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ABSTRACT
rK-Hist: An R-Tree Based Histogram for
Multi-Dimensional Selectivity Estimation

John Alexander Lopez

Database query engines typically rely upon query size estimators in order to
evaluate the potential cost of alternate query plans. In multi-dimensional database
systems, such as those typically found in large data warehousing environments, these
selectivity estimators often take the form of multi-dimensional histograms. But while
single dimensional histograms have proven to be quite accurate, even in the presence

of data skew, the multi-dimensional variations have generally been far less reliable.

In this thesis, we present a new histogram model that is based upon an r-tree space
partitioning. The localization of the r-tree boxes is in turn controlled by a Hilbert
space filling curve, while a series of efficient area equalization heuristics restructures
the initial boxes to provide improved bucket representation. The proposed histogram

works on an existing multi-processor platform that targets the relational database
model (ROLAP).

Experimental results on real and synthetic data demonstrate significantly improved
estimation accuracy relative to state of the art alternatives, as well as superior

consistency across a variety of record distributions.

iii



ACKNOWLEDGEMENTS

It has been a long trek. As every trek, it was demanding and sometimes exhausting
but at the same time enjoyable, exciting and satisfying. On the walk, I was fortunate
to meet a variety of wonderful people. Some of them have become close at a personal
level as well. This is an attempt to show my appreciation for these people who directly

or indirectly affected the course of this trek.

I am and always will be very grateful to Dr. Todd Eavis for giving me the opportunity
to join the Sidera group and to teach me everything I know about research as a way
of life. Besides explaining to me numerous concepts, sharing his style of thinking and
his scientific interests, being a patient listener, and an outstanding mentor, his words
were a great support when domestic and professional problems came up. I truly feel

blessed to have had him as my supervisor.

I wish to express my sincere gratitude to my ex-manager and close friend Anna
Mallikarjunan, not only for being flexible and understanding regarding my working
hours when she was the lead of our “dream team”, but also for our great discussions,

for introducing me to great literature and writers, and for her words of encouragement.

Many thanks also to all my friends for all the cheer and fun they brought in life, for

supporting me in numerous ways, and never stopped asking: “When are you going
to finish?”.

My close friends Khaled AbdelHay, Ahmad Dhaini, Gerardo Berbeglia, David Sevilla,
David Cueva and Dania El-Khechen contributed towards this effort in ways I find
difficult to describe. All of them with their own inimitable and unique personalities,
helped eliminate drudgery from work and life in general. With some of them, late

night strolls, tea/coffee/beer sessions (and quite a few shawarma plates) followed by

iv



“profound” discussions, preparation of the famous Friday/Saturday parties, reading
club meetings, soccer and hockey game sessions were the activities which helped me

keep going and made life enjoyable.

Finally, I would like to give special thanks to my wife, Angely Jamis, whose patient
love and support enabled me to complete this work. She not only helped me making
some graphs and figures but also stayed at my side and put up with me when the

trek became more strenuous. Gracias Amor.



To Lolita, Luz Alba and Angelyto for being the blessing

they are in my life

vi



Table of Contents

List of Figures

1 Introduction
1.1 Primary Research Contributions . . . . . . .. .. ... ... .. ...

1.2 Review Of Experimental Results. . . . . .. .. ... ... ......
1.3 ALook Ahead . . . . ... . .. . ... . . ...

2 Background

2.1 Imtroduction . . . . . . . ... L
2.2 Data Warehousing and OLAP . . . . ... .. ... .. ... .....
2.2.1 Defining OLAP . . . . . ... ... ... ... .. ... ...,
2.2.2 Defining the Data Warehouse . . . . ... ... .. ... ...
Physical Architectures . . . . . .. ... ... ... ......

Conceptual Models . . . . . . ... ... ... ... ......

Logical Models . . . . ... . ... ... ... ... ...,

Physical Models: Storage Modes . . . . . . . ... ... ....

MOLAP: Multidimensional OLAP . . . . ... ... .. ...

ROLAP: Relational OLAP . . . . . . . ... ... ... ....

HOLAP: Hybrid OLAP . .. .. .. .. ... ... ......

2.2.3 Defining The Data Cube . . . . . .. ... ... ... .....

vii

xi

[ B R

o N o O



2.3 The Sidera Platform . . . . . . . . . . . .o 18

24

2.5

2.3.1 Important Contributions . . . . . . . . ... ... ... .... 19
2.3.2 Multi-Dimensional ROLAP Indexing: RCUBE . . . . . .. .. 20
2.3.3 The Current and Future Status for Sidera . . . .. ... ... 23
Query Optimization . . . . . . . . . . . . .. ... 23
2.4.1 The Query Optimizer . . . . . . .. ... ... .. ... .. .. 23
2.4.2 Selectivity Estimation . . . . . . ... ... 25
Histograms . . . . . . . . . . . . . 26
2.5.1 Introduction . . . . . . . .. ... oo 26
2.5.2 Histogram Definitions . . . . .. .. ... ... ... ..... 26
Motivation . . . . . . . . . . ... 26
Data Distributions . . . . . ... ... . ... 0. 27
Histograms for Database Applications. . . . . . . . ... ... 28
2.5.3 Histogram Taxonomy . . . . . . . . .. .. .. ... ...... 28
Partitionclass . . . . . . .. . .. ..o 28
Source Parameter and Sort Parameter . . .. ... ... ... 29
Partition Constraint . . . . ... ... ... ... .. ..... 29

Value Approximation and Frequency Approximation Within a

Bucket . . . . . .. ..o 30

2.5.4 One-Dimensional Histograms . . . .. ... .. ... ..... 32
Equi-width: Equi-sum(V,S) . .. .. .. ... ... ... ... 32
Equi-depth: Equi-sum(V,F) . .. .. ... .. ... .. .... 32
V-Optimal Histograms . . . . . . ... ... ... ... .... 33
Maxdiff Histograms . . . . . . .. .. ... ... ... ..... 34
Compressed Histograms . . . . .. .. ... ... ... .... 34

2.5.5 Multi-Dimensional Histograms . . . . . ... ... ... .... 34
hTree Histograms . . . . . . .. . ... .. ... ........ 35



mHist Histograms . . . . . ... ... .. ... .. ....... 36

genHist Histograms . . . . . . .. .. ... ... ... ..... 36

Conclusions . . . . . . . . . .. 37

3 rK-Hist: A New Multi-Dimensional Histogram 38
3.1 Imtroduction . . . . .. . . .. ... 38
3.2 Related Work . . . . . .. . . . ... 39
3.3 Motivation . . . . . ... 46
3.4 A New Approach: Tree Indexing/Histogram Partitioning . . . . . . . 48
3.5 r-tree Histograms . . . . . . . . . . ... o 51
3.5.1 Top down construction . . . .. ... .. .. ... ....... 52
3.5.2 Bottom up construction . . . . ... ... ... ... 52

3.5.3 Performance considerations . . . . ... ... ... .. .... 53
3.5.4 A naive r-tree histogram . . . . ... ... ... .. ... ... 54

3.6 The Sliding Window Algorithm . . . .. ... ... ... ....... 56
3.7 The k-Uniformity metric . . . . . .. ... ... .. ... ....... 59
3.8 Review of Research Objectives . . . . . . .. .. .. ... ....... 66
3.9 Conclusions . . . . ... . ... .. 67
4 Evaluation 68
4.1 Imtroduction . . . . . . . . .. L 68
4.2 Our Physical Model . . . . . . ... ... ... .. ... .. ..., . 69
4.3 Experimental Setting . . . . . . .. .. ... ... ... ... 69
44 Query Generator . . . . .. . ... ... 71
45 Actual Test Results . . . . . .. .. .. ... .. ... . ... ..... 73
4.6 Conclusions . . . . . .. .. . .. ... 83

ix



5 Conclusions 84

5.1 Summary . .. ... ... 84
52 Future Work . . . . . . .. 85
5.3 Final Thoughts . . . .. .. ... ... . ... .. ... . ... ... 87
Bibliography 88



List of Figures

2.1
2.2
2.3
24

2.5

2.6

2.7

3.1

3.2

Architecture of a KDD System (Knowledge Discovery in Databases). 9
Physical Data Warehouse Architecture. . . . . . . . .. .. ... ... 11
Star Schema. . . . . . .. ... L 13

An example of a “base cuboid” and two of its aggregations (i.e., subviews
orcubolds). . . . ... 17
The data cube lattice depicts the relationships between all the 2¢
views in a given d-dimensional space. The boundaries of the lattice
correspond to the base cuboid and the “all” node representing the
aggregation of all records —onetuple. . . . . .. ... .. ... ... 18
Hilbert Curve Packing. . . . . . . . o, 21
Striping data across two nodes. Note that every node contains two

blocks with at most 3 recordseach. . . . . . ... .. ... ... ... 22

hTree recursively partitions the data space into half-spaces by using a
different dimension each time. . . . . . . ... ... 0oL 41
(a) The original dataset. (b) Step 1. Estimating marginal distibutions.

(c) Step 2. Calculating differences between adjacent marginal distibutions.
(d) Step 3. Identifying the maximum difference and creating the first
bucket. (e) Step 4. Partitioning of the data space after creating four
mHist buckets. . .. . ... o o 44

xi



3.3

3.4

3.5

3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14

4.1

4.2

4.3

4.4

(a) r-tree partitioning for a maximum node count of four. (b) A H3?
Hilbert curve. . . . . . . . . . 49
Packed r-tree leaf level partitioning for an H3 Hilbert curve. Note the
order of the bucket sequence. . . . . . . ... .o 51
Top down histogram partitioning for o = 200. The 800 r-tree buckets
at Level 3 are coalesced into a sequence of hyper-buckets. . . . . . . . 53
A user query (dashed line) intersecting a series of over-lapping partitions. 55
Use of the the “sliding window” method to decompose hyper-blocks
along thecurve. . . . . . . . . .. 58

Examples of three typical point distributions, each resulting in the

same density measurement. . . . . . . ... ... .. 60
The k-d-tree. . . . . . . .. ... 61
Bucket breakdown by area for three previous buckets. . . . . . . . .. 62
Bucket partitioning for the h'Tree histogram. . . . . . . . ... .. .. 64
Bucket partitioning for the mHist histogram. . . . . . . . . ... ... 64
Bucket partitioning for the genHist histogram. . . . . . ... ... .. 65
k-U based bucket partitioning for the rK-Hist histogram. . . . . . . . 65

Estimation error for 300 bucket histograms for (a) zipf = 0.4 and (b)

zipf = 0.8. . . . 75
Estimation error for 800 bucket histograms for (a) zipf = 0.4 and (b)
zipf =0.8. . . . . 76
Estimation error on real data sets for (a) 1,500 buckets and (b) 2,500
buckets. . . . ... 78

xii



4.5

4.6
4.7

(a) rK-hist versus naive r-tree histogram (b) the relative construction
cost of the four algorithms (logscale on the y-axis). . . ... ... ..
rK-hist scalability for (a) zipf = 0.4 and (b) zipf =0.8. . ... .. ..
rK-hist scalability for the real dataset. . . . .. .. ... ... ....

xiii

82



Chapter 1

Introduction

As database systems have grown in size, so too has the need to efficiently produce
accurate approximations of the underlying data sets. In particular, the estimates of
large data distributions have been utilized in the database context to support both
approximate query answering and selectivity estimation. Very early DBMS platforms
provided such functionality through crude statistical estimates that essentially treated
the tuple space as a single uniformly distributed partition. However, with the intro-
duction of histogram partitioning techniques [44], new tools for effective estimation
emerged.

The majority of the early research focused on partitioning in single dimensions.
For inherently multi-dimensional spaces, the initial approach involved the simple inte-
gration of a series of one-dimensional histograms. However, the underlying attribute
value independence assumption [12] tends to produce extremely poor estimates of
joint data distributions. Consequently, several noteworthy attempts have been made
to produce true multi-dimensional histograms that more accurately reflect the natural
patterns of clustering and skew that occur in such spaces [48, 53, 27]. We note that

the problem of creating histograms for multi-dimensional spaces is quite challenging



since it was shown in [49] that optimal splitting even in two dimensions is NP-hard.

Among the plethora of histograms that have been produced during the last ten
years, three methods in particular have proven over time to be the most efficient
and most widely utilized. hTree was described in [48] and is considered the first
attempt to support multi-dimensional selectivity estimation. Here, the model divides
the d-dimensional space recursively into half spaces by using a boundary value and
a different dimension each time. The dimension and the boundary value change at
the beginning of each iteration. The  buckets built by hTree are non-overlapping d-
dimensional rectangular regions. The mHist histogram attempts to improve upon the
quality of partitioning by recursively dividing the space on the dimensions that are
judged to most benefit from a split (in terms of density) [53]. While both mHist and
the hTree produce “regular” grid patterns and non-overlapping rectangular regions,
the genHist histogram produces irregular bucket patterns by iteratively identifying
high density regions and subsequently permitting bucket overlap [27]. Unfortunately,
it has also been shown to be quite expensive to generate.

Even though the previous methods were shown to produce very accurate ap-
proximations, further research, presented in this thesis, demonstrates that there are
multiple datasets where their estimates are quite poor, generating normalized errors
that range from 20% to 40%, something that makes them inadequate for use in query

optimization.

1.1 Primary Research Contributions

In general, the focus of multi-dimensional methods is the identification of regions

of close to equivalent point density. These hyper-rectangular areas are then divided



into a small number of memory resident buckets. Unlike the single dimensional case,
there is no absolute, locality—preserving order on a multi-dimensional point space, so
each histogram model employs heuristic techniques to identify regions of approximate
uniformity. Regardless of the technique, however, the uniformity measure is effectively
a simple density calculation in which the points within a bucket are assumed to be
evenly distributed. We refer to this as the uniform spread assumption [54].

In fact, density can be a relatively poor measure of point distribution, a problem
that is exacerbated as dimensionality increases. In this thesis, we present instead
a new metric called k-uniformity (kU) that more accurately measures the quality
of tuple distribution. The kU metric is integrated with a partitioning model often
employed in multi-dimensional indexing environments. Specifically, we build upon the
notion of multi-dimensional r-tree partitioning, in which the distribution of blocks is
governed by the Hilbert space filling curve. By “piggy-backing” on top of an existing
multi-dimensional ROLAP indexing model (i.e., RCUBE)[21], we are able to provide
effective selectivity estimation in conjunction with powerful indexing functionality in
multi-dimensional settings.

The kU metric is integrated with the indexing framework using a mechanism
known as the Sliding Window Algorithm (SWA). In summary, SWA builds an ini-
tial set of buckets by using a data structure we call the “naive” r-tree histogram.
The construction method generates buckets by exploiting a Hilbert sort of the data,
working upward from the leaf level of the r-tree index. The leaf level of the Hilbert
packed r-tree provides us with a set of 3 rectangular bounding boxes that each enclose
regions of spatially related points. We integrate these § boxes into « hyper-buckets

that constitute the initial histogram on which the final solution is based.



Because the default ordering of the Hilbert curve may produce less than optimal
bucket partitions, we extend the basic technique with an optimization component. We
use a quality measure (the kU metric) to identify a percentage of the total number
of buckets with the worst distributions. Then, the algorithm scans each “poorly
distributed” hyper-bucket by using a heuristic method that seeks to re-partition it
to produce a more uniform point distribution. The final result of SWA is a multi-
dimensional histogram containing buckets with high uniformity and greatly reduced
“dead space”.

Finally, we note that the SWA was built on top of an existing multi-processor
platform that targets the relational database model (ROLAP). The platform was
presented, implemented and tested in [21] and consitutes the architectural foundation

for the present thesis.

1.2 Review Of Experimental Results

Experimental results demonstrate that our new r-tree/kU histogram, rK-Hist, pro-
duces estimation errors that significantly improve upon the current state of the art.
In fact, in skewed spaces, we see estimation errors as low as 2%-7% in two to four di-
mensions. Moreover, results are consistently impressive as dimension count increases,
suggesting that our new methods have broader applicability than existing techniques.

Results on the effect of the storage space on histogram accuracy demonstrate the
excellent scalability of our approach. As the number of buckets increases, the average

absolute error decreases almost in the same proportion.
Finally, experimental results on real data sets demonstrate the applicability of our

new r-tree/kU histogram, rK-Hist, to real-life problems.



1.3 A Look Ahead

The thesis is organized as follows. Chapter 2 provides an overview of Data warehous-
ing and Online Analytical Processing, including such things as fundamental OLAP
operations and server architectures. The chapter also reviews the general field of
database histograms and describes a number of the algorithms that have been de-
signed for their efficient construction.

The succeeding chapters present the core contributions of this thesis, including
the proposed algorithms, the implementation issues, and the experimental results.
Chapter 3 focuses on the construction of the different multi-dimensional histograms
that have given rise to rK-Hist and describes the algorithms and data structures used
for their implementation. The experimental results and their analysis are discussed
in Chapter 4. Finally, in Chapter 5, we present the conclusions and references to

possible future work.



Chapter 2

Background

2.1 Introduction

Data warehousing and on-line analytical processing (OLAP) systems are progressively
playing a more vital role in the growth and success of corporate organizations [25].
Today, a large number of commercial products and services are available, not to men-
tion the multiple developments that are underway in both academia and the open
source community. In this chapter, we review the fundamental principles and termi-
nology relevant to the general OLAP domain, as well as providing a more detailed
examination of the field of database histograms.

The chapter is organized as follows. In Section 2.2, we provide an overview
of Data Warehousing and on-line analytical processing or OLAP, with an emphasis
on their new requirements. In section 2.3, we present an introduction to Parallel
OLAP and discuss recent developments in this field. Section 2.4 discusses query
optimization and presents some approaches that have proven beneficial in different
commercial DBMS. In section 2.5, we formally define the histogram, discuss one-
dimensional and multi-dimensional implementations and provide a brief overview of

a taxonomy that captures all previously proposed types of histograms and defines a



mechanism to derive new classes by combining elements in effective ways.

2.2 Data Warehousing and OLAP

Both data warehousing and OLAP are components of a larger model known as Deci-
sion Support Systems (DSS). In short, DSS are a collection of interactive computer-
based applications that support decision-making activities. Ultimately, they empower
decision makers with the ability to manipulate and analyze efficiently data stored in
large repositories in order to solve problems and make effective decisions. These kinds
of applications have become so essential and common among the companies striv-
ing for competitive edge that even the Transaction Processing Performance Council
(TPC) [15], a non-profit corporation founded to define transaction processing and
database benchmarks, has created a specific benchmark, known as TPC-H, intended
to measure performance by simulating a decision support application.

Various software companies have implemented DSS systems as extensions of the
functionality of a number of existing Database Management Systems (DBMS). This
is one of the reasons why a large number of dissimilar DSS implementations can be
found on the market. As a way to differentiate these implementations according to
their functionality, level of detail, and depth of the analysis, we describe the three

primary DSS models, including OLAP, which is the focus of our current research [21].

e Information Processing. This is considered the most superficial of all of the
three models. Here, the main goal is to retrieve basic information with little
analysis. Raw data, tabular formats, sorting operations, use of simple aggregate
functions and basic analysis are the features that characterize the queries and

reports at this level.



e OLAP. The basic reporting capabilities offered by Information Processing sys-
tems are extended by OLAP. Multidimensional analysis, new operations such
as drill-down, roll-up and pivot, enhanced forms of visualization, aggregated
data with more complex operations such as average, standard deviations and
ranking, are common features that make these systems a more appealing and

useful tool to decision makers.

e Data Mining. Data Mining is often considered the final stage in the search for
knowledge on databases. As the term implies, the idea is to mine or excavate
large repositories of data with the hope of finding precious “gems” (i.e., knowl-
edge). This knowledge comes in the form of unknown patterns that are not easily
extracted by using OLAP techniques alone. Some of the widely used techniques
include classification (categorization of novel items), association (identification
of patterns and trends), and cluster analysis (identification of data groupings via
multi-attribute similarity). It is worth mentioning that Data Mining is part of
a broader process called Knowledge Discovery in Databases or KDD. Figure 2.1

presents the components of a KDD system.

2.2.1 Defining OLAP

Most large companies have accumulated huge repositories of data that can be used
to facilitate the extraction of information and knowledge in the form of patterns and
trends. This extraction and analysis is referred to as OLAP (On-Line Analytical

Processing). In a sense, OLAP can be seen as a technique of structuring data in

order to allow multi-dimensional analysis.

It is important to note that OLAP places some different requirements on database
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technology compared to traditional on-line transaction processing applications or
OLTP. In contrast to OLTP systems, in which transactions frequently access few
records, OLAP systems require the examination of large portions of data. The rea-
son for this is that the queries that are resolved against the database often require
the use of aggregate functions (such as SUM, AVG, COUNT, COUNT (*), MAX,
and MIN). One particularly important feature of OLAP systems is that queries can
be extremely time consuming given the amount of data they have to retrieve and
analyze.

We can also describe OLAP in terms of the following five core operations and the
functionality they offer. We note that these operations are often associated with a

data model known as the cube, the details of which are presented in section 2.2.3

e Roll-up. This operation aggregates data from a lower or detailed level to
a higher level summary. For instance, using the “date” dimension we could

aggregate “quarter total sales” from “monthly total sales”.

e Drill Down. This is roll-up’s inverse operation. It shows the finer grain of a

given dimension. For example, using the “location” dimension we can go from

9



“country total sales” to “state total sales”.

e Slice. Here, the idea is to extract a “plane” of the original cube corresponding
g

to a single attribute of a specific dimension. No aggregation is performed.

e Dice. The slice is an operation quite similar to the slice. It extracts a subset
of data from the original cube by performing a selection on more than one

dimension.
e Pivot. This operation reorients the cube allowing different views of the data.

2.2.2 Defining the Data Warehouse

In [35], Bill Inmon, considered the father of the contemporary data warehouse, defined
the data warehouse as “a subject-oriented, integrated, time-variant and non-volatile
collection of data in support of management’s decision making process’. In other
words, a data warehouse can be seen as a huge data repository that holds an organi-
zation’s historical data in tailored schemas in order to support the decision-making
process. The analysis of trends and the discovery of patterns are two of the major

advantages achieved through the use of this technology.
Physical Architectures

The data warehouse architecture is a multi-tier system consisting of several inter-
connected layers. In Figure 2.2, we can see the three main layers: Data warehouse,
OLAP server, and client applications. The data warehouse itself is loaded using a
process known as Extract, Transform, and Load. This ETL phase essentially pulls
data from a series of operational sources, then connects and harmonizes the indepen-

dent input streams before loading the final consistent data into the data warehouse.

10
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Figure 2.2: Physical Data Warehouse Architecture.

After the ETL process is applied to the different OLTP data sources, the input of
the data warehouse (i.e., clean, correct and consistent data) is obtained. Then, the
OLAP server provides the tools to collect, manage, process and present multidimen-
sional data for analysis. In fact, depending upon the type of data structures used
by the server and the storage mode chosen to hold data and pre-aggregations, there
are actually three different processing models: ROLAP, MOLAP or HOLAP (dis-
cussed in more detail later). Finally, the last layer represents the various applications
(i.e., querying, reporting and analysis tools) which interact with the OLAP server to
provide the client with a graphical view of the data.

The data warehouse physical architecture can be modeled as centralized, federated
or tiered. The use of any model depends on the organization’s objectives and motiva-
tions. The centralized model is a single physical warchouse where all the information
is stored. Users query the data warehouse directly. This model is by far the simplest
architecture to design and implement.

The federated model is virtually represented as a central data warehouse, yet it is

11



physically distributed in multiple partitions - small data warehouses - depending on
the type of operation or business (e.g., financing, manufacturing) or on the physical
locations of the organization (e.g., by city or state). Users have the impression that
they query only one “central” data warehouse; however, they are actually querying
one of the many warehouses or some combination of them at the same time.

The tiered model is a combination of both centralized and federated models. It is
composed of a centralized physical data warehouse containing all the detail and one
or more layers of local data marts. The local data marts extract the data from the
central data warehouse and store it as aggregated or sumarized information. This
approach generally provides better performance — at the cost of greater complexity

— due to the distribution and aggregation techniques it implements.
Conceptual Models

A conceptual data model describes the semantics of an organization by exposing the
concepts or entities that are relevant to the system, and the associations or relation-
ships between those concepts. In practice, the construction of this model consumes
a considerable amount of time and relies heavily on user interaction. A concep-
tual model is vital for the success of the data warehouse implementation because it
provides a general overview of the organization and delivers the insight needed to

understand the data requirements.
Logical Models

At the core of OLAP and data warehouse applications are two specialized schemas
that make multi-dimensional analysis possible by using relational database models

that relax the rules of data normalization presented by E. Codd in [13]. These logical

12
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Figure 2.3: Star Schema.
representations are known as Star and Snowflake schemas.

e Star Schema. The star schema is the most common representation used to
build up a data warehouse. The name is derived from its star shape. It consists
of a central table called the fact table that is in turn connected to multiple
dimenstion tables. The dimension tables are denormalized in the sense that they
maximize query performance by accepting a certain degree of data redundancy.
The fact table usually models a business process and is made up of a composite
primary key — containing the keys of each of the associated dimension tables
— and all the numeric measurements or facts. Figure 2.3 presents an example

of this type of representation.

e Snowflake Schema. The snowflake schema can be seen as a variation of a
star schema. This representation is composed of a central fact table that is
connected to multiple normalized dimension tables. These dimension tables are
in turn connected to additional tables that provide further information. For
instance, a Product dimension table in a star schema might be normalized into

a Products table, a Category table, and a Vendor table.
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Physical Models: Storage Modes

In large-scale data warehouses, where the design of OLAP cubes is critical to provide
maximum performance, it is crucial to make decisions about the storage mode and the

level of aggregation. In the OLAP context there are three primary storage models:

MOLAP, ROLAP and HOLAP [9].
MOLAP: Multidimensional OLAP

MOLAP is the most commercially successful data model for online analytical pro-
cessing. It stores the data (i.e., base data and aggregations), in optimized multi-
dimensional arrays. The arrays represent all possible combinations of data that can
be created from the set of dimensions. Each possible value will be held in a cell
that can be accessed directly (i.e., natural indexing). For this reason, MOLAP is

considered the solution with the fastest response time on OLAP queries.
Advantages

e Fast query performance due to the natural indexing along each axis provided

by the array model.

e Very compact for low dimension data sets.

Disadvantages

e The computing of the cuboids (i.e., aggregated data) can be time consuming

especially when there is a huge amount of data.

e When dimensions with high cardinality exist, scalability becomes an issue.

When using an array structure, we require a full materialization of the array.
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Therefore, the cube has to represent all the cells in the space even if a value
doesn’t exist. This issue has been partially addressed by using sparse array

compression techniques.

e Changes on the schema require rebuilding the complete array structure.

ROLAP: Relational OLAP

ROLAP is a form of online analytical processing that stores the data (i.e., base data
and aggregations), in relational structures. Since the components of this architecture
are conventional database tables, we can use basic SQL statements to retrieve the
data and to perform any additional operation required by the end users. All the
operations required to generate the sub-views can also be carried out by traditional
RDBMS. When compared to MOLAP, this type of storage engine offers more scalable

solutions since it only stores existing values (i.e., ignoring empty cells).

Advantages

e Since the data is stored in a standard relational database, it can be queried by

any SQL reporting tool, not necessarily a special purpose OLAP tool.

e More scalable when handling huge amounts of data because it only stores ex-
isting values.

Disadvantages

e Explicit indexing is required on the tables to find the required records.

e Slow performance compared to MOLAP.

e It is limited by SQL capabilities.
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HOLAP: Hybrid OLAP

HOLAP is a combination of both ROLAP and MOLAP storage modes. It allows the
distribution of data and aggregations on ROLAP and MOLAP structures (i.e., some
tables are stored in MOLAP form while others are stored in ROLAP).

2.2.3 Defining The Data Cube

A data cube can be seen as a multi-dimensional construct that allows us to see the
data contained in the data warehouse from different perspectives. In this section, we
present the basic terminology that will be used throughout the thesis to describe the
cube structure.

We begin by noting that an OLAP environment consists of a group of dimensions.
A dimension is the categorization of some element in an organization with which
we can associate performance. For instance, you can track your sales data against
employee, product or customer in a period of time. Dimensions can also be described
as collections of attributes, which are bound to one or more columns in a table or
view. There are two types of attributes. Feature or regular attributes represent the
concepts by which you want to classify/group your data. Some examples would be
customer id, product id and store code. Measures attributes, on the other hand,
are the calculated values associated with the elements represented by the regular
dimensions. Some examples include total dollar sales, quantity sold, sku’s on-hand
and cost.

A d-dimensional data warehouse is associated with 2¢ views (sometimes referred

to as the view Power Set). In OLAP terminology, views are also known as cuboids
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Figure 2.4: An example of a “base cuboid” and two of its aggregations (i.e., subviews
or cuboids).

or group-bys. Each view or cuboid is the combination (group-by) of a subset of di-
mensions and represents the aggregation of all tuples on those dimensions. Figure 2.4
presents a base cuboid and two sub-cubes at different levels of granularity. We say
that the view “A” is of coarser granularity than the view “AB” because the former
represents a higher level of aggregation.

Given the previous definitions, we will continue to describe a data cube as a
multi-dimensional construct composed of 2¢ views that includes the base cuboid —
the finest granularity view containing the full complement of d dimensions — and all
the possible aggregations along one or more of the d dimensions. Figure 2.5 illustrates
a lattice, a modeling structure frequently used to represent the relationship between
the 2¢ cuboids [63, 21]. Although the term “cube” comes from the three-dimensioned
geometric object, OLAP cubes can have 10 or more dimensions.

Until now, we have considered the data cube as a conceptual model. However,
the data cube is also a physical construct that is stored either in MOLAP or ROLAP
structures according to the selected design. Regardless the type of storage mode

chosen, the cube structure is drawn from a Star Schema similar to the one presented
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Figure 2.5: The data cube lattice depicts the relationships between all the 2¢ views
in a given d-dimensional space. The boundaries of the lattice correspond to the base
cuboid and the “all” node representing the aggregation of all records — one tuple.

in figure 2.3 and described in Section 2.2.2.

2.3 The Sidera Platform

This thesis was conceived as part of a larger data warehousing project called Sidera, a
project that explores the design and development of parallel OLAP server technology.
Sidera is closely associated with cgmLab [7], a joint effort between Carleton Univer-
sity (Ottawa), Concordia University (Montreal), Dalhousie University (Halifax), and
Griffith University (Brisbane). In short, the cgmLab is a distributed research lab
which focuses on the development of parallel applications. They pursue research
projects that explore the application of parallel computing to data and computation-

ally intensive problems.

One of the most recent research projects undertaken by the group has been the
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cgmCUBE project, a pioneering multi-year effort to design and implement a multi-
processor platform for data cube generation that targets ROLAP environments. Pro-
fessor Todd Eavis is co-investigator in this effort and his work has grown to be the
framework on which a set of proposed algorithms and techniques, including ours, have

been built.

2.3.1 Important Contributions

Eavis’ work [21, 17, 11, 10, 19, 18] has been focused on the construction, maintenance,
and indexing of data cubes. Since this work represents the foundation of the design
and implementation of our algorithms, we will briefly present some of the research

that is relevant to the present thesis.

e Parallel Data Cube Computation. Multiple algorithms have been proposed
and implemented for the parallelization of the data cube. The most important
achievement in this area has been the introduction of a general framework by
which a number of existing sequential algorithms were implemented in a fully
distributed environment. The novel approach employs a sophisticated model
to partition the workload in advance allowing view construction to be fully

localized.

In addition to the algorithmic contributions, extensive evaluation and profiling
has been performed. Sorting optimizations (pointer comparisons, exploitation
of linear time Counting Sorts, etc.), elimination of redundant data copying,
and a rigorously developed Parallel Cost Model, led to an order of magnitude

performance improvement in the core system.

e Parallel Partial Cubes. The data cube operator supports the construction of 2¢
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individual views (where “d” is the number of dimensions or attributes). The
exponential growth in the number of sub-views makes this operator impractical
in high-dimensional spaces. As a result, and in order to cope with this prob-
lem, a suite of algorithms for partial cube construction has been proposed and
implemented. Based upon a greedy model, the algorithms consider various com-
putational trade-offs in order to identify an efficient model for the generation

of the selected set.

Parallel Multi-dimensional Indexing. A parallel indexing model based on R-
trees was proposed and implemented. The new technique consists of a combi-
nation of Hilbert-curve ordering and round robin disk striping for data parti-
tioning. Furthermore, a distributed query engine was presented which includes
the implementation of distributed query resolution mechanisms for complete

and partial cubes.

Given that our focus is on the design and construction of a multi-dimensional

histogram for selectivity estimation, we regard the RCUBFE indexing model as the

major contribution, indispensable to the success of our proposed technique.

2.3.2 Multi-Dimensional ROLAP Indexing: RCUBE

RCUBE is a distributed multi-dimensional ROLAP indexing scheme which has proven

to be efficient for spatial searches in high dimensions and scalable in terms of data

sizes, dimensions and number of processors.

The RCUBE indexing scheme makes use of local partial R-tree indexes built on

each processor to resolve a portion of the submitted query. A similar approach was

used in Master-Client R-trees [57]. However, unlike the Master-Client technique, the
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Figure 2.6: Hilbert Curve Packing.

solution proposed in [18] by Eavis et al. does not include a global R-tree on the
front-end. Instead, RCUBE uses short messages to pass the queries directly to each
processor in the cluster, ensuring that intermediate results will remain distributed
and available for further processing.

A very important difference between RCUBE and previous methods [28, 55] is
that RCUBE applies a combination of Hilbert-curve sort ordering and round robin
disk striping for data partitioning. Hilbert-curve orderings have been shown to be
an effective tool for ordering data such that items that are close to each other in
the original space (i.e., multi-dimensional space), are likely to be placed close to each
other in the sorted order (i.e., linear space [22, 55]). The use of Hilbert-based ordering
makes this technique appropriate for answering arbitrary range queries. Figure 2.6
illustrates a typical case of Hilbert packing. Note that each rectangle represents a
single, physical disk block.

In addition to the application of this sorting approach (i.e., Hilbert sorting), for
the first time introduced as part of a ROLAP indexing method, RCUBE implements a

striping solution in order to balance the retrieval times across all available processors.
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Figure 2.7: Striping data across two nodes. Note that every node contains two blocks
with at most 3 records each.

Here, the idea is to stripe the Hilbert-curve ordered data in a round robin fashion
such that successive records are sent to successive processors and then create local
packed R-trees from the striped data. Figure 2.7 shows the effect of striping the
original space across two processors.

In summary, there are a number of properties that make this method an ideal

candidate for high-performance ROLAP environments:

e Jow communication volume.
e fully adapted to external memory (i.e., disks).

e incrementally maintainable.

no shared disk required.

scalable in terms of data sizes, dimensions, and number of processors.
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2.3.3 The Current and Future Status for Sidera

In [21], Eavis established the foundation for the construction of a Parallel ROLAP
Server, defining the starting point and creating the framework on which future work
would be based.

Several components have been and are being developed in order to enlarge the

original functionality. Some of the ongoing and conducted work includes:
e A Hilbert Space Compression Framework[16].
o A Framework for the Manipulation of OLAP Hierarchies[61].
e OLAP Caching.

e Partial Cube Generation.
2.4 Query Optimization

Every time a query is submitted to the database, the database management system
(DBMS) has to determine the most efficient way to execute it. This task is per-
formed by a component known as the query optimizer. Query optimization, despite
its importance, has received little attention and other than the RCUBE, discussed in
Section 2.3.2, no additional research had been conducted aiming to the improvement
of the original query engine. This thesis investigates such an opportunity, with a

particular emphasis upon selectivity estimation.

2.4.1 The Query Optimizer

In short, the job of the query optimizer is to produce a set of alternative query plans

and then to choose what it considers the best option. A query plan is represented
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by a set of coordinated execution steps. All plans are equivalent in terms of their
final output but vary in their cost (i.e., the consumed resources such as CPU time,
I/O cost, memory or a combination of these). Keep in mind that the alternative
chosen by the optimizer might not be the optimal solution. This is because, given
the complexity of the actual databases in terms of the number of logical/physical
operators used to generate query plans and the numerous combinations that can
be produced for a given query, the selection of “the best solution” could be more
expensive (time consuming) than the time the query takes to execute. As Kalen
Delaney states in [20]: “The lowest estimated cost is not simply the lowest resource
cost; the query optimizer chooses the plan that most quickly returns results to the user
with a reasonable cost in resources.”

There are two different approaches that have typically been used for the creation of
query plans and the selection of the best alternative: rule-based (RBO) and cost-based
(CBO) optimization[14]. The former chooses an execution plan based on the access
paths available and a ranking of those access paths. It is an out-dated optimizer mode
and most of the commercial vendors that used to work with this type of optimization
have stopped supporting it. On the other hand, the latter, CBO, determines which
execution plan is most efficient by considering available access paths and analyzing
information based on statistics collected for the objects accessed by the issued query.

Finally, query optimization can also be defined as a search problem that in order
to be solved requires a space of query plans, a cost estimation technique and an

enumeration algorithm. In [8], Chaudhuri presents a description of these components,

as follows.

e A space of plans (search space). The search space consists of a set of low-cost
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plans whose construction depends on the set of available algebraic transforma-

tions and physical operators.

e A cost estimation technique. Here, the objective is to assign an estimated cost
to each plan in the search space. This cost represents an estimation of the

resources needed for the execution of the plan.

e An enumeration algorithm. This algorithm is responsible for choosing an inex-

pensive query execution plan by exploring the search space.

2.4.2 Selectivity Estimation

As we mentioned before, a query plan consists of a set of coordinated execution steps.
Each execution step represents an operation that is carried out on a set of rows. This
set of rows or data stream is known as a relation. The size of a relation represents
perhaps the most important estimate calculated by the optimizer since it directly
matches the number of disk blocks that have to be retrieved in order to answer a
query. The more blocks the system retrieves the higher the cost of a query plan.
Note that even though the sizes of the initial relations are known, the sizes of the
intermediate or final relations are unknown.

The problem of estimating the size of a relation is known as selectivity estimation.
Selectivity estimates are of great importance in query optimization because the opti-
mizer uses the estimates to select appropriate access paths and to determine efficient
join orders. This is a complex problem that requires the use of statistical information.
Statistics refers to the collection and organization of numerical data that need to be
kept in order to make generalizations. Some statistical data kept by different systems

includes the number of rows per object (table or index), the number of physical pages
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used per object and the data distribution on certain columns. Since many DBMS
systems use histograms to hold the information that is required to estimate the

selectivity of a relation, this will be the subject of our next section.

2.5 Histograms

2.5.1 Introduction

Merriam Webster on-line’s dictionary defines a histogram as “a representation of a
frequency distribution by means of rectangles whose widths represent class intervals
and whose areas are proportional to the corresponding frequencies”. Despite this
definition, histograms have been proven useful even when disassociated from their
usual visual representation and treated as purely mathematical objects that capture
the distribution of a data set [37]. In this chapter, we present an introduction to
histograms and discuss some of the topics that have been of interest throughout
much of the research work done so far. We also show techniques to partition data
distributions, indicate what data to store for each bucket, and present how to estimate

an answer using the histograms.

2.5.2 Histogram Definitions

In this section, we present some definitions and terminology that will be useful
throughout the reading of this thesis. This material is based upon the work first

presented in [54, 37].
Motivation

In Section 2.4.1, we talked about the importance of statistical data in the decision-

making process of a query optimizer. Data distributions are perhaps the most useful
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statistical data a query optimizer can use in order to generate an optimal execution
plan. Even though keeping these distributions is a great advantage for any database,
the size of modern OLAP databases makes this large amount of data impractical to
use for estimates. Histograms emerged as an approximation mechanism aimed at
addressing this limitation.

Histograms have a long history of use for selectivity estimation within query opti-
mization and more recently for query answering approximation [36, 44, 52, 38, 40, 54].
As a selectivity estimator mechanism, histograms are most frequently used to deter-
mine the utility of specific physical operators (e.g., access paths (indexes)) and to
determine join orders. Although there are other techniques that can be used to ap-
proximate the selectivity of a query such as wavelets [64], table sampling [30], and
discrete cosine transform[46), none of them has proven to be as efficient as histograms
in terms of accuracy and resource consumption [2, 31].

Histograms have also been proposed as a mechanism for answering queries approx-
imately. Here, they come into play as a way to reduce query response times when
the precise answer is not necessary or early feedback is helpful. Our focus throughout

this thesis will be on range query selectivity estimation.
Data Distributions

Consider a relation R with n attributes X, (z = 1..n). The domain D, of X, is the
set of all possible values of X,. The value set V, is the set of values of X, that are
actually present in R. Let V, = v,(k) : 1 < k < D,, where v,(k) < v,(j) when k < j.
The spread s,(k) of v,(k) is defined as s,(k) = v,(k+1) - v,(k), for 1 < k < D,. (The
spread of the last value in D, is 1, i.e., s,(D,) = 1.) The frequency f.(k) of v (k) is

the number of tuples t € R with t.X, = v,(k). The area a,(k) of v,(k) is defined as
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a,(k) = fi(k) x 8,(k) .The data distribution of X, is the set of pairs T' = (v,(1), f,(1)),
(v(1), £i(1)), - - (vl D), £ D))

Histograms for Database Applications

A classical representation of a histogram in terms of database environments was pro-
vided by Viswanath Poosala et al. when the authors pointed out: ”A histogram on
attribute X is constructed by partitioning the data distribution 7 into 8 (> 1) mutu-
ally disjoint subsets called buckets and approximating the frequencies and values in
each bucket in some common fashion” [54]. In the same paper, the authors provided
a taxonomy that captures all previously proposed types of histograms and defines a
mechanism to derive new classes by combining elements in effective ways. Accord-
ing to this taxonomy, histograms are characterized by the following four orthogonal

properties: partition class, partition constraint, sort parameter and source parameter.

2.5.3 Histogram Taxonomy

In this section, we discuss the available choices to instantiate the histogram properties

mentioned in 2.5.2.
Partition class

This property specifies any constraint on the number of elements that can be as-
signed to a bucket. There are two classes of great importance: serial — which places
no restrictions and end-biased — which requires that all but one of its buckets are

singleton (i.e., they contain a single element of the data distribution).
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Source Parameter and Sort Parameter

The sort parameter is calculated for each element in the data distribution and its value
is derived from each attribute value and frequency. Some of the sort parameters that
have been discussed in detail in the literature are attribute value (V), frequency (F)
and area (A). Histogram buckets might be seen as a group of elements of the data
distribution that are contiguous in the order of the sorted parameter.

On the other hand, the source parameter identifies the property of the data dis-
tribution that is the most critical and is used along with the partition class, in order

to determine unique partitions. The most useful source parameters are spread (),

frequency (F) and area (A).
Partition Constraint

This property can be defined as a mathematical constraint on the source parameter
and is used as a mechanism to distinguish a histogram within its partition class.
Equi-sum, v-optimal, mazdiff and compressed are the most commonly used partition

constraints and will be further defined below.

e Equi-sum. In this kind of histograms the sum of the source values in each
bucket is approximately the same. If we have 3 buckets the sum of the source
values in each bucket will be approximately equal to 1/8 times the sum of all
the source values in the histogram. The two first histograms proposed in the lit-

erature, equi-width[44] and equi-depth[52], are part of this partition constraint.

e V-optimal Histograms. This constraint partitions the data distribution so
that the variance of source-parameter values is minimized within each bucket.

In other words, the error in the approximation which is equal to Zle p;V; is
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minimized, where p; is the number of entries in bucket b; and V; is the variance

of the source values in the same bucket [38, 54].

V-optimal has been shown to be the most effective constraint for several se-
lectivity estimation problems. However, its most significant downfall is the
construction cost which is exponential in the number of source-parameter val-
ues. In [40], Jagadish et al. made a key contribution in this direction. They
present a dynamic-programming based algorithm that computes optimal bucket
boundaries in time that is quadratic in the number of source-parameter values

and linear in the number of buckets.

e Maxdiff Histograms. As with v-optimal, the goal of this kind of histograms
is to avoid grouping together in the same bucket different source-parameter
values. Maxdiff tries to achieve this goal by sorting the data in source parameter
order and placing boundaries between adjacent source-parameter values whose

difference is among the largest (one of the -1 largest diferences).

e Compressed Histograms. In a compressed histogram, singleton buckets are
created to hold the largest source values. The rest of the values are partitioned
as in an equi-sum histogram (e.g., equi-depth). This partition constraint can
be considered an improvement over equi-depth since it gets exact information
on largest values. Nevertheless, it has been proven less accurate than v-optimal

and maxdiff.
Value Approximation and Frequency Approximation Within a Bucket

When it comes to (a) how to use the information available within each bucket in order

to estimate answers for user queries and (b) what data to store for each bucket, a
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key question concerns the kind of assumptions histograms make regarding value and
frequency. These assumptions entail important design decisions since they implicitly
define a balance between the number of buckets, the amount of information kept in

each bucket, and any constraint regarding the total available space for a histogram.

e Value Approximation. Different approaches have been proposed in the liter-
ature for approximating the set of attribute values within a bucket. The most
simple is the continuous value assumption, where the least amount of informa-
tion is maintained (just the lowest and highest value in each bucket). In this
assumption, all possible values in the domain that are in the range of the bucket
(i.e., between the lowest value and highest value), are assumed to be present. If
the domain is an uncountably infinite set, interpolation has to be used in order

to estimate the contribution of a bucket to a query result.

In [54], Poosala et al. present a more effective approach called uniform spread
assumption. Under this assumption, attribute values are assumed to be placed
at equal intervals between the boundaries of each bucket (i.e., between the
lowest and highest values) — average spread. Unlike the continuous value as-
sumption, the number of attribute values assumed is not given by the domain,
but by the number of distinct attribute values inside the bucket. Therefore, this
assumption requires the storage of the lowest and highest values along with the

number of distinct attribute values in the bucket.

e Frequency Approximation. To date, almost all effort at approximating the
frequency within a bucket has been concentrated on the uniform distribution
assumption. Simply put, this assumption suggests that the frequencies of all

elements held by each bucket are the same and equal to the average of the actual
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frequencies. Among the few exceptions are a linear spline-based approximation
[43] and a 4-level tree index proposal that uses 32-bit information for each bucket

for storing approximated cumulative frequencies [6].

2.5.4 One-Dimensional Histograms

Several different histograms have been proposed in the literature. In this section we
present some well-known histograms that have been proven to be effective. Each of
these will be identified by its partition class, partition constraint, sort parameter and
source parameter by using the following notation presented in [54]: p(s,u), where p
denotes the partition constraint, s sort parameter and u source parameter. The most
common way to differentiate one partition class from another is to add an identifier
beside the name of the partition constraint. For instance, while v-optimal alludes to

a serial class, v-optimal-end-biased denotes the end-biased class.
Equi-width: Equi-sum(V,S)

Equi-width histograms divide the value set into ranges of equal length. That means,
the sum of the source-parameter (i.e., spreads) in each bucket are equal to 1/ times
the maximum minus the minimum value that appears in the set value V. This kind
of histograms represent an improvement over the trivial histogram — a single bucket

histogram that is essentially equivalent to the uniform distribution assumption.
Equi-depth: Equi-sum(V,F)

The main goal of this kind of histogram, also known as equi-height, is to select buckets
with (roughly) an equal number of tuples. In terms of the taxonomy, these are

presented as equi-sum(V,F).
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Equi-depth histograms are constructed by first sorting the data on V and taking
B-1 equally-spaced splits. These -1 bucket boundaries or delimiters are known as
quantiles. To carry out the construction of these quantiles some techniques have been
proposed either to compute the exact values or to compute approximations (e.g., the

P2 algorithm [41] and random sampling algorithms [48, 52]).
V-Optimal Histograms

As mentioned in section 2.5.3, v-optimal histograms partition the data distribution
such that the variance of source-parameter values within each bucket is minimized.
Numerous source and sort parameters have been proposed in the literature. Among
them the most used are attribute value (V), frequency (F) and area (A).

Among all possible combinations, V-Optimal(V,F) and V-Optimal(V,A) have
proven to be the most effective implementations. They group contiguous attribute
values while minimizing the variances in frequencies and areas respectively. The at-
tribute value as sort parameter has turned out to be a good approximation of the
value domain, while the frequency and the area as source parameters ensure that
skew in both frequency and value are considered when defining the boundaries of
each bucket.

The main drawback of this kind of histogram is the exponential construction cost.
An alternative to the exponential solution is to implement end-biased histograms in-
stead of serial class histograms. V-Optimal-end-biased histograms have demonstrated
themselves to be less expensive than the serial version. Nevertheless, they are also

less accurate.

33



Maxdiff Histograms

In section 2.5.3, we presented the partition class that forms the foundation of Maxdift
histograms. The decision of using different sort and source parameters is made in
terms of the same analysis carried out for the v-optimal histograms (e.g., Maxdiff(V,F)
and Maxdiff(V,A)). The experiments in [54] showed Maxdiff(V,A) as the histogram
of choice over all data distributions. That is because Maxdiff(V,A) outperformed the

alternatives in both issues, construction time and generated error.
Compressed Histograms

As mentioned in section 2.5.3, these histograms place the attribute values with
the largest source parameter values (frequency or area) in singleton buckets. The
rest of the values are partitioned as in an equi-sum histogram. When data follows
highly skewed distributions, these histograms appear to be a good alternative since
they achieve great accuracy, keeping the highest values of the source-parameter (e.g.,

frequencies or areas) in independent buckets.

2.5.5 Multi-Dimensional Histograms

When multidimensional spaces are our object of analysis, different kinds of issues
come into play. Partition constraints, as well as sort and source parameters, might be
used again, while the value and frequency assumptions have to be subtly adjusted to
the new requirements. In this section we review the three most significant methods

previously presented in the literature.
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hTree Histograms

Muralikrishna and DeWitt proposed in [48] what is considered today the first mul-
tidimensional histogram. In their original work, an algorithm for generating multi-
dimensional equi-depth histograms was presented. Like the one-dimensional equi-
depth histogram, the n-dimensional version called for buckets with roughly the same
number of tuples. In terms of its method for dividing the space this algorithm is quite
similar to a Grid-file. The  non-overlapping d-dimensional rectangular regions are
built by dividing the entire data space recursively into half spaces, using a boundary
value and a different dimension each time. The dimension and the boundary value
change at the beginning of each iteration.

In terms of the taxonomy presented in Section 2.5.3, this class of algorithms cor-
respond to a serial partition class (given the non-overlapping quality of the buckets)
that uses the multi-dimensional values as the sort parameter, frequency as the source
parameter, and the boundaries chosen with equi-sum as the partition constraint.

In [48] we also see the first time an R-tree mechanism was proposed to retrieve data
efficiently from a set of buckets. In their proposal, the leaves of the R-tree correspond
to the multi-dimensional equi-depth buckets. This novel variant was called hTree
in order to differentiate it from the R-tree itself. h7ree became the name used in
the literature to describe the complete process used to generate multi-dimensional
histograms and not only to describe the index. It is worth mentioning here that our

own research also uses R-tree structures as a framework for the creation of buckets.
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mHist Histograms

Almost ten years after hTree was presented, a new multi-dimensional histogram came
into play, namely mHist-p [53]. This new technique first places the entire joint dis-
tribution in a single bucket. Then, at each step of the processing algorithm, the
space of one of the available buckets is partitioned along one of the dimensions into
p subspaces, until it reaches the maximum number of buckets. The split is made
based on the 1-dimensional partition constraint and source parameter chosen, and
along the dimension that is considered the most “critical” (i.e., whose marginal dis-
tribution is the most in need of partitioning). According to [53], among the mHist-p
algorithms, p=2 (i.e., mHist-2) proved to have the best performance. Different par-
tition constraints and source parameters were tested, including v-optimal, maxdiff,
frequency and area respectively. Overall, mHist represented an improvement to the

then existing techniques.
genHist Histograms

In [27], Gunopulos et al. introduced genHist, which allows unrestricted overlap among
buckets. genHist was presented as the most robust and accurate multi-dimensional
histogram among a plethora of tested approaches (hTree, mHist, kernels, sampling,
and independence assumption). The main idea is to build progressively coarser grids
over the data set, convert the densest cells into buckets of the histogram, and then
remove a certain percentage of tuples in those cells to make the resulting distribution
more uniform. As mentioned above, unlike all previous techniques, genHist allows
buckets to overlap in the space of multi-dimensional values, thus creating more distinct

areas than there are buckets per se. The data distribution approximation for a given
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query box is therefore a combination of what all the overlapping buckets that form
the area indicate.

It is worth mentioning that, even though genHist was originally proposed in the
context of multi-dimensional real-valued data, it has also been applied to problems

with different valued datasets, as demonstrated in [27, 50].
Conclusions

In this chapter, we have examined some of the primary concepts and functional-
ity relevant to data warehousing, on-line analytical processing, query processing and
histograms. We began with a discussion of the general area of Decision Support
Systems, presenting it as an important component in the improvement of today’s
decision-making process. Data warehouse architectures and conceptual/logical mod-
els (i.e., star and snowflake schema) were also illustrated, with a particular emphasis
on the multi-dimensional nature of the data. The three most important storage mod-
els (MOLAP, ROLAP and HOLAP) were also examined, presenting advantages and
disadvantages of each implementation.

We also explained the importance of selectivity estimation in query optimization,
introducing the subject of our own research, namely histograms. We formally defined
the histogram, providing a brief overview of a taxonomy that captures all previously
proposed types of histograms. Finally, we discussed different one-dimensional and

multi-dimensional implementations.
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Chapter 3

rK-Hist: A New
Multi-Dimensional Histogram

3.1 Introduction

On-line Analytical Processing (OLAP) has become an essential tool in the corporate
decision making process. In that respect, we note that decision support places some
rather different requirements on database technology compared to traditional on-line
transaction processing applications. One of the most important changes posed by this
novel class of systems is in the nature of their queries, namely queries that involve
multiple predicates. OLAP systems are frequently required to retrieve data from
several perspectives - dimensions - which affects directly the way query optimizers
produce accurate size estimates. These estimates are crucial in determining satis-
factory query execution plans. As a result, OLAP systems must provide adequate
means for dealing with analytical queries that are multidimensional in nature. We

also note that, in addition to query optimizers, we can use the histograms for approx-

imate query resolution, a function that is extremely valuable for terabyte scale data
warehouses.

In this chapter, we propose a multidimensional histogram that approximates the
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density of multidimensional datasets. Our histogram extends a previously proposed
multi-processor platform that targets the relational database model (Sidera).

This chapter is organized as follows. Section 3.2 reviews previous research in
the area of Multidimensional Histograms, in terms of its primary weaknesses and/or
limitations. In Section 3.3 we present the motivation for our own work. Section 3.4
provides the features and terminology relevant to the techniques presented in the
remainder of the chapter. In Section 3.5, we discuss different hyper-bucket integration
techniques that produce what we called r-tree histograms. We present a complete
description of our new approach in Section 3.6 and discuss the quality measure used
by it in Section 3.7. Finally, we review our research objectives in Section 3.8 and

conclude the chapter with a brief summary in Section 3.9.

3.2 Related Work

The first non-trivial attempt to approximate data distributions for the purposes of
selectivity estimation was described in [44]. Here, a single dimensional point space is
divided into a set of buckets, in which the spread of values in each bucket is equivalent.
The result is what is now referred to as the equi-width histogram. In [52], the equi-
depth (or equi-height) histogram, in which buckets represent equivalent frequency
summations, was shown to provide significantly better selectivity estimation than the
original equi-width method.

Subsequently, a series of alternative partitioning parameters and techniques was
presented in the literature, each attempting to more accurately reflect the point dis-
tributions of arbitrary spaces. In fact, the plethora of methods led to the design of a

histogram taxonomy [54], which described histograms in terms of elements such as the
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source parameter (e.g., spread, frequency, and area) and the partitioning constraint
(i.e., how to partition based upon the source parameter). In addition to the equi-sum
constraint employed by equi-width and equi-depth histograms, alternative constraints
have included the v-optimal approach that tries to minimize the variance of source
parameter values [38], and the mazdiff technique that searches for the largest “gaps”
between source values [54].

In multi-dimensional spaces the problem is somewhat more challenging since it
was shown in [49] that optimal splitting even in two dimensions is NP-hard. In or-
der to provide a solution to the multidimensionality expressed by OLAP systems,
most DBMS vendors adopted the attribute value independence assumption. AVI is a
well-known heuristic that estimates the selectivity of a conjunction of predicates on
multiple attributes by taking the product of the marginal selectivities of the individ-
ual predicates, e.g. Predicate(A = a A B = b) corresponds to Predicate(A = a) -
Predicate(B = b) [2]

Because the application of the AVI assumption proved to be a source of significant
errors [12], numerous techniques for modeling correlated multidimensional distribu-
tions have been proposed in the research literature. Among those techniques, multi-
dimensional histograms have been the subject of much experimental work in the last
few years. Instead of adopting the AVI assumption, multi-dimensional histograms
approximate the densities by splitting the datasets into d-dimensional buckets. Since
no assumptions are made about the dependence or independence of the values, query
optimizers are capable of more accurate approximations by using multi-dimensional
histograms.

In this section we review the three most significant methods previously presented
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Figure 3.1: hTree recursively partitions the data space into half-spaces by using a
different dimension each time.

in the literature — introduced in Section 2.5.5 — and identify the benefits provided by
these approaches, as well as those features that in fact make them impractical to use
in realistic environments.

The first work on muti-dimensional histograms that was reported in the literature
was undertaken by Muralikrishna and DeWitt [48]. Here, the authors specifically
described a 2-dimensional equi-depth histogram referred to as hTree. In terms of
their approach to generate an explicit number of buckets, they opted for a Grid-
file-oriented strategy. Fundamentally, they recursively divide the data space into
half-spaces by using the value of one of the dimensions as a boundary each time. As
Figure 3.1 illustrates, the problem of generating equi-depth histograms consists of
covering all the points in the data space with § rectangles such that each rectangle
encloses approximately % points within it, where R represents the total number of
points in the data space. The foremost advantage of hTree is its low sorting cost
C x P x log () where C' is some constant, P represents the number of data
pages in the relation R and b represents the same number of partitions at each stage

of the algorithm.
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While this technique has a significantly reduced construction cost, the accuracy
of its approximation is not as good as more recent proposals due in most part to the
arbitrariness when deciding the order in which the dimensions are to be split. For
spaces with more than five dimensions, as we will see in Chapter 4, the error is so
large that it makes any estimation inappropriate. Finally, this technique obtained its
most accurate results while working on uniform dataset. Such behavior was expected
given the uniform partitioning made by hTree. However, it is important to mention
that real data sets are far from being uniform. In fact, during the experiments, we
noticed that when the data distribution was slightly changed from uniform to skewed
(0.1%) the normalized absolute error increased considerably.

In [53], Poosala and Ioannidis presented mHist, a new multidimensional histogram
that attempts to improve upon the quality of partitioning by recursively dividing the
space on the dimensions that are judged to most benefit from a split (in terms of
density). mHist works directly on the arbitrariness presented in hTree regarding the
selection of the dimension to be split in every iteration. This technique decides the
partitioning point (dimension and attribute) according to the marginal distributions
(i.e., the individual data distributions of each of the attributes) of the dataset. First,
the algorithm chooses the distribution vy that contains the attribute y whose marginal
distribution is the most in need of partitioning and then it partitions ~ along x into p
buckets. The new number of buckets, in turn, becomes the input for a new iteration
(i.e., a new estimation of marginal distributions, the selection of a new partitioning
point and the respective splitting). Note that p represents an important variable
since different values may result in different histograms. The authors referred to the

mHist technique that uses x splits as mHist-y. Overall, mHist-2 was considered the
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approach that most often results in desirable histograms[53]. An illustration of mHist
algorithm’s splitting process can be seen in Figure 3.2.

mHist histograms tried to solve some of the problems with hTree histograms for
cases when the data distribution is highly skewed. However, because of the way
mHist recursively partitions the data set, it assigns too many buckets to the densest
tuple clusters, and almost none to the rest of the data domain, degrading the overall
histogram accuracy.

Even though the experiments presented in [53] showed mHist as a very accurate
histogram outperforming other techniques like AVI, h'Tree and a “basic” implemen-
tation of the Hilbert curve, it was shown in [27] that for a large number of datasets
with different data distributions mHist’s estimates are unusually poor and in some
cases they are even worse than hTree. It seems that the several synthetic joint data
distributions that were generated in [53] were not sufficient; thus the differences in
terms of error estimation between the results presented in [53] and [27] might be
attributed to a lack of tests (in the former one) conducted on more diverse data sets.

Since mHist, there have been a large number of interesting techniques that have
been proposed. One of the most referenced proposals was presented in [27] by Gunop-
ulos et al. Here, the authors introduced genHist, which addresses some of the problems
outlined above and, in contrast to the previous techniques, allows buckets to overlap
in the multi-dimensional space, just as r-tree buckets do. The algorithm works as
follows. First, it partitions the data space in a similar way to the normal grid-file
algorithm. After that, from the partitions created, the ones with the highest density
are selected in order to apply a heuristic technique that creates the first set of final

buckets. Subsequently, successively bigger grids are built over the resulting data set
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Identifying the maximum difference and creating the first bucket.

Figure 3.2: (a) The original dataset. (b) Step 1. Estimating marginal distibutions.
Partitioning of the data space after creating four mHist buckets.

(c) Step 2. Calculating differences between adjacent marginal distibutions. (d) Step

3.



and the densest cells are converted to buckets until it reaches the total number of
buckets required.

A major disadvantage of this approach is the difficulty of choosing the right values
for a crucial number of parameters. Specifically, the initial grid size, the number of
buckets created per iteration, and the value that controls the rate by which the
number of partitions (grid size) decreases. These are values that are dependent of the
data set and at the same time are required to guarantee high-quality approximations.
Even though this technique generally results in better accuracy than the techniques
discussed above, as illustrated in Chapter 4, it forces the parameter setting to be
redefined every time there is a change in the data distribution causing degraded
performance in some cases. Another drawback of this technique is that, according to
the authors, it requires many passes (at least 5 to 10) over the whole data set [27].

In addition to the “static” histograms described above, we note the existence of a
special class of multi-dimensional histograms based on dynamically generated models.
Here, rather that constructing the histogram statically from an existing data set, the
histogram is generated and updated in real time. stHoles, for example, uses incoming
queries to produce nested buckets [50], while ISOMER extends the basic stHoles
model by adding the notion of entropy minimization [60]. Dynamic generation using
an intermediate summary structure has also been pursued in the context of continuous
data streams [62]. In general, the dynamic techniques have been shown to work fairly
well in low dimensions, though they cannot be expected to outperform the static
methods across a broad range of data distributions.

A small number of papers have also presented theoretical support for histogram

construction models that define upper bounds on estimation errors {40, 26]. However,
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these limits are available only for the much simpler case of one dimensional histograms.

Finally, we add that alternatives to histograms have also been explored in the
literature. Examples include wavelets [64], table sampling [30], and discrete cosine
transform[46]. In general, however, histograms have remained the most popular target
for selectivity estimation and approximate query answering due to their effectiveness
and robustness across a wide variety of application domains. A relatively full record
of their history can be found in [37].

With respect to multi-dimensional indexing, we note that this has historically been
an active area of research [24], though few of the experimental methods have found
their way into production systems. The r-tree itself was proposed by Guttman [29)],
while the concept of pre-packing the r-tree for improved storage and performance was
first discussed by Roussopoulos and Leifker [56]. Packing strategies were reviewed
by Leutenegger et al. [47] and Kamel and Faloutsos [42]. The former promoted a
technique they called Sort Tile Recursion (STR), while the latter identified Hilbert
ordering as the superior approach.

The concept of representing a multi-dimensional space 'as a single dimensional,
non-differentiable curve began with Peano [51]. Jagadish provides an analysis of
four such curves — snake scan, gray codes, z-order, and Hilbert — and identifies
the Hilbert curve as providing the best overall clustering properties [39], a result

duplicated in [23].

3.3 Motivation

Though the research efforts described in the previous section have attempted to ex-

ploit the power of multi-dimensional histograms to more efficiently approximate the
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selectivity of a given query, they have had only partial success. Each approach pro-
vided estimates and construction costs that were either unimpressive or suggested
that performance in general would in fact be quite poor. For these two reasons —
accuracy and construction cost — there is clearly an opportunity and an impetus for
further research in this area.

In approaching the design of a new multi-dimensional histogram, we identified the

following four primary objectives:

1. Minimize the “dead space” resident in each bucket, thereby improving the uni-

formity of point distribution.

2. Maximize the accuracy in approximating the underlying data distribution of

diverse datasets while being efficient in terms of running time.
3. Support straightforward integration with standard relational systems.

4. Build upon proven, optimized algorithms, while exploiting the well studied r-

tree based distributed multi-dimensional ROLAP indexing scheme, RCUBE.

In the remainder of this chapter, we present the details of rK-Hist, an r-tree based
histogram for multi-dimensional selectivity estimation. Upon the conclusion of the
chapter, we will review the extent to which we have accomplished each of the four

basic objectives.
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3.4 A New Approach: Tree Indexing/Histogram
Partitioning

Our new methods build directly upon fundamental r-tree construction techniques, as
well as the methods for implementing and manipulating space filling curves. There-
fore, in this section, we briefly review the salient features and terminology relevant
to the techniques presented in the remainder of the thesis.

Previous multi-dimensional histogram methods have taken what might be de-
scribed as ad hoc approaches to space partitioning. However, given that partitioning
is a fundamental problem in a number of research domains, there is much to be gained
by both an examination and exploitation of previous partitioning work. This point
was also made in [37], where the similarity between tree indexing and histogram par-
titioning was highlighted. Specifically, it was suggested that construction of a B+tree
effectively produced single dimension buckets that could easily form the basis of a
simple histogram. Furthermore, the tree-based design suggested the possibility of
a hierarchical histogram that could efficiently return approximation results. Having
said that, the basic technique is hampered by the fact that index partitioning is not
necessarily conducive to producing uniform bucket distribution and, hence, low error
rates [54].

Our new methods in fact build directly upon the notion of index-histogram in-
tegration. Of course, given that our focus is multi-dimensional rather than single
dimensional spaces, the B-tree and its variations are clearly not appropriate as a
starting point. Instead, we draw upon complementary research carried out in multi-
dimensional database environments, specifically that associated with enterprise-scale

data warehousing (DW). While a number of indexing methods have been utilized in
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Figure 3.3: (a) r-tree partitioning for a maximum node count of four. (b) A H3
Hilbert curve.

DW domains (e.g., bitmaps, join indexes), the r-tree has proven to be one of the
more popular and successful. It is particularly appealing in the current context as it
represents a true multi-dimensional decomposition of the point space.

Briefly, the r-tree is a hierarchical, d-dimensional tree-based index that organizes
the query space as a collection of nested, possibly over-lapping hyper-rectangles [29].
The tree is balanced and has a height H = [logy,n], where M is the maximum
branching factor and n is equivalent to the number of points in the data set. A user
query ® may be defined as {ry,rq,...,rq} for ranges (Fmingi)s Tmaz()), 1 < ¢ < d, and
is answered by comparing the values on {ry,rs,...,74} with the coordinates of the
rectangle N that surrounds the points in each data page. Figure 3.3(a) illustrates a
simple r-tree decomposition.

A number of extensions to the basic r-tree were proposed in order to improve
the clustering properties of the original tree. The r-tree [58] alters the basic model
by prohibiting box overlap at the same level of the tree, while the r*-tree [3] uses
an object re-insertion technique to reduce overlap during node splitting. However,
in more static environments such as that found in data warehousing, more effective

clustering and storage can be obtained by pre-packing the r-tree index. In this regard,
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the Hilbert order employed in [42] is particularly interesting as it can be used to
provide a linear ordering of points in a d-dimensional space, one that can then be
mapped to the single dimension of the storage medium.

First proposed in [33], the Hilbert curve is a non-differentiable curve of length s¢
that traverses all s¢ points of the d-dimensional grid having side length s, making unit
steps and turning only at right angles. The curve can be visualized as an interval [
existing within the unit square S. If we decompose S into equivalent sub-squares S;,
for 1 < i < 4, then with a series of reflections and rotations, we may concatenate
the sub-intervals I; to satisfy the requirements of the linear mapping. We say that
a d-dimensional cubic space has order k if it has a side length s = 2* and use the
notation H¢ to denote the k-th order approximation of a d-dimensional curve, for
k > 1and d > 2. Figure 3.3(b) shows a small 2-d curve.

Given the point order defined by the Hilbert curve, the packing strategy proceeds

as follows:

1. Sort the points in terms of their position along the Hilbert curve so that the n
points are associated with m pages of size [{-]. The page size/branching factor

is chosen so as to be a multiple of the disk’s physical block size.

2. Associate each of the m leaf node pages with an ID that will be used as a file

offset by parent bounding boxes.

3. Construct the remainder of the index by recursively packing the bounding boxes

of lower levels until the root node is reached.

The end result is a hierarchy of bounding bozes that partition the space at varying

levels of granularity. Moreover, the boxes are constructed so as to most effectively
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Figure 3.4: Packed r-tree leaf level partitioning for an H? Hilbert curve. Note the
order of the bucket sequence.

maintain point locality. In other words, points close to one another in the multi-
dimensional space tend to be partitioned into the same bucket (or sibling buckets).
Figure 3.4 illustrates how the Hilbert packed r-tree can be used to partition a small
two dimensional space. Note the inherent clustering properties of the underlying

Hilbert curve.

3.5 r-tree Histograms

The Hilbert packed r-tree provides us with an interesting starting point in terms
of its ability to cluster multi-dimensional data buckets. Specifically, following the
Hilbert sort of the data and the r-tree partitioning, we are left with a hierarchy of 3
rectangular bounding boxes that each enclose regions of spatially related points. That
being said, the r-tree index itself is simply too large to function directly as a histogram,
since histograms must remain fully memory resident in order to be effective. As such,
the B boxes must be integrated in some manner into « hyper-buckets. Hyper-bucket

integration can in fact be supported in two different ways.
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3.5.1 Top down construction

Because tree-based indexes are hierarchical, there are in fact a series of space par-
titions at varying degrees of granularity. For example, given n = 15, M = 3, we
have height H = [log,, n] = 3. As such, there are three partitions of the d-space,
at successively finer levels of detail. In the top down histogram, the idea is to con-
struct o hyper-buckets working downwards from the root. At first glance, it would
be tempting to simply “slice off the top of the tree”. Doing so, however, would result
in a ragged cut of the tree, which is of absolutely no value. Instead, the technique is

as follows:

1. Start with a fully constructed r-tree index, consisting of H = [log,, n| levels.
2. Descend from the root, examining each of the 7 levels, 1 <i < H.

3. Identify the first level L for which o < |L;]

4. Coalesce this level into a hyper-buckets, each containing [|L;|/a] r-tree buckets.

As a concrete example, assume that we have enough memory to construct a 200-
bucket histogram. Furthermore, assume that we also have an index structure with
initial bucket counts of L, = 20, L, = 120, Ly = 800, and Ly = 5000. The top
down method selects L3 and coalesces the 800 tree buckets into 200 hyper-buckets of

4 nodes each. Figure 3.5 provides a simple illustration.

3.5.2 Bottom up construction

In contrast to the top down approach, we can also construct the o hyper-buckets

working strictly from the leaf level of the r-tree. The technique for construction is
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4 block
hyper-bucket

Figure 3.5: Top down histogram partitioning for o = 200. The 800 r-tree buckets at
Level 3 are coalesced into a sequence of hyper-buckets.

essentially the same as that of the top down method, in terms of the concatenation
of r-tree buckets into histogram hyper-buckets. In fact, the boundaries of the hyper-
buckets produced by a bottom up histogram are actually quite similar to those of
the top down model. Nevertheless, extensive testing has shown that due to its less
restrictive initial partitioning, the bottom up method does produce slightly more
uniform hyper-bucket distributions. Moreover, it is simpler to integrate with the
inherently bottom-up r-tree construction algorithms. As such, it forms the basis of

the rK-Hist methods discussed throughout the remainder of the thesis.

3.5.3 Performance considerations

It is assumed that rK-Hist would be utilized in a comprehensive multi-dimensional
database environment in which an associated r-tree(s) was also being constructed.
This allows us to “piggy back” rK-Hist on top of the core r-tree generation algorithms,
thereby obtaining most of the histogram functionality for little additional cost. While
this is the ideal, we note that rK-Hist can also be constructed without an associated
r-tree, if desired. In either case, the most costly element of the r-tree/rK-Hist process
is the sorting of the underlying data set in Hilbert order. It is therefore important to

ensure that Hilbert sorting is not prohibitively expensive.
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We note the following. Given an O(nlgn) comparison based sort, we can assume
an average of Ign Hilbert space comparisons for each of the n tuples in the data
set R. Since tuple conversions are identical in each case, significant performance
improvements can be realized by minimizing the number of redundant Hilbert trans-
formations. Consequently, our framework uses a pre-processing step in which the n
tuples of R are converted into Hilbert ordinal form (i.e., their numeric position along
the curve) prior to sorting. A purely integer-based sort is then performed, followed
by a linear mapping back into tuple form. This single optimization typically reduces
costs by an order of magnitude or more, depending on dimension count. In fact, our
modified Hilbert sort typically runs within a factor of two of the cost of a simple,

multi-dimensional integer sort.

3.5.4 A naive r-tree histogram

Assuming that the initial r-tree blocks have been coalesced into a hyper-buckets that
partition the full space, we are now ready to produce an accessible histogram. At
this initial stage, we will utilize the standard frequency based equi-depth distribution
model for our buckets. That is, within each hyper-bucket B we record its point
count Boyyn: and volume Byoume. Given a user-defined d-dimensional query ¢ =
{ri,re,...,ra}, a selectivity estimate may therefore be defined as the intersection of
® with a subset S of the o hyper-rectangles.

Recall, however, that the r-tree blocks, and hence histogram hyper-rectangles, can
overlap in the point space. One might expect selectivity estimation to be considerably
more difficult as a result. In fact, this is not the case. When boxes overlap, each
defines a distribution that is unique to its own boundaries and to the specific points

that it contains. In other words, even though portions of the space may be shared,
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Figure 3.6: A user query (dashed line) intersecting a series of over-lapping partitions.

their points are not. Consequently, much like the genHist histogram, the distribution
estimates may simply be summed together as though the boxes were non-overlapping.
As a concrete example, Figure 3.6 depicts a pair of over-lapping histogram buckets,
B2 and B3. In this case, their contributions to the estimate of ® can be summed
directly. Intuitively, the summation indicates a region of increased density.
Calculation of the final estimate therefore proceeds as follows. For a user query P,
we evaluate each histogram bucket B to determine the degree of overlap. Assuming
uniform spread inside the bucket, we calculate the estimate on B in terms of the ratio

of the overlapped region to the full volume of B. More formally, we may say:

BCO'U/n
estimate(S, @) = Z L Vol(® N B)

BeS volume

where Vol(® N B) is the volume of the intersection between ® and B.

Finally, we note that the r-tree histogram is itself constructed as a small r-tree.
As such, selectivity estimation does not require serial access of the o buckets of the
histogram. Instead, the leaf nodes/buckets can be accessed with the standard r-tree

cost complexity (O([logy, n])).
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3.6 The Sliding Window Algorithm

We have described the algorithm presented thus far as the “naive” r-tree histogram.
In short, we have exploited the standard r-tree construction algorithm so as to pro-
duce a set of a buckets approximating the underlying multi-dimensional point space.
However, the default ordering of the Hilbert curve may produce less than optimal
bucket partitions. This is primarily because outliers on the curve may occasionally
distort the scale of the encapsulating bounding boxes. While we can accept a certain
degree of “box stretching” — no space filling curve can perfectly maintain locality in a
multi-dimensional space — the existence of extreme outliers may lead to unacceptably
inaccurate estimation errors.

As a result, we extend the basic technique with an optimization component. Algo-
rithm 1 describes the enhanced r-tree approach. We begin by creating the naive r-tree
histogram. As noted, this will likely include a small number of hyper-buckets with
relatively poor point distribution characteristics. To minimize the error generated by
such buckets, we actually create an initial set I consisting of a — (a*8) buckets, where
0 refers to the under-sampling ratio. We then use a quality measure to identify the
(I % 10) buckets with the worst distributions (the quality measure will be discussed
in Section 3.7). While 6 is a tunable parameter, we note that in practice a @ ratio of
10% works consistently well. The selected buckets are then placed into a list W.

At this point, the algorithm scans each hyper-bucket B to determine how its dis-
tribution quality might be improved. As noted previously, optimal partitioning is
NP-Hard. Consequently, we will employ a heuristic method that seeks to re-partition
B to produce more uniform point distribution. However, for a hyper-bucket B con-

taining k constituent buckets, there are exactly 2* possible partitions. It is infeasible
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Algorithm 1 Sliding Window

Input: A Hilbert ordered data file R, the total bucket count «, and the under-

sampling ratio 6.

Output: An enhanced multi-dimensional r-tree histogram.
1: Partition into blocks as per the naive r-tree histogram algorithm.

2:

9:
10:
11:
12:
13:

Using the bottom up method, create I = o — («a * ) hyper-buckets from the
leaf-nodes of the tree.
Create a list ¥ with the (I * $6) hyper-buckets of lowest quality produced in the
previous step.
Within each hyper-block in ¥, record the constituent disk block IDs.
repeat
for each hyper-bucket B in the list ¥ do
Using a “sliding window” technique, examine the combinations of successive
buckets housed in B.
Determine the two sub buckets, By and B, with the most improved quality
measurements. Use block IDs to obtain point distributions as necessary.
if By and B represent an improvement over B then
Replace B in ¥ with B; and B,.
end if
end for
until |¥] 4 |7| = o OR no buckets in ¥ can be further improved.
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Figure 3.7: Use of the the “sliding window” method to decompose hyper-blocks along
the curve.

to calculate each such partitioning for each bucket in ¥. Instead, we use a “sliding
window” technique to decompose B into two sub-buckets B; and B, as per the order
of the Hilbert curve itself. For example, assume that B contains four constituent
blocks By, By, B., By. We therefore consider the decompositions {(B,), (B, B, Bi)},
{(Bg, Bv), (B, Ba)}, {(Ba, By, Be), (Ba)}. There are, of course exactly k£ — 1 such
splits. Figure 3.7 illustrates the way in which the sliding window method might be
used to eliminate “dead space” that has been accumulated during the traversal of the
Hilbert curve.

During the recalculation of the quality measure, it is of course necessary to work
with the raw distribution of points in the leaf level r-tree buckets. While this infor-
mation could be retained in memory, the scale of many multi-dimensional data sets
would make this infeasible. As such, the hyper-buckets of ¥ maintain the list of block
IDs constituting the hyper-bucket. When re-calculations are required, these blocks,
and only these blocks, need be retrieved. It is therefore unnecessary to re-scan the
full data set in future rounds.

Once the primary hyper-buckets have been partitioned, they may be re-inserted

into ¥ for consideration during the next partitioning round. We note that while
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we partition each hyper-bucket into just two sub-buckets during the previous step,
the algorithm is free to further partition a sub-bucket in subsequent iterations. The
current list is then reprocessed in a greedy fashion until either we have produced
o total buckets or no improvement can be produced in the hyper-buckets currently

found in ¥. Typically, this happens within just two to three iterations.

3.7 The k-Uniformity metric

In the previous section, we presented a sliding window algorithm that was meant to
improve the uniformity of hyper-buckets. Within the blocks that comprise the hyper-
buckets, however, the quality of the distribution must be defined more precisely.
Traditionally, distribution quality is associated with a density metric. In effect, this
provides us with an estimate of the number of points per unit square. For exam-
ple, given a d-dimensional space with dimension cardinalities {C1, Cs, ... Cy4}, and a
bucket B, we have Byouume = H,‘Ll Cy. For a point count of Beyuns, the density is
therefore calculated as -ﬁ%‘ﬁ However, while density does provide a coarse estimate
of the quality of the point distribution, it can lead to relatively significant estimation
errors in non-uniform spaces. For example, Figure 3.8 displays three common bucket
distributions. Each 2-d box contains exactly 10 points and is constructed with axes
of equivalent length. Consequently, each has an identical density value and would
therefore be deemed to provide selectivity estimates of equivalent accuracy. However,
this assumption is clearly not accurate. While Bucket A represents an essentially uni-
form distribution, Bucket B houses far more “dead space”. Bucket C is even worse.
It should be obvious that when the uniform spread assumption is applied to these

three buckets, estimation error will vary widely.
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Bucket A Bucket B Bucket C

Figure 3.8: Examples of three typical point distributions, each resulting in the same
density measurement.

Alternatively, one can define bucket quality in terms of the uniformity of its bucket
distribution. In other words, the objective function should be defined it terms of a
metric that seeks to minimize the dead space between bucket points. While a number
of brute force approaches to such an optimization are certainly possible, the scale of
the problem requires a technique that is computationally superior to a naive O(n?)
solution.

To this end, we propose the k-uniformity (kU) metric. Rather than trying to esti-
mate the relative “closeness” of bucket points, we take the possibly counter-intuitive
approach of assessing the relative “emptiness” of the space. To do do, we adapt a
technique used in the construction of multi-dimensional indexes. Specifically, we will
be using a variation of the partitioning strategy for the k-d-tree. Recall that the
k-d-tree [4] is a form of binary search tree in which the “test” attribute varies at
successive levels. To be precise, for a d-dimensional space, we recursively partition on
A1, Asg, ... Ay, each time splitting the space on the A; median. Figure 3.9 provides a
simple illustration for a 2-d space.

We use this partitioning mechanism as the basis of the calculation of the k-

uniformity metric described in Algorithm 2. Beginning with the points of the current
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Figure 3.9: The k-d-tree.

bucket B, and an initially empty list of the volumes of the bucket’s partitions, we
recursively partition the bucket space as per the k-d-tree strategy described in Al-
gorithm 3. Essentially, high/low splits eventually reduce the m points of B to a list
of m partitions, each containing a single point. If we consider the hyper-rectangular
boundary of such a partition, its volume may be used as a representation of the dead
space encapsulating each point. In other words, the greater the volume, the more
isolated the point. It is this partition volume that is added to the volume list L.
When the recursion terminates, Algorithm 2 then calculates the standard deviation

on the box volumes of L. This simple floating point value is the k-uniformity measure

for B.

Algorithm 2 k-uniformity calculation

Input: A bucket B, a dimension set Aj, Ay, ... Aq, and an empty Volume List L.
Output: A k-uniformity measure.

1: Call the recursive k-partitioning function with arguments (B, A;, L).

2: Calculate the average box volume Vg, of the boxes in L

3: Return the standard deviation of the boxes in L relative to Vg4
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Algorithm 3 Recursive k-partitioning

Input: A set of input points ayrrent, the current dimension A;, and a volume list L.
Output: A k-uniformity measure.

1: if The current partition size = 1 then
2. Qalculate the volume Volume, of the current partition
3:  Append the volume to the volume list L
4: end if
5: for the current dimension A; do
6: Find the median value My,
T Set /Blow =< MAi
8:  Recurse on (Biow, Ait1, L)
9: Set /Bhigh => MAz’
10:  Recurse on Brigh, Ait1, L)
11: end for
Bucket A Bucket B
o | %o
il % e [®lel |
T el ® i
----- 4o Ll T e
¢ o el e

Figure 3.10: Bucket breakdown by area for three previous buckets.

Before describing the formal characteristics of Algorithm 2 and Algorithm 3, it
is useful to provide a graphical picture of the k-partitioning technique. Figure 3.10
displays the space partitioning for the three buckets shown earlier. Bearing in mind
that the purpose of a standard deviation calculation is to show the spread of values,
the effect of the k-uniformity measure should be clear. Bucket A would produce a

low kU measure, indicating desirable uniformity. The kU for Bucket B would be
somewhat higher, while Bucket C would the most extreme of the three. As such, it

would become an obvious candidate for restructuring.
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While the kU metric clearly provides concrete advantages, such functionality can-
not come at the price of unacceptable computational cost. Given that the kU measure
is calculated on the points of each bucket, processing cost is proportional to the size
of the full data set. If we examine Algorithm 3, we see that for an initial box with
m points, we create O(lgm) partitioning levels. For each of these levels, we must
identify medians on the m points. For this we employ the randomized median finding
technique described in [34], which runs in O(m) time in the average case. As such, the
complexity of the partitioning phase is O(mlgm), identical to that of an optimized
k-d-tree construction algorithm.

Once the partitions have been generated, the kU metric is calculated. Since this
is a volume-based calculation, the time complexity for the m partitions is simply
O(d * m). The bound on the full computation is therefore the concatenation of the
two steps, or O(mlgm + dm). The dominant component depends of course on the
dimension count and the size of the data set, but in most cases, the processing time
would be bounded simply as O(mlgm). Finally, we note that since the kU for each
box is computed independently, the full cost of kU measurement on the data set is
simply the summation of the cost for each bucket.

To demonstrate the practical effect of kU based bucket partitioning, we have
graphically captured the bucket partitioning patterns of hTree, mHist, genHist, and
rk-Hist (kU + sliding window) on a two dimensional data set containing one mil-
lion points. The data was synthetically generated using a zipfian skew of 0.4 and

cardinalities of 60000 on each dimension.
Figures 3.11, 3.12, 3.13, and 3.14 illustrate the final result. (Please note that

because of the resolution, it might not be clear that a) there are one million points in
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Figure 3.11: Bucket partitioning for the hTree histogram.

Figure 3.12: Bucket partitioning for the mHist histogram.
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Figure 3.14: k-U based bucket partitioning for the rK-Hist histogram.

the image, and b) the large blocks of points represents the varying densities). As per
the design logic of the hTree, its bucket partitions illustrate a pronounced grid-like
pattern. While effective for densely populated regions of the space, it tends to create
boxes containing significant dead space in regions of reduced uniformity. The mHist
algorithm, on the other hand, tends to produced extreme striping patterns on the
data set which clearly do not reflect the inherent clustering of the data set. genHist,
in turn, also produces significant dead space, despite its ability to generate a more
flexible grid.

By contrast, the r-tree/Hilbert curve/kU combination produces a remarkably ac-
curate decomposition of the point space. As can be seen in Figure 3.14, dead space

is largely ignored. Moreover, the algorithm is able to vary box volumes so as to
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more accurately reflect clustering properties. The end result is a bucket generation
mechanism that is far more likely than the alternatives to produce consistently lower

estimation errors for arbitrarily defined multi-dimensional queries.

3.8 Review of Research Objectives

In Section 3.3, we identified a number of objectives for the present research. We now

review those goals to confirm that they have in fact been accomplished.

1. Minimize the “dead space” resident in each bucket, thereby improv-
ing the uniformity of point distribution. The combination of r-tree con-
struction techniques, the Hilbert curve, and the k-uniformity (kU) metric pro-
duces a remarkably accurate decomposition of the point space, providing uni-

form bucket distribution with highly reduced dead space.

2. Maximize the accuracy in approximating the underlying data distri-
bution of diverse datasets while being efficient in terms of running
time. The combination of the kU metric and the Sliding Window Algorithm
produced optimized space decomposition. Moreover, we have shown that the

presented methods require modest computational resources.

3. Support straightforward integration with standard relational systems.
The rK-Hist model builds upon indexing models often found in data warehous-
ing environments. Moreover, all input data is read from standard relational

tables.

4. Build upon proven, optimized algorithms, while exploiting the well

studied r-tree based distributed multi-dimensional ROLAP indexing
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scheme, RCUBE. Our technique was conceived as part of a larger data ware-
housing project called Sidera, a framework that explores the design and devel-
opment of parallel OLAP server technology. We reuse a number of the modules
described in [21], which in turn has proven to use some of the most effective
known methods for computing the datacube. We also incorporate the RCUBE

algorithm into our new selectivity estimator.

3.9 Conclusions

In this chapter, we have described rK-Hist, a multi-dimensional histogram for selec-
tivity estimation. We have presented an approach that uses an r-tree based histogram
that exploit the Hilbert space filling curve to generate an initial space partitioning.
It then uses a sliding window method, coupled with a new uniformity measure, to
further improve the quality of the selectivity estimates.

As noted in Section 3.2, even though a variety of approaches have been proposed,
the previous solutions leave room for significant improvement. Given the significance
and size of the underlying problem, there would appear to be a genuine need for
this type of research. In our case, we have contributed to the literature by provid-
ing a solution that can be seamlessly integrated into a relational OLAP framework
(e.g., Sidera) and that, as will be demonstrated in the next chapter, provides greater

accuracy than the most widely used current methods.
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Chapter 4

Evaluation

4.1 Introduction

In this chapter, we provide experimental results that assess the performance of rK-
Hist relative to the competing solutions. Specifically, we will compare the quality of
rK-Hist to the traditional hTree, mHist, and the more recent genHist. We do not
consider the dynamic methods such as stHoles since they serve a different purpose
and since they have not been shown to outperform the best static methods across a
broad range of test sets.

This chapter is organized as follows. Section 4.2 describes the hardware and
software used throughout the development of the research discussed in this thesis.
The different data sets, workloads, and query boxes will be presented in Section 4.3.
Section 4.4 provides a detailed explanation of qGen, a random-driven query generator
that we implemented to create the query boxes used in the testing of the diferent
techniques. Section 4.5 provides the results from the tests that we performed and a

detailed explanation of each of them.
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4.2 Our Physical Model

In this section we present the physical architecture that was used for performance
evaluation purposes. However, in terms of the current research, we note that MIMD
computer systems were used for the construction of the Parallel Relational OLAP
framework whose code represents the foundation for this thesis. Therefore, it is

important to say that our design retains all the components that guarantee the ap-
plicability of this proposal in multi-processor environments.

Primary software components include:

e Fedora Core 5 (Red Hat Linux distribution)

e GNU C/C++/Fortran Compiler version 4.2.0

e LAM (Local Area MultiComputer)/MPI version 7.1.3

e Standard development tools like make, emacs, vi, automake, autoconf, etc.
Primary hardware components include:

e One processor Intel Pentium 4 3.2GHz processor
e 1 GB of RAM

e 160 GB ATA disk drive. 7200RPM

4.3 Experimental Setting

In terms of the data sets themselves, we use synthetic and real-life data. Synthetic
data, however, allows us much greater flexibility in setting the primary test param-

eters. In this respect, we note that multi-dimensional histograms tend to perform
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extraordinarily well in uniform spaces (very easy to partition) and massively skewed
environments (the data set deteriorates to a small number of singularities). Real data
sets commonly used for DW testing (e.g., the ubiquitous weather data sets) actually
have very little skew and largely resemble a uniform space. So while they tend to
produce very nice results, their use often says relatively little about the performance
of the histograms in more challenging environments. For this reason, in addition to
the real data sets, we also produce our own data sets using the standard zipfian skew
function. Specifically, we generate both a moderately clustered data set Dy with zip-
fian skew = 0.4, and a much more densely clustered data set D, with zipfian skew =
0.8. Both D; and D, contain one million tﬁples and dimensions with cardinalities of
1000-50000.

As for the real-world data set we use in our experiments, this was defined in [32]
and has already been adopted in different testing scenarios [59, 16, 45]. The original
reports came from the National Meteorological Center for land stations and from the
Comprehensive Ocean-Atmosphere Data Set (COADS) for ships. The data set con-
tains over one million rows and includes (a) information related to cloud analysis, such
as air temperature, pressure, winds, humidity, and visibility and (b) individual syn-
optic observations that have undergone some interpretation of the cloud information.

We built a data subset from the original file with following characteristics:

e Number of data rows: 1015367.
o Number of Columns: 4.
e Number of Dimensions; 3.

e Cardinality per dimension: 97852, 36001, 1797.
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Each test run consists of 1000 multi-dimensional queries randomly generated so
as to encapsulate approximately 1% of the data space (query boxes have arbitrary
shape and were built by using qGen, which will be further discussed in Section 4.4).
Following the convention described in [5], we calculate the average absolute error as
error = I_VlV—I > e |@estimate — Qactuai] Where gestimate is the estimate of the number of
tuples in the result of ¢, guctuas 18 the actual number of tuples in the result of ¢ and
W is the query batch . Test results are averaged across a set of five runs. Finally, we
note that all rK-Hist testing uses a 6 ratio of 10%, as higher values rarely produce

consistently superior results.

4.4 Query Generator

As mentioned above, all the techniques presented in this thesis were tested by using
1000 query boxes. Every query box contained either 1% or 5% of the total number of
tuples. We generated those query boxes by using ¢Gen, an in-house random-driven
area-based query generator. In this section, we describe qGen and explain why this
technique provides a fair testbed to perform our experiments.

Algorithm 4 describes the proposed approach. The technique works as follows.
First, it defines a multidimensional point P, by using random values per every di-
mension. The boundary value of the random function is defined by the cardinality of
each dimension. Next, it defines a second point P, by using the values of P,. Having
defined P, and P,, qGen creates an initial query box and calculates its selectivity. If

the selectivity of the new query box corresponds to the value we are looking for, a
file is created storing the coordinates P, and P,. Then, the algorithm will recursively

create more boxes until it reaches N. Since generating query boxes that perfectly
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Algorithm 4 qGen

Input: The number of queries N to be generated, the moving percentage per dimen-

sion «, the selectivity per query A and an array with the cardinality per each
dimension.

Output: N hyper-rectangles that cover a region with A tuples.

1:
2:
3:

10:
11:
12:
13:
14:
15:

16:
17:

18:
19:
20:

21:

repeat
Define a multidimensional point P; by using a random function.
Define a second point P, by using the values per each dimension found in the
previous step plus « * cardinalityperdimension. '
repeat
Define a query box © with P, and P, and calculate its selectivity .
if U is equal to A (£ 0.5%) then
Create data file with the found coordinates P; and P,.
Increment counter of query boxes in 1.
else if ¥ > X\ + 0.5% then
Create a new set of points P; and P, from scratch.
else if ¥ < X\ - 0.5% then
Randomly select one of the points (P} or B).
Randomly select one dimension of the selected point.
if P, was selected then
Decrease the value of the dimension selected as follows PreviousV alue—
(a x Cardinality Per Dimension,).
else if P, was selected then
Increase the value of the dimension selected as follows PreviousValue+
(a * Cardinality Per Dimension).
end if
end if
until (© with selectivity X is found) or (the boundaries of © are out of the
dimension cardinalities).
until N query boxes are created
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match with a given selectivity is time consuming, we allow a margin of + 0.5% in
order to speed up the generation of the complete set of query boxes. If the selectivity
of the new query box is greater than A (required selectivity) + 0.5%, the algorithm
creates a new set of points from scratch. On the other hand, if the selectivity of the
new query box is less than \-0.5%, the algorithm a) selects one of the points (P or
P,), and b) decreases or increases one of the dimension values of the selected point.
Both selections are randomly made. The new query box is used as the input for the
selectivity calculation and the process is repeated until we find the right query box
or the boundaries exceed the cardinality values of every dimension.

qGen, by its nature as a random-driven query generator, allowed us to produce a
large number of query boxes that favor no histogram technique, therefore making it
very well suited to test arbitrary query ranges - which are indeed the most common

in OLAP environments.

4.5 Actual Test Results

We begin by evaluating the estimation error for both D; and D,. For each data set,
we provide results for histograms constructed with 300 and 800 buckets. Note that
all histograms store the same information internally so all use the same amount of
memory. In Figure 4.1 (a) and (b), we see the results for the smaller 300 bucket
histograms. For both data sets, across all the varying dimension count, a distinct
advantage is clear for rk-Hist versus the three competing methods. In fact, for the
moderately clustered set, rK-Hist produces approximately half the error generated by
the next best method. Interestingly, the original (and fairly simple) hTree outperforms

mHist and is competitive with the recent genHist algorithm. This result is perhaps
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not surprising given the graphical partitioning results presented in Section 3.7. We
note as well that mHist performs particularly poorly for the moderately skewed data
set, which would certainly be a concern since D is probably more indicative of many
real world data sets than the more extreme Ds.

In contrast, Figure 4.2 provides the results for the larger 800 bucket histograms.
As one would expect, estimation error improves noticeably. In fact, for the moderately
skewed data, rK-Hist is able to produce errors in the range of just 2%-4% in two to
three dimensions. This is extremely low for a multi-dimensional histogram. Moreover,
none of the other methods is even close to this range.

In Figure 4.3, we provide results for histograms constructed on real data sets.
The experiment, in this case, uses a more realistic amount of buckets: 1,500 in Fig-
ure 4.3(a) and 2,500 in Figure 4.3(b) . The space required to store these buckets,
considering the 4 dimension data set, is 53KB for 1500 buckets and 88KB for 2500
buckets. It is clear again that across all the varying dimension counts, a clear advan-
tage is shown for rk-Hist versus the three competing methods.

It is important to note that, even for high dimensions, as shown in Figures 4.1, 4.2,
and 4.3, rk-Hist histograms still produce better results than do hTree, mHist and
genHist histograms. Overall, mHist has the highest error rate. This may be due to
the way mHist recursively partitions the data set, it assigns too many buckets to the
densest tuple clusters, and almost none to the rest of the data domain, degrading the
overall histogram accuracy.

As noted, our query workloads are defined so that individual queries encapsulate
about 1% of the total point space. Though this is in keeping with most previous

research in the area, certain papers (e.g., genHist) have been evaluated against larger
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ranges. In general, this simplifies the problem and tends to produce lower (perhaps
unrealistic) error rates. Nevertheless, in Figure 4.4(a) we provide a comparison on
Dy (800 buckets) between the effect of using 1% ranges versus 5% ranges in the query
batches. As expected, all algorithms improve, with rK-Hist providing single digit
error rates up to six dimensions. genHist, while not as impressive, also performs
well in this test. In general, Figure 4.4(a) illustrates the robustness of rk-Hist across
different workloads.

Figure4.4(b) looks more closely at the effect of increasing dimensions for rK-
Hist. In this case, we examine rK-Hist as dimension count grows from 2 to 10,
using the 800 bucket histogram and the D; data set. There is of course an obvious
growth in estimation error as we move into high dimensions, with errors increasing
by approximately 30%-50% with each additional dimension. We note, however, that
even at 10 dimensions, rK-Hist is competitive with the rates that other techniques
produce in 5-6 dimensions.

In Figure 4.5(a), we examine the impact of extending the naive r-tree histogram
with the sliding window algorithm and the kU-partitioning. Again, we use the D;
data set with 800 buckets for the comparison. There are two things to note. First,
even the naive algorithm performs effectively relative to the numbers produced by the
competing algorithms. Second, the estimation error for the naive algorithm is between
15% to 50% higher than rK-Hist, depending upon the dimensions count. So while the
basic algorithm represents a reasonably good starting point, the improved partitioning
produced by the sliding window and the kU measure results in a histogram that is
vastly superior, particularly in the commonly utilized 2-4 dimension range.

We also studied the effect on histogram accuracy in terms of the storage space
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utilized. Figure 4.6 shows the normalized absolute error for the Dq, and D, data sets
for varying the number of buckets per histogram (i.e., histogram size) and varying the
number of dimensions. The errors are presented for histograms using from 300 to 2,500
buckets. As noted, rK-Hist scales quite well. As the number of buckets increases,
the error decreases almost in the same proportion. For instance, in Figure 4.6 (a)
when the number of buckets for the two-dimensional dataset increases from 300 to
800 (2.6 times), the error drops off by approximately 60%, from a normalized error of
5% to 2%. It is clear that when a very small error value is reached the improvement
achieved by increasing the storage space is negligible (e.g., the error between 1500 —
2500 buckets in the 2-dimensional dataset of Figure 4.6 (a)).

It is worth noting that all experiments allocate the same amount of memory for
all histograms techniques. The size of individual buckets remains the same across all
the approaches, requiring 2 x d * 3 values for the bucket boundaries plus § frequency
values, where d refers to the number of dimensions and 3 to the number of buckets.

In Figure 4.7, we show the effect on histogram accuracy of the storage space for
the real data set. The errors are presented for histograms using from 300 to 2,500
buckets. Again, we can see that (a) rK-Hist scales fairly well as the number of buckets
increases. and (b) the results are consistent with those of Figures 4.6(a) and 4.6(Db).

Finally, we compare the computational costs of three of the main algorithms
across dimension counts from 2 to 9. Note that we do not include genHist in this
test because, even with a logarithmic y-axis, the enormous times for genHist make
it difficult to produce a meaningful graph. Figure 4.5(b) therefore illustrates the
results for h'Tree, mHist, and rK-Hist. Not surprisingly, hTree is the most efficient

method with its fairly trivial recursive grid partitioning. That being said, rK-Hist
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Figure 4.6: rK-hist scalability for (a) zipf = 0.4 and (b) zipf = 0.8.
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Figure 4.7: rK-hist scalability for the real data set.

is quite competitive, a result reflecting the efficiency of the sliding window and kU
methods. mHist, by contrast, is almost two orders of magnitude more expensive by
9 dimensions. For comparative purposes, the genHist algorithm takes more than 12
hours to complete at nine dimensions. While it has been suggested that sampling
could be used to reduce the cost, this approach would quite possibly lead to increased

estimation error.

4.6 Conclusions

In this chapter, we presented multiple experiments that allow the reader (a) to gain a
deeper understanding of the advantages of rK-Hist and (b) to compare and contrast
our solution with those that represent the current state of the art.

Accuracy in the approximation, construction efficiency, and high scalability are
some of rK-Hist’s features that can be appreciated by analyzing the different results

obtained using both synthetic and real-world data sets.
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Chapter 5

Conclusions

5.1 Summary

For many years histograms have been utilized in database environments to produce
concise representations of larger data distributions. The resulting estimates are fun-
damental to both query approximation and selectivity estimation. However, while
errors in single dimension environments are quite impressive, multi-dimensional dis-
tributions have proven to be far more challenging. In this thesis, we present rK-Hist,
an r-tree based histogram that exploits the Hilbert space filling curve to generate
an initial space partitioning. It then uses a sliding window method, coupled with a
new uniformity measure, to further improve the quality of the selectivity estimates.
Experimental testing against a number of existing methods demonstrates consistent
and significantly superior results in terms of estimation quality.

We consider the following three topics as the most important achievements in this

thesis:

1. Introduction of the kU metric. Since we found that density can be a
relatively poor measure of point distribution, a problem that is exacerbated as

dimensionality increases, we present a new metric called k-uniformity (kU) that
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minimizes the dead space between bucket points and more accurately measures

the quality of tuple distribution.

. Implementation of rK-Hist. We integrated the kU metric with a multi-
dimensional r-tree partitioning model where the distribution of blocks is gov-
erned by the Hilbert space filling curve. Experimental results demonstrate that
our new r-tree/kU histogram, rK-Hist, produces estimation errors that signifi-

cantly improve upon the current state of the art.

. Integration of our work with the Sidera framework. rK-Hist represents
an extension of the previous research work carried out by Sidera’s members.
It works on an existing multi-processor platform that targets the relational
database model (ROLAP). As we mentioned previously, by “piggy-backing” on
top of an existing indexing model known as RCUBE, we are able to provide
effective selectivity estimation in conjunction with powerful indexing function-

ality in multi-dimensional settings.

5.2 Future Work

The research described in this thesis represents the core of a robust multi-dimensional

histogram model. However, the work undertaken to date also points to new research

initiatives that would significantly extend the functionality of the current design.

Below we identify a number of these possibilities.

e Integration with Sidera’s Query Engine. It was made clear throughout this

thesis that histograms are considered the most important component in the

decision-making process of a query optimizer. We note that while rK-Hist
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has shown superior results in terms of estimation quality when compared to a
number of existing methods, the integration of rK-Hist inside the Sidera’s query
engine is essential. This would increase the robustness of the engine providing
(a) a mechanism to support the optimizer’s decisions while choosing among
different query execution plans and (b) a component to be used with multiple

operators supplying accurate selectivity estimates.

Logical and Physical Operators . Operators, also known as iterators, are a set
of fundamental building blocks that implement a single basic operation such as
scanning data from a table, filtering or aggregating data, using a type of index
or joining two data sets (e.g., by using hash, merge or nested loop strategies).
Even though our current indexing model, RCUBE, has proven to be an excellent
mechanism to retrieve data pages, we note, following the actual commercial
DBMS and OLAP Servers, that a more extensive set of operators would give
the optimizer a larger number of query plan possibilities to make good decisions

and, in turn, would give rK-Hist a new set of building blocks on which to work.

Dynamic Generation of rK-Hist . Despite the success of “static” histograms,
there are still opportunities to increase their applicability and/or their effec-
tiveness. Techniques like the ones presented in [50, 1], which propose to build
histograms without examining the data sets, but rather by just analyzing query
results (workload-aware histogram techniques) have proven to be quite efficient
and could possibly be implemented on top of rK-Hist. Further research in this
area would tell us if this is an advantageous strategy and at what point in time
(e.g., after 10000 rows are either inserted or updated) the processing of such

improvement would be appropriate.
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5.3 Final Thoughts

Taken as a whole, the research presented in this thesis supports the notion of what
we have called the rK-Hist. In keeping with the general philosophy of database man-
agement systems, our approach provides sophisticated computational functionality.
Moreover, given the results presented in this thesis, and the fact that rK-Hist can
be integrated so cleanly with one of the most common multi-dimensional indexing
models, we believe the current method represents an extremely attractive option for
selectivity estimation and approximate query answering in multi-dimensional environ-
ments. Finally, given the importance of the problem itself, both from a commercial
and academic perspective, we are confident that the current research represents a

significant and meaningful contribution to the database literature.
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