Comprehension and change

“impact analysis of aspect-oriented

programs through declarative
reasoning

Laleh Mousavi Eshkevari

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada
January 2008

© Laleh Mousavi Eshkevari, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40950-3
Our file Notre référence
ISBN: 978-0-494-40950-3

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

Abstract

Comprehension and change impact analysis of aspect-oriented
programs through declarative reasoning

Laleh Mousavi Eshkevari

In this dissertation, we discuss an approach to support declarative reasoning
over aspect-oriented programs, where the AspectJ programming language is de-
ployed as a notable (and representative) technology. The approach is based on
i) the transformation of source code into a set of facts, and ii) the definition and
implementation of relationships and dependencies between different elements of
the system into rules, stored in a Prolog database. Declarative analysis allows us
to extract complex information through its rich and expressive mechanisms. Our
approach has two contributions. First, it can improve the comprehension of As-
pectd programs, and it can be deployed for any AspectJ-like language, like e.g.
AspectC#, AspectC++. The second contribution is the provision of change im-
pact analysis for AspectJ programs. Our method is automated and tool support
is available. Expected beneficiaries of our approach include system maintainers

performing tasks during the ”"change planning” stage of evolution.

11

Acknowledgments

I would like to express my deep and sincere gratitude to both my supervisors,
Dr. Constantinos Constantinides and Dr. Juergen Rilling. Their understanding,
encouragement and personal guidance have been instrumental in the writing of this
thesis. I warmly thank Venera Arnaoudova, for her valuable advice and friendly
help. I owe my loving thanks to my husband Kianoush Torkzadeh. Without his
encouragement and understanding, it would have been impossible for me to finish
this work. In addition, I would like to thank my parents, who supported and
encouraged me during my studies in Concordia University. At last, I would thank
all members of Software Maintenance and Evolution Research Group, for providing

valuable comments for my research work.

iv

Contents

List of Figures
List of Tables

1 Introduction

1.1 Objective and goals of this dissertation

1.2 Organization of the dissertation

2 Theoretical background

2.1 Software maintenance

2.1.1 Program comprehension during maintenance

2.1.2 Change impact analysis during maintenance

2.2 Aspect-Oriented Programming (AOP) and Aspect]

2.3 Declarative reasoning and logic programming

3 Problem and motivation

4 Proposal

viii

ix

10

12

15

4.1 Declarative reasoning of aspect-oriented programs
4.2 Why Prolog?

4.3 Expected contributions and benefits

Methodology

5.1 Model transformation

5.2 Model comprehension
5.2.1 Rules to identify bad smells
5.2.2 Rules to deploy measurements
523 Generalrules

5.3 Change impact analysis.
5.3.1 Dependency relationships between program entities

5.3.2 Atomicchanges

Case study

6.1 Inter-type declared method in inheritance hierarchy
6.2 Messages to which an object canrespond
6.3 Pointcut-Class dependence factor

6.4 Advice-Type dependency

6.5 Add method

Automation and tool support

7.1 Deploying AJSurf

vi

19

19

20

21

25

27

30

30

48

59

63

64

66

68

69

71

8 Related work

9 Conclusion and recommendations

9.1 Summary and conclusion

9.2 Recommendations

Appendices

A Case study: Implementation and transformation

B Tool installation

Bibliography

vit

77

77

85

87

87

88

89

89

114

116

List of Figures

10

UML activity diagram illustrating our approach. 18
Inheritance dependency. 33
Example of inheritance hierarchy. 53
Partial class diagram of the system. 60

UML sequence diagram for system operation initiateReverseAuction(). 61

AJSurf: Choosing files to be transformed to Prolog facts. 73
AJSurf: Choosing a destination folder for the Prolog database. . . . 73
AJSurf Example of a parameterized query. 74
AJSurf Example of a parameterized query. 75
AJSurf Example of a parameterized query. 76

viil

List of Tables

10

11

12

Example of a Prolog fact format. 20

Partial code of aspect CoordinateObserver and its transformation

to Prolog facts. 21
Transformation rules - Part I 22
Transformation rules - Part IL. 23
Finding a class to be refactored as an aspect. 24
Finding a class to be moved into an aspect. 24
Calculating attribute-class dependence factor for an aspect. . . 26
Calculating pointcut-class dependence factor for an aspect. . . . 27

Obtaining methods defined by an aspect for a supertype of a given

Obtaining all messages to which an object of a given type can respond. 29
Obtaining all aspects monitoring a given method in a given type. . 30

Catalog of dependencies. 31

ix

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Obtaining the advice blocks defined in a superaspect while bound

to a given pointcut of a subaspect. 33
Demonstrating precedence dependency. 34
Obtaining the list of advice blocks bound to a given pointcut. . .. 35

Obtaining all advice blocks related to a given advice in a given aspect. 36
Obtaining the list of user-defined types being members of the pa-
rameter list of a given pointeut. L. 37

Obtaining the pointcuts monitoring a given method of a given type. 38

Obtaining the pointcuts monitoring a given method. 39
Obtaining the pointcuts monitoring all methods of a given type. . . 40
Obtaining the pointcuts monitoring all methods in the system. . . . 41

Obtaining the list of user-defined types being members of the pa-
rameter list of a given advice. 42
Obtaining the list of methods being advised by a given advice in a
given aspect. e 43
Obtaining the types which are either return type or members of the
parameter list of an introduced method. 44
Obtaining pointcuts monitoring all methods in the system. 45
Obtaining pointcuts monitoring all methods with a given list of
parameters.0 e 45

Obtaining pointcuts monitoring all methods with a given name. . . 45

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Obtaining pointcuts monitoring all methods with a given name and
list of parameters. 46
Obtaining pointcuts monitoring all methods of a given type. 46
Obtaining pointcuts monitoring all methods of a given type that
have a given list of parameters. 47

Obtaining pointcuts monitoring methods of a given type with a

GIVEN NAIME. o o v e 48
Obtaining pointcuts monitoring a method with a given signature. . 48
A catalog of atomic changes in AspectJ. 49
Considering an introduced method as declared method. 50

List of pointcut designators that match void <typeName>.<methodNeme>

(params>). e e e e 51
Obtaining all pointcuts which may monitor a method with a given

signature. L 52
Obtaining the aspect defining a similar method to a supertype of a

given type. 52
Partial code of aspects AnAspect and AnotherAspect. 54
Obtaining methods of a given type overriding an introduced method. 54
Obtaining methods being advised by a new advice in a given aspect. 55
Obtaining list of relevant advice blocks for a given advice. 56

Obtaining all pointcuts having the same name as a given pointcut. . 57

xi

43

44

45

46

47

48

49

30

o1

52

53

o4

%5}

56

57

38

59

60

61

Obtaining all methods which will not be affected by the advice

blocks bound to a given pointcut. 58
Partial code of aspects ObserverProtocol and CoordinateObserver. 62
Statistics about the source code of Infomediator. 63

Partial Prolog facts resulting from the transformation of aspect

coordinateQbserver., 64
Result of query findDeclaredMethod. 64
Result of query respondTo. 65
Result of query pointcutClassDependenceCount. 67
Pointcut-Class dependence factor for all classes and interfaces. . . . 68
Result of query adviceTypeDep. 69
Result of query addMethod. 70
Definition of class Client. 89
Prolog facts corresponding to class Client. 90
Definition of class Customer. 90
Prolog facts corresponding to class Customer. 90
Definition of class Infomediator. 91
Prolog facts corresponding to class Infomediator. 92
Definition of class PotentialOrder. 93
Pl_folog facts corresponding to class PotentialOrder. 93
Definition of class Quote. 94

xii

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Prolog facts corresponding to class Quote. 94

Definition of class Retailer. 95
Prolog facts corresponding to class Retailer. 96
Definition of class ReverseAuction. 97
Prolog facts corresponding to class ReverseAuction. 98
Definition of class UDDI. 99
Prolog facts corresponding to class UDDI. 100
Definition of aspect Authentication. 101
Prolog facts corresponding to aspect Authentication. 102
Definition of aspect ContractChecking. 103
Prolog facts corresponding to aspect ContractChecking. 104
Definition of aspect CoordinateObserver. 104
Prolog facts corresponding to aspect CoordinateObserver. 105
Definition of aspect ObserverProtocol. 106
Prolog facts corresponding to aspect ObserverProtocol. 107
Definition of aspect Persistence. 108
Prolog facts corresponding to aspect Persistence. 108
Definition of aspect Synchronization. 109
Prolog facts corresponding to aspect Synchronization. 110
Definition of aspect Throughput. 110

Prolog facts corresponding to aspect Throughput. 111

xiii

83 Definition of aspect TransactionLogging.

84 Prolog facts corresponding to aspect TransactionLogging

xiv

Chapter 1

Introduction

Software maintenance is defined as ”the modification of a software product after
delivery to correct faults, improve performance (or other attributes) or to adapt
the product to a modified environment.” (ANSI/IEEE standard 1219-1998). The
importance of maintenance lies on the fact that i) it prolongs the operability of
software once it has been deployed and ii) it tends to consume a significant pro-
portion of the overall software life cycle resources (consequently consuming a large
part of the costs) [42]. Bennett and Rajlich [10] divide the maintenance phase
into three stages: evolution, servicing and phase out. Evolution is defined as the
stage where the software is modified’ to meet the requirements of the stakeholders.
Each change is introduced by a request, classified as correction or enhancement.
Corrective and preventive activities under maintenance fall under the correction

type , whereas adaptive and perfective activities fall under the enhancement type.

Modification implies adding a new requirement or changing an existing one.

Before implementing a change, problem and modification analysis should be per-
formed [6]. Change impact analysis plays an important role in making a decision
whether or not a change should be undertaken. In order to analyze the impact of a
change, maintainers need to understand the system. Program comprehension con-
stitutes a significant proportion of the maintenance phase [10], particularly when
maintainers are not the ones who developed the system. This proportion increases
when comprehension is performed on aspect-oriented systems due to their oblivi-
ousness property [19]. In this dissertation we focus on comprehension and change

impact analysis of aspect-oriented systems.

1.1 Objective and goals of this dissertation

Our initial objective is to provide a mechanism by which maintainers can obtain
comprehension of AspectJ programs. A second objective is to allow maintainers to
perform change impact analysis of these programs and a third objective is to pro-
vide automation through tool support in an integrated development environment.

To meet these objectives, we set a number of goals: Initially to provide a set of
rules by which an AspectJ program will be transformed into a set of Prolog facts,
the deployment of various types of rules to support comprehension, the deployment
of different types of changes to support change impact analysis and the creation

of a query system.

1.2 Organization of the dissertation

The remaining part of this dissertation is organized as follows: In Chapter 2 we
provide the necessary theoretical background to change impact analysis, Aspect-
Oriented Programing (AOP), and declarative reasoning and logic programming.
In Chapter 3 we discuss the problem and motivation behind this research. In
Chapter 4 we present our proposal and in Chapter 5 we present our methodology,
discussing the types of rules defined for comprehension, dependency and change
impact analysis. In Chapter 6 we present a case study to demonstrate how our
approach can be deployed for a typical exploration task. In Chapter 7 we dis-
cuss automation and tool support. In Chapter 8 we discuss related work, and we
evaluate our approach. We conclude our discussion in Chapter 9. Furthermore, Ap-
pendix A provides the listings of the core functionality, and the aspectual behavior
of the case study and its declarative representation in Prolog facts. Appendix B,

provides the installation guide for the tool.

Chapter 2

Theoretical background

In this Chapter, we discuss the necessary theoretical background to this research,
starting with software maintenance, followed by background on AOP and on declar-

ative reasoning and logic programming.

2.1 Software maintenance

A typical software lifecycle is composed of five sequential stages [39]: Initial de-
velopment, evolution, servicing, phase-out, and close-down. The software main-
tenance phase includes all the activities undertaken from evolution to phase-out.
In the literature [6, 34] maintenance is defined as the modification of a software

product performed after delivery in order to:

Adaptive maintenance: Adapt to a changing/new environment.

Perfective maintenance: Prevent latent faults' to become failures?, and to im-

plement new requirements, to improve software attributes.

Corrective maintenance: Repair known problems.

Preventive maintenance: Prevent latent faults to become operational faults.

Adaptive and perfective types of maintenance are shown in the literature to
consume a significantly large proportion of the overall efforts during the mainte-
nance phase. Corrective maintenance is reported to consume a relatively small
proportion of the overall maintenance effort. The rest of the effort is consumed
while applying preventive maintenance. It is important to note that the different
types of maintenance are not mutually exclusive, rather they can be mutually sup-
portive. For example, during adaptive maintenance one can detect an error and
then decide to perform corrective maintenance as well.

Software changes occur during both the evolution and servicing stages, and
these changes are initiated due to requirement changes, environment changes, bug
manifestation, or prevention from activation of a known fault. Bennett and Rajlich

define the change cycle in [10] as follows:

1. Request for change: Often it is originated from end-users in the form of
bug report, or request for additional functionality (referred to as Modification

Request, MR, in the [EEE maintenance standard [6]).

LA software error which can cause improper functioning of the software [21].
*When a software fault activated it becomes a software failure [21).

5

2. Planning phase: Program comprehension and change impact analysis are
performed in order to make a decision on whether a change should be under-
taken or not. This step corresponds to the problem and modification analysis

activity defined in the IEEE maintenance standard [6)].

(a) Program comprehension: A substantial component of the planing
phase is to locate application domain concepts in the code and to build
a mental model of the system. Studies show that this activity consumes

more than half of all maintenance resources.

(b) Change impact analysis: Assessing the extend of the change, i.e.
components that will be impacted by the change. It indicates how

costly the plan is going to be and whether it is to be undertaken at all.

3. Change implementation: If the result of previous step is in favor of

change, the particular change will be implemented?.

(a) Restructuring for change: Restructuring might be required to lo-
calize the concern before the change takes place. Restructuring must

preserve the overall system behavior.

(b) Change propagation: Once a component is modified, it may no longer
properly interact with other components, resulting in changes to be

made in dependent components.

30Other important factors which influence this decision are system quality and business
value [45].

4. Verification and validation: Activities performed to check for preserving

the semantics and correctness of the system after the change implementation.

5. Redocumentation: Change cycle ends with updating the system documen-

tation.

Steps 3-5 correspond to the activities of modification implementation and mainte-
nance review/ acceptance defined in the IEEE maintenance standard [6].
The remaining part of this section elaborates on the planning phase of the

change.

2.1.1 Program comprehension during maintenance

Comprehension is an activity which has shown to consume a large proportion of
the resources during the overall maintenance phase [42], particularly when main-
tainers are not the initial designers of the system. Furthermore, design artifacts,
if at all present, are often incorrect or incomplete. Comprehension methods rely
on the study of the dependencies between program (or software) elements. Pro-
gram slicing [8] and formal concept analysis [17] are examples of such methods.
Another method to achieve comprehension is reverse engineering (sometimes the
two terms are used interchangeably), transforming the system to a higher level of

abstraction [42].

2.1.2 Change impact analysis during maintenance

Software change impact analysis estimates which parts of a software and its re-
lated documents will be affected if a proposed change is to be made [8]. It also
provides essential information that can be used to estimate the cost of a modifica-
tion request and to plan its implementation. Arnold and Bohner [8] divide change
impact analysis into two major types, namely dependency analysis and traceability

analysis.

Dependency analysis: Identifies potential consequences of a change, and esti-

mates modifications needed in order to accomplish a change.

Traceability analysis: Focuses on concern identification from requirements to
design artifacts, followed by concern identification from the design artifacts
to the source code or vise versa (i.e. the identification starts from the source

code and ends with the requirements artifacts).

In this dissertation we are focusing on dependency analysis. Dependency anal-
ysis can be performed on source code, models, execution traces, or a combination
of them [22]. An example of dependency analysis of source code is to use the
combination of data flow and control flow graphs in order to identify program
dependencies. Performing dependency analysis on a class diagram is an example
of model based dependency analysis [27, 11]. Dependency analysis on execution

traces can be used to locate related features in code [16].

2.2 Aspect-Oriented Programming (AOP) and

AspectJ

The principle of separation of concerns [36] refers to the realization of system con-
cepts into separate software units and it is a fundamental principle of software
development. The associated benefits include better analysis and understanding
of systems, improved readability of code, increased level of reusability, easy adapt-
ability and good maintainability. Despite the success of object-orientation in the
effort to achieve separation of concerns, certain properties in object-oriented Sys-
tems cannot be directly mapped in a one-to-one fashion from the problem domain
to the solution space, and thus cannot be localized in single modular units. Their
implementation ends up cutting across the inheritance hierarchy of the system.
Crosscutting concerns (or “aspects”) include persistence, authentication, synchro-
nization and contract checking. Aspect-Oriented Programming (AOP) [29] explic-
itly addresses those concerns by introducing the notion of aspect, which is a modu-
lar unit of decomposition. Currently there exist many approaches and technologies
to support AOP. One such notable technology is AspectJ [28], a general-purpose
aspect-oriented language, which has influenced the design dimensions of several
other general-purpose aspect-oriented languages, and has provided the community
with a common vocabulary based on its own linguistic constructs. In the AspectJ,

an aspect definition is a new unit of modularity providing behavior to be inserted

over functional components. This behavior is defined in method-like blocks called
advice blocks. However, unlike a method, an advice is never explicitly called. In-
stead, it is only implicitly invoked by an associated construct called a pointcut
expression. A pointcut expression is a predicate over well-defined points in the
execution of the program which are referred to as join points. When the program
execution reaches a join point captured by a pointcut expression, the associated
advice block is executed. Even though the specification and level of granularity
of the join point model differ from one language to another, common join points
in current language specifications include calls to - and execution of methods and
constructors. Most aspect-oriented languages provide a level of granularity which
specifies exactly when an advice block should be executed, such as executing be-
fore, after, or instead of the code defined at the associated join point. Furthermore,
several advice blocks may apply to the same join point. In this case the order of
execution is specified by advice precedence rules defined in the underlying lan-

guage [30].

2.3 Declarative reasoning and logic programming

Declarative languages describe relationships between variables in terms of functions
or inference rules and the language executor (interpreter or compiler) applies some
fixed algorithm to these relations to produce a result. Declarative programs allows

the programmers to integrate logical statements with programming constructs.

10

Logic programming languages are declarative languages based on first-order pred-
icate logic where data are presented by Horn clauses and where a logic inferencing
process is used to produce results. These programs are non-imperative, that is,
they do not state how a result is to be computed. Instead, they provide the results
based on relevant information and inference rules.

Originally implemented by Alain Colmerauer and Phillipe Roussel at the Uni-
versity of Aix-Marseille in 1971, the logic programming language Prolog was ini-
tially deployed for natural-language processing and has become one of the most
widely used languages for artificial intelligence. Prolog statements are made of
terms which themselves can be constants, variables or compound terms. A com-
pound term, or functor, is represented as functor(parameter list). A functor
is like a predicate in predicate calculus and its parameters can be atoms, variables
or other functors. A Prolog database consists of two kinds of statements which are
statically declared: facts and rules. Facts are propositions that are assumed to be
true and they constitute the statements used to construct the hypotheses. Rules
are implications between propositions. A problem domain is therefore defined in

terms of queries, and goals are addressed by a built-in search mechanism [43].

11

Chapter 3

Problem and motivation

In this Chapter, we discuss the motivation of this research and define the scope of
this dissertation.

Software change impact analysis involves three challenges [7]:

1. Information source volume: The size of software application is getting larger

and larger due to increasingly complex requirements of the users.

2. Change semantics: Methods for describing meaningful software change rela-
tionships are limited for the range of software artifacts. There exist a limited

number of methods defining meaningful software change relationships.

3. Analysis methods: Methods for analyzing the parts of software to be changed

are not fully explored.

Change impact analysis requires program comprehension [39]. That is, infor-
mation obtained through comprehension can be used to ease the impact analysis.

12

Aspect-Oriented Programing improves the modularity of systems by allowing pro-
grammers to reason about individual concerns in relative isolation. However, the
improvement of modularity comes with the cost of overall program comprehen-
sion! and therefore change impact analysis becomes more difficult. This difficulty
originates in a new type of dependency introduced by aspect-oriented systems:
aspect-to-component dependency. The obliviousness property in general-purpose
aspect-oriented languages?, such as AspectJ, implies that classes have no visibility
over aspects and that the aspect-to-component visibility is strictly unidirectional.
Implemented this way, we see that given a piece of component functionality f, we
need to iterate over all aspect definitions to see which pointcuts refer to £ and which
advice blocks may be combined with £. Manual analysis can be tedious and error
prone, particularly for medium- to large-scale systems. As a result, the implicit
interdependency between aspects and classes® demands more careful investigation.

To this end, some tool support is currently available. The Eclipse AspectJ
plug-in provides some level of visualization. However, there is certain type of
knowledge over an AspectJ program which is neither straightforward to obtain nor
can be provided through this plug-in. For example the following information can

only be manually extracted:

'"Maintainers faced a similar problem during the shift from procedural to Object-Oriented
Programming (OOP).

?In [19] Filman and Friedman have argued that obliviousness is a property which must char-
acterize any AOP system.

#We have to note that AOP as well as some of the problems discussed here are not bound to
OOP.

13

1. “Fragile aspects” [46]: Aspects containing pointcuts written in a way which

makes them highly vulnerable to any changes in the component code.

2. Aspects that have precedence over a given aspect.

3. Aspects that are advising protected methods only.

The motivation of this research is to provide a fine-grained model for the rep-
resentation of program elements and their inter-dependencies in aspect-oriented
programs in order to obtain comprehension and to perform change impact anal-
ysis of aspect-oriented systems, and also to automate this process, as well as to

provide an environment where the above can be automated.

14

Chapter 4

Proposal

In this Chapter, we discuss our research proposal.

4.1 Declarative reasoning of aspect-oriented pro-

grams

We propose the adoption of declarative analysis to achieve comprehension and
change impact analysis of aspect-oriented programs by deploying Aspect as a
notable representative example of a general-purpose aspect-oriented language. To
achieve this goal, we need to perform a transformation from source code to a declar-
ative representation. To obtain comprehension, we plan to adopt strategies from

the literature. These strategies will be translated as rules in a Prolog database. In

15

order to perform change impact analysis, we first start with identifying dependen-
cies in an aspect-oriented system, and then we codify them as Prolog rules. Some
of these dependencies are adopted from the literature [56], while some others will
be introduced. In the same manner, these dependencies will be translated into
rules in a Prolog database. We will adopt change types defined in the literature,
while refining some and introducing a new one. Comprehension can then be ob-
tained by executing queries on the Prolog database. End-user can perform change
impact analysis by querying the database about what parts of the system would

be affected should a specific change occur (see Figure 1).

4.2 Why Prolog?

The Prolog language has its foundation in logic programming which allows pro-
grammers to define solutions to problems in a logical manner. Its built-in pattern-
matching mechanism (unification) makes it possible to bound variables to complex
structures which can themselves contain other variables. Moreover, unification pro-
vides a mechanism to find multiple solutions for a given problem. In addition to
the above, Prolog can be deployed as a query language for a database of simple
facts for matching complicated patterns. We believe that Prolog is more suitable
than other query languages (e.g the Standard Query Language - SQL) for our ap-
proach since our database would contain simple facts, but a lot of complex search

rules. For example, the derivation rules of Prolog enable us to define relations

16

between facts. However, with SQL we would need to store facts for each relation
(views in relational database) and we cannot build views recursively [31]. Deploy-
ing SQL would be more beneficial with a great amount of very complex data and
with relatively simple search rules. Prolog makes it relatively straightforward to

specify, execute and refine complex queries over facts.

4.3 Expected contributions and benefits

The expected contribution of this proposal is to provide a proof of concept for an
automated environment under which one can obtain knowledge over an AspectJ-
like program where this knowledge would otherwise have been difficult or impos-
sible to obtain through existing techniques, as well as to perform change impact
analysis.

Potential beneficiaries of this approach include system maintainers who can
perform change impact analysis by querying the fact-base on what elements of the

system would be affected should a specific change occur.

17

IAspectJ Source Codel

Istatlc General AOP Informatlonl
ﬁj IMeasurement Metrics (MM)I
IAO Refactoring Patternsl -
Weavina G’arsing)
G
IAtomIc changesl

ASM AST

General Rules

|Measurement Rules I

] IRefactorlng Rules| Translation
Transformation

|Dependency Rules I

CIA Rules

Facts

Facts & Rules Running Queries Observations

Figure 1: UML activity diagram illustrating our approach.

18

Chapter 5

Methodology

In this Chapter, we discuss the methodology of our research proposal.

5.1 Model transformation

In order to transform an AspectJ program into a set of Prolog facts, we have
defined a set of transformation rules given in Tables 3 and 4. We restrict this
approach to method/constructor call and execution. That is, we do not consider
object initialization neither attribute accessor/modifier join points during our anal-
ysis. However, they are being transformed to a set of Prolog facts for the future
adaptation of our sysetm.

The transformation process from source code to facts is broken down into two
steps. First, the Abstract Syntax Tree (AST) corresponding to each compilation

unit of the program (.java and .aj files) is retrieved and traversed. Second, the

19

AspectJ Structure Model (ASM) is retrieved and traversed to provide additional in-
formation regarding the relationship among pointcuts, methods and advice blocks.
The extracted information from these steps is then translated into Prolog facts
according to the transformation rules and added to the fact-base and used during

the inference process. One such example is shown in Table 1.

[introducedMethod](<aspectName>, <typeName>,<methodName>,<visibility>, <returnType>,
<listOfParameters>,<methodType>)

Table 1: Example of a Prolog fact format.

The above fact reads as follows: aspectName introduces a method called methodName
with the specified visibility and returnType and listOfParameters for the
type typeName. The last argument in the facts is a number that can be 1, 2, 3, or
0 for abstract methods, final methods, static methods, or non of the previous type

respectively. Table 2 shows an example for a transformation rule!.

5.2 Model comprehension

We have added a set of rules to the database in order to capture relationships
between software elements in the system. These rules are context-free, i.e. they
are independent from the particular applications in which they are being deployed.
The rules are categorized into three types, based on the motivation by which they

were created:

!This example is taken from the case study discussed in detail in Chapter 6.

20

public aspect CoordinateObserver extends ObserverProtocol {
//some code
public void Retailer.notifyOfchange(Subject s,PotentialOrder po){
//some code
} // some code

aspect(coordinateobserver,public).

privilegedAspect(coordinateobserver).

extends(coordinateobserver,observerprotocol).

introducedMethod(coordinateobserver,retailer, notify Ofchange, public,void,
[subject, potentialorder],0).

Table 2: Partial code of aspect CoordinateObserver and its transformation to
Prolog facts.

1. Addressing problems of “bad smells” in code, being the motivation behind
refactoring [20, 35] strategies discussed in the literature in the context of

object-oriented and aspect-oriented programs.

2. Addressing measurements of program quality through the deployment of met-

rics.

3. Addressing general issues over a program’s static structure (information re-
lated to the inheritance hierarchy, the interaction among the entities of the

system, etc.).

5.2.1 Rules to identify bad smells

Rules to identify potential bad smells (identifying anomalies where refactoring may

be required) are influenced by aspect-oriented refactoring strategies such as those

21

Transformation rules

Definition

<visibility>:= <public> | <private> | <protected> |
<package>

visibility of a feature is <public> or <private> or
<protected>

[class] (<className>, <visibility>)

class_name is a class with <visibility>

[finalClass] (<className>)

className is a final class

[abstractClass] (<className>)

className is an abstract class

[interface] (<interfaceName>, <visibility>)

interfaceName is an interface with <visibility>

(extends] (<subClassName> (| <subInterfaceName> | Class subClassName (or subInterfaceName or
<subAspectName>) ,<superClassName> subAspectName) extends superClassName (or
(| <superInterfaceName> | <superAspectName>)) superInterfaceName or superAspectName)

{implements] (<className>, <interfaceName>) Class class_name implements interface

interface_name

[aspect] (<aspectName>, <visibility>)

aspectName is an aspect with <visibility>

[privilegedAspect] (<aspectName>)

aspectName is a privileged aspect

[new] (<classNamel>, <methodNamel>, <className2>)

An instance of <className2> is instantiated in
method <methodNamel> in <classNamel>

<attributeType>:= 0 | 1 | 2 | 3

<attributeType> can be final (1), or static (2), or
final-static (3), and if it is not any of the previous
types it is marked 0

[attribute] (<className> |<aspectName> |
<interfaceName>, <attName>, <type>, <visibility>,
<attributeType>)

<attName> of type <type> is an attribute de-
clared in class className or aspect aspectName or
interfaceName with <visibility>

<methodType>:= 0 | 1 | 2 | 3

<methodType> can be abstract({ 1), or static (3), or
final (2) and if it is not any of the previous types it is
marked 0

[method] (<className> | <aspectName> |
<interfaceName>, <methodName>, <visibility>,
<type>, <listOfParameters>, <methodType>)

<methodName> , with <1istOfParameters> parameters
and access modifier public or private or protected
and return type <type> is declared in <className> or
<aspectName> or <interfaceName>

[sendMessage] (<classNamel>, <methodNamel>,
<listOfParametersi>, <className2>, <methodName?2>,
<list0fParameters2>)

A message methodName?2 is sent to <className2> from
methodNamel in <classNamel>

[used] (<aspectName>, <adviceId>, <list0fParametersi>,
<className>, <methodName>, <listOfParameters>)

<methodName> in class <className> is invoked by
<adviceld> in <aspectName>

[accessFeature] (<classNamel>, <methodName1>,
<className2>, <instanceVariableName2>)

<classNamel> accesses <instanceVariableName2> of
<className2> from <methodNamel>

[constructor] (<className>, <visibility>,
<listOfParameters>)

<className> has a constructor with

<list0fParameters> parameters

[declareParent] (<aspectName>,<typel>,
<type2>)

<type2>is declared to be the supertype of <typel> in
<aspectName>

[introducedMethod] (<aspectName>,<typeName>,
<methodName>,<visibility>, <returnType>,
<listOfParameters>,<methodType>)

<aspectName> declares a method <methodName>
with <visibility>, <returnType>,and
<listOfParameters> for class <typeName>

[introducedAtt] (<aspectName>,<typeName>,
<attName>, <type>, <visibility>, <attributeType>)

<aspectName> declares an attribute <attName> with,
<type> for a type <typeName>

[pointcutdesig] (<pointcutDesignatorId>,<aspectName>,
<pointcutName>,<joinpoint>,<list0fParameters>)

<joinpoint> with a unique id
<pointcutDesignatorId> defined in aspectName

Table 3: Transformation

22

rules - Part 1.

Transformation rules

Definition

<pointcutType>:= 0 |1 |2

<pointcutType> can be abstract (1), static (2},
and if it is not any of the previous types it is
marked 0

[pointcut] (<aspectName>,<pointcutName>,<listOfParameters>
<visibility>,<pointcutType>)

<pointcutName> defined in <aspectName>

<joinpoint>:= call| execution| target| args| this

<joinpoint> can be call, execution, target,
args, or this

<adviceType>:= before, after, around

<adviceType> is before , after or around

[triggerAdvice] (<aspectName>, <adviceType>,
<adviceld>,<list0fParameters>, <returnType>)

Advice <adviceType> belongs to <aspectName>
aspect

[advicePointcutMap] (<aspectName>, <adviceType>,
<adviceId>, <pointcutName>)

Advice <adviceType> defined in <aspectName> as-
pect is related to the pointcut <pointcutName>

[precedence] (<aspectName>, <listOfAspects>)

<precedence> rule is defined in aspect
<aspectName>, and <listOfAspects> contains
list of aspects according to their precedence

[advisedBy] (<typeName>,<methodName>,<list0fParametersi>,
<aspectName>,<adviceType>,<adviceld>,<listOfParameters2>,
<pointcutName>)

<methodName> of <typeName> with the
<list0fParametersl> is advised by <adviceType>
with the <listOfParameters2> in <aspectName>

Table 4: Transformation rules - Part II.

discussed in [35] where the authors describe typical situations in aspect-oriented
programs which can be problematic along with recommended refactoring strategies.
In this work we are only interested in the identification of bad smells as they can

provide indications to maintainers where refactoring could perhaps be valuable.

Split abstract class into aspect and interface

Problem: Classes are prevented from using inheritance because they already
inherit from an abstract class defining some concrete members [35].

A candidate to be splitted into an aspect and an interface, is an abstract class
which have concrete and abstract methods and which is subclassified. Table 5
shows the corresponding Prolog rule defined to identify such a bad smell. First,

one has to check if a given class ClassName is an abstract class which is also

23

subclassified. Next, one has to verify if this class contains abstract and concrete

methods:

is_CandidateForAspect(ClassName):—findall(SuperType,extends(-,Super Type),List),
(select(ClassName,List,Rest),
(is-abstract(ClassName),
has_abstractMethod(ClassName),
has_concreteMethod(ClassName))).

Table 5: Finding a class to be refactored as an aspect.

Inline class within aspect
Problem: A small standalone class is used only by code within an aspect [35].
A candidate to be inlined within an aspect is a class which is not subclassified,
which is not used as an attribute of other classes, which does not receive messages
from other classes, and which is referenced in an advice body of only one aspect.

Table 6 shows the Prolog rule defined to identify such a bad smell.

is_CandidateForInline(Type):—is_class(Type),
(get_descendants(Type,L),size(L,0)),
not(attribute(_, Type,-,-,-)),
not(sendMessage(-,-,—, Type,_,-)),
(findall(Aspect, (is_aspect(Aspect),
used(Aspect,.,-, Type,-,-)),List),
(size(List,1))).

Table 6: Finding a class to be moved into an aspect.

Along the same lines, one can define rules detecting bad smells for the fol-
lowing strategies discussed in [35]: Replace Implements with Declare Parents, In-
troduce Aspect Protection, Replace Inter-type Method with Aspect Method, Extract

24

Superaspect, Pull Up Advice, Pull Up Declare Parents, Pull Up Inter-type Declara-

tion, Pull Up Pointcut and Push Down Pointcut.

5.2.2 Rules to deploy measurements

We have defined measurement rules in order to extract information on the quality
and the complexity of the program. Often the complexity of a system depends
on a number of measurable attributes such as inheritance, coupling, cohesion,
polymorphism, and application size. Some of these attributes like coupling and
cohesion are also applicable in an aspect-oriented context. In [56] the author
defines coupling as the degree of interdependency among aspects and/or classes.

The following measurement rules are based on some of the metrics presented in [56].

Attribute-Class dependence

There is an attribute-class dependence between aspect a and class ¢, if ¢ is a type
of an attribute of a. The number of attribute class dependences from aspect a to
the class ¢ can formally be represented as AtC(a, ¢) = | {z|z € A%a) A T(z) = c}|.
This factor can be calculated with the rule in Table 7. The larger the number is (in
the above metrics), the stronger the dependency is. However, for a better analysis
this factor needs to be calculated for all aspects and classes, and then the the

degree of dependency can be inferred by comparing the data.

25

attributeClassDependenceCount(AspectName, TypeName,Count):—
is_aspect(AspectName), is_type(TypeName),
findall(TypeName, (attribute(AspectName,_,Atype,_,_),
((Atype=TypeName);
(superType(Atype, TypeName)))),
List),
size(List,Count).

Table 7: Calculating attribute-class dependence factor for an aspect.

Pointcut-Class dependence
Let p be a pointcut of aspect a. There is a pointcut-class dependence between
a and c, if c is the type of a parameter of p. The number of pointcut-class

dependencies from aspect a to class ¢ can formally be represented as:

PC(a,c) = PZ(| | {z|z € Par(p) AT(z) = c}|

Table 8 shows the corresponding Prolog rule for calculating the above measure-
ment. The larger the number is (in the above metrics), the stronger the dependency
is. However, for a better analysis this factor needs to be calculated for all pointcuts
and classes, and then the the degree of dependency can be inferred by comparing

the data.

Along the same lines, one can define rules calculating the metrics discussed
in [56] as: Aduvice-Class Dependence, Intertype-Class Dependence, and Aspect-

Inheritance Dependence measures.

26

pointcutClassDependence(AspectName, TypeName, Count):—
(is-aspect(AspectName),(is_class(TypeName);is-interface(TypeName))),
count((pointcut(AspectName, _,List,_,-),(member(TypeName,List);
(superType(SuperType, TypeName), member(SuperType,List)))),
Count).

pointcutClassDependence(AspectName, TypeName, Count): —
(is-aspect(AspectName),(is_class(TypeName);is_interface(TypeName))),
(Count is 0).

pointcutClassDependenceThroughInheritence(SubAspectName, TypeName,Count):—
((is-aspect(SubAspectName),is_aspect(SuperAspectName),
superType(SuperAspectName,SubAspectName)),

(is_class(TypeName);is_interface(TypeName))),

count(((pointcut(SuperAspectName, _, List,,Pointcut Type),
not(PointcutType=1)),({member(TypeName,List));
((superType(SuperType, TypeName), member(SuperType,List))))),

Count) .

pointcutClassDependenceThroughInheritence(SubAspectName, TypeName,Count): —
is_aspect(SubAspectName),(Count is 0).

pointcutClassDependenceCount(AspectName, TypeName, TotalCount): —
pointcutClassDependence(AspectName, TypeName,Countl),
pointcutClassDependenceThroughInheritence(AspectName, TypeName, Count2),
(TotalCount is Countl+Count2).

Table 8: Calculating pointcut-class dependence factor for an aspect.

5.2.3 General rules

General rules are built in order to extract knowledge about the static structure of a
program, like inheritance relationships, dependencies between aspects and classes,
etc. This category defines the core rules in our system, and constitutes the basis for
change impact analysis. Examples of general rules are : Aspect monitoring features
of a class (methods, attributes) with specific modifiers, aspects with precedence

over a specific aspect, methods advised by a pointcut, messages to which a class

27

responds.

We illustrate three detailed examples of general rules below.

Declared method in inheritance hierarchy
In Table 9, rule findDeclaredMethod identifies all the methods that are defined
by an aspect AspectName (through the inter type declaration) for all the supertypes

of a given type.

ﬁndDeclaredMethod(AspectName,TypeName,SuperTypeName,MethodName):—
is-aspect(AspectName),super Type(SuperTypeName, TypeName),
introducedMethod(AspectName,SuperTypeName,MethodName,,_,,-).

Table 9: Obtaining methods defined by an aspect for a supertype of a given type.

Messages to which a class responds

There are situations where we want to identify the messages to which an instance
can respond. In an object-oriented system an object can respond to a message if
it has or inherits a method definition (with access modifier public or protected)
with type signature corresponding to this message. However, in an aspect-oriented
system inter-type declaration allows to introduce methods or attributes for a class
or an interface. This implies that an object o of type T, can also respond to
messages introduced by aspects for T, or for supertypes of T. Having a Prolog rule
to enforce that an introduced method is itself a method can help to resolve the

problem in case of introduction. Table 10 shows the Prolog rule corresponding

28

to this definition. Rule respondTo simulates part of the introspective capabilities

provided by languages like Smalltalk [23] and Ruby [12].

findMessages(Type,ListOfMessagesWithParam): —
findall(Method,is_declaredMethod(Type,Method), ListOfMessages),
(getMember(MethodName,ListOfMessages),
method(Type,MethodName,ViSibility,_,ListOfParameters,_),
\+ Visibility= private,
append([MethodName], [ListOfParameters],List OfMessagesWithParam)).

findMessages(Type, ListOfMessagesWithParam): —
findall(Method,is_inheritedMethod(Type,Method), ListOfMessages),
(getMember(MethodName,List OfMessages),
method(Atype,MethodName, -, ListOfParameters,),
superType(Atype, Type),
append([MethodName], [ListOfParameters], ListOfMessagesWithParam)).

findMessages(Type,ListOfMessagesWithParam):—
findall(Method, (introducedMethod(-,SuperType,Method, -, ,-,-),
superInterfaceOfType(SuperType, Type)),
ListOfMessages),
(getMember(MethodName,ListOfMessages),
method(SuperType,MethodName, Visibility,-,ListOfParameters,..),
\+ Visibility= private,
append([Methodname],[List OfParameters],ListOfMessagesWithParam)).

respondTo(Type,List):~is_type(Type),
findall(ListOfMessagesWithParam,
findMessages(Type,List OfMessagesWithParam),
List).

Table 10: Obtaining all messages to which an object of a given type can respond.

Method monitored by aspects

By the advice construct, aspects can inject functionality to be executed before,
after or instead of a method in a class. In this case, the method is said to be
monitored by the aspect. In Table 11, rule aspectMonitoringMethod identifies

the list of aspects monitoring a given method of a given type.

29

aspectMonitoringMethod(TypeName,MethodName,ListOfAspects):—
method(TypeName,MethodName,,-,-,.),
findall(AspectName,(advisedBy(TypeName,MethodName,_, AspectName,_,_,-,_)), ListOfAspects),
\+ ListOfAspects=[].

Table 11: Obtaining all aspects monitoring a given method in a given type.

5.3 Change impact analysis

In this section, we define rules for dependency and change impact analysis.

5.3.1 Dependency relationships between program entities

We have classified dependencies in aspect-oriented systems into three groups:

e Dependencies among aspects (AO specific dependencies).
¢ Dependencies among classes (OO specific dependencies).

¢ Dependencies among classes and aspects (OO-AO dependencies).

The presence of these dependencies makes the modification (add/ delete/ change)
of the program very difficult. Maintainers of aspect-oriented systems need to con-
sider not only dependencies that exist in aspect-oriented and/or object-oriented
parts, but also their inter-dependencies. Some changes in the system lead to er-
rors detected at compile time (for example the deletion of a method definition
will lead to compilation errors where this method is called). We exclude these

types of changes from our investigation because the programmers will be alerted

30

Types of dependencies

Inheritance dependency

Precedent dependency

Pointcut-Parameter dependency

Pointcut-Method dependency

Advice-Type dependency

Inter-type dependency

Advice-Method dependency

Pointcut-designator dependency

Table 12: Catalog of dependencies.

by the compiler on the specific points in the system affected by this change. We
also exclude the changes that are OO specific since they are already discussed in
the literature [40]. Our investigation targets AO and OO-AO dependencies and
changes that may cause the system to behave unintentionally as a result of a mod-
ification which has affected parts of the system without alerting the programmers,
that no compilation error has been produced?.

In the following subsection we identify different types of dependencies (see
Table 12) and for each one we provide a rule to detect them, and then codified

them in our database.

Types of AO specific dependencies

In this subsection we discuss types of AO specific dependencies.

%It is important to note that we do not identify unintentional behavior. Instead, we identify
all parts of the system which are affected by a specific change, in order to allow the user to decide
whether or not this impact is intentional.

31

Inheritance dependency

This defines the dependency between a superaspect and its subaspects. In As-
pectJ, an aspect cannot be extended unless it is declared to be abstract. An ab-
stract aspect needs to have abstract pointcuts which will then be implemented by
concrete subaspects. Normally the advice blocks related to the abstract pointcuts
are defined in the superaspect. Detecting the impact of superaspect deletion would
not be particularly interesting because this is immediately caught by the compiler.
However, it is possible that one would delete the content of the superaspect. In the
example of Figure 2, there is a direct dependency between the before advice of the
Superaspect and the abstract pointcut p defined in the Superaspect (and also to
the concrete pointcut p defined in Subaspect) as the advice knows which pointcut
it is related (bound) to. Therefore, deleting the abstract pointcut would lead to a
compilation error. On the other hand, a pointcut does not know about the advice
blocks which depend on it. This implies that deleting the advice blocks (related to
the abstract pointcut) in the superaspect would result in the program loosing the
expected functionality (which was supposed to be supported by before, after, or
around of the join point match). Therefore the intended behavior of the program

will be changed if this dependency is not identified prior to the deletion of advice

blocks. This dependency can be detected through the rule in Table 13.

Precedence dependency

Multiple advice blocks may apply to the same pointcut, and the resolution order

32

Superaspect

+abstract pointcut: p()
+before(): p()

Subaspect

+pointcut: p{()

Figure 2: Inheritance dependency.

advicePointcutInheritenceDep(SuperAspect,SubAspect, Adviceld, AdviceType, PointcutName): —
is_aspect(SuperAspect),is_aspect(SubAspect),
superAspect(SuperAspect,SubAspect),
triggerAdvice(SuperAspect,AdviceType,Adviceld,-,.),
pointcut(SubAspect,PointcutName, _,-,0),
pointcut(SuperAspect, PointcutName, -, -,1),
advicePointcutMap(SuperAspect,AdviceType,Adviceld, PointcutName).

Table 13: Obtaining the advice blocks defined in a superaspect while bound to a
given pointcut of a subaspect.

of the advice is based on predefined rules on advice precedence [50] which can be

categorized into two types:

1. Precedence rules among advice blocks from different aspects.

2. Precedence rules among advice blocks within the same aspect.

The precedence rules create a dependency between advice blocks related to the
same pointcut as the execution of one advice will depend on the advice which
executes before it. The example in Table 14 corresponds to the first type. The
three advice blocks defined in aspects AJ1 and AJ2 are applied to the same join

point call(public void C.m(..). According to the precedence rules the before

33

advice defined in aspect AJ1 has precedence over the two advice blocks defined in
aspect AJ2, and the before advice of AJ2 has precedence over its after advice.
The output in Table 14 shows the execution order of method C.m(int) and the
advice blocks. Neither of the advice blocks are aware of the precedence defined in
aspect AJ2. This implies that there would be no indication about this dependency
if one wants to change the before advice, of any of the aspects, to after or around
advice. Another type of change can be adding a new advice block for the same

join point in aspect AJ1 or deleting either of the advice blocks.

public aspect AJ1 {
pointcut AJ1_P1(): call(public void C.m(..));
before(): AJ1_P1() { // Display “Before from AJ1”}}

public aspect AJ2 {
declare precedence: AJ1, AJ2;
pointcut AJ2_P1(): call(public void C.m(..));
before(): AJ2_P1() { // Display “Before from AJ2”
}

after(): AJ2_P1() { // Display “After from AJ2”
13

public class C {
public void m(int i){

I3
Output:
Before from AJ1
Before from AJ2

After from AJ2

Table 14: Demonstrating precedence dependency.

For certain applications, the correct order of advice and method execution is vi-

tal to preserve the semantics of the system. One such example is a system providing

34

a service to concurrent (multiple) clients where a precondition to a service would
dictate that authentication would have to be evaluated before synchronization
which in turn would have to be evaluated before scheduling. Precedence rules guar-
antee the correct order, but any changes to the precedence or to the advice should
be performed with attention to the dependency that the declare precedence

creates. We can detect the precedence dependency through the following strategy:

Precedence dependency between advice blocks of the same aspect

For each pointcut defined in an aspect, we need to identify a list of its related
advice blocks. If the list contains more than one advice, then according to the
precedence rules there would be an order of execution for these advice blocks

which implies a dependency (Table 15).

advicePrecedenceDepPerAspect(AspectName,PointcutName.ListofAdviceBlocks):—
is_aspect(AspectName),
pointcut(AspectName,PointcutName, ,_,_)
findall(AdviceType,(advicePointcutMap(AspectName, AdviceType, Adviceld, PointcutName),
triggerAdvice(AspectName,AdviceType,Adviceld,,.)),
ListofAdviceBlocks), '
size(ListofAdviceBlocks,N),N>1.

Table 15: Obtaining the list of advice blocks bound to a given pointcut.

Precedence dependency between advice blocks of different aspects

First we need to identify aspects which are listed in declare precedence state-

ments. Then for all these aspects, we need to find the list of advice blocks which

35

are advising the same methods in the system. Table 16 shows the Prolog imple-
mentation of rule advicePrecedenceDepForMultipleAspects to identify list of

advice blocks related to a given advice in given aspect.

advicePrecedenceDepForMultipleAspects(AspectName, AdviceType,List OfAdviceParameters,
ListofAdvicelds):—
precedence(-, List),member(AspectName,List),getMember(AnAspect, List),
triggerAdvice(AspectName,AdviceType,_,ListOfAdviceParameters,_).
findall(Adviceld,advisedBy(ClassName,MethodName,ListOfParam,AnAspect, AdviceType,
Adviceld,.,.),
ListOfAdvicelds)).

Table 16: Obtaining all advice blocks related to a given advice in a given aspect.

Types of O0-AO dependencies

In this subsection, we discuss types of OO-AO dependencies.

Pointcut-Parameter dependency

Pointcuts can expose part of the execution context of the captured join points,
and the values exposed by a pointcut can be used in the body of advice declara-
tions [50]. A context is like a parameter list of a method that is, a list of types
(either user-defined or built-in)/identifier pairs. The fact that a pointcut (which
has parameter(s)) knows about its parameters indicates a dependency. This means
that pointcuts are dependent on the context they expose. According to the inher-
itance mechanism, an object of a type holds an "is-a” relationship with its super-

type, indicating that a pointcut is also dependent on the subtypes of the types,

36

included in its parameter list. Table 17 shows the Prolog rule corresponding to

this dependency.

pointcutParameterDep(AspectName,PointcutName,ListOfDepTypes): —
is-aspect(AspectName),pointcut(AspectName, PointcutName, ListOfParameters, -,..),
findall(TypeName,(getMember(TypeName,ListOfParameters),is_type(TypeName)),
ListOfDeclared Types),
findall(TypeName,(getMember (X, ListOfParameters),(X = object),(is-class(TypeName);
is_interface(TypeName))),ListOfTypes),

findall(SubType,(getMember(SuperType,ListOfDeclaredTypes),subType(SubType,SuperType))

ListOfSubTypes),
append(ListOf Types, ListOfDeclared Types, ListOfAllTypes),
append(ListOfAllTypes, ListOfSubTypes, List OfDepTypes).

Table 17: Obtaining the list of user-defined types being members of the parameter
list of a given pointcut.

Pointcut-Method dependency

A pointcut expression is built from the composition of the basic pointcut des-
ignators [14]. A pointcut monitors a method if it occurs in one of its pointcut
designators, and therefore there exists a dependency between the pointcut and
this method. A pointcut may be deactivated if the method signature changes in
the base code. In the same manner, a change in the signature of a monitored
method in pointcut designator may cause a pointcut to monitor other method(s)
or nothing at all. Therefore, the dependency between pointcuts and methods needs
to be captured. Here we investigate the dependency in the following four cases and
we exclude the case where (..) wildcard is used as method parameter in all these

cases.

37

1

Name of type and method are clearly defined in pointcut designator
In Table 18, rule pointcutTypeMethodDep is defined for cases where no wildcard
exists in the pointcut designator. The second rule in this figure is defined for cases

when there exists an inheritance relationship between aspects.

pointcutTypeMethodDep(AspectName,PointcutName, TypeName,MethodName,
ListOfMethodParameters):—
(is-aspect(AspectName),
pointcutdesig(-,AspectName,PointcutName, ., [,_, TypeName,MethodName,
ListOfMethodParameters]),
(MethodName\= every),(ListOfMethodParameters\= any),(TypeName \= every))
method(TypeName,MethodName,_,_,ListOfMethodParame‘cers,_).

'

pointcutTypeMethodDep(SuperAspectName,PointcutName, TypeName, MethodName,
ListOfMethodParameters): —
(is-aspect(SubAspectName),is_aspect(SuperAspectName),
superAspect(SuperAspectName,SubAspectName),
pointcut(SuperAspectName,PointcutName,_,_,1),
pointcut(SubAspectName,PointcutName, -, ,0),
pointcutdesig(_,SubAspectName,PointcutName,,[-,-, TypeName, MethodName,
ListOfMethodParameters)),
(MethodName\= every),(ListOfMethodParameters\= any),(TypeName \= every)),
method(TypeName, MethodName,_, -, ListOfMethodParameters,).

Table 18: Obtaining the pointcuts monitoring a given method of a given type.

Name of type is * (asterisk) and name of method is clearly defined
The Prolog rule pointcutMethodDep in Table 19 is defined for cases where the
* (asterisk) wildcard is used as type name in pointcut designator. The second rule
in this figure is defined for the situation where there exists inheritance relationship
between aspects. During the transformation process from the source code to Prolog

facts, all the * wildcards are replaced by every atom.

38

pointcutMethodDep(AspectName, PointcutName, ListOfTypes,MethodName,
ListOfMethodParameters):—
(is_aspect(AspectName),
pointcutdesig(-,AspectName,PointcutName,.,[_,_,every,MethodName,
ListOfMethodParameters)),
(MethodName\= every),(ListOfMethodParameters\= any)),
findall(TypeName, method(TypeName,MethodName,_,_,
ListOfMethodParameters,_),ListOf Types).

pointcutMethodDep(SuperAspectName, PointcutName,ListOf Types, MethodName,
ListOfMethodParameters): —
(is_aspect(SubAspectName),is_aspect(SuperAspectName),
superAspect(SuperAspectName,SubAspectName),
pointcut(SuperAspectName,PointcutName, _,-,1),
pointcut(SubAspectName,PointcutName, -,-,0),
pointcutdesig(_,SubAspectName,PointcutName,_,[_,_,every,

MethodName,ListOfMethodParameters}),
(MethodName\= every),(ListOfMethodParameters\= any)),
findall(TypeName, method(TypeName MethodName,_,_,
ListOfMethodParameters,_),ListOf Types).

Table 19: Obtaining the pointcuts monitoring a given method.

Name of type is clearly defined and name of method is *
The Prolog rule pointcutTypeDep in Table 20 is defined for cases where the *
wildcard is used instead of a specific method name in a pointcut designator. The
second rule in this table is defined for the situation where there exists inheritance

relationship between aspects.

Name of type and method is *
The Prolog rule pointcutDep in Table 21 is defined for cases where the * wild-
card is used instead of a specific method name and the type in which it is defined
in a pointcut designator. The second rule in this table is defined for the situation

where there exists inheritance relationship between aspects.

39

pointcut TypeDep(AspectName, PointcutName, TypeName, ListOfMethods,
ListOfMethodParameters):—
(is-aspect(AspectName),
pointcutdesig(-, AspectName,PointcutName,..,[-,_, TypeName,every,

ListOfMethodParameters]),

(TypeName\= every),(ListOfMethodParameters\= any)),

findall(MethodName, method(TypeName,MethodName,_,_,
ListOfMethodParameters,_),ListOfMethods).

pointcutTypeDep(SuperAspectName,PointcutName, TypeName, ListOfMethods,
ListOfMethodParameters): —
(is-aspect(SubAspectName),is_aspect(SuperAspectName),
superAspect(SuperAspectName,SubAspectName),
pointcut(SuperAspectName, PointcutName,_,_,1),
pointcut(SubAspectName,PointcutName,_,_,0),
pointcutdesig(-,SubAspectName,PointcutName, .,[-,-, TypeName,every,
ListOfMethodParameters]),
(TypeName\= every),(ListOfMethodParameters\= any)),
findall(MethodName,method(TypeName,MethodName,_,_,
ListOfMethodParameters,_),ListOfMethods).

Table 20: Obtaining the pointcuts monitoring all methods of a given type.

Advice-Type dependency

An advice declaration has a parameter list (like a method) that explicitly names
all the context that are passed to it. In case the context is a non primitive type,
an advice can have access to its features. This creates a dependency between the
advice and the types included in advice parameter declaration. It is important
to note that, a subaspect inherits all the advice blocks defined in superaspect.
As a consequence, an indirect dependency will be created between the subaspect
and the types in parameter list of superaspect. Table 22 shows the corresponding

Prolog rule identifying this dependency.

40

pointcutDep(AspectName, PointcutName, ListOf TypeMethods, ListOfMethod Parameters): —
(is_aspect(AspectName),
pointcutdesig(_,AspectName,PointcutName,_ [, every, every, ListOfMethodParameters]),
(ListOfMethodParameters\= any)),findall(Type,is_type(Type),ListOfAllTypes),
(getMember(X, ListOfAllTypes),method(X,MethodName, -, -, ListOfMethod Parameters,),
append([X],[MethodName],ListOfTypeMethods)).

pointcutDep(SuperAspectName, Pointcut Name, ListOf TypeMethods, ListOfMethodParameters): —
(is_aspect(SubAspectName),is_aspect(SuperAspectName),
superAspect(SuperAspectName,SubAspectName),
pointcut(SuperAspectName, PointcutName,_,_,1),
pointcut(SubAspectName, PointcutName,_,,0),
pointcutdesig(-,SubAspectName,PointcutName, [, -, every every,ListOfMethodParameters]),
(ListOfMethodParameters\= any)),findall(Type,is_type(Type) ListOfAllTypes),
(getMember (X, List OfAllTypes),method(X,MethodName, ., ListOfMethod Parameters, _),
append([X],[MethodName],ListOfTypeMethods)).

Table 21: Obtaining the pointcuts monitoring all methods in the system.

Advice-Method dependency

Advice blocks are method-like constructs that provide additional behavior to be
executed before, after, or instead of the methods to which they are woven [28].
This creates a dependency between the advice and the methods being advised by
it. It is important to note that an advice definition does not have any information
about the methods it advises. An advice only knows the pointcut to which it is
bound. The pointcut creates a link between the advice blocks which are bound
to it and the methods it advises. Therefore, it is difficult to manually identify
the dependency between an advice and methods. Table 23 shows the Prolog rule

defined in order to identify this dependency adviceMethodDep.

Inter-type dependency

There is an inter-type dependency between a class (or interface) and an aspect if

41

adviceTypeDep(AspectName,AdviceType,Adviceld,ListOfDepTypes): —
trigger Advice(AspectName, AdviceType,Adviceld, ListOfAdviceParameters,.),
findall(Type,(getMember(Type,ListOfAdviceParameters),is_type(Type)),

ListOfDeclared Types),
findall(Type,(getMember(X,ListOfAdviceParameters),(X = object),(is_class(Type);
is_interface(Type))) ListOf Types),
findall(Subtype,(getMember(SuperType, LissOfAdviceParameters),is_type(SuperType),
subType(Subtype,SuperType)),ListOfSubTypes),

append(ListOfDeclaredTypes,ListOf Types,ListOfAllTypes),
append(ListOfAllTypes, ListOfSubTypes,List OfDepTypes).

adviceTypeDep(SubAspectName, AdviceType,Adviceld,ListOfDepTypes): -
is_aspect(SubAspectName),is_aspect(SuperAspectName),
superAspect(SuperAspectName,SubAspectName),
triggerAdvice(SuperAspectName,AdviceType,Adviceld,ListOfAdviceParameters,_),
findall(Type,(getMember(Type,ListOfAdviceParameters),is_type(Type)),
ListOfDeclared Types),
findall(Type,(getMember(X,ListOfAdviceParameters),(X = object),(is_class(Type);
is_interface(Type))),ListOf Types),
ﬁndall(Subtype,(getMember(SuperType,ListOfAdviceParameters),is_type(SuperType),
subType(Subtype,SuperType)),ListOfSubTypes),
append(ListOfDeclared Types,ListOf T'ypes, List OfAllTypes),
append(ListOfAllTypes,ListOfSubTypes,ListOfDepTypes).

Table 22: Obtaining the list of user-defined types being members of the parameter
list of a given advice.

the class (or interface) is the type of a parameter of an inter-type declaration or the
return type of an inter-type declaration of the aspect. In this case the inheritance
relationship should also be taken into consideration. That is, if a class or interface
has subtypes, then the aspect is also dependent on its subtypes. Table 24 shows

the corresponding Prolog rule identifying this dependency.

Pointcut-designator dependency
In a call or execution join point, we may have a complete signature of a

method together with the return type and access modifier of the method, or we

42

adviceMethodDep(AspectName, AdviceType,ListOfAdviceParameters,ListOfMethods): —
is_aspect(AspectName),
(advicePointcutMap(AspectName,AdviceType,_,PointcutName);
(advicePointcutMap(SubAspectName,AdviceType,_,PointcutName),
subAspect(SubAspectName, AspectName))),
advisedBy(TypeName,MethodName,_,AspectName,AdviceType,_,ListOfAdviceParameters,
PointcutName),
append([TypeName],[MethodName],ListOfMethods).

Table 23: Obtaining the list of methods being advised by a given advice in a given
aspect.

may have wildcards. Having a wildcard increases the level of dependency between
the aspects and the base classes, and it also leads to accidental join points [48]. We
have defined 32 rules to identify pointcuts which have designators with wildcards.
In what follows we elaborate eight of them. As part of the naming convention

these rules correspond to the type of information they provide.

® pointcutMonitorAllTypeMethod(AspectName,List0fPointcuts).
This rule identifies all the pointcuts which have the call(x * *.%(..)) or
execution(* * *.%(..)) designator. A pointcut with this designator is mon-
itoring all methods with any parameters, return type, and access modifier
defined in the system. Therefore, it is dependent to all the classes and inter-

faces. Table 25 shows the implementation of the Prolog rule

pointcutMonitorAllTypeMethod.

® pointcutMonitorMethodWithParam(AspectName,ListOfPointcuts,

ListOfMethodParameters).

This rule identifies all the pointcuts which have the call(* * *.x(List0fMethod

43

interTypeDep(AspectName,ListofDepType, IntdMethodName): —

(is-aspect(AspectName),

introducedMethod(AspectName,_,InthethodName,_,ReturnType,ListOfParam,_)),

findall(TypeName,(getMember(TypeName,ListOfParam),is_type(TypeName)),

ListofDeclaredtype),
findall(TypeName,(getMember(X,ListOfParam),(X = object),(is_class(TypeName);
is_interface(TypeName))),Listoftype),

findall(Subtype,(getMember(SuperType,ListOfParam),
is_type(SuperType),subType(Subtype,SuperType)),ListofSubtype),

append(ListofDeclaredtype,Listoftype, Listof Alltype),

append(ListofAlltype,ListofSubtype, ListofDepTypel),

findall(TypeNamel,((TypeNamel = ReturnType),(is-type(TypeNamel))),

ListofDeclaredtypel),
findall(TypeNamel,((ReturnType = object),(is.class(TypeNamel);
is_interface(TypeNamel))),Listoftypel),
findall(Subtypel,((SuperTypel = ReturnType),is_type(SuperTypel),
subType(Subtypel,SuperTypel)),ListofSubtypel),

append(ListofDeclaredtypel, Listoftypel,ListofAlltypel),

append(ListofAlltypel ListofSubtypel,ListofDepType2),

append(ListofDepTypel,ListofDepType2,ListofDepType).

Table 24: Obtaining the types which are either return type or members of the
parameter list of an introduced method.

Parameter)), Or execution(* * *.*(ListOfMethodParameter)) designator. A point-
cut with this designator is monitoring all methods with the specified list of
parameters, but any return type, and access modifier defined in the system.

The Prolog rule pointcutMonitorMethodWithParam is shown in Table 26.
® pointcutMonitorSpecificMethodName (AspectName,List0fPointcuts,MethodName) .

This rule identifies all the pointcuts which have the call(x * *.MethodName(..)),
Or execution(* * *.MethodName(..)) designator. A pointcut with this desig-
nator is monitoring all methods with the specified name, but any parameter,
return type, and access modifier defined in the system. The implementa-

tion of the Prolog rule pointcutMonitorSpecificMethodName is shown in

44

pointcutMonitor AllTypeMethod(AspectName,ListOfPointcuts): —

pointcut(AspectName,PointcutName, _,_,_),
findall(PointcutName, pointcutdesig(-,AspectName,PointcutName, _,[_, - every every,[any]]),
ListOfPointcuts),

(ListOfPointcuts\= []).

Table 25: Obtaining pointcuts monitoring all methods in the system.

pointcutMonitorMethodWithParam(AspectName,ListOfPointcuts,ListOfMethodParameters):——
pointcut(AspectName,PointcutName,.,_,_),
method(-,-,-,-,ListOfMethodParameters,..),
findall(PointcutName,pointcutdesig(-,AspectName,PointcutName,_, [, every,every,
ListOfMethodParameters]),ListOfPointcuts),
(ListOfPointcuts\= []).

Table 26: Obtaining pointcuts monitoring all methods with a given list of param-
eters.

Table 27.

pointcutMonitorSpeciﬁcMethodName(AspectName,ListOfPointcuts,MethodName):—-

pointcut{AspectName,PointcutName,,-,-),is-method(MethodName),

findall(PointcutName,pointcutdesig(-, AspectName, PointcutName,_, [-,-.every,MethodName,
[any]]),ListOfPointcuts),(ListOfPointcuts\= []).

Table 27: Obtaining pointcuts monitoring all methods with a given name.

® pointcutMonitorSpecificMethodNameWithParam(AspectName,ListOfPointcuts,
MethodName,List0fMethodParameters).
This rule identifies all the pointcuts which have the call(x % *.MethodName
(ListOfMethodParameters)), Or execution(* * *.MethodName (ListOfMethodPara
meters)) designator. A pointcut with this designator is monitoring all meth-
ods defined in the system with the specified name and list of parameters, any
return type, and any access modifier. The implementation of the Prolog rule

45

pointcutMonitorSpecificMethodNameWithParam is shown in Table 28.

pointcutMonitorSpecificMethodNameWithParam(AspectName, ListOfPointcuts, MethodName,
ListOfMethodParameters):—
pointcut(AspectName, PointcutName,_,_,.),
method(_,MethodName,_, ., ListOfMethodParameters,),
findall(PointcutName, pointcutdesig(-,AspectName,PointcutName, _ [, - every,MethodName,
ListOfMethodParameters]),ListOfPointcuts),
(ListOfPointcuts\= []).

Table 28: Obtaining pointcuts monitoring all methods with a given name and list
of parameters.

® pointcutMonitorAllMethods0fTypeName (AspectName,ListOfPointcuts,TypeName) .

This rule identifies all pointcuts which have the call(* * TypeName.*(..)), or
execution(* * TypeName.*(..)) designator. A pointcut with this designator is
monitoring all methods defined for the specified TypeName. The implemen-
tation of the Prolog rule pointcutMonitorAllMethodsOf TypeName is shown

in Table 29.

pointcutMonitorAllMethodsOnypeName(AspectName,ListOfPointcuts,TypeName):—
pointcut(AspectName, PointcutName, -, -,) is_type(TypeName),
ﬁndall(PointcutName,(pointcutdesig(_,AspectName,PointcutName,_,[_,_ Atype,every,[any]]),

((Atype=TypeName) ;superType(Atype, TypeName))),ListOfPointcuts),
(ListOfPointcuts\= []).

Table 29: Obtaining pointcuts monitoring all methods of a given type.

® pointcutMonitorAllMethodsOfTypeNameWithParam(AspectName,ListOfPointcuts,

TypeName ,List0OfMethodParameters).

This rule identifies all pointcuts which have the call(x % TypeName.*(List0f

46

MethodParameters)), Or execution(* * TypeName.*(ListOfMethodParameters)) des-
ignator. A pointcut with this designator is monitoring all methods which
have the specified list of parameter and defined for the specified TypeName.
The implementation of the Prolog rule pointcutMonitorAllMethods0fType

NameWithParam is shown in Table 30.

pointcutMonitorAllMethodsOfTypeNameWithParam(AspectName,ListOfPointcuts, TypeName,
ListOfMethodParameters):—
pointcut(AspectName,PointcutName,_,_,_),
method(TypeName,_,,-,ListOfMethodParameters,..),
findall(PointcutName,pointcutdesig(-,AspectName, PointcutName, -,[-,-, TypeName,every,
ListOfMethodParameters]),List OfPointcuts),
(ListOfPointcuts\= {]).

Table 30: Obtaining pointcuts monitoring all methods of a given type that have a
given list of parameters.

® pointcutMonitorMethodNameOfTypeName (AspectName,ListOfPointcuts,
TypeName,MethodName)
This rule identifies all pointcuts which have the call(* * TypeName.MethodName
(..)), Or execution(* * TypeName.MethodName(..)) designator. A pointcut
with this designator is monitoring all methods defined for the specified TypeName.
The implementation of the Prolog rule pointcutMonitorMethodNameofTypeName

is shown in Table 31.

® pointcutMonitorMethodNameOfTypeNameWithParam(AspectName,ListOfPointcuts,

TypeName ,MethodName,ListOfMethodParameters) .

This rule identifies all pointcuts which have the call(* * TypeName.Method

47

pointcutMonitorMethodNameOfTypeName(AspectName,ListOfPointcuts, TypeName,

MethodName):—
pointcut(AspectName,PointcutName,_,_,_),
method(TypeName,MethodName,,-,_,_),
findall(PointcutName,pointcutdesig(-,AspectName,PointcutName, _,[_,_, TypeName,

MethodName,[any]]),ListOfPointcuts),
(ListOfPointcuts\= []).

Table 31: Obtaining pointcuts monitoring methods of a given type with a given
name.

Name (ListOfMethodParameters)), OI execution(* * TypeName.MethodName (ListOf

MethodParameters)) designator. A pointcut with this designator is monitor-
ing all methods with the specified list of parameter defined for the specified
TypeName. The implementation of the Prolog rule pointcutMonitorMethodNa

meofTypeNameWithParam is shown in Table 32.

pointcutMonitorMethodNameOfTypeNameWithParam(AspectName, ListOfPointcuts, TypeName,
MethodName, ListOfMethodParameters): —
pointcut(AspectName, PointcutName,,,),
method(TypeName.MethodName,_,_,ListOfMethodParameters._),
findall(PointcutName,pointcutdesig(-,AspectName, PointcutName, _,
[-,- TypeName MethodName, ListOfMethodParameters]),
ListOfPointcuts),(ListOfPointcuts\= []).

Table 32: Obtaining pointcuts monitoring a method with a given signature.

5.3.2 Atomic changes

We have adopted a subset of atomic changes® defined in [54] as well as refined

some and introduced a new one. A list of these changes is provided in Table 33. In

3In object-oriented programming classes, methods, fields and their interrelationships are con-
sidered as the atomic units of change [24]. This definition is extended in [54] for aspect-oriented
programming.

48

order to detect the impact of changes in system we need to create a relationship

between the changes and the dependencies defined in previous section.

Abbreviation | Atomic Change Name
ANM Add a New Method

CMS Change a Method Signature
DIM Delete an Introduced Method
ANA Add a New Advice [refined]

CAT Change Advice Type [introduced])
DAD Delete an Advice [refined]

ANP Add a New Pointcut

DpPC Delete a Pointcut

Table 33: A catalog of atomic changes in AspectJ.

Add a new method

A new method can be added for a type directly, or by an aspect through inter-
type declaration. We are interested in the identification of possible effects of such
a change to a system. If in our system we have a pointcut definition like pointcut
pQ):call(x *.%(..)) , the newly added method would be captured automatically
by this pointcut. Moreover, if we have more than one pointcut with this designator,
then more than one advice would be executed. Because having pointcut designators
with wildcards may lead to collecting unexpected join points, we should check if
there exists any pointcut designator that matches the signature and return type of
the newly added method. We have already defined a rule in our Prolog database
to treat an introduced method as a regular method (See Table 34).

Table 35 shows all possible cases for matching (void <typeName>.<methodName>

(<params>)) with a pointcut designator.

49

method(TypeName MethodName, Visibility, ReturnType, ListOfMethodParameters,
MethodType):—
is_aspect(AspectName),
introducedMethod(AspectName, TypeName,MethodName, Visibility, ReturnType,
ListOfMethodParameters, Method Type).

Table 34: Considering an introduced method as declared method.

Next, we define a rule to detect the affect of adding a new method as void
<typeName>.<methodName>(<params>) (see Table 36).

Adding a new method may also have other affects in system if this method is
introduced by an aspect through inter-type declaration. In [26] the authors discuss
cases where introducing a new method through inter-type declaration may lead to
conflicts. For example, if a method is defined by an aspect for a type, then all
its subtypes inherit this method. A conflict may occur if a method with the same
name, signature, and return type is defined for one of its subtypes. In this case the
body of the newly defined method for a subtype overrides the method defined in
the supertype. However, this may lead to some unexpected behavior if it is done
unintentionally. Therefore, we need to identify these cases where the conflict may
occur. The Prolog implementation of such a rule findConflictForAddMethod

shown in Table 37.

Change a method signature

Changing a method signature leads to compilation errors where this method

50

Part of pointcut designator

Definition

Prolog rule

* void *.*(..)

All types and all meth-
ods with any list of pa-
rameter

pointcutMonitorAllTypeMethod(AspectName,
ListOfPointcuts)

*

void *.*(<params>)

All types and all meth-
ods with the <params> as
parameter list

pointcutMonitorMethodWithParam(AspectName,
ListOfPointcuts, ListOfMethodParameters)

<methodName> with the
<params> as§ parameter
list

* void *.<methodName>(..) All types having | pointcutMonitorSpecificMethodName(AspectName,
a method named | ListOfPointcuts,MethodName)
<methodName>

* void *,<methodName>(<params>) All types having | pointcutMonitorSpecificMethodNameWithParam
a method named | (AspectName,ListOfPointcuts,MethodName,

ListOfMethodParameters)

*

void <typeName>.*(..)

All methods belong to
<typeName> or its super-
types

pointcutMonitorAllMethodsOfTypeName
(AspectName,ListOfPointcuts, TypeName)

*

void <typeName>.*(<params>)

All methods of
<typeName> or its
supertypes which have
<params> as parameter
list

pointcutMonitor AllMethodsOfTypeName
WithParam(AspectName,ListOfPointcuts,
TypeName,ListOfMethodParameters)

* void
<typeName>.<methodName>(..)

All methods of the
<typeName> or its
supertypes which are
named <methodName>

pointcutMonitorMethodNameOfTypeName
(AspectName,ListOfPointcuts, TypeName,
MethodName)

* void
<typeName>.<methodName> (<params>)

Method of the

<typeName> or its
supertypes which s
named <methodName>

and has <params> as
parameter list

pointcutMonitorMethodNameOfTypeName
WithParam(AspectName,List OfPointcuts,
TypeName,MethodName,ListOfMethodParameters)

Table 35: List of pointcut designators that match void <typeName>.<methodName>

(Kparams>).

is called. When one decides to perform such a change, these compilation er-

rors need to be resolved. However, resolving the compilation errors is sometimes

not sufficient. Changing a method signature may deactivate some of the point-

cuts in the system without any sign of error. When a pointcut is deactivated,

the advice blocks bound to it will not be executed. Therefore, before chang-

ing a method signature, all its dependent pointcuts need to be identified, and

the corresponding modifications should be applied on them. By deploying rule

51

addMethod(AspectName,ListOfPointcuts, TypeName, MethodName, ListOfMethodParameters): —
is.aspect(AspectName),(pointcutMonitor AllTypeMethod(AspectName, List OfPointcuts);
(pointcutMonitorMethod WithParam(AspectName, ListOfPointcuts, ListOfMethod Parameters);
pointcutMonitorSpecificMethodName(AspectName,ListOfPointcuts,MethodName);
pointcutMonitorSpecificMethodNameWithParam(AspectName,List OfPointcuts,
MethodName,ListOfMethodParameters);
pointcutMonitorAllMethodsOfTypeName(AspectName, ListOfPointcuts, TypeName);
pointcutMonitorAllMethodsOfTypeNameWithParam(AspectName, List OfPointcuts,
TypeName,ListOfMethodParameters);
pointcutMonitorMethodNameOfTypeName(AspectName,List OfPointcuts, TypeName,
MethodName);
pointcutMonitorMethodNameOfTypeNameWithParam(AspectName, ListOfPointcuts,
TypeName,MethodName,
ListOfMethodParameters)).

Table 36: Obtaining all pointcuts which may monitor a method with a given
signature.

findConflictForAddMethod(AspectName, TypeName,MethodName, ListOfMethodParameters,
ReturnType):—
findDeclaredMethod(AspectName, TypeName,SuperTypeName,MethodName),
method(SuperTypeName, MethodName, -, ReturnType, ListOfMethod Parameters,).

Table 37: Obtaining the aspect defining & similar method to a supertype of a given
type.

pointcutMonitorMethodNameOfTypeNameWithParam defined in Section 5.3.1, we

can identify the list of pointcuts monitoring a given method.

Delete an introduced method

Deleting a method in the system leads to compilation errors where this method
is called. However there are cases where a method deletion does not produce
any compilation errors, even though it may affect the behavior of a system. An

interface is a group of related methods with empty bodies. In AspectJ an interface

52

ParentClass Anlinterface

A A

SubClass1i SubClass?2 SubClass3

L]

Figure 3: Example of inheritance hierarchy.

can be defined inside the body of an aspect, and it is possible to implement the
methods of the interface in the aspect through inter-type declarations. Figure 3
shows an example of an inheritance hierarchy.

In this example, all the subclasses inherit the method foo() defined in the su-
perclass. In Table 38, aspect AnAspect defines method foo () for class ParentClass.
In this case, all the subtypes of class ParentClass inherit this method. However,
aspect AnotherAspect also defines a method with the same signature and name
for class SubClass3 indirectly through inter-type declaration. If method foo() is
invoked on instances of class SubClass3, the body of the method defined for the
interface will be executed. Having such an implementation may be an intentional
design decision, with the programmer aiming to provide a different implementa-
tion for one of the subclasses. A problem may occur in this case if one deletes
the introduced method for the interface AnInterface. This would not result in
a compilation error, as class SubClass3 will have the implementation of method

foo() from its superclass, although it may not be desirable. Table 39 shows the

53

Prolog rule to find any possible conflict for deleting an introduced method.

public aspect AnAspect {
public void ParentClass.foo(){
System.out.println("Foo of parent");}
//.. some code }

public aspect AnotherAspect {
public void Anlnterface.foo(){
System.out.println("Foo of interface");}
//.. Some code}

Table 38: Partial code of aspects AnAspect and AnotherAspect.

findConflictForDeleteMethod(TypeName, ConfList): —
is_type(TypeName),
findall(ListOfMethods, listOfIntroducedMethod(TypeName, ListOfMethods), List),
\+ List=[],(getMember(X,List), Templ=X, subtract(List,[Temp1],Difference),
getMember(Y,Difference), Temp2=Y intersection(Templ, Temp?2, ConfList),
\+ ConfList=[]) .

Table 39: Obtaining methods of a given type overriding an introduced method.

Add a new advice

When an advice is added to an aspect, it should be bound to a named pointcut
defined in the aspect (or in its superaspect), or it should be bound to an anonymous
pointcut* [33]. This implies that an advice block will be executed at well-defined
points in the execution of program. In other words, adding a new advice to an
aspect would affect the control flow of the system. In Section 5.3.1 we have defined
four rules, pointcutTypeMethodDep, pointcutMethodDep, pointcutTypeDep, and

pointcutDep which capture the dependency between a pointcut and methods. We

4In this research, we have assumed that all pointcuts are named.

54

deploy these rules to find the list of methods being advised by an advice if the advice
is to be added to a given aspect. Table 40 shows the Prolog implementation of

rule addNewAdvice.

addNewAdvice(AspectName, AdviceType,PointcutName, ListOfMethods1,ListOfMethods?2,
ListOfMethods3,ListOfMethods4): —

(pointcutTypeMethodDep(AspectName,PointcutName,TypeName,MethodName,_),
append([TypeName],[MethodName] ListOfMethods1));
(pointcutMethodDep(AspectName,PointcutName,ListOnypes,MethodName,_),
append([ListOfTypes],[MethodName],List OfMethods2));
(pointcutTypeDep(AspectName,PointcutName.TypeName.ListOfMethods,_).
append([TypeName],[ListOfMethods],ListOfMethods3));
(pointcutDep(AspectName, PointcutName, ListOfTypeMethods,_),
append([ListOfTypeMethods], [ListOfTypeMethods], ListOfMethods4)).

Table 40: Obtaining methods being advised by a new advice in a given aspect.

Change an advice type

It may be the case that for various reasons an advice type need to be changed.
Often changing the advice type (for example from before to after, or around)
modifies the system control flow. Indeed manually detecting all places where this
change affects the system control flow, is a tedious and error-prone process specially
for a medium to large-scale applications. Therefore, it is useful to have information
about the methods which are advised by this advice. Changing an advice type may
lead to unintended behavior of the system if there exist advice blocks relevant® to
this advice. This implies that before modification of an advice type one needs i)

information about the methods which are advised by it, and ii) its relevant advice

STwo pieces of advice are relevant, if they are defined in different aspects, apply at at least one
common join point and are either of the same kind or at least one of them is around-advice [47].

55

block(s). Table 41 shows the Prolog rule changeAdviceType which finds the list
of methods advised by a given advice defined in a given aspect and all its relevant

advice blocks.

changeAdviceType(AspectName,AdviceType,Adviceld,Listof TypeMethod,
ListOfRelevant AdvicePerAspect, ListOfRelevant AdvicePerMultiple Aspect,
ListOfAspectWithPrecedence): —
is_aspect(AspectName),
(methodAdviceby(AspectN ame,AdviceType,Adviceld,Listof TypeMethod);
findReleventAdvicePerAspect(AspectName,AdviceType,Adviceld,
ListOfRelevantAdvicePerAspect);
findReleventAdvicePerMultipleAspect(AspectName, AdviceType, Adviceld,
ListOfRelevant AdvicePerMultipleAspect);
getPrecedence(AspectName, ListOfAspect WithPrecedence)).

Table 41: Obtaining list of relevant advice blocks for a given advice.

Delete an advice

Deletion of advice affects the control flow of the system, because the system
will lose the functionality to be executed at joint points. For example, deleting
a before advice that checks the precondition of a method may lead to wrong
or unexpected results. In Section 5.3.1, we defined rule adviceMethodDep which
captures the dependency between an advice and methods. Using this rule we can
identify list of methods being advised by an advice. Having this list helps to make

a better decision before the deletion of an advice.

Add a new pointcut
Adding a pointcut with a name which already exists (for another pointcut) in
the same aspect leads to compiler error. However, it is possible to have a pointcut

56

defined in an aspect with the same name as a pointcut in its superaspect. This is
referred to as pointcut overriding [49]. If the subaspect does not provide an advice
block for the overriding pointcut, the advice block(s) defined in the superaspect
will be invoked when the overriding pointcut is captured. However, if there exists
an advice definition in the subaspect for the overriding pointcut, this advice block
will be invoked together with the advice block(s) defined in the superaspect. In
this case, the order of execution will be based on the precedence rules [50]. This
implies that adding a new pointcut may lead to unexpected behavior in the system.
Table 42 shows the Prolog rule addNewPointcut to find the pointcut with the same

name as the one to be added.

addNewPointcut(SubAspectName, PointcutName, ListOfParameters, List):—
is_aspect(SubAspectName),superAspect(SuperAspectName,SubAspectName),
pointcut(SuperAspectName, PointcutName,ListOfParameters, .,0),
append([SuperAspectName],[PointcutName],List).

Table 42: Obtaining all pointcuts having the same name as a given pointcut.

Delete a pointcut

Deleting a pointcut in an aspect leads to a compilation error if there are advice
blocks bound to it. However, if one deletes a pointcut which is overriding a pointcut
in a superaspect no compilation error will occur, and consequently the advice
blocks bound to this pointcut will be deactivated. This indicates that some of
the functionalities to be executed after, before, or instead of a method will not
be executed. Table 43 shows the Prolog implementation of rule deletePointcut.

57

This rule identifies the list of methods which will not be affected by the advice

blocks upon deletion of a given pointcut.

deletePointcut(AspectName, PointcutName, ListOfMethods): —
is_aspect(AspectName),is_aspect(SuperAspectName),
superAspect(SuperAspectName, AspectName),
pointcut(AspectName,PointcutName,-,-,-),
pointcut(SuperAspectName,PointcutName, -, -,-),
findall(MethodName,pointcutdesig(-,AspectName, PointcutName, _,
[-,- TypeName MethodName,_]),List),
(getMember(X,List),findall(TypeName,pointcutdesig(_, AspectName, PointcutName, _,
[-.- TypeName,X,.]),ListOf Types),
append(ListOfTypes,[X],ListOfMethods)).

Table 43: Obtaining all methods which will not be affected by the advice blocks
bound to a given pointcut.

58

Chapter 6

Case study

As a proof of concept, we deploy our approach over a service-oriented system
which we has been developed in the context of another project. Even though
there exist large-scale open source aspect-oriented systems!, they contain a large
number of classes but a few aspects (while most of these aspects are performing a
simple functionality, as logging). Therefore, we have decided to use the Infomedi-
ator system, since it has more complex aspects, for example ContractChecking,
Synchronization, and ObserverProtocol. For the complete implementation of
the Infomediator system and its corresponding transformation to Prolog facts see
Appendix A.

The system allows possibly multiple consumers and retailers to have access to
a communication hub which controls and coordinates their interactions in order to

implement the reverse auction protocol. In this protocol one consumer may place

http://sourceforge.net/

59

5

L«

Consumer Retailer |~
PotentialOrder
- -customer
[Consumerbirectory| ubDl -service
-rule
-winnex
S setWinner (Retailer)
| +getWinner ()
+getCustomer ()
<<gingleton>>
Infomediator
ReverseAuction
£ H i
+initieteReverssAuction() :i:::ii::gﬁ:“t"y -
+eridReverseAuction() —retailers
+placeQrder (PotentialOrder) —duotes
+attach(Client) quo
-isComplete

t+detach(Client) -service

—kule
+initiatsReverseAuction()
+findCandidateRetailerIds()
+retrieveCandidateRetailers ()
+salectWinner ()
+notifyWinner()

+getQuote()

+isComplete ()

+hecomsComplate ()

Figure 4: Partial class diagram of the system.

a request to purchase a product. After a collection of sellers is iterated over to find
the best price, a message is sent back to the client informing them about the winner
retailer and asking for confirmation to place an order. The core functionality is
provided by the definitions of classes Infomediator and ReverseAuction. Figure 4
shows a partial class diagram of the system.

For each reverse auction request, a potential order is created and associated
with the consumer who originated the reverse auction and with the winner of the
reverse auction (see Figure 5). The system routes the auction result back to the

consumer and informs the winner.
Supported semantics and other technical services (such as the subject-observer

protocol, contract checking, authentication, synchronization, transaction logging,

60

:Infomediator HVD]| ‘Retaller
InitiateReverseAuctidn()
? creates () Po:
Potential

; add(po)

creates {)

:ReverseAuction

InitiateReverseAuctiori()

find {retailerids, rule)

retrieve(id)

getQuote()

Retaller winner := selectWinner(),

notifyWinner()

winner

satWinner(winner)

Figure 5: UML sequence diagram for system operation initiateReverseAuction().

throughput and persistence) are provided by a number of aspect definitions. One
notable example is the aspectual behavior of the aspect ObserverProtocol (see
Table 44): This aspect is implemented as an abstract aspect which defines the
Observer design pattern [20], where retailers are viewed as observers and customers
are viewed as subjects. The definition of aspect CoordinateObserver extends
aspect ObserverProtocol and provides concrete pointcuts. A list of all retailers
participating in the reverse auction is created when a reverse auction is initiated.
If a customer eventually purchases the service from the winner of the auction,
the corresponding retailer will be notified with the information about the number
of items sold. A segment of the transformation of aspect coordinateObserver

to Prolog facts is provided in Table 46. The system has nine classes and eight

61

aspects. Table 45 presents information regarding the number of source lines of

code (SLOC)?, number of methods®, pointcuts and advice blocks of the system.

public abstract aspect ObserverProtocol {

protected interface Subject {

public void addObserver(Observer o);

public void removeObserver(Observer o);

private List observers = new LinkedList();}
private synchronized void Subject.notifyObserver(PotentialOrder po){...}
public interface Observer {

public void notifyOfchange(Subject s, PotentialOrder po);}
protected abstract pointcut subjectChange(Subject s, PotentialOrder po);
after(Subject s, PotentialOrder po): subjectChange(s, po){...}
protected abstract pointcut findObservers(Infomediator info,

Subject s, String service, String rule);
after(Infomediator info, Subject s, String service,String rule):
findObservers(info, s, service, rule){..}}

privileged public aspect CoordinateObserver extends ObserverProtocol {
declare parents : Retailer implements Observer;
declare parents : Customer implements Subject;
private int Retailer.NumberSold = 0;
public void Retailer.notifyOfchange(Subject s, PotentialOrder po)
{NumberSold++;...}
protected pointcut subjectChange(Subject s, PotentialOrder po):
execution(* Customer.buy(PotentialOrder))
&& target(s) && args(po);
protected pointcut findObservers(Infomediator info, Subject customer,
String service, String rule):
execution (* Infomediator.initiateReverseAuction(Customer,
String,
String))
&& target(info) && args(customer, service, rule);}

Table 44: Partial code of aspects ObserverProtocol and CoordinateObserver.

In the following subsections, we illustrate examples of general rules, measure-
ment rules, dependency rules, and change impact analysis rules applied on the

Infomediator system.

20nly non-empty and non-commented lines of code are counted.
3Class constructors and methods defined through inter-typed declaration are considered as
methods.

62

Class/Aspect | SLOC | Method Pointcut| Advice]
Client 11 2 NA NA
Customer 11 2 NA NA
CustomerDirectory | 15 3 NA NA
Infomediator 49 8 NA NA
PotentialOrder 23 5 NA NA
Quote 17 4 NA NA
Retailer 38 8 NA NA
ReverseAuction 72 9 NA NA
UDDI 49 7 NA NA
Authentication 46 2 2 2
ContractChecking 32 0 2 2
CoordinateObserver | 14 1 2 0
ObserverProtocol 39 3 2 2
Persistence 9 0 1 1
Synchronization 24 0 1 1
Throughput 12 0 2 2
TransactionLogging | 51 0 4 4
Total 512 54 16 14

Table 45: Statistics about the source code of Infomediator.

6.1 Inter-type declared method in inheritance hi-

erarchy

As shown in Figure 5, class Customer extends class Client. This implies that
objects of type Customer inherit the behavior defined for the supertypes. Here we
want to obtain Declared Method in Inheritance Hierarchy for class Customer. Man-
ually, this task would be tedious because one needs to check all aspect definitions
in the system in order to obtain this information. According to Section 5.2.3 we
run query findDeclaredMethod(Aspect,customer, SuperType, Method), and

we show the result in Table 47.

63

aspect(coordinateobserver,package).
privileged Aspect(coordinateobserver).
extends(coordinateobserver,observerprotocol).
introducedMethod(coordinateobserver,retailer,notifyOfchange, public,void, [subject,
potentialorder],0).
introduced Att(coordinateobserver, retailer,numbersold,int,private,0).
pointcut(coordinateobserver, subjectchange, [subject,potentialorder], protected,0).
pointcutdesig(1412294,coordinateobserver,subjectchange,execution,
[public,all,customer,buy,[potentialorder]]).
pointcutdesig(13452612,coordinateobserver,subjectchange, target, [subject]).
pointcutdesig(8287698,coordinateobserver subjectchange,args, [potentialorder]).
pointcut(coordinateobserver,findobservers, [infomediator,sub ject,string,string],protected,0).
pointcutdesig(6901522,coordinateobserver,findobservers,execution,
[public,all,infomediator,initiatereverseauction, [customer,string,string]]).
pointcutdesig(29769356,coordinateobserver, findobservers, target, [infomediator]).
pointcutdesig(3431235,coordinateobserver, findobservers,args, [customer, service, rule]).

Table 46: Partial Prolog facts resulting from the transformation of aspect
coordinateObserver.

findDeclaredMethod(Aspect,customer,SuperType,Method).

Result:

Aspect = ObserverProtocol, SuperType = Subject, Method = addobserver:
Aspect = ObserverProtocol, SuperType = Subject, Method = removeobserver;
Aspect = ObserverProtocol, SuperType = Subject, Method = notifyobserver;

Table 47: Result of query findDeclaredMethod.
6.2 Messages to which an object can respond
Inter-type declaration allows aspects to define state/behavior for classes/interfaces
outside their definition. Therefore, in order to find the messages to which an object

can respond, one needs to check i) the class definition of the declared type, ii) the

class definition of the supertypes of the declared type, iii) all aspect definitions for

64

the inter-type declared methods for the static type and its supertypes. Asan exam-
ple, to do this task manually for the class Customer, one should check the definition
of class Customer to find all methods with public or protected access modifiers.
Moreover, the definitions of all supertypes of this class need to be checked in order
to find all its inherited methods. Finally, all aspect definitions need to be checked
for the inter-type declared methods for the class Customer or its supertypes. In or-
der to find all messages to which an object of type Customer responds, one should
run query respondTo(customer,List) defined in Section 5.2.3. The result of this

query is shown in Table 48.

respondTo(customer,List).

List = [[buy, [potentialorder]], [getname, []], [getid, []], [addobserver, [observer]],
[removeobserver, [observer][];

Table 48: Result of query respondTo.

Class Customer has one declared method (buy(PotentialOrder)), and it in-
herits two methods from its superclass Client (getName(), getId()). How-
ever, aspect ObserverProtocol introduces three methods for interface Subject,
and this interface is declared to be the supertype of class Customer in aspect

coordinateObserver (see Table 73 in Appendix A). Indeed, an object of type
Customer has addobserver (Observer), removeobserver (Observer), notifyobs-

erver (PotentialOrder) methods, but because the access modifier of method

65

notifyobserver(PotentialOrder) is private, this method is not listed in Ta-

ble 48.

6.3 Pointcut-Class dependence factor

Having pointcuts that expose context increases the coupling between aspects and
classes. Pointcut-Class dependence factor shows the degree of interdependency be-
tween aspects and classes. In the following example, Pointcut-Class Dependence
factor for the aspect coordinateObserver is calculated. According to Section 5.2.2,

one should run the following query:
pointcutClassDependenceCount (coordinatelbserver, TypeName, TotalCount).

The result of this query is provided in Table 49. As it is shown in Table 44,
none of the parameters of the pointcut definitions in aspect coordinateObserver
are of type Customer. Since class Customer is a subtype of interface Subject, and
both pointcut definitions in aspect coordinateObserver have Subject in their
parameter lists, pointcutClassDependence for class Customer should be equal to
two.

Table 50 shows the Pointcut-Class dependence factor for all classes/ interfaces
in the Infomediator system where Al, A2, A3, A4, A5, A6, A7, and A8 cor-
respond to aspects Authentication, ContractChecking, CoordinateObserver,
ObserverProtocol, Persistence, Synchronization, Throughput, and Transact-
ionLogging respectively. The table shows that the pointcuts of aspect Transactio-

66

pointcutClassDependenceCount(coordinateobserver, TypeName, TotalCount).

TypeName
TypeName
TypeName
TypeName
TypeName
TypeName
TypeName
TypeName
TypeName
TypeName
TypeName

TypeName

= client, TotalCount = 0 ;

= customer, TotalCount = 2 ;

= customerdirectory, TotalCount = 0 ;
= demo, TotalCount = 0 ;

= infomediator, TotalCount = 1 ;

= potentialorder, TotalCount = 1 ;
= quote, TotalCount = 0 ;

= retailer, TotalCount = 0 ;

= reverseauction, TotalCount = 0 ;

= uddi, TotalCount = 0 ;
= observer, TotalCount = 0 ;

= subject, TotalCount = 2 ;

Table 49: Result of query pointcutClassDependenceCount.

nLogging are dependent to all classes and interfaces in the system. It also shows

that aspect Throughput is not dependent on any class/ interface. We can also infer

from the table that most of the pointcuts are dependent to the class Infomediator.

Moreover,

the table shows that the dependency among aspect ObserverProtocol

and class customer is stronger than the dependency among aspect ObserverProtocol

and class Infomediator. By comparing the data on this table, we can see that the

values are very close to each other. However, if we had a relatively larger number

(for example 10 or 12), this would be an indication for a high coupling between

67

Aspect
Al A2 A3 A4 A5 A6 AT A8

Class

Client 2 1 0 0 0 0 0 1
Customer 2 1 2 2 0 0 0 1
CustomerDirectory 0 0 0 0 0 0 0 1
Infomediator 0 1 1 1 1 1 0 1
Observer 0 0 0 0 0 0 0 1
PotentialOrder 0 0 1 1 0 0 0 1
Quote 0 0 0 0 0 0 0 1
Retailer 2 1 0 0 0 0 0 1
ReverseAuction 0 1 0 0 0 0 0 2
Subject 0 0 2 2 0 0 0 1
UDDI 0 0 0 0 0 0 0 1

Table 50: Pointcut-Class dependence factor for all classes and interfaces.

the corresponding class and aspect.

6.4 Advice-Type dependency

The obliviousness property of Aspect-Oriented systems creates a unidirectional
visibility from aspects to classes. Context passing is one of the mechanisms through
which an aspect can have visibility over classes. Context passing increases the
coupling between aspects and classes. For example an advice becomes coupled to
the class being passed to it through context passing, and hence any change in this
class can affect this advice. In order to identify all aspects being coupled to a class
through context passing, one should check all aspect definitions in the system. One
can run query adviceTypeDep(AspectName,AdviceType,._, [reverseauction])
defined in Section 5.3.1 in order to find the list of aspects which have visibility

over class ReverseAuction through context passing. The result of this query is

68

shown in Table 51.

adviceTypeDep(AspectName,AdviceType,-,[reverseauction]).

AspectName = contractchecking,
AdviceType = around ;

AspectName = transactionlogging,
AdviceType = after ;

Table 51: Result of query adviceTypeDep.

6.5 Add method

A pointcut that contains *.*(..) monitors all methods in the system. Conse-
quently, if a new method is added to the system, it will be automatically moni-
tored. However, this may not reflect the intentions of the maintainers. Therefore,
one should check all aspect definitions in the system in order to find the point-
cuts which can capture the newly added method. If one decides to add method
findLoser(PotentialOrder) to class ReverseAuction in the Infomediator sys-
tem in order to find all losers of an auction, it will be beneficial to know if there exist
any pointcut with a designator that matches the signature of this method. In order
to obtain this information, one can run query addMethod (AspectName,List0fPoint
cutName,reverseauction,findLoser, [potentialorder]) defined in Section 5.3.2.

The result of this query is shown in Table 52.

69

addMethod(AspectName, ListOfPointcutName, reverseauction, findLoser, [potentialorder]).

Result:
AspectName = transactionlogging,
ListOfPointcutName = [captureevent] ;

Table 52: Result of query addMethod.

70

Chapter 7

Automation and tool support

This chapter discusses automation through the deployment of an Eclipse plug-in,
AJSurf. For the installation of the tool, see Appendix B.

The rationale behind implementing an Eclipse plug-in is to integrate compre-
hension and change impact analysis activities in an environment already familiar
to maintainers. Integrating our automation into Eclipse allows maintainers to
edit, understand and perform change impact analysis without having to switching
between different applications.

AJSurf consists of three major parts: A transformation component, a query

component, and the plug-in interface.

1. The transformation component reads the source code and creates a database
composed of a collection of Prolog facts. The transformation process from

source code to facts is transparent to the users. The transformation of the

71

program to the facts is done in three steps. First, the AST corresponding
to each compilation unit of the program (.java and .aj files) is retrieved
and traversed. Second, the ASM is retrieved and traversed. Third, the
extracted information from these steps is translated to facts according to
the transformation rules. These Prolog facts are then added to the fact-base
and used during the inference process. Traversing the AST is performed
by depth-first traversal deploying the Visitor design pattern. This approach

needs each compilation unit to be parsed before the traversal.

. The query component is composed of a set of rules that capture relationships
among entities in the system. These rules are context-free, i.e. they are

independent from the particular applications in which they are deployed.

. The plug-in interface is built using Eclipse Forms which are based on Stan-
dard Widget Toolkit (SWT) and JFace (a higher-level toolkit implemented
using SWT) [15]. In order to execute the Prolog queries, the plug-in needs
JPL - a Java interface to Prolog [2]. The JPL library gives us access to a set
of java classes simulating Prolog data structures like Atom, Variable, Query
etc. Thus one can run basic queries or parameterized queries and take the
result in form of ”Yes”, "No”, or a list of constants satisfying if the query is

parameterized.

72

B open

EETLnokln: {ij:

 Saw it [infomediator

=3 .settings
% bin
= sre

File'Name:
Files of Type: {PFrolog ﬁ:s

Figure 7: AJSurf: Choosing a destination folder for the Prolog database.

7.1 Deploying AJSurf

In order to deploy AJSurf, the user needs to first invoke Eclipse. Next, the user
should select AJSurf. A window which allows possibly multiple .java/.aj files to
be selected will pop-up (see Figure 6).

After the files have been selected, the user should validate the selection by
clicking on Open button. A new window will pop-up and the user should select
the destination folder and the name of Prolog database (see Figure 7).

AJSurf allows end-users to execute predefined parameterized queries. Figure 8

73

& Java:: AISurf -
Flle Edit

ieg
Select one of the following queries:
'Q-Obtain all aspect definitioris. (rin]
Autheritication. quobtaln all pointeuts of <aspects,
) Q Obtain all aspects declared priviledged,
Q Obtain all aspects which have declared precedence over <aspect .,
Qpbta(n all inter-type declared supertypes of <type>,
Q2 Obtain all &ispiets monitaring <rrethiod > n <ypes!
Q Obtain all inter-type intraduced Featuras of <types;
Q.Cbtain all inter-type intradiiced features,

Client.java

1] Demo.java

- [1) mfomediator.ja Q' Obtain all mathads intraduced to the supertype of <types;

Q Obtain al attributes introduced to the supertype of <types,

@ Obtain all features introduced to the supertype of <type:.

Q Obtain the list of types that are inthe: parameter fist or return type of <intertypeDeciaredMethod In <aspec
Q Obtain types and methods with <parameters > involved in the designator of <pointeuts in <aspect >,

' Paramieters settings
Select a valuefor <type>:

demo
: B infomediator
Mk JRE System Library [jre Loctentinlercer
&8 Aspect] Runtime Librar “Parameters settings

Select a value for <method>!

detach
inftiatereverssaletion
nlarpnrder,

UBuery resolt

The result of the query is:
aspect: observerprotocot
aspect:.throughput

asnacks synchranizabion

General queries Wééé&reinéﬁi:‘&ue?&ﬁad smell qliries | D
et R AR M o R o AR WA

I

il R

Figure 8: AJSurf Example of a parameterized query.

shows a screen capture of AJSurf with an executed parameterized query. The user
selects one of the predefined queries, written in plain English, and then he/she
should provide the parameters to be passed to the query. Lists of possible parame-
ters are provided under the list of queries. In this example, the user wants to obtain
all aspects advising method initiatereverseauction() in class infomediator.

Figure 9 shows another screen capture with the user obtaining the list of all

74

dava:- AJSurf -Eclips
File Edt 'S ctor- N rch Project” Ruri ™ ATSUH. . Window Help

Predefined querios

H Ql‘ll.’.l‘ieﬁ
Selact one of the following queries:

; B (dsfault pitkags) QObtain all aspect definitions, w
§ : ‘]: @’Autheﬁtication Q¥ Obtain ll pointcuts of <aspect,
: .)) @ Obtain all aspects declared priviledged.

‘Client.java
. Q Obtain all aspacts which have declared pracedence over <aspect >,

Q Obtain all inter-type detlared supertypes of <types,

@ Obtain all aspects monitoring <method:> in <type»,

Q Obtain all inter-type introduced features of <type;

Q Obtain all inter-type introdiiced features.

Q Ohtaln all mettinds intradicad to bhe stisertype of b

8 ObserverProtocdi Q Obtain all attributes introduced:to the supertype of <typa>,
Persistance. af @ Obtain all features introduced ta the supertype of <type»,
Potentialorder Q obtainthe list of types that are In the parameter list or return type of <intertypeDeaclaredMathod > in <aspsc:
Quote.java : @ Obtain types and methods with fparameterw involved in the dgsignator of <pointcut>in <a§Pect>.
4] Retailer.java . i
’3 ReverseAuctiol

Demo,java

fi] lnfomedlator.ja\g
=

H
#

' Parameters settings
Select a value for <type>!
client
customer
custammrdivarctdng
’i‘fﬁ‘cry result I
The result of the query ist
aspect: observerprotocal, supertype: subject; method: addobserver

aspecti obseryerprotocol, supeitypei subject, tethod: removesbserver
asnect: oh roeatacnl sunactime: subisckcekhnd: nntifeahsapay

- & Throughput.aj
& Transactionlo

IE

R AR RS A

General quetias | Measuremant qﬁéﬂé’é‘i‘had stnall qu
s AAYA A STAN T T biasantioning

Lt RN e R

S e 0 SRRt b St

Figure 9: AJSurf Example of a parameterized query.

methods defined through inter-type declaration to the supertype of class customer.
Figure 10 shows a case where a user is performing change impact analysis. The

user wants to add a method to the system, but before adding this method he wants

to obtain the list of pointcuts that can capture this method.

75

ch Project’ Run: AJSUE Window Help

mmt”“‘

- :-«m«m«m«m«mmmmnmmmwmwwm«mmm«m«mw

. <parameters> Fitlsbo be added to: tipes:
Q Obtain al aspects introducing a method with the same signature and return type as <metHodeName> (with <
Q Obtain all methods in <type> overriding an inter-type introduced method of @ parent type if this method is to
Q Obtain all relevant advics blocks and all methads adviced by <advice In <aspect >,

@ Obtain all methods being advised by <adviceType bound to <pointcut if It Is ko be added to <aspect>,

Q¢ Obtain all methads being advised by <advice> If It is ta be deleted from <aspects.

Q Obtain il advice blocks being deactivated if <pintcut is to be deleted from <aspect>,

Q Obtain afl pointeLts which would not capture afiy mére <method: In <types if its sighature is ta bs changed t| i

Parariieters settings

Select & value for . <type>!
vetailer ol
reverssauction ;
nddl i

] e
#-B% Aspect] Runtime Library | _ Parareters Settings
48 1nfomedistor bl \L Provide valus for-<method>:

| findLoser

i

;g P

fg ‘Parameters settings

| Provide a value for<psrameters >:
l [potentialorder]

Query result
The result of the.query Is:
aspect: transactionlogging, pointcuts! [capturesvent]

querlasJMeasuremant Glipries

e sa iy

ad smell qlieriss | 4 quer!es LCIA queries {7

TR e e e o Anawe R

s

Figure 10: AJSurf Example of a parameterized query.

76

Chapter 8

Related work

In this chapter, we discuss related work and compare our work with similar ap-

proaches.

8.1 Related work

There is currently tool support to ease the comprehension process of both proce-
dural [52], and object-oriented programs. For the latter, tools can be categorized

according to the type of transformation and the artifacts they provide:

* Reverse engineering of source code to the design model (such as Poseidon-

UML (5], and Eclipse-Omondo [4]).

* Reverse engineering of source code to graphs (data dependency graph, control

dependency graph, formal concept analysis lattice).

77

o Knowledge extraction (facts and rules) from the source code to produce struc-
tural relations of elements which serve as a knowledge base over which queries

can be executed.

Existing tool support for aspect-oriented systems can be categorized in three

groups [37]:

Text-based tools They provide different views such as editors, outline, and pack-

age explorer.

Visualization-based tools They create aspectual relationship views (e.g calls,

advice, advised-by) between aspects and classes.

Query-based tools They can be considered as a subset of text-based or visualization-
based tools as they provide the result of a query either in text or in a visu-

alization view.

In [13] the authors present a reverse engineering tool called Ciao. Ciao is a
graphical navigating tool, which allows users to specify queries, generate graphs,
interact with graph nodes, and to perform various graph analysis tasks in order to
extract information from a software repository. The software repository is a collec-
tion of source code artifacts with all related documents, configuration management
files, modification requests and manuals together with an associated database that
describes the components and relationship among them. CQL is used as the query
language associated with the repository. Ciao supports repositories which have

78

AERO style architecture (Attributes, Entity, Relationship, and Operator), and
it has been designed for C and C++ program database and program difference
database. Each node in the navigation graph corresponds to a query that gener-
ates a specific view on the system. The edges of the navigation graph represent
historic dependencies between query views. However, the nodes in the navigation
graph only indicate the type of query executed and for each query executed the
corresponding graph is shown. To reconstruct the structural relationships that
connect different queries on a path, one must compare their corresponding views.

In [41] the authors model static and dynamic information of an object-oriented
system in terms of Prolog facts. Declarative queries are defined to allow filtering
of the collected data and defining new queries. By running these queries, main-
tainers can have a view of the system at a higher level of abstraction for a better
understanding.

SOUL is a logic meta-language based on Prolog which is implemented in Vi-
sual Work Smalltalk [53]. It provides a declarative framework that allows reasoning
about the structure of Smalltalk programs based on the parse tree representation.
This makes facts and rules to be independent from a particular base language.
Moreover, facts and rules are collected based on basic relationships in the object-
oriented system. High level relationships like design patterns can be expressed and

then implemented in code. The declarative framework of SOUL consists of two

79

layers of rules: basic layer and advanced layer. The basic layer includes repre-
sentational and structural rules. The representational rules define object-oriented
elements (classes, methods, and statements) in the logical meta-language using
Smalltalk terms. These rules are the only parts of SOUL which are language de-
pendent, the rest of the rules are language independent. Using Smalltalk terms
facilitates the translation of object-oriented classes to logical facts, and only the
relationships between the classes are formulated in rules on the meta-language.
The structural rules are defined over the representational rules and formulate some
other relationship in Smalltalk systems. Using these rules one can run basic queries
on the system.

Lost [38] is an Eclipse plug-in query tool developed for code navigation and
browsing for AspectJ programs, deploying a variant of the Object Query Language
(OQL) developed by the authors. For its query language, end-users need to write
the queries in the query editor area and an instant error feedback feature of the
tool allows users to correct the errors while writing queries. Users of Lost need to
know the query language, as there are no predefined queries available. This tool
can be also used for navigation of Java programs. Like other Eclipse plug-ins, this
tool deploys Eclipse IDE features like syntax highlighting, and auto-compilation.!.

In [51] the author introduced a Java browser called JQuery as an Eclipse plug-

in. The tool creates a database from the source code and provides an interface

1Very little else is provided in [38] on the nature of rules and queries and no other information
seems to be available.

80

for the end-users to run queries. The query language used for this tool is a logic
programming language called TyRuBa. Using this tool, users can run default
(predefined) queries to extract information about their Java programs. Moreover,
the tool allows users to write their own queries in order to obtain more informa-
tion about the given Java code. One of the strengths of this tool is the ability
to explore complex combinations of relationships through the declarative config-
uration interface. Users who only need the basic features do not need to know
TyRuBa. However, users would have to know TyRuBa should they want to have
more complex queries, as they would need to edit the existing queries or write new
ones.

JTransformer (3] is a Prolog-based query and transformation engine for storing,
analyzing and transforming fact-bases of Java source code. JTransformer creates
an AST representation of a Java project, including the complete AST of method
bodies as a Prolog database. Using JTransformer, developers can run powerful
queries on the logic fact-base.

CodeQuest [25] is a source code querying tool which uses safe Datalog as its
query language, mapping Datalog queries to a relational database system.

In [18] the authors present a prototype tool for analysis and performance
optimization of Java programs called DeepWeaver-1. This tool is an extension
of the abc Aspect] compiler [9] which has a declarative style query language,

(Prolog/Datalog-like query language) to analyze and transform code within and

81

across methods.

Eclipse IDE [1] provides different editors and views. Views are visual compo-
nents allowing navigation through a hierarchy of information. Editors are com-
ponents that allow editing or browsing a file. Views and editors provide different
types of representation of the resources for the developers. AspectJ Development
Tools (AJDT) provides support for aspect-oriented software development using
AspectJ within the Eclipse IDE. Following is the summary of what is available for

comprehension of AspectJ in Eclipse IDE:

Navigator view It provides a tree structure of all resources in project folder.

Package Explorer view It shows only the Java-specific or AspectJ-specific ele-
ments which were shown in Navigator view. The source folder and reference

libraries of a project is shown in tree structure.

Hierarchy view It provides the inheritance hierarchy of objects in the projects.

Outline view It shows the layout of the file that is open in the editor area. For
a Java class, it shows all its features (methods and variables), and for an

aspect it shows its pointcuts, advice blocks, and introduced features.

Cross References view It shows how classes are advised by aspects.

Items 1-4 provide tree structures in which developers and maintainers can nav-

igate to find the piece of information they are interested in. These views provide

82

static information of classes and aspects in the projects, however the dependency
between these objects is not shown. The Cross Reference view shows all methods
that are monitored by an advice in the selected aspect. The same result can also be
obtained by right clicking on the marker (the arrow) sign on the scroll bar beside
the advice declaration in an aspect, and choosing Advises in the drop down menu.
Moreover, for a specific method in a class one can find all advice blo.cks monitoring
it by dragging and dropping the method from Outline view in the Cross References
view. The same result can also be obtained by right clicking on the marker (the
arrow) sign on the scroll bar beside the method declaration in a class, and choosing
AdvisedBy in the drop down menu.

In [27] the authors propose an approach for change impact analysis of class
hierarchy in order to reduce the retesting efforts. They consider changes which
can occur at the level of data member, a member function, and inheritance rela-
tions. In order to identify the dependency relationship among class members, they
introduce a member dependency graph (MDG). In this MDG, nodes correspond to
classes and member functions, whereas edges correspond to inheritance relations,
control dependencies and data dependencies. They define base cases for changes
corresponding to object-oriented features such as : change to scope, changes related
to dynamic binding, changes to data definition/use, changes of member functions,

changes of data members, and changes of the inheritance hierarchy. For each case

83

they identify the affected part in the MDG by identifying the firewall?.

In [24] the authors identify the atomic changes for object-oriented programs. By
defining partial ordering between the changes, they define dependencies between
them. For each test defined in the system, a call graph is created where the nodes
represent methods which were tested and the edges represent calling relationship
between these methods. By analyzing the call graphs and the atomic changes,
they identify: i) test cases that are affected by the atomic changes, ii) the atomic
changes that affect a specific test case, iii) changes that do not affect any test, iv)
code that was not covered by any test.

Chianti [40] is an Eclipse plug-in for change impact analysis of Java programs.
It accepts a set of test suite, original version of code, and edited version of code
as inputs and produces the set of changes. Dependencies between the changes are
identified in order to predict the the affected part of the tests through analyzing
the call graph related to each test suite.

In [55] the author presents a technique for change impact analysis of AspectJ
systems based on program slicing while proposing to add arcs, and vertices (call
dependence arc, parameter-in dependence arcs, actual-in vertices and formal-in
vertices) to a system dependence graph (SDG) in order to present aspect-oriented
system dependence graph (ASDG). He discusses the possibility of applying the

graph to perform change impact analysis during software maintenance.

2Class firewall is a group of classes and their related test cases which are affected due to a
change in class with which they have inheritance, aggregation or association relationship (32].

84

In [44)] the authors propose an approach for analyzing the affect of aspect weav-
ing and its propagation in aspect-oriented programs. They define aspect weaving
as "possibility of changes in the sequence of statement execution or in the values
of variables due to weaving.” Based on this definition, they propose a technique
similar to slicing which uses SPI (starting point of impact) as a criterion. In this
definition, a SPI corresponds to a modification of fields of parameter objects, tar-
get objects or return values of a method in the before or after advice (for around
advice, the authors also consider the modification of the value passed to the pa-
rameters of proceed() and the modification of the value returned by proceed()).
By forward slicing the program dependency graph (which treats aspect weaving
like method calls) based on these defined criteria, Shinomi and Tamai identify the

affected parts of the program.

8.2 Comparison with similar approaches

Two different query mechanisms are often applied for information storage and
extraction:

The first (implemented by Lost [38]) adopts predefined predicates and com-
bines them using relational calculus. In this approach the predicates are stored in
named sets and the relational calculus queries are translated to common relational
algebra operations. The advantage of this approach is the speed and efficiency

of the algorithm and the ease of adapting to a different persistent storage. The

85

disadvantage is the limitation of its expressive power. The second approach (im-
plemented by JQuery [51]) adopts a resolution inference mechanism to find the
values of variables as they are resolved during unification, providing more expres-
siveness and power. There are also disadvantages with this approach including 1)
the possibility of running into infinite loops, and 2) time and memory overhead
caused by the nature of the reasoning algorithm.

We utilize a logic-based querying approach, to express the complex relationship
among different entities in aspect-oriented systems. The transformation rules from
AspectJ to Prolog facts can be easily extended in order to adopt a different source
(AspectJ-like) language. Our approach provides comprehension, and allows main-
tainers to perform change impact analysis for aspect-oriented system. The type of
knowledge that they inferred manually until now and thus difficult to collect (i.e.
all advice blocks, relevant to a given advice, or all messages to which an object

can respond) is now explicitly available through AJSurf.

86

Chapter 9

Conclusion and recommendations

9.1 Summary and conclusion

In this dissertation, we discussed an approach to support declarative (static) anal-
ysis of aspect-oriented programs, adopting AspectJ as a representative technology
aiming at improving comprehension. Our approach is based on the transforma-
tion of source code into a set of facts and data, provided as a Prolog database
over which queries can be executed. Declarative analysis allows us to extract com-
plex information through its rich and expressive syntax. The type of knowledge
provided through these queries is categorized in three main groups, such as bad
smells, measurements, and more general queries that provide static information
about the system. In order to perform change impact analysis, we have identified

dependencies between software elements, and translated them in form of Prolog

87

rules. Moreover, we have deployed a subset of atomic changes. Change impact
analysis is performed by creating a relationship between the atomic changes and
the dependencies. We have automated our approach and integrated all activities
in a tool (called AJSurf) provided as an Eclipse plug-in. End-users can execute
predefined parameterized queries in the form of Prolog goals. The correctness of
tool depends on the correctness of the rules. For the case study, we have tested all

rules to ensure that the end result of each query is the one expected.

9.2 Recommendations

Future developments may concentrate to address the following issues:

Formally proofing the correctness of the transformation process from source

code to Prolog facts.

¢ Extending the rules in order to capture changes in more join points including:

object initializer, attribute accessor, withincode.

e Extending AJSurf in order to allow users to combine existing queries in order

to obtain more complex information.

e Investigating the performance of the tool through benchmarking for very

large systems.

88

Appendix A

Case study: Implementation and

transformation

public abstract class Client {

public String name = null;
public String id = null;
public Infomediator infomediator;

public String getName() {
return name;

public String getld() {
return id;
}

Table 53: Definition of class Client.

89

class(client,public).

abstractClass(client).
attribute(client,att-name,string,public,0).
attribute(client,att-id,string,public,0).
attribute(client,att_infomediator,infomediator, public,0).
method(client,getname, public,string,[],0).
method(client,getid, public,string,[],0).

Table 54: Prolog facts corresponding to class Client.

public class Customer extends Client {

public Customer(String name, String id, Infomediator infomediator) {
this.name = name;
this.id = id;
this.infomediator = infomediator;
infomediator.attach(this);

public void buy(PotentialOrder po){
System.out.println("Customer: " + "’"+ getName()+"’"+ " bought "+
po.getService()+" from """+
po.getWinner().getName()+"’"+ " retailer.");

Table 55: Definition of class Customer.

class(customer,public).

extends(customer,client).

constructor(customer,public, [string, string, infomediator]).
method(customer,buy,public,void, [potentialorder],0).
sendMessage(customer,buy, [potentialorder],customer,getname,[]).
sendMessage(customer,buy, [potentialorder],potentialorder,getservice,[]).
sendMessage(customer,buy,[potentialorder],potentialorder,getwinner,[]).
sendMessage(customer,buy [potentialorder] retailer,getname, []).

Table 56: Prolog facts corresponding to class Customer.

90

import java.util. Vector;
public class Infomediator {
private UDDI retailerDirectory;
private CustomerDirectory customerDirectory;
private Vector<PotentialOrder> potentialOrders;
private ReverseAuction currentReverseAuction;
private static Infomediator instance = null;
private Infomediator(UDDI retailerDirectory, CustomerDirectory customerDirectory) {
this.retailerDirectory = retailerDirectory;
this.customerDirectory = customerDirectory;
this.potentialOrders = new Vector<PotentialOrder>(); }
public static Infomediator getInstance(UDDI retailerDirectory,
CustomerDirectory customerDirectory) {
if (instance == null) {
instance = new Infomediator(retailerDirectory, customerDirectory); }
return instance;

public void attach (Client client){
if (client instanceof Retailer)
retailerDirectory.attach((Retailer)client);
else{
customerDirectory.attach((Customer)client); }

public void detach (Client client){
if (client instanceof Retailer)
retailerDirectory.detach((Retailer)client);
else
customerDirectory.detach({Customer)client);

public synchronized PotentialOrder initiateReverseAuction(Customer customer,
String service,
String rule) {
currentReverseAuction = new ReverseAuction(retailerDirectory, service, rule);
PotentialOrder currentPO = new PotentialOrder(customer, service, rule);
this.potentialOrders.addElement(currentPO);
currentPO.setWinner(this.currentReverseAuction.initiateReverseAuction());
return currentPO;
}
public void placeOrder(PotentialOrder po) {
po.getWinner().placeOrder(po);
this.potentialOrders.removeElement(po);

public void endReverseAuction() {
this.currentReverseAuction.becomeComplete();

}

public UDDI getRetailerDirectory() {
return retailerDirectory;

b}

Table 57: Definition of class Infomediator.
91

class(infomediator,public).

attribute(infomediator,att_retailerDirectory,uddi,private,0).

attribute(infomediator,att_customerDirectory,custornerdirectory,private,O).

attribute(infomediator,att_potentialOrders,vector,private,0).

attribute(infomediator,att_currentReverseAuction,reverseauction,private,0).

attribute(infomediator,att_instance,infomediator,private, 1).

constructor(infomediator,private, [uddi,customerdirectory]).

method(infomediator,getinstance,public,infomediator,[uddi, customerdirectory],3).

method(infomediator,attach,public,void, [client],0).

sendMessage(infomediator,attach, [client],uddi,attach, [retailer]).

sendMessage(infomediator,attach, [client],customerdirectory,attach, [customer]).

method(infomediator,detach,public,void, [client],0).

sendMessage(infomediator,detach, [client],uddi,detach, [retailer]).

sendMessage(infomediator,detach,[client],customerdirectory,detach, [customer]).

method(infomediator,initiatereverseauction,public,potentialorder, [customer ,string,string],0).

sendMessage(infomediator,initiatereverseauction,[customer,string,string], potentialorder,
setwinner,[retailer]).

method(infomediator,placeorder,public,void, [potentialorder],0).

sendMessage(infomediator, placeorder, [potentialorder], potentialorder, getwinner,[]).

sendMessage(infomediator,placeorder, [potentialorder), retailer, placeorder, [potentialorder]).

method(infomediator,endreverseauction, public,void,[],0).

sendMessage(infomediator endreverseauction, [],reverseauction,becomecomplete,[).

method(infomediator,getretailerdirectory,public,uddi, [1,0).

new(infomediator,getInstance,infomediat or).

new(infomediator,initiatereverseauction,reverseauction).

new(infomediator initiatereverseauction,potentialorder).

Table 58: Prolog facts corresponding to class Infomediator.

92

public class PotentialOrder {

private Customer customer;

private Retailer winner;

private String service;

private String rule;

public PotentialOrder(Customer customer, String service, String rule){
this.customer = customer;
this.service = service;
this.rule = rule;

public void setWinner(Retailer winner){
this.winner = winner;
}

public Retailer getWinner() {
return winner;

public Customer getCustomer() {
return customer;
}

public String getService() {
return service;
}

Table 59: Definition of class PotentialOrder.

class(potentialorder,public).
attribute(potentialorder,att_customer,customer,private,0).
attribute(potentialorder,att_winner,retailer,private,0).
attribute(potentialorder,att_service,string,private,O).
attribute(potentialorder,att_rule,string,private,0).
constructor(potentialorder,public,[customer, string, string]).
method(potentialorder,setwinner,public,void, [retailer],0).
method(potentialorder,getwinner,public,retailer, [] ,0).
method(potentialorder,getcustomer,public,customer,[],0).
method(potentialorder, getservice, public,string,[],0).

Table 60: Prolog facts corresponding to class PotentialOrder.

93

public class Quote {
private String quote;
private String id;
public Quote(String quote, String id){
this.quote = quote;
this.id = id;

public String getQuote() {
return quote;

}
public String getId() {

return id;

public String toString() {
return this.getQuote() + "\t" + this.getld();
}

Table 61: Definition of class Quote.

class(quote,public).
attribute(quote,att_quote,string,private,O).
attribute(quote,att_id,string,private,0).
constructor(quote,public, [string, string]).
method(quote,getquote,public,string,[],0).
method(quote,getid,public,string,[],0).
method(quote,tostring, public,string,[],0).
sendMessage(quote, tostring,[],quote,getquote,[]).
sendMessage(quote,tostring,[],quote,getid,[]).

Table 62: Prolog facts corresponding to class Quote.

94

public class Retailer extends Client {

private String type;

private boolean notification = false;

private String service=null;

public Retailer(String name, String id, String type, String service,

Infomediator infomediator) {

this.name = name;
this.id = id;
this.type = type;
this.service = service;
this.infomediator = infomediator;
infomediator.attach(this);

public String getQuote() {
return "good quote";

public void placeOrder(PotentialOrder po) {
System.out.println("Order placed by: "
+ ((Retailer)po.getWinner()).getId()
+ " for customer: "
+ ((Customer)po.getCustomer()).name + "\n");

public void inform(){
this.notification = true;
System.out.printIn("\nWinner: " + this.toString());

public String getType() {
return type;
t

public String getService() {
return service;
}

public String toString() {
return this.getld() + "\t" + this.getName() + “\t" + this.getType();
}

public boolean getNotification() {
return notification;
}

Table 63: Definition of class Retailer.

95

class(retailer,public).
extends(retailer,client).
attribute(retailer,att_type,string,private,0).
attribute(retailer,att_notiﬁcation,boolean,private,O).
attribute(retailer,att_service,string,private,0).
constructor(retailer,public, [string, string, string, string, infomediator]).
method(retailer,getquote, public,string,[],0).

method(retailer, placeorder,public,void, [potentialorder],0).
sendMessage(retailer,placeorder, [potentialorder], potentialorder,getwinner[]).
sendMessage(retailer,placeorder, [potentialorder], retailer,getid,[]).
sendMessage(retailer,placeorder, [potentialorder],potentialorder,getcustomer,[]).
method(retailer,inform,public,void,[],0).

sendMessage(retailer,inform,[] retailer,tostring,[]).
method(retailer,gettype,public,string,[],0).
method(retailer,getservice,public,string,[],0).

method(retailer,tostring, public,string,[],0).

sendMessage(retailer,tostring, [] retailer,getid,[]).

sendMessage(retailer,tostring, [] retailer,getname,[]).
sendMessage(retailer,tostring,] retailer,gettype,|]
method(retailer,getnotification, public,boolean,[],0

).
).

Table 64: Prolog facts corresponding to class Retailer.

96

import java.util.*;
public class ReverseAuction {
private UDDI retailerDirectory;
private Vector retailerlds = new Vector();
private Vector retailers = new Vector();
private Vector quotes = new Vector();
private String service = null;
private String rule = null;
private boolean isComplete = false;
public ReverseAuction(UDDI retailerDirectory, String service, String rule) {
this.retailerDirectory = retailerDirectory;
this.service = service;
this.rule = rule; }
public Retailer initiateReverseAuction() {
Retailer winner = null;
this.findCandidateRetailerIds(retailerIds, service, rule);
this.retrieveCandidateRetailers();
this.getQuote();
winner = this.select Winner(});
System.out.println(winner.toString());
this.notifyWinner(winner.getId()); return winner; }
public void findCandidateRetailerIds(Vector retailerIds, String service, String rule) {
retailerDirectory.find(retailerlds, service, rule); }
public void retrieveCandidateRetailers() {
for (int i=0; i< retailerIds.size(); i++) {
String id = (String)retailerlds.get(i);
Retailer r = retailerDirectory.retrieve(id);
retailers.add(r);} }
public void getQuote() {
for (int i=0; i< retailers.size(); i++) {
Retailer r = (Retailer)retailers.get(i);
String quote = r.getQuote();
String id = r.getId();
Quote q = new Quote(quote, id);
quotes.addElement(q);} }
public Retailer selectWinner() {
String id = null; Retailer result = null;
for (int i=0; i< quotes.size(); i++) {
Quote quote = (Quote)quotes.get(i);
if (quote.getQuote().equals("good quote")) {
id = quote.getld(); break;}}
for (int i = 0; i< retailers.size(); i++) {
Retailer r = (Retailer)retailers.get(i);
if (r.getld().equals(id)) {
result = r; break;}} return result; }
public void notifyWinner(String id){retailerDirectory.notifyWinner(id); }
public void becomeComplete() {this.isComplete = true; }
public boolean isComplete() {return isComplete; }}

Table 65: Definition of class ReverseAuction.
97

class(reverseauction,public).
attribute(reverseauction,att_retailerDirectory,uddi,private,0).
attribute(reverseauction,att_retailerlds,vector,private,O).
attribute(reverseauction,att_retailers, vector,private,0).
attribute(reverseauction,att_quotes,vector,private,0).
attribute(reverseauction,att_service,string,private,0).
attribute(reverseauction,att_rule,string,private,0).
attribute(reverseauction,att_isComplete,boolean,private,0).
constructor(reverseauction,public,[uddi, string, string]).
method(reverseauction,initiatereverseauction,public,retailer,[},0).
sendMessage(reverseauction,initiatereverseauction,[],reverseauction,
retrievecandidateretailers,[]).
sendMessage(reverseauction, initiatereverseauction,[] reverseauction,findcandidateretailerids
[vector, string, string]).
sendMessage(reverseauction,initiatereverseauction, [|,reverseauction,getquote,[]).
sendMessage(reverseauction, initiatereverseauction,[],reverseauction,selectwinner,[]).
sendMessage(reverseauction,initiatereverseauction,] retailer, tostring,[]).
sendMessage(reverseauction,initiatereverseauction, []retailer,getid,[]).
sendMessage(reverseauction, initiatereverseauction, [] reverseauction,notifywinner, [string]).
method(reverseauction,findcandidateretailerids, public, void, [vector, string, string],0).
sendMessage(reverseauction,ﬁndcandidateretailerids,[vector, string, string],uddi,find,
[vector, string, string]).
method(reverseauction,retrievecandidateretailers,public, void,[],0).
sendMessage(reverseauction,retrievecandidateretailers, [],uddi,retrieve, [string]).
method(reverseauction,getquote,public,void,[],0).
sendMessage(reverseauction,getquote,[] retailer,getid,[]).
sendMessage(reverseauction,getquote,[],retailer,getquote,[]).
method(reverseauction,selectwinner,public, retailer,[],0).
sendMessage(reverseauction,selectwinner,[],quote,getid,[]).
sendMessage(reverseauction,selectwinner,[],quote,getquote,[]).
sendMessage(reverseauction, selectwinner,[],retailer getid,[]).
method(reverseauction,notifywinner,public,void, [string],0).
sendMessage(reverseauction, notifywinner,[],uddi,notifywinner, [string]).
method(reverseauction,becomecomplete, public,void,[],0).
method(reverseauction,iscomplete, public,boolean,[},0).
new (reverseauction,getQuote,quote).

Table 66: Prolog facts corresponding to class ReverseAuction.

98

import java.util.¥;
public class UDDI {
Vector<Retailer> retailers = new Vector<Retailer>();
public void attach (Retailer retailer){
retailers.addElement(retailer);

public void detach (Retailer retailer) {
retailers.removeElement(retailer);

public void find(Vector collection, String service, String rule) {
for (int i=0; i< retailers.size(); i++) {
Retailer r = (Retailer)retailers.get(i);
if (r.getType().equals(rule) && r.getService().equals(service)) {
collection.addElement(r.getId());

o}
}

public Retailer retrieve(String id) {
Retailer result = null;
for (int i=0; i< retailers.size(); i++) {
Retailer r = (Retailer)retailers.get(i);
if (r.getId().equals(id)) {
result = r;
break;
bl

return result;
}
public void notifyWinner(String id){
for (int i=0; i< retailers.size(); i++) {
Retailer r = (Retailer)retailers.get(i);
if (r.getId().equals(id)) {
r.inform();

break;
Pl

public void bind() {
System.out.println("--bind: request quote" + "\n");

public void displayAll() {
System.out.println("\nRegistered Retailers:\n");
System.out.println("ID" + "\t" 4 "Name" + "\t\t\t" + "Type");
for (int i=0; i< retailers.size(); i++) {
Retailer r = (Retailer)retailers.get(i);
System.out.println(r.toString());

Table 67: Definition of class UDDI.

99

class(uddi,public).

attribute(uddi,att_retailers,vector,package,O).
method(uddi,attach,public,void, [retailer],0).
method(uddi,detach, public,void,[retailer],0).
method(uddi,find,public,void,[vector, string, string],0).
sendMessage(uddi,find,[vector, string, string] retailer,gettype,[]).
sendMessage(uddi,find, [vector, string, string],retailer,getservice,[]).
method(uddi, retrieve, public,retailer, [string],0).
sendMessage(uddi,retrieve, [string],retailer,getid,[]).
method(uddi,notifywinner,public, void, [string],0).
sendMessage(uddi,notifywinner, [string] retailer,getid,[]).
sendMessage(uddi,notifywinner, [string] retailer,inform,|]).
method(uddi,bind,public,void,[],0).
method(uddi,displayall,public,void,[],0).
sendMessage(uddi,displayall,[],retailer, tostring,[]).

Table 68: Prolog facts corresponding to class UDDI.

100

import java.util.*;
public aspect Authentication issingleton(){
public static int numberOfActiveClients = 0;
public static int maxAllowableClients = 15;
private Vector<Client> authenticatedClients = new Vector<Client>();
private boolean login() {
boolean result = false;
if (numberOfActiveClients < maxAllowableClients) {
System.out.printIn("authentication OK");
System.out.printIn("Active clients: " + numberOfActiveClients + "\n");
numberOfActiveClients++;
result = true;}
else {
System.out.println("Server full");
result = false; }
return result;
}
private void logout() {
numberOfActiveClients——;}
pointcut attach(Client client): execution (public void Infomediator.attach(..))
&&args(client);
void around(Client client): attach (client){
if (login()){
authenticatedClients.addElement(client);
proceed(client);

else{
System.out.println("There is no space to log in for this auction,
You should try a new auction later...");
System.exit(0); }
}
pointcut dettach(Client client): execution (public void Infomediator.detach(..)) &&
args(client);
after(Client client): dettach (client){
for(int i = 0; i< authenticatedClients.size(); i++){
Client currentClient = (Client)authenticatedClients.elementAt(i);
if(currentClient == client){
logout();
authenticatedClients.removeElement At(i);}

1

Table 69: Definition of aspect Authentication.

101

aspect(authentication,public).

method(authentication,login,private,boolean,[],0).

method(authentication,logout, private,void,[],0).
attribute(authentication,att_numberofactiveclients,int,public,1).
attribute(authentication,att_maxallowableclients,int,public,1).
attribute(authentication,att_authenticatedclients,vector,private,O).
pointcutdesig(8469441,authentication,null,persingleton, [null]).

pointcut(authentication,attach, [client], package,0).
pointcutdesig(26789619,authentication,attach,execution, [public, void,infomediator, attach, [any]]).
pointcutdesig(19762893,authentication,attach,args, [client]).

pointcut(authentication,dettach, [client],package,0).
pointcutdesig(4812898,authentication,dettach,execution, [public, void,infomediator,detach, [any])).
pointcutdesig(24211360,authentication,dettach,args, [client]).
triggerAdvice(authentication,around,5734522,[client], void).
advicePointcutMap(authen‘oication.around,5734522,attach).
triggerAdvice(authentication,after,29782600,[client],void).
advicePointcutMap(authentication,after,29782600,dettach).

advisedBy(infomediator,attach, [client] authentication,around 5734522, [client] attach).
advisedBy(infomediator,detach, [client] authentication,after,29782600, [client] dettach).

Table 70: Prolog facts corresponding to aspect Authentication.

102

public privileged aspect ContractChecking {
pointcut RetailerExistanceChecker(ReverseAuction object):
execution (* ReverseAuction.selectWinner(..)) &&
target(object);

Retailer around (ReverseAuction object):RetailerExistanceChecker(object){
if (object.retailerDirectory.retailers.isEmpty()){
System.out.println("There is no retailer registered for this auction,

You should try a new auction later...");
System.exit(0);
}
Retailer winner = proceed(object);
if (winner == null){
System.out.println("There is no winner retailer for this auction,
You should try a new auction later...");
System.exit(0);
}

return winner;
}
pointcut PotentialOrderCleaner(Infomediator infomediator, Client client):
execution(* Infomediator.detach(..)) &&
args(client) &&
target(infomediator);
after(Infomediator infomediator, Client client):
PotentialOrderCleaner(infomediator, client){
if (client instanceof Customer){
infomediator.potentialOrders.trim ToSize();
for(int i=0; i< infomediator.potentialOrders.size(); i++){
PotentialOrder currentPo =
(PotentialOrder)infomediator.potentialOrders.element At(i);
if (currentPo.getCustomer() == client)
infomediator.potentialOrders.removeElement At(i);

h

Table 71: Definition of aspect ContractChecking.

103

aspect(contractchecking,public).
privileged Aspect(contractchecking).
pointcut(contractchecking,retailerexistancechecker, [reverseauction],package,0).
pointcutdesig(26625789,contractchecking retailerexistancechecker,execution,
[public,every,reverseauction,selectwinner, [any]]).
pointcutdesig(17743384,contractchecking, retailerexistancechecker,target, [object]).
pointcut(contractchecking,potentialordercleaner, [infomediator, client],package,0).
pointcutdesig(14828347,contractchecking, potentialordercleaner,execution,
[public,every,infomediator,detach,[any]]).
pointcutdesig(11265620,contractchecking, potentialordercleaner,args, [client]).
pointcutdesig(27173235,contractchecking, potentialordercleaner, target, [infomediator]).
triggerAdvice(contractchecking,around, 24749215, [reverseauction],retailer).
advicePointcutMap(contractchecking,around, 24749215 retailerexistancechecker).
trigger Advice(contractchecking,after,19333383, [infomediator, client],void).
advicePointcutMap(contractchecking,after,19333383, potentialordercleaner).
used(contractchecking, 19333383, [infomediator,client], potentialorder,getcustomer, []).
advisedBy(infomediator,detach, [client],contractchecking,after, 19333383,
[infomediator,client],potentialordercleaner).
advisedBy(reverseauction,selectwinner, [],contractchecking,around, 24749215,
[reverseauction],retailerexistancechecker).

Table 72: Prolog facts corresponding to aspect ContractChecking.

privileged public aspect CoordinateObserver extends ObserverProtocol {
declare parents: Retailer implements Observer;
declare parents: Customer implements Subject;
private int Retailer.NumberSold=0;
public void Retailer.notifyOfchange(Subject s, PotentialOrder po){
NumberSold++;
System.out.println("’ "+po.getWinner().getName()+" *" +" sold "+
NumberSold + " "+po.getService()+ " till now");
t
protected pointcut subjectChange(Subject s,PotentialOrder po):
execution (* Customer.buy(PotentialOrder)) &&
target(s)&& args(po);
protected pointcut findObservers(Infomediator info, Subject customer,
String service, String rule):
execution (* Infomediator.initiateReverseAuction(Customer , String , String))

Table 73: Definition of aspect CoordinateObserver.

104

aspect(coordinateobserver,package).
privileged Aspect(coordinateobserver).
extends(coordinateobserver,observerprotocol).
declareParent(coordinateobserver,retailer,observer).
implements(retailer,observer).
declareParent(coordinateobserver,customer,subject).
implements(customer,subject).
introducedMethod(coordinateobserver,retailer,notifyofchange,public,void,
[subject, potentialorder],0).
sendMessage(retailer,notifyofchange, [subject, potentialorder],potentialorder,
getwinner,[]).
sendMessage(retailer,notifyofchange, [subject, potentialorder],retailer,getname,[]).
introducedAtt(coordinateobserver,retailer,numbersold,int,private,O).
pointcut(coordinateobserver,subjectchange, [subject, potentialorder], protected,0).
pointcutdesig(1412294,coordinateobserver,subjectchange,execution,[public,every,customer,
buy, [potentialorder]]).
pointcutdesig(13452612,coordinateobserver,subjectchange, target, [subject]).
pointcutdesig(8287698,coordinateobserver,subjectchange,args, [potentialorder]).
pointcut(coordinateobserver,findobservers, [infomediator subject,string,string] ,protected,0).
pointcutdesig(6901522,coordinateobserver, findobservers,execution,
[public,every,infomediator,initiatereverseauction, [customer,string string])).
pointcutdesig(29769356,coordinateobserver, findobservers, target, [infomediator]).
pointcutdesig(3431235,coordinateobserver,findobservers,args, [customer, service, rule]).

Table 74: Prolog facts corresponding to aspect CoordinateObserver.

105

import java.util.*;
public abstract aspect ObserverProtocol {
public interface Observer {
public void notifyOfchange(Subject s,PotentialOrder po);
}

protected interface Subject { }

private List Subject.observers=new LinkedList();

public void Subject.addObserver(Observer 0){
this.observers.add(o);

public void Subject.removeObserver(Observer o){
this.observers.remove(o);
}
private synchronized void Subject.notifyObserver(PotentialOrder po){
Iterator iter = this.observers.iterator();
int i=0;
while (iter.hasNext()) {
Observer temp=(Observer)iter.next();
if (((Retailer)temp).getNotification()== true){
temp.notifyOfchange(this, po);
this.removeObserver(((Retailer)temp));}}
}
protected abstract pointcut subjectChange(Subject s,PotentialOrder po);
after(Subject s,PotentialOrder po): subjectChange(s, po){
s.notifyObserver(po);

protected abstract pointcut findObservers
(Infomediator info, Subject s, String service, String rule);
after(Infomediator info, Subject s, String service, String rule):
findObservers(info, s, service, rule){
Vector tempRetailer=info.getRetailerDirectory().retailers;
for(int i=0 ;i < tempRetailer.size();i++){
if (((Retailer)tempRetailer.get(i)).getService()== service
&& ((Retailer)tempRetailer.get(i)).get Type()==rule)
s.addObserver((Retailer)tempRetailer.get(i)); }

Table 75: Definition of aspect ObserverProtocol.

106

aspect(observerprotocol,public).
abstract Aspect(observerprotocol).
interface(subject,protected).
interface(observer,public).
method(observer,notifyOfchange,public,void,[subject, potentialorder],0).
introducedMethod(observerprotocol,subject,addobserver,public, void, [observer],0).
introducedMethod(observerprotocol,subject,removeobserver, public,void, [observer],0).
introducedMethod(observerprotocol,subject,notifyobserver,private, void,
[potentialorder],0).
sendMessage(subject,notifyobserver, [potentialorder] retailer,getnotification,[]).
sendMessage(subject, notifyobserver, [potentialorder],observer,notify Ofchange,
[subject,potentialorder]).
sendMessage(subject,notifyobserver,[potentialorder],subject,removeobserver, [observer]).
introduced Att(observerprotocol,subject,observers list, private,0).
pointcut(observerprotocol,subjectchange, [subject,potentialorder], protected, 1).
pointcut(observerprotocol, findobservers, [infomediator, subject, string, string],
protected,1).
triggerAdvice(observerprotocol,after,21067408, [subject, potentialorder],void).
advicePointcutMap(observerprotocol,after,21067408,subjectchange).
used(observerprotocol,21067408, [subject, potentialorder],subject,notifyobserver,
[potentialorder]).
triggerAdvice(observerprotocol,after,13563633, [infomediator, subject, string, string],void).
advicePointcutMap(observerprotocol,after,13563633,ﬁndobservers).
used(observerprotocol, 13563633, [infomediator, subject, string, string],infomediator,
getretailerdirectory,[]).
used(observerprotocol, 13563633, [infomediator, subject, string, string],retailer,
getservice,[]).
used(observerprotocol, 13563633, [infomediator, subject, string, string],retailer,
gettype,[]).
used(observerprotocol, 13563633, [infomediator, subject, string, string],subject,
addobserver,[observer]).
advisedBy(infomediator,initiatereverseauction,[customer,string string],
observerprotocol,after,13563633, [infomediator,subject,string,string] findobservers).
advisedBy(customer,buy, [potentialorder],observerprotocol,
after,21067408, [subject,potentialorder],subjectchange).

Table 76: Prolog facts corresponding to aspect ObserverProtocol.

107

public privileged aspect Persistence {
pointcut persisted(Infomediator object):(execution (* Infomediator.attach(..)) ||
execution (* Infomediator.detach(..))) &&
this(object);
after(Infomediator object): persisted(object) {
System.out.println("<" + thisJoinPoint + ">");
}

Table 77: Definition of aspect Persistence.

aspect(persistence,public).
privileged Aspect(persistence).
pointcut(persistence, persisted, [infomediator],package,0).
pointcutdesig(2443549, persistence, persisted,execution, [public,every,infomediator,
attach,[any]]).
pointcutdesig(31662978, persistence, persisted,execution, [public,every,infomediator,
detach,[any]]).
pointcutdesig(19939395, persistence, persisted, this, [object]).
triggerAdvice(persistence,after,13305839, [infomediator],void).
advicePointcutMap(persistence,after,13305839,persisted).
advisedBy(infomediator,attach, [client], persistence,after,13305839, [infomediator],
persisted).
advisedBy(infomediator,detach, [client], persistence,after,13305839, [infomediator],
persisted).

Table 78: Prolog facts corresponding to aspect Persistence.

108

import java.util.*;

public privileged aspect Synchronization {
public static Vector waitingClients = new Vector();
public static int activeClients = 0;

pointcut initiatingAuction(Infomediator object):

call (* Infomediator.initiateReverseAuction(..)) &&
target(object);

PotentialOrder around(Infomediator object): initiatingAuction(object){
PotentialOrder result = null;

if (waitingClients.isEmpty() && activeClients == 0){
activeClients+-+;
result = proceed(object);
activeClients——;
}
else
try {
wait();
proceed(object);
}

catch (Exception exception) {
exception.printStackTrace();
}

return result; }

Table 79: Definition of aspect Synchronization.

109

privilegedAspect(synchronization).
aspect(synchronization,public).
attribute(synchronization,att_waitingclients,vector,public,1).
attribute(synchronization,att_activeclients,int,public,1).
pointcut(synchronization,initiatingauction, [infomediator], package,0).
pointcutdesig(12743356,synchronization,initiatingauction,call, [public,every,
infomediator,initiatereverseauction,[any]]).
pointcutdesig(33212498,synchronization,initiatingauction, target, [object]).
triggerAdvice(synchronization,around,24480977, [infomediator], potentialorder).
advicePointcutMap(synchronization,around, 24480977 initiatingauction).
advisedBy(infomediator,initiatereverseauction, [customer,string,string],synchronization,
around,24480977, [infomediator],initiatingauction).

Table 80: Prolog facts corresponding to aspect Synchronization.

public aspect Throughput {

private int requestingCustomers = 0;
private int terminatingCustomers = 0;
pointcut requestingCustomers(): call (* Infomediator.initiateReverseAuction(..));
pointcut terminatingCustomers():
execution (* Infomediator.initiateReverseAuction(..));
before(): requestingCustomers() {
System.out.println{"Requesting auction: " +
++requestingCustomers + "\n");

}

after(): terminatingCustomers() {
System.out.println("Terminating auction: " +
++terminatingCustomers + "\n");

Table 81: Definition of aspect Throughput.

110

aspect(throughput,public).
attribute(throughput,att_requestingcustomers,int, private,0).
attribute(throughput,att_terminatingcustomers,int,private,0).
pointcut(throughput,requestingcustomers,|],package,0).
pointcutdesig(29499086, throughput,requestingcustomers,call, [public,every infomediator,
initiatereverseauction, [any]]).
pointcut(throughput,terminatingcustomers,[],package,0).
pointcutdesig(24422114,throughput, terminatingcustomers,execution, [public,every,
infomediator,initiatereverseauction, [any]]).
triggerAdvice(throughput,before,24668732,[],void).
advicePointcutMap(throughput,before,24668732,requestingcustomers).
triggerAdvice(throughput,after,8818963,[],void).
advicePointcutMap(throughput,after, 8818963, terminatingcustomers).
advisedBy(infomediator initiatereverseauction, [customer string,string] throughput,
before, 24668732, (], requestingcustomers).
advisedBy(infomediator,initiatereverseauction, [customer,string,string],throughput,
after,8818963,[],terminatingcustomers).

Table 82: Prolog facts corresponding to aspect Throughput.

111

import java.util.*;
public privileged aspect TransactionLogging {
pointcut loggableAuction(ReverseAuction object):
execution (* ReverseAuction.initiateReverseAuction(..)) &&
target(object);
pointcut loggable(Object o) : (call (* Retailer.placeOrder(..)) ||
execution (* Customer.buy(..))) && target(o);
pointcut captureCreatobject(Object o):
(execution (Customer.new(..))||
execution (Retailer.new(..))||
execution(* ReverseAuction.initiateReverseAuction())) && target(o);
pointcut captureEvent(): withincode(* Infomediator.initiateReverseAuction(..)) &&
call(* **(..));
after():captureEvent(){ System.out.println("**<"+ thisJoinPoint+">*x"); }
after(ReverseAuction object): loggableAuction(object) {
System.out.println("\n\n\nTransaction log:");
System.out.println("\nCandidate Retailer ids: \n");
for (int i=0; i< object.retailerlds.size(); i++) {
String s = (String)object.retailerlds.get(i);
System.out.println(s); }
System.out.println("\nCandidate Retailers:\n");
for (int i=0; i< object.retailers.size(); i++) {
Retailer r = (Retailer)object.retailers.get(i);
System.out.println(r.toString()); }
System.out.println("\nQuotes:\n");
for (int i=0; i< object.quotes.size(); i++) {
Quote q = (Quote)object.quotes.get(i);
System.out.println(q.toString()); }
System.out.println(); }
after (Object o): loggable(o) {
Calendar cal = Calendar.getInstance(TimeZone.getDefault());
String DATE_FORMAT = "yyyy-MM~dd HH:mm:ss";
java.text.SimpleDateFormat sdf = new java.text.SimpleDateFormat(DATE_FORMAT);
sdf.setTimeZone(TimeZone.getDefault())
if(o instanceof Retailer)
System.out.println("Order placed at : " + sdfformat(cal.getTime()));
if(o instanceof Customer)
System.out.println("Item purchased at : " + sdf.format(cal.getTime())); }
after(Object o) : captureCreatobject(o){
if(o instanceof Customer)
System.out.println("*** "+((Customer)o).getName()+ "
Registerde as a Customerxx");
if(o instanceof Retailer)
System.out.println("***"+((Retailer)o).getName()+
" Registerde as a Retailer***");
if(o instanceof ReverseAuction)
System.out.printIn("*** Auction Startedskx");}

Table 83: Definition of aspect TransactionLogging.
112

aspect(transactionlogging, public).
privileged Aspect(transactionlogging).
pointcut(transactionlogging loggableauction,[reverseauction],package,0).
pointcutdesig(16412836,transactionlogging,loggableauction,execution,
[public,every,reverseauction,initiatereverseauction, [any]]).
pointcutdesig(33114244, transactionlogging, loggableauction, target, [object]).
pointcut(transactionlogging,loggable,[object],package,0).
pointcutdesig(17303670,transactionlogging, loggable,call, [public,every,retailer,
placeorder,[any]]).
pointcutdesig(6533862, transactionlogging,loggable,execution, [public,every,customer,
buy,[any]]).
pointcutdesig(24522695 transactionlogging,loggable, target,[object]).
pointcut(transactionlogging,capturecreatobject,[object],package,0).
pointcutdesig(3862294, transactionlogging,capturecreatobject,execution, [public,customer, new, [any]]).
pointcutdesig(19318506,transactionlogging,capturecreatob, ject,execution, [public,retailer,
new,[any]]).
pointcutdesig(13452238,transactionlogging,capturecreatob ject,execution, [public,every,
reverseauction,initiatereverseauction,[]]).
pointcutdesig(2011334,transactionlogging,capturecreatobject,target, [object]).
pointcut(transactionlogging,captureevent,] package,0).
pointcutdesig(15184882,transactionlogging,captureevent,withincode, [public,every,
infomediator,initiatereverseauction, [any]]).
pointcutdesig(30869925, transactionlogging,captureevent,call, [public,every every,every,
[any]]).
triggerAdvice(transactionlogging,after,12217363,{],void).
advicePointcutMap(transactionlogging,after,12217363,captureevent).
triggerAdvice(transactionlogging,after,17666385, [reverseauction],void).
advicePointcutMap(transactionlogging,after,17666385,loggableauction).
trigger Advice(transactionlogging,after,29321385, [object],void).
advicePointcutMap(transactionlogging,after,29321385,loggable).
triggerAdvice(transactionlogging,after,24145591, [object], void).
advicePointcutMap(transactionlogging,after,24145591,capturecreatob ject).
advisedBy(reverseauction,initiatereverseauction,[] transactionlogging,after,
12217363, [},captureevent).
advisedBy(potentialorder,setwinner, [retailer] transactionlogging after,
12217363,[],captureevent).
advisedBy(customer,constructor, [string,string,infomediator],transactionlogging, after,
24145591, [object] capturecreatobject).
advisedBy(retailer,constructor, [string,string,string,string,infomediator],
transactionlogging,after,24145591, [object],capturecreatobject).
advisedBy(reverseauction,initiatereverseauction,[] transactionlogging,after,24145591
[object],capturecreatobject).
advisedBy(reverseauction,initiatereverseauction,[],transactionlogging,after,17666385
[reverseauction],loggableauction).
advisedBy(customer,buy,[potentialorder],transactionlogging,after,29321385, [object],
loggable).
advisedBy(retailer, placeorder, [potentialorder],transactionlogging,after, 29321385, [object],
loggable).

Table 84: Prolog facts corresponding to aspect TransactionLogging.
113

Appendix B

Tool installation

Prerequisites:

1. Prolog should be installed on the user’s computer.

2. The environment variable PLBASE should exist and point to the installation

folder of Prolog (for example C:\Program Files\pl).

3. The environment variables CLASSPATH and Path should be modified in
order to point to two more folders. That is, in addition to their values the

following should be added: ;%PLBASE%\1ib\jpl.jar;%PLBASEY%\bin

Installation:

The installation folder contains four .jar files namely:

1. ajsurf_1.0.0.jar

114

2. jpl-1.0.0.jar
3. aspectjtools_1.0.0.jar
4. o0sgi_1.0.0.jar

Place these files in the plugin folder of Eclipse.

Settings:
The first time Eclipse runs after AJSurf has been installed, the following steps

are to be performed:
1. Run Eclipse.

2. Go to Window menu and choose Customize Perspective. In tab Commands,

check AJSurf and click on OK.

115

Bibliography

[1] Eclipse website. http://www.eclipse.org/

[2] Jpl - a java interface to prolog.

http://www.swi-prolog.org/packages/jpl/java_api/index.html

[3] JTransformer Framework website.

http://roots.iai.uni-bonn.de/research/jtransformer/
[4] Omondo website. http://www.eclipsedownload.com/
[5] Poseidon UML website. http://jspwiki.org/wiki/PoseidonUML

[6] International standard. ISO/IEC 14764:2006 (E) IEEE Std 14764-2006 (Re-

vision of IEEE Std 1219-1998), 2006.

[7] Shawn A.Bohner. Software change impacts - an evolving perspective. In Pro-
ceedings of the International Conference on Software Maintenance (ICSM’02),

2002.

116

8]

[10]

[12]

[13]

Robert Arnold and Shawn Bohner. Software change impact analysis. Wiley-

IEEE Computer Society, 1996.

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
Jennifer Lhotak, Ondfej Lhotdk, Oege de Moor, Damien Sereni, Ganesh Sit-
tampalam, and Julian Tibble. abc: An extensible aspectj compiler. In Pro-
ceedings of the 4th International Conference on Aspect-Oriented Software De-

velopment (AOSD), 2005.

Keith H. Bennett and Vaclav T. Rajlich. Software maintenance and evolu-
tion: a roadmap. In Proceedings of the International Conference on Software

Engineering (ICSE) track on The Future of Software Engineering, 2000.

Lionel C. Briand, Yvan Labiche, Leeshawn O’Sullivan, and Mike Séwka. Au-

tomated impact analysis of uml models. Journal of Systems and Software,

2006.

Lucas Carlson and Leonard Richardson. Ruby Cookbook (Cookbooks

(O’Reilly)). O’'Reilly Media, Inc., 2006.

Yih-Farn R. Chen, Glenn S. Fowler, Eleftherios Koutsofios, and Ryan S. Wal-
lach. Ciao: a graphical navigator for software and document repositories. In

Proceedings of the 11th International Conference on Software Maintenance

(ICSM), 1995.

117

[14]

[15]

[16]

[17]

[18]

[19]

Adrian Colyer, Andy Clement, George Harley, and Matthew Webster. Eclipse
AspectJ: Aspect-oriented programming with Aspect] and the Eclipse AspectJ]

Development Tools. AAddison-Wesley Professional, Boston, MA, 2004.

Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and Pat Mec-
Carthy. Java(TM) Developer’s Guide to Eclipse, The (2nd Edition). Addison-

Wesley Professional, 2004.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in

source code. IEEE Transactions on Software Engineering, 2003.

Traces Thomas Eisenbarth. Feature-driven program understanding using con-
cept analysis of execution traces. In Proceedings of the 9th International Work-

shop on Program Comprehension (IWPC), 2001.

Henry Falconer, Paul H. J. Kelly, David M. Ingram, Michael R. Mellor, Tony
Field, and Olav Beckmann. A declarative framework for analysis and opti-

mization. In Proceedings of the 16th International Conference on Compiler

Construction (ETAPS CC), 2007.

Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Proceedings of the OOPSLA Workshop

on Advanced Separation of Concerns in Object-Oriented Systems, 2000.

118

[20]

[21]

[24]

[25]

[26]

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the design of existing code. Addison-Wesley Profes-

sional, 1999.

Daniel Galin. Software Quality Assurance: From Theory to Implementation.

Addison-Wesley, 2003.

Vahid Garousi, Lionel C. Briand, and Yvan Labiche. Analysis and visualiza-
tion of behavioral dependencies among distributed objects based on uml mod-
els. Technical report, Software Quality Engineering Laboratory (SQUALL),

Carleton University, 2006.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Im-

plementation. Addison-Wesley, 2002.

Barbara G.Ryder and Frank Tip. Change impact analysis for object-oriented
programs. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop

on Program Analysis For Software Tools and Engineering (PASTE), 2001.

Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest: Scalable
source code queries with Datalog. In Proceedings of the 20th European Con-

ference on Object-Oriented Programming (ECOOP), 2006.

Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. Tools:
A graph-based approach to modeling and detecting composition conflicts re-
lated to introductions. In Proceedings of the 6th international conference on

119

[27]

[29]

[31]

Aspect-oriented software development AOSD, 2007.

Yoon Kyu Jang, Heung Seok Chae, Yong Rae Kwon, and Doo Hwan Bae.
Change impact analysis for a class hierarchy. In Proceedings of the Fifth Asia

Pacific Software Engineering Conference (APSEC), 1998.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of Aspect]. In Proceedings of the 15th

European Conference on Object-Oriented Programming (ECOOP), 2001.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Proceedings of the 11th European Conference on Object-Oriented Program-

ming (ECOOP), 1997.

Jorg Kienzle, Yang Yu, and Jie Xiong. On composition and reuse of aspects.
In Proceedings of the AOSD Workshop on Foundations of Aspect-Oriented

Languages (FOAL), 2003.

Gilinter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of logic-
based infrastructures for concern detection and extraction. In Proceedings
of the 3rd AOSD Workshop on Linking Aspect Technology and Evolution

(LATE), 2007.

120

[32] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi
Toyoshima. Class firewall, test order and regression testing of object-oriented

programs. Journal of Object-Oriented Programming (JOOP), 1995.

[33] Ramnivas Laddad. I want my AOP! (part 2). Java World,

http://www. javaworld.com/javaworld/jw-03-2002/jw-0301-aspect2.html

[34] Bennett P. Lientz and E. Burton Swanson. Software Maintenance Manage-
ment:A study of the management of computer application software in 487

data processing organizations. Addison-Wesley Longman Publishing Co., Inc.,

1980.

[35] Miguel P. Monteiro and Jodo M. Fernandes. Towards a catalog of aspect-
oriented refactorings. In Proceedings of the 4th International Conference on

Aspect-Oriented Software Development (AOSD), 2005.

[36] David Lorge Parnas. On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12):1053-1058, December 1972.

[37] J.-Hendrik Pfeiffer and John R. Gurd. Visualisation-based tool support for

the development of aspect-oriented programs. In Proceedings of the 5th In-

ternational Conference on Aspect-Oriented Software Development (AOSD),

2006.

121

[38] J.-Hendrik Pfeiffer, Andonis Sardos, and John R. Gurd. Complex code query-
ing and navigation for AspectJ. In Proceedings of the OOPSLA Workshop on

Eclipse Technology eXchange (ETX), 2005.

[39] Véclav T. Rajlic and Keith H. Bennett. A staged model for the software life

cycle. IEEE Computer, 33(7):66 — 71, July 2000.

[40] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G.Ryder, and Ophelia Chesley.
Chianti: A tool for change impact analysis of Java programs. In Proceedings

of the Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA), 2004.

[41] Tamar Richner, Stéphane Ducasse, and Roel Wuyts. Understanding object-
oriented programs with declarative event analysis. In Proceedings of the

ECOOP Workshop on Experiences in Object-Oriented Re-Engineering, 1998.

[42] Spencer Rugaber. Program comprehension for reverse engineering. In Proceed-
ings of the AAAI Workshop on AI and Automated Program Understanding,

1992.

[43] Robert W. Sebesta. Concepts of programming languages (7th Edition).

Addison-Wesley Longman Publishing Co., Inc., 2005.

[44] Hideaki Shinomi and Tetsuo Tamai. Impact analysis of weaving in aspect-
oriented programming. In Proceedings of the 21st IEEE International Con-

ference on Software Maintenance (ICSM), 2005.

122

[45] Tan Sommerville. Software Engineering: (Update) (8th Edition) (International

Computer Science). Addison-Wesley Longman Publishing Co., Inc., 2006.

[46] Maximilian Stérzer and Christian Koppen. CDiff: Attacking the fragile point-
cut problem. In Proceedings of the Interactive Workshop on Aspects in Soft-

ware (EIWAS), 2004.

[47] Maximilian Stérzer, Robin Sterr, and Florian Forster. Detecting precedence-
related advice interference. In Proceedings of the 21st IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), 2006.

[48] Francis Tessier, Mourad Badri, and Linda Badri. A model-based detection of
conflicts between crosscutting concerns: Towards a formal approach. In In

International Workshop on Aspect-Oriented Software Development, 2004.
[49] The AspectJ Team. The AspectJ language guide.

[50] The AspectJ Team. The AspectJ programming guide.

http://www.eclipse.org/aspectj/doc/released/progguide/index.html

[51] Kris De Volder. JQuery: A generic code browser with a declarative config-
uration language. In Proceedings of the Eighth International Symposium on

Practical Aspects of Declarative Languages (PADL), 2006.

[52] Scitools website.

http://www.scitools.com/products/understand/cpp/product.php

123

[53]

[54]

[56]

Roel Wuyts. Declarative reasoning about the structure of object-oriented
systems. In Proceedings of the 26th International Conference on Technologies

of Object-Oriented Languages and Systems (TOOLS USA), 1998.

Sai Zhang and Jianjun Zhao. Change impact analysis for aspect-oriented
programs. Technical report, Center for Software Engineering, Shanghai Jiao

Tong University, 2007.

Jianjun Zhao. Change impact analysis for aspect-oriented software evolution.
In Proceedings of the International Workshop on Principles of Software Evo-

lution (IWPSE), 2002,

Jianjun Zhao. Measuring coupling in aspect-oriented systems. Proceedings of
the 10th International Software Metrics Symposium (Metrics) session on Late

Breaking Papers, 2004.

124

