AUTOMATIC GENERATION OF BEHAVIORAL

SPECIFICATION IN AUTONOMIC SYSTEMS

TIMED REACTIVE MODEL

JAVIER QUIROZ

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE
AND

SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FoOR THE DEGREE OF MASTERS OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

NOVEMBER 2007

© JAVIER QUIROZ, 2007

3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-40951-0
Qur file Notre référence
ISBN: 978-0-494-40951-0

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Automated Generation of Behavioral Specification in Autonomic Systems Timed
Reactive Model

Javier Quiroz

The Autonomic Reactive System Timed Reactive Model (AS-TRM) is the
merging of two fields: Real Time Reactive Systems and Autonomic Systems. Autonomic
Systems is a new research area conceived to deal with the growing complexity of
nowadays Information Technology infrastructures. Time Reactive Systems are complex
systems that interact with their environment using a stimulus-response behavior under
strict timing constraints. The AS-TRM approach consists in generating a new breed of
systems provided with autonomic self-management capabilities. Timed Reactive Object
Model (TROM) formalism developed at Concordia University has been extended to
model the reactive behaviour in autonomic systems. This thesis work is aimed at
assessing the control on the behavioral correctness of the Autonomic Reactive
Component layer in AS-TRM. An algorithm for generating an exhaustive behavior of an
autonomic reactive component is presented; the algorithm guarantees the correctness of
the component’s behavioural specification by building the correct behaviour, timing
constraints and system policies into the generated output. The specification of such
behaviour is applicable to a variety of self-monitoring purposes concerning the
autonomic reactive system control. Additionally, a method for assessing the critical time
performance (minimum and maximum time delay) from the behavioural specification is

provided. The methodology is illustrated on a case study.

iii

To my father

iv

Acknowledgments

I want to express my acknowledgment and gratitude to my supervisor Dr. Olga
Ormandjieva for her technical and financial support as well for her encouragement and
experienced guidance which helped me throughout the completion of this research work.
Also, thanks to Heng Kuang for his technical advice while working on this research
project. Thanks to the members of my research lab for providing suggestions and
feedback. Thanks to the National Counselling of Science and Technology of Mexico

(CONACYT) who sponsored and financed this research work.

I want to thank to all the members of my family; without them, nothing of this
would have been possible. Specially, I want to thank to my mother and father for all their
love and support. Also, thanks to Ion and Florina Simionescue and their family for their
support and friendship. Thanks to Dr. Nicole Kerschberg and her family for her support

and friendship. A very special thanks goes to Phoebe Wolf for her support and love.

Table of Contents

List of Figures viii
List of Tables ix
1.1 Autonomic COMPULINEZ......coveereerieeeiierieieriesiectesresseeseeseesseeseeseesseessesseresssessessensessenens
1.2 Real-Time Reactive SYSIEMSc.eceruieuieiiieieicrieteetsceeteeve e err et et seenenrenrens
1.3 TROM and AS-TRMccocvirinriiniirereeeeiesteteestessessessessesaesasssssssssssesessessesessessenes
1.4 Motivation and CONEXLccceverreerereriierirsiereeniesseseerasssessaersessessasssssssssessessassessensens
1.5 Organization Of the TRESIScuevveiiieieiieeeeeeeeeeeeee et e eseas

Chapter 2. Related Work
Chapter 3. Background
3.1 Timed Reactive Object Model (TROM) formaliSmcccecervvercveciunrecrensvenserseneenns
3.2 First Tier — Larch FOrmaliSmcccocovvivenininiiniinieinineeiseneseneseeseseesesseseseens 10
3.3 Second Tier — TROM FOrmalismc.cccvevvevvenieneniennieneenereeneneneennensessenesseseenns 10
3.4 Third Tier — System Configuration Specification.........cccccevrvirvveriurnrernreenercerivenenns 14
3.5 TROMLAB ...ttt ettt s set st sesaeste et et sassas e saessesaesesassessessssnns 15
Chapter 4. Autonomic Systems Timed Reactive Model (AS-TRM) 18
4.1 Autonomic Reactive Object (ARQO).....ccevivieieriniinienenniinenienresreeieeenneseeesseeens 20
4.2 Autonomic Reactive Component (ARC)ccocvvivrevernennirninienrinenenessnnesennesescssees 22
4.3 Autonomic Component Group (ACG).......cocvviivvrireeniininnnnnsneniennsesesenssenes 23
4.4 The Global MAnagerc.cccevvveriveeseroneniueesieenieersreessssessssesssessssessssesssessasssnessesas 23
4.5 Characteristics Of AS-TRMcccecviiniininiininininrenenrsissiiesesnesssesssssessenns 24
Chapter S. Synchronous Product Machine Algorithm Description... 26
5.1 Informal DeSCIIPHIONivvirierririererireerretiintiretesresteseesresieessessesseenenesssessessonsenses 26
5.2 Input SPecifiCationcccviiiriiiiniiiieiiieie et 28
5.2.1 Autonomic Reactive Component Configuration Specificationcecevucrunene 28
5.2.2 Specification of System Policies in AS-TRM.......ccccoeceenervrenerirencneneneerennnens 29
5.3 Output SPECIFICALION ..evvveuerrererrierieierieneeerenieerieesresstesressesesssesresssessssssensensessessonsones 31
5.3.1 SPM Operation Specification in AS-TRMcccceeviervierverncrnennenneniennerineenes 31
5.4 SPM Pseudocode — Main Procedure.......ccccevvenirnrieniercicenennensesnennnennencennennennen 34

vi

5.5.1 SPM Transition and SPM State construction...........ecoreveevereverrereerernererereerene, 36
5.5.2 Evaluation of system POLCIEScceeverereereirireieerieirreeereseeeereseseeresenenesenens 37
5.5.4 Generation of Candidate Transitionscoeeeeveveerevvereveeresrereneerereeseseeereenens 39
5.5.5 Time Constraint Calculation...........ccccvveveeeierinecrnienerinenseesseseseresseseseeesenenss 41
5.5.6 Min-Max Delay Time Constraint ANalysiS...........cceveververeeereerivrenrereeneeseennenes 42
5.6 Disadvantages of the approachcccccccvevveieieiiinienicceneeeerece e 44
5.7 Advantages of the approach..........ccccvevievenieiieciiiiiieieeeeeee e eaes 45
5.7.1 Detection of undesired states product of an erroneous design......................... 45
5.7.2 Verification of the ARC against its specifications............cceeeevvevenrevecrereennes 45
5.7.3 Validation of the critical timing requirements...........c..ccoceerevrerievererereererseenns 46

5.7.4 Provide with a data repository to be used in autonomic features like behavioral
COTTECINESS. o.euvtrruieieriuienteieeetesiestessessesstessessesssesosessnesssessesessesssesssasssessaassasssesssessenses 47

TRM ittt sb s st sss s st s besse st sssebasasaesissases 47
Chapter 6. SPM Calculation Tool 48
5.1 DIESIZN 1euverereieierenenrinrertsesessesesiesseressesesassesensssassessensasserssssessesessessessesassersesessesens 48
6.2 IMPICMENTALION ...ecuveiiriieiieeiecintiee et ee et etesteete e se e e e tessessaernessereessessesnenees 50
7.1 DESCIIPLION ...vveeeveeereeereceeete ettt ettt et er e e e esbeeaeereeseebeeseenseersessseseessannesssenns 52
7.2 Policy Analysis for Railroad Crossing Case Study..........ccecovveeveerveerenrecerererennnnns 55
7.3 Case Study: Railroad Crossing Generalizedcccccvvevuieevieeerieeeniiecneenenneniessenenns 58
7.4 Policy Analysis for Railroad Crossing Case Study Generalizedcccoeeeueneee 59
7.5 Experimentation and reSULLS.........ceeveereriereireeninieeseeneentesesiernnessesseseessesseseesesssenes 60
Chapter 8. Conclusions and Future Work Directions 65
8.1 CONCIUSIONS.....uiirireiirirrrentecieneerenaeereste et steseeseessseeessesetsssessesanssessessnessssesnensos 65
8.2 FULUIE WOTK ...ttt sttt st e nesa s s 66
8.2.1 SPM ALZOTIIIM ...ttt ettt et es 66
8.2.2 Self-Monitoring in AS-TRMccciiriiriieriiriirinrennrerseeesreesssesseessessssassssenss 66
8.2.3 Minimum and Maximum Delay Algorithm implementation..........c..ccceveveneee. 67
Appendix A 71

vii

List of Figures

Figure 1. TROM architecture; 3 tErs VIEWccccvvrereriresienuenieriaeseesessesssessesessareessesseneens 9
Figure 2. TROMLAB archit€Cture..........ccecuevverierrinreniesenieereerrenieeeeseeseseesessessessesssssessenes 17
Figure 4. AS-TRM architecture; 5 tiers VIEWc.cocveveerrenernceenienoriensesernessnesreessesessseesasnns 19
Figure 5. Interaction between elements of AS-TRM architectureccoceeeveirenirenreenen 24
Figure 7. SPM of state machines S1 and S2cccceevverrererenerieniiieienienesseneseeneesseseenes 27
Figure 8. Process diagram of SPM algorithm..........cccevvevveninienenienniinenenccnieennenneenneneene 35
Figure 10. Collaboration diagram for SPM algorithm implementation.........c.cocveurverveenes 49
Figure 11. Class diagram for Railroad case studycoccvereeerrnreneereencnrcnverenenieniecsencnes 53
Figure 13. Collaboration diagram for Railroad case studyccoccvveeeenerviererieencrcrnenenne 55
Figure 14. Collaboration diagram for Railroad case study generalized version................ 59
Figure 15. State chart diagram showing a produced SPM from Railroad case study

(version with 2 trains, 2 controllers, 1 gate)ccooverrerieriierienienieeieneeeeeree et 61
Figure 16. Chart representing the data on table 1ccccovvevveiiiirinininnininnniicnnnen 63
Figure 17. Chart representing execution time of the SPM implementation............cceeueuuee 63

viii

List of Tables

Table 1. Results of testing with different configuration of the Railroad case study

ix

..........

Chapterl. Introduction

This chapter introduces the context of this research in autonomic computing and
real-time reactive systems; the Timed Reactive Object Model (TROM) and the
Autonomic System Timed Reactive Model (AS-TRM). Also, the motivations behind this

research and the scope of this thesis are addressed.

1.1 Autonomic Computing

Autonomic Computing is a relatively new research area in Computer Science that
emerged as an initiative by IBM in 2002 [1]. It was conceived as a way to deal with the

growing complexity that today’s large IT infrastructures represent.

Nowadays, more and more sophisticated services are available from online
shopping stores to online banking accounts. The availability of these services poses great
challenges to IT staffs who must maintain and manage all the components in the system’s
infrastructure. According to Klein [2], up to 80 percent of an average company’s IT
budget is spent in maintaining existing applications. Since most of the time of the IT staff
is devoted to manage core business processes [3] there is little time to spot potential areas
of growth. In order to enable companies to focus on the application of technology to new
business opportunities and innovation, the IT industry must address this complexity [3].
The response of autonomic computing is to create autonomic systems capable of

managing themselves by using technology to manage technology.

1.2 Real-Time Reactive Systems

Real Time Reactive Systems are systems which interact continuously with their
environment through a stimulus/response mechanism which can last indefinitely. Real
time reactive systems are rigorously regulated by time constraints in their behavior and
are considered one of the most complex types of systems. Examples of such systems are
air traffic controllers, online payment systems, avionics systems and others. An important
characteristic of Real-Time Reactive Systems is that failure is not a viable option. Hence,
all the system’s properties regarding functionality and timing have to be ensured to
satisfy the safety requirements before a system is deployed. In order to do that correctly,
rigorous techniques have to be applied to modeling, design and analysis of a system

behavior prior to implementation.

1.3 AS-TRM

AS-TRM [6] is a hybrid architecture that merges the real time reactive systems
and autonomic systems paradigms. AS-TRM builds on Timed Reactive Object Model
(TROM) [4] architecture and extends it to suit autonomic systems properties. TROM is a
formalism created to the design and development of Real Time Reactive Systems. Based
on object oriented principles, the formalism allows system modularity, compositionality
and hierarchy. The formalism is made up of three tiers that hierarchically abstract
complexity of the system design. The bottom tier uses the Larch Shared Language (LSL)
[5] for defining abstract data types to be used by the middle tier. The middle tier consist
of a generic reactive class that is an extended state machine with ports, timing constraints
and logical assertions on the attributes. Interaction between generic reactive classes is

made by message passing expressing system events on compatible ports. Finally, the top

2

tier models the collaboration, interaction and communication of interacting generic
reactive classes. A development framework: TROMLAB, has been created based on the

TROM formalism for design and development of real-time reactive systems [4].

AS-TRM architecture consists of five tiers designed to the composition of self-
managed, distributed, proactive and evolving autonomic real-time reactive systems [6].
At the moment of writing this thesis there is no other research work, to our knowledge,

that combines the two areas of research into a single framework.

1.4 Motivation and Context

AS-TRM represents an open research area in expansion and considerable research
work has to be done to develop its potential; this thesis is oriented to contribute to that
research effort. Previous work in AS-TRM by Heng Kuang [6] demonstrated the use of a
calculation methodology that provides the self-assessment of reliability in AS-TRM. This
reliability calculation method, based on the Markov chains theory, was applied to a set of
states of a group of reactive objects whose reliability had to be evaluated. The set of
states to be analyzed was comprised by all the legal states and transitions that the group
of reactive objects could produce by the use of external or internal events. The
calculation technique to abstract all the possible states and transitions that several state
machines can produce in conjunction is denominated synchronous product machine.
Also, the set of all legal states and transitions is represented by the set of all possible
states and transitions minus the undesired states that violates some system properties like
safety or liveness. Important is to notice that all the legal states and transitions of a
reactive system defines its legal behavior and that its correct composition represents the

correctness of the system’s behavior against its specification. Such information provides

3

important insight useful for the development of real time reactive systems especially at
design time. Additionally, a data repository loaded with the legal behavior of a group of
reactive objects might be useful in assisting run-time self-monitoring. Having the
previous considerations in mind, this thesis research work was directed to provide AS-
TRM with automatic generation functionality of the legal behavior of a group of

autonomic reactive objects. In order to do that, the following goals where set:

a) To modify and extend the AS-TRM formalism to suit the needs of the

specification that a synchronous product machine represents in the context
of AS-TRM.

b) Since the behavior of a reactive system is also governed by properties like
safety and liveness; to design a specification to include such properties as
part of the autonomic reactive component specification.

c) To design and implement an algorithm to produce automatically a
synchronous product machine taking as input the modified and new

specifications designed in a) and b).

1.5 Organization of the Thesis

e Chapter 2. The related research work is surveyed in this chapter.

e Chapter 3. This chapter introduces the TROM formalism, its notation and the
TROMLAB framework.

e Chapter 4. The AS-TRM is described as an hybrid of both: Autonomic Systems

and Real-Time Reactive System.

Chapter 5. In this chapter, a detailed explanation of the algorithm for calculating
the synchronous product machine is provided. The specifications of liveness and
safety policies as well as other extensions to the AS-TRM current model are
introduced. Finally, the minimum and maximum delay algorithm is presented.
Chapter 6. This chapter shows the design and the implementation of the
algorithm. Tests are conducted on the Railroad case study and the results are
presented.

Chapter 7. The conclusions are shown in this chapter amongst suggestions for

future research directions.

Chapter 2. Related Work

This chapter reviews the research work in the AS-TRM area as well as in the
automatic generation of synchronous product machine for real time reactive systems
modeled in TROM. Also, the verification of the correctness of a system in the context of

real-time reactive systems modeled with TROM formalism is surveyed here.

The research work reported in this thesis addresses the problem of self-monitoring
the correctness of an evolving behavior in reactive autonomic systems modeled with the
Autonomic System Timed Reactive Model (AS-TRM) [6][7][9][16][17][18][19], where
each autonomic component is designed to react to every request from the environment in
real time and synchronize its behavior with the environment (including other autonomic
components). Recent research work related to the AS-TRM architecture includes the
work of Heng Kuang [6]. He also introduced the reliability self-assessment of an
Autonomic Reactive Component as part of his master thesis research work [6] [7][9]. The
reliability calculation proposed in [6][9] was derived from the theory of Discrete Time
Markov’s chains and needed as input the exhaustive legal behavior of a group of
Autonomic Reactive Objects (ARO). The proposed in [6][7][9] used as input the
exhaustive legal behavior calculated manually. The present research work complements
the reliability self-assessment calculation method by providing an automated way to
generate its input. In references [7] [18], the Autonomic System Specification Language
(ASSL), a framework for formally specifying and generating autonomic systems, is used
to describe formally the AS-TRM architecture. A case study was conducted by specifying
in ASSL the architecture of the Team-Robotics case study [18]; in such case study,

autonomic features like self-scheduling and self-monitoring are described.

6

Manar Abu Talib proposed a formalization of the functional size measurement
from the AS-TRM architecture [16] under the COSMIC measurement method developed

by the Common Software Measurement International Consortium (COSMIC) [9].

Previous work in the area of formal verification included [8], in which Achuthan
points to the use of temporal logic for defining system properties such as safety.
Muthiayen [11] specifies formally a set of axioms for defining system properties such as
safety states them as theorems and proves those theories by the mean of the PVS theorem
prover. However, the approach is iterative and requires a considerable expertise in order
to verify the properties of the system. In the research on the algorithms for calculating
synchronous composition, the work of Zheng [12] in the automated generation of test
cases on reactive systems proposed the SPM algorithm on which this research is based,
although the algorithm presented in this research work differs in important aspects. The
original synchronizes pairs of objects only, and does not make use of any mechanism for
including safety and liveness properties which allow every possible state to be derivable
from the system. Nor does it provide a way to handle the time constraints of the resulting
composite product. In this research work, those issues are handled by the SPM algorithm
presented in Chapter 4 by allowing a complete subsystem to be calculated at the same
time. In addition, the algorithm includes the use of safety and liveness system policies as
input, thereby providing an alternative to model checking and ensuring correctness by
construction. Finally, the interaction of the autonomic reactive objects within the
component in terms of time constraints is also properly specified in the final product

composition of the autonomic reactive objects.

Our approach differs from the existing work in that the model of the exhaustive
behavior of a set of synchronously communicating autonomic reactive along with the
time constraints complying with the system policies, is built automatically. On the other
side, the correctness of the resulting model is guaranteed by construction because the
system policies and timing constraints are built-in and do not require any additional

verification.

Chapter 2 will explain in more detail the TROM formalism and its development

framework TROMLAB.

Chapter 3. Background

This chapter will explain in more detail the TROM formalism and its
development framework TROMLAB. Next, an explanation on how TROM is extended

with autonomic capabilities to form AS-TRM is shown.

3.1 Timed Reactive Object Model (TROM) formalism

The Timed Reactive Object Model (TROM) conceived at Concordia University
by [4] is a formalism used to model real time reactive systems. It is based on Object
Oriented principles that enable it to have features like modularity, reuse, encapsulation
and hierarchical decomposition using inheritance. At its structure, TROM is formed by
three tiers which work independently to allow different levels of abstraction in the

specification as shown in Fig. 1.

B I T A T Y

First—Order

Larch Shared
Data Model |wg———] arch Share Logic

1+ | Language (LSL)

s . ;
Eow 3 N .] !
Subsystem _ ¢ ¢ | System Configuration - | Synchrony)
tion |¥77| Specificati — " Ax 1
Computation ‘o pecilication D xiom :
E2] i 3
4 i t
¥ : 8 : :
P P .
ot i 3
L ¥ i 3
o2 PR v
L i i
ik [i
i § :
g . N
TROM - Timed Reactive + «| Time Constramt | |
£ x ‘ T % T * . e M
Computation HEN Object Model ; & Transition '
M fo Axioms ‘
% 3
+
]
k]
]
i
]
k]
1

Operational
Semantics

e s e GE e S R N AS S WL RE S WU I W

Three-tiered
Specifications

G 8RB RGN W U MR S W N ML NS S T 48 BB W s

Logical Semantics

L L N Rl

Y

s e
N e W o R e s S

S W WG e W W L e A ke e

Figure 1. TROM architecture; 3 tiers view [4]

9

The first tier represents the abstract data types expressed by Larch Shared
Language (LSL) specification [4] traits at the bottom level. In the middle-tier
specification, reactive objects are specified as TROM classes. The top tier specification

formalizes collaboration between objects where each object is a TROM object.

3.2 First Tier — Larch Formalism

The Larch Shared Language [5] is used to specify data abstraction meant to be
used by the second tier of the TROM model to model the attributes of the generic reactive

classes. An example of a Larch LSL is shown next:

Trait: Set(e, S)
Include: Integer, Boolean
Introduce:
create; ->S;
msert: e, S->5;
delete: e, S->§;
size: S-=Int;
member: e, S->Bool;
isEmpty: S->Bool;
belongto: e, S->Bool;
end

3.3 Second Tier — TROM Formalism

This tier models the TROM objects or Generic Reactive Classes (GRC). A GRC
is a hierarchical finite state machine augmented with ports, attributes, logical assertions
on the attributes and time constraints. A GRC has a single thread of control and the
communication between GRCs is made through message passing also known as
rendezvous. An interaction represents the act of message passing between the GRC and

10

its environment. A port type is the specification of the messages used in the interaction
taking place at a specific GRC with its environment. A state is an abstraction that denotes
system information or environmental information at a given moment; a GRC has a
unique initial state. An event denotes the GRC’s instantaneous activity which can be of
three types: incoming, outgoing and internal. The attributes of a GRC can be abstract data
types imported from the first tier or port types. The following presents a formal definition

of a TROM as an 8-tuple (P,€,0,X,L,9,A,Y,R) where:

e P with a finite set of ports associated with each port-type, and the null-type F,

whose only port is the null port ,;

e £ is a finite set of events and includes the silent-event tick; the set € - {tick} is

divided into two disjoint subsets:

o € «x represents the set of external events, and
o & i represents the set of internal events
o The internal events are associated with the null port F,

o Each external event is associated with a unique port-type p : P — {Po }

e O is a finite set of states where 8, : 0, is the initial state; there is no final state

(the behavior of a TROM is assumed to be infinite in time)

e X is a finite set of typed attributes:

11

o abstract data types

o port reference types

L is a finite set of LSL traits for the abstract data type used in X

® is a function-vector (@ ,0,) where @, associates with each state 6 a set of sub

states and @ associates with each state 6 a set of attributes.

A is a finite set of transition specifications; a transition specification A is a three-

tuple: < 6,6") ; e(Yport); Wen = Wpost >; Where:

o 6,0 0 are the source and destination states of the transition;

o anevent e labels the transition; Yoy (Optional) is an assertion on the
identifier of the port at which an interaction associated with the transition
can occur.

O Yen = Ppost, Where P, is the enabling condition and 1,4, is the post-
condition of the transition.

o ey is an assertion on the attributes specifying the condition under which

the transition is enabled.
O Ypost is an assertion on the attributes specifying the data computation

associated with the transition.

12

e Y isafinite set of time-constraints. A time constraint v; € ¥ is a tuple
A, e’y [L,u], ®;) where:
o A;is atransition specification,
o €'; is the constrained event which can be of type internal or external but
not input,
o [l,u] defines the minimum and maximum response times
o 0;: 0 is the set of states wherein the timing constraint will be ignored

(optional).

An example showing a GRC using the TROM specification language is shown
next:

Class Pump [GP]

Eventa: OpenPump?@P, ClosePump?@P, open
States: *closed, toopen, opened

Attributes:

Traits:

Attribute-Function: closed -> {};toopen -> {};
opened -> {};

Parameter-Specifications:

Transition-Specifications:
Ri: <closed,toopen>; OpenPump(](true); true => true;
R2: <closed,closed>; ClosePumpl] (true); trus => true;
R3: <toopen,openad>; open[] (true); true => true;
Ré: <opened,closed>; ClosePumpl] (true); true => true;
RB: <opened,opensd>; OpenPump[](true); true => true;
Time-Constraints:
TCvarl: K1, open, (0, 5), {};

end

13

To specify a subsystem configuration of GRCs we use the composite class
specification. This is intended to reduce complexity of the system and to promote
modularity at the subsystem level. A Composite Class is a macro-architecture that may
include micro-architectures (TROM classes) as well as other macro-architectures [4]. The
composition rule that determines the configuration of the components in a macro-
architecture is based on port-type compatibility [4]. A composite object can have multiple
threads of control. By gluing compatible ports of GRCs a composite class can be formed.
The events associated to those glued external ports become internals inside the
specification of the composite class. The composite class specification is shown next:

CompositeClass<identifier>{<listofprot - types>)
Incarnations:

Connectors:
end

The specification includes an identifier part to specify the name of the class. An
incarnation of a class is the class specification in which the port-type parameters may be
renamed. The incarnations section defines a set of incarnations which participates in the
composition of the class. The connectors section lists the connectors that glue the

compatible ports.

3.4 Third Tier — System Configuration Specification

The System Configuration Specification is used to define system or subsystems

specifications by the composition of smaller subsystems or GRCs. Each subsystem is

14

formed by the collaboration of the objects instantiated from the second tier. The template
for forming system configuration is shown next:
Subsystem < name
Include:
Instantiate:

Configure:
end

The Subsystem word at the beginning of the specification is followed by its name.
Next, there is the Include section to import other subsystems; the instantiate clause to
define GRCs; and the configure class defines a configuration obtained by the

collaboration of GRCs specified in the Instantiate clause and other subsystems specified

in the include section.

3.5 TROMLAB

TROMLAB is a framework created at Concordia University based on the TROM

formalism. The following is the current list of components developed and implemented

for TROMLAB:

¢ Rose-GRC Translator - which automatically maps the graphic UML model to

the formal specification;

e Interpreter - which parses, syntactically checks a specification and constructs an

internal representation;

e Simulator - which animates a subsystem based on the internal representation, and

enables a systematic validation of the specified system;

15

¢ Browser for Reuse - which is an interface to a library, to help users navigate,

query and access various system components for reuse during system

development;

¢ Graphical User Interface - which is a visual modeling and interaction facility for
a developer using the TROMLAB environment;

¢ Reasoning System - which provides a means of debugging the system during
animation by facilitating interactive queries of hypothetical nature on system
behavior.

e Verification Assistant - which is an automated tool that enables mechanized
axiom extraction from real-time reactive systems.

e Validation Tool - an automated tool that enables mechanized validation of safety

properties based on PVS.

The architecture of TROMLAB is shown in fig. 2.

16

Graphical User Interface
. ML GUL

TROMLAR GUX UML-GIN

(oo)
(Romonc ot
i

{ Formal Specification

g i

([EmmoR | INTERPRETER
R SINMVLA TION TOOL
o " . Lexical
Ao ivzer OBIECT MODEL
ConfigBpees T Aatract) SUPEORT
' Tree Tt Pawt [% -T2
Aaalyzer {Uuﬁuiﬁen g:g:::i

LB Trains

=D

(ISL TRAITS/TARCH f AXIOM }

Event
Hanadier

Reachinn
Window
Manager
Ewot
Scheduler

il

C++ LIBRARY

I

Link ta PVE
LEL Library
Support

LST Libra SYSTEM MODEL
l Wanager ! WANAGER 5 ORT
st tiste
; fonfigum
’ z‘;?’“ “vmmm]

Figure 2. TROMLAB architecture

Next, the AS-TRM is described as a hybrid of both: Autonomic Systems and

Real-Time Reactive Systems.

17

Chapter 4. Autonomic Systems Timed Reactive Model (AS-
TRM)

The Autonomic Systems Timed Reactive Model (AS-TRM) is an extension of the
TROM formalism to include capabilities of Autonomic Systems [6]. It is a framework for
autonomic distributed real-time reactive systems which leverages their modeling,
development, integration, maintenance, and continuous monitoring of their reliability [6].

This is shown in figure 3.

Figure 3. Concept of AS-TRM

The AS-TRM tiers extending the TROM formalism as shown in figure 4.

18

Autonomic Component Group

Autongmic Reactive:Conponent

Autoriomic reactive Object

- .| “Larch:Shared Language (LSL)-

Figure 4. AS-TRM architecture; 5 tiers view

These tiers are explained as following. The Autonomic Reactive Component (ARC) in
AS-TRM substitutes the TROM top tier System Configuration, and the Autonomic
Reactive Object (ARO) tier substitutes TROM object tier (see Figure 1). In AS-TRM,

there are two additional tiers, namely:

e A group of synchronously interacting ARCs: AS-TRM Component Group

(ACG);

e A collection of asynchronously interacting ACGs: AS-TRM System (AS).

19

4.1 Autonomic Reactive Object (ARO)

The Autonomic Reactive Object (ARO) specified in AS-TRM is an extension of
the Generic Reactive Component (GRC) expressed in TROM. Like the GRC, the ARO is
an extended state machine augmented with ports, attributes, logical assertions on the
attributes, and time constraints [4]. Formally, the reactive autonomic object ARO is

modeled as a 9-tuple (P, E,0,X, L, D, A, Y, R) where:

e P is a finite set of port-types; a distinguished port-type is the null-type P, whose
only port is the null port , ; the communication between the AROs is realized
through ports from which the events are sent/received by a ARO.

e £ is a finite set of events and includes the silent-event tick; the set € - {tick} is
divided into two disjoint subsets:

o € x represents the set of external events, and

o & i represents the set of internal events

o The internal events are associated with the null port P,

o Each external event is associated with a unique port-typep : P — {Po }

e O is a finite set of states where:

o 6,: 0,is the initial state; there is no final state (the behavior of an ARO
is assumed to be infinite in time)

o 6, : 0 is a designated state for modeling the planning of the reactive tasks
based on the available resources;

e X is a finite set of typed attributes:

o abstract data types

o port reference types

20

e L is a finite set of LSL traits for the abstract data type used in X

e @ is a function-vector (@ ,y, ;) which @ associates with each state 6 a set of
sub states, @y associates with each state 8 a set of attributes and @, associates 6,
with the set R.

e A isafinite set of transition specifications; a transition specification A is a three-
tuple: < (8,60°) ; e(Wpore); Wen = Wpost >; Where:

o 8,80': 0 are the source and destination states of the transition;

o an event ¢ labels the transition; ¥,,,+ (optional) is an assertion on the
identifier of the port at which an interaction associated with the transition
can occur.

O WYen = WYpost, Where 1, is the enabling condition and ., is the post-
condition of the transition.

O en is an assertion on the attributes specifying the condition under which
the transition is enabled.

O Ppost is an assertion on the attributes specifying the data computation
associated with the transition

e Y is a finite set of time-constraints. A time constraint v; € Y is a tuple
(Ai, e’y [Lu], ®;) where:

o A; is a transition specification,

o €'; is the constrained event which can be of type internal or external but
not input,

o [l,u] defines the minimum and maximum response times

21

o ©;: 0 isthe set of states wherein the timing constraint will be ignored

(optional).

® R is aset of resources available locally for the object to support its functionality.

The main differences between TROM and ARO specifications are listed below:

e One more set is included in the extended finite state machine specification of an
ARC, namely, a set R which models the set of resources available locally for the

object to support its functionality.

e Set ® in ARO includes a designated state 6, : ® for modeling the planning of the
reactive tasks based on the available resources, which is to model the autonomic
behavior of the object;

o The function-vector (D5, Oy, @) in ARO is augmented with one more component

where @, associates 8, with the set R.

4.2 Autonomic Reactive Component (ARC)

A reactive component in AS-TRM is a collaboration of reactive autonomic
objects, where one of the objects is designated as an ARC leader. A reactive component
is specified by composing reactive autonomic objects. The specification consists of the

following sections: Members, Configure and Leader; the template is provided below:

RC <name>
Members: <list of reactive autonomic objects>
Configure: <list of pairs of synchronously communicating objects>

Leader: <name of the reactive autonomic object designated as a RC
leader>

End RC

22

The environmental objects synchronized with the system are modeled as reactive

autonomic objects and are included in the ARC.

4.3 Autonomic Components Group (ACG)

The AS-TRM Autonomic Component Group is a set of synchronously
communicating ARCs cooperating in a fulfillment of a group task. Each ACG can
independently schedule and accomplish a complete real-time reactive task. The self-
scheduling and monitoring behavior at the ACG tier level is realized by the ACG’s
Autonomic Group Manager (AGM). Group configuration specification provides the
specification for a group of reactive components by composing them. The template for
the ACG is given next:

ACG <name>
Members: <list of reactive autonomic reactive components>
Configure: <list of pairs of synchronously communicating objects>

Manager: <name of the ACG manager>
End_ACG

4.4 The Global Manager

The AS consists of a set of asynchronously communicating ACGs. The self-
monitoring behavior and the asynchronous interaction between the AS and the ACGs is
realized by the Global Manager (GM). The responsibilities of the GM include the
continuous distribution and monitoring of the AS tasks, and self-healing in occurrence of

task failure.

23

4.5 Characteristics of AS-TRM

The AS-TRM extends the TROM formal model by including the specifications
for a time-reactive object (ARO), an autonomic reactive component which consists of a
set of synchronously interacting AROs (ARC), and an autonomic system (AS) consisting

of asynchronously communicating ACGs.

A diagram illustrating the interaction between the elements in the AS-TRM

architecture is shown in figure 5:

ARS Manager

S |

ARO Leader 2

Figure 5. Interaction between elements of AS-TRM architecture

24

Following there is a summary of the autonomic characteristics of the AS-TRM

architecture in addition to the real-time and reactive characteristics inherited from the

TROM formalism:

— The AS-TRM is self-managed: it can monitor its components (internal knowledge) and
its environment (external knowledge) by checking its status from them, so that it can

adapt to changes, known or unexpected, that may occur, which may be the following;

— The AS-TRM is distributed: the components within it can collaborate to complete a

common real-time reactive task in a distributive fashion;
— The AS-TRM is proactive: it can initiate changes to the system;

— The AS-TRM is evolving: a) the policies of each AS can be changed during runtime
according to changes in the requirements; b) the composition rules of the ARCs within
the corresponding peer group can be changed during runtime; c¢) the synchronization
axioms among the AROs and ARCs within the corresponding peer group can be

changed during runtime.

Chapter 5 describes the algorithm that generates the synchronous product machine
(SPM) of an Autonomic Reactive Component (ARC) containing several Autonomic
Reactive Objects (ARO). Also, an algorithm for calculating the minimum and maximum

delay time is presented.

25

Chapter S. Synchronous Product Machine Algorithm
Description

The Synchronous Product Machine (SPM) is a technique for creating complex
states from two or more state machines. This complex state represents the exhaustive
behavior of the group of the involved state machines. In this chapter, an algorithm to

calculate the SPM of a group of Autonomic Reactive Objects is presented.

5.1 Informal Description

The SPM algorithm’s goal is to construct a directed-graph data structure
representing the SPM of a group of AROs contained in an ARC; the SPM transitions are
abstracted as edges and the SPM states as vertices. The synchronous product machine
represents all the states and transitions that results of combining two or more machines to
produce a complex one. For example, the synchronous product machine (SPM) of two
simple state machines S1 and S2 (see Fig.6) is depicted graphically in Fig. 7, where each
SPM state is a combination of states of S1 and S2, and the SPM transitions modeling the

synchronous communication between S1 and S2 are triggered by the shared events e and

@ ! @ =

Figure 6. Simple state machines S1 and S2

f.

26

Figure 7. SPM of state machines S1 and S2

The algorithm constructs each new SPM state in a similar way as a breadth-first
algorithm [14] traverses the vertices in a graph. It starts by examining the initial SPM
state and then generates the SPM states and SPM transitions derivable from that initial
SPM state. The set of newly produced SPM states is used to analyze each of their new
SPM states and to produce another set of new SPM states. This process stops when no
new SPM states can be produced. If a SPM state that does not produce any new SPM
transitions is reached then it is marked as erroneous and the algorithm continues
analyzing the remaining SPM states. If the algorithm stops with no erroneous SPM states,
then this means that the ARC being analyzed according to its AROs synchronous
communication specification and the system’s policies is valid. Otherwise, the system is

erroneous at some point of the ACG design.

The AROs modeled in AS-TRM are extended state machines that communicate
synchronously with each other through external events, while internal events are used
within the context of a single ARO. This means that a SPM transition may be generated
based on i) a single ARO transition with an internal event, or ii) two (or more) ARO
transitions sharing an external event. The generation of the transitions is restricted by a

27

set of policies that implement the safety and liveness properties of the reactive system.
This policies are modeled as first-order logical expressions where a set of predicates are
related using the logical operators and, or and negation. So, the algorithm does not
calculate exhaustively all the possible SPM states (which are represented as all possible
combinations of the ARO simple states) but rather calculates the valid SPM states

complying with the set of policies.

The specifications of the timing constraints for a resulting SPM (see section
5.3.1) are handled by the algorithm in a two-stage process. In the first stage, a clock
variable TCVar# is generated for tracing the new SPM time constraint, and in the second
stage it gathers the information related to the SPM transitions that are constrained by the
TCVar# clock. The correctness of the timing requirements in terms of their conformance

to the maximum response delay is checked on the SPM, as described in Section 5.5.6.

5.2 Input Specification

Following the specification of the input to the SPM is given, which consists of a
set of AROs and an autonomic reactive component (ARC) configuration specification,
along with a set of safety and liveness policies. The ARO specification has already been

introduced in chapter 3.

5.2.1 Autonomic Reactive Component Configuration Specification

The template for specifying the ARC configuration specification is shown in
section 4.9 of the previous chapter. For the calculation of the SPM algorithm we only use

the information regarding the identification of the synchronous communication between

AROs, which is specified as a collection of pairs S = {(O,,, Op,), ., (0q,,, Op,)}

28

where two AROs, O, and O, , are synchronously interacting iff there exists a pair in S

such that (O, , 0) V (0, O,).

5.2.2 Specification of System Policies in AS-TRM

The behavior of an ARC in AS-TRM is modeled by a set of safety and liveness

policies which are specified at the ACG layer. A mixed state and event-based

specification of safety and liveness policies in first order logic is used. A liveness policy

specifies that, given a determined state of the system, some specific event has to

eventually occur in the ACG. On the other hand, a safety policy specifies that, given a

certain configuration of states, a given event has to be prevented from happening. The

definitions of the predicates used in defining the timing properties are introduced below:

L

II.

I

IV.

The predicate object_at(0;,0)[15] is used to specify a specific ARO O; in its
state 6 or object_at(0,8) to specify AROs of the same type as O in their state
0,

The predicate object_of (0;,0) is introduced to specify that all but one object of
type O to is in state 0,

The predicate vector_at(0,0,,...,0;,) is used to define a set of states of a vector
of reactive autonomic objects of the same type O; and

The predicate occur(0;, e, A) [15] is used to specify an action to take place in the

form of an event e in the object O;; optionally, we may specify A, the exact

transition that triggers event e. For instance, a safety property

object_at(0y ,0;) = —~occur(0;,e,A) means that for every state

(64,0, ,..,6,) in O if the substate corresponding to an object Oy is 8, then

29

the object 0; cannot make use of the event e and/or the transition A. On the other
hand, a liveness property object_at(0y ,0;) = occur(0;,e, A) specifies exactly
the same situation for a given SPM state but in this case the predicate occur()
imperatively prompts the use of the event e and/or transition A for the analysis of

the SPM state.

The safety and liveness properties are specified within the ACG using the

following template:

ACG_Policies <name>
Safety: <list of safety properties>
Liveness: <list of liveness properties>

End_ACG_Policies

An example showing one safety policy and one liveness policy is given bellow:

ACG_Policies MyACG_policies
Safety:
object_at (Trainl, Exit) AND object at (Controllerl,
monitoring) -> occur (Gatel, Up)
Liveness:
vector_at (Train, Idle) AND object_at (Gatel, Open) -> NOT
occur (Trainl, In)
End_ACG_Policies

For the Safety policy in the example above the premise part is:

object_at (Trainl, Exit) AND object_at (Controllerl, monitoring)

We can see that the premise has two predicates. The conclusion part is the
following:

occur (Gatel, Up)

30

5.3 Output Specification

The output of the SPM algorithm is represented by the synchronous product

machine composition of the ARC being specified. Informally, each state in the SPM is a

combination of states, one state from each AROs belonging to the ARC; the transitions,

triggering events and timing constraints are defined according to the SPM notation and

the SPM generation method, as described below.

5.3.1 SPM Operation Specification in AS-TRM

Mathematically, the SPM operation is defined by the symbol @ [4]. An SPM of n

AROs is denoted by 05" = {0,®0,® ... ®0,} where 0°"" is a 9-tuple of the form

(Psyn' ESYN QSYN XSYN [SYR pSYn Asyn ysyn Rsyn) such that:

PSY™ is a set of port-types allowing for a synchronous communication between
the AROs

ESYM is a union of all €; where i: [1..n]

O5Y™ is a finite set of reachable and valid SPM states; each SPM state is a vector
of n states (64, 85, ..., 8,) where 6;: 0; . A valid SPM state is a state generated by
the SPM algorithm for which the ACG policies hold. There is only one initial
state notated as 8;°" = (8;"", ..., 65" ™), and no final states.

XY™ is a union of the finite sets X, ", ..., Xy "

L¥™ is a union of the finite sets of LSL traits for the ADT used in the AROs
@™ is a function-vector (@;7", 5", ;™) which &;”"associates with each

SPM state 87" a set of sub states, ®,; = associates with each SPM state 6°¥™ the

31

union of the set of attributes a set of attributes @g¢ 1 (6;""), ..., Pge n(6,"); and

@;>™ associates each SPM state 85" with a subset of RSY™.

o A is a finite set of transition specifications, where a transition specification

ASY7 is a three-tuple: < (@Y™, 0"Y™) ; e; Yo"t = Yo > described below:

o

o]

post

@syn, @’sY™. @Y™ are the source and destination states of the transition.

an event e labels the transition

There are two cases to be considered when specifying i

syn syn
en = post?

namely:

e is an internal event for a single substate Ois Y In this case

syn
ex = Pen; and lppost = lﬂ,ﬁf,'?ti

e is a shared (common) external event for the reactive objects
04,0}, Oy, ... which triggers a change of state in the '™ substates
61, 6;, 6y, ... In this case, ., is a disjunction of the enabling

syn

conditions Yer i, Yen j Wen ks - and Yo, is the conjunction of the

post-conditions of the transitions Ypest i» Wpost j» Wpost ks -

e Y™ is a finite set of time-constraints. A time constraint v;”"* € YY" is a tuple

(/'ll.;)'yn

U

syn

, (157, us¥], 6,7™) where:

S . ", . .
o A’i’m is a transition specification,

o}

wy

syn

is a set of 2-tuples of the form (&';”™,1';”™) where ']>" € A"}

**Y™ is the constrained SPM event which can be of type internal or

e
external in the definition of the corresponding reactive object(s)

01,0;,04, ...

32

syn
)

= A'7”™ is the SPM transition specification that issues e
o [I5Y™,uY™] define the minimum and maximum response times. There are
two cases to be considered when specifying [[V", us¥™], namely:

® e is an internal event for a single substate 6,"¥"

of an object Oy, In
this case "=1;and u ™" = u ;, where [/ ;, u ;] is the range defined
for this transition in O,, .

* e is a shared (common) external event for the reactive objects O,
O;, Oy ... which triggers a change of state in the 6" substates 6"
, 67", 67", ... In this case [ISY",uSY"] is set to be the most
restrictive range [/ ,, , u ,] for the transitions originating in the
states 67", 6", 6" ... and due to e; we choose only those of the
reactive objects O;, O;, Oy, ... where e is defined as an output

external event (the input external events cannot be restricted due to

the reactive behavior of the object).
o 0;”™:6 is the set of states wherein the timing constraint will be ignored
(optional). The set 8" is generated by the intersection of the those

substates from the set 8, 8 », ..., 8 , for which the timing constraints are

ignored in their corresponding objects O;, O, Oy, ...

RSY™ is a set of resources available in the ARO:; it is defined as a union of all

R;i:[i..n].

33

The timing constraints are built into the model as guards on the transitions; the

local clocks are employed for specifying the timing constraints.

5.4 SPM Pseudocode — Main Procedure

This section describes the SPM at its top level. Also, an activity diagram shown in

figure 8 depicts the SPM workflow.

Input

Formal specification of AROs, ARC policies and ARC
configuration specification

Output

SPM specification

Variables

Let C be a set of newly generated SPM states

Let 6 be a set of all reachable and valid SPM states
Let T be a set containing the SPM transitions produced

Let Temp be the SPM state currently being analyzed

Calculation

1 Start at the initial SPM state 6;”" and add it to C
and G (note: the initial state is both reachable and
valid)

2 While € is non-empty do:

2.1 Choose an unmarked SPM state from € and assign it

to Temp
2.2 Select applicable policy to Temp
2.3 If policy of type liveness applies then generate

candidate transitions from this policy using sub
procedure described in section 5.5.4

2.4 Else generate candidate transitions from Temp
using sub procedure described in section 5.5.4

2.5 Validate all candidate transitions against safety
policy using sub procedure described in section
5.5.2

34

2.10

If no new valid transitions are generated then
mark Temp as erroneous and continue to analyze next
SPM state in C. Go to Step 2.1

Use validated candidate transitions to construct
new SPM transitions and SPM states using the sub
procedure described in section 5.5.1

Add new SPM states to € and G
Add new SPM transitions to T

Calculate SPM time constraints for newly added SPM

transitions using sub procedure described in
section 5.5.5

Delete Temp from C

End While (Step 2)

3 The final SPM is a set that contains the sets of SPM
states &, SPM transitions T and SPM time constraints

T

ad

' Start at the initial SPM state
,’t@d"’?‘ﬁiﬁpc !

 Choose a non erroncous SPM

tt&

Generate candidate transitions
from fiveness policy. Section
5.54

"Use validated transitions to

‘Calculate SPM time

1 Addnew SPVI

generats new SPM L) constraints fot iew. | | Delete Temp from
ansitions/states. Sectiof transitions t0 7 . SPM transitions. c
bS8 Sl

Report ertor and thark
Temp as erroneotis

Figure 8. Process diagram of SPM algorithm

35

5.5 SPM Pseudocode — Sub Procedures

In this section, each sub procedure mentioned in the previous section for the

algorithm is described in a more detailed view.

5.5.1 SPM Transition and SPM State construction

A SPM state is made by substituting the destination state 6;’ of a candidate

transition 4; into a given SPM state 6,>". A SPM transition A" can be built based in

one or two candidate transitions. If the candidate transition has an event that is internal to
one of its ARO, then we build the SPM transition based solely on that transition (see
Case 1 below). On the other hand, if two candidate transitions share the same event of
type external, then the corresponding AROs are synchronized by that event; the SPM
transition is constructed as a merge of the guard conditions (including the timing
constraints) and actions of those transitions, and of the initialized clocks (see case 2

below). The timing constraints are expressed using the SPM clock variables.

Case 1. SPM state and transition construction — one candidate transition

Input

9 syn

;- =Current SPM state being analyzed

A; = a candidate transition triggered by an internal event

Output

New SPM state Bi'sy", new SPM transition A"

36

Calculation

1 Create a new SPM state Hisyn' such that
Bisyn'=(01,...,0i',...,0n) where 6;' is the destination state
of transition 4;

2 Create a new SPM transition A" based in A; and Bisyn

where A" = ((6",6°" '), e; 0" = Pove,) where Yo =g A

en post
__ .1,5yn
lpPOSt - ¢post i

Case 2. SPM state and transition construction — two candidate transitions

Input

gy

;7 =Current SPM state being analyzed

A; = a candidate transition triggered by an external event e

Ay = a candidate transition triggered by the external event
e

Output

New SPM state Gisy"', new SPM transition ASY™

’

1 Create a new SPM state 0isyn'=(61,...,61-,...,03,',...,8”) where
6;' is the destination state of the transition 4; , and
6y' is the destination state of the transition 4,.

2 Create a new SPM transition A" based in 4; and A, and
6;”" where A" =((6",0" ');e;tp§%”=>¢;3,’?t> where Yoo" is

a disjunction of the enabling conditions Yy

Yeny, .- and t/);ﬁt is the conjunction of the post-

conditions of the transitions Y, i Pposcys -

5.5.2 Evaluation of system policies

This sub procedure calculates if a given SPM state 8,”" holds for a given policy.

This process takes as input a SPM state 6;”" and returns the policy p; that holds in 6;”"
or empty if no policy holds in 6;”". This sub procedure has to deal with the premise

part of the logical expression of the policy that is common to all policies (see section

37

5.2.2). The actual execution of the conclusion of the policy is carried over by the safety
check procedure (see section 5.5.3) for safety policies and by Generation of Candidate

Transition sub procedure for liveness properties (see section 5.5.4).

Input

A SPM state §°", a vector of AROs Q =(0y,...,0p), a set of
policies P ={ps,...,Pn}

Output

A policy p; , a set of policies P

Variables

Let p_result be a boolean variable to store the result of the
evaluation of a policyp;

Calculation

1 For each policy p; in P do

1.1 Set p_result = false

1.2 For each predicate @ in the premise part of p; do
1.2.1 If b; evaluates to true for Bﬁm then

1.2.1.2 p_result = true; GOTO End for (step 1.2)

1.2.1.3 else p_result = false // This policy p; does not

hold for B?m and we continue to examine the
next policy pPi+1

End if (step 1.2.1)
End for (step 1.2)
1.3 If p_result =true then

1.3.1 p; holds for B?m and we return p; as a result of
this function

1.3.2 else no p; policy in P holds for H?m and the
sub procedure returns empty

End if (step 1.3)
End for (step 1)

38

5.5.3 Safety Check

A safety property means that some event has to be prevented from happening. The
conclusion part of a policy of type safety uses the predicate — occur(0;, e, 1) to specify
which event e we want to prevent from happening (see section 4.2.2). A function
safety_check :A - Boolean can evaluate if a given candidate transition can be
employed in the construction of a SPM transition. In case of an external event, both
transitions ﬁiggering a change of state in the individual AROs are evaluated by

the safety_check function. Should safety_check function return false for any of

those candidate transitions then the SPM candidate transition is discarded.

5.5.4 Generation of Candidate Transitions

This sub procedure’s purpose is to generate a new SPM transitions from the
applicable individual AROs transitions. The sub procedure analyzes each ARO and
selects the applicable ones in the ARO current state’s transitions. If the selected transition
has a shared external event with another ARO, then the procedure has to find another
transition in another ARO that matches the same shared event. For doing that, the ARC
configuration specification provides information regarding which AROs are synchronized
by external events. The procedure has one exception, that is, when a liveness policy
applies. In that case, all the candidate transitions will be generated according to the
specification included in the conclusion part of that policy.

Input

gsym

;© =Current SPM state being analyzed

p; = Current policy selected for Hisy"; see section 4.2.1

39

Output

Candidate transition 4; or candidate transitions 4, and 4; at
each iteration

Calculation
1 For each SPM sub state 6; in B?m do
1.1 If p; is a policy of type liveness then

1.1.1 Get a subset of transitions A; from 4; such
that each transition 4;in Ai' has a source state
0; = 0y and an event e;=e¢€, or a transition A; =4
where 0Oy, ex, Ay are elements of the conclusion part
of the policy pg

1.1.2 Else if (p; is not a policy of type liveness) or
(no policy applies to Bﬁm) then

1.1.2.1 Get a set of transitions A; from A; such that
each transition 4;in Ai' has a source state
9=9i

End if (step 1.1)
1.2 For each transition A; in A’ do
1.2.1 If the event e that triggers the transition A; is

of type internal then

1.2.1.1 Perform Safety evaluation, SPM time constraint
analysis; SPM transition build and SPM state
build procedures for the candidate transition
A
End if (step 1.2.1)

1.2.2 If the event e which triggers the transition
Aiand the event is of type shared then

1.2.2.1 Get a subset Q' of AROs from Q such that for
all the AROs in(@ the ARO 0, holds at least one
relationship in R such that {0),0;}V{0; 0y} and
such that 0, contains at least one transition
Ay such that its triggering event e=e' where
event e' is the triggering event of transition
A; and e is the triggering event of transition

Ay
1.2.2.2 For each 0y, in Q' do

40

1.2.2.2.1 Get a subset of transitions A 'from A such
that each transition /1y in A" has a source
state 6, =0; and an event e, =e; where 6; is
the source state and e; is the triggering
event of transition 4;

1.2.2.1.2 For each transition 4, in A" do

1.2.2.1.2.1 Perform Safety evaluation, SPM time
constraint analysis, SPM transition build
procedures and SPM state build for
candidate transitions 4, and A

End for (step 1.2.2.1.2)
End for (step 1.2.2.2)
End if (step 1.2.2)
End for (step 1.2)
End for (step 1)

5.5.5 Time Constraint Calculation

The calculation of the time constraints for a Synchronous Product Machine (SPM)
is done partially in a separate sub procedure as well as in the main procedure of the SPM
algorithm. The reason for doing this is that for a SPM time constraint v;”" there can be
several constrained events within y; as opposite to a single ARO time constraint which
only constrains one event e';. This is because at the moment of producing a new SPM

transition we do not know which SPM transitions are produced with that time-constrained
event/transition e’; until A’; is used in the algorithm process. Therefore, in our
implementation, we keep track of A'; and every time a new SPM transition 4" is
created using A'; , we generate a new 2-tuple (¢;>", ;" ™) and we add it to p';. This
means that the complete time constraint calculation will be known at the end of the

execution of the algorithm. The following sub procedure receives a SPM transition to be

analyzed and a set of one or two ARO transitions that collaborate in the construction of

41

the SPM transition received. The objective is to initialize all possible SPM time
constraint (clock) variables v;”" for 2;”". The resulting Time Constraint variables will be

partially-generated because p'; will be empty at this point.

Input

syn,

One SPM transition A;”"; Set of ARO transitions T = {A,..,4,};

Output

Set of newly partially-generated Time Constraint (clock)
variables

Calculation
1 For each transition A; in T such that 4; is a

transition that initializes at least one time
constraint v; in ¥; do

1.1 For each time constraint v; in ¥; where 4; is the
transition initiating v; do
yn

1.1.1 Create a new SPM time constraint vjs where
A=A ut = empty, [I9Mu] = [l,w], 67 =6
1.1.2 Add v”" to Y™
End for (step 1.1)
End for (step 1)
5.5.6 Min-Max Delay Time Constraint Analysis

This is a static analysis of the time constraint variables generated by the SPM
algorithm. Its purpose is to calculate the minimum and maximum time that a given path
in the system takes to perform a full period in the SPM. This approach is favoured by
[13] as a simple way to calculate time boundaries in a reactive system. The maximum and
minimum time of all the paths in the SPM gives the minimum and maximum time of the

complete system.

Input
42

SPM M = 0,8 ..R0,
Output

Minimum and Maximum delay time for M denoted by the
variables IZY" and uZ¥"

Initialization

Use a depth-first search algorithm [14] to identify and
collect all the possible paths in a SPM machine. Let a path

Z be a sequence of SPM transitions such thatz; = (Aiy", ...,lflyn);
also, let Z9™ be the set of all paths in a SPM such
that Z5" = {z,, ..., z,} .

Variables

Let IZ°Y" and uZ%" be the maximum and minimum time for the
current SPM sequence of paths in Z°"

Let temp_lZ and temp_uZ variables to hold temporary values of
IZ5Y" and uZ¥"

Calculation

1 259" = 0,uZ" = 0,temp_lZ = 0,temp_uZ = 0

2 For each path z in Z%" do

2.1 Set 1z%9" and uz®" be the maximum and minimum time

for the current path z;

2.2 Set temp_lz and temp_uz variables to hold temporal
values of [z%9" and uz’"

2.3 [z59" = 0,uz®" = 0,temp_lz = 0, temp_uz =0

2.4 For each SPM transition A”" in z do

2.4.1 Set v;”" to be a time constraint such that

J

yPm Y and A7 = A7

2.4.2 For each vjsy" in Y do

2.4.2.1 temp_lz is equal to the lowest value for all

the instances of [S9" in vjsy"

2.4.2.2 temp_uz is equal to the highest value for all
the instances of u™" in vjsyn
End for (step 2.4.2)
2.4.3 If vjsyn is the first occurrence in z; then

[z9" = temp_lz and uz”" = temp_uz

43

2.4.4 If temp_lz <Iz%" then [z°" = temp_lz

2.4.5 else If temp_uz >uz’" then uz" =temp_uz
End for (step 2.4)

2.5 If z; is the first occurrence in Z%%™ then
IZ59™ = temp_lZ and uZ™ = temp_uZ

2.6 If temp lZ <IZ°9" then IZ°" = temp_lZ

2.7 else If temp_uZ >uZ%" then uZ" =temp_uZ

End for (step 2)

5.6 Disadvantages of the approach

The SPM algorithm is based in the breadth-first search algorithm [14]. This
algorithm is characterized for having a time complexity of O(|V | + | E |) [14] where
V is the number of vertices and E the number of edges in the graph structure. In a SPM
the vertices are the states and the edges the transitions. The SPM algorithm has different
sub procedures that increases the running time compared to a normal breadth-first
algorithm that makes its node search without any additional sub procedure. Like a
breadth-first algorithm that is exponential in the depth of the graph, the SPM algorithm is
impractical for large inputs, specially as a run-time algorithm. However, the aim of the
algorithm is to assist on the correctness of the ARC model at design time or before an
evolutionary change is authorized and implemented. The depth of the size of the resulting
graph in the SPM algorithm is affected by the so called state explosion in the same way
as the algorithms used for real-time systems model checking do [13]. This problem arises
when the ARC has many AROs that can produce SPM transitions triggered by external
events. In such case, the number of resulting SPM states may grow exponentially with the

number of calculations [13]. Nevertheless, the increased capacity of processing power of

44

modern computational equipment as well as advances in lighter data structures and

implementation techniques [13] makes the proposed approach practical.

5.7 Advantages of the approach

By executing the SPM algorithm, the SPM specification of a group of
synchronously communicating AROs is obtained; and therefore, an exhaustive
knowledge on the behavior of the ARC. The SPM specification represents all valid
behavioural paths of an ARC along with the corresponding states and transitions that a
given ARC can manifest during the execution according to the specification of the AROs.

This has the following benefits:

5.7.1 Detection of undesired states product of an erroneous design.

Each time the algorithm marks a SPM state that does not produce any transition, it
is detecting a flaw in the design of the ARC specification. If an implementation of the
algorithm includes a log file of events to track all the calculations that lead to that
erroneous SPM state then a designer can know the reasons behind the production of such
erroneous SPM state. For example, a safety policy may have held the transitions needed
for the erroneous SPM state to produce new SPM transitions; if that is the case, a further

analysis of the safety policies may solve the problem.

5.7.2 Verification of the ARC against its specifications.

If an error occurs during the execution of the algorithm it can be because of the

following causes:

e An error at the specification of the ARC policies,

45

e An error at the specification of the ARC configuration specification,

e An error at the specification of the AROs in the ARC,

Also, an error which is more difficult to spot comes when the logic behind the
design of the ARC is incorrect. In such case, a designer should have checked that no error
of the type shown in the previous list is present before considering modifying the ARC

logic design.

5.7.3 Validation of the critical timing requirements

The algorithm that calculates the minimum and maximum delay times for a SPM
gives insight on the performance of an ARC. The minimum and maximum delay times
asses for the best and worst case scenario that a given ARC can be expected to perform.
Also, it can calculate that information of each possible scenario (path) that the ARC can

take. This information could be useful in different autonomic applications like:

e Self-estimation of system resources to aid at the planning phase of the
autonomic control loop.

e Self-optimization and self-configuration of the system to match delay
times that may be imposed as a high-level policy.

e Detection of errors or/and unwanted system behavior if the AC does not

perform between the boundaries of the specified maximum and minimum

delay time.

46

5.7.4 Provide with a data repository to be used in autonomic features
The data that the SPM of an ARC produces can be useful for implementation of
different autonomic features in AS-TRM. The self-control of the behavioral correctness is
one of them because the SPM represent the exhaustive behavior of an ARC; thus, a data
repository loaded with that information can detect discrepancies from the actual behavior

of an ARC and the expected one in the data repository.

5.7.5 Provide the input for the calculation of the reliability self-

assessment in AS-TRM

The self-assessment of the AS-TRM reliability proposed by [8], calculates the
reliability of an ARC. Since the input for that calculation is the SPM of the AROs

involved in that calculation, this work complements it.

In the next chapter the description of the design of the implementation of the SPM
algorithm is presented. Its usage is exemplified with a case study and the results of the

experimentation are presented.

47

Chapter 6. SPM Calculation Tool

In this chapter the description of the design and the implementation of the SPM
algorithm are presented. Its usage is exemplified with a case study and the results of the

experimentation are presented.

5.1 Design

The implementation of the SPM algorithm was made in accordance of the

following architecture:

USGT Receives input from the user.
Interface Displays the results on screen.

specification

Generates the Synchronous Product Machine ﬁ

I returns it to the SPM calculator

Fetches the ARC data, parses it and ﬁ

Figure 9. Architecture of the implementation for SPM algorithm

User Interface. The user interface has as responsibilities to provide the user with an
interface to the system and to display the results on the screen. The user can select
between different case study configurations to calculate and decide where to save the

resulting output of the calculation.

48

SPM generator. The SPM generator carries over the whole calculation of the SPM

algorithm with all its sub procedures.

ARC Specification Parser. The ARC specification parser fetches the data from text files
representing the specification of the ARC system. It also prepares the data structures that

the SPM generator will use.

The following collaboration diagram shows the data flow of the overall process:

1) The user selects the data group
for which the SPM will be

generated |
Q — User
Interface
. 2) Handle 9) Display results
Top Package::User request on screen
SPM

Generator
, | | 8) Generate SPM

7) Return parsed
3) Call Parser data

ARC 5) Return Data
Specification:
Parser B

4) Fetch Data

6) Parse data

Figure 10. Collaboration diagram for SPM algorithm implementation

49

6.2 Implementation

AS-TRM [6, 7, 19] derives its ARC functionality and specification by extending
the TROM formalism [4] which is based on object-oriented principles. Hence, an object-
oriented language is chosen to simulate its behavior. Java version 1.6 as a programming
language and NetBeans version 6.10 M10 as a development environment were used to

develop the implementation.

The program receives the input from the user as a case study choice. Then, it
starts calculating the SPM while providing information of different aspects of the
calculation as a log of events. More than only for debugging purposes at development
phase, the event log is important in an implementation of an algorithm like this because it
provides insight in the case study’s specification design. If the specification of a case
study is incorrect at some point, the event log will show the succession of events that led
to that error. This is shown when the algorithm can not generate an appropriate SPM
transition for a given SPM state. In this case, it means that a design error is present in the
specification. By examining the event log it is possible to determine if at the moment of
analyzing a given SPM state any policy interfered with the use of any potential transition.
Also, the logic behind the design of the ARC may be the error’s cause. A sample of the

event log is presented next showing an erroneous design:

Now analyzing SPM_state: [monitor, idle, closed, open, tocross, tocross]

.. (More event results goes here)

----POLICY NUMBER 0 HOLDS----

50

Now analyzing SPM_substate: [tocross] in RC: TRAINI for SPM_state: [monitor, idle, closed, open, tocross, tocross]
----- CANCELED BECAUSE OF SAFETY POLICY: S1

Evaluating candidate transition: RC: trainl , r4 , [tocross] , [cross] , in , true=>true ,

----- CANCELED BECAUSE OF SAFETY POLICY: S1

Evaluating candidate transition: Now analyzing SPM_substate: [tocross] in RC: TRAIN2 for SPM_state: [monitor, idle,
closed, open, tocross, tocross}

----- CANCELED BECAUSE OF SAFETY POLICY: S1

Evaluating candidate transition: RC:; train2 , r4, [tocross] , [cross] , in , true=>true ,

----- CANCELED BECAUSE OF SAFETY POLICY: S1

--Finished Analysis for SPM_state: [monitor, idle, closed, open, toctoss, tocross]
*************#**********ATENTION: SPM STA’I‘E ERRONEOUS****************************

[monitor, idle, closed, open, tocross, tocross] Did not produced any new transition. Iteration: 5

Taking a look at the event log, which has been shortened due to limitations in
space above, it can be deduced that the SPM state: [monitor, idle, closed, open, tocross,
tocross] did not produced any new SPM transition because safety policy S1 held the
possible candidate transitions for producing any SPM transition. In this case, a further
look to the logic of the design of the policies section is indicated towards a successful
production of the SPM. This example shows how the algorithm can be useful verifying

the specifications of an ARC and help in detecting errors in their design.

In chapter 7, the testing of the algorithm presented in chapter 5 is described. The

algorithm is tested with the railroad case study with several possible configurations, and

the results of the algorithm performance are reported.

51

Chapter 7. Railroad Crossing Case Study
In this chapter, the testing of the algorithm described in chapter 3 is described.
The algorithm is tested against the railroad case study with several possible

configurations and the results are presented.

7.1 Description

The input for the algorithm is given as the formal specifications of the Railroad
Crossing case study and is tested with five different configurations. Also, it is presented
how the policies that will handle the liveness and safety properties are designed and
embedded in the ARC configuration specification. The Railroad Crossing is a long-time
used standard case study for testing real-time systems’ specification methods The
Railroad Crossing case study consists of one or several trains which cross a crossroad
with a gate independently and simultaneously using non-overlapping tracks. A controller
controls each gate. When a train approaches the gate, it sends a message to the associated
controller. Then, the controller commands the gate to close. When the train exits the
crossing it sends a message to the controller which instructs the gate to open. The

following are the time restriction for the systems to ensure safety:

e A train enters the crossing within an interval of 2 to 4 time units after informing
the controller that it is approaching.

e A train informs the controller that it is leaving the crossing within 6 time units of

sending the approaching message.

e The controller instructs the gate to close within 1 time unit after receiving the first

approaching message and starts monitoring the gate.

52

e The controller continues to monitor the closed gate when it receives an
approaching message from other trains, and as long as there is a train inside the

crossing.

e The controller instructs the gate to open within 1 time unit after receiving an
exiting message from the last train leaving the crossing.

e The gate must close within 1 time unit of receiving instructions from the

controller.
The safety and liveness policies are as following:
Safety:
e Whenever there is a train inside the crossing the gate remains closed
Liveness:

e When the last train leaves the crossing, the gate eventually reopens

<<GRC>> <<PortTy pe>>
Train . @c
<<Parameter>> TiD : Integer events : Set = {Near! Exit!}
<<PortTy pe>> <<GRC>> <<PortTy pe>>
@G Controller - @
" <<DataTy pe>> inSet : Set[Integer, TSet} ;
: = 1 1} B = 7’
events : Set = {Lower!,Raise!} <<Parameter>> TID : Integer events : Set = {Near?,Exit?}

<<PortTy pe>> <<GRC>>
@s & Gate
events : Set = {Lower? Raise?}

Figure 11, Class diagram for Railroad case study

33

Aptys ased peo[iey Ul 109[q0 3AORST Yoed J0J SWeIdeIp Heyd Aeig 7] dAndig

paso|p
—J

[fo=z1enn 1] esiey]

f1=> 118A01 3 0=<}-BAD1]umoq]

o1)

850|001

[lz =>zeADL %

[y=>118A01 8 Z=<| JEA

{lo=11eAD 1} semo)

= doot
U

L=< ZseAD L]dn}

f uadp

[1a1ve]

anes

0

[9=>zienoL
93 8Ny} 98 10=pid Jjix3]

7

$S01D
) Bnol
0.1 9% anx 9 any Ju]
$S01D0) =
[o=zrenpL %

0=11BAQ L '8 PId=10 / JeaN]

op|

[GasuralL)eieiep
= jasul/ [1 < (Jesu)ezis
2% (Jagurgi)equew ixg)

JOHUON areaoeaq
[0 = 22eAD 1 2% (lesuralt)sieEp \
= josul/[| = (jeguiezis

[(esurai)ussu = Jogui /[enn PR (19surgiL)equaw g eng J(arDwxal

22 ((lesural L sequaw); 99 ann}(q)L)esN]

f[1=>1ren01
2 0=<}JEAQL 99 Oni} 93 ony hamo]

[[1 => 2:eADL B 0=<zienDL
379 on} R any} Jestey]

deAloy
[0=t1enD) 3%
(resurglLuesui=1osut [(alL) 1esN]

[(GesurgiL)pesu=3o5ut /
[eny 93 ((losUrqi1)iequew); wgenil(giL)iean]

(om

VYT TIONLNOD |

[[¥=>148AD1 8 Z=<}1EAD | 9% 0N} 98 ONU} Juj]

ssagoy &

ol 2\ AEDT

[9=>z1enQ)
29 any) 99 annl(@rLuxal

lo=ziery 3
0=1JeAd] g ennAqlL) sesN]

54

Traint : Train2 :
LJrin_ Train

@C1@C @c2:@c

@G1: @G

< 7

Controllert :
Controller
I

.@Rlla___@ﬁ_

|

Figure 13. Collaboration diagram for Railroad case study

7.2 Policy Analysis for Railroad Crossing Case Study

Following is the specification of the policies for the case study. Here it is shown
how to analyze first the statements in natural language from the case study description

and then refine them to form the predicates to be used by the algorithm.
Safety Analysis
- Whenever there is a train inside the crossing the gate remains closed

Analyzing the state chart diagrams in fig. 12 it can be deduced that when a train is
inside the crossing the controller has to be in the state monitor and the gate has to be in
state closed. Actually, the object gate can not issue the event raise to open the gate unless

the object controller is in state deactivate. According to the specification, controller can

55

only transfer from monitor to deactivate when the last train inside the crossing issues the
event exit. So, we choose to decide not to take care in avoiding the event raise since this
can not happen while controller is in state monitor and this means train(s) inside the
crossing. Our approach is to ensure that no train will be inside the crossing while
controller transfers its state from monitor to deactivate. An object of type train can be in
several states inside the crossing but only when it is in state idle is considered to be out of
the crossing. Consequently, controller can only issue the event exit to pass to state
deactivate only if all but one train are in state idle or tocross. Since the object controller
has two transitions by the same event exit, one to transfer to deactivate and the other to
remain in the same state if the exiting train is not the last one, we have to specify the
transition specification in the predicate. The following two safety policies model this

behavior:

1. object_of (train,idle) A object_at(controllerl, monitor) N\ object_at(gatel,closed) —
— occur(controllerl, exit, R6)
2. -object_of (train,idle) A object_at(controller1, monitor) A object_at(gatel, closed) —

- occur(controllerl, exit, R4)

Policy 1 states that controller can not remain in state monitor by issuing transition
Ré6 if all but one object of type train are in state idle. Policy 2 stands for the opposite, by

restricting a possible issue of transition R4 when not only one object train is in idle.

Though not stated in the safety requirements in our case study, we must prevent
an object of type train to enter the crossing if the gate is not closed. To do this, we

prevent the event in from any object of type train in state ftocross to occur if the gate is in

56

any state where is not closed (oper and toclose). We compose the next policy to address

that purpose:

3. wvector_at(train, tocross) A object_at(gatel, open, toclose) — — occur(train, in)

Liveness Analysis
- When the last train leaves the crossing, the gate eventually reopens

When all objects of type train and the object controller are outside the crossing in

state idle and the object gate is in state closed, gate must issue the event up.

4. wvector_at(train,idle)A object_at(controllerl,idle)Aobject_at(gatel,toopen) —

occur(gatel, up)

A detail of the above liveness policy is that in the same SPM state depicted by its
premise, another event may also happen as well which is near. To prevent this, we write

another safety policy:

5. vector_at(train,idle)\ object_at(controllerl,idle)N\object_at(gatel, toopen) -

-1 occur(controllerl, near)
The final set of policies for the Train-Gate-Controller case study is:
Safety

1. object_of (train,idle) A object_at(controllerl, monitor) A object_at(gatel, closed) —
— occur(controllerl, exit, R6)
2. -object_of (train,idle) A object_at(controller1l, monitor) A object_at(gatel, closed) —

— occur(controllerl, exit, R4)

57

3. wvector_at(train,tocross) A object_at(gatel,open, toclose) — = occur(train, in)
4. vector_at(train,idle)A object_at(controllerl,idle)Aobject_at(gatel,toopen) —

= occur(controllerl, near)

Liveness

5. wector_at(train,idle)A object_at(controllerl,idle)Aobject_at(gatel,toopen) —

occur(gatel, up)

7.3 Case Study: Railroad Crossing Generalized

The previous case study had a fixed number of objects of type controller and gate.
This case study is included to prove the flexibility of the policy specification to a
generalized number of objects of any type in the case study. Fig. 14 shows the

collaboration diagram from a specification of 2 trains, 2 controllers and 2 gates.

58

@G1: @G @C4 : @G @G3 : @G @G2: @G

N
N,

AN -
"\, -

Ccént":“?l” : Controller2 :
ontrolier Controller
; !

|
@P1.: @F @P2: @P
|
@81 @S @82: @S
Gate1 Gate2
Gate ..Gate

Figure 14, Collaboration diagram for Railroad case study generalized version

7.4 Policy Analysis for Railroad Crossing Case Study Generalized

The same approach is essentially used as in our previous case study. However,
there is a change in the specification of an object to its type; there is not a single reference

to an specific ARO name. This makes the rules generic for this configuration.

Safety

1. object_of (train,idle) A object_at(controller,monitor) A object_at(gate, closed) —
— occur(controller, exit, R6)

2. =wobject_of (train,idle) A object_at(controller, monitor) A object_at(gate, closed) —
- occur(controller, exit, R4)

3. vector_at(train, tocross) N\ object_at(gate, open, toclose) — — occur(train,in)

59

4. wvector_at(train,idle)A object_at(controller,idle)\object_at(gate, toopen) —

— occur(controller,near)

Liveness

5. wector_at(train,idle)/\ object_at(controller, idle)\object_at(gate, toopen) -

occur(gate,up)

7.5 Experimentation and results

A SPM resulting from applying the SPM algorithm to the Train-Gate-Controller
case study (2 trains, 1 Controller, 1 Gate) is shown in Appendix A. Because of the
amount of information that any other case study issues, only this sample is included of
the output of the algorithm. A graphical representation of the SPM can be appreciated

from the fig. 15.

60

(2383 § “JO[OJ3UOD T ‘SUIB) 7 YIIAL UOISIAA) APTYS ISEI PEOI[IE Wiod) WJS PIonpoad & Supmoys weJSeIp 3eyd jels S 2ndty

é
i yr
2
foneweyul
h US04 D "HRHLD ‘BPEZL PHL L M
N
SLIeAOLIZY BLERAGIEY LLRAOLI0EN
oo poseus]
Leoupasens) o fosen i 1 Lisoupaseus}
ﬁ POSOK) 1D "GJEAROROCI LD OPFEL .o.v_;L
- A t oy poms]]
P PISOID-4O OHLON-LD ‘BAESIZL ‘HDHLL HL ./vaﬁoﬁyﬁ SOMOFFLD BI-ZL BAROT- 1L H
AF L TE Y 7 = gu z ,_.,/Nux ELRADLIDY
. A - N - 2 Leau:pa:eys]
beoo s tings e ixg -paveqs) =~ T paeus] [ErE]
§ «. : i
p POSOIOLO RGO SACOTLL PARITLL “ . . - §
Wlfw\uﬁoc.—w — .aaEL w A / ?5 JORION-10 "HPEEL SSAD L T
_ by - 77 ’ sey — b A iRl
i p Y O oW GH [. :
ﬂ) feusausl B g Ao [fpea ‘pareus] fut jewtiul
POSOID~L0) “SIOVE-1D) "SSID0ZL, "SIk 1L . . -) p s
3 ° “ POSOD-1© W O "SSND-ZL, ‘OneTTL . . i [. o] L
g L POSOION1§ "ML O ARRTZL S0 | | POSCIO-1D SION-D SPIZL SS000HLL |
< A ~ 7 [%
ed Zen U eew _ved Y] oo™
g pamus] fus yewsopal 0 e A0 Tersl fur sl by paseus]
£ B 3 < = g o i ———"
= { pesoicrio somor 10 ‘sso00v 2L .m;umib w posoL09 .B._ﬁsw_o%snv«w.zeo.;_ M,Swgo.no OO SASTZL S001000 1L IS
nwm. — T oz .Eowmwpcaé
; ing el S O Fhans fut feaita™ 7 . - i
VM PIB0I- 10 SOMIOKY-LD "SIOIDNZL KEOAL\ /l POSOLY L6 HRIONED ‘SO0I0EL S0k €
E R -
— sy
P — pgo
] n.nu._w«él! P— S Ry petsegur]
=5 DISOI-1O IOWOP-LD SSAD0LZE SO0 L L KT
Leau :paseys} & A fuesu pasmust
DLIBROLELY 7 LLRADLGHY
iy
fvop Jewsnat
“ BSOITOL- 1D IOWUON-LD SSOIDIZL 'SSOIO0 L} H
7 7
-
040 e T LD
oo spaseies] bomot oumsd Voo Pt~

3 ﬁ w01 D "SIBARIR-{ D SEUDCH-TL “$80I00F L.

ﬁewummug:w@ “OHUOW- LD o2 L .,@P_QOT:r_ i .Q ﬁ BSOID0HLD IORUOIN-1 T SSTIDGKTL .ﬁ#%&

\.,\1\ ,.,/ L

oo Ly pedipy pRAQLEM
pomor pamsey_ ey pamis) LU PAIRTS owoy paieus]
?6 SRR |0 ‘WKL, SO0k :U T&?w 2HRAGOB-1 ‘ST, .o?i

R 7

RO HEADLY

280124 ;

{seous pieys] I paseys)

=

e N 930019 "SPrL0 "APEL sa:L

\v_,

& [wwagewenal

11y lumogewers)

61

The case study depicted in section 6.1 was tested with configurations ranging

from 2 to 5 trains. The same set of policies is applied to each new configuration for case

study 1. For the second case study the generic rules where used. In all the cases the

algorithm terminated without detecting flaws in the policies and the specification. The

results of such experimentation are shown in table 1. Additionally, the policies used for

the generalized version of the railroad case study in section 6.4 where used for the first

case study configuration depicted in fig. 13 yielding the same results in both cases

proving that the generalized policies work for any configuration.

Number of Number of SPM Number of
L Number of . SPM TC
Processing time . . SPM states transitions .
iterations variables
produced produced
produced
2T, 1C, 1G 0.203 sec. 10 24 44 32
3T, 1C, 1G 0.782 sec. 13 80 226 146
4T, 1C, 1G 3.782 sec. 16 288 1112 648
5T, 1C, 1G 26.422 sec. 19 1088 5334 2902
2T, 2C, 2G 9.843 sec. 24 875 3002 2016
3T, 2C, 2G 1 min 42.32 sec. 25 3659 16528 11834

Table 1. Results of testing with different configuration of the Railroad case study

62

SPM Algorithm Calculation Results

18000
16000
14000
12000
10000 == SPM states
== SPM transitions
8000
wegio= SPM TC variables
6000
~>6=[terations
4000
2000
0
2T,1C,1G 3T, 1C,1G 4T,1C,1G 2T,2C,2G 5T,1C,1G 3T, 2C, 2G
Figure 16. Chart representing the data on table 1
Processing Time
02:01.0
01:43.7
w 01:26.4 To el Processing
g Time
§ 01:09.1
b sscccse Expon.
'ﬁ 00:51.8 (Processing
£ Time)
F 00346
00:17.3
00:00.0 T s b

2T,1C, 1G 3T,1C, 1G 4T,1C, 1G 2T, 2C, 2G 5T,1C, 1G 3T, 2C, 2G

Figure 17. Chart representing execution time of the SPM implementation.

63

The information exposed in the preceding two charts shows the behavior of the
SPM algorithm in various terms. In all the configurations tested the algorithm finished
successfully. Looking at the number of SPM states, SPM transitions and SPM time
constraint variables generated, we can see how the state explosion increases their
numbers as we add more trains to the configuration. The number of SPM transitions is
the one that grows more rapidly as more objects are available to create more transitions.
The measurement of the processing time is also registered. However, the algorithm is not
intended to work at run-time embedded in a real-time system implementation since it
would be inappropriate. Rather as early stated, its purpose is to aid at the design stage for
validation purposes. The results confirm that the expected growing time behavior of the
SPM algorithm as exponential. In fig. 17, an added exponential trend line is used to

compare the actual growing time to an exponential one.

64

Chapter 8. Conclusions and Future Work Directions

8.1 Conclusions

The work of this thesis was mainly concerned with assessing the behavioral
correctness of the AS-TRM architecture at component level and to provide an appropriate
input for the reliability calculation methodology in AS-TRM. To achieve that, the

following tasks where fulfilled:

e Modification and extension of the AS-TRM formalism which included:
o Modification to the AS-TRM time-constraints formalism for Synchronous
Product Machine (SPM) specification.
o Modification to the AS-TRM time-constraints syntax for Autonomic
Reactive Objects (ARO) specification.
e A policy specification was introduced to specify the liveness and safety properties
for Autonomic Reactive Components (ARC).
e Design of an algorithm to calculate the SPM of an ARC.
e Design of a methodology to calculate the time constraints of a SPM.
e Implementation and testing of the SPM algorithm with several configurations of
the Railroad case study.
e An automatic method has been proposed for verification of the behavioral

correctness of an autonomic reactive component against its specifications.

65

e An automatic method to provide with a data repository represented by the
synchronous product machine that can be used to asses the self-control of the
behavioral correctness at run-time.

e Design of an algorithm to calculate the minimum and maximum delay time of an

ARC and provide insight on the overall performance time of an ARC.

8.2 Future Work

8.2.1 SPM Algorithm

The algorithm proposed in this work is a new contribution to the research of AS-
TRM, which proves the concept of self-control of correctness in autonomic reactive
systems. However, works in the area of optimization for the algorithm could improve its
performance in time. Research in the area of model checking shows that advances in the
use of new data structures, like binary decision diagrams, makes it possible to manipulate
data structures faster and more efficiently [13]. Also, several methods and techniques
have been proposed to deal with the state explosion problem like partial order reduction,
symbolic representation, symmetry and others [13]. These techniques could be applied to

produce a better and more efficient algorithm design.

8.2.2 Self-Monitoring in AS-TRM

Because the SPM algorithm provides with a data repository representing the
behavior of an autonomic reactive component it can aid in its self-monitoring feature.
Appropriate mechanisms needs to be created to take advantage of the information created

by the algorithm.

66

8.2.3 Minimum and Maximum Delay Algorithm implementation

The minimum and maximum delay algorithm proposed in this thesis is not
implemented yet. This algorithm might be suitable in a research work context regarding

planning and estimation of resources in AS-TRM.

67

Bibliography

[1] P. Horn, “Autonomic Computing: IBM Perspective on the State of Information
Technology,” IBM T. J. Watson Laboratories, October, 2001.

[2] A. Klein, “Optimizing Enterprise IT. Intelligent Enterprise”, February, 2005,
http://www.intelligententerprise.com/showarticle.jhtml?articleID=60403261.

[3] M. Parashar and S. Hariri, “Autonomic Computing: Concepts, Infrastructure and
Applications,” Boca Raton, CRC press, 2007.

[4] V. Alagar, R. Achuthan and D. Muthiayen, “TROMLAB: A Software Development
Environment for Real-Time Reactive Systems”, Technical Report , (first version 1996,
revised 2001), Department of Computer Science , Concordia University.

[5] J.V. Guttag, J.J. Horning, “Larch: Languages and Tools for Formal Specification,”
Springer-Verlag, January, 1993.

[6] H. Kuang, “Architecture for Reactive Autonomic Systems. AS-TRM Approach,”
M.Sc thesis, Computer Science and Software Engineering Department, Concordia
University, Montreal, QC, Canada, 2006.

[7] Emil Vassev, Olga Ormandjieva, Joey Paquet. “ASSL Specification of Reliability
Self-Assessment in the AS-TRM?”, In Proceedings of the 2nd International Conference
on Software and Data Technologies (ICSOFT 2007), pp. 198-206, Barcelona, Spain,
July 2007.

[8] R, Achuthan, ”A Formal Model for Object-Oriented Development of Real-Time
Reactive Systems”, M.Sc thesis, Concordia University, Montreal, QC, Canada, 2006.

[9] O. Ormandjieva, H. Kuang, E. Vassev. “Reliability Self-Assessment in Reactive

Autonomic Systems: Autonomic System-Time Reactive Model Approach”.

68

International Transactions on Systems Science and Applications, Volume 2 (1),
pp.99-104, 2006.

[10] ISO/IEC 19761. Software Engineering — COSMIC-FFP — A functional size
measurement method, International Organization for Standardization — ISO,
Geneva, 2003.

[11] D. Muthiayen, “Animation and Formal Verification of Real-Time Reactive Systems
in an Object-oriented Environment”, M.Sc thesis, Concordia University, Montreal,
QC, Canada, 1996.

[12] V. Alagar, O. Ormandjieva and M. Zheng “Managing Complexity in Real-Time
Reactive Systems”. Concordia University, Montreal, QC, Canada, 2001.

[13] E. Clarke, “ Model Checking”, Prentice-Hall, 1999

[14] C. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis”,
Prentice Hall, 1998.

[15] V. Alagar, K. Periyasami “Specification of Software Systems”, Springer, New York,

1998.

[16] Manar Abu-Talib, Olga Ormandjieva, Alain Abran. “AS-TRM and Functional Size
with COSMIC-FFP”, In the Proceedings of the IEEE International Symposium on
Industrial Electronics — ISIE 2007, Vigo, Spain, June 4-7, 2007.

[17] Irina Paltin. “Autonomic Systems Modeling and Development: A Survey”, M.S.
Major Report , Computer Science and Software Engineering Department, Concordia
University, Montreal, QC, Canada, 2006.

[18] Olga Ormandjieva, Emil Vassev. “Towards ASSL Specification of Self-Scheduling

Design and Monitoring in Team-Robotics Modeled with AS-TRM?”, In Proceedings

69

of the IEEE Engineering/Computing and Systems Research E-Conference (CIISE
2007), December 3 - 12, 2007, University of Bridgeport.

[19] O. Ormandjieva. “Modeling and Monitoring NFRs in Autonomic Systems: AS-TRM
Approach”. In Proceedings of the XL International Scientific Conference on
Information, Communication and Energy Systems and Technologies (ICEST 2005),

pp. 683-686, June 19-22, 2005.

70

Appendix A

This section presents the results of the SPM algorithm with the configuration: 2 trains, 1
controller and 1 gate.

SPM states:

[idle, open, idle, idle], [activate, open, idle, tocross], [activate, open, tocross, idle],

[monitor, toclose, idle, tocross], [activate, open, tocross, tocross], [monitor, toclose, tocross, idle],
[monitor, toclose, tocross, tocross], [monitor, closed, idle, tocross], [monitor, closed, tocross, idle],
[monitor, closed, tocross, tocross], [monitor, closed, idle, cross], [monitor, closed, cross, idle],
[monitor, closed, cross, tocross], [monitor, closed, tocross, cross], [monitor, closed, idle, leave],
[monitor, closed, leave, idle], [monitor, closed, leave, tocross], [monitor, closed, cross, cross],
[monitor, closed, tocross, leave], [deactivate, closed, idle, idle], [monitor, closed, leave, cross],

[monitor, closed, cross, leave], [idle, toopen, idle, idie], [monitor, closed, leave, leave]

SPM transitions:

R1, [idle, open, idle, idle] , [activate, open, idle, tocross] , near, (true) , true=>inSet'=insert(pid,inSet);
R2, [idle, open, idle, idle] , [activate, open, tocross, idle] , near, (true) , true=>inSet'=insert(pid,inSet);
R3, [activate, open, idle, tocross] , [monitor, toclose, idle, tocross] , lower , (true) , true=>true;

R4 , [activate, open, idle, tocross] , [activate, open, tocross, tocross] , near , (!(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

RS, [activate, open, tocross, idle] , [monitor, toclose, tocross, idle] , lower , (true) , true=>true;

R6 , [activate, open, tocross, idle] , [activate, open, tocross, tocross] , near , (!(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

R7, [monitor, toclose, idle, tocross] , [monitor, toclose, tocross, tocross] , near , (!(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

R8 , [monitor, toclose, idle, tocross] , [monitor, closed, idle, tocross] , down , (true) , true=>true;

71

R9, [activate, open, tocross, tocross] , [monitor, toclose, tocross, tocross] , lower , (true) , true=>true;
R10, [monitor, toclose, tocross, idle] , [monitor, toclose, tocross, tocross] , near , (!(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

R11, [monitor, toclose, tocross, idle] , [monitor, closed, tocross, idle] , down , (true) , true=>true;
R12, [monitor, toclose, tocross, tocross] , [monitor, closed, tocross, tocross] , down , (true) , true=>true;
R13, [monitor, closed, idle, tocross] , [monitor, closed, tocross, tocross] , near , (!(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

R14 , [monitor, closed, idle, tocross] , [monitor, closed, idle, cross] , in , true=>true ,

R15, [monitor, closed, tocross, idle] , [monitor, closed, tocross, tocross] , near , ({(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

R16, [monitor, closed, tocross, idle] , [monitor, closed, cross, idle] , in , true=>true ,

R17, [monitor, closed, tocross, tocross] , [monitor, closed, cross, tocross] , in , true=>true ,

R18, [monitor, closed, tocross, tocross] , [monitor, closed, tocross, cross] , in , true=>true ,

R19, [monitor, closed, idle, cross] , [monitor, closed, tocross, cross] , near , ({(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

R20, [monitor, closed, idle, cross] , [monitor, closed, idle, leave] , out , true=>true ,

R21, [monitor, closed, cross, idle] , [monitor, closed, cross, tocross] , near , ({(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

R22 , [monitor, closed, cross, idle] , [monitor, closed, leave, idle], out, true=>true ,

R23, [monitor, closed, cross, tocross] , [monitor, closed, leave, tocross] , out , true=>true ,

R24 , [monitor, closed, cross, tocross] , [monitor, closed, cross, cross] , in , true=>true,

R25 , [monitor, closed, tocross, cross] , [monitor, closed, cross, cross] , in , true=>true ,

R26 , [monitor, closed, tocross, cross] , [monitor, closed, tocross, leave] , out , true=>true ,

R27 , [monitor, closed, idle, leave] , [deactivate, closed, idle, idle] , exit , (member(pid,inset)) ,
size(inSet)=1=>inSet'=delete(pid,inSet);

R28 , [monitor, closed, idle, leave] , [monitor, closed, tocross, leave] , near , (!(member(pid,inset))) ,

true=>inSet'=insert(pid,inSet);

72

R29 , [monitor, closed, leave, idle] , [deactivate, closed, idle, idle] , exit , (member(pid,inset)) ,
size(inSet)=1=>inSet'=delete(pid,inSet);

R30, [monitor, closed, leave, idle] , [monitor, closed, leave, tocross] , near , ({(member(pid,inset))) ,
true=>inSet'=insert(pid,inSet);

R31, [monitor, closed, leave, tocross] , [monitor, closed, idle, tocross] , exit , (member(pid,inset)) ,
size(inSet)>1=>inSet'=delete(pid,inSet);

R32, [monitor, closed, leave, tocross] , [monitor, closed, leave, cross] , in , true=>true ,

R33, [monitor, closed, cross, cross] , [monitor, closed, leave, cross] , out , true=>true ,

R34, [monitor, closed, cross, cross] , [monitor, closed, cross, leave] , out , true=>true ,

R35, [monitor, closed, tocross, leave] , [monitor, closed, tocross, idle] , exit , (member(pid,inset)) ,
size(inSet)>1=>inSet'=delete(pid,inSet);

R36 , [monitor, closed, tocross, leave] , [monitor, closed, cross, leave], in, true=>true ,

R37, [deactivate, closed, idle, idle] , [idle, toopen, idle, idle] , raise , (true) , true=>true;

R38, [monitor, closed, leave, cross] , [monitor, closed, idle, cross] , exit , (member(pid,inset)) ,
size(inSet)>1=>inSet'=delete(pid,inSet);

R39, [monitor, closed, leave, cross] , [monitor, closed, leave, leave] , out , true=>true ,

R40, [monitor, closed, cross, leave] , [monitor, closed, cross, idle] , exit , (member(pid,inset)) ,
size(inSet)>1=>inSet'=delete(pid,inSet);

R41, [monitor, closed, cross, leave] , [monitor, closed, leave, leave] , out , true=>true ,

R42, [idle, toopen, idle, idle] , [idle, open, idle, idle] , up , (true) , true=>true;

R43 , [monitor, closed, leave, leave] , [monitor, closed, leave, idle] , exit , (member(pid,inset)) ,
size(inSet)>1=>inSet'=delete(pid,inSet);

R44 , [monitor, closed, leave, leave] , [monitor, closed, idle, leave] , exit , (member(pid,inset)) ,

size(inSet)>1=>inSet'=delete(pid,inSet);

SPM Time Constraints:

TCvarl: R1, SPM: [lower.R3, lower.RS, lower.R9], lower.r1.controller1;[0,1};{ };

73

TCvarl:
TCvarl:
TCvar2:
TCvar2:
TCvar2:
TCvar3:
TCvar4:
TCvar4:
TCvars:
TCvar6:
TCvar6:
TCvar7:
TCvar7:
TCvar8:
TCvar9:

TCvar9:

TCvarl0:
TCvarl0:
TCvarll:
TCvarll:
TCvarl2:
TCvarl2:
TCvarl3:
TCvarl3:
TCvarl4:
TCvarl$:
TCvarl$:

TCvarlé6:

R1, SPM: [exit.R27, exit.R35, exit.R40, exit.R43], exit.r3.train2;[0,61];{ };
R1, SPM: [in.R14, in.R18, in.R24, in.R32], in.rd.train2;[2,4];{ };

R2, SPM: [lower.R3, lower.RS5, lower.R9], lower.r1.controller1;[0,1];{ };
R2, SPM: [exit.R29, exit.R31, exit.R38, exit.R44], exit.r3.trainl;[0,6];{ };
R2, SPM: [in.R16, in.R17, in.R25, in.R36], in.rd.train1;[2,4];{ };

R3, SPM: [down.R8, down.R11, down.R12], down.r2.gate1;[0,1];{closed};
R4, SPM: [exit.R29, exit.R31, exit.R38, exit.R44], exit.r3.trainl;[0,6];{ };
R4, SPM: [in.R16, in.R17, in.R25, in.R36], in.rd.train1;{2,4];{ };

RS, SPM: [down.R8, down.R11, down.R12], down.r2.gate1;[0,1]; {closed};
R6, SPM: [exit.R27, exit.R35, exit.R40, exit.R43], exit.r3.train2;[0,6];{ };
R6, SPM: [in.R14, in.R18, in.R24, in.R32], in.r4.train2;[2,4];{ };

R7, SPM: [exit.R29, exit.R31, exit.R38, exit.R44], exit.r3.train1;[0,6];{ };
R7, SPM: [in.R16, in.R17, in.R25, in.R36], in.r4.train1;[2,4];{ };

R9, SPM: [down.R11, down.R12], down.r2.gate1;[0,1];{closed};

R10, SPM: [exit.R27, exit.R335, exit.R40, exit.R43], exit.r3.train2;[0,6];{ };
R10, SPM: [in.R14, in.R18, in.R24, in.R32], in.r4.train2;[2,4];{ };

R13, SPM: [exit.R29, exit.R31, exit.R38, exit.R44], exit.r3.train1;[0,6];{ };
R13, SPM: [in.R16, in.R17, in.R25, in.R36], in.rd.train1;[2,4];{ };

R15, SPM: [exit.R27, exit.R35, exit.R40, exit.R43], exit.r3.train2;[0,6];{ };
R15, SPM: [in.R18, in.R24, in.R32], in.rd.train2;[2,4];{ };

R19, SPM: [exit.R29, exit.R31, exit.R38, exit.R44], exit.r3.train1;[0,6];{ };
R19, SPM: [in.R25, in.R36], in.r4.train1;[2,4];{ };

R21, SPM: [exit.R27, exit.R3$, exit.R40, exit.R43], exit.r3.train2;[0,6];{ };
R21, SPM: [in.R24, in.R32], in.r4.train2;[2,4];{ };

R27, SPM: [raise.R37], raise.r3.controller1;{0,1];{ };

R28, SPM: [exit.R29, exit.R31, exit.R38, exit.R44], exit.r3.train1;[0,6];{ };
R28, SPM: [in.R36], in.r4.trainl;[2,4];{ };

R29, SPM: [raise.R37], raise.r3.controller1;[0,1];{ };

74

TCvarl7: R30, SPM: [exit.R35, exit.R40, exit.R43], exit.r3.train2;[0,6];{ };
TCvarl7: R30, SPM: [in.R32], in.r4.train2;[2,41;{ };

TCvar18: R37, SPM: [up.R42], up.r3.gatel;[1,2};{ };

75

