Computation of Invariant Manifolds Using AUTO-07p

Rui Chen

A Thesis
in
The Department
of

Computer Science'and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

August 2007

© Rui Chen, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34738-6
Our file Notre référence
ISBN: 978-0-494-34738-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Computation of Invariant Manifolds Using AUTO-07p

Rui Chen

There is much interest recently in the computation of invariant manifolds of vector fields.
This thesis presents a continuation method for computing two-dimensional stable and un-
stable manifolds arising in dynamical systems.

The computations are illustrated using a well-known example, namely, the Lorenz sys-
tem, for which detailed results are presented for the so-called ”Lorenz manifold”, i.e., the
two-dimensional stable manifold of the origin, as well as for the two-dimensional unstable
manifold of one of the two symmetric nonzero equilibria. A number of the infinitely many
intersection curves of these manifolds are also determined accurately. All computations are
carried out using the numerical continuation software AUTO, specifically its most recent
version, AUTO-07p.

Various diagrams are given to illustrate the numerical results. Software based on
OpenGL and Glut has been developed to visualize the numerically computed manifolds,

using a triangulation of the data computed with AUTO.

1

Acknowledgments

I would like to express my sincere appreciation to my supervisor Professor, Eusebius J.
Doedel, for his guidance, support, documents, and patience, for completing my thesis. Also,
I am particularly thankful to Qiang Zheng and Chenghai Zhang, to whom I am very much

indebted: this thesis would have never appeared without their help and encouragement.

iv

Contents

Contents
List of Figures

List of Tables

1 Introduction

1.1 General view of dynamical systems

1.2 Differential equations and dynamical systems

1.3 Stable and unstable manifolds

1.4 Numerical methods for computing stable or unstable manifolds

1.5 Different approaches

1.6 Organization of the thesis,

2 Mathematical Description and Background

2.1 Stability of an equilibrivm point

2.2 Bifurcation theory

2.3 Phase portraits

2.4 Linearization technique . . . R

2.5 Definition of stable and unstable manifolds

26 The Lorenz system

2.6.1 The history of the Lorenz system

2.6.2 Parameterization

2.6.3 Attractor

ix

xii

10
12
14
16
16
16
17

2.6.4 FEigenvectors and eigenvalues of the Lorenz system

3 Numerical Integration for Initial Value Problems
3.1 Initial value problem formulation
3.2 Numerical integration of ordinary differential equations
3.21 Euler'smethod
3.2.2 The Runge-Kutta method

3.3 Application of integration to the Lorenz system

4 Collocation Methods for Boundary Value Problems
4.1 Boundary value problems formulation
4.2 Collocation methods for boundary value problems
4.3 The use of collocation method in AUTO
4.3.1 Orthogonal collocation

4.4 Implementation of the orthogonal collocation method

5 Numerical Continuation
3.1 Continuation of solutions

5.1.1 Introduction

6 Computation of Stable/Unstable Manifolds in the Lorenz Equations
6.1 Overview
6.2 The stable manifold of theorigin

6.2.1 Computing the stable manifold of the origin
6.2.2 Variations on the computational method
6.2.3 The starting procedure L.
6.2.4 Numerical results,
6.3 The unstable manifold of the non-zero stationary points
6.3.1 Computing the unstable manifold of the non-zero stationary points .

6.3.2 The starting procedure

vi

20
20
21
21
22
24

28
28
32
33
34
36

39
39
39
40
41

6.3.3 The continuation procedure and numerical results

7 Computation of Heteroclinic Connections
7.1 Introduction.
7.2 Heteroclinic orbits for p=28.0

7.3 Other computations with heteroclinic orbits

8 Visualization
8.1 Objectives
8.2 Graphics Interface
8.3 Problem specific implementation
8.4 'The triangulation algorithm
8.4.1 Orbits with the same number of points.

8.4.2 Orbits with a different number of points

9 Conclusions and Discussion

9.1 Conclusions

Bibliography

A Implementation in AUTO of the Lorenz Manifold Calculations
A.l Implementation for the stable manifold of the origin
A.1.1 Boundary value problem formulation
A.2 Implementation for the unstable manifold of the non-zero stationary point .
A.2.1 Boundary value problem formulation
A3 Format of output files
A3.1 Solutionfile

B AUTO Utilities
B.1 AUTO/Python integration

B.1.1 Filename conversion

Vil

62
62
62
66

72
72
73
73
75
75
77

81
81
82

83

B.2 Python CLUI and inux-based CLUI 100

B.3 Python scripts for AUTO utilities. 100
B.4 Activating the GUL in AUTO-07p 103
B.4.1 Updating the source file 103

C Packages related to AUTO 105

viii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

Stationary bifurcation L 10
Hopf bifurcation 10
Bifurcation diagram of a Predator-Prey model 11
Sketch of phase portrait of the Predator-Prey model 12
Vector field flow around equilibria, 14
Vector field flow around a saddle point 15
Hlustration of stable and unstable manifolds 15
A fragment of the Lorenz attractor 17
The r—coordinate as a function of time 17
Representation of the error of Euler’s method 22
The fourth-order Runge-Kutta method 23
The Lorenz model: p = 0.5, step size= 0.03, # of steps= 600 24
‘The Lorenz model: p =5, step size= 0.03, # of steps=500 25
The Lorenz model: p = 20, step size= 0.02, # of steps= 1500 26
The Lorenz model: p = 28, step size= 0.02, # of steps= 1800 26
Bifurcation diagram of the Lorenz system 27
Bifurcation diagram of the Gelfand-Bratu equation 29
Some solutions to the Gelfand-Bratu equation 30
Bifurcation diagram of a nonlinear ODE eigenvalue problem 31
Collocation method for a simple IVP problem 33
Themesh {0=tg <ty <---<in=1} 36

ix

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1

Graphical representation of the pseudo-arclength method 42

Bifurcation diagram of the Lorenz equations 45
An initial orbit in the stable manifold of the origin of the Lorenz system . . 50
Part of the stable manifold of the origin computed by continuation 50
The Lorenz manifold 51
Short trajectories on the stable manifold near the origin 51
Part of the Lorenz manifold, here plotted as a surface; z1(1) is fixed 52
Part of the Lorenz manifold, here represented by orbits; x1(1) is fixed . .. 52

Graphical representation of the computation of the unstable Lorenz manifold 54

Mlustration of the starting procedure 56
Hlustration of adjusting the starting vector to lie along a certain curve . . . 57
An orbit segment in the unstable manifold of the Lorenz system 58
Part of the unstable manifold of the Lorenz system: I 59
Part of the unstable manifold of the Lorenz system: II 59
Part of the unstable manifold of the Lorenz system: IIT 60
Part of the unstable manifold of the Lorenz system: IV 60
32 heteroclinic connections in the Lorenz system 61
The manifold before deletion of non-heteroclinic orbits 64
The simplest heteroclinic orbit in the Lorenz equations 64
Heteroclinic connections that remain | 65
Bifurcation diagram marking 32 heteroclinic orbits 65
A heteroclinic orbit from the solution file corresponding to Figure 7.3 . . . 66
A family of heteroclinic connections for increasing p 67
32 heteroclinic connections over a fundamental domain of dg: T 68
32 heteroclinic connections over a fundamental domain of do: 11. 69
32 heteroclinic connections over a fundamental domain of dg: III 70
32 heteroclinic connections over a fundamental domain of dg: IV 71
Different number of points on adjacent trajectories 74

8.2 TIrregular triangle formation 74
8.3 Triangulation between two adjacent orbits: T 75
8.4 Triangulation between two adjacent orbits: I1 76
8.5 'Triangulation between two adjacent orbits: IIT 76
8.6 Triangulation between two adjacent orbits: IV 77
8.7 Triangulation between two adjacent orbits: V. 77
8.8 The Lorenz manifold plotted by VMD 78
8.9 The Lorenz manifold plotted by VMD: showing the triangulation 79
8.10 The Lorenz manifold plotted by VMD: local view of the triangulation . .. 80
B.1 GUIwindow 104

xi

List of Tables

2.1 Classification of an equilibrium point

A.l1 Parameter list for the stable manifold of the origin
A.2 Boundary conditions for computing the stable manifold of the origin
A.3 Parameter list for the unstable manifold of the non-zero stationary point . .
A.4 Boundary conditions for computing the unstable manifold of the non-zero

stationary point

B.1 Naming convention in AUTO97 versus AUT02000 and AUTO-07p

xii

Chapter 1

Introduction

In this chapter, we first introduce briefly some basic terminology related to dynamical Sys-
tems and manifolds, and then we present various existing numerical methods for computing

stable or unstable manifolds. The outline of this thesis appears at the end of this chapter.

1.1 General view of dynamical systems

Dynamical systems are mathematical objects used to model physical phenomena whose
state changes over time. These models are used in financial and economic forecasting,
medical diagnosis, environmental modeling, and many other applications. The evolution of
the system state refers to a sequence or continuous trajectory through the space of possible
system states.

The space of possible system states is called the state space of the dynamical system,
which is represented by the points of some set U, which is often a subset of R®. One basic
goal of research in dynamical systems is to characterize or determine the long-term behavior
of the system.

Two kinds of dynamical systems are common, one is called a continuous dynamical
systems, in which the time variable ¢ changes continuously. In this case the state is usually

a function x(t) of time, where x € U. The change of state is often described by a differential

equation, a simple form of which is:

x' =f(x) |, (1.1)

where f is a function of the state, and the map f : @ — R" is sufficiently smooth. is
an open subset of R”, and in general, the initial state is also specified. The famous Lorenz
system [53] is of this kind and certain of its aspects will be studied in some detail in this
thesis.

In contrast, we refer to a dynamical system as a discrete dynamical system when move-
ments are observed in discrete time intervals. In this case, the evolution may take the
form

Xn+1 = f(xn) 3

where n is a integer, X, represents the measurements at time n, and f (x) is a given function.
The famous Logistic Equation [67] belongs to this category.

Even very simple dynamical systems, can give highly complicated behavior. Most of
the time, it is impossible to give analytical solutions; instead, the qualitative behavior is
studied. Numerical methods, with the help of modern computer technology, often help us

understand the behavior of the solutions.

1.2 Differential equations and dynamical systems

Equation (1.1) represents a system of ordinary differential equations: these equations are
used to define a continuous-time dynamical system. Since ¢ does not appear explicitly in
f(-), the system is called autonomous.

The right hand side of Equation (1.1), is also called vector field, since to each point x
there is assigned a vector f(x), see [51].

A solution xg satisfying

f(XO) =0 5

is called an equilibrium point of Equation (1.1). Once a system is at such a point xg in the

state space, it is at rest. Equilibrium solutions are constant solutions; sometimes we also
use the term stationary solutions for them. The study of these solutions is very important

in dynamical systems.

1.3 Stable and unstable manifolds

Many nonlinear phenomena can be explained by understanding the behavior of objects
present in the dynamics. Important objects for this purpose are invariant manifolds. They
are embedded in a phase space, and are invariant under the flow, i.e., orbits that start
out in the manifold remain in it. Manifolds have dimensions, for example, one-dimensional
manifolds may include a line, a circle, and two-dimensional manifolds look like a disk, a
plane, the surface of a sphere, and so on; see [76].

In particular, we will be interested in invariant surfaces known as stable and unstable
manifolds of equilibria. Understanding the structure of these manifolds is of considerable
significance; it helps us to understand the eventual dynamics of systems as time evolves.

Stable and unstable manifolds are the points sets in state space that tend toward a
special equilibrium point, namely, a saddle, in forward or backward time under evolution
of the system. Saddle points are very important equilibria. We will describe saddle points
in more detail in Chapter 2.

For Equation (1.1), suppose f(xg) = 0 and the Jacobian Df(xg) of f at xg has m eigen-
values with positive real parts and (n — m) eigenvalues with negative real parts. From
the Stable and Unstable Manifiold Theorem [37], one knows that a local unstable manifold
Wise(x0) exists in a neighborhood of xg. The global unstable manifold W*(xg) may be de-
fined as the globalization of W} (xo) under the flow. W¥(xp) is a m-dimensional manifold.

It is well known how to compute global one-dimensional unstable (or stable) manifolds
of an equilibrium of a smooth vector field, since only two trajectories define such a mani-
fold. Such manifolds can be generated using an initial point close to the equilibrium. The
computation error stays bounded due to the attraction. This thesis, however, focuses on
how two-dimensional stable or unstable manifolds can be computed very effectively using

the software package AUTO, [23, 26]. Furthermore, we need only consider the case of an

unstable manifold, because a stable manifold can be treated in the same way, after time is

reversed.

1.4 Numerical methods for computing stable or unstable man-

ifolds

For most dynamical systems, the only general way of studying their stable and unstable
manifolds is by computing them numerically, as they usually cannot be found analytically.
Consequently, computational scientists have developed algorithms for computing stable and
unstable manifolds for vector fields and for discrete maps.

One of the basic methods for vector fields is numerical integration, which is suited for
computing a one-dimensional unstable manifold of an equilibrium of a vector field. But it
is a challenge to compute a global unstable manifold of dimension at least two, since simple
numerical integration of the flow is not sufficient when higher dimensional manifolds are
desired: see [8] for detailed discussion.

Another basic numerical method is continuation: for the case of equilibria, its main idea
is to start with locating at least one equilibrium at certain fixed parameter values, and then
by varying one of the system’s parameters, one continues the obtained equilibrium with
respect to this parameter. Some special points may be detected during this process. In this
thesis it will be shown that numerical continuation is also an extremely effective method
for computing 2D stable and unstable manifolds.

There are several software packages for the numerical analysis of dynamical systems.
Most are for the computation of one-dimensional solution manifolds. AUTO is one of the
earliest packages and perhaps the most widely used. We show in Chapter 6 how the con-
tinuation methods in AUTO can be used to compute two-dimensional stable and unstable

manifolds in the Lorenz system.

1.5 Different approaches

For computing an unstable manifold, we can take a small (m — 1) sphere S5 C Wi (xo)
with radius ¢ around xg, and evolve Ss under the flow to generate the manifold W¥%(x,). In
this way, the computation of the one-dimensional unstable manifold of an equilibrium of a
vector field is straightforward, because the process is just to evolve two points at distance
6 from x¢ under the flow.

This method is not suited for computing a two or more dimensional unstable mani-
fold. The reason is that S5 is generally discretized by some mesh, and any mesh on Sj
will deteriorate very rapidly, so that it will not be a good representation of W"(x¢) as an
m~—dimensional manifold. Different approaches are designed to solve this problem. An
often used idea is to grow W*¥(xg) from a local neighborhood of xg. The methods differ
in how a good mesh representation of W%(xg) is computed during this process. We briefly
introduce some of the techniques below.

Most algorithms that compute two-dimensional unstable manifolds are for vector fields.
Guckenheimer and Worfolk describe a method to compute the two-dimensional unstable
manifold of the origin for the Lorenz system. It starts with a small circle Ss around xg in
the unstable eigenspace. Then, by iterating, one obtains a family of circles as an approxi-
mation of the unstable manifold; see [39].

Krauskopf and Osinga [48, 49] compute W*¥(x¢) as a sequence of geodesic circles. This
method computes new mesh points on the next geodesic circle by solving appropriate bound-
ary value problems. The manifold is “grown” as a sequence of discretized geodesic circles
until they are no longer smooth circles. Adaptive coordinate systems are needed to trace
the manifold.

Doedel [50] computed unstable manifolds by following entire orbits that lie on the man-
ifold by numerical continuation. The procedure is stepwise and each step is a two point
boundary value problem. This method is very accurate and flexible because different bound-
ary and integral conditions can be specified. This method is the one that we shall focus on
in this thesis.

In the method of Guckenheimer and Johnson, the manifold is computed as a set of

curves. The length of these curves grows quickly and interpolations are used to place new
points on the curves to generate the unstable manifold adequately. But in places where
there are sharp folds, it becomes difficult to carry out this interpolation technique. For
further algorithms, one can consult [43].

There are also several methods for the computation of one or two-dimensional unstable
manifolds of maps, with different algorithms being applied to different applications: one

can find further information in [20, 33, 65].

1.6 Organization of the thesis

In this thesis, we demonstrate the performance of numerical methods for invariant manifolds,
based on continuation methods and in a boundary value problem setting, by computing sta-
ble and unstable manifolds of the well-known Lorenz system [53]. We use AUTO to carry
out these calculations. To better understand the structure of the manifolds, a new visual-
ization tool is developed, with which we can view manifolds in a 3D graphics environment.
This tool will be useful to researchers who need to do similar manifold calculations, and in
other applications where families of orbits need to be displayed as surfaces.

In this thesis, the software package AUTO-07p is used to compute manifolds, which
combines almost all the facilities of AUTO97 [26] and AUTO02000 [27].

The outline of this thesis is as follows. The Lorenz equations are discussed in Chapter
2, where we also introduce some of the mathematical concepts and notation that we use
throughout the thesis. In Chapter 3 basic integration methods for initial value problems are
described, followed by a detailed presentation of the application of basic integration meth-
ods to the Lorenz system. Chapter 4 discusses collocation methods for boundary value
problems, while Chapter 5 introduces continuation methods. The detailed computation of
stable and unstable manifolds of the Lorenz system using AUTO is presented in Chapter 6,
packages related to AUTO are briefly introduced. Chapter 7 introduces the computation
of heteroclinic connections. The design and development of a new AUTO data visualiza-
tion tool, using a triangulation technique, is explained in Chapter 8. Chapter 9 presents

conclusions and discusses some topics that merit future work. Appendices explain the im-

6

plementation used in AUTO for the Lorenz system and a brief description of the AUTO

utilities is given. Finally, packages related to AUTO are introduced.

Chapter 2

Mathematical Description and

Background

In this chapter we introduce some mathematical concepts in dynamical systems, as well as
some notation that we use in this thesis. We also give the history of the Lorenz system,

and we briefly describe it in a mathematical context.

2.1 Stability of an equilibrium point

In order to study the evolution of a dynamical system, it is essential to know whether
trajectories that start close to each other display a similar qualitative behavior. For this
purpose, we need to explain some basic concepts related to points in the state space of a
dynamical system.

An equilibrium is considered stable if the system always returns to it after small distur-
bances. If the system moves away from the equilibrium after small disturbances, then the
equilibrium is unstable.

More precisely, consider equation x’ = f(x). Assume that xq is an equilibrium point, so
f(x0) = 0. Consider now a solution in a neighborhood of xg. The equilibrium point xo has

the following classifications:

e It is called stable if, for each € > 0 there is a § > 0 so that whenever |x — Xo| < 6,

then |x(t) — xo| < ¢ for all ¢ > 0;

o It is called unstable if it is not stable;

e It is called asymptotically stable if it is stable and there is some § > 0 so that x(t) — xg

when ¢ — oo for all x(0) with |x(0) — xq| < 4.

For simplicity, we will only consider asymptotic stability in this thesis.

2.2 Bifurcation theory

Many dynamical systems depend on parameters, e.g., the Lorenz system, fluid flow prob-

lems, heat diffusion problems, etc. They have the general form
x'(t) = f(x(t),\) , xeR" |, (2.1)

where) is a parameter in R. There exists a large number of problems for which the number
of solutions can change abruptly and the structure of solutions can change dramatically
when a parameter passes through some critical values. This kind of phenomenon is called a
bifurcation, and the parameter value at which the critical value occurs is called a bifureation
point. One can consider bifurcation theory as a method for studying how solutions of a
nonlinear problem and their stability change as parameters vary: see [51].

Now suppose X is an equilibrium solution of Equation (2. 1), in another words, f(xg, A\) =
0. If xo is an asymptotically stable equilibrium, then, as A varies, its stability might, in
the simplest instances, change in two ways (see Figure 2.1 and Figure 2.2 for graphical
representation; see [32]):
1. A real eigenvalue of f'(xg,A) crosses the imaginary axis. This is called a stationary
bifurcation
2. A pair of complex conjugate eigenvalues of f'(xq, A) cross the imaginary axis. This is the
so-called Hopf bifurcation, and, typically, periodic solutions appear in this case.

A bifurcation diagram depicts the transition between different types of behavior as a,
parameter of the system is varied. It plots a system parameter on the horizontal axis and
a representation of an attractor, usually || x ||, (|| - || denotes a norm) or other measure of

x on the vertical axis.

Imaxis) Im axis A

¢ 3 A
>
: » Re axis & » Re axis 2
2
Figure 2.1: Stationary bifurcation Figure 2.2: Hopf bifurcation

There are a number of computer tools for studying bifurcations, such as AUTO, DsTool,
and a more recent implementations, such as CONTENT, MATCONT, Oscills, etc., see Appendix

C for more details.

2.3 Phase portraits

Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot
of typical trajectories. The axes of a phase portrait graph correspond to state variables.
More simply, one can think that the phase portrait of a dynamical system actually partitions
the state space into orbits; it can be interpreted as an image that looks like the flow of a
liquid. See [51] for the formal definition.

The study of the phase diagram is an indispensable tool in understanding the qualitative
behavior of solutions to a system. One can determine the number and types of the possible
states by observing the phase portrait. The software package Maple [54], for example, can
be used to draw phase diagrams, and so can other software. Although it is not possible
to draw all orbits, the crucial orbits can be displayed in the phase portrait of a dynamical
system.

In a differential equation such as the Lorenz system, the phase portrait represents the
way a 3-dimensional system, i.e., a system with three degrees of freedom, will evolve over
time. Each point in the phase portrait corresponds to a possible state of the system. The

curves are trajectories, which show how the three variables will evolve given a set of initial

10

conditions.

As another example, consider a 2D Predator-Prey model

o = 3:(l—x1) — w13y — pl(l—e“hl)

3

xTh = —x9 + 3z29 .

where z; represents “fish” and x, represents “sharks”, and the term p (1 - 6‘511) , 18
“fishing” with “fishing-quota” p;.

Computation of stationary solutions can be easily done by AUTO; we can then observe
how solutions change when p; varies. Figure 2.3 is such bifurcation diagram showing how

x1 changes when p; varies.

Figure 2.3: Bifurcation diagram of a Predator-Prey model

The.periodic solution family is represented by the solid dots. Solid/dashed lines denote
stable/unstable stationary solution. Open squares are branch points or bifurcation points;
the solid square is a Hopf bifurcation (24, 25]. (See also Section 2.2).

We can also observe how orbits evolve when p is at some particular value. For instance,
when p; = 0.69, there are five labeled solutions, namely, solution 3,5,8 11, 15, where solu-

tion “15” is a periodic solution. Below we sketch the phase portrait when p1 = 0.708.

11

4

Figure 2.4: Sketch of phase portrait of the Predator-Prey model at A = 0.708 where there
is a heteroclinic cycle

In many applications the dimension of the state space is very large. For example, in the-
oretical neuroscience, a very high dimension is possible, e.g., one dimension for each neuron,
to represent possible states of the brain: see [81]. Any point in this high-dimensional space
will correspond to one particular state of the system. A curve in this space will correspond
to a particular process, a stream of activity over time. Some methods have been developed
for this purpose: The key point is to project high dimensional spaces onto two or three

dimensions. A particular high-dimensional visualization tool is “HiSee” [42].

2.4 Linearization technique

The solutions of linear systems can, in principle, be found explicitly. However, real life
problems typically are modeled by nonlinear systems. In this case, we can usually only

qualitatively describe the solutions. What happens around an equilibrium point can often

12

be described by a procedure called linearization. In such a case, we hope that the behavior
of the solutions of the linear system will locally be similar to that of the nonlinear system.

Below is a simple illustration of the linearization technique. Consider the autonomous
system (1.1). If x = (x1,z2)7, we can rewrite the system as

ry = f(z1,72) (2.2)

Ty = g(l‘l,l’z) s

where 21,29 € R, f,g: R?> — R. Assume that 29, 29) is an equilibrium point. Compute
9 1042

the partial derivatives:

) af 8 ag
0049, 2L 0049, 2920 00) and 2040 19 (2.3)
oz, 0o Oxy Oxo

and write down the matrix

7] aJ
9 9 ' '
5 (29,29) L (29,29

This matrix is the Jacobian matrix, and we usually represent it as f/ (xq), or Df(xp) in
short, where xo = (29,29)7 in this case.

In the general case, the eigenvalues Ay (where d = 1,2, .. .n) are the roots of the char-
acteristic polynomial det(Df(xg) — AI) = 0. Finding the eigenvalues of the Jacobian is
crucial, because we can deduce the fate of the solutions around the equilibrium point from
the eigenvalues.

There are three basic types of equilibria in R?, their names are inspired by the flow near

the equilibrium point; see Table 2.1:

Equilibrium type | Characteristics of eigenvalues
Node two real eigenvalues of the same sign
Spiral A pair of conjugate complex eigenvalues
Saddle Real eigenvalues of different sign

Table 2.1: Classification of an equilibrium point

13

‘The graphical representation of a node and a spiral is shown below; see [32].

detDF
A unstable ¥
Spiral
-3 + unstable
7 node

Figure 2.5: Vector field flow around equilibria

2.5 Definition of stable and unstable manifolds

From the above discussion, we know that a saddle point is especially interesting since, in
the case of R2, there are four special orbits associated with a saddle point. There will be
two solutions which approach the equilibrium point as ¢ — 0o, and two more solutions
which approach the equilibrium point as t — —co. Each of these four solutions is called a
separatrix.

In general, a saddle is an equilibrium point where at least one eigenvalue has a positive
real part, and at least one eigenvalue has a negative real part. The points in the phase
space which approach the saddle for ¢ — oo form the stable manifold. The eigenspace for
the eigenvalues with negative real part is tangential to the stable manifold: see [50]. The
unstable manifold consists of points approaching the saddle for t — —oo. Saddles and their
stable manifolds and unstable manifolds are usually the boundaries of a basin of attraction.
Figure 2.6 illustrates how the flow looks like around a saddle in R2.

The stable and unstable manifolds W?(xg) and W¥(xp) of a saddle equilibrium Xp in

14

R™ are formally defined as

Wexo): = {x &R lim ¢'(x) = xo} , (2.5)
Wi(xo): = {xeR"|lm ¢~'() = xo} |, (2.6)

respectively, where ¢' is the flow of the system, that is, how a set of trajectories evolve from
some part of the plane. Trajectories on the stable (or unstable) manifold converge to xo
in forward (or backward) time. Knowledge of these manifolds is crucial, as they organize
the dynamics on a global scale. Figure 2.7 sketches a possible scenario of the dynamics

organized by the stable and unstable manifolds.

Saddie

stable
manifold

unstable
manifeld

Figure 2.6: Vector field flow around a saddle point

Figure 2.7: Illustration of stable and unstable manifolds

15

2.6 The Lorenz system

2.6.1 The history of the Lorenz system

The history of the Lorenz system can be traced back to the carly 1960s. A meteorologist,
Edward Lorenz, was trying to model the Earth’s atmosphere, that is, to model the convective
motion of a volume of air “which is warmed from below and cooled from above” [63]. His

final model involved only three rather elementary equations:

:l,'ll = U(.’Eg — .1,'1) 5
Th = pry—Ty—T1T3 (2.7)
Ty = mzp— Py,

where x = (x1,72,23) € R3, 5, p and B are physical constants; x; is proportional to the
intensity of the convective motion, and x, is proportional to the temperature difference
between the ascending and descending currents. The third component, x3, is proportional
to the distortion of vertical temperature profile from linearity. Another interesting aspect
is that the Lorenz system (2.7) has the symmetry (z1,z2,z3) — (—x1, —x2,x3) of rota-
tion by m radians about the z3—axis, i.e., if (z1(t),z2(t), z3(t)) is a solution, then so is

(=x1(t), —z2(t), z3(t)).

2.6.2 Parameterization

The system parameters of the Lorenz system are p, o and 8. The most important parameter
is p, also referred to as the Rayleigh number. In the context of convection in a fluid or
the atmosphere, p -is proportional to the temperature difference across the layer, which is
responsible for driving the fluid motion at a rate given by the variable ;. The parameter
o is called the Prandtl number, while 3 is a positive parameter.

Usually o and § are set to the values 10 and 8/3, respectively. The “standard” value of
p is 28. For these values, when one plots z3(t) against x;(t) as t varies, the famous “Lorenz

butterfly” appears.

16

2.6.3 Attractor

Different starting values of the three components lead to different behavior. However the
dynamics evolves towards the same butterfly structure, which is therefore called an attrac-
tor. The dynamics on the attractor [38] will be similar in outline, but much different in
details depending on the initial conditions, i.e., chaotic [61]. The attractor is a so-called
fractal. - “a geometric pattern that iterates infinitely often with recurring self-similarity”
(see [15]); also called a strange attractor, in which the system exhibits chaotic behavior;
see Figure 2.8 for a fragment of the attactor. We can also plot coordinates as a function of

time; Figure 2.9 is a corresponding graph which shows z;, component as a function of ¢.

Figure 2.9: The x—coordinate as a function of time

17

We can see orbits go back and forth in an irregular manner between the two “wings”
of the “butterfly”. A important property of chaos is the sensitive dependence on initial
conditions, or poetically, ”the butterfly effect”. We will look at the Lorenz system in more

detail in the following section.

2.6.4 Eigenvectors and eigenvalues of the Lorenz system

The Lorenz system is a classic example of a vector field with a chaotic attractor. The
computation of its two-dimensional stable manifolds, known as the Lorenz manifold, is
useful to exhibit the interesting behavior of the system. Different algorithms have been
developed: we will focus on making use of AUTO in the following sections.

The origin 07 = (0,0, 0} is a stationary solution of Equation (2.7). The Jacobian matrix

of fis
—~0 c 0
Df = —x3 + P —1 —Zy
Z2 ry —p

Evaluating the Jacobian matrix at 0 we have

so the characteristic polynomial of f at the origin is

N4+Q+o+BN+(Bo+B+0—po)dA+Po(l-p)=0 |

from which

A+ BN+ (c+DA+0o(1—p) =0

18

The eigenvalues are

Moo= -8,
—(0+1)£/(c+1)2 - 4o(1 - p)
2

A3 =

If p < 1, all three eigenvalues are negative real numbers. If p > 1, then Ay becomes
positive, so the stability of origin changes from attracting to repelling. For instance, if we
fix the parameters at the standard values p = 28,0 = 10 and 8 = 8/3, we will obtain one
unstable eigenvalue A} = 11.828 and two stable eigenvalues \] ~ —2.667 and Aj = —22.828.
The eigenvectors that correspond the two stable eigenvalues span the stable eigenspace
E?®(0), and the Lorenz manifold W*(0) is tangent at 0 to the eigenspace E° (0).

There are two more stationary solutions of Equation (2.7) when p > 1, namely,

xTy = (£/B(p— 1), £/B(p—1),p- 1) ,

approximately at (+8.485, +8.485,27) when p = 28, and symmetric to each other. Consider

the Jacobian matrix at x9

—0 o 0
DE(x9) = | 1 ~1 ~VBp—-D |
VBle-1) VBl-1) -p

its characteristic polynomial is

M4 (1 +0o+ BN+ (B0 + Bp)A +280(p—1) =0

We find that each of these two equilibria has one negative eigenvalue, which is stable,
and a pair of complex conjugate eigenvalues with positive real part, which is unstable. In
fact, there exists a critical value of p, where the stability of these equilibria changes from
stable to unstable for p beyond that value. We will show how this value is detected in the

following chapter. For more details, see [16, 50].

19

Chapter 3

Numerical Integration for Initial

Value Problems

3.1 Initial value problem formulation

We know that a differential equation is an equation involving an unknown function and one
or more of its derivatives. The equation is an ordinary differential equation (ODE) if the
unknown function depends on only one independent variable. Problems involving ODEs
can usually be reduced to the study of systems of first-order differential equations. For

example, the second-order equation

X' = f(x(1),x(t)

x(0) = xo, X'(0)=vp |,

where t > 0, x,f(,,-,) € R®, can be rewritten as two first-order equations

X'(t) = v(t)
Vi) = f(x(t),v(t) ,
x(0) = xo, v(0)=vy

With a differential equation we can associate initial conditions or boundary conditions,

which are auxiliary conditions on the unknown function and its derivatives. If these condi-

20

tions are specified at a single value of the independent variable, they are referred to as initial
conditions and the combination of the differential equation and an appropriate number of
initial conditions is called an initial value problem, IVP in short.

A initial value problem has the general form

X(t) = f(x(t) . t>0 , xf(,)eR" (3.1)

x(0) = xp

Note that we only consider autonomous equations here, where f does not explicitly depend
on t. For instance, the Lorenz system (2.7) is an example of an autonomous initial value
problem, see Section 2.6 for details.

There are two main ways of finding solutions of differential equations, namely, analyti-
cal methods and numerical methods. The former produce, when possible, exact analytical
solutions in the form of general mathematical expressions. Numerical methods on the other
hand, produce approximate solutions in the form of approximate values at discrete moments
of time.

In general, since most solutions can not be found analytically, we must get an approxi-
mation to the solution. If we want to approximate the solution of a initial value problem,

say, Equation (3.1), then numerical integration is the main tool.

3.2 Numerical integration of ordinary differential equations

There are many numerical integration methods available, for example, Euler’s method, BDF
methods (Backward Differentiation Formulas), Runge Kutta methods, etc., see [77]. Below

we briefly describe some of these.
3.2.1 Euler’s method

The formula for the Euler method for solving Equation (3.1) is

Xn+1 =Xp, + At f(x,) , n=0,1,2,--- . (3.2)

21

The formula is not symmetric: It advances the solution through an interval At, but uses
derivative information only at the beginning of that interval. It is explicit and only involves
one step; the step error is O(At?), and the “global error” is O(At).

There are several reasons that Euler’s method is not recommended for practical use;

among them the following two are most important:
e the method is not very accurate compared to other methods using the same stepsize,
¢ it is not very stable for stiff equations.

A representation of the local error of Euler’s method is shown in Figure 3.1.

>

-4

Euler

o
“
b
=
&
-
,5 actual function \\
!
=
fd
e
At
+—>
| I | | | | l
tn tm I tn*Z

Figure 3.1: Representation of the error of Euler’s method

3.2.2 The Runge-Kutta method

One of the most often used methods is the classical fourth-order Runge-Kutta formula,

which has a certain elegance of representation:

ki = At f(t, ,xn) ,

l

At 1
ko Atf(tn+—2-,xn+§k1) ,

22

At 1

ky = At f(tn+—2—, Xn—i-Ekz) ,
ki = At f(t, + AL, xp + ks)
1 1 1 1
Xp4+1 = Xn+ak1+§k2+§k3+gk4 . (3.3)

The fourth-order Runge-Kutta method requires four evaluations of the right hand side per
step t: once at the initial point, twice at the midpoint, and once at the endpoint. From these
derivatives the final function value (shown as a filled dot; see Figure 3.2) is calculated. This

method achieves much better accuracy than Euler’s method: the global error is O(AtY).

|
!

|

| trug solution for
: the given u_
!

[

!

|

I

Figure 3.2: The fourth-order Runge-Kutta method

Actually, the Runge-Kutta method treats every step in a sequence of steps in identical
manner. Prior behavior of a solution is not used in its propagation. This is mathematically
correct, since any point along the trajectory of an ODE can serve as an initial pbint. The
fact that all steps are treated identically also makes it easy to adopt this method to different
applications. It is a competitive method, but unsuitable for very stiff equations; see [2] for

more details .

23

3.3 Application of integration to the Lorenz system

In this section, we use the explicit 4th-order Runge-Kutta method to compute solutions to
the Lorenz equations.

Suppose we take the initial conditions,
z1(0) =0.1 , z2(0)=02 , z3(0)=0.3 |,

set o = 10, 8 = 8/3, and let p vary. Computing the solutions and plotting the phase space
and time series, we can see that when p < 1, the solution decays rapidly to the origin, see

Figure 3.3.

0.4

X3
0.2

QO

Time series of the Lorenz system

0.2] 1 1 ¥] ¥] L)

0.15 -
X_1
0.1 .

005} .

é

Figure 3.3: The Lorenz model: p = 0.5, step size= 0.03, # of steps= 600

24

As discussed in Section 2.6.4 of Chapter 2, we know that, for the given values of 8 and
o, there is a critical value p, (a Hopf bifurcation), namely,
_ oo+ p5+3)
=TT
which roughly equals 24.74 here. When p is less than the critical value pe but greater than 1,
then there are two stable nonzero stationary solutions. Figure 3.4 and Figure 3.5 illustrate

trajectories at p = 5 and p = 20 respectively; we can see the orbit approach one of these

equilibria.

X3
Time series of the Lorenz system

6 T T

4 4
X1

2l]

o 1 I

0 5 10 15

Time

Figure 3.4: The Lorenz model: p = 5, step size= 0.03, # of steps= 500

As p gets bigger, the solutions are more likely to approach a strange attractor than
converge to a stationary solution. There is no apparent pattern to a “chaotic” solution, as
it travels back and forth between the two wings of the attractor. This implies that it is

difficult to predict the solutions at any future time based on the parameter values and the

initial conditions. See Figure 3.6.

40
30
20 | :
o

0
-20

Time series of the Lorenz system
20 T T r T r

10} .
X1
o -5

R

-10

_o0) 1 1 L X
0 5 10 15 20 25 30

Time

Figure 3.5: The Lorenz model: p = 20, step size= 0.02, # of steps= 1500

100

Time series of the Lorenz system

N
Q

i WWWMf'

5 10 15 20 25 30 35 40
Time

Figure 3.6: The Lorenz model: p = 28, step size= 0.02, # of steps= 1800

26

Figure 3.7 is the summary “bifurcation diagram” of the Lorenz system, computed with
AUTO and plotted using PLAUTO04 [82]. The X-axis represents the p value, while the
Y-axis represents the x; value. The color indicates the stability: blue is stable and red is
unstable.

When p < 1, the zero solution is stable. At p = 1, one of the eigenvalues becomes
positive and two new steady state solutions bifurcate. These are stable when p<24.74. At
p = 24.74, a pair of complex eigenvalues crosses the imaginary axis of the complex plane
(a Hopf bifurcation), and the solutions become unstable and periodic solutions appear.
Actually, the periodic orbits exist in the interval p, < p < Pe, Where p, = 13.9162 . The
value p, is often referred as a homoclinic explosion point; see [73]. Note that there is a
second symmetry-related periodic solution branch in the lower half plane. However, we do
not consider periodic solutions of the Lorenz system in this thesis, for more detail, one can

refer to [28].

1ty

8 Bleal

4 el

-2 (a1

4 G0ea 0

3 P00 ,

G000 €.502400 1.32e401 §.498¢4014 PSR RS AR

Figure 3.7: Bifurcation diagram of the Lorenz system

27

Chapter 4

Collocation Methods for Boundary

Value Problems

4.1 Boundary value problems formulation

As discussed in Section 3.1, a differential equation can have initial conditions or boundary
conditions. If conditions are specified at more than one value of the independent variable,
they are referred to as boundary conditions and the combination of the differential equation
and the boundary conditions is called a boundary value problem, BVP in short in this case.

Boundary value problems in ODEs arise in many applications, for example, they can be

of the form

X'(t) =f(x(t)) , telo,1] , (4.1)

X(-), f(')) € R" ’
with boundary conditions
bl(x(0)7x(1)) =0 b 1= 1727"'7’"’

Sometimes integral constraints are also needed for specific applications; an example will

appear in the following chapter.

28

Some parameter-dependent BVP examples are:

a) The Gelfand-Bratu Equation: [24].

')+ r"W =0 | telo,1] , (4.2)

which describes a family of boundary value problems, parametrized by a real parameter A.
Figure 4.1 is the bifurcation diagram of the Gelfand-Bratu equation. Note that there
are two solutions for 0 < A < A, where X, ~ 3.51; there is one solution for A = A¢, and no

solution for A > A..

B30eslil -

& Ble

& 10elil

3AD

170

4 00s+00 » L &

lambda

BMax X lambda_rc
[ERL DR SR PP 1445300 2466450 LESem .G

Figure 4.1: Bifurcation diagram of the Gelfand-Bratu equation

29

Figure 4.2 shows the corresponding solution diagram to the Gelfand-Bratu equation.

L0000

So0s01 .

50001

4 BheRy

20001

000000 |-

T

T

x = 4 '

G.00e400 20001 .00 8 00601 SO0 0 1.00300
Figure 4.2: Some solutions to the Gelfand-Bratu equation

b) A nonlinear ODE eigenvalue problem: Consider the equation

"+ (M) x—-a?=0,

with boundary conditions z(0) = z(1) = 0, or when rewritten as a first order system

./1:1 = 1‘2 ;
Ty = -(/\7r)2:171+ac% ,
210) = 0 , 21(1)=0 . (4.3)

This equation also describes a family of boundary value problems, parametrized by a real
parameter A. A bifurcation diagram for this equation is shown in Figure 4.3).

When A is fixed at some particular value, say, A = 2.5, then in addition the trivial

30

solution, there are two more solutions located on other solution branches, namely, the so-
lution labeled 3 on the first bifurcating branch and the solutions labeled 2 (which actually

represents two symmetry-related solutions) on the second bifurcating branch.

Integral(X_1)
50 .
40. 3
30
20.
2
10 .
1
0 / v Jambda
-10
]]] I | |}
~1. 0. 1. 2. 3. 4. 5. 6.

Figure 4.3: Bifurcation diagram of a nonlinear ODE eigenvalue problem

In this thesis, we also incorporate boundary conditions into the Lorenz equations, so
that we can use the software AUTO for computing its stable and unstable manifolds.

Different methods can be used to solve BVPs, for example the shooting method, the
finite difference method or the finite element method. See [65] for more details. In particu-

lar, AUTO uses orthogonal collocation with piecewise polynomials [22], which is a form of

finite element method.

31

4.2 Collocation methods for boundary value problems

To solve boundary value problems (BVPs) of ordinary differential equations (ODEs), people
often used finite difference methods. But finite difference methods typically cannot provide
highly accurate solutions. At present, piecewise polynomial collocation is widely used for
solving such problems. For example, it is the basic discretization in the software packages
COLSYS [6], AUTO, etc. It determines a piecewise polynomial function that satisfies the
differential equation at certain points. These points are known as collocation points. This

method has several good characteristics:

e It can give very accurate solutions, especially when using good mesh adaption strate-

gies.
e It is very efficient, compared to other methods.

o It is relatively easy to implement, and gives interpolation information, which is useful,

for example, for graphical display.
As a simple example consider the equation

X(t) = f(x(®), telo,1] ,

x(0) = 0 , (4.4)
which is actually an IVP. Introduce a mesh
0=t0<t1<...<t1\/=1 ,

with t; —t; 1 = At;. Further suppose there is only one collocation point z; in each
interval [¢;_1,¢;]. In each interval [t;_1,t;], the collocation method consists of determining

a polynomial p; of degree less than or equal to one, such that

pi(tj-1) =x;1 ,

32

and

p;(z) = £(p;(2;))

for z; = %(tj_l +1t;), i.e., z; is the midpoint of the jth interval. Then set

x; = p;(t;)

See Figure 4.4 for graphical illustration.

Figure 4.4: Collocation method for a simple IVP problem

This method is equivalent to the finite difference method

Xj — X571 Xj—1+ X;)
e —————rrrr. f ————e e = 1 2' LRI N
AtJ (2) ¥ J <)
xg=0 |, (4.5)

known as the Midpoint Rule.

4.3 The use of collocation method in AUTO

Here we discuss the method of “orthogonal collocation with piecewise polynomials ” used
in AUTO, for solving boundary value problems. This method is very accurate and allows

adaptive mesh-selection.

33

4.3.1 Orthogonal collocation

For the collocation method, the location of the collocation points in each subinterval [ti-1,t;]
has an important impact on how well the method works. Choosing evenly spaced points
may be the first thought, but this does not yield the highest possible order of accuracy.
Instead, choosing the collocation points as the zeros of a member of the family of orthogonal
polynomials gives optimal order of accuracy. These points are called Gauss points, and the
method is then referred to as orthogonal collocation.

Consider a first order system of ODEs
x'(t) = f(x(t), u, A), tefo,1] , (4.6)

where x(-), f(-) € R", u € R®, XA € R. We can think of \ as the “free” parameter, while
the vector p is part of the “solution” (x(-),). Assume the boundary conditions are of the

form

b(x(0),x(1),1,A\) =0, b(.) e R™

and that there are also integral constraints of the form

[abx(s)n s =0, qt)e R,

(For the case that t € [a,b], we can transform the time range to the interval [0,1]). We
require that

Ng=np+mng—n=>0,

where np denotes the number of boundary conditions, while ng is the number of integral

constraints. As before, we divide the time domain into a mesh
0=ty <ty < <Eyoi <ty =1,

with

At]:t]_t]—1> 32172)7N

34

Here, the time steps At;, 7 =1,2,---, N need not to be equal.
Let P™ be the function space of vector polynomials of degree less than or equal to m.

Then we define the function space of piecewise vector polynomials Pj* as

B =pa € C[0,1] © pply,_,4) € P™ .

‘The word ”piecewise” means that each mesh interval has its own local vector polynomial.
For the collocation method, we want to find a piecewise vector polynomial py € P* |

and a vector u € R™ | that satisfy the collocation equations

pfl(zj,i) =f(pn(zji, p, N), 7=1,2,---,N, i=1,2---.m . (4.7)

Furthermore, pj, must satisfy the boundary and integral conditions. See Figure 4.5 for the
graphical representation.

Since each local polynomial is determined by (m + 1)n coefficients, the total number of
degrees of freedom is (m + 1)nV + N, assuming that \ is fixed.

The total number of the equations is:

collocation equations : mnN
continuity equations : (N —1)n ,
constraint equations : ny +n,

Here, the number of the continuity equations is (N — 1)n because neighboring vector poly-
nomials must have equal value at the interior mesh points. The number of equations is then

equal to the number of unknowns, namely,

nmN+(N—1)n+nb+nq=(m+1)nN+nb+nq~n=(m+1)nN+nu

If the exact solution x() is smooth enough, and using Gauss points as the collocation

points, the global accuracy of the method is of order m, i.e.,
1P = x|loo = O(A™)
However, at each mesh point t;, the accuracy is much higher [7], namely,
maz;(pr(t;) — x(t;)] = O(h*™)

The vector p is equally accurate. For more details, see [25].

O ————+ | 1
to t1 io N tn
/ AN
/ \
/ N
/ N . .
ti1l o R ;. local collocation points

.

local Lagrange basis points

. some local basis polynomials

Figure 4.5: The mesh { 0=ty <t; <--- <ty =1 }. Collocation points are shown for the
case m = 3.

4.4 Implementation of the orthogonal collocation method

Orbits are discretised in AUTO using the method of orthogonal collocation with piecewise

polynomials, with 2-7 collocation points per mesh interval, see [5, 6, 13]. The mesh auto-

36

matically adapts to the solution to equidistribute the local discretization error, [4, 9, 10, 68].
In AUTO, the collocation points in each mesh interval are Gauss points in order to have
“superconvergence” .

More specifically, for each subinterval [t;_;, {;], we use the local Lagrange basis polyno-

mials
{lj,i(t)}7 j:l,27-..7]\,777:::0’1’2,...77717
defined by
mo ottt
Gat) = 11 T (4.8)
k=0k#i T i-E
where
1
g St— 0, (4.9)

to represent the corresponding local polynomial

Pi(t) =D La(t) x,_1 . (4.10)

i=0 m

See Figure 4.5 for an illustration of some Lagrange basis polynomials. With this choice of

basis
x; will approximate x(t;) and x,;_i will approximate x(t,_+),

where x(t) is the solution of the continuous problem.

The collocation equations are
P;(Z],z) :f(p](zj,l » Ky A)v 7= 1,2,"',777,) 7: 1727'”7N . (411)
The discrete boundary conditions are

bi(XO,XN7H,/\) =0 5 1= 1,-' Ny . (4.12)

37

'The integrals can be discretized as

N m

DD wi (X i, p, N)=0, k=1,

j=1i=0

where the w;; are the Lagrange quadrature coefficients.

38

(4.13)

Chapter 5

Numerical Continuation

5.1 Continuation of solutions

5.1.1 Introduction

Numerical continuation methods have been an important tool in the numerical solution of
nonlinear systems. The methods may be used not only to compute solutions, but also to
gain insight into qualitative properties of the solutions.

First we briefly discuss algorithms for computing families of solutions to nonlinear equa-
tions. The idea of continuation is as follows.

Consider a smooth function

F:R" - R,

We want to compute a solution family, or solution branch, of the equation
F(x)=0. (5.1)

Numerical continuation is a technique to compute a sequence of points which approximate
the desired solution family. The two main types of solutions that may be continued are:
(1) time-independent solutions (stationary states),

(ii) time-dependent solutions, subject to initial and/or boundary conditions.

While continuation of stationary states is rather straightforward, boundary value prob-

39

lems pose an additional difficulty as they need to be discretized. The branch of solutions
obtained by continuation may contain bifurcation points, where two or more branches inter-
sect, or points where the solution changes stability. By performing stability and bifurcation
analysis during continuation, we can construct bifurcation diagrams. These diagrams are
useful, since they give a detailed insight into various kinds of dynamics of the system stud-
ied.

There are several software packages for the numerical analysis of bifurcations in dynam-
ical systems. AUTO is one of the earliest packages and perhaps the most widely used; other
packages are briefly described in Appendix C; see also [3, 11, 24, 25, 51, 66] and [71].

Before we explore numerical continuation in more detail, we first discuss under what

conditions a solution will actually persist, when problem parameters are changed.

5.1.2 The Implicit Function Theorem

The fundamental theoretical tool for numerical continuation is the Implicit Function The-
orem (IF'T), [41, 58], which we present here in a somewhat particular form [45, 46].

Let F be a smooth function

F(x)=0 , F :R""!' - R". (5.2)

Let Fx(xo) denote the Jacobian matrix of F(x) evaluated at a solution xg. Note that the
elements of Fy(xg) are the derivatives of the n component functions of F with respect to
the n+1 variables represented by x. Thus the matrix Fx(xp) has n rows and n+1 columns.
If

Rank(Fx(x0)) =n ,

or equivalently,

dim N(Fx(xg)) =1

where A denotes the nullspace of Fy(xq),then the Implicit Function Theorem guarantees

that there exists a unique family x(s), where s € R, and a 6 > 0, such that

40

x(0) = xg , F(x(s))=0 for |s|< ¢

5.1.3 Numerical continnation

From the above discussion it is clear that the IFT plays an important role in the design of

continuation methods.
Consider the Equation 5.2. If the assumptions of the IFT are satisfied, i.e., if

Rank(Fx(xg)) = n

H

for a given solution xg, then there exists locally a family of solutions x(s) to Equation 5.2.
An extended system for computing “the next solution”, X1, is given by
a) F(x;) = 0 (5.3)
b) (x1—x¢)*x¢p = As ,
where the superscript * denotes transpose, and where As is a scalar, which is the step
size in the continuation procedure. As is set by the user, and normally adapted along the
branch depending on the convergence history of Newton’s method. Xp is a null vector of
the Jacobian matrix Fx(xo); it is also the unit tangent to the path of solutions at xg, and
can be computed very efficiently [21]. Figure 5.1 shows a geometrical interpretation of this
method, generally known as Keller’s pseudo-arclength method [45].
This method can be shown to work near a regular solution X, i.e., if the null space of
Fx(xo) is one-dimensional, as can be shown to follow from the IFT. In fact, in this case the
Jacobian of Equation 5.2, evaluated at xg, i.e., the n + 1 by n + 1 matrix

Fx(XO) (5 4)

X5

is easily seen to be nonsingular. The solution branch can be parametrized locally by As.

41

In addition, provided As is sufficiently small, and given a sufficiently accurate initial
approximation to x; (e.g., x§°) = Xp + AAs Xg), it can be shown that Newton’s method
for solving Equation 5.3 converges. Bifurcation points along the solution branch can be
located accurately, as they correspond to singularity of the Jacobian matrix 5.4. There

exist standard algorithms for switching branches at bifurcation points. These algorithms

have been implemented in AUTO [24].

Figure 5.1: Graphical representation of the pseudo-arclength method

42

Chapter 6

Computation of Stable/Unstable

Manifolds in the Lorenz Equations

6.1 Overview

Stable and unstable manifolds associated with equilibrium points are important objects in
phase portraits. At first thought, it may seem that the computation of such manifolds
can be carried out easily by numerical integration. For one-dimensional manifolds this is
often true, as we discussed in Section 1.4. However, higher dimensional manifolds are more
difficult to compute.

The Lorenz system introduced in Section 2.6 exhibits characteristics of complex ge-
ometric objects. More precisely, for the standard system parameters, the origin has a
two-dimensional stable manifold and the other two equilibria each have a two-dimensional
unstable manifold. The intersections of these two manifolds in the three-dimensional phase
space form heteroclinic connections (see Chapter 7 for details) from the non-zero equilib-
rium to the origin.

The two-dimensional stable manifold of the origin for the Lorenz system, with the “stan-
dard” parameter values, is known as the Lorenz manifold. There are two difficulties in

computing this manifold [40]:

e The stable eigenvalues at the origin of this system are approximately —2.667 and

43

—22.828, with a ratio that is approximately 8.56. Trajectories in the manifold tend to
follow the weakly stable direction, which makes it difficult to “cover” the full manifold,

even relatively near the origin.

¢ Part of the global manifold spirals around the z—axis while other parts of it curl around

the stable manifolds of the equilibria located at approximately (+8.485, +8.485, 27).

The manifold approaches itself arbitrarily closely, in fact infinitely often, in certain areas
of phase space. This makes it practically impossible to reliably compute a large portion
of the manifold with techniques that advance its computational boundary based on local
information near this boundary. Such methods are prone to “sheet jumping”.

Many papers address the geometry of the Lorenz manifold, because it has a number of
astonishing properties. Perellé [62] computed the stable manifold of the origin, and also
gave a sketch for p close to the critical value p.. He also considered the unstable manifold
of the non-zero equilibria. It was obtained by following a line segment, which is quite close
to our approach of computing the unstable manifold of the non-zero equilibria.

Thompson and Stewart [75] computed trajectories that illustrate the local stable mani-
fold. Based on this, a more advanced visualization was done by Stewart [74]; the dynamics
and global bifurcations of the Lorenz system can be observed there in the three-dimensional
phase space.

The first hand-drawn image of the Lorenz manifold computed under the standard pa-
rameter values appeared in the book of Abraham and Shaw [1] in 1985, while Guckenheimer
and Worfolk’s article [39] is the first paper that has computer-generated images of the Lorenz
manifold. For more detail, see [50].

In this chapter, AUTO is used to compute the above-mentioned stable and unstable
manifolds of the Lorenz system. Corresponding diagrams are presented either by using the
software package PLAUTO04 [28, 82] or by using the new visualization tool VMD.

Below, in Figure 6.1, is the bifurcation diagram of the Lorenz equations, reproduced
here to review some properties of the Lorenz system.

The figure shows that the zero solution is unstable for p > 1. The two nonzero sta-

tionary solutions bifurcate at p = 1 and become unstable for P> pe = 24.74. At p. there

44

are Hopf bifurcations and unstable periodic solutions emanate from each Hopf bifurcation.

When p > pc, the famous Lorenz attractor appears.

MaX X
15.

1.

RHO

Figure 6.1: Bifurcation diagram of the Lorenz equations: solid curves denote stable solutions

and dashed curves denote unstable solutions.

The procedure for computing stable or unstable manifolds in this thesis is based upon

the solution of “boundary value problems”. The idea is to compute the family of trajectories

that form the manifold by numerical continuation, in which each step consists of finding the

solution of a differential equation subject to initial and global constraints [50]. The basic

idea is presented in the following section.

6.2 The stable manifold of the origin

6.2.1 Computing the stable manifold of the origin

The method for computing the stable manifold of the origin uses numerical continunation.

Consider the ODEs representing the Lorenz equations, using the standard parameter values,

45

written as

X =f(x(t)) , te[0,T] . (6.1)

Since the integration time T will be variable, we introduce a new, scaled time variable {

to let the integration always takes place over the interval [0,1]. The transformation is as

follows
- t N
t = 7o te0,1]
Then
x,(t)_dx_d_xdf_d_x1
S dt T didt di T
Let
x(f) = x(t(d))
so that
dx 1 e
=5 = 1GD)
or
dx
— = T f(x(¢
% - 7 s
Dropping the “”, the transformed equation is
x'(t) = T f(x(t)), telo,1] . (6.2)

Note that the original integration time 7" is now an explicit variable in the equations.

The origin 0 = (0,0,0)7 is a saddle point with eigenvalues
»[1,1 ~ - 266 y M2 =~ — 22.8 y M3 = 11.82 5

and corresponding normalized eigenvectors

Vi, V2, V3

46

The computing procedure is as follows. First, let us suppose that an initial orbit xo(t)
has already been computed, for ¢ from 0 to Ty (where Ty < 0, since we deal with a stable
manifold here), with

xo0(0) close to the origin 0

and

x0(0) in the stable eigenspace spanned by v; and v, ,

or, more precisely,

cos(6) v sin(#))

[pal R

x0(0)=0+6(

where ¢ is a small radius in the stable eigenspace centered at the origin. Starting data
include a value of § between 0 and 27. Say, if we take 6 = 0, then the initial orbit satisfies

Equation (6.2) and
€

Xp 0) = — Vi
O =
The starting orbit x(¢) has length

1
Lo = To [1 f6xols) 1] ds
In other words, for given € = ¢y and L = Ly, the initial orbit is a solution
Xo = (x0(), 00, To) , where 6y = 0

of the equation

where

47

and where F(X) can be written as

X/(t) — T £(x(t))
PO = 0 x(0) — e () v, - 20y,) (6.3)
T Jo Il £(x(s)) || ds — L

Given Xy and X, with I Xo || = 1, pseudo-arclength continuation, as discussed in Chapter

5, can now be used to compute a next solution X3, by solving

F(X1) =0 ,

where

X1 = (Xl(') v 01, T) y

keeping L and ¢ fixed.

A key point in the computation is that the step size As in the continuation procedure
measures the change of the entire trajectory (also including the change of the parameters
and T), and not just the change in the initial conditions [50]. This fact generally results in
a reasonable distribution of trajectories along the stable manifold. Since the continuation
procedure is stepwise, with a small change, As, of the solution X in each continuation step,

the entire manifold is covered; i.e., “jumps” of the solutions generally cannot occur.

6.2.2 Variations on the computational method

There are possible variations on the basic numerical scheme. For example, instead of fixing
L and allowing T to vary, one can fix T and allow L to vary. In this case, F(X) still takes
the form of Equation (6.3), but with X = (x(-), 6, L) for given € and T.

Alternatively, one can fix one coordinate or a function of the coordinates at a particular

value to constrain the end point, and again free both T and 4. This is done by including

48

an appropriate functional g [50]; thus F(X) becomes

X(t) — T £(x(1))
FX) = ¢ x(0) - e(2lfyy, — @))y (6.4)

[af
g(X(]), T) -«

where

X =(x(:),0,T) , (forgivena)

In addition, it is also possible to use a combination of end-point conditions and integral

constraints, as will be seen in later sections.

6.2.3 The starting procedure

In the previous sections, we assumed that an initial orbit had already been computed. In
fact, the initial orbit can be computed quite easily by numerical integration. However,
we use continuation, even for the computation of the initial orbit. The main reason for
this approach is that the numerical results produced by AUTO will then be compatible as
starting data for the principal step in the algorithm, which was described in the preceding
section.

To compute an initial orbit, we take F(X) as the systein (6.3), where
X = (x(),L,T) , (forgiveneandf=0)

Starting data are x(t) =] V1, (i, x(t) is constant), a very small value of T (T < 0),
and L = 0. Stopping this continuation at a specified value of L then yields an initial orbit.

See Figure 6.2 for an example of an initial orbit obtained by this method.

49

a0..% 2

=36,

-4 : . : . x_1
~308. 250, —206. —i5i. ~100. -5, 6.

Figure 6.2: An initial orbit for computing the stable manifold of the origin of the Lorenz
system; obtained by fixing ¢ = 5.0, 6 = 0, and letting 7" and L vary, stopping at L = 1000.

6.2.4 Numerical results

As mentioned above, once an initial orbit of desired length is obtained, we then restart from
this solution. We let the angle 6 and the integration time T change, while fixing L and e.
After a specified number of such continuation steps, we can see part of the manifold; see

Figure 6.3 for an example.

60..X 2

50...

40...

30...

2B..]

10..,

Figure 6.3: Part of the stable manifold of the origin computed by continuation; with € =
5.0 (which is “small” here), p; ~ —2.667 and p2 = —22.828, obtained by first increasing L
and T, keeping 6 = 0, then fixing L and freeing 6, stopping after 100 continuation steps.

o0

After continuing for a sufficiently large number of steps, part of the Lorenz manifold

appears as illustrated in Figure 6.4.

Figure 6.4: The Lorenz manifold obtained by first increasing L and 7', keeping 8 = 0, and
then fixing L and freeing 6, stopping at 6 = 27.

Figure 6.5 shows an enlargement near the origin of orbits of “short” length L (L = 100),
that were continued on the Lorenz manifold, the angle § varies from 0 to 27, L is fixed and
T is variable. Note that it appears that the length L of the orbits is not fixed in the figure;

however, this is due to the scaling and the view point.

x_1 Axis

Figure 6.5: Short trajectories on the stable manifold near the origin, with (x(-), T, 8) variable
and L fixed.

51

As mentioned before, there are other ways to do the continuation. Figure 6.6 shows a
part of interest of the stable manifold; the 1 component is fixed at the end point of the
trajectories. Figure 6.7 illustrates the same surface, showing the actual orbits. Note that
all trajectories in Figure 6.7 emanate from near the origin.

Figure 6.7 illustrates the flexibility of the continuation method. Instead of fixing T, one
can fix the value of a component of the end point x(1) and let 6 vary. A scroll-like portion

of the stable manifold is generated this way.

Figure 6.6: Part of the Lorenz manifold, here plotted as a surface; x1(1) is fixed

x_1 Axis

Figure 6.7: Part of the Lorenz manifold, here represented by orbits; (1) is fixed

52

6.3 The unstable manifold of the non-zero stationary points

6.3.1 Computing the unstable manifold of the non-zero stationary points

For the Lorenz system, the two non-zero equilibria, denoted by X;, and x;"p respectively,

are approximately at
(r1, T2, x3) = (£8.485, +8.485, 27)

As discussed in Section 2.6.4, the Jacobian at each of these equilibria has a pair of complex
conjugate eigenvalues with positive real part, which correspond to a two-dimensional unsta-
ble manifold, and one negative real eigenvalue, corresponding to a one-dimensional stable

manifold. Suppose again the corresponding normalized eigenvectors are
Vi, V2, V3

We take x(0) near X;p, one of the non-zero stationary points, and we require x(0) to be in
the unstable eigenspace spanned by vi and v,.

The computational set-up is somewhat similar to that of the stable manifold of the
origin. Families of orbits are computed as solutions of two-point boundary value problems
with AUTO. However, in the current case, we introduce additional parameters in the con-
tinuation procedure to do the computation.

First suppose that wy is the eigenvector associated with the negative real eigenvalue of
the transpose Jacobian at xp, i.e., of fx(xsp)*, which is orthogonal to the two-dimensional

unstable eigenspace E¥; and w; is the eigenvector associated with the real positive eigen-

sp)
value of the transpose Jacébian at the origin, i.e., of £x(0)*, which is orthogonal to the two-
dimensional stable eigenspace E§. Suppose the starting point is x(0), the distance from x(0)
to the non-zero point X, is dy. We define the value of the inner product < x(0) —xzp , Wo >
to be 79; if 79 = 0, then x(0) lies in Eg,.

Similarly, if the distance from the endpoint x(1) to the origin is d1, then the inner prod-

uct < x(1) — 0, w; >, denoted by 71, measures whether the endpoint x(1) passes through

53

the stable eigenspace of the origin. If 7 = 0, then x(1) kes in Ej.

In addition, the derivative of the third solution component, x5(0) at the starting point,
we call it 9p, plays a role in the computation of an initial orbit. The starting procedure
is designed to set the value of v to zero, to ensure that the starting vector always lies
in the unstable eigenspace E;, associated with x,, and stays along a given curve in this
eigenspace.

See Figure 6.8 for the graphical representation.

Figure 6.8: Graphical representation of the computation of the unstable Lorenz manifold

For the unstable manifold of the Lorenz system, F(X) is defined by

X(t) — TE(x(t), p)

<x(0) — x5p, Wo> ~7o

<x(1) — 0, w; > -7

F(X) = 9 11x(0) — xe || — do (6.5)
Ix(1) — 0 - d

T fy If(x(s))]l ds — L

f3 (x(0)) — %o

In this case there are 6 constraints, and consequently the number of required free parameters
np is

np = (ny +ng) —mg+1=(5+1)-3+1=4

where ny, is the number of boundary conditions, ng is the number of integral constraints,
and ng is the dimension of the system. Generically, the number of free parameters should

be one more than the total constraints minus the dimension of the system.

6.3.2 The starting procedure

The starting procedure is somewhat more complicated than that for the stable manifold of
the origin. First, we set initial approximate solutions for small 7} o. For example, we take
Ty = 0.00005 and dy = 0.5.

We initialize x(t) to be constant, namely,
x(t) = x5 + dovg ,

where vo is any vector in E%, with ||vo|| = 1. Then ||x(0) — Xspl| = dp, and we initialize

sp?
i = |[x(1) = O} = |Ixsp + dovoll, 71 =< x(1) = 0,w; >, L= 0, and 45 = f(x(0)).
The eigenvector w; associated with the real positive eigenvalue of the transpose Jacobian

at the origin, is given by

55

-1

Wi= 1 (1l-0-+V(o-1)2+4p0c)/(2p)
0

The list of continuation parameters and the actual detailed implementation in AUTO

can be found in Appendix A.

6.3.3 The continuation procedure and numerical results

There are several runs in the continuation process. Each run is addressed in detail below.
Run 1:
Taking F(X) as the system (6.5), with

X =(x(),T,L,n,d) , (forfixedp, 9, doand)

In this case, 79 = 0, dy is small, and g = f3(x(0)), which is also small but not 0. In this

run x(0) is in E¥

sp» and stays at a fixed location on the small circle of radius dp around xp,.

Using continuation we compute an initial orbit until a specified value of L. See F igure 6.9

for a schematic representation.

x(1)

Figure 6.9: Illustration of the starting procedure: f3(x(0)) = 4g, which is small, but not
equal to 0.

56

Run 2:
In this run we adjust the initial condition by letting the derivative of the third solution
component x3(0) vary, also freeing L , T and 71, and keeping p, 7o, do and d; fixed. So now

X takes the form

X =(x(), T, L,%,n) , (forfixedp, 79, do and d;)

We continue this family of orbits until ¢ = 0, i.e., the starting point x(0) moves around
the circle of radius dy until it reaches one of the two points where f3(x(0)) is zero. See

Figure 6.10 for an illustration.

1(x(0))=0

x(0)

Figure 6.10: Illustration of adjusting the starting vector to lie along a certain curve

Run 3:

We repeat the procedure in Run 1, so X still takes the form

X =(x(),T,L,n,d) , (for fixed p, 70, dp and vy)

In this run vy is fixed at 99 = 0. This ensures that the starting point always lies along

the curve where f3(x(0)) = 0; see Figure 6.10 for a schematic representation. In this run

57

L increases until an orbit of desired length has been obtained. Figure 6.11 illustrates the

result up to this stage.

v Z Axis

Figure 6.11: An orbit segment of length L = 1000 in the unstable manifold of the Lorenz
system
Run 4:

In this run we keep T fixed and let dg vary. Thus X is the form

X = (x(),do, L, m,d) , (forfixedp, 79, 1o and T')

This run generates the unstable manifold. Zeroes of 71 are also detected, which corresponds
to the endpoint x(1) of the orbit passing through the stable eigenspace of the origin; see
Figure 6.12 for part of the unstable manifold generated in this step.
Another possibility is that, instead of fixing 7" in Run 4, we fix L and free T', so X will
be
X =(x(),do, T,m,d) , (forfixedp, 7o, tho and L)

Figure 6.13 and Figure 6.14 illustrate the results of this continuation, where the computa-

tion is done in the opposite continuation direction in Figure 6.14. Figure 6.15 shows the

58

result when we merge the two figures above together.

2008401

Figure 6.12: Part of the unstable manifold of the Lorenz system; p, 79, Yo and T are fixed
while dy, di, 71 and L are variable, stopping after a specified number of continuation steps.

2806401 |

18660 . L

ratel |

-1 A0E00

Figure 6.13: Part of the unstable manifold of the Lorenz system; p, 79, 1o and L are fixed
while do, di, 71 and T are variable, stopping after a specified number of continuation steps.

59

1Ee]

ZEOEHIR

=

X Axis

Figure 6.14: Part of the unstable manifold of the Lorenz system; p, 7o, 19 and L are fixed
while dy, dy, 7 and T are variable, stopping after a specified number of continuation steps.
Pseudo-arclength stepsize is in the opposite direction compared to Figure 6.13 .

ZAHISKZE
4802401

X2

Lt |

A RGe0T

- 2.008¥ist)

Figure 6.15: Part of the unstable manifold of the Lorenz system; This is the result when
Figure 6.13 and Figure 6.14 are merged.

60

As mentioned, during the continuation of the unstable manifold we locate zeroes of
7. Corresponding orbits have the property that the endpoint x(1) lies in E§, the stable
eigenspace of the origin. If, in addition, ||x(1)|| is small for such orbits then the orbit repre-
sents an approximate heteroclinic orbit. The following chapter addresses these heteroclinic
connections in more detail.

Furthermore, computations can be done by varying dy over a fundamental domain, that
is, a small range between successive detections of the basic heteroclinic orbit that spirals
around the non-zero stationary points and connects to the origin; see [30] for more detail.
Figure 6.16 contains 32 heteroclinic connections detected as zeroes of 7; when dy varies over

a fundamental domain.

Z -&xi*:;f:‘t Z1
!

1
|
|
I

‘-ﬂ—-‘—'‘_‘——\—._
K-Axis/ (X))

Tokugss OF

Figure 6.16: 32 heteroclinic connections in the Lorenz system

61

Chapter 7

Computation of Heteroclinic

Connections

7.1 Introduction
In Wikipedia [78], it is stated that

In mathematics, in the phase portrait of a dynamical system, a heteroclinic
orbit is a path in phase space which joins two different equilibrium points. If the
equilibrium points at the start and end of the orbit are the same, the orbit is a

homoclinic orbit.

Heteroclinic orbits, which are orbits of infinite period, play an important role in nonlinear
differential equations. They connect equilibria of a vector field. We now consider the
computation of heteroclinic orbits that connect a non-zero stationary point to the origin in

the Lorenz system.

7.2 Heteroclinic orbits for p = 28.0

The computation follows the procedure for computing the unstable manifold of the non-zero

stationary point, as briefly summarized below.

62

The starting procedure is the same as for the unstable manifold of the non-zero station-
ary point. First, we do a continuation in the integration time T (including other parameters
as discussed in Section 6.3), where we start from an initial point along a particular direction
in the unstable eigenspace Eg, at distance dg from the non-zero stationary point. There-
after, we perform two intermediate continuation steps, during the first of which an orbit
family is continued until 1 = 0, and during the second of which the length L and the
integration time T are further increased. Then we fix the integration time T and continue

the orbit segment by varying dy, d1, 7 and L. Thus, F(X) takes the form

[X(t) = TE(x(t), p)

<x(0) = Xgp, Wp > — 7

<x(l) - 0, w;> —mn

F(X) = $ 1x(0) - xep || — do (7.1)
Ix(1) - 0 - d

T Jo I £(x(s)) |l ds — L

3 (x(0)) — o

with
X =(x(),dy, L, 7n,d) , (for fixed p, 79, 9o and T")

During this process, the continuation passes through heteroclinic connections; detected as
orbits for which 7, = 0, with ||x(1)|| small. See Figure 7.1 for the computed manifold.

Orbits near heteroclinic connections spend much time near the origin. Therefore, since
T’ is fixed, heteroclinic orbits actually correspond to minima of the arclength L, as well as
minima of the Lz~norm. Figure 7.2 shows the simplest heteroclinc orbit encountered.

We delete those orbits which are not heteroclinic connections from the solution file; see
Figure 7.3 for the result. Figure 7.4 is the bifurcation diagram for fixed T over a fundamental
domain of dp, indicating 32 approximate heteroclinic connections, which shows || - || versus
radius dg. The minima along the solution branch in Figure 7.4 correspond to heteroclinic
connections. Each heteroclinic connection is also shown separately in 32 small figures at

the end of this section.

63

X Axis

Figure 7.1: The manifold before deletion of non-heteroclinic orbits. Computed with P, 70,
o and T fixed, dg, d1 , 74 and L variable.

* (0,00

Figure 7.2: The simplest heteroclinic orbit in the Lorenz equations

64

Eagedy L

AR

Figure 7.3: Heteroclinic connections that remain after deletion of all non-heteroclinic orbits

L_2-narm
I00es01 [*

192401

284etll =

16401 [T

368e401 [T

260e40L [40

6.50e01 6.90e01 7.00e-01 7.10e01 V.20e-01 750801

Figure 7.4: Bifurcation diagram marking 32 heteroclinic orbits, for p = 28.0 and fixed time
T, and over a full fundamental domain of dy. Local minima of the Ly — norm correspond
to (approximate) heteroclinic connections from x;'}, to 0 .

65

7.3 Other computations with heteroclinic orbits

There are other useful computations involving heteroclinic orbits. For example, it is of
interest to see how a heteroclinic orbit changes if the parameter p is varied.
We can follow each computed heteroclinic orbit, with varying p, keeping 7 equal to

ZEero.

More precisely, in this case, F/(X) takes the form (7.1), where
X =(x(),p,do, T, L) , (withm=m =1=0andd; “small”)

Suppose a particular heteroclinic orbit is chosen from the solution file that corresponds
to Figure 7.3; see Figure 7.5 for a graphical illustration. Then we can follow this heteroclinic
orbit with 7; fixed at 71 = 0, to see how it evolves for increasing p; see Figure 7.6. We can
see that a butterfly structure appears.

A detailed discussion of heteroclinic connections in the Lorenz equations is given in [30].

Figure 7.5: A heteroclinic orbit from the solution file corresponding to Figure 7.3

Z Axis

+.1i:|e'||m1

L L
1.002401 1.60e-+01

] 4 Axi
- 140401 -E00eH00 -2 (e+00 4+.00e+001 15

Figure 7.6: A family of heteroclinic connections for increasing p: the 16th heteroclinic orbit
in figure 7.4 is used as starting orbit.

67

(g) Het_07 (h) Het_08

Figure 7.7: 32 heteroclinic connections over a fundamental domain of dy: I

68

(b) Het.10

(a) Het_09

(d) Het_12

(c) Het_11

(f) Het_14

13

(e) Het-

(h) Het_16

() Het_15

Figure 7.8: 32 heteroclinic connections over a fundamental domain of dy: II

69

_18

(b) Het

17

(a) Het

(d) Het_20

(c) Het_19

(f) Het_22

(e) Het_21

(h) Het_24

23

(g) Het

Figure 7.9: 32 heteroclinic connections over a fundamental domain of dg: III

70

(b) Het_26

(a) Het_25

(d) Het_28

(c) Het_27

(f) Het_30

(e) Het_29

(h) Het.32

(g) Het_31

Figure 7.10: 32 heteroclinic connections over a fundamental domain of dg: IV

71

Chapter 8

Visualization

The computational results give large amounts of data. In order to better understand the
nature of the computed manifolds, a graphics tool has been developed to display the families
of computed curves as surfaces. This is done by generating a triangulation that approxi-
mately represents the manifold. Functions such as resetting, moving, scaling and rotating

are also provided.

8.1 Objectives

There are many papers that discuss computations for the Lorenz System; see [61, 60, 44, 71].
Most of these focus on the rough shape of the Lorenz manifolds, as it is hard to explain
exactly how the manifolds really look like. This leads to the idea to develop a particular
graphics tool to address this problem. It is also useful to view different objects that are
related to the manifolds, such as homoclinic connections, heteroclinic connections, periodic
orbits, etc.

In general, the graphics tool should also be able to adapt to different solutions files; and

not only for data files generated by AUTO.

72

8.2 Graphics Interface

C/C++ is the language used for writing the graphics tool because of its flexibility, efficiency
and availability on most platforms. There are a number of existing C/C+ + libraries, which
make the implementation of the tool easier.

At present many methods can be used to plot 3D graphics, but some of them are not
portable, such as MicroSoft Direct 3D, which is only for Windows.

OpenGL is a C/C++ 3D graphics interface that is very flexible and portable to most
operating systems, [72, 70, 47, 79]. Also, it has some functions that can accelerate the
interpolation of curves, which we require for plotting manifolds. Nevertheless, OpenGL
does not provide high-level commands for describing models of three-dimensional objects;
the model should start from a set of primitives — points, lines, and polygons. There exists
a high-level, object-oriented toolkit, Open Inventor, which is built on the top of OpenGL,
and is available separately for many implementations of OpenGL. The software package
PLAUTO04 (which is included in the AUTO-07p version of AUTO), deploys Open Inventor
for visualizing graphics. We also enhanced some functions of PLAUTO04.

We need a criterion to distinguish visually between trajectories, e. g., using various colors
to distinguish trajectories or some quantity that varies along trajectories. In this tool, we

adopt the colormap with 64 different colors as in Matlab [57].

8.3 Problem specific implementation

As mentioned in Chapter 4, AUTO-07p is the software we used to compute the manifolds of
the Lorenz system. The approach is to follow an orbit segment, while the starting point is
allowed to vary along an ellipse or line segment in the stable or unstable eigenspace centered
at a stationary point. Pseudo-arclength continuation is then applied, and several boundary
conditions are imposed. When using the collocation method, we keep all mesh points fixed
during any particular run. The number of mesh points can be changed when restarting
computations from a selected solution. Thus, it is possible to have a different number of

points for two adjacent orbits; see Figure 8.1.

73

Orbit 1 has less points

/ Ornit 2 has mors peints

Figure 8.1: Different number of points on adjacent trajectories

A problem is that the points along a trajectory are not uniformly distributed; one point
might be quite far away from its corresponding point on an adjacent trajectory, resulting

in inaccurate triangles; for example, see Figure 8.2.

Figure 8.2: Irregular triangle formation along trajectories on which points are not uniformly dis-
tributed

In addition, it is possible that the solution points generated by AUTO are not dense
enough, i.e., the stepsize used in the computation is not small. The method to solve these
problems is interpolation. It is a method for estimating values that lie between known
values. For more details, see [14, 64].

In the case of the Lorenz system the stepsize is generaly small and solution points

generated by AUTO are usually dense enough, so that we do not use interpolation here.

74

8.4 The triangulation algorithm

We illustrate the implementation using the Lorenz system. In principle, the algorithm
applies to other applications.

Since computations are done by numerical continuation method in AUTO, every two
adjacent orbits are “close” to each other, so triangulation [52] can be applied to form surfaces
between these trajectories. As explained in the Section 8.3, adjacent orbits may or may not

have the same number of points. The algorithm applies to both cases.

8.4.1 Orbits with the same number of points

To illustrate the algorithm, first suppose orbit A and orbit B each has 5 points. Further-
more, assume that orbit A starts from a; and ends in as, and orbit B starts from b; and
ends in bs.

First we construct two triangles, namely, triangle < a,-b;-ay > and triangle < ay-by-by >;

see Figure 8.3.

Figure 8.3: Triangulation between two adjacent orbits with the same number of points: 1

Then we compare the two angles, / a; — by — b; with / a1 — az — b;. If angle
L a; — ag — by less than angle / a; — by — by, then discard the triangle < a1 - by - ag >

and keep the triangle < a; - by - b; >. Otherwise discard the triangle < ay - by - b1 > and

75

keep the triangle < a; - b - ag >; see Figure 8.4.

Figure 8.4: Triangulation between two adjacent orbits with the same number of points: 11

In our case, since the triangle < a; - by - b; > has been kept, we use line a1by as the

baseline to construct another two triangles: < a; - b3 - by > and < ajy - az- by >.

. Figure 8.5: Triangulation between two adjacent orbits with the same number of points: I11

Again we compare angle / a; — ag — by with angle / a3 — b3 — by, discard the triangle
with the smaller angle and keep the other triangle. The same procedure continues until the
end. In this way, the triangles constructed are generally in good shape. In addition, the
algorithm is very fast since we do not need computation during the construction; see Figure

8.6 for all triangles constructed.

76

Figure 8.6: Triangulation between two adjacent orbits with the same number of points: IV

8.4.2 Orbits with a different number of points

Triangle construction for orbits with a different number of points follows the same pattern.
If orbit A reaches the endpoint while orbit B still has more solution points then we simply
connect each remaining point on orbit B to the endpoint on orbit A; see F igure 8.7. Ex-
periments done for the Lorenz equations shows that this approach is generally more than

adequate for AUTO-generated data.

Figure 8.7: Triangulation between two adjacent orbits with a different number of points

77

In case of a large solution file, it is not a good idea to connect every point on one or-
bit to its corresponding point on the other orbit. The number of mesh intervals used in
the computations is mainly determined by the required accuracy. A better approach is to
choose some points only, e.g., plotting every 10th point on each orbit and forming triangles
between them. Another even more efficient approach is to plot only some trajectories. Of-
ten there is no reason to form triangles between all orbits. All approaches mentioned above
can be applied to the solution files.

Below are figures for the Lorenz manifold plotted with the new graphical tool VMD.
Figure 8.8 shows the same view as plotted by PLAUTO04. Figure 8.9 shows the triangulation

and Figure 8.10 shows a local blow-up of the triangulation.

Figure 8.8: The Lorenz manifold plotted by VMD

78

0on

Sseie

e f : Al

R

showing the triangulat

e

ifold plotted by VMD

The Lorenz man

9

8

igure

F

79

Fih

Figure 8.10: The Lorenz manifold plotted by VMD: local view of the triangulation

80

Chapter 9

Conclusions and Discussion

9.1 Conclusions

Numerical continuation with AUTO was successfully used in this thesis for the computation
of stable and unstable manifolds in the Lorenz equations. Heteroclinic connections from
the non-zero stationary point to the origin of the Lorenz system were detected. Orbits and
their corresponding bifurcation diagrams are depicted to give us a better understanding of
the manifolds and the heteroclinic connections.

A new data visualization program, VMD, was developed for visualizing AUTO datasets,
and especially for observing manifolds. Its features, such as portability, simplicity, zooming
capabilities efc., make it useful for AUTO users. The implementation of triangulation gives
users a more accurate view of the manifolds in three dimensional space. VMD is a general
purpose program for problems related to manifolds. Its processing speed for large datésets
is reasonable.

The continuation and bifurcation software package AUTO-07p, which is an updated
version of AUTO97, was used in this thesis. AUTO-07p incorporates a Python interface,
which enhances its power. Some changes and updates made in AUTO are detailed in the

Appendices.

81

9.2 Future development

Further development could include combining the graphics package PLAUTO04 with the
most recent graphics tool VMD. Since VMD is implemented separately and mainly focuses
on visualization of manifolds, it will be a good idea to add the functionalities of VMD to
PLAUTO04, thus enhancing its power and avoiding overlap between the two programs.

There is another software package, the Visualization ToolKit, VTK in short, which is an
open source software system for 3D computer graphics, image processing and visualization.
It can be directly integrated through Python. The computation power, storage capability
and other functions provided by VTK are much more comprehensive than those of Open
Inventor. So future version of AUTO graphics could focus on the use of the new VTK
package for achieving better views of AUTO data.

The current algorithm for computing manifolds for the Lorenz system is very accurate
and robust. A general built-in capability for computing manifolds with AUTO may be

considered in the future.

82

Bibliography

(1]

[6]

(7]

(8]

R. H. Abraham and C. D. Shaw. “Dynamics—The Geometry of Behavior. Part three:

global behavior.” Aerial Press, Santa Cruz, 1985.

R. K. Alexander. “Stability of Runge-Kutta Methods for Stiff Ordinary Differential
Equations.” SIAM Journal on Numerical Analysis, Vol. 31, pp. 1147-1168, 1994.

E. L. Allgower and K. Georg. “Numerical Path Following.” In P. G. Ciarlet and J.
L. Lions, editors, Handbook of Numerical Analysis, North Holland Publishing, Vol. 5,
1996.

P. Angel and M. C. Rivara. “Mesh Refinement Based on The 8-Tetrahe-
dra Longest-edge Partition”, available by HTTP from http://www.andrew .-
cmu.edu/user/sowen/abstracts/P1977. html, 2th International Meshing Roundtable,

Sandia National Laboratories, pp. 67-78, 2003.

U. Ascher, J. Christiansen, and R.D. Russell. “Collocation Software for Boundary-

Value ODEs.” ACM Trans. Math. Software, Vol. 7, pp. 209-222, 1981.

U. Ascher, J. Christiansen, and R. D. Russell. “COLSYS: Collocation Software for
Boundary-Value ODEs.” ACM Trans. Math. Software, Vol. 7, pp. 223-229, 1981.

U. Ascher and G. Bader. “Stability of Collocation at Gaussian Points.” SIAM J. Numer

Anal., Vol. 23, pp. 412-422, 1986.

A. Back, J. Guckenheimer, M. R. Myers, F. J. Wicklin, and P. A. Worfolk. “DsTool:
Computer Assisted Exploration of Dynamical Systems.” Notices Amer. Math. Soc.,

Vol. 39(4), pp. 303-309, 1992.

83

[9]

[10]

[11]

[12]

[13]

[16]

(17]

[18]

[19]

R. E. Bank. A. H. Sherman, and A. Weiser. “Refinement Algorithms and Data
Structures for Regular Local Mesh Refinement.” Scientific Computing, Brussels,

IMACS/North Holland, Netherland, pp. 3-17, 1983.

R. E. Bank and R. Kent Smith. “Mesh Smoothing Using a Posteriori Error Estimates.”
SIAM J. Numer. Anal., Vol. 34, pp. 979-997, 1997.

W. J. Beyn, A. Champneys, E. J. Doedel, W. Govaerts, B. Sandstede, and Yu. A.
Kuznetov. “Numerical Continuation and Computation of Normal Forms.” In B. Fiedler,

editor, "Handbook of Dynamical Systems.” Elsevier Science, Vol. 2, pp. 149-219, 2001.

B. Bialecki, G. Fairweather, and K. Bennett. “Fast Direct Solvers for Piecewise Hermite

Bicubic Orthogonal Spline Collocation Equations.” SIAM J. Numer. Anal.,29, 1992.

C. de Boor and B. Swartz. “Collocation at Gaussian points.” SIAM J. Numer.Anal.,

Vol. 10, pp. 582-606, 1973.
C. de Boor. “A Practical Guide to Splines.” Springer, Berlin, Heidelberg, 1978.

C. Bozzuto. “Machine Learning: Fractals and Dynamics.” available by HTTP
from http://www.cs.brandeis.edu/ c¢s113/classprojects/ smoate/cs113/fractals
—and_dynamics.html , 2002.

T. N. Chan. “Numerical Bifurcation Analysis of Simple Dynamical Systems.” Master

Thesis, Computer Science Department, Concordia University, 1983.
Coin3D Package, available by HT'TP from http://www.coin3d.org/doc/.

CONTENT: A multiplatform environment for continuation and bifurcation analysis of
dynamical systems. Developed by Y. A. Kuznetsov and V. V. Levitin, Centrum voor

Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 1997.

DDE-BIFTOOL v.2.00: A Matlab package for bifurcation analysis of delay differential
equations. Developed by K. Engelborghs, Technical Report TW-330, Department of

Computer Science, University of Leuven, Belgium, 2001.

84

(20]

21]

[22]

24]

[25]

[26]

[28]

M. Dellnitz and A. Hohmann. “The Computation of Unstable Manifolds Using Subdi-
vision and Continuation.” In H-W. Broer et al. (eds.), Progress in Nonlinear Differential
Equations and Their Applications , Birkhauser Verlag, Basel / Switzerland, Vol. 19,
pp. 449-459, 1996.

A. Deprit, and J. Henrard. “Construction of Orbits Asymptotic to a Periodic Orbit.”
Astron. J., Vol. 74, pp. 308-316, 1969.

E. J. Doedel. “Finite Difference Collocation Methods for Nonlinear Two Point Bound-
ary Value Problems.” SIAM Journal on Numerical Analysis, Vol. 16, No. 2, pp. 173-185,
1979.

E. J. Doedel. “AUTO: a program for the automatic bifurcation analysis of autonomous
systems.” In Proceedings of the Tenth Manitoba Conference on Numerical Mathematics

and Computing, Vol. I (Winnipeg, Man., 1980), Cong. Num. Vol. 30, pp. 265-284, 1981.

E. J. Doedel, H. B. Keller, and J. P. Kernévez. “Numerical Analysis and Control of
Bifurcation Problems (I) Bifurcation in Finite Dimensions.” International Journal of

Bifurcation and Chaos, Vol. 1(3), pp. 493-520, 1991.

E. J. Doedel, H. B. Keller, and J. P. Kernévez. “Numerical Analysis and Control of
Bifurcation Problems (II) Bifurcation in Infinite Dimensions.” International Journal of

Bifurcation and Chaos, Vol. 1(4), pp. 745-772, 1991.

AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equa-
tions (with HomCont), developed by E. J. Doedel et al., available by HT'TP from

http://cmvl.cs.concordia.ca/auto/ .

AUTO2000: Continuation and Bifurcation Software for Ordinary Differential Equa-
tions, a C language version of AUTO, developed by E. J. Doedel et al., available by

HTTP from http://cmvl.cs.concordia.ca/auto/ .

AUTO-07p: the successor to both AUT097 and AUTO02000, developed by E. J. Doedel

et al., available by HT'TP from http://cmvl.cs.concordia.ca/auto/ .

85

(29] E. J. Doedel. “Numerical Analysis of Nonlinear Equations, Lecture Notes.” available

by HTTP from http://cmvl.cs.concordia.ca/doedel.html .

[30] E. J. Doedel, B. Krauskopf and H. M. Osinga. “Global bifurcations of the Lorenz
manifold.” Nonlinearity 19, pp. 2947-2972, 2006.

[31] DsTool: Computer assisted exploration of dynamical systems, developed by
M. Myers, R. Wicklin, P. Worfolk and A. Back, available by HTITP from

http://www.cam.cornell.edu/~gucken /dstool , 1992.

[32] F. J. Elmer. “The Pendulum Lab.”, available by HTTP from http://monet.-

unibas.ch/ elimer/pendulum/bif.htm , 1998.

(33] J. P. England. “Advances in computing global invariant manifolds.” PhD thesis, Engi-

neering Mathematics, University of Bristol, Chapter 6, 2005.

[34] “Fedora3 Linux Online Help.” available by HTTP from http://fedora.redhat.com, Fe-

dora3 manual, 2004.

[35] M. J. Friedman and E. J. Doedel. “Numerical Computation and Continuation of In-
variant Manifolds Connecting Fixed Points.” SIAM J. Numer. Anal. Vol. 28(3), pp.
789-808, 1991.

[36] D. Goldberg. “What Every Computer Scientist Should Know About Floating-Point
Arithmetic.” Issue of Computing Surveys, Association for Computing Machinery, Inc.,

1991.

[37] J. Guckenheimer and P. Holmes. “Nonlinear Oscillations, Dynamical Systems and Bi-

furcations of Vector Fields.” second edition, Springer-Verlag, New York, 1986.

[38] J. Guckenheimer. “Dimension Estimates for Attractors.” In Fluids and plasmas: ge-
ometry and dynamics (Boulder, Colo., 1983), Amer. Math. Soc.,Providence, RI, pp.
357-367, 1984.

86

[39]

[40]

[41]

[42]

(43]

[44]

[45]

(47]

(48]

[49]

J. Guckenheimer and P. Worfolk. “Dynamical Systems: Some Computational Prob-
lems, in Bifurcations and Periodic Orbits of Vector Fields.” D. Schlomiuk, ed. pp.
241-278, Kluwer 1993.

J. Guckenheimer. “Numerical Analysis of Dynamical Systems.” Amer. Math. Soc.,

Providence, RI, 1999.
J. Hale, and H. Kogak. “Dynamics and Bifurcations.” Springer-Verlag, New York, 1991.

HiSee: A visualization tool for visualizing high-dimensional datasets, developed by S.

Hotton and J. Yoshimi, available by HI'TP from http://hisee.sourceforge.net/ .

M. E. Johnson, M. S. Jolly, and I. G. Kevrekidis. “Two-dimensional invariant manifolds
and global bifurcations: some approximation and visualization studies.” Numerical

Algorithms, Springer Netherlands, Vol. 14, Numbers 1-3 / April, pp. 125-140, 1997.

N. D. Kazarinoff and R. Seydel. “Bifurcations and period doubling in E. N. Lorenz’s

symmetric fourth order system.” Physical Review A Vol. 34, pp. 3387-3392, 1986.

H. B. Keller. “Numerical solution of bifurcation and nonlinear eigenvalue problems.”
Applications of Bifurcation Theory, ed. Rabinowitz, P. H. Academic Press, pp. 359-384,
1977.

H. B. Keller. “Lectures on numerical methods in bifurcation problems.” Notes by Nan-
dakumaran, A. K. & Ramaswamy, M., Indian Institute of Science, Bangalore. Springer-

Verlag, 1987. Academic Press, pp. 359-384, 1977.

M. J. Kilgard. “OpenGL Programming for the X Window System.” Addison-Wesley,
1996. A

B. Krauskopf and H. M. Osinga. “Two-dimensional global manifolds of vector fields.”
Chaos Vol. 9(3), pp. 768-774, 1999.

B. Krauskopf and H. M. Osinga. “Computing geodesic level sets on global (un)stable
manifolds of vector fields.” SIAM J. Appl. Dyn. Sys. Vol. 4(2), pp. 546-569, 2003.

87

[50] B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A.
Vladimirsky, M. Dellnitz and O. Junge. “A survey of methods for computing (un)stable
manifolds of vector fields.” Int. J. Bifurcation and Chaos, Vol. 15(3), pp. 763-791, 2005.

[51] Y. A. Kuznetsov. “Elements of Applied Bifurcation Theory.” Second Edition, Springer
Verlag, New York, 1998.

[52] M. G. Larson. “Notes on Triangulations and Refinements.” available by HTTP from
http://www.phi.chalmers.se/education/courses/2000/detb-a-kf/Triang.ps, Chalmers

University of Technology, Sweden, 2001.

[563] E. N. Lorenz. “Deterministic nonperiodic flow.” A method for estimating values that

lie between two known values. Atmosph. Sc. Vol. 20, pp. 130-141, 1963.

[54] Maple: General-purpose commercial mathematics software package, developed by Wa-

terloo Maple Inc., current version is Maple 11 released in February 2007.
[55] L. Mark. “Programming Python.” Second edition, O’Reilly & Associates, Inc., 2001.

[56] MATCONT, CL.MATCONT and CL_MATCONT_for MAPS: continuation software
in Matlab, developed under the supervision of W. Govaerts and Y. A. Kuznetsov,

available by HTTP from http://www.matcont.ugent.be/ .

[57] MATLAB: A numerical computing environment and programming language, Created

by “The MathWorks”, current version is MATLAB 7.4 released on March, 2007.
[58] J. R. Munkres. “Analysis on Manifolds.” Reading, MA: Addison Wesley, 1991.

[59] Oscill8: Dynamical Systems Toolset, v.1.12, developed by E. Conrad, available by

HTTP from http://oscill8. /-sourceforge.net/doc/quickstart.html , 2005.

[60] H. M. Osinga. “Non-orientable manifolds of periodic orbits.” In Proc. Int. Conf. Dif-
ferential Equations, Equadiff 99(Berlin) Vol.2, eds. Fiedler B.,Gréger, K.& Sprekels, J.

(World Scientific, Singapore), pp. 922-924, 2000.

[61] H. M. Osinga and B. Krauskopf. “Visualizing the structure of chaos in the Lorenz
system.” Comput. Graph. 26, pp. 815-823, 2002.

88

[62] C. Perell6. “Intertwining invariant manifolds and Lorenz attractor.” In Global theory
of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979),

Lecture Notes in Math. 819, Springer-Verlag, Berlin, pp. 375-378, 1979.

[63] Lorenz Equations in PlanetMath, available by HTTP from http: //planetmath.org/-

encyclopedia/LorenzEquation.html .

[64] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. “Numerical Recipes

in C.” Second edition, Cambridge University Press, 1995.

[65] S. S. Rao. “Applied Numerical Methods for Engineers and Scientists.” Prentice Hall,

2002.

[66] W. C. Rheinboldt. “Numerical Analysis of Parametrized Nonlinear Equations.” Wiley-

Interscience, Lecture Notes in the Mathematical Sciences, University of Arkansas, 1986.
[67] A. H. Richard. “A First Course in Discrete Dynamical Systems.”, 1996.

[68] R. D. Russell, and J. Christiansen. “Adaptive Mesh Selection Strategies for Solving
Boundary Value Problems.” SIAM J. Numer. Anal. Vol. 15, pp. 59-80, 1978.

[69] E. M. Schwarz and C. A. Krygowski. “The $/390 G5 floating point unit.” IBM Journal
of Research and Development, Vol. 43, No. 5/6, pp. 70-721, 1999.

[70] M. Segal and K. Akeley. “The OpenGL Graphics System: A Specification, Version
1.5.” Silicon Graphics, Inc. 2003.

[71] R. Seydel. “ Practical Bifurcation and Stability Analysis. From Equilibrium to
Chaos.”Second Edition, Springer Verlag, New York, 1994.

[72] D. Shreiner, M. Woo, J. Neider and T. Davis. “OpenGL Programming Guide.” Second
Edition, Addison-Wesley, 1997.

[73] C. Sparrow. “The Lorenz Equations: Bifurcations, Chaos and Strange Attractors.”

Appl. Math. Sci. No. 41., Springer-Verlag, New York, 1982.

[74] H. B. Stewart. “Visualization of the Lorenz system.” Physica D: Nonlinear Phenomena,

Vol 18, Issue 1-3, pp. 479-480, 1986.

89

[75] J. M. T. Thompson and H. B. Stewart. “Nonlinear Dynamics and Chaos.” John Wiley,

Chichester, New York, 1986.

[76] E. W. Weisstein. “MathWorld Resource.” available by HTTP from http://math-

world.wolfram.com /Manifold.html .
[77] H. Whitney. “Geometric Integration Theory.” Princeton University Press, 1957.
[78] Wikipedia, the free encyclopedia, available by HTTP from http://en.wikipedia.org .

[79] P. Womack and J. Leech. “OpenGL Graphics with the X Window System, Version
1.3.” Silicon Graphics, Inc. 1998.

[80] XPPAUT: ODE and bifurcation softwares, developed by G. Bard Ermentrout, available
by HTTP from http://www./-math.pitt.edu/ bard/xpp/xpp.htm] .

[81] J. Yoshimi. “Dynamical Systems Theory.” available by HTTP from http://www.-

jeffyoshimi.net /research/researchDesc/DynamicalSystems.html , 2006.

[82] PLAUTO4: Data visualization package for AUTO, developed by C. Zhang, Concordia
University, 2004; sce also [28, 83].

[83] C.Zhang. “Computation and Visualization of Periodic Orbits in the Circular Restricted
Three-Body Problem.” Master Thesis, Computer Science Department, Concordia Uni-
versity, 2004.

90

Appendix A

Implementation in AUTO of the

Lorenz Manifold Calculations

A.1 Implementation for the stable manifold of the origin

A.1.1 Boundary value problem formulation

As explained in Section 6.2, the origin 0 = (0,0,0)7 is a saddle point with eigenvalues
My = —266, pup =~ —228, p3 =~ 11.82

and corresponding normalized eigenvectors

Vi V2, V3

For computing the stable manifold of the origin, we seek solutions of the system F (X)=0,

where

x’(t) — T f(x(t))
FOXO) = § x(0) = do (548) v~ 0 vy)
T f) |l f(x) |l ds — L

91

where do is a small radius in the stable eigenspace centered at the origin. The starting
vector x(0) is also controlled by the angle 6, which is in turn controlled by a parameter h,
namely, 8 = 2% 7 x h.

Table A.1 summarizes the parameters used in the computation. The boundary condi-

tions are listed in Table A.2.

l Parameter list | Representation j

PAR(1) problem parameter p
PAR(2) problem parameter 3

PAR(3 problem parameter o
PAR(4 radius dy
PAR(5 h, which controls the value of 8, § = 27k

the second component of the starting point

the third component of the starting point

)
)
)
PAR(6) the first component of the starting point
)
)
)

Ly norm =||x(1) - 0f] =

PAR(11) integration time T'
PAR(12) length L

Table A.1: Parameter list for the stable manifold of the origin

l No. | Boundary conditions —I

1 | BC(1) = z1(0) — do (cos(@) * (vi—1) + sin(0) * (va_1))
2 | BC(2) = 22(0) — do (cos(8) * (v1-2) + sin(0) * (va_3))
3 | BC(3) = 23(0) — do (cos(8) * (v1-3) + sin(8) * (va_3))
4 | BC4) = xl(l) - PAR(6)

5 | BC(5) = a2(1) -~ PAR(T)

6 | BC(6) =xz3(1) — PAR(8)

7 | BC(7) =|x(1) — 0] ~ PAR(9)

Table A.2: Boundary conditions for computing the stable manifold of the origin

The number of boundary conditions is ny = 7, there is one integral constraint, ng =1,

and the dimension of the system is ny = 3. The number of free parameters is

np:(nb+nq)_nd+1:(7+1)_3+1:6

92

A detailed description of the steps in the computational procedure is given in Section

6.2.

A.2 TImplementation for the unstable manifold of the non-

zero stationary point

A.2.1 Boundary value problem formulation

The computational set-up for the unstable manifold of the non-zero stationary point is
somewhat similar to that of the stable manifold of the origin. The two non-zero equilibria,

denoted by Xgp and x;'”p respectively, are approximately at
(w1, x2, x3) = (+£8.485, +8.485, 27)
Suppose again the corresponding normalized eigenvectors are
Vi, V2, V3 ,

with x(0) near X, one of the non-zero stationary points, and x(0) is in the unstable

eigenspace spanned by v, and vs.

We seek solutions of the system F(X) = 0, where

x(t) - TE(x(t), p)
<x(0) - Xgp, Wo> —19

<x(1) -0, w;> —m7

F(X) = 9 11x(0) = x4 || — do (A.1)
Ix@) ~ 0 - 4 |

T fy Il fc(s) |l ds — L

fa (x(0), p) — o

with, for example (see Run 4 in Section 6.3),

93

X:(X(')adOaLaTI-/dl) 3

(for fixed p, 79,0 and T)

A detailed description of the various steps in the computational procedure is given in

Section 6.3.

Table A.3 summarizes all the parameters used in the computations while Table A.4 lists

the boundary conditions.

Parameter List Name Representation
PAR(1) 0 problem parameter
PAR(2) problem parameter
PAR(3) problem parameter
PAR(4) dy the distance from x(0) to x,,
PAR(b) dy the distance from x(1) to the origin
PAR(6) o = x5(0) the derivative of the third component of x at time 0
PAR(9) T0: < wo,x(0) > | the inner product of wg and x(0)
PAR(9) T1: < wp,x(1) > | the inner product of w; and x(1)
PAR(11) T integration time
PAR(12) L length

Table A.3: Parameter list for the unstable manifold of the non-zero stationary point

Boundary conditions

BC(1) =

< x(0), wg >

BC(2) = |Ix(0) — xll — PAR(4)

BC(3) = z1(0) 9(0) — PAR(2) z3(0) — PAR(6)

BC(4) = <x(1)-0, wy > — PAR(9)

BC(5) = |Ix(1) - 0]| — PAR(5)

Table A.4: Boundary conditions for computing the unstable manifold of the non-zero sta-

tionary point

94

In this case, the dimension of the system ng is 3, the number of boundary conditions is
ny = 5, and the number of integral conditions is ny = 1. The number of free parameters
ny is then

np=Mp+ng) —ng+1=(B5+1)—-3+1=4.

A.3 Format of output files

In AUTO, a summary of the computation is written in file fort.6, which usually corresponds
to the window in which AUTO is run. The bifurcation diagram is contained in fort.7 and
the complete graphics as well as restart data is contained in fort.8. Moreover, diagnostic
messages, convergence history, eigenvalues and other informations are written in fort.9.
AUTO also provides linux commands such as @sv, @ap, Qdf to manipulate these files.
Corresponding commands also exist in the Python AUTO-interface. Usually one saves
fort.7 as b.x, fort.8 as s.x, fort.9 as d.x, where “*” denotes a user-selected name. The format
of bifurcation file is somewhat self-explained, so we omit here. The format of solution files

is briefly described below.

A.3.1 Solution file

There are three parts of data in a solution file:
e data corresponding points in fort.7,
e the complete solution,
¢ the direction of the branch.

Only specified labeled solution points in a bifurcation file are written in complete data

to the corresponding solution file. Specifically the following is written (see also Table A.5):

95

Name Representation

1 IBR The index of the branch

2 NTOT The index of the point on the branch

3 ITP The type of the point

4 LAB The label of the point

5 NFPR The number of free parameters used in the computation

6 ISW The value of ISW used in the computation(see [28])

7 NTPL The total number of points in the scaled time interval [0,1],

NTPL = NCOL*NTST + 1

8 NAR The number of values written per point(NAR = NDIM + 1)

9 | NROWPR | The number of lines printed following the identifying line

10 NTST The number of principal time intervals used in the discretization

11 NCOL The number of collocation points used per principal mesh interval

12 | NPARX | The dimension of the array PAR

Table A.5: Information written in a solution file of BVPs

After the identifying line, there are NTPL lines containing

T) xl(tk) 3 1'2(tk) 9 LRER) mNDIM(tk)) where k = 172, Ty NTPL’

where z1, x2,... £nprum are the solution components.
Following this the indices and the values of the rate of change of the free parameters are

printed:

ICP(I), I=1,...NFPR,
P, i=1,...NFPR,

This is followed by another NTPL lines, each containing

96

z1(tg) , Za(tg), Tnprm(tk) , where &k =1,2, -+, NTPL,

where P, Z denote the direction of the branch.
Finally the parameter values PAR(i), ¢ = 1,.., NPARX are written; see [28] for

details.

Part of a solution file computed for the Lorenz system is shown below.

% Other data sets follow, if any

97

1 9 1 4 1 1201 4 2410 300 4 36
0.0000000000E+00 8.2576232567E+00 8.5430449733E+00 2.6454467570E+01
6.2286099431E-04 8.3151657399E+00 8.6424061259E+00 2.6466512206E+01
9.9182483371E-01 3.1037222949E-07 6.7829713844E-07 6.1899357610E-04
1.0000000000E+00 -3.9056651480E-05 -8.5402962785E-05 3.2034410304E-04
4 11 12
2.9624057355E-01 -1.1169042692E-01 -1.5108987550E-01 -2.7446210988E+01
8.4996793955E-02 4.1546097711E-02 4.0095127497E-01
7.6006384092E-02 2.6778012803E-02 3.9916258341E-01
3.0534369579E-08 -2.6677454921E-07 -6.7398666011E~08
2.8135642091E+01 2.666666666TE+00 1.0000000000E+01 7.2615639534E-01
.3382545204E-04 -1.1402161632E-11 0.0000000000E+00 0.0000000000E+00
8.3245961545E-05 0.0000000000E+00 3.0077889420E+01 9.4697575186E+02
0.0000000000E+00 0.0000C00000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 6.2831853072E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 ©.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

Appendix B

AUTO Utilities

B.1 AUTO/Python integration

AUTO is a publicly available software for continuation and bifurcation problems in ordinary
differential equations. The earliest version of AUTO was issued in 1980. From then on, it
has evolved, with an X/Motif version AUT094, a parallel version AUT094P, AUTO97(with
HOMCONT), and the C version AUTO2000. See [23, 35, 24, 25].

In order to make the package more powerful and more comprehensive, a new version
AUTO-07p has been developed. This version is built on AUTO97, incorporating the Python
interface, fixing some minor problems in the previous version, and adding some new features
to enhance the utility of the package.

Python [55] is a popular object-oriented language used for both standalone programs and
scripting applications in a variety of domains. It is free, portable, powerful, and remarkably

casy to use.

The Python code is relatively self contained. The compiler is defined in cmds/cmds . make.
This is basically a templated Makefile, used by both the old command language as well as
by the Python code. In this section, we will explain how to combine AUTO97 and the

Python interface.

98

B.1.1 Filename conversion

In AUTO2000, all the filenames follow the ’easy to remember’ convention, namely, all the
bifurcation files start with b.*, solution files start with s.*, constant files start with c.*, and
homoclinic solution files start with .*. In order to be compatible with the Python interface,
we use the same naming convention in AUTO-07p. Table B.1 lists the correspondences of

the naming convention in AUT097 (and previous versions) versus AUTO2000 and AUTO-

07p.
File type AUTO97 AUTO2000
Constant, file r.* c.*
Bifurcation file p.* b.*
Solution file q.* s.*
Homoclinic solution file s.* h.*
Diagnostic file d.* d.*

Table B.1: Naming convention in AUTO97 versus AUT02000 and AUTO-07p

B.1.2 A utility program for filename conversion

Two simple utility Python scripts are provided for filename conversion. One is rename. Dy,
which is used to simply rename the exist filename. Another is replace.py, which is used to
replace each p.* to b.*, each ¢.* to 5.*, each s* to h.* in relevant files. For use, one need to
execute the following:

Correctly load the utility programs, which are located in:

AUTO.DIR/python/python. utilities/

Execute the script, with appropriate arguments. Below is an example:

//in the Makefile, change all the 1. to c. then copy the file to Makefilel

>../replace.py 1. c. Makefile Makefilel

99

For using rename.py, go directly to a folder under which a filename needs to be changed,
and run the script. For example, go to AUTO_DIR/demos/ab/, change the constant file-

name r.ab to c.ab :

//change r.ab -> c.ab, r.ab.1 -> c.ab.1, etc.

>../rename.py

B.2 Python CLUI and linux-based CLUI

AUTO-07p has two parallel CLUIs, namely, the newer python CLUI and the Linux-based

commands in AUTO_DIR/cmds. One can use either CLUI, depending on one’s preference.

B.3 Python scripts for AUTO utilities

AUTO-07p also provide some files whose names end with .auto, which are Python scripts
that can be run directly under the Linux CLUI These python scripts automatically execute
each consecutive run of the selected demo.

To use the Python CLUI for a new equation, change to an empty directory. For an
existing equations-file, change to its directory. Do not activate the CLUI in the directory

AUTO_DIR or in any of its subdirectories. Then type:

>auto

to activate the AUTO-07p CLUI. The screen will show a message which is similar to the

following:

Python 2.4.3 (# 1, Oct 23 2006, 14:19:47)

[GCC 4.1.1 20060525 (Red Hat 4.1.1-1)] on linux2

Type "help”, ”copyright”, ”credits” or "license” for more information.
(AUTOlInteractiveConsole)

AUTO>

100

Then one can type any Python command following the ” AUTO>” prompt.

In the Linux CLUI, instead of running each step separately, one can type:

>auto lrz.auto

to automatically execute each run.
Below is a example, namely, Irz.auto, which computes two symmetric homoclinic orbits

in the Lorenz equations.

print ”\n***Compute stationary solutions***”
ld(e="Irz’ ,c="lrz.1")

run()

sv(’lrz’)

print ”\n***Compute periodic solutions***”
ld(c="Irz.2’ s="Irz’)

run()

ap(’lrz’)

print ”\n***Compute the symmetric periodic solution branch***”
ld{c="Irz.3’ ,s="lrz’)

run()

ap(lrz’)

print ”\n***Clean the directory***”

cl()

The screen output will be of the following form:

Runner configured

£77 ~c -0 1lrz.f -o 1lrz.o

101

177 -0 1lrz.o

-0 lrz.exe /home/rchen/97/1ib/*.o

Starting lrz ...

BR PT TY LAB
1 1t EP 1

1 5 BP 2

1 13 EP 3

BR PT TY
2 42 HB 4
2 45 EP 5
BR PT TY
2 42 HB 6
2 45 EP 7
Total Time

1lrz ... done

Saving fort.7 as b.1lrz ...
Saving fort.8 as s.lrz ...

Saving fort.9 as d.1lrz ...

PAR(1)
0.00000E+00
1.00000E+00
3.16000E+00

PAR(1)
2.47368E+01
3.26008E+01

PAR(1)
2.47368E+01
3.26008E+01

0.300E-01

Starting 1lrz ...

BR PT TY LAB
4 20 8
4 35 EP 9
Total Time

1lrz ... done

Appending fort.7 to b.lrz ...
Appending fort.8 to s.lrz ...

Appending fort.9 to d.lrz ...

PAR(1)

L2-NORM
.00000E+00
.00000E+00
.00000E+00

L2-NORM
.62685E+01
.41635E+01

L2-NORM
.62685E+01
.41635E+01

done
done

done

L2-NORM

U
0.00000E+00
0.00000E+00
0.00000E+00

U
7.95602E+00
9.17980E+00

u(1)
-7.95602E+00
-9.17980E+00

MAXU(1)

MAXU(2)

U(2)
0.00000E+00
0.00000E+00
0.00000E+00

U(2)
7.95602E+00
9.17980E+00

U2
-7.95602E+00
-9.17980E+00

U3
0.00000E+Q0
0.00000E+00
0.00000E+00

u(3)
2.37368E+01
3.16008E+01

U(3)
2.37368E+01
3.16008E+01

MAXU(3)

PERIOD

1.48138E+01 1.23916E+01 1.17081E+01 1.39788E+01 2.27276E+01 1.62929E+00

1.39266E+01 6.29547E-01 1.14802E+01 1.36631E+01 2.16345E+01 5.85401E+02

0.545E+00

Starting 1lrz ...

BR PT TY LAB
6 20 10
6 35 EP 11
Total Time

1rz ... done

Appending fort.7 to b.lrz ...

PAR(1)

done
done

done

L2-NORM

MAXU(1)

MAXU(2)

MAXU(3)

PERIOD

1.48138E+01 1.23916E+01 -4.02246E-02 3.50485E-01 2.27276E+01 1.62929E+00

1.39266E+01 6.29547E-01

0.535E+00

done

102

8.84302E-12 3.26839E-01 2.16345E+01 5.85401E+02

Appending fort.8 to g.lrz ... done

Appending fort.9 to d.lrz ... done

B.4 Activating the GUI in AUTO-07p

There is a Graphical User Interface in AUTO, developed by Xianjun Wang in 1994. It is
not only a tool for creating or editing equations-files and constants-files, but it can also be
used to run AUTO and to manipulate and plot output-files. Nevertheless, the GUI is not
being used much recently. The reason is that, in its source code, in particular, its way to

declare the variable-parameters list, is not supported by current C-compilers.

B.4.1 Updating the source file

Under the folder AUTO.DIR/gui/ , the file auto97.c gets updated. More precisely, the
function Wprintf() has been modified. The updated version of Wprintf() and the previous
version of Wprintf{) are listed below:

Previous:

void Wprintf(va_list)
va_dcl
{
Widget W}
va_list args;
char *format,str[100],s[20];
Arg wargs[1];

XmString xmstr;

int i;
}
Current:
void Wprintf(Widget w, ...)
{

103

va_list args;

char *format,str[100],s[20];
Arg wargs[1];

XmString xmstr;

int ij;

After recompiling the source file, type

>@auto

The GUI appears as Figure B.1.

~The A.--> B reaction

(1]
=
-

SUBROUTINE FUNC{NDIM,U,ICP,PAR, 1JAC,F,DFDU;IFIR)

I R Lw Ul E o R ovt o kol i

“Evaluates the algebraic equations or DDE.right hand side
Input arguments 3

"~ NDIM Dimension of the ODE system

u ' State variables

ICP frray ‘indicating the freg parameter{s)

PAR Equation parameters

O OO O O

- Yalues to be returned 3
' 2 7 ODE right hand side values

I ey

Normally unused:Jacobian arguments 3 1JAC, BFﬁU, DFDP (see-manual}

IMPLICIT DOUBLE PRECISION (A-H,D=2) _
BIMENSION UCNDIM), PARC*), FINDIN); ICP(*)

[

L=U(1)
U2=0(2)

L

Figure B.1: GUI window

104

Appendix C

Packages related to AUTO

Packages that are related to AUTO include CONTENT, DSTool, MATCONT/CL_MATCONT, XPPAUT,
etc. Below we give a brief introduction.

CONTENT [18] is designed to do simulation, continuation, and normal form analysis of
dynamical systems. It supports bifurcation analysis of ODEs, iterated maps, and some
evolution PDEs. Visualization of the solutions is possible in multiple 2D and 3D graphics
windows.

DsTool [31] was created to advance the computation and visualization of dynamical
systems. It can be used for both discrete and continuous systems.

XPPAUT [80] is a tool for solving differential equations, difference equations, delay equa-
tions, functional equations, boundary value problems, and stochastic equations. It incorpo-
rates the AUTO software.

DDE-BIFTOOL [19] is a Matlab package for the numerical bifurcation and stability analysis
of delay differential equations with several fixed discrete and/or state-dependent delays. Pe-
riodic solutions, their Floquet multipliers and connecting orbits are computed as in AUTO,
using piecewise polynomial collocation on adaptively refined meshes.

MATCONT [56] is a MATLAB package for the interactive numerical study of dynam-
ical systems. It is developed in parallel with the command line continuation toolbox
CL_MATCONT. Both MATCONT and CL.MATCONT allow to compute curves of equi-
libria, limit points, Hopf points, limit cycles and bifurcation points of limit cycles. The

algorithms used are very similar to those used in AUTO; however AUTO is significantly

105

faster.
A recent software called 0sci118 [59] uses AUTO, CVODE, and other basic numerical
software (LAPACK/BLAS/MINPACK). The current version runs on Windows, Linux or

Mac. It has a graphical, interactive user interface and can add features and test very easily.

106

