for A-hop covering sets described in Section 3.1 uses the shifting
strategy, and our proof uses similar ideas to the proof of Theorem 1, we proceed to describe
how the shifting strategy is a PTAS for the case d = 2. To show this, we apply the shifting
strategy explained in 2.1.1 in two dimensions, vertically and horizontally. This means that
we cut the plane into strips of width £ x D vertically, and in the next step we cut it into

strips of length ¢ x D horizontally. Therefore, we will end up with squares of side ¢ x D
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on the plane. The key point to prove the theorem is that we can find a disc cover set in
such a square in time polynomial in 7, when # is the number of points in a square of side
£ x D. The approach in [13] uses an exhaustive search in such a square which needs at
most [Z.\/ii‘z discs of diameter D to be covered compactly. This is an upper bound on
the size of any disc cover set in this square. One important observation is that any disc
that covers at least two points has two of them on its border. This fact helps to count
all the possibilities of disc cover sets in such a square since any disc which covers a set of
points can be re-drawn such that at least two of the points lie on the border of the disc and
other points of the set still remain covered. In fact, there are only two ways of drawing a
disc when two points are on its border. Therefore, we need to check 2.(}) to put the first
disc, and then we check the possibility of disc covers of size 1 to [é.\/flg Thus, we have
to check at most O(A% |'e.\/§'|2) arrangements of discs. The next step is to check for each
point whether it is in the range of any disc or not. This can be checked in O(¢2.7) time for
each of the arrangements. Consequently, in O(¢? (é\/i-r n? [e\/i]2+1> steps we can find an
optimal disc cover for a square of side £ x D, and since this is the same for all partitions, the
running time of the shifting strategy on a plane (two dimensions) is polynomial. Because
we use the shifting strategy in two dimensions, the approximation ratio of the result will
be (1 + })2. Expanding it to (1 + %2 + 2), we can rewrite this approximation ratio in form
of 1 4 € where € < 3 for £ > 1 as the shifting parameter.

In Section 3.1 we show how to extend this work to the more general h-hop covering
problem. Finally, it should be mentioned that the idea of the shifting sfrategy is originally
proposed by Baker [2] and what we summarized was an adaptation for geometric disc cover

problem.
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2.1.3 Limitations of Shifting Strategy

The shifting strategy presented in Sections 2.1.1 and 2.1.2, has a (1+¢)-approximation ratio
which is equal to 4 in the worst case when the shifting parameter is 1 or in other words
€ = 3. The running time of the algorithm is O(¢£2 (E\/i-rnz [e\/§'|2+1)7 and for € = 3 it is
O(n®). The degree of the polynomial for the running time increases as e decreases. The
sequence 9,19,51,--., 1-6\/512 + 1 gives this degree for £ = 1,2,--.. This is an important
shortcoming of this strategy and makes it inefficient for even a small number of points since
the running time is very expensive.

Some efforts to reduce the running time to find a solution for this problem are summa-
rized in Table 2. A better approximation ratio of 1 +¢ or 1 + % where € = -}z is provided
in [8] by Feder and Greene and also in [11] by Gonzalez. Although the approximation ratio
is better than what Hochbaum and Mass had, but the sequence of values which shows the
polynomial degree of the running time starts with 13 and only grows slower than the former
approach. The last row of the table shows an approach with linear running time which is
introduced by Franceschetti and Cook. In the next section we describe this approach [21],

which introduces the grid strategy to the disc cover problem.

Author Approximation | Running time Year

' P]
1 | Houchbaum and Mass [13] (1+ )2 O(¢? I-E\/§ * p2leve] 1y | 1985
2 | Gonzalez / Feder and Greene [11] | (1+ ) O(6¢ |-E\/§ nG[eﬂ]‘H) 1991
3 | Gonzalez / Feder and Greene [11] | 8 O(n+nlogsS) 1991
4 | Bronnimann and Goodrich [3] o(1) O(n3logn) 1995
5 | Franceschetti and Cook [21] a(l + 3)2 O(Kn) 2000

Table 2: Approximation algorithms for disc cover problem.
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2.2 Lattice-Based Geometric Disc Cover Problem

Franceschetti and Cook in [21] introduce another approach for the disc cover problem. They
introduce the grid strategy to the disc cover problem which yields a linear running time at
the cost of a worse approximation ratio. Using the grid strategy, the disc cover centers are
limited to be selected only from a set of grid points. We call this the lattice-based disc cover
problem. The algorithm in [21] combines both the shifting and grid strategies to solve this
problem and provides an a(1 + %)2—approximation ratio for @ = 3,4, 5, or 6. This section
explains the grid strategy briefly, and elaborates on how we can get a linear running time
using this strategy.

Franceschetti and Cook in [21] present a basic theorem in combinatorial geometry that
helps to solve the disc cover problem. They use a square lattice to introduce their grid
strategy and combine it with the shifting strategy presented in Section 2.1.1. The algorithm
is very much the same as the PTAS discussed in Section 2.1.2. The same steps exist for
dividing the plane into strips of width ¢ x D, then finding the set of disc covers locally
in squares of side £ x D, but the difference is that the set of disc cover centers inside the
square are only selected from a set of lattice points. If we cover the whole area of the
plane with a square lattice, in any sub-area there exist a set of grid points as a group of
candidates for the disc cover centers. In the geometric theorem that they present, they
prove that if we take the disc cover centers from only the set of square lattice points, the
approximation ratio of the algorithm which solves the disc cover problem is at most 3 times
worse than the case that we do not restrict the location of the disc cover centers. Therefore,
we can get a 3(1 + ¢)-approximation ratio. Although this is a worse performance ratio
than the performance ratio of the PTAS in Section 2.1.2 (shifting strategy), it has a linear

running time since it restricts the candidates for disc covers. In Section 2.2.1 we present
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the geometric theorem and then in Section 2.2.2 we discuss the linear running time.

2.2.1 Geometric Theorem

Theorem 2 [21] Consider a square lattice where the distance between two neighboring lat-
tice vertices is one. Call a disc of fixed radius v, centered at a lattice vertex, a grid disc.

The number N of grid discs that are necessary and sufficient to cover any disc of radius v

placed on the plane is given by:

e CASE 1. Forr < 3@ , N does not erxist.

CASFE 2. For§§r<@,N=6.
o CASE 3. For Y0 <7 <1, N =5.

CASE 4. For1§r<¥,N=4.

e CASE 5. Forr> %2 N =3,

The proof of this theorem is discussed in detail in [21] with a proof for the necessary
and sufficient conditions for each case. The consequence of this theorem is that if we want
to apply a lattice-based strategy, we are able to achieve an approximation ratio of 3 for
a disc cover problem by using a square lattice. Therefore, when Franceschetti and Cook
[21] combine this strategy with shifting strategy, which has (1 + ¢) approximation ratio, the

resulting approximation ratio will be 3(1 + ¢).

2.2.2 Linear Time Approximation Algorithm

Recalling from the shifting strategy that we restrict our exhaustive search to a square of side

£ x D, Franceschetti and Cook [21] prove that the running time of the lattice-based covering
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problem is linear since it is possible to find the lattice-based disc cover inside the squares

of side £ x D in linear time. In such a square there exists p lattice vertices. Define K as a
) - o [VZP -1 p .

function of ¢ (shifting parameter) and p, such that K, = £°X;_; (¥)i. Observe that

K4 p) does not depend on n, the number of points. They provide the following theorem:

Theorem 3 [21] Let p, and K p) be as defined before, and o € {3,4,5,6}. There is a
linear time approximation algorithm A; such that for every given natural number £ > 1, the
algorithm A, delivers a cover of n points by discs of diameter D in O(Kpn) steps, with

approzimation factor which is less or equal to (1 + %)2

Because this linear time is the key feature of the lattice-based strategy, we will rephrase
some parts of the proof here. The point is that with fixed £ and p then K is also fixed. But
we need to explore what this K is. Restricting our search for a disc cover to a square of
side £ x D there exist p lattice vertices as the candidates. We recall that in such a square
we need at most [€\/§12 discs of diameter D to cover the square compactly. Therefore,
we never need to check arrangements of more that [E\/ﬂz — 1 grid discs. Since we need
to find the distance of # given points in the square to grid centers in a potential solution
we need (Eiz\l/ﬂz_l(f )z) 7 steps to find a lattice-based cover in the square. Consequently,

Franceschetti and Cook could come up with a linear time approximation algorithm that

still has a reasonable approximation ratio of 3(1 + €).

2.3 Dominating Sets in Unit Disc Graphs

In Chapter 1, we categorized the disc cover problem to three different versions where one
of these versions is the graph-based disc cover problem. Here the goal is to cover all the

nodes in a unit disc graph with a set of discs which are centered on the same points as the
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graph vertices. Thus, solving the graph-based disc cover problem is the same as solving
the dominating set problem on the graph. In this section we describe the algorithm given
by Nieberg and Hurink for the problem in [24]. The main reason for looking through their
approach to solve the dominating set is the potentiality of their approach to be applied
locally and in a distributed manner and the fact that it does not require a geometric
representation of the graph. The former attribute is helpful in the h-hop version of graph-
based disc cover problem and also in our approach for the lattice-based disc cover problem.
In our lattice-based approach we preferred to combine the technique of Nieberg and Hurink
in [24] with the grid strategy instead of the combination of the shifting and grid strategies
because of the possibility to implement this technique in a distributed manner. This section
discusses this technique from [24] and its adaptation to a distributed implementation from
[19].

First we provide the definitions and preliminaries which are used in [24], and later we will
describe their technique to find local dominating sets to generate the minimum dominating
set of a unit disc graph with performance ratio of (1 + €). Finally, it will be explained how

this approach can be implemented a polynomial running time.

2.3.1 Definitions and Preliminaries

For G = (V, E) where V is a set of vertices and E is a set of edges, aset D C V is a
dominating set for V if for every vertex v € V, v is either in D or has a 1-hop neighbor in
D. A minimum dominating set is a dominating set with minimum cardinality.

Another important definition is that of a neighborhood of a vertex in a graph, which
can be defined for different distances. N(v) denotes the immediate neighborhood of vertex

v, or in other words, N(v) := {u € V|(u,v) € E} U {v}. The hop distance of two vertices
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v and u is denoted by d(u,v), and the r-th neighborhood of a vertex v, which is denoted
by NT(v), includes the set of vertices such as u such that d(u,v) < r. We define N(¢) := ¢
and N1(v) := N(v), and finally the r-th neighborhood of v is defined recursively N"(v) :=
N(NT-Y(v)) for any » € N. In addition, a neighborhood of a subgraph W is defined by
N(W) := Uyew N(w). Finally, D is defined as an operation on all possible subsets of
vertices, which returns a minimum dominating set of such a subset. For example D(W)
dominates W where W C V. An important observation which is illustrated in Figure 2 is

that W c N(D(W)) and D(W) c N(W).

Figure 2: D(W) C N(W), where W is N3(v), so D(W) is in N4(v)

2.3.2 Finding the Minimum Dominating Set

In this section we describe the technique of Nieberg and Hurink to find the minimum
dominating set of a unit disc graph with (1 + €) performance ratio.

This technique is based on finding dominating sets on subgraphs of G. For that, [24]
introduces the concept of a 2-separated collection of subsets, S = {Si,---, Sk} which is

defined as a collection of subsets of vertices S; C V for ¢ = 1,---,k with the following
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property:

Figure 3: A 2-separated collection § = S1,--, S in a graph G = (V, E)

e For any two vertices s and 3 such that s € S; and § € S; and ¢ # j, we have d(s, §) > 2.

A key property of the subgraphs in a 2-separated collection, which is illustrated in Figure
3, is that since all the vertices in one subgraph have a hop distance greater than two to all
the vertices in another subgraph, the dominating set of one of these two does not overlap
with the other one since D(W) ¢ N(W) for any subgraph W. Therefore, it would be

possible to prove the following lemma.

Lemma 2 [24] For a 2-separated collection S = S1,---,Sk in a graph G = (V, E), we have

k
[D(V)| = > |D(Sy)] (2)
i=1

The proof of this lemma is provided in [24], but the consequence is important since

it provides a lower bound on the minimum dominating set of the graph G = (V, E). A

28



2-separated collection also helps to find an approximate solution. The idea behind this is to
enlarge the subgraphs S; to obtain another subgraph T} such that the size of the minimum
dominating set of T3, which is |D(T})|, is smaller than (1 + €).|D(S;)|. Therefore we can
conclude that % ; D(T}) < (1+¢€) S5, D(S;) < (1+¢€)|[D(V)|, where the second inequality
follows from Lemma 2. Thus, if we choose S; and T; such that Ui-“:k D(T;) dominates G
completely, we could get a dominating set which is at most (1 + ¢) times the size of the

minimum dominating set. This is proved as a corollary in [24] which says:

Corollary 1 [24] Let S = S1,---,Sk be a 2-separated collection in G = (V, E), and let
Th,---, Ty be subsets of V with S; C T; for alli = 1,---,k. If there exists a bound € > 0

such that
ID(T)] < (1 +€).|D(S))|

holds for alli = 1,-- -,k and if U*_, D(T}) forms a dominating set in G, the set Us_,, D(T})

is a (1 + €)-approzimation of and an MDS in G.

2.3.3 Construction of the solution

We need to know how to find subgraphs S; and T; such that they fulfill the conditions
that are needed to construct a dominating set for G. Nieberg and Hurink [24] describe the
algorithm to construct subgraphs S; and 7;. The algorithm starts with an arbitrary vertex
v € V, and in the simplest scenario, it finds the dominating set of N"(v) for r = 1,2,---

using an exhaustive search, until the following inequality is violated:
| D(NT+2(v))| = p| D(N"(v))|

Lemma 3 [24] There exists a constant ¢ = c(p) such that # < c that is, the largest neigh-

borhood to be considered during the iteration of the algorithm is bounded by a constant.
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They call the smallest value that violates the inequality above #. Then NT(v) stands
for the subgraph S;, and N7+2(v) for T;. In the next step, the algorithm finds another
arbitrary vertex v’ in G — N™+2 (v) to construct another S; and T;, and does the previous
steps iteratively until no vertex remains in G to be covered. It is clear from the construction

that:

a: The S; subgraphs form a 2-separated collection.
b: For each ¢, |D(T3)| < (1 + €)|D(S;)|

c: The union of D(T;) for all ¢ is a dominating set for G.

2.3.4 Polynomial Running Time

The algorithm in the previous section does not have any precondition of using a unit disc
graph as the input, but this fact is used to prove the polynomial running time of the
algorithm. In fact, in a unit disc graph, no matter how many immediate neighbors a vertex
has, the maximum number of independent neighbors of any vertex does not exceed 5. This
fact helps to conclude that the size of any independent set in any neighborhood of a vertex

like v is bounded. In [24], the following lemma indicates this bound:

Lemma 4 [24] Let G = (V, E) be a UDG. Any independent set I" of N"(v), whenv € V,

satisfies:
[I'} < (2r +1)2 = O(r?).

Since the minimum dominating set is also an independent set, the consequence of this
lemma is that even in the simplest scenario of exhaustive search to find the dominating set
in §; or T3, it is possible to find the minimum dominating set in O(n”), for some constant

¥, which is a polynomial running time.
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To summarize, we looked at the dominating set problem for unit disc graphs. We briefly
explained the work in [24] which has two significant parts. The first thing is the algorithm
that provides a (1 + €)-approximate solution for the minimum dominating set problem.
Beside, it proves that this algorithm can be run in polynomial time. The result of these

two is a PTAS for the dominating set problem in unit disc graphs.

2.3.5 Distributed Implementation

Two important advantages of the algorithm of Nieberg and Hurink in [24] are that first, it
does not require a geometric representation of a graph G as an input, and second it can be
implemented locally and in a distributed manner. In this section we explain the distributed
implementation of their algorithm to find the minimum dominating set for a graph G.
The distributed implementation is discussed in detail in [19]. We use the technique in [19]
to implement the h-hop graph-based covering set problem in Section 3.3.1 in a local and
distributed manner, and adapt this technique to implement the h-hop lattice based covering
set problem in a distributed manner.

The distributed algorithm to find the minimum dominating set in [19] works for all
polynomially growth-bounded graphs, which are defined as graphs such that there exists a
polynomial function f(r) such that for every v € V the size of the largest independent
set in an r-neighborhood of v is at most f(r). The algorithm has a pre-processing phase,
which consists of clustering and coloring of a given unit disc graph G = (V, E'). To find the
cluster graph G = (V, E), where V is the set of cluster heads and (u,v) € E if and only if
da(u,v) < ¢ for a constant ¢, the algorithm constructs a maximal independent set, I, on
G in a distributed and local manner using the algorithm in [18] and then assigns V = I.

The constant c is the same as that given in Lemma 3, and has the property that the largest
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neighborhood of a vertex to be considered when computing local dominating sets when
starting with a vertex v is N¢(v). The maximum degree of the resulting cluster graph is
bounded by a constant since G is a polynomially growth-bounded graph. Therefore, G can
be colored by an efficient and local coloring algorithm [6] using Az + 1 colors, where A is
the maximum degree of G.

After the pre-processing phase, for every vertex v € V with color &, the algorithm applies
the technique in [24] to find the minimum dominating set locally with the performance ratio
of 1+ e. The key observation is that all the nodes with the same color can start the process
at the same time, since the c-neighborhood of a vertex v with a given color is completely
disjoint from the c-neighborhood of another vertex of the same color and N¢(v) is the
largest neighborhood of v that is involved during the computation of the dominating set
while starting with v. After the computation for vertices with color k is finished, the vertices
with color £+ 1 can start their computation. The performance ratio of (1+¢) as guaranteed

by the centralized algorithm is also achieved by the distributed version.
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Chapter 3

Covering Set Problem

In Chapter 1, we introduced the problem of multiple sink positioning or finding the stop
points on a plane for a mobile sink, which can be rephrased as a covering set problem. We

provide the definition of the h-hop covering set problem again:

Covering Set Problem: Given a unit disc graph G = (V, E), where V represents a
set of sensor node locations, find the minimum sized set of points U (sink node locations)

such that every node in V' can reach a point in U using at most h hops.

In this chapter we look at this problem in detail. Different algorithms are proposed for
both 1-hop and h-hop versions of this problem. The performance ratio and time complexity
of these algorithms will be discussed, and finally we compare the different approaches which

are introduced for this problem.
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3.1 PTAS for h-hop Covering Set Problem

Recall that the 1-hop covering set problem is the same as the disc cover problem, for which
Hochbaum and Maass proposed a PTAS using the shifting strategy. This algorithm was
described in detail in Section 2.1. We propose two algorithms for the hA-hop covering set
problem, which are extensions of the algorithm in Section 2.1, in two different ways.

The algorithm above can be extended for the A-hop problem in two different ways. We

explore these two extensions in the next two sections.

3.1.1 Shifting Strategy for h-Hop Covering Set Problem: Algorithm 1

In our first solution for the h-hop covering set problem, we use the algorithm described
above, except for the fact that at the bottom of the recursion, we look for optimal A-hop
covering sets rather than disc covers. However, the analysis of our algorithm is different

and we provide an out.

~—2h— ~—2h—

2w Qe udeal [ R T T, 28

2F

Figure 4: The set OPT"? is the shaded area. It includes all discs that are within A hops of
the strip boundaries.

We choose ¢ > h, and let S, S2,...,5; be the distinct shift partitions. Fix a specific
partition S;. We denote the optimal solution by OPT and let OPT" be the set of discs
in OPT which cover vertices in two adjacent 2¢-width strips given by the partition S;.

It is easy to see that all such discs are within Euclidean distance A of the 2¢-width strip
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boundaries corresponding to the partition S; (see Figure 4). For j a specific 2¢-width strip
in the partition S;, let |[OPT}| be the number of discs in an optimal solution for strip j.

Then the above observation indicates that:
Tjes,|OPT;| < |OPT| + |OPT’|

Consider a specific disc @ in the set OPT. It is not difficult to see that ® can be within
h hops of the strip boundaries for at most A partitions. That is, it can belong to at most A

sets OPT*. This implies that

T1<i<e|OPT!| < h|OPT)|

Thus

mini=,...e{Zjes,|OPTj|} < (1 + h/€)|OPT]|

Repeating the application of the algorithm to the second dimension, as in {13], we divide
the strips into squares of side 2¢ x 2¢. In each square, we find the optimal A-hop covering
set using exhaustive enumeration. This algorithm results in a solution that is (1 + %)2
approximation to the optimal solution.

To analyze the complexity of the algorithm, note that as in [13], at most 1'2\/5]2 discs
are needed to cover all the nodes in the 2¢ x 2¢ square, and there are O(n?) positions for
the disc centers to consider. Thus at most O(nQWﬁf) arrangements of discs have to be
considered. In order to check if an arrangement of discs is actually a cover, we can perform
a breadth-first search for up to h levels from each of the points in the candidate cover, an
operation that takes O(n? + n|’E\/—2—'|2) time. Since there are £ shifts in each dimension, the
total amount of time taken is O(£2max([¢v/2]7, n)n2re\/§12+1) where £ > h.

The above discussion yields the following theorem:
Theorem 4 The h-hop covering set problem admits a PTAS.
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3.1.2 Shifting strategy for hi-Hop Covering Set Problem: Algorithm 2

Another algorithm for the same problem is described briefly here. In this algorithm we
divide the area into strips of width 2k instead of 2. Let S1,S3,...,5Sy be the distinct shift
partitions which are made by groups of £ consecutive strips of width 2h. Let OPT* be the
discs in OPT which cover vertices in two adjacent 2hé-width strips given by the partition
S;. Then any disc in OPT"® must be within Euclidean distance h of the 2hf-width strip
boundaries given by partition S; (see Figure 5). Thus any disc in OPT can appear in at

most one such set OPT?, and it follows that

. Y1<i<e|OPT!| < |OPT)|

This implies that
min=1,..e{Zjes,|OPT}|} < (1+ 1/6)|OPT]|

Thus, Algorithm 2 has a performance ratio of (1 + 1/£)2. However, this improved
performance ratio comes at the cost of a more expensive computation at the base of the
recursion, where optimal h-hop covering sets must be found in squares of side 2h¢. In
such a square the maximum number of discs that are needed to cover all the nodes in the
square is [h@ \/5-'2 which means that at most O(nﬂhe‘/mz) arrangements of discs have to

be considered. Therefore, the total time taken is O(£2maz([hfv/2]’, n)nﬂhe‘/ﬂz“).

3.1.3 Comparison between the two algorithms

Algorithm 1’s performance ratio depends on h, while Algorithm 2’s does not. On the other
hand, Algorithm 2’s running time depends on h while Algorithm 1’s does not. Tables 3 and
4 compare the performance ratio and the time complexity of the two algorithms discussed

above for specific values of £ and h. For h > 2, for any value of shifting parameter, Algorithm
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Figure 5: Each disc in OPT can appear in at most one set O PT"

2 yields a better performance ratio. However, for h > 1, the time complexity of Algorithm

2 is much worse than that of Algorithm 1. For both algorithms, Table 4 confirms that the

running time is a polynomial of very high degree in n for both algorithms.

Algorithm 1 Algorithm 2
h=1|h=2|h=3|h=4|h=5|h=10|h=20| forallh
7=5 | 1.44 | 196 |256 |324 |N/A |N/A |N/A | 1.44
£=20|1.10 1.21 1.32 144 | 1.56 | 2.25 N/A 1.10
¢=>50 | 1.04 1.08 1.12 1.16 1.21 1.44 1.96 1.04

Table 3: The performance ratios of Algorithm 1 and Algorithm 2 for different values of £

and h.
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Algorithm 1 Algorithm 2

for all A h=1h=2|h=3|h=4 |h=5 |h=10 | h=20
7=5 | 129 120 | 393 | 883 | 1500 | N/A |N/A | N/A
£ =20 | 1569 1569 | 6273 14113 | 25089 39201 156801 || N/A
£ =50 | 9801 9801 | 39201 | 44101 | 156801 | 245001 | 980001 || 3920001

Table 4: The time complexity of Algorithms 1 and 2. The exponent of n for different values
of £ and h is shown.

3.2 (3+¢)-Approximation Algorithm for Covering Set Prob-

lem

In the previous section, a polynomial time approximation scheme was explained for the
covering set problem. The running time of Algorithm 1 was O (€2mam(]'£\/§]2, n)nQre‘/mz‘*‘l)
where the approximation ratio is (1 + %). Considering a sequence of values for 4,
{1,2,8,---,10,---}, the sequence of the degree of n is {5,17,---,401,---}, which means
that it grows very fast. This is the main motivation to look for a trade-off between the
running time and approximation ratio. In this section we explore the idea of superimposing
a regular lattice on the plane to achieve this trade-off. This means that we consider only
lattice-based disc covers, ie. we restrict the covering disc to center only on lattice points.
This will affect the approximatioh. ratio of the solution that we propose for the covering set
problem, but a linear time will be achieved.

In Section 3.2.1 we propose a PTAS for the lattice-based disc cover set problem. In
Section 3.2.2 this algorithm will be generalized for the h-hop version of the problem. We
also prove that these two algorithms deliver a (3 + €)-approximation ra;tio solution for the
covering set probleﬁ, and finally, Section 3.2.3 presents the first distributed algorithm for

the lattice-based disc cover set problem.
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3.2.1 PTAS for Lattice-based Disc Cover Problem

In this section, we describe a PTAS to find a lattice-based disc cover for a given set of
points V. We adapt and extend the ideas used in [24] to find the minimum dominating set
of a unit disc graph. For the algorithm to work, a triangular lattice of side at most /3 or
a square lattice of side at most /2 is required. However, in this section, we assume that
the triangular lattice has side 2/ V/7; the approximation bounds given here depend on this
assumption. In Chapter 4, we will discuss the relationship between the lattice size and the
performance ratio in general.

The infinite triangular lattice can be seen as tiling the plane with hexagons, such that
each lattice point u is the center of a unique hexagon H(u) (see Figure 6). Given a finite set
of lattice points U, the set of hexagons associated with U is {H(u) | v € U}. We say that
two hexagons are connected if they share a side. A set of hexagons is said to be connected,
if for any two hexagons H; and Hj in the set, there is a sequence of hexagons from the set

connecting them:.

\ H(uz) ,

Figure 6: Each lattice point w is the center of a unique hexagon H (u)

Now that we have the definitions which are related to the triangular lattice, we recall
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Figure 7: {S1, S2} is a 4-separated collection of hexagons.

the definition of lattice-based disc cover set problem given in Chapter 1.

Definition 2 S = {51, 5,,..., Sk} is a 4-separated collection of hexagons if

1. S; is a set of connected hexagons, for alli, 1 <i < k.
2. 8; and S; are disjoint for all i % j.

3. if H € S; and H' € S;j where i # j, then there are at least four hexagons between H

and H'.

See Figure 7 for an illustration of a 4-separated collection of hexagons. The motivation
behind defining a 4-separated collection of hexagons is that the disc covers of S; and S; are
completely disjoint for any distinct S; and S; in such a collection, as shown in Lemma 5.

Let u be a lattice point, and S be a set of hexagons. Then we define the neighborhood
of H, denoted N(H), to be the set of all hexagons which share a side with H. Similarly,

the neighborhood of S, denoted N(S), is Ugeg N(H). This definition can be extended to
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an r-neighborhood in a natural way:

N(NTYWH)) ifr>1
N™(H) =
N(H) ifr=1

We use V4 to denote the subset of V' that is contained in a region A.

The idea behind the four-separated collection of hexagons is that the lattice-based disc
covers of each pair §;, S; in such a collection have to be disjoint, as shown in Lemma 5.
This implies that the sum of the sizes of the lattice-based disc covers for all members of
a four-separated collection forms a lower bound on a lattice-based disc cover for V. Our

algorithm then expands the sets S; in a controlled way to find a bounded-size lattice-based

disc cover for the entire set V.

Lemma 5 For any 4-separated collection of hexagons S = {S1,Sa, ..., Sk}:

i=k
>_ILDC(Vs,)| < |[LDC(V)

i=1

Proof. Fix an S;. As shown in Figure 8, the point ; is a lattice point in N3(S;) — N2(S;)
with minimum distance to any point inside the S;, and therefore to any element of Vg,.
Since the lattice distance is d = 2/ V7, the minimum distance from u; to S; can be easily
seen to be 1/52/21 > 1 from triangle Au;mn. This means a lattice disc (with radius 1)
centered at any lattice point in N3(S;) — N2(S;) cannot possibly cover any point in S;.
Since S is a 4-separated collection, if i # j, then LDC(Vg,) N LDC(Vg,;) = 0. The lemma

follows. o

Algorithm  Given a 4-separated collection, we would now like to expand each S; to T;

such that the union of disc covers for Vr, form a disc cover for all of V, and the disc covers
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Figure 8: The minimum distance of any lattice point inside N3(S;) is greater or equal than

r, which is 1/52/21 > 1

for each T; is at most (1 + €) times the size of that for the corresponding S;. In this manner,
the union of all the disc covers in T; will form a disc cover which is at most (1 + €) times
the optimal disc cover for V. Given a set of points V, let R be the subset of hexagons
chosen from the hexagonal tiling of the plane, that each contain at least one point from V.
Let ¢ = 1. We initialize H; to be an arbitrary hexagon from R. Next, define S; = N"(H;)
and T; = N"T4(H;) where r is the smallest integer such that |ILDC(Vr+a(a))| < (1 +
€)|[LDC(Vyr(x,))|- Having done this, we remove T; from R, increment ¢ and continue until
there is no hexagon left in R *. Let the number of iterations for R to become empty be k.
The disc cover returned by the algorithm is U, <;<x LDC(T}), where LDC(T;) is an optimal

lattice-based disc cover for the set T;.

1We point out here that the neighborhoods above are formed using the infinite hexagonal tiling, and not
only the hexagons in R.
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It is clear from the description above that {Si,Se,...,Sk} as formed by the algo-
rithm above is a 4-separated collection of hexagons. It is also straightforward to see that
Ui<i<kVr, = V. Therefore, U1<i<x LDC(Vr,) is indeed a lattice-based disc cover for V. The
following lemma shows that it is in fact a (1+ €) approximation of the optimal lattice-based

disc cover for V.

Lemma 6
Ti4|LDC(Vr)| < (1 +€)|LDC(V)|

Proof. By design, |LDC(Vy,)| < (1 + €)|LDC(Vs,)| for every i such that 1 < ¢ < k.

Therefore,
SELILDC(Vr)| < (1 + A, |LDO(Vs)| < (1 + 6)|LDC(V))|

where the second inequality‘follows from Lemma 5. O

It remains to show that the algorithm described above runs in polynomial time. We
do this in two steps: first we show that for any constant r, and for any hexagon H;, an
optimal lattice-based disc cover LDC(Vyr(g,)) can be found in polynomial time. Secondly,
we show that there is a constant ¢ such that the largest neighborhood to be considered in
the process of finding the sets S; and T; is always bounded by c.

For any fixed r, and any hexagon H; in the hexagonal tiling, the number of hexagons
in N"(H;) is given by (Xj_;6i) + 1 = 3r2 + 3r + 1 = O(r?). Therefore, LDC(Vyr(g,)) can
be found simply by enumerating all the possibilities. We start with all singleton subsets
of lattice points in N7+2(H;) and look at progressively larger subsets until a disc cover
is found. There are at most O(2°("")) such subsets which are candidate covers; for each

such candidate cover, it can be verified in O(n) time whether it is indeed a cover, where
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n= |Vnr(a,)|- Therefore the total time taken for this exhaustive search is 0(20('”2) n), which
is linear in n, provided r is constant. If §; = NT(H;), then, starting with H;, the time taken
to identify the sets S; and T; as well as find the optimal lattice-based disc covers for them
is at most r times the time taken to find LDC(NT(H;)), which is still linear in the number
of nodes in T; for constant r. Since the sets Vg, for 1 < 4 < k are disjoint, the total time

taken by the algorithm is linear in =, the total number of nodes.

Lemma 7 There exists a constant c = c(e) such that the largest neighborhood to be consid-

ered during the process to find S; and T; for any ¢ is bounded by that constant.

Proof. Let ¢ be the largest neighborhood considered while calculating S; and 7T; for some
value of i. Recall that if S; = N"(H;), then T; = N"t4(H;), and that in finding the

dominating set for S, we need to look at all lattice points in N2(S). Then for any r < ¢,

3(r+22+3(r+2)+1 > |LDC(N"(H;))|
> (1+¢)|LDC(N"*(H;))|

> (14 ¢€)2|LDC(N"8(H))|

> 1+l HLDO(NT ™t 4 (Hy)))|

> (1ol
where the last inequality holds since 1 < |[LDC(N" ™9 4(H;))| < « for some constant a. It
is clear that the inequality 3(r +2)2+3(r +2) +1 > (14 ¢)l"/4 will be violated eventually,

for a value of r that depends only on ¢ and not on n, the number of points in V. O

The following theorem is immediate:
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Theorem 5 The lattice-based disc cover problem admits a PTAS.

The above theorem, together with Theorem 8 (from Chapter 4) can be used to give an

approximation algorithm for the disc cover problem.

Corollary 2 For any fized €, and for any set of points V' on the plane, there is a linear
time algorithm that computes a disc cover of V' that is at most 3(1+ €) times the size of the

optimal disc cover.

Proof. Let S(V) be the disc cover given by the PTAS of Theorem 5. Then,
IS(V)| £ (1+¢€)|LDC(V)| < (1 + €)(3|DC(V)])

where the second inequality follows from Theorem 8 ( Chapter 4), which implies that any
disc on the plane which is not collocated with a lattice point, can be substituted with at

least 3 lattice discs. O

3.2.2 h-Hop Lattice-based Covering Sets

As stated earlier, a 1-hop lattice-based covering set for a graph G = (V, E) is the same
as a lattice-based disc cover for V. Therefore, for any unit disc graph, the algorithm in
Section 3.2.1 gives a PTAS for the lattice-based covering set problem, and a 3(1 + €)-

appfoximation algorithm for the covering set problem.

Corollary 3 For any fired € > 0, and for any unit disc graph G, there is a linear time
algorithm that computes a 1-hop covering set for G that is at most 3(1 + €) times the size

of the optimal 1-hop covering set.

To find the h-hop lattice-based covering set for a unit disc graph G, we use similar
ideas to the algorithm in Section 3.2.1. Essentially, we create a 2m-separated collection of

hexagons {S1,S2,..., Sk}, where m is given by the following:
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2i if 6i — 2 < v2Ih < V36i2 + 12 + 4
m = 3

2 4+1 ifv362+12+4<V2Ih<6(i+1)—2

N3(H) NE(H)

Figure 9: Finding the minimal m such that no lattice point in N™*1(H) can cover any
point in H. The value s = d/v/3 = 2/v/21.

Claim 1 The value m defined in Equation 3 is the minimum value such that no lattice

point in N™T1(H) can be within h hops from any node located inside the hexagon H.

Proof. Observe that when the lattice distance d = 2/+/7, the side of the hexagon is
d/v/3 = 2/+/21. From Figure 9, it is easy to see that among all the lattice points in N2 (H),
the one that lies on the zx-axis minimizes the distance to the hexagon H. The minimum
distance from H to a lattice point in N2 (H) is therefore (3i—1)2/+/21. Similarly, among all
lattice points in N**+1(H), the ones that are just above or just below the z-axis minimize the

distance to the hexagon H. The minimum distance from H to a lattice point in N2+1(H)

can be calculated to be /(36¢% + 12¢ 4+ 4)/21. Since in one hop, at most distance 1 can be
covered, for a lattice point u in N7(H) to cover a point in H, it must be that the distance

between v and H is not greater than h. The lemma follows. O
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The separation between S; and S for i # j implies that LC S[h](Gs,)NLCS[h|(Gs;) = 0,
where G 4 is the graph induced by the vertices of G lying in region A. Once again, we choose
a hexagon H; with a vertex that has not yet been covered, and assign S; = N"(H;), and T; =
NT+2m(H,) where r is chosen such that [LCS[h](Gr,)| < (1 + €)|LCS[R])(Gs,)|. Assuming
that after ¢ such rounds, all vertices have been covered, we can use similar arguments to
the 1-hop case to show that Ui<i<x LCS[R](GT,) is a (1 + €)-approximation to the optimal
lattice-based h-hop covering set. The following lemma establishes that as in the one-hop
case, there is a constant ¢ such that the size of the largest neighborhood to be considered

during the process to find S; and T} is bounded by c.

Lemma 8 There ezists a constant ¢ = c(h,€) such that the largest neighborhood to be

considered during the process to find S; and T; for any i is bounded by that constant.

Proof. Let ¢ be the largest neighborhood considered while calculating S; and 7; for some
value of 5. Recall that if S; = N7(H;), then T; = N™+?™(H;), that in finding the dominating
set for a set of hexagons S, we need to look at all lattice points in N™(S), and that the

number of lattice points in N¢(H) for a hexagon H is 3i%> + 37 + 1. Then for any r < c,

3r+m)?+3(r+m)+1 > |LOS[R|(N"(H))|
> (1+ €)|LCS[A|(N"™2™(H,))|

> (14 €)?*|LCS[R|(N"~*"(H)))

~ (1+€)Lr/2mJ|LDC(NTmOd2m(Hi))|

> (14 e)lrml
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where the last inequality holds since 1 < |LDC(N” ™42 ( H))| < a(m) for some function
of m. It is clear that the inequality 3(r + m)2+3(r+m)+1> (1+¢)l7/2m will be violated
eventually, for a value of r that depends only on ¢ and m (which is a function of k) and not
on n, the number of points in V. O

To analyze the time complexity, we observe that the difference between the h-hop case
and the 1-hop case is that it takes O(n?) time to verify if a given candidate set of lattice
points is in fact an A-hop covering set. This is because we perform a breadth-first search
for upto h levels from each of the points in the candidate cover to verify that all vertices
in G are covered. Since the number of candidate sets is independent of n, the total time

taken is O(cgn?) where ¢ is a function of € and h.

Theorem 6 The h-hop lattice-based covering set problem on unit disc graphs admits a

PTAS.

Corollary 4 For any €, and for any unit disc graph G, there is a quadratic time algorithm
that computes a h-hop covering set for G that is at most 3(1+¢) times the size of the optimal

h-hop covering set.

Proof. Take any point u in the optimal A-hop covering set. Then the disc centered at u
can be covered by three lattice discs as shown in Chapter 4. Any vertex of the graph that
is at most h hops away from u is also at most A hops away from at least one of three lattice
disc centers that cover the disc centered at u. So if S(Q) is the solution given by the PTAS

of Theorem 6, then

1S(G| < (1 + 9|LCS[R(G)] < (1 + )(B|CS[R)(G))
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3.2.3 Distributed Algorithm for Lattice-based Disc Cover Problem

The algorithms in Sections 3.2.1 and 3.2.2 have one important property. These algorithms
can be implemented in a distributed manner. As far as we know, this is the first distributed
algorithm for the disc cover problem. The distributed implementation of the algorithms
retains the same performance ratio as the centralized version. In this section, we show how
to implement the algorithm for lattice-based disc cover problem given above in a distributed
manner.

The main idea of the distributed implementation of the algorithm is to use a pre-defined
coloring of the hexagonal lattice, which satisfies the constraint that the reuse distance is
2c¢ + 1. Here c is the constant derived in Lemma 7 in Section 3.2.1, which is the size of the
largest neighborhood to be considered during the process to find S; and T; for any 7. For

that, we first define the reuse distance here:

Definition 3 In a valid coloring with reuse distance k, any two vertices at distance < k

must be assigned different colors.

Such a coloring can be obtained by partitioning the tiling into identical clusters (see
Figure 10), such that every hexagon in a cluster has a different color, and corresponding
hexagons in different clusters are assigned the same color. These ideas have previously
been studied in the context of channel assignment in cellular networks [23]. The mechanism
to form the clusters is simple: the cluster corresponding to a hexagon is simply its c-
neighborhood. It is straightforward to identify a subset of hexagons from the tiling such
that their clusters partition the entire tiling. The number of colors needed for the coloring
is therefore the size of a c-neighborhood, that is 3c? + 3¢ + 1. Finally, we observe that the

color given to a particular hexagon is derivable simply by the knowledge of the coordinates.
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Figure 10: Clustering using a 1-neighborhood

Now, the lattice-based covering set will be derived in stages, defined by the coloring.
Let H = {H;,,H;,, ..., H;,,..., H;,} be the set of hexagons with color 7. In the i-th stage,
all the hexagons in H*® participate. In particular, H;, is used as a seed to create the sets
Sij and T,-j as outlined in the previous section. The key observation is that all hexagons
in H* can start the process simultaneously: any two hexagons H;;, and H;, in H ¢ are of
the same color, and are therefore at least 2¢ + 1-distance apart. By the definition of ¢, the
neighborhoods considered in the construction of T;; and Tj, are completely disjoint. Then,
the vertices that are covered are removed from consideration, and we proceed with hexagons
of color 7 + 1.

An outline of the distributed implementation follows. In the i-th stage, for every j, all
nodes (if any) in the hexagon H;; participate in a local leader election to elect one repre-
sentative (at most) from H;;. This leader node now broadcasts a request for information
about the positions of all nodes within its c-hexagon neighborhood, where c is the constant
defined in Lemma 7. Next, the leader node locally computes the Sij and Tij sets as well as
the optimal h-hop covering sets for GSij and G’Tij as described earlier, and broadcasts the

locations of the lattice points in these optimal covering sets. Any node that is covered by
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the announced lattice points now pulls itself out for the purpose of future rounds and will
not respond to requests for information from leader nodes of hexagons of future colors. This
finishes the ¢-th stage, and now nodes in hexagons of color i + 1 start their leader election.

The distributed implementation of the algorithm still yields the (1 + €)-approximation
ratio for lattice-based disc cover problem, and the (3 + €)-approximation ratio for the disc
cover problem. It is straightforward to see that the h-hop covering set and h-hop lattice-

based covering set problems can be implemented in a distributed manner in the same way.

3.3 (5+¢)-Approximation Algorithm for Covering Set Prob-

lem

In the first two sections of this chapter we showed two different algorithms which deliver
(1+¢) and (3+ ¢) approximation ratios for the covering set problem. In the first one, there
was no restriction to locate the elements of the covering set, but in the second approach,
which was the lattice-based approach, we restricted the covering set to be on the lattice
points. This restriction caused a worse approximation ratio of (3 + €), but it also provides
a better running time which is discussed in Section 3.2.1. In this section another constraint
will be introduced to our covering set problem. Here we restrict the positions of the covering
disc to be on the vertices of the graph. In other words, we study the graph-based covering set
problem; that is, we only consider points corresponding to nodes in the graph as candidates
for inclusion into the covering set. A 1-hop graph-based covering set for a unit disc graph is
the same as a dominating set in the graph, for which a PTAS is given in [24]. We go on to
show a PTAS for the graph-based h-hop covering set problem. One important property of

this algorithm is that it does not require a geometric representation of the unit disc graph.
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Finally we will show that this algorithm which is a PTAS, delivers a (5 + ¢)-approximation

ratio for the covering set problem.

3.3.1 PTAS for h-Hop Graph-based Covering Set Problem

Recall that a covering set for graph G = (V, E) whose elements are constrained to be the
vertices of the graph itself is called a graph-based covering set. The algorithm proposed for
the h-hop graph-based covering set is a straightforward extension of the 1-hop case [24],
which is explained in Section 2.3. Like the algorithm in [24], our algorithm does not require
a geometric representation of the unit disc graph.

In this algorithm, we use the fact that an h-hop graph-based covering set in a unit disc
graph G is a dominating set in the graph G*. We run Neiberg and Hurink’s algorithm
on G", since the algorithm itself is not specific to any type of graph. The proof of the
polynomial run time for unit disc graphs depends on the fact that the size of the maximal
independent set in any r-neighborhood of the graph is at most (2rh + 1)2 which is O(r?).
However, the size of an MIS in G" for G a unit disc graph is at most the size of an MIS in
G.

To analyze the running time, observe that an optimal one-hop covering set in G" is a
minimum dominating set in G*. Let N"(G,v) be the graph induced by the set of vertices

in G that are at graph distance at most r from v in the graph G. Then:

IGOS[L(N™(G",v)| < IMIS(N™(G", )] < IMIS(NM(G,v))| < (2rh+ 1) (4)

where the last inequality bounding the size of an independent set in a unit disc graph is
from [25]. Thus, to find the minimum dominating set in N"(G"?, v), we can do an exhaustive

search in time O(n®(("™?). Furthermore, as in [24], we can show that the size of the
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maximum sized neighborhood examined by the algorithm is bounded by a constant c.

Lemma 9 There exists a constant ¢ = c(h,€) such that the largest neighborhood to be

considered during the process to find S; and T; for any i is bounded by that constant.

Proof. Let ¢ be the largest neighborhood considered while calculating S; and T; for some
value of 7. Then using an analysis exactly as in [24], and the bound on |GCS[1](NT(G", v))]

obtained in Equation 4, for any r < c,

(2rh+1)2 > |GCS[}(NT(G!, v))|
> (14 €)|GCS[NT"2(G", v))

> (14 eGCS[(NT4(G",v))|

> (1+el"/2lgesn)(NT med2(Gh, v))|

= 1+l

where the last equality is a consequence of the fact that |GCS[1](N°(G*,v))| = |GCS[1](NY(GF,v))| =
1. It is clear that the inequality (2rh + 1)2 > (1 + €)l7/2 will be violated eventually, for a
value of r that depends only on € and A and not on n, the number of points in V. O

The following theorem is immediate:
Theorem 7 The h-hop graph-based covering set for unit disc graphs admits a PTAS.

Next, we show a relationship between the optimal graph-based covering set and the

optimal covering set for a unit disc graph.
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Figure 11: There are five discs in the optimal graph-based covering set, while the optimal
covering set has only one disc (at the point in the middle of the circle.)
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Lemma 10 For every unit disc graph G, |GCS[h](G)| < 5|CS[h](G)|

Proof. Let u be a point in the optimal h-hop covering set of G. Let A(u) be the set of
vertices in GG that are within A hops of u. Consider the set of vertices of G that are contained
in the unit disc centered at u, and let B(u) be a maximal independent set of the subgraph
of G induced by these vertices. Then B(u) is also a dominating set of this subgraph, and
every node in A(u) is within A hops of some node in B(u). Furthermore, |B(u)| < 5, since
G is a unit disc graph, and the size of the maximal independent set in any neighborhood of
a vertex in a unit disc graph is 5. This implies that we can obtain an h-hop graph-based
covering set for GG, by simply replacing every vertex u in the optimal covering set with an
MIS of the subgraph induced by the disc centered at u, and the size of this covering set is
at most five times the size of the optimal covering set, thereby proving the lemma. O

The bound on the approximation is tight, as shown by the example in Figure 11. The

following corollary is a consequence of Theorem 7, and Lemma 10.

Corollary 5 For any €, for any integer h > 0, and for any unit disc graph G, there is a
polynomial time algorithm that computes a h-hop covering set for G that is at most 5(1+ ¢€)

times the size of the optimal h-hop covering set.

Even though this algorithm has a worse performance ratio as well as worse running time
than the algorithm in Section 3.2.2, the advantage of this algorithm is that it does not
require a geometric representation for the graph.

In Section 2.3.5, we described the distributed implementation of the algorithm of Nieberg
and Hurink for dominating set problem given in [19]. The results of [19] apply to all
polynomially growth-bounded graphs. Since our algorithm for h-hop covering sets consists

of running Nieberg and Hurink’s algorithm on G*, and G" is a polynomially growth-bounded
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graph, it follows that the results of [19] also give a distributed implementation for our A-hop

graph-based covering set algorithm.
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Chapter 4

Geometric Theorem

In this section, we prove a result relating the size of an optimal disc cover to a lattice-based
disc cover. This relationship depends on the side of the lattice d. However, regardless of
the value of d, the minimum number of lattice discs required to cover an arbitrary disc is

three, as shown below:

Lemma 11 Any disc on the plane which is not co-located with a lattice disc needs at least

three lattice discs to cover it.

Proof. Assume for the purpose of contradiction that there is a non-lattice disc ® with
center ¢ such that it is covered entirely by two lattice discs centered at A and B. If ¢ lies
on the line segment connecting the centers of A and B, then Figure 12 shows that there is
a point at distance exactly one from ¢ on the line segment perpendicular to AB that is at
distance greater than 1 from the centers of both A and B. Similarly, if ¢ is not on the line
segment connecting A and B, the same argument applies. O

The following theorem gives a precise specification of the number of lattice discs that

can be guaranteed to cover an arbitrary disc, for all possible values of the lattice side length.
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Theorem 8 Let L be the infinite triangular lattice where the distance between two neigh-
boring vertices is d. The number N of lattice discs that are necessary and sufficient to cover

an arbitrary unit disc placed on the plane is given by:

Case 1: d > /3 N does not exist

Case 2: 1<d<+v3 N=5

Case 3: 2L <d<1 N=4

C’ase4:d<M N=3
Proof. We examine each case separately, and prove that in the specified range of d, the given
number of lattice discs IV is sufficient to cover any disc on the plane (sufficient condition),
and at the same time, there exists a disc ® (more precisely, a disc placement) such that N

lattice discs would be required to cover ® (necessary condition).

4.1 Case 1

For d > /3 the lattice discs do not cover the plane completely (see Figure 13). In particular,
the point M is at distance more than one from each of A, B, and C. Thus, there exists ®
(for example centered at M),such that there does not exist any integer N where IV lattice

discs could cover &.

4.2 Case 2: 1<d<+3

Next we consider the case when 1 < d < /3. We show that five discs are necessary and

sufficient to cover an arbitrary disc that is not collocated with a lattice point.
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Figure 12: Two lattice discs cannot

located on a lattice point.

Figure 14: If 1 < d < +/3 then the three closest lattice discs must be in any solution.

cover a disc placed on the plane with a center not

N

. T
~. \\
N
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Figure 15: Five lattice discs are necessary when 1 < d < V3.

Necessary condition

Let & b¢ an arbitrary disc with center located inside the triangle ABC (see Figure 14). We
claim that any lattice disc cover of ® must contain the lattice discs centered at A, B, and
C. Suppose instead that there is a lattice disc cover that contains only the lattice discs
centered at A and O (for example). Then consider the point @ which is the intersection of
the discs centered at A and C lying inside AABC. This point (and a small area around
it not contained in the discs centered at A and C) must be contained in the disc ®. From
Table 5 in Appendix A (items 1 and 2), it can be seen that for 1 < d < /3, it is at distance
greater than 1 from lattice discs centered at D and E and all other lattice discs other than
the one centered at B are even further away. Thus any lattice disc cover for & must contain
all three lattice discs centered at A, B, and C. The cases when the lattice disc cover does
not contain A or C can be argued similarly.

Now we prove that there exists a disc which cannot be covered with 4 lattice discs, and

therefore at least five lattice discs will be needed. Consider the specific disc ® centered at
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h, the intersection of line segment OC and §igz, where o is the circumcenter of AABC,
g1 (respectively g¢2) is the intersection of the lattice discs A and C (respectively B and C)
falling outside AABC (see Figure 15) . Since ||C —q1|| = 1, ||h — q1|| < 1. This shows that
there is a region around ¢; which cannot be covered by discs A or C, and similarly a region
around g2 which cannot be covered by discs B or C. It is not difficult to see that two more
lattice discs are needed to cover these regions. This completes the proof of the necessary

condition for this case.

Sufficient condition

To prove the sufficient condition, we show that any disc ® in the plane can be completely
covered with at most 5 lattice discs when 1 < d < /3. Consider a disc ® with center ¢ in
the triangle ABC of the triangular lattice, as shown in Figure 15. Let T3, T2, 73 be the
three triangles that share an edge with triangle ABC. We can consider the tlriangle ABC
to be divided into six similar sub-triangles as shown in Figure 15. If the center of ® lies in
the sub-triangle OMC, where O is the circum-center of the triangle ABC, and M is the
midpoint of AC, then we claim that the five lattice discs that cover ® are centered at A,
B, C, and the third vertex of the two triangles in 71, 7%, and 73, that include C. The cases
where the center of ® lies in one of the other sub-triangles are identical and will not be
discussed further here. To show that the five lattice discs given above completely cover the
disc ®, we argue that the distance from each of the three points O, M, C to the outside of
the area covered by the five discs is at least 1. Let R be the closed curve containing the
union of the five lattice discs. It is easy to see from Figure 15 that C, being the center of
a lattice disc, is at distance 1 from R, and that the closest points from M to the boundary

R are P; and Ps. It is straightforward to see that ||M — Pi|| > ||[A — P1|| = 1. Similarly,
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|IM — Ps|| > ||C — Ps|| = 1. Finally, we consider point O, for which the closest point to
the boundary is P». It is straightforward to verify from Table 5 that ||[O — Pz|| > 1 for
1 < d < v/3. This concludes the proof that the five given lattice discs completely cover the

disc ®.

4.3 Case 3: 2—‘7/7<d§1

When 2—‘7/? < d < 1, we show that four discs are necessary and sufficient to cover an arbitrary

disc which is not co-located with a lattice point.

Necessary Condition

Consider the specific disc @ centered at M in Figure 16, where M is the midpoint of AB.
In Figure 16, j and k are the two points on ST at distance 1 from M. Similary, ¢ and z are
also the two points at distance 1 from M, which are on the perpendicular bisector of ST.

Let ¥ be the set of fourteen lattice points shown in Figure 16.

Claim 2 1. Any lattice-based disc cover of ® must include a lattice disc centered in the

set {A, B,C, E}.
2. There exists an optimal disc cover consisting solely of discs centered in the set V.

Proof. To see (1) observe that the lattice discs centered at {A, B, C, E} are the only lattice
discs that cover the point M for d > 2/+/7. To see (2), notice that for any lattice disc with
center o ¢ U, there exists a disc with center 8 € ¥ such that disc(a) N® C disc(3) N®. O

It follows from the above claim that to prove the necessary condition, it is enough to
consider 3-subsets of ¥ that contain either A or B (or both) and those that contain C or

D (but not A or B). In each case we show using a proof by contradiction that it would be
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impossible to cover . Suppose U C ¥ is a set of three lattice points such that the lattice

discs centered at them covers disc ®. For convenience, we say U covers ®.

P Q

X Y

Figure 16: The fourteen closest lattice points to M, which is the midpoint of AB

e Case when (AcU) or (BeU)

Assume that A is included in U (the case when B € U is symmetric and the proof is
identical and omitted). We systematically consider the possibilities for the second disc in
U. First notice that if the second disk is any lattice disc with center on the line segment ST
then neither of the first two discs can cover either of the points ¢ and z. Since ||i — z|| = 2,
no single third lattice disc can cover both of them. This means none of the lattice discs
centered at S, B, or T can be part of a three-disc cover U that contains A. Next we consider
all points in ¥ above the line ST to be the second disc in U. The cases when the second

disc in U is below the line ST are symmetric and not considered here. For each of the
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possibilities of the second disc, we show that no matter what is chosen as the third disc, U

cannot cover ® completely.

A €U and Q € U: Observe that if any of the discs with center on or above the line
segment ST (i.e. P, F, E, D, T, B, or S) is the third disc in U, then the point z cannot
be covered, regardless of the value of d, simply because |M — z|| = 1, and M is closer to
z than any of the discs in this set. Similarly, if the third disc is centered on or to the
right of the line 7z, then the point j cannot be covered. This leaves only discs centered
at G or X as candidates for the third disc. Suppose U = {G, 4,Q}. It follows that the
discs centered at G and @ must have a non-empty intersection. However, this implies that
IG—@QJ = 3d < 2, or d < 2/3. This contradicts the assumption that d > 2/+/7. Since
X — Q| > ||G— Q)| it follows that X cannot be the third disc in U as well. Thus, if

A €U and Q € U (and similarly, if A € U and Y € U), then U cannot cover the disc .

AeUand D e U: Using exactly similar arguments to the previous case, we can see
that all lattice points in ¥ except for G and X are excluded from being centers for the third
disc. But D, A, and X are collinear, which means U cannot cover ®. It remains to consider
the case U = {4, D, G}. But since G, M, and D are collinear, there is a point at distance
1 from M on the line perpendicular to DG which is not covered by any of the discs in U.
Thus, if A € U and D € U (and similarly if A € U and J € U), then U cannot cover the

disc ®.

A €U and F € U: After excluding candidates on and above the line ST and the
discs centered at J and Y, for which we have just provided arguments for exclusion, the

only candidates for the third disc in U are the discs centered at G, X, and C. Let ¢ be the
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Figure 17: The case when A € U and F € U. The point ¢ is not covered by any of the discs
centered at G, C, or X, yet is at distance < 1 from M.

intersection of discs centered at A and F such that the disc centered at G does not contain
Q (see Figure 17). It is easy to verify that ¢ is also not contained in the discs centered at
X or C. From Table 5, it is easy to verify that when d > 2/+/7, then ||M — ¢|| < 1, which
implies that there is an area of the disc ® which is not covered by the lattice discs with
centers at any of A, F, G, C, X. This shows that if A € U and F € U, (and similarly if

A €U and G € U) then U cannot cover ®.

A €U and P € U: After excluding candidates on and above the line ST and the
discs centered at J, Y, and G, for which we have just provided arguments for exclusion,
the only candidates for the third disc in U are the discs centered at X and C. But from
Table 5, it is easy to verify that ||P —j|| = || X —j|| > 1, for d > 2/+/7. Further clearly
|C — j| > |M — j| = 1. Thus none of the discs centered at A, P, X, C can cover the point j.

This shows that if A € U and P € U (and similarly if A € U and X € U), then U cannot
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cover ®.

AeUand E €U: Theonly remaining candidate for the third disc is the disc centered
at E. However, since C and E are collinear with M, it is clear that U = {4, C, E} cannot
cover the point 5 € M.

We have shown that if A € U, then U cannot cover ®. Symmetrical arguments apply

to B € U as well. We go on to consider the cases excluding both these lattice discs.
e Case when (A¢U) and (B¢ U) and (Ce€ U or E €U)

Assume that U is a three-disc cover for ® that includes the disc centered at C (the case
when FE € U is symmetrical and omitted ). As before, we consider the possibilities for the
second disc in U. First, observe that if E € U as well, since neither C nor F covers either
of the points j and k, and {|j — k|| = 2, no third lattice disc can cover both of them. We
consider all the elements to the right of the line CE to be candidates for the second disc
and show that in éach case, U cannot cover ®. The arguments for the elements of ¥ to the

left of the line CE are symmetrical and will be omitted.

C €U and Q € U: Observe that if any of the discs with center on or to the right of
the line EC (D, T, J,Y) is the third disc in U, then the point j cannot be covered, regardless
of the value of d, simply because ||[M — j|| = 1, and M is closer to j than any of the discs
in this set. However, if the third disc is centered to the left of the line CE, then the point
k cannot be covered since {|M — k|| = 1, and M is closer to j than any of the discs in this
set, and ||Q — k|| = || X — j|| > 1 for d > 2/+/7 as can be verified from Table 5. Thus, if

CeUand QeU(orif C €U and P € U), then U cannot cover ®.
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C €U and D € U: After excluding all lattice points in ¥ on or to the right of line
EC, as well as the point P for which we just provided arguments for exclusion, the only
candidates remaining for the third element in U are F, S, G, and X . Let q be the intersection
of discs centered at C and D that is nearest to the point k (see Figure 18). It is not difficult
to verify that the discs centered at F', S, G, and X do not contain the point g. On the
other hand, from Table 5, it is straightforward to verify that |M — Q|| < 1 when d > 2//7
which shows that there is an area of ® which is not covered by any of the discs with centers

in {C,D,S,G,F,X}. Thus, when C € U and D € U (or when C € U and F € U), then U

does not cover ®.

Figure 18: The case when C € U and D € U. The point ¢ is not covered by any of the
discs centered at F, S,G, or X, yet is at distance < 1 from M.

CeUand (TeUorJeUorY eU): We have already shown that any
three-disc cover for ® that includes the disc centered at C cannot include discs centered at

P,Q,D,E or F'. This means that the only possible lattice discs in U are all on or below
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the line ST, which means that U cannot cover the point 4.

Thus, no three disc-cover can include discs centered at C or E.

To reiterate, we first showed (Claim 2) that any cover for ® must include a disc centered
at {A,B,C,D}. We then showed that if U is a set of three lattice discs that contains A
or B then U cannot cover ®. Finally we showéd that if U is set of three lattice discs that
does not contain A or B, but does contain C or F, then U cannot cover . We conclude
that there is no set of three lattice discs that can cover ®, which completes the proof of the

necessary condition.

Sufficient Condition

Figure 19: Four lattice discs 4, B, C and E are sufficient to cover any disc ® centered
inside AABO

To prove the sufficient condition, we show that any disc ® in the plane can be completely

covered with at most 4 lattice discs when \/i? < d < 1. Consider a disc ® with center ¢ in the

triangle ABC, as shown in Figure 19. We can consider the triangle ABC to be divided into



three similar sub-triangles as shown in Figure 19. If the center of ® lies in the sub-triangle
OAB, where O is the circumcenter of the triangle ABC, then we claim that the four lattice
discs that cover ® are centered at A, B, C, and the third vertex of the other triangle that
has side AB (here the fourth lattice point is E). The cases where the center of ® lies in one
of the other sub-triangles are identical and will not be discussed further here. To show that
the four lattice discs given above completely cover the disc ®, we argue that the distance
from each of the three points O, A, B to the outside of the area covered by the four discs is
at least 1. Let R be the closed curve containing the union of the four lattice discs. It is easy
to see from Figure 19 that B, being the center of a lattice disc, is at distance 1 from P; and
Py. Ais also at distance 1 from P; and Ps. Since ZOAP; is a right angle as is ZOBP;, we
have ||O — P3]| > 1 and ||O — Py|| > 1. This concludes the proof that the four given lattice

discs completely cover the disc ®.

4.4 Case 4: d < 2//7

The necessary condition here follows from Lemmq 11, therefore, in this section, we prove
only the sufficient condition, that is, that any disc in the plane can be completely covered
with at most 3 lattice discs when d < % Consider a disc @ with center c in the triangle
ABC, as shown in Figure 20. We can consider the triangle ABC to be divided into six
similar sub-triangles as shown in the above figure. If the center of ® lies in the sub-triangle
AMO, where O is the circum-center of the triangle ABC, then we claim that one of the
lattice disc sets Uy, Uz, and Us is a cover for &, where Uy = {4,C, F}, Uy = {E,G, J}, and
Us = {B, D, J}. The cases where the center of & lies in one of the other sub-triangles are
identical and will not be discussed further here.

To show that the three lattice discs given above completely cover the disc ®, we argue
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that the distance from any possible center ¢ inside AAM O to the outside of the area covered
by one of the three-disc sets mentioned above, is at least 1. In other words we prove that
for any point ¢ (the center of ® inside AAMO), at least one the following conditions is

true:

Condition 1: (|jc— Pi|| > 1) and (e — Q1] = 1) and (|jc — R1]| = 1)

In this case lattice discs are centered at A, C, and F' (see Figure 20).

Condition 2: (Jjc— P|| > 1) and (flc — Q2|| > 1) and (]lc — Ra|| > 1)

In this case lattice discs are centered at E, G, and J (see Figure 21) .

Condition 3: (|lc — P3|| > 1) and (]lc — Q3] = 1) and (||c — R3]l > 1)

In this case lattice discs are centered at B, D, and J (see Figure 22).

In Figure 20, the three discs centered at A, C, and F are shown as dashed circles.
Py is the intersection of the discs centered at F and A such that disc centered at C does
not contain P;. Similarly Q1 (R1) is the intersection of the discs centered at F and C
(respectively C' and A) such that disc centered at A (respectively F') does not contain Q1
(respectively R;1). The intersection points Q2, Ra2, P53, Q3, and R3 are defined in a similar
way (see Figures 21 and 22). In all these three figures a grey disc of radius one is pictured
centered at these intersection points.

Suppose Condition 1 is false. Since ||A — R1|| = 1 (see Figure 20), we have ||AO — Ry|| >
1. Therefore, it must be that ||c — R;|| is always at least 1, and since Condition 1 is false,
either ||c — Pi|| < 1 or |le — Q1] < 1. The remainder of the proof consists of showing that if
|lc = P1|| < 1, then Condition 3 must be true, and if ||c — Q1| < 1, then Condition 2 must
be true.

Suppose ||c— P1|| < 1. Then we claim that Condition 3 is true. From AADP;3 (see
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Figure 20: The set U7 = {4, C, F'} and the intersection points P1, Q1, R3.

Figure 22), since /DAP3 is 7/3 and LADP3 > /3 for d < 2/+/7, it follows that AP is the
longest side, which means AP; > DP; = 1. Therefore ||c — P3|| > 1 regardless of the place
of ¢ inside AAMO. For d < 2//7 it can be verified from Table 5 that ||M — Q3| > 1, so
the disc centered at Q3 cuts AB at the left of M; this means that “m— Q3H > 1 and
therefore {|c — Q3| = 1 regardless of the place of ¢ inside AAMO. It remains to show that
llc — Rs|| > 1. But it can be verified from Table 5 that ||R3 — Pi|| = 2||Rz — M| > 2 when
d < 2/+/7. Since ||c ~ Pi]| < 1 by assumption, it follows that |jc — R3}| > 1. This shows
that Condition 3 is true.

Suppose |lc — Q1}] < 1. Then we claim that Condition 2 is true. From AGCR; and

AGCO we have ||Ry — O]]2 = \2/—% + V1 — d? (see Figure 21). It is straightforward to verify
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Figure 21: The set Uy = {E, G, J} and the intersection points P, Q2, Rs.

that when d < 2/+/7 we get ||[Rz — O] > 1. In addition, for d < 2/+/7 it can be verified
from Table 5 that | M — Q2| = ||M — Pz|| > 1, so the disc centered at Q2 cuts AB at the
left of M; this means that Hm — Q2|| > 1 therefore (|lc — Q2] = 1) regardless of the place
of ¢ inside AAMO. It remains to show that ||c — Pz|| > 1. But it can be verified easily
from Table 5 that |Py — Q1] = 2||P> — M|| > 2 when d < 2/v/7. Since |lc— Q1| < 1, it
follows that ||c — P»|| > 1. This shows that Condition 2 is true.

We have shown that three lattice discs are always sufficient to cover a disc centered
at any point in AAMQO. The argument for the other sub-triangles is symmetric. This

completes the proof of the sufficient condition for Case 4. O
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Chapter 5

Conclusions

We studied the problem of multiple sink positioning in wireless sensor networks. This
problem can be understood as finding the stop points for a mobile sink in such a network.
Using multiple or mobile sinks, it is possible to limit the number of hops that a packet may
travel inside a network, therefore it is possible to reduce the error rate and latency and
provide a longer lifetime for the network by wasting less energy on multi hop routing and
providing a better load balance in the network. We modelled the problem of multiple sink
positioning as the A-hop covering set problem for unit disk graphs. We defined the h-hop
covering set problem as follows: given a unit disk graph G = (V, E), where V represents the
set of sensor node locations, find the minimum-sized set of points U (sink node locations)
such that every node in V can reach a point in U using at most h hops.

In this work, we gave the first PTAS for the h-hop covering set problem. We proposed
two different approximation algorithms with running times O(£2mazx([. E\/ﬁ]Q, n)n? re\/§1"’+1)
and
O(maz(Thev2]?, n)n2rhe‘/§]2+1), and performance ratios of (1+%)? or (1+%)? respectively.

Both of these algorithms are based on the idea of shifting strategy originally described in
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[13].

In addition, we gave a new PTAS for the lattice-based disc cover problem, based on
a new approach deriving from recent results on dominating sets in unit disc graphs [24].
We generalized this result to give the first PTAS for the A-hop lattice-based covering set
problem. We showed that this in turn yields an algorithm with a 3(1 + ¢€) performance ratio
for the h-hop covering set problem with a running time of O(cn?) where c is a function of €
and h. We showed that this algorithm can be implemented in a distributed manner giving
the first distributed algorithm for the h-hop covering set problem. The distributed solution,
yields the same performance ratio of 3(1 + ¢€), and has a quadratic running time.

The approximation ratio of 3(1 + ¢) for the hA-hop covering set problem, which is based
on a lattice-based approach for disc cover problem, is proved using a geometric theorem,
in which we characterize the relationship between the side of a triangular lattice and the
number of lattice discs that can cover an arbitrary disc on the plane.

Finally, we gave the first PTAS for the A-hop graph-based disc cover set problem, which
is based on recent results on dominating sets in unit disc graphs [24]. This algorithm can
also be implemented in a distributed and local manner. This algorithm delivers a 5(1 + ¢)
performance ratio for the h-hop covering set problem with running time of O(n”ﬁ), where
¢ is a constant. Although the running time of this algorithm is not better than the lattice-
based approach, it has the advantage of not requiring a geometric representation for the
unit disc graph.

The theoretical result which is obtained in this work is to position and find the number
of multiple sinks in a wireless sensor network, which enables every sensor nodes to reach a
sink within A hops for some specified value of h. We provided distributed implementations

for some of our algorithms, but the message complexity of these algorithms remains to
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be analyzed. Another important future direction of this work is designing and analyzing
protocols which can use these algorithms. Specifically, in the case that we restrict the
number of hops in a multi hop routing algorithm, we should design and verify the protocol
which take cares of the communication and data delivery in such a network. For example,
restricted flooding is a simple approach in which each of the multiple sinks can identify the
sensor nodes which are within » hops around them. Details of such a protocol are beyond
the scope of this thesis, but it is worth saying that the main issues in such protocols in
different layers are message synchronization, finding the nearest sink, handling sleep mode,
centralized and distributed administration of the network, and efficient multi hop routing.

It would be interesting to test our algorithms on networks with different parameters
of real world applications. Since the algorithms provided in this work are all about using
multiple or mobile sinks to increase the lifetime of the network, one of the future directions
of this work is to simulate the networks with such elements. The parameters which are
variable are the number of nodes, the maximum number of hops in a multi hop routing
scenario, the size of the area which the network is scattered on it, and the speed of a mobile
sink if it is applicable. The performance criterion to be evaluated is the lifetime of the
network in different situations.

Finally, another important future aspect of this work is the mobile sink trajectory and
motion control. For a mobile sink whose stop points are known, it is necessary to find the
route that it should travel between the stop points. The time for each stop is another issue

which affects the amount of data collected at each stop, and the latency of the network in

general.
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Appendix A

Theorem 9 The following table gives distances between points on the lattice.

Distance Figure
1 |1E~-Ql | 9f 4+ aE Figure 14
2| ID-Ql |1+3& - e/123& Figure 14
3| I0-P | ¥55E + dﬁ,@ Figure 15
4 | |1X — 4] V1+3d2+d?/4—d Figure 16
51 IM—Q| | f4=2dtdva3d V4-3d? Figure 17
6| ||M—Q] \/1_:%24_@@3:11 Figure 18
7T IIM—-Rs|| | 1—%+ @)7 Figure 23
8| IM —Pa|| | (1—28d2+¥3dvT—d?)% | Figure 24
1 2

Table 5: Useful distances in the lattice

Proof.

1. In Figure 14, since we have EM = %2 and MQ = \/@, then we get ||E — Q| =
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. In Figure 14 we have CM = d/2 and CQ = 1, then we get MQ = 3%@. Since we
have M B = dzﬁ, we obtain BQ = g@}@ Using ABQD we have ||D - Q|| =

\/1 + % _ d\/122—3d2‘

. In Figure 15 we have ||[N — B|| = 4. Thus, |[P,— N|| = /1 — % = 342@. Then, since
LOBN = 7/6, we have |O — N|| = ©&. Finally, |0 — P|| = |O = N||+ ||N = P2|| =
Vi=a& 4+ av3

2 6 -

. In Figure 16 since XB = v/3d and Bj = 1 — £, then using AXBj we get || X — j|| =

VIF13dZ/A—d.

. In Figure 17, AF is the bisector of BE. In AAOQ we have OQ° = 1 — A0°. Since
A0 = /3d/2, we have OQ = 3@{ and O'Q =d/4+ AEE—E. Using ABMO' where

BM = d/2 and /MBO' = Z and BO' = d/4 we get MO’ = d+/3/4. Next, using
3

. 2 2 2 Yy =
AMQO' we find MQ using MQ'" = MO'" + Q0" = |/4=24 ‘14 3d%

. In Figure 18, from AAQC. we can see that AQ = \/C_Qz ~AC? = V1 —d2. Next

we consider AAHQ to see that since ZHAQ = 7/6 and AQ = V1 —d?, we get

N 2 —_ J—
AH = ¥ x V1= d% and HQ = (31;@) . Finally, since MH = d/2 + AH, using

AMHQ, we have | M — Q|| = \/(@)2 + (4 + Exvi—@)”

. In Figure 23 since NJ = 3@, using ANJR3; we get NRg = Y43  Therefore
2 2

R0 = (¥333€ _ 4. Using ACH;R3, we have RzHy = (A3€ _ 4) and CH; =
(—‘/%44"@——-—‘/%) since /CR3H1 = n/3. Having C H; and therefore M H; plus having

R3H; we get ||[R3 — M|| = (& + 4=3€2 | &/E3d%y3

. In Figure 24 using AEPA, since EP; = 1 we get AP; = V1 — d?. Similary, using

AAPyHy, since LP,AH; = 1/6 we have PaH1 = YI5Z and AH; = 2 x VI— &2,
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Thus in AMH1P; since AM = d/2 we get P,M = (1 — 3d2 + 32d(1 — d2))3.
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