IMPLEMENTING CONCURRENCY IN A PROCESS-BASED

LANGUAGE

NURUDEEN LAMEED

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

MARCH 2008

© NURUDEEN LAMEED, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40943-5
Our file Notre référence
ISBN: 978-0-494-40943-5

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

Abstract

Implementing Concurrency in a Process-Based Language

Nurudeen Lameed

Object-oriented programming has been very successful for general purpose programming
tasks for almost two decades. It is hard to imagine another paradigm replacing it. But
software systems are becoming ever more complex and hard to maintain. Adapting to new
hardware will create further problems. The current combination of complex scope rules,
inheritance, aspects, genericity, and multithreading cannot provide the flexibility needed
for the effective implementation, maintenance, and refactoring of parallel and distributed

systems. We believe it is time for a change of approach to software development.

Software must be modified to match today’s needs but must not place even greater strain on
software developers. The prevailing software development practice makes management and
maintenance of software unnecessarily difficult. We describe an approach that we believe

will reduce the difficulties of software development and maintenance.

The programming language Erasmus is being developed by Peter Grogono at Concordia
University, Canada and Brian Shearing at The Software Factory, UK. Erasmus is based on

communicating processes organized within cells that communicate through message passing.

This thesis describes issues related to the implementation of concurrency in Erasmus. In

particular, it explains how the meaning of a program can be separated from its deployment

iif

onto multiprocessor/distributed systems. Through this approach, software investment may
be preserved when new features are added or when functionality does not change but the

environment does.

iv

Acknowledgments

I thank the Almighty God for His divine guidance and blessing that have made this thesis

possible.

My profound gratitude goes to Dr. Peter Grogono for his advice and support. I have
gained a lot of knowledge through his wisdom and insights. His advice has also been very

invaluable throughout this thesis work.

I also wish to thank all the faculty members and staff of the Computer Science Department
particularly the Graduate Advisor, Ms. Halina Monkiewicz for her advice in my first year

at Concordia University.

I am grateful to the faculty of Engineering and Computer Science, Concordia University for

supporting in part this thesis work.

I thank all my friends and colleagues with whom I shared wonderful and memorable mo-

ments.

Finally, I would like to thank my family, my beloved wife, Aderonke and my daughters,
Hanifah and Azizah for their support, encouragement and understanding without which

this thesis would not have been possible.

Contents

List of Figures X
List of Tables xi
1 Introduction 1
1.1 Background e 3
1.1.1 The Object Model 6

1.1.2 The Process Model 7

1.2 Thesis Qutline e e 8
1.2.1 The Erasmus Project. 8

1.2.2 The Objectives of the Thesis 8

2 Related Work 10
2.1 Language Style e 11
2.2 Concurrent Pascal 11

vi

2.3

24

2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

Communicating Sequential Processes (CSP) 14

2.3.1 Communicationin CSP 15
Ada . . 17
2.4.1 Communicationin Ada 18
Occam e e 24
2,51 OcCCam-T . . . v o 31
ABCL/T . . o o e 33
Erlang e 36
2,71 Communicationin Erlang 36
2.7.2 Support for distributed applications 39
JOyCe . o e 40
Cilk . . e 43
Java Programming Language 45
Mozart/Oz 49
SALSA . . 52
2.12.1 Actor Model 53
2.12.2 Actorsin SALSA Lo 54
Discussion e 58

vii

3 Overview of Erasmus Programming Language 60

3.1 Objectives e e e e 60
3.2 Language Description o e 62
321 TYPES . . e 64

3.2.2 Statements e 65
3.2.3 Communication in Erasmus 0L 68
3.2.4 Channels and Protocols 69

3.25 Ports. 72

3.2.6 Select statement oo 76
3.2.7 Recursion, Dynamic Process Creation and Composition 79

4 Communication in Erasmus 84
4.1 Communication 84
4.1.1 Notation and Definitions, . 85
4.1.2 Channel Structure 85
4.1.3 Basic messagetransfer o 86
414 select Statements, 88
415 Embedded Receives oL 92

4.2 Mapping of Cells to Processors 95
421 Design o e e e 98

viii

422 Testingand Results 106

4.2.3 Granularity of Communication 112

5 Communication in Erasmus and other languages 114
5.1 Language Syntax for Communication 114
5.2 Communication via shared variables 115
5.3 Communication by message passing L 117
5.3.1 Channel and Protocols 118

5.3.2 Select statement and Non-determinism 120

5.3.3 Message Typing and Serialization 122

6 Conclusions and Future Work 123
6.1 Conclusions e 123
6.2 Future Work 125
Bibliography 126
Appendices 134
1 Syntax e 135

ix

List of Figures

1 A diagram corresponding to the program of Listing 14 70
2 Asimple configuration file Lo 70
3 A diagram corresponding to the program of Listing 15 75
4 A diagram corresponding to the program of Listing 19 83
5 A diagram corresponding to the program of Listing 22 97
6 Communication between a client and a server processes 101

List of Tables

1 Summary of concurrent languages L 58
2 Functions used in pseudocode e 86
3 Policies for the select statement. 89
4 Summary of tests in Case one (Frequent Communications) 112
5 Summary of tests in Case two (Infrequent Communications) 112

Xi

Chapter 1

Introduction

The desire to build reliable operating systems motivated the introduction of concurrent
programming [19]. This has had a profound effect on software development. Many chal-
lenging problems have been solved. Today, software controls machines such as NASA’s
Mars Exploration Rover and many more interesting, sophisticated and crucial applications
have been built. Success in software development however is generating increasing demands
for ever more complex and challenging computations. Consequently, software is becoming
increasingly complex to design. To cope with modern challenges in software development,
various tools, languages, techniques and approaches have been proposed, implemented and
utilized. The transition from procedural to object-oriented programming helped to facilitate
construction of software that otherwise would have been inconceivable. However, increase
in software complexity as a result of changes in environment and functionality has exposed
some significant limitations of objected-oriented approach: current practice makes software
enhancement and refactoring difficult. To address modern software requirements and chal-

lenges, Object-oriented languages have been extended with many features. This has further

increased the complexity of object-oriented programming,.

Hardware technologies aimed at boosting computational performance remain a major driver
of advances in software development. The drive for continued performance gains is causing
major processor manufacturers, notably Intel and AMD, to produce microprocessors with
multiple cores on a chip. The hope is that multi-core architectures will boost performance
by having parallel processors execute different instructions. But existing applications are
largely sequential. Hence, to achieve true performance gains software must be carefully
written to exploit hardware parallelism [46, 52]. Many believe future computations will be

largely driven by the multi-core technology.

The proportion of concurrent applications is on the increase, yet concurrent programming
has not become the mainstream programming technique. It has however been described as
the next major revolution in software development [54]. It is generally believed that concur-
rent programming is hard. Experts also agree that concurrent programming is hard because
mainstream programming languages do not provide suitable abstractions for expressing and

controlling concurrency (43, 53, 34].

In responding to the foregoing challenges, Peter Grogono of Concordia University, Canada
and Brian Shearing of The Software factory, UK, designed and proposed a new language,

Erasmus. The language is based on communicating processes.

In this thesis, we describe issues related to the implementation of concurrency in Eras-
mus. In particular, we explain how the meaning of a program can be separated from its

deployment onto multiprocessor/distributed systems.

1.1 Background

The development of the multiprogramming system led to the introduction of concurrent
programming. Following this, various notations, constructs and languages were proposed.
The idea of organizing programs into collections of processes was pioneered at MIT in
the CTSS project [48]. Processes are program modules with private data and sequence of
statements that operate on those data. Processes are loosely coupled because they only
have any effect on one another during rare and brief communications. Processes may have

parameters.

Dijkstra [24] proposed the first notation for expressing parallel processes. Parallel execution
of statements is constructed by enclosing the sequence of statements within a parbegin and

parend. For example:

begin S1; parbegin S2; S3; S4; parend; S5 end

statement SI1 is executed followed by parallel execution of §2,53,54. 55 is executed af-
ter 52, S3, S4 have finished. Processes communicate via shared variables. It was soon

discovered that simultaneous access of shared variables often led to data inconsistencies.

To overcome the problem of data inconsistencies, critical sections were proposed. A critical
section is a group of statements that a process can execute with exclusive access to the
processor. If a process accesses shared variables only in its critical sections, inconsistencies
cannot arise. However, processes may have to wait for a process to complete its critical
section; this can cause inefficiency. Critical sections must be coded with care to avoid

deadlock.

A special kind of shared variable called semaphore [24] was proposed to address the lim-
itations of shared variables as communication channels. Semaphores can only have non-
negative integer values and are typically implemented with queues — processes waiting for

a semaphore are put in the semaphore’s queue.

Semaphores simplify mutual exclusion problems. Semaphores, used for mutual exclusion
are generally called binary semaphores because they can have values 0 or 1 only. General
semaphores may have higher values; they are called counting semaphores because they can
be used to indicate the number of available resources. Two primitive actions, P and V op-
erations are defined for accessing semaphores. The P and V operations have one parameter
and are atomic (indivisible) operations. P and V are short for Dutch words, they are conven-
tionally called wait and signal respectively in English [11]. The P operation is described

in pseudocode below:

P(sem)
if sem > 0O

sem = sem - 1;

the operation ensures that value of semaphore is non-negative. When a process executes P
operation and the current value of semaphore is 1, it decrements its value and can thereafter
enter its critical section. If on the other hand, a process finds the value of semaphore to be
0; it waits until another process performs a V operation. The following pseudocode defines

the V operation.

V(sem)

sem = sem + 1;

it increments value of the semaphore, sem by 1. Any process that executes V operation,

increments the value of sem by 1;

Semaphore provides a cleaner way of resolving synchronization problems; however semaphores
are error-prone and can easily lead to deadlocks. For instance, if a process performs a P
operation but subsequently fails to perform a V operation, other processes may not be able
to progress. For this reason, Brinch Hansen suggested message buffering as the basic means

for inter-process communication. This eventually led to the invention of monitors [12, 38].

A monitor encapsulates shared variables and operations on the variables. It also defines
an initial operation that is executed when the variables are created. The procedures that
operate on shared variables are called monitor procedures. Access to shared variables is
possible only through the monitor procedures. Monitors have been utilized in operating
systems and programming languages. However, monitors are based on locks and lock-based

programming can easily lead to deadlocks [53].

Advances in networking technologies and the increasing needs for programming distributed
systems led to the development of message passing techniques, including remote procedure
call (RPC). RPC is an extension of local procedure call: process A sends a request message
to process B by calling a procedure defined in B; B processes the request and sends a reply
to process A; A then continues with the rest of its statements. RPC is known as remote

method invocation (RMI) in object-oriented languages.

1.1.1 The Object Model

Objected-Oriented programming has for some time remained the main programming paradigm.
The basic concept in OO programming is that an object encapsulates data and provides
controlled access to the data via its methods; the behavior of an object is determined by
its class and can be extended incrementally through inheritance. In practice however, OO

programming has become more complex than this model suggests [30]. For instance,

e Levels of visibility has been extended because the original levels of visibility — private,
protected and public have been found to be inadequate. For example Java provides
at least thirteen varieties of access: public scope, private scope, protected scope,
package scope, static method, instance methods, interfaces, classes, packages, local
inner classes, member inner classes, anonymous inner classes, static member inner

class. All this makes maintenance of software difficult.

o An Object does not have control over the sequence in which its methods are called.
As a consequence, it cannot ensure that an initialization method is called before any
other methods. This makes objects difficult to design. The designer must either allow
for all possible calling sequences, or must trust clients to call methods in the intended

sequence. The compiler cannot enforce correct call sequencing.

o Refactoring OO programs is difficult. Consider a situation where fat clients are to be
replaced by thin clients; moving code from one memory space to another is complex

with OO approach and may be infeasible in a commercial environment.

¢ Modeling some applications using OO design can be unnecessarily difficult. For in-
stance, consider a hospital application where the programmer designed classes Con-
sultant and Patient as derived classes of class Person. This indicates that a consultant
is a person and, a patient is also a person but it is possible for a consultant to be a
patient at the same time [30]. This highlights occasional complexity that may arise

in OO Design.

1.1.2 The Process Model

Languages that provide concurrency by extending other sequential languages with multi-
threading facilities have serious limitations. Safe concurrency is impossible without a sound
and complete type system and many sequential languages, including C, lack such facilities.
Stroustrup notes that lack of type safety is the main cause of many problems associated
with correctness and performance; exact type information can improve performance [51].
Many languages provide concurrency through libraries. Problems with this approach have
been recognized: Boehm shows that providing concurrency by implementing threads as
libraries could produce unreliable software [33]. Libraries cannot enforce syntax and se-
mantics checking as a programming language would normally do. A new language that is

based on established concepts is more appropriate for providing concurrency.

Erasmus is a process-based concurrent language. We highlight some potential benefits of

this model.

e Processes are more general. It is easier to map processes onto multiple address spaces

than the object-oriented model.

o It is often easier to model applications with processes than objects. Process-based
code can be refactored into object-based code but the converse is difficult, if not

impossible.

¢ Processes are loosely coupled and have more autonomy as compared to objects.

1.2 Thesis Outline

This section gives an outline of the thesis. First, it describes the Erasmus project and then

describes the goal of this thesis.

1.2.1 The Erasmus Project

The Erasmus project seeks to develop an industrial-strength, process-oriented language that
will contribute to the development of concurrent software that can be maintained, refac-
tored, and deployed on different physical systems. Toward this end, a prototype compiler

has been developed. The compiler simulates concurrency by time-sharing a single processor.

1.2.2 The Objectives of the Thesis

The goal of the research described in this thesis was to design and develop a modified
version of the prototype compiler described above. Code generated by the new compiler
uses true processes that communicate with ports and channels. Several processes may run
on the same processor or on different processors. The mapping from processes to processors

is specified in a metafile, not in the source code.

The thesis is structured into the following chapters: in chapter two we review some related
work; chapter three introduces the Erasmus programming language; chapter four addresses
communication in Erasmus; chapter five compares communication in Erasmus and other

languages and, finally, chapter six concludes the thesis.

Chapter 2

Related Work

Early attempts at finding solutions to problems in operating systems and computer archi-
tectures led to an explosion of research in concurrent programming techniques. Toward this
end, a number of concurrent languages have been proposed, By 1989, nearly a hundred con-
current and distributed programming languages had been proposed [7]. However, despite
this phenomenal growth in concurrency research activities, proposed languages have yet to
enjoy widespread acceptance by mainstream software development. Concurrent applica-
tions are still written with sequential languages such as C/C++ and Java. Concurrency
is therefore far from a solved problem. Many languages were proposed for particular ar-
chitectures, e.g., Occam (for programming Transputer), and many allow several styles of

programming by including features and constructs that favor those styles.

This chapter reviews some concurrent programming languages. First, it distinguishes be-
tween languages designed mainly to provide concurrency and those that support multiple

programming styles. Next, it gives a brief introduction to each one of the languages. In

10

particular, it considers languages, including: Concurrent Pascal, Communicating Sequential
Processes (CSP), Ada, Occam, ABCL/1, Joyce, Erlang, Cilk, Java, Mozart/Oz, SALSA,
and Occam -m. The chapter considers how the languages represent parallel units; how par-
allel units communicate; use of channels and similar capabilities; recursion and support for

distributed systems.

2.1 Language Style

Many languages were designed mainly to address problems related to concurrent executions
of multiple program units. Among the languages reviewed here, the following languages fall
into this category: Concurrent Pascal, CSP, Occam, Erlang, Joyce, SALSA and Occam-7.
Others support more than one style of programming, for instance, Java supports concur-
rent programming as well as object-oriented programming. Mozart/Oz is a multi-paradigm
language supporting object-oriented programming, functional programming, logic and con-
straint programming. Ada supports concurrent programming and also provides packages
for structuring large programs. Object-oriented programming is also supported by Ada 95.

ABCL/1 provides concurrency and object-oriented programming.

2.2 Concurrent Pascal

Concurrent Pascal, designed by Per Brinch Hansen in 1975, was designed for structured
programming operating of systems [13]. It was the first programming language to use mon-

itors. It is an extension of the programming language, Pascal, which incorporates monitors,

11

classes and processes. Processes in Concurrent Pascal are independent entities with pri-
vate data structures and sequential code that operates on those data. It is not possible for
one process to access the private data of another process. Processes communicate through
shared data encapsulated within monitors. Access to shared variables within a monitor is
possible only through the monitor procedures. Monitor procedures execute one at a time,
i.e. if two or more processes attempt to execute a monitor procedure, only one of them will
be allowed to execute the procedure. The rest of the processes suspend (queued) until the

running process completes the execution of the procedure and notifies other processes.

Listing 1 defines a process type, jobprocess with two parameters of diskbuffer type. The
process type defines a private variable block, whose type is page. It also defines a sequence
of statements — represented by the ellipsis in Listing 1 — that are run one after the
other until end is encountered. Listing 2 shows Diskbuffer type which is a monitor with
monitor procedures send and receive. Monitor procedures are distinguished from the other

procedures by the keyword entry.

Listing 1: Process type definition

type jobprocess =
process (input, output: diskbuffer);
var block: page;
cycle
readcards (block);
buffer.send(block);
/...

end

Classes in Concurrent Pascal are like monitors in that they define private data and pro-

cedures that operate on those data, but they are unlike monitors in that they cannot be

12

Listing 2: A diskbuffer monitor definition

type diskbuffer =
monitor (...);
var disk: virtualdisk;

procedure entry send (block: page);
begin

end;

procedure entry receive (var block: page);
begin

end;

procedure other(...);
begin

end;

begin "init statement"
init disk (...);

end

called simultaneously by other components. Class procedures are accessed by class vari-
ables defined by other components. There are a fixed number of processes, monitors and
classes. Dynamic process creation is not supported. To prevent deadlock, monitors cannot
be called recursively. All this simplifies implementation but limits the usefulness of the
language. Many algorithms are easier to express using recursion. A monitor can invoke
procedures defined by other monitors. Concurrent Pascal was designed for single-processor
computers; therefore it does not include tools for programming distributed systems and

applications. Solo [14] operating system was written in Concurrent Pascal.

13

2.3 Communicating Sequential Processes (CSP)

In 1978, Hoare proposed communicating sequential processes (CSP) as a method of struc-
turing programs [39]. CSP is not a programming language but rather a formal language
for structuring, expressing and controlling concurrent programs. This section reviews the

main features of CSP.

CSP uses Parallel command to specify concurrent execution of processes. All processes
start simultaneously and the parallel command ends when they are all finished. Examples

of parallel commands include the following. The command
[P::CL || Q::CL]

denotes a parallel command for concurrent execution of processes P and (. An array of

processes can be created. The command
[X(i:1..n) :: CL]
stands for:
[(X(1):: CL1I1X(2)::CL2][X(3)::CL3|} ... |IX(n)::CLn]

CLi, CL;, CL3 denote command lists of processes X(1), X(2) ... X(n). A Parallel command

terminates successfully when all the processes have terminated successfully. The command
[room::ROOM || fork(i,0..4)::FORK||phil(i,0..4)::PHIL]

denotes a parallel command with eleven parallel processes namely: room, fork(0), fork(1),
fork(2), fork(3), fork(4), phil(0), phil(1), phil(2), phil(3), phil(4). The behavior of room is

14

specified by the command list ROOM, the behavior of the five processes — fork(i, 0..4) —

is specified by FORK. Similarly, PHIL specifies the behavior of phil(i, 0..4).

2.3.1 Communication in CSP

Input and output commands are used for communication between concurrent processes.
CSP uses direct naming — a process names another process as the destination for output
and the second process names the first process as the source of input. Revised version
of CSP [40] uses indirect naming via communication channel with a channel alphabet (a
set of messages that can be transferred over the channel). A Channel links two processes.
Communication in CSP is synchronous: A process that is ready to execute its input or
output statement waits until the other process is ready to execute output or input statement.
Processes may not communicate with each other by updating global variables. The following

boxes illustrate how processes communicate.

ProcessA ProcessB

Bz Ale

processes A and B communicate using input and output statements. Process A names B as
its source and B names A as its destination. When A executes B?z, it reads a value from
B and assigns it to the variable 2. Process B, on the other hand, writes an expression e to
process A by executing A!e. Communication takes place when both A and B execute their
respective input and output commands at the same time and the type of variable z matches

that of the expression, e. The result is that now contains the value of the expression.

CSP introduces and controls non-determinism using guarded commands [25]. Input com-

mands may appear in guards. As an example, suppose process A above wants to read from

15

either process B or process C. This could be expressed with a guarded command. Consider
a program that computes the maximum of two values: z and y. This can be expressed in

CSP with an alternative command as shown below:

[x >y -> max :=x

(0 y> x->max :=y

If x > y, it assigns = to maz; if y > z then it assigns y to maz. A loop or a repetition
can be expressed with a repetitive command. A repetitive command allows an alternative
command to be repeated. For instance, suppose A wants to read from three other processes,

B, C, D that generate values repeatedly. Actions by process A can be expressed as follows:

* [
B?x -> PROCESSX
[] y>0; C?y -> PROCESSY

[D?x -> PROCESSX

A repeatedly checks which of the branches (alternatives) of the alternative command is eligi-
ble for execution. A branch is eligible for execution if its guard succeeds and communication
is feasible. Only one of the branches must be selected. For instance, in the code extract
above, if process B is ready to output a value, command list PROCESSX is executed. If
on the other hand, B is not ready, the next branch is tried. This is repeated indefinitely. If

all the branches are eligible, then one of them is selected non-deterministically.

16

As mentioned ealier, CSP is a formal language; an implementation language might include

support for distributed systems. Like Concurrent Pascal, CSP does not support recursion.

2.4 Ada

Ada was a product of an international design competition organized by the US depart-
ment of Defense. Concurrency in Ada is based on processes called, tasks. A task includes
a specification and a body. The specification declares the components of a task, includ-
ing all entries (named subprograms that may be called by other tasks), parameters and
subprograms while the body defines the actions of a task, including those of entries and

subprograms. A task can be defined as in the following examples. The code fragment

task type SquareSvr is
entry Square(Num: Integer);

end;

declares a task type named SquareSvr. Task types are like templates from which independent
tasks can be created. A task is an instance of a task type; an anonymous task type can
be declared. Anonymous task types hide explicit declarations of types. For example, the

statement

task Reader;

declares an anonymous task type; the same statement also creates a task, Reader. The

statement is equivalent to the code

17

task type Reader_Type;

Reader: Reader_Type;

which declares the task type Reader.Type and a task, Reader. The statement

task type Agent(ID: Integer);

declares a parameterized task type, Agent. An integer value (argument) is passed during

an instantiation of the parameterized type, Agent. The code

task type BoundedBuffer is
entry Put(E:Item);
entry get(E: out Item);

end;

declares a specification for the task type, BoundedBuffer, with two entries: get and put.

The following code snippet defines the body of BoundedBuffer.

task body BoundedBuffer is
-- declarations

begin

end;

2.4.1 Communication in Ada

Ada uses rendezvous for direct communications between tasks. The basic idea behind

rendezvous is that a task communicates with another task by calling some entry of the

18

other task via a call statement. This is similar to calling a method of an object in object
oriented programming. A call statement directly names the task and the entry that is being
called. The other task responds to the call by executing an accept statement defined for
the called entry by the called task. The idea is analogous to the client/server model where
a server task declares a set of services that it provides by declaring a set of public entries
in its specification. Each entry identifies a service, the parameters it requires to process
the request and the result (if any) that will be returned by the task. For instance, the
following task declaration models a Teller that provides withdrawal, deposit and balance

enquiry services to clients:

task type Teller is
entry WithDraw(AcctNo:in Account; Amt:in Money; Result:out Boolean);
entry Deposit(AcctNo:in Account; Amt:in Money; Result:out Boolean);
entry GetBalance(AcctNo: in Account; Balance: out Money);

end Teller;

Atm : Teller; -- creates a Teller task

where Account, Money are predeclared types; and AcctNo and Amt are passed (indicated
by in) to the teller — Atm — for withdrawer and deposit services and Result is returned
(indicated by out) to the client. Similarly, AcctNo is passed to the teller for balance enquiry
and the balance is returned to the client. The client task (calling task) requests a service
from the server task by making an entry call, identifying both the server and the required

entry (service). The following statement calls entry GetBalance of the task, Atm.

19

-- client task

Atm.GetBalance (1004550, MyBalance); -- calling Atm.GetBalance

Atm indicates its willingness to provide the requested service by executing an accept state-

ment as shown in the code fragment below:

-~ server task

accept GetBalance(AcctNo : in Account; Balance : out Money) do
-- look up balance for the Account number and
-~ assign the value to Balance

end GetBalance;

Communication occurs when both tasks issue their respective requests at the same time.
A task that is ready to communicate (issues its request first) waits (becomes suspended or
blocked) for its partner. Clients waiting on an entry are queued. When both are ready,
communication takes place — the two tasks are said to rendezvous because they meet at
the entry point. When they meet, in and in out parameters are copied from the client
to the server task. The server then executes the code inside the accept statement and on
completion (end encountered), any out parameters are copied to the client. Both server

and the client then proceed independently and concurrently.

20

Select Statement

Ada allows a task to indicate its willingness to accept calls for any of its public entries using

the select statement. The general form of select statement is:

select_statement = selective_accept

| conditional_entry_call

| timed_entry_call

| asynchronous_select.

returning to the Teller example above, typically a Teller offers more than one service.
Therefore the server can be coded to accept calls for any of its public entries from clients.
This can be programmed elegantly with a select statement as shown in Listing 3. One
of the branches of a select statement is selected for execution if more than one rendezvous
is feasible. The choice of which branch is selected depends on the implementation. It is
safe to assume that any of the alternatives can be selected. Selection of alternatives can be

restricted with Boolean guards:

when boolean_expression =>

if the guard succeeds, e.g. in Listing 4, if cashAvailable is true, the withdrawal service
is eligible for selection. If it is false, it is not eligible even if there are clients waiting on this

entry.

Select statements can also have delay (or delay until) and terminate alternatives. A

delay alternative allows a task to time-out if an entry call is not received within a certain

21

period of time. Terminate (terminate) alternative can be used to exit a select statement if
no other alternatives are eligible for selection. The language defines else alternative that
can be used in a select statement. If present, an else part defines actions to be taken
if no other alternative is executable. Timed and conditional entry calls allow a caller to
cancel its call if it is not accepted within a specified period. Timed entry is specified with a

delay statement while a conditional entry call includes an else part in the selective call.

Listing 8: Using a select statement

task body Teller is
... == local declarations
begin
loop
select
accept WithDraw(...) do
--- code for withdrawal service
end WithDraw;
or
accept Deposit(...) do
~--- code for Deposit service
end Deposit;
or
accept GetBalance(...) do
--- code for balance enquiry service
end GetBalance;
-~ more code for this branch to be
-- executed after rendezvous
end loop;
end Teller;

Ada 95 [1] defines some extensions to Ada 83. For example, efficient communication through
shared variables is possible. Such shared variables are declared as protected types. Pro-
tected types are like monitors; they provide a structured way of encapsulating data items.

They allow access to these data only through protected subprograms or entries. Much like

22

Listing 4: when guard in select statement

-—-- Teller task
begin
select
when cashAvailable =>
accept WithDraw(...) do
--- code for withdrawal service
end WithDraw;

-- sequence of statements
or

end Teller;

a task, a protected unit can be declared as a type or as a single instance. It consists of a
specification and a body; for instance, the Listing 5 gives a solution [21] to bounded buffer

problem. An entry of BoundedBuffer (Listing 5) can be called as follows:

My_Buffer.Put (100);

The language guarantees that subprograms of a protected object will be executed in a
way that ensures that the shared data encapsulated by the protected object is updated
under mutual exclusion. Protected functions have read-only impact on the data while
protected procedures and entries are allowed to update shared object but run one at a time.
Asynchronous communication mechanism (asynchronous select) was also added. Ada does

not allow selective calls of entries.

23

Listing 5: Bounded Buffer using a protected type

BufferSize : constant Integer := 10;
type Index is mod BufferSize;

protected type BoundedBuffer is
entry Get(Item : out Dataltem)
entry Put(Item : in Dataltem);

private
--- private declarations

end BoundedBuffer;

My_Buffer : BoundedBuffer;
protected body BoundedBuffer is
entry Get(Item: out Dataltem)
when NumberInBuffer /= 0 is
begin
end Get;
entry Put(Item: in Dataltem)
when NumberInBuffer /= BufferSize is
begin

end Put;

end BoundedBuffer;

2.5 Occam

Occam [45] is a concurrent language that was originally designed to program transputers®. It
is based on Communicating Sequential Processes (CSP). A program in Occam is a collection
of processes. Processes communicate over synchronous channels. A channel connects two

processes and has a protocol associated with it. A protocol specifies the formats and the

A transputer is a specially designed microprocessor. It comprises a high-speed processor, memory and
fast inter-processor communication links for connecting to four other transputers. It was built by INMOS
Ltd (UK), now STMicroelectronics.

24

types of the messages that can be transmitted over a channel. There are no data races

among Occam processes. Processes in Occam include:

1. an assignment statement e.g. x := y + 1 — assigns the value of the expression, y +

ltozx

2. input e.g. keyboard ? char — reads char from the channel named, keyboard

3. output e.g. screen ! char — writes the value of char to the channel named, screen

4. SKIP — do nothing

5. STOP — causes a program to abort

6. SEQ — sequential execution of the processes indented two columns below SEQ. The

code

SEQ
keyboard 7 char

screen ! char

executes the input statement followed by the output statement.

7. PAR — parallel execution of the processes indented two columns below PAR. The code

PAR
keyboard 7 char

screen ! char

executes both the input and the output statements in parallel. Processes can also be

assigned priority. For instance:

25

PRI PAR

P

The process that immediately follows PRI PAR has the highest priority, P, in the code

above.

. ALT — an alternation executes only one of a number of processes each preceded by
a guard; evaluates the guard and executes the corresponding process if the guard is
true. If none of the guards is true, it blocks until one of the processes becomes eligible.

If more than one is true, one of them is selected arbitrarily. The code

ALT
east ? ch
ostream ! ch
west 7 ch

ostream ! ch

writes the input, ch received from either the east or the west channel (whichever is

ready) to another channel, ostream. If both are ready, it selects one arbitrarily.

. WHILE — conditional loop evaluates a condition and proceeds to execute the following

processes if the condition is true; otherwise it does nothing. The code

WHILE char <> eof

east 7 char

26

screen ! char
west 7 char

screen ! char

repeatedly writes the input, char received from either the east or the west channel

until eof character is received from any of the channels.

10. IF — conditional statement. The code

IF

x <y
max =y
x>=y
max = Xx

IF combines a number of processes, each preceded with a guard; if the guard is true,
the associated process is executed. For instance, if x is less than y, y is assigned to
maz; if x < y is false then z > y is true therefore, z is assigned to max. If none of

the guards is true, the IF statement behaves like a SKIP process.

11. PROC — procedure definition defines a name for a process. The code

PROC incr (INT i)

i+ 1

[
[
[

defines a procedure, incr with only one parameter, z. A parameter may be qualified

with VAL, in this case a value must be passed for the parameter during the invocation

27

of the procedure. Like CSP, procedures cannot be recursive in Occam!

12. FUNCTION — defines a name for a value process. Functions in Occam are free of side-
effects and may be used in expressions. They can return more than one value of any

data type. The code

INT FUNCTION getMaxScore (VAL [] INT values)
INT max :
VALOF
SEQ
max = values[0]
SEQ i = 1 FOR SIZE values - 1
IF
max < v[i]
max = v[i]

RESULT max

defines a function named, getMaxScore. The function can be used in an expression as

in the statement below

maxScore := getMaxScore(v)

Every channel in Occam has an associated protocol that specifies the properties of the
messages that can be transferred over the channel. Channel declaration is of this form:

CHAN OF protocol. For instance, the code

28

CHAN OF BYTE keyboard: -- allow transfer of bytes

CHAN OF INT::[]IBYTE keyboard: -- counted array

creates a channel named keyboard with a protocol (BYTE), indicating that the channel can
only be used to pass data in bytes. The types in channel declarations (protocol part) could
be any Occam primitive type, arrays (including counted array) or record types. Protocols

can be named; it is useful to a name a complex protocol:

PROTOCOL COMPLEX IS REAL64; REAL64: -- protocol for complex num

CHAN OF COMPLEX cplxChan: --allow transfer of pair of values

this is a sequential protocol; an input on cplzChan is:

cplxChan 7 real.part; imaginary.part

A channel can be used to communicate messages with different formats. Such channels use

case protocol:

PROTOCOL FILES
CASE
request; BYTE
filename; DOSFNAME
word; INT16
record; INT32; INT16::[JBYTE
error; INT16; BYTE::[1BYTE

halt

29

request, filename, etc. are tags and each identifies a tagged sequential protocol. An example

of a channel that uses this protocol is declared below:

CHAN OF FILES to.dfs :

a tag is first sent to the receiver to inform it of the pattern of the rest of the communications.

For instance,
to.dfs ! request; get.record

sends the tag request followed by a BYTE value. CASE input is provided for reading from a

CASE channel. The code

CHAN OF FILES from.dfs :
SEQ
to.dfs ! request; get.record
from.dfs ? CASE
record; recNo; reclLen::buffer
. some code
error; errno; errlen::buffer

. error handler

accepts an input with a record tag or an error tag from from.dfs channel.

Occam processes can be delayed using a Timer. The code

TIMER clock :

clock 7 now

30

inputs the current time and assigns the value to a time variable.

Occam allows processes to be mapped to specific processors. Such processes use local
memory of the processor on which they are being executed. They communicate by passing

messages over the connecting communication channels. For instance, with the code

PLACED PAR
PROCESSOR 1
terminal (term.in, term.out)
PROCESSOR 2
editor (term.in, term.out, files.in, files.out)
PROCESSOR 3

network (files.in, files.out)

terminal process is placed on processor with identifier 1, editor is placed on processor 2 and
network runs on processor 3. Since Occam channel is unidirectional, terminal communi-
cates with editor via term.in (input) and term.out (output) channels. Similarly, network,
communicates with editor using files.in (input) and files.out (output) channels. These three

processes execute in parallel, each on its individual processor.

2.5.1 Occam-7

Although Occam-7 is a recent language, we mention it here because it is derived from
Occam. Occam-7 [9, 8] is a recent extension to the classical Occam. It addresses some
limitations in Occam. In particular, it extends the language by adding features that sup-

port mobile data, channels and processes; extended-rendezvous; dynamic process creation;

31

array-constructors, process priorities and other features. Mobile processes migrate from
one environment to another, making it easier to dynamically reconfigure systems. Mobility
of processes can also facilitate load-balancing for large and complex systems. A simple

activation of a mobile process is given in the code below:

SEQ
¢ 7 mp -- arrival of a mobile process
mp (...) -- mobile process runs from some point to another
d ! mp -- mobile process migrates to another environment.

Occam- allows bundling of unidirectional channels into a single structure. This has some
significant benefits. It is easier to program reliable communications over a bidirectional
channel [40]. Occam-m provides a channel direction specifier. The channel direction specifier
7, denotes the input end of a channel and ! denotes the output end of a channel. An Occam
process sees only one end of the channel. Channel direction specifiers make it easier to
program client-server interactions where the input end denotes the client and the output
end denotes the server. This also enables a more accurate reporting of errors on channel
usage. Channel ends are mobile and can be shared. The following code defines a procedure
with two parameters in? and out! connected to the same channel as a client and a server

respectively.

PROC integrate(CHAN INT in?7, out!)

Extended rendezvous allows an inputting process to perform some action on the received

data before the corresponding outputting process resumes the execution of its code.

32

2.6 ABCL/1

ABCL/1 is an object-oriented concurrent language whose primary design principle was to
provide clear semantics of message passing [56]. An object in ABCL/1 is an autonomous
unit with state represented as contents of its local persistent memory. An object can have
one of three states namely: dormant, active or waiting. An object is initially in a dormant or
passive state; it becomes active when it receives a message that matches one of its specified
patterns and other constraints. The behavior of an ABCL/1 object is encapsulated within a
script — a set of methods of the object. The script of an object specifies all the patterns
of the messages that the object accepts and the actions to be taken when it accepts a

message.

Messages can be sent to or received by an object in one of two modes: ordinary and
express. This is analogous to assigning low and high priorities to messages. Messages of
the same mode are queued and attended to in a First Come First Serve (FCFS) manner.
Messages received in ezpress mode take priority over those received in ordinary mode and
can interrupt the execution of actions carried by messages received in ordinary mode unless
such actions are within atomic constructs?. Suspended actions can however be resumed, if
no messages received in ezpress mode are outstanding and a (non-resume) command has
not been executed. Messages are transmitted asynchronously using three different message

passing semantics: past, now and future.

Past type message passing (also refers to as send and no wait):— when an object sends a
message to another object, it does not wait for the message to be received or the result to

be returned by the receiving object. This is denoted below:

2Code within an atomic construct is executed as an indivisible operation.

33

Ordinary mode Express mode

T <= M] [T <<= M]

where T denotes the receiving object and M denotes the message.

Now type message passing (send and wait):— an object sends a message to another object

and waits for a reply to be received from the receiving object. It has the following form:

Ordinary mode Express mode

T <==M] [T <<== M]

Future type message passing (reply to me later):— an object sends a message to another
object and expects to receive later, a reply to its message in a special private object, called
a future object, specified in the message. The sending object does not need the result
immediately; it therefore continues its computations and checks the future object when it

needs the reply. It has the form shown below:

Ordinary mode Express mode

T <= M8z T <<= M$z]

z denotes the future variable, T' and M are as defined earlier.

An object is created by sending a now or future type message with some initial information
to a special object that creates the object and returns as a result of the now/future type
message, the new object created. An object can be created dynamically. This is described

below:

[object CreateSomething
(script

(=> pattern-for-initial-info !{object ...]))]

34

CreateSomething denotes the object that creates a new object; [object ...] represents the
definition of the new object to be created by CreateSomething. For example, the program
[56] in Listing 6 creates an alarm clock object. The keyword, ! is used to send a reply to a

request sent in now or future type message passing.

Listing 6: Creating objects in ABCL/1

[object CreateAlarmClock
(script
(=> [:new Person-to-wake]
! [object

(state [time-to-ring := nil])

(script
(=> [:tick Time]
(if (= Time time-to-ring)

then [Person-to-wake <<= [:time-is-up]ll))

(=>[:wake-me-at T]

The code

(=> request-pattern ... !expression ...)

is a short form of the code

(=> request-pattern @destination ... [destination <= expression] ...)

where destination denotes the reply-destination. For messages sent as past type message

passing, a reply-destination can be specified as in the statement

[T <=request@reply-destination]

A reply-destination provides capability for delegating computations in ABCL/1: messages

can be sent to another object with actions implementing some delegated computations.

35

2.7 Erlang

Erlang [5] is a declarative language that was developed at Ericsson Lab for programming
concurrent, real-time and distributed fault-tolerant applications. It provides light-weight®
concurrency through processes [4]. The language evolved from Prolog extended with par-
allel logic processes to a completely new language. Processes in Erlang are self-contained
independent entities. They have disjoint variables; therefore, it is not possible for a process
to modify the state of another process. They communicate through asynchronous message

passing over unidirectional channels?. Process creation is explicit:

Pid = spawn (Module, FunctionName, ArgumentList)

The primitive spawn creates a new process that evaluates a given function. It takes three
(3) arguments as shown above. Module represents the name of the program module where
the function denoted by FunctionName is defined and, ArgumentList stands for a list of
arguments to FunctionName. The return value of spawn is a process identifier — Pid
— which is used for communications with the new process. After its creation, a process
executes in parallel with its parent process. When a process completes the evaluation of its

function, it terminates automatically.

2.7.1 Communication in Erlang

Erlang processes communicate only by message passing. A process sends a message to

another process using the primitive ‘!’ (send), for example, the statement

8Processes require little memory and little computational effort for creating and deleting processes and
messages.
4A channel is an infinite stream of messages.

36

Pid ! Msg

sends a message, “Msg” to the process identified by Pid. Messages can be sent to a process
by using its registered name. Process registration associates a name with a process identifier.

Message type can be any Erlang type. The statement

getPid(100)! square(num)

evaluates getPid to obtain a process identifier. It also evaluates square for the message to be
sent to the resulting Pid. As mentioned earlier, communication in Erlang is asynchronous:
sender does not wait for message to arrive at the intended destination. A message is received
by the destination process through the execution of the primitive receive. The syntax for

receive is given in the following code fragment.

receive
Messagel [when Guardi] ->
Actionsli;
Message2 [when Guards2] ->

Actions2;

end

Message;, Messages, ... Message,; n > 0, shown above, are patterns. Guard;, Guard,, ...
Guard,,, m <= n, are optional guards. Actions;, Actionss, ... Actions,, represent sequences
of actions to be executed for a selected branch. The value of a receive expression is the

value of the last expression evaluated in the sequence of actions for the selected branch.

37

Every process has a mailbox — a message queue — attached to it. Messages destined
for a process are queued in the process’s mailbox. When the process executes a receive
expression, the first message that matches any of the patterns in the alternatives is removed
and deleted from the mailbox provided that the corresponding guard (if any) succeeds. A
process executing a receive waits until a message is matched. Any unmatched messages

remain in the mailbox until they are matched by subsequent executions of receive.

It is possible to receive messages from a particular process. In this case, the sender must
include its own Pid or the Pid of another known process in the message. For example, the

statement

Pid ! { self(), 123 }

sends the message “123” to the process identified by PID. The built-in function self()
returns the process identifier of the running process. The following code extract shows how

messages can be received from a process identified by Pid.

receive
{Pid, Message} -> ...

end

As shown below, receive can also have timeout that expires if no message has been received

within a particular period. The corresponding action is then evaluated. The code

38

receive
Messagel [when Guardl] ->
Actionsli;
Message2 [when Guards2] ->

Actions2;

after
TimeOutExpression ->
ActionsTimeout

end

shows how a receive statement might include a timeout as an alternative.

Erlang’s receive primitive is based on first come, first serve model. It works using pattern
matching. An attempt is made to match the first message in the mailbox with a message
pattern in the receive expression, in the order specified by receive. If there is a match
and the guard (if any) succeeds, the branch is selected. If the message does not match the
pattern in the first branch, the next branch is tried. If the message matches none of the
patterns in the receive, an attempt is made to match the next message from the queue

(mailbox).

2.7.2 Support for distributed applications

An isolated Erlang system becomes an Erlang Node (part of a distributed system) by exe-
cuting a built-in function, alive. The function (alive) has two parameters: the first is the

name to be published as the symbolic name for the new node, the second parameter names

39

a port for communicating with other nodes. Messages can be sent to remote processes.
Links can also be created between local and remote processes, as if the processes were local.
When Pids are used to send messages, communication is location transparent: there is no
difference in syntax and semantics whether the communication is between local processes
or the communication is between a local and a remote process. A message can be sent to a

remote process by name as in the following statement.

{name, Node ! Msg}

where name is the name of the process, Node is the global name for the node where the
process is running and Msg is the message to be received by the process. Connections to
other nodes are set-up by the Erlang run-time system the first time it evaluates expressions

involving such remote nodes. A mechanism for an in-service code upgrades is also supported.

2.8 Joyce

Joyce is a concurrent language based on CSP and Pascal that was designed for program-
ming multiprocessor systems [16]. A program written in Joyce, defines autonomous pro-
cesses (comprising nested procedures), called agents. They communicate over synchronous
channels and can dynamically create subagents that run concurrently with their creators. A
channel connects two or more agents and transmits symbols from one agent to another. An
agent terminates after all its subagents, if any, have terminated and, all its procedure state-
ments have been executed. Agents are created through the activations of agent procedures®.

The statement

SEach agent procedure defines a class of agents.

40

semaphore(1, user)

denotes an activation of the agent procedure, semaphore (defined in Listing 7).

Every channel has an alphabet that defines the fixed types of messages that can be trans-
ferred from one agent to another. Channel alphabet is a set of symbols transmissible over
the channel. In contrast with CSP and Occam, Joyce channels are bidirectional: they al-
low transfers of symbols in both directions. Communication takes place when one agent is
ready to output a symbol and another agent is ready to input the same symbol from the
channel. When this happens, a message from one agent is copied to a variable of the other
agent. A channel can also connect two or more agents; if more than two agents are ready
to communicate over a channel, a pair of matching agents will be arbitrarily selected by the
channel. An agent can use a poll statement to find a matching agent for an interaction.
Both sending and receiving agents can be polled. Channels are created dynamically and

accessed through agents’ local port variables.

T = [Sl(Tl)a 32(T2)7 -"asn(TTl)];

creates a port type T. Port values are pointers to channels; s;(7";) denotes symbol class
and consists of all values of type (T';) prefixed with the same name (s;). The alphabet is
the union of a finite number of distinct symbol classes, si1, s9, ..., s,. A symbol without a

type is a signal, for example. The statement

screen = [int(integer), eos]

defines a port, screen, which can be used to transfer integer type messages or to send a

signal, eos. Channels are created using port statements as in the following statements.

41

type stream = [int(integer), eos]; {1}

var +a: stream; {2}

Statement 1 above defines a port named stream while statement 2 creates a channel and
assigns the channel pointer to a port variable a. The alphabet of the channel is given by the
port type, stream defined in statement 1. Messages are transferred over the channel using
input and output commands. Consider two communicating agents, one outputs a message
over a channel using its local port variable a and the other agent inputs the same symbol

from the same channel through its local port variable b. Let port type:

T = [s1(T1), s2(T2), ..y8n(Th)l;

the interaction between the two agents is illustrated below:

Agent A Agent B

a?si ('Uz) b!Si (el)

B outputs the symbol s;(e;) through the channel pointed to by the port variable, b. The
expression e;, must be of message type, T;. Similarly, A inputs a symbol s;(v;) through its
local port, a. Port variables a and b must be of the same type. The combined effect of the
two statements is that v; contains the value of the expression, e;. After the communication,
A and B continue at their next statements concurrently. An array of channels can be
activated. When more than two agents are connected to a channel, two matching agents are
selected by the channel. The choice of which pair of agents is selected is non-deterministic.

A poll statement has the general form:

42

poll
Ct & B1 -> SL1 |

C2 & B2 -> SL2 |

Cn & Bn -> SLn

end

when an agent examines the communication command C; and guard B;, it selects one that

is feasible and whose guard B; is true. It then executes the list of statements, SL;.

Listing 7: Agent type semaphore

PV = [P, V] { P and V signals }

agent semaphore (x: integer; user:PV)

begin
while true do
poll
user?P & x > 0 -> x : x -1 |
user?V => x = x + 1
end;
end;

Listing 7 declares a port type, PV and an agent procedure, semaphore. Different agents

can be created through different activations of semaphore.

2.9 Cilk

Cilk is a concurrent language for writing multithreaded applications. It is based on ANSI

C and was developed by researchers at MIT [44]. A Cilk program is viewed as a directed

43

acyclic graph where parent procedures depend on the child procedures spawned by them.
To execute a Cilk program correctly, these dependencies must be observed. The language
provides three keywords cilk, spawn and sync for identifying cilk subprograms, creating
and synchronizing cilk threads respectively. The program [44] shown in Listing 8 (written

in both C and Cilk) computes the n** Fibonacci number.

Listing 8: C and Cilk programs for computing nth Fibonacci number

C program Cilk program
int fibonacci (int n) cilk int fibonacci (int n)
{ {
if (n < 2) return n; if (n < 2) return n;
else else
{ {
int x, y; int x, ¥;
x = fibonacci(n-1); x = spawn fibonacci(n-1);
y = fibonacci(n-2); y = spawn fibonacci(n-2);
sync;
return x + y; return x + y;
} }
} }

As shown in Listing 8, spawn creates a cilk procedure which runs in parallel with its creator.
The function fibonacci is identified as a cilk procedure by the keyword cilk. It spawns two
threads that compute the fibonacci numbers for the preceding terms. Each thread spawns
two threads depending on the value of n. This forms a directed acyclic graph. The keyword
sync ensures synchronization between a parent and a child threads. All threads spawned
by a thread must terminate before the thread can terminate. After all the child threads

have returned, the procedure continues at its next statement after sync. Cilk thread may

44

communicate using shared global variables. This occurs when parallel procedures access

the same variables directly or indirectly through pointers.

2.10 Java Programming Language

Java programming language provides concurrency through threads. Threads execute in-
dependent code that operates on private and shared global variables (located in shared
memory). They communicate via shared variables and access to these variables is coordi-
nated by synchronizations implemented using monitors®. A Java thread is an instance of
the built-in class Thread. A thread begins execution of its code after its start method has
been invoked. Every object in Java has an associated lock. A thread can use synchronized
statement to lock an object. First, it computes a reference to the object and then attempts
to acquire the lock associated with the object. If it succeeds, it executes the code within
the statement; otherwise, it suspends on the monitor associated with the object. An unlock
action is performed by the thread after the code within the synchronized statement has
been executed successfully or aborted successfully. A synchronized method automatically
locks the object through which it has been invoked. It executes the body of the method
and unlocks the object after the execution of the last statement. If the method is a static
method, it locks the monitor associated with Class object that represents the class of the
object whose static method has been invoked [27]. A thread can also lock an object multiple

times; subsequent unlock actions undo the effect of the previous lock actions.

5The claim that Java uses monitor has been criticized. Java monitor is considered insecure because access
to shared variables encapsulated by the monitor can be compromised by an unsynchronized method of a
class. In addition, a shared variable of a class has public visibility within the package in which the class is
defined, making it accessible by any program within the package. This can have significant impact on the
reliability of multithreaded applications written in Java. See [18] for details.

45

The behaviors of Java threads are non-deterministic. In other words, except by adequate
synchronizations, the results of executing threads in parallel cannot be predicted. Different
results can be obtained at different runs. Each thread has no knowledge of other threads.
While a thread is reading a shared variable, another thread may be updating the same
variable. This typically creates time-dependent inconsistencies. This situation can how-
ever be controlled by programmers through explicit synchronization of access to shared
objects. Thread can be extended as shown in Listing 9. Actions of a thread is defined by

implementing an abstract method, run of Thread,

Listing 9: Extending Java built-in class Thread

class GetThread extends Thread {

public void run() {
... // thread code here
}
}
class PutThread extends Thread {

Listing 9 defines two classes, GetThread and PutThread by extending Thread. An in-
teraction by instances of these classes via a shared variable is illustrated in Listing 10.
BoundedBuffer gives a solution to bounded buffer problem. It defines two synchronized
methods: put and get. An object of BoundedBuffer is conceptually a monitor. TestBuffer
(Listing 10) creates an object of BoundedBuffer which is shared by two threads: p and g.
Thread p removes an item from the buffer while p stores a new value into the buffer. Both
threads execute concurrently after their start methods have been invoked. A thread that

executes wait (), suspends until another thread executes notify() or notifyAll(). When

46

a thread executes notify(), one of the threads waiting on the monitor queue is removed
from the queue and scheduled. An execution of notifyA11() awakens all threads waiting

on the monitor queue and one of them becomes runnable.

Listing 10: Bounded buffer in Java; a driver program is shown in Listing 11

public class BoundedBuffer {
private int} full, top, base, buf[];
private final int MAX = 10;

public BoundedBuffer(){
buf = new int [MAX];
full = top = base = 0;
}
public synchronized void put(int val) throws Exception {
while (full == MAX) wait();
buf [top++] = val;
top %= MAX; // cycle around MAX
++full;
notifyAll();
}
public synchronized int get() throws Exception {
int item;
while (full == 0) wait();
item = buf [base++];
base %= MAX;
--full;
notifyAll();
return item;

Java provides supports for programming distributed applications through Remote Method
Invocation (RMI). Remote method invocation is an extension of local method invocation:
an object running in a process invokes a method of another object (via the object’s refer-
ence) in another process. In a client-server architecture, servers typically consist of remote

objects. Clients send requests by invoking methods of the remote objects running in the

47

Listing 11: Driver program for Bounded buffer(Listing 10)

public class TestBuffer {
public static void main}(String args[]) {
BoundedBuffer b = new BoundedBuffer();
PutThread p = new PutThread(i,b);
GetThread g = new GetThread(b);
p.start(); // invokes function run of PutThread
g.start(); // invokes function run of GetThread

server process after obtaining references (remote references) to them. Remote references
are obtained through the naming service. Methods that are intended to be called by objects
running in other processes are specified in an interface (remote interface) which is imple-
mented by the remote object. Listing 12 shows an interface that specifies all the methods
that are intended to be called by objects residing in remote processes. The interface ex-
tends a built-in interface — Remote. BrokerImpl (Listing 12) extends a java built-in class
UnicastRemoteObject. It also implements BrokerInf interface and defines bodies of all

the methods specified by the interface.

Java also supports mobile code in the form of applets that are downloaded and run on web
browsers. An applet runs in a constrained environment for security purpose. Java supports
network class loading; this facilitates movements of code from servers to clients as in the

case of applets.

48

Listing 12: Remote interface definition and implementation

public interface BrokerInf extends Remote{
int getStock() throws RemoteException;
boolean sellStock(Account acc) throws RemoteException;

}

public class BrokerImpl extends UnicastRemoteObject
implements BrokerInf{
int synchronized getStock() throws RemoteException {

}
boolean synchronized sellStock(Account acc)
throws RemoteException{

2.11 Mozart/Oz

Mozart/Oz is a multi-paradigm concurrent language that combines features of object-
oriented programming, functional programming, logic and constraint programming. Con-
currency is based on sequential dataflow threads’ that communicates through shared ref-
erences in the shared store® Oz variables are single assignment variables (logic variables).
A logic variable is a single assignment variable® that can be equated with another variable.

The statement

thread S end

"A dataflow thread is a thread that executes its next statement only if all the values that are needed by
the statement are available. If the required values are not available, the thread blocks until they become
available.

8 A shared store is not a physical memory but an abstract store for entities; it allows only legal operations
defined for entities stored.

®Once a logic variable is assigned a value, the value cannot be changed but can be read.

49

spawns a new thread that executes sequential statements, S in parallel with the current
thread. Threads are scheduled in a round-robin fashion using time-slice. Much like Java
threads, they are given a priority and it is not possible for a high priority thread to starve a

low priority thread. Listing 13 shows a concurrent map function in Mozart. The function

Listing 13: A current map function

fun {Map Xs F}
case Xs
of nil then nil
[1 X|Xr then thread {F X} end | {Map Xr F}
end
end

transforms the list Xs by applying function, F' to all the elements of the list. It creates
a thread to evaluate each F' X for every X in the list Xs. Consider the following code

fragement

declare
F X

{Browse thread {Map X F} end }

the thread blocks until X and F are bound. Given the code fragement below

X = 1]213|nil

fun {F X} X * X * X

X and F are bound to their respective definitions, therefore the thread can resume its

computations; it creates 3 threads: one for each element of list X.

50

Oz provides future variables for programming demand-driven computations; futures are
read-only capability created for logic variables. A future can be created for variable z as

follows:

any thread that attempts to use Y will block until Y becomes bound to a value. Procedure
ByNeed{+P ?7F} can be used to execute a procedure P when a thread attempts to access
the value of F'. P takes one argument; the expression |{PX }— denotes an invocation of

the procedure P with argument X.

Oz provides asynchronous communication by message passing over channel represented by
“stateful” type, Port. A port is an ADT which means it provides interfaces for all the
possible operations. A communication channel can be shared by several senders. Every

port has an associated stream. For instance, the statement

{Port.new S 7 P }

creates a Port P and connects it to S (the stream). The statement

{Port.send P 7 M }

sends the message M to the port P by appending it to the end of the stream associated

with port P, and the statement

{Port.Isport P 7 B}

checks whether P is a port.

51

Oz threads use locks to coordinates access to shared resources by threads. A thread gains
access to a critical region by acquiring a lock and releases the acquired lock on leaving the

critical region. The statement

{NewLock L}

creates a new Lock L, and the expression

{IsLock E}

returns true if and only if E is a lock. Guarded critical regions have the following syntax:

Lock E then S end

where E denotes an expression that evaluates to a lock or an error if E is not a lock. This

statement blocks until S is executed.

Mozart system adds network transparency to Oz by separating the functionality of a pro-
gram from its distribution [47]. Distribution is specified separately as a software component.
Code modification is not necessary if a program is moved from one environment to another.
Mozart also allows multiple Oz sites to be connected together to form a single logical Oz

computation.

2.12 SALSA

SALSA (Simple Actor Language System and Architecture) is an Actor-Oriented concur-
rent programming language designed specifically to facilitate programming of dynamically

reconfigurable open distributed applications [55]. It is based on Java. In this section, a

52

brief background on the actor model is given before a description of SALSA programming

language.

2.12.1 Actor Model

The actor model of concurrent computation was proposed by Carl Hewitt and other re-
searchers at MIT [37, 35, 36]. It was further developed by Irene Greif [28], William Clinger
[22] and Gul A. Agha [2]. Hewitt and Bishop [36] describe certain “laws” that must be
satisfled by computations involving communicating parallel processes. In actor model, an
actor represents the basic construct of computation. Actors interact by passing messages.
An actor sends a message to another actor. If a reply is to be sent by the actor that receives
the message, the sender includes another actor, called continuation in the message. Any
reply from the receiving actor is sent to the continuation. Acquintances of an actor z is the
list of all actors that z directly “knows about”. The list of acquintances of an actor at any

time is finite. In actor parlance, everything is an actor. For instance, the statement

[[+ <°~ [request: [5 9], reply-to: c]]]

sends a message containing the tuple [5 9] and a continuation, ¢ to an actor, +. When the
receiving actor (+) receives the message, it computes the addition of 5 and 9 and sends the

result to ¢ (the continuation) as given by the statement below:

([¢ <”~ [reply: 14] 1]

Messages received by an actor are ordered according to their arrival times (an actor’s local

times when messages are received). When an actor receives a message, it can concurrently:

33

1. create a finite set of new actors;
2. send a finite set of messages to other actors, including itself

3. designate a new behavior that will govern the response to the next message it receives.

Actors communicate through asynchronous message passing. Each actor has a mail address
that identifies its mail queue and therefore messages can be sent to an actor only if its mail

address is known. All messages to an actor are received in its mail queue.

2.12.2 Actors in SALSA

Actors in SALSA interact by passing asynchronous messages. There is no shared memory
in SALSA. Any actor that wants to communicate with another actor must first obtain the
other actor’s reference. Once the reference has been obtained, the actor can send message
to its communicating partner. An actor is defined by encapsulating its behavior, state and

message handlers:

module examples;
behavior HelloWorld {
void act (String [] args){

standardOuput <- println("Hello World");

defines an actor named HelloWorld whose message handler, act sends a message (println(“Hello
World”)) to the standard actor — standardOutput that displays the message to the standard

output device. SALSA uses <— for sending messages as shown in the following statement:

54

actorReference <- message

A message “message” is sent to the actor identified by actorReference. An actor can be

created by another actor using the keyword new, for example, the statement

HelloWorld actRef = new HelloWorld()

returns a reference to actor, HelloWorld; other actors can communicate with the new actor
using the reference i.e. actRef. Reference to an actor can also be obtained by calling the

built-in function, getRefenceByName(), or from messages sent by other actors.

SALSA provides three abstractions for coordinating concurrent activities:

1. Token passing continuations:— is used to specify the ordering of messages. It uses

the reserved keyword “@” to join messages. For instance:

standardQutput <- print("Hello ") @

standardOutput <- print("World")

prints Hello World whereas:

standardQutput <- print("Hello ");

standardOutput <- print("World");

could print either “Hello World” or “World Hello”. Message handler can return a
value which can be accessed through the primitive token. Token passing continuations
can be compared to monadic programming in Haskell [42] where result from previous

computations can be passed as input to the next.

85

2. Join continuations:— allows parallel processing barrier to be specified. Message pass-
ing statements with a join block are executed in non-deterministic fashion, but every
message within a join block must be executed. The result is joined to the result of

the statement following the @ sign, For instance, the code

join {
standardQutput <- print("Hello ")
standardOutput <- print("World");

} @ standardOutput <- println(" SALSA");

prints either “Hello World SALSA” or “WorldHello SALSA”. An array of values re-

turned by statements within a join are collected into token.

3. First-class continuations :— allow an actor to delegate a computation to third party
independently of the current continuation for a given message’s token. Delegation
of computation is specified by the keyword currentContinuation. To illustrate the
use of first-class Continuations, consider the following program [55] for computing the

first n fibonacci numbers:

module fibonacci;

behavior Fibonacci {

int n;

Fibonacci (int n) {

this.n = n;

96

int compute (){
if (n < 2){
return n;

}else {

Fibonacci fibl = new Fibonacci(n-1);

Fibonacci fib2 = new Fibonacci(n-2);
join { fib <-compute(), fib2<-compute())

@ add @ currentContinuation;

int add (int numbers[]){

return numbers[0] + numbers[1];

void act (String args[]) {
n = Integer.parselnt(args[0]);

compute ()@ standardQutput <- println;

It is possible for an actor to migrate to another location. First, a universal actor must be
bound to a unique universal name and a universal locator by the naming service. Universal

Naming is central to actor migration and remote communication.

57

Table 1: Summary of concurrent languages

Language Parallel Communication Use of Support for Recursion
Unit Mechanism Channel Distributed Sys.

Concurrent

Pascal Process Monitor - - -

CSP Process Sync MP -+ - -
Rendez/Async MP

Ada Task Protected types - + +

Occam Process Sync MP + + -

Occam-7 Process Sync MP + -+ +
Sync(now) MP

ABCL/1 Object Async MP - + +

Erlang Process Async MP -+ + +

Joyce Process Sync MP + + +

Cilk Shared Variables

Cilk Procedure and Pointers - - +
Shared Variables

Java Object Sync MP (RMI) - + +
Shared References

Mozart/Oz Thread Async MP - + +

SALSA Actor Async MP1° - + +
Shared Variables*

Erasmus Cell Sync MP o+ + +

2.13 Discussion

Concurrent languages are often designed for certain problem domains. This needs to be
considered when comparing programming languages. Many languages are strong for pro-
gramming certain applications, yet unsuitable for some other problems: Java programming
language is excellent for programming internet applications and some embedded systems. In
fact, the growth of internet applications has largely been driven by Java technologies. Yet,

Java may not be suitable for programming certain defense applications where extremely

58

high reliability and robustness are required. Ada was designed for this purpose.

We have seen from the foregoing sections that different languages have different ways of
representing parallel units. Most use process or a variant of this under a different name. In
Object-oriented languages object represents the unit of parallelism: e.g. Java threads are
instances of Thread class. Tasks in Ada are conceptually, processes, so are Joyce agents.
Independent processes that communicate by passing messages are more suitable for building
highly reliable systems. It is no wonder that an Erasmus cell is a collection of independent

closures (processes) that communicate via individual ports connected to channels.

Erasmus shares with Erlang the philosophy that module system allows structuring of large
concurrent systems. Good structuring language constructs improve manageability of large
programs. By organizing processes into cells, large programs can easily be constructed. By
modifying program code, Erlang applications developed for a single processor machine can

be made to run on networks of processors. This is inherently simple to achieve in Erasmus.

An Erasmus cell represents program structuring tool and can be extended incrementally.
Reconfiguration of program is less difficult because cells can be moved from one location
to another. The clear separation of program logic from its deployment facilitates reconfig-
uration of programs. Erasmus code compiled for a single processor runs on a network of
processors without modifications to the underlying program source code. This capability is
one of the strengths of the language. Erasmus uses synchronous message passing mechanism.
There is no buffer; buffer overflow problem does not exist. We discuss communication and
network transparency in Erasmus in chapter four and compare the communication aspect

of Erasmus with the languages discussed here in chapter five.

103ALSA is based on Java, hence Java facilities are also available.
Shared variables may be used by processes within a cell only.

59

Chapter 3

Overview of Erasmus

Programming Language

The main goal of the Erasmus programming language [32] is to facilitate the development
of large-scale, maintainable software. Development and maintenance of large and complex
software can be a very daunting task. Erasmus overcomes many of the challenges that
are associated with large-scale software development. Some of the specific objectives are

highlighted below.

3.1 Objectives

o Scale-free programming

Erasmus takes the view that software construction should be fractal: the same nota-

tion should be employed at all levels of scale. Erasmus facilitates scale-free software

60

development by allowing cells and processes to be recursively nested. This is in con-
trast to languages with a hierarchy of abstractions such as method-class-package, each

with slightly different syntax.

Type safety
Modern languages should be type-safe. This is a necessary condition for building

reliable systems. Erasmus is a strongly typed language (all type errors are detected)

and type checking is static: all checking is performed at the compilation time.

Encapsulation

Erasmus provides encapsulation in various ways: program code is organized into iso-
lated processes that communicate through message passing. A process cannot modify
private variables of another process. Processes are organized into independent cells
that communicate only by exchanging messages. A cell can have variables that are
shared by processes within the cell. Since there is only one thread of control in a cell,

race conditions do not arise.

Capabilities

Capabilities or entities in Erasmus are program components. Cells are given capabil-

ities or entities that are needed to carry out their tasks and, nothing more.

Large-scale Refactoring

Refactoring is the process of changing the internal structure of a software system with-
out changing its external behavior [26]. Refactoring is often desirable but sometimes
infeasible especially in commercial setting where downtime can be extremely costly.

Erasmus is designed to facilitate refactoring of large programs. Software components

61

can be moved easily from one environment to another. For example, a “fat client” can

be converted to a “thin client” by moving components from the client to the server.

e High-level abstractions

Erasmus provides high-level constructs and abstractions that simplify programming

for most programmers.

3.2 Language Description

Concurrency in Erasmus is based on communicating processes. A closure is an autonomous
process with its own state and instructions. Closures may have parameters and communi-
cate using certain interfaces (ports) over synchronous channels satisfying some well-defined
protocols. A port serves as an interface for a closure to communicate with another closure.

Closures within a cell may also communicate via shared variables.

The basic building block of an Erasmus program are cells, closures and protocols. A cell
is a collection of one or more closures. Protocols define constraints on messages that can
be transferred with any port that is associated with the protocol. Cells and processes can
be created dynamically. Erasmus supports modular programming. For instance, cells may
also be nested. A program is a sequence of definitions followed by the instantiation of a

cell.

Program = { ProtocolDefinition | ClosureDefinition | CellDefinition },

Instantiation.

A definition introduces or elaborates a protocol, a closure, or a cell type:

62

ProtocolDefinition = ProtocolName ‘=’ Protocol .

ClosureDefinition = ClosureName ‘=’ Closure .
CellDefinition = CellName (‘=7 | ‘+=>) Cell .
where

Protocol = ProtocolName

| ‘[’ ProtocolExpression ‘]’ .

Closure = ClosureName

| “{’ [{ Declaration },] ‘|’ Sequence ‘}’ .

Cell = CellName

| “C [{ Declaration }. ‘|1’]|{ Declaration | Instantiation }, ‘)’ .

The complete syntax of Erasmus is given in appendix .1.

A complete Erasmus program consists of at least a process definition, a cell definition and

a cell instantiation. The code

myProc = { | sys.out := "Hello, world!"};

names and defines a process with no parameters. A process’s sequence of statements is
specified after a vertical bar |. The Process myProc has only one statement that writes the
string, ‘Hello, World’ to the standard output device using the standard port, sys.out.

Process parameters may be specified before the bar.

63

The code

myCell = (myProc());

names and defines a cell comprising of one process: myProc.

The code

myCell();

instantiates a cell; in this example, an instance of myCell is activated.

Process and cell definitions such as myProc and myCell can be viewed as defining types
since their definitions have no effects. Only an instantiation of myCell causes any actions

by the program.

All communication between cells and processes is performed by ports and shared variables.
For simplicity, Erasmus provides standard ports: sys.in and sys.out that can be used

anywhere in an Erasmus program. More detail about ports is given in Section 3.2.3.

3.2.1 Types

The possible relationships between two types T and T'» are:

Ty =Ty : 17 and T, are equal types
Ty <:To : Tiis a subtype of Ty

(no symbol) : Tj and T3 are unrelated

64

The language provides a set of basic types including: Char, Bool, Integer, Decimal, Float,
Text. Port types are described under Section 3.2.3. A detailed description of the Erasmus

type system can be found in [41].

3.2.2 Statements

Erasmus provides a set of statements for declarations and actions. A sequence is a series of

statements that are executed consecutively. Erasmus statements have the general form:

Statement = skip

| exit

| until Ezpression

| while Ezpression

| Assertion

| Declaration

| Instantiation

| Assignment

| Conditional

| Loop

| Select .

some of these statement types are described below:

e skip statement:— skip causes no action.

65

e exit statement:— exit transfers control to the statement that immediately follows
the loop or loopselect that execute the statement. The exit statement is only

allowed within a loop or loopselect statement.

e until and while statements are discussed under loop.

o Assertion:— an assertion consists of the keyword assert and two arguments. The

statement

assert(b, msg);

The first argument b is an expression that must evaluate to Bool. The second ar-
gument msg is displayed if the value of the first argument is false. Otherwise, the

assertion has no effect. For example, the code

n:Integer := 100;

assert(n > 0, "n must be a non-negative number"); -- has no effect

the assert statement has no effect since n > 0 is true. Whereas, the code

n:Integer := -1;

assert(n > O, "n must be a non-negative number");

prints the message ‘n must be a non-negative number’ sincen > 0 is false.

o Celllnstantiation:— Cell instantiation activates a cell and its processes. For instance,

the statement

cell();

66

activates a cell and causes all its processes to execute in parallel.

o Conditional statement:— defines alternatives with if statement. Only one of the

alternatives is executed. The general form is:

Conditional = if Rwvalue then Sequence
{ elif Ruvalue then Sequence }

[else Sequence | end .
e.g.
if grade = ’A’ then
sys.out := "Excellent"

elif grade = ’B’ then

sys.out := "Good"
else

sys.out := "Poor"
end.

e Loop statement:— loop construct is provided for repeated execution of some sequence.
The sequence is executed repeatedly until an exit statement is executed. The loop

statement can be used with until and while statements. In such cases:

until C = if C then exit end

while C' = if not C then exit end

Listing 14 shows three equivalent processes that print integers from 0 to 10. Counter!

67

uses loop statement while counter?2 and counter8 use while and until respectively.
The cell, myCell defines a cell comprising of three processes, Counterl, Counter?2 and
Counter3. The three processes run concurrently when myCell is instantiated as shown

in the listing.

e select statement:— The select statement is discussed under communication (Sec-

tion 3.2.3).

Erasmus Programs have a natural representation as diagrams. Figure 1 shows the diagram
corresponding to the program shown in Listing 14. Rectangles with thin edges denote
processes while rectangles with thick edges and rounded corners denote cells. Ports are

¢

small circles labeled with ‘+’, if a service is provided or ‘-’ if a service is needed. There

are no ports linking the processes shown in Listing 14.

3.2.3 Communication in Erasmus

Erasmus processes communicate by passing messages over synchronous channels. In or-
der to communicate, two processes must be connected to a channel via ports. Erasmus
programs say nothing about where processes and cells are executed. A major motivation
for Erasmus is to separate deployment of program from its logic, This makes it easier to
construct distributed applications. In other words, the source code describes the behav-
ior of the program and a separate XML file describes how cells are mapped to processors.
Figure 2 shows a simple configuration file that maps squarecell onto processor named switzer-
land.encs.concordia.ca. Similarly, squareclient is mapped to latvia.encs.concordia.ca. We

discuss mapping and its implementation in chapter four.

68

Listing 14: A program demonstrating the use of loop, while and until

counter = { |
i:Integer :
loop
sys.out := "counter " + text i + "\n";
if i = 10 then
exit
end;
i:=1i+1
end;

0;

};

counter2 = { |
i:Integer :
loop while
sys.out
i =1+
end;

0;
<= 10
"counter2 " + text i + "\n";

Ll B o

};

counter3d = { |
i:Integer :
loop until
sys.out :
i=1+

end

0;
> 10
"counter3 " + text i + "\n";

=

}
myCell = (counter(); counter2(); counter3());

myCell();

3.2.4 Channels and Protocols

Every port has an associated protocol that defines the allowable messages that can be sent
through the port. A channel links a client port in one process to a server port in another
process. The protocol associated with the server port must satisfy the protocol associated

with the client port. For example, the protocol of a teller server might provide deposit,

69

counterl counter? counter3

myCell

Figure 1: A diagram corresponding to the program of Listing 14

<mapping>
<processor> switzerland.encs.concodia.ca
<port> 5555 </port>
<cell> squarecell </cell>
</processor>
<processor> latvia.encs.concodia.ca
<port> 5556 </port>
<cell> clientcell </cell>
</processor>
</mapping>

Figure 2: A simple configuration file

withdrawal and balance enguiry services, but it would allow connection to a client that
required only deposit and withdrawal services. A query is a message that travels from the
client to the server while messages from the server to the client are called replies. Replies

-~

are indicated in the protocol syntax by the prefix Every message has a name and an

optional type. A message without a type is a signal.

70

ProtocolEzpression = [‘"’ | Declaration
| [Multiplicity | ProtocolEzpression
| { ProtocolEzpression },
| { ProtocolExpression }

| ¢ ProtocolExpression ‘)’ .

A declaration in a protocol declares a message and always introduces a new name. Ports
can also be declared within a protocol. Such ports may be sent from one process to another
with this protocol. A protocol expression may be preceded by a multiplicity that indicates

how often it may be sent:
Multiplicity = 72 | ‘x> | ‘47,
(no operator): the default, means exactly once
“?7: means 'optional’ (zero times or once)
“*’: means 'many’ (zero or more times)

‘+’: means 'at least once’ (one or more times)

Protocol expressions are similar to regular expressions. The following are examples of

protocol expressions:

pairProt = [first:Integer; second:Integer; “result];

a protocol for transferring a pair of integer values over a channel followed by a result from

the server. As mentioned earlier, replies have the prefix ~.

71

pairProt = [*(first:Integer; second:Integer); finish; “result];

for repeated transfer of pair of integers followed by a signal finish which indicates the end of
the stream. A reply, result is transferred from the server to the client. The prefix * denotes

a repetition, i.e. in this example, zero or more transfers of the pair first and second.

sumProt = [+(num: Integer) ; finish; ~“total:Integer];

for one or more transfer of an integer followed by a signal finish which indicates the end
of the stream. A reply, total is transferred from the server to the client. The prefix + also
denotes a repetition but the transfer must occur at least once. In this example, the integer,

num must be sent at least once.

initProt = [7(start; name:Text; “reply:Bool)] ;

for zero or one transfer of a signal followed by a text. A reply, reply is transferred from the

server to the client.

3.2.5 Ports

A port connects two or more processes to a channel. Port declarations associate ports with
some well-defined protocols. Ports must be signed. When a port represents an interface
that provides a service, the port is declared with ‘+:°. A port that needs a service is

indicated with ‘-:’. Port declarations with ::’ create channels. For example:

p*: initProt; -- declares a port parameter p in a server process S

72

g-: initProt; -- declares a port parameter q in a client process C

r:: initProt; -- declares and instantiates a channel r that
-- can be passed as an argument to p and q,

-- thereby linking processes S and C

A collection or an array of ports may be created, the code

servers: Integer indexes +initProt;

clients: Integer indexes -initProt;

declares a collection of servers and clients. An individual port of a collection can be ref-
erenced using an index; e.g: servers(l] refers to a specific server port. Similarly, clients[1]

refers to a specific client port.

A message transfer occurs when a qualified name which refers to a field of a protocol is used
as lvalue or rvalue. A signal may be sent when such a qualified name is referenced. For

example, the statement

q.start;

q represents a port and start is a field of the protocol associated q. The statement sends

a start signal to a server and, the statement

q.name := "Registry";

references the field name of the protocol associated with the port q. The statement sends a

text ‘Registry’ to a server via the port q. The statement

73

service: Text := p.name;

receives a text ‘Registry’ from a client into a text variable service.

Listing 15 shows an Erasmus cell that comprises of two processes: a server and a client. The
program in the listing first defines a protocol named, initProt. This models an interaction
pattern where a client may send a request to a server by first sending a signal, start and
then a text value indicating the name of the service to be started by the server. The
server responds by sending a Boolean value that indicates whether or not the service was
successfully started. This interaction can occur at most once as indicated by the prefix ?

in the protocol definition.

The process, startService declares a port named p before a vertical |. This makes p ac-
cessible by other components defined in the program. Similarly, the process, remoteStarter

declares a port named p before a vertical |.

The cell definition declares a channel named ch. The channel uses the protocol (initProt)
defined in the program. The client end of the channel is passed to remoteStarter and the

server end to startService.

The client sends a query to the server to start a given service. The server responded by
communicating the status of the service to the client. The program illustrates basic sending
and receiving of messages in Erasmus. The diagram shown in Figure 3 corresponds to this

program.

Receive expressions can be rvalues within expressions. However, receive expressions may

not be used in the conditions following if or elif.!

This is a temporary restriction of the prototype implementation.

74

Listing 15: Sending and Receiving messages

initProt = [?(start; name:Text; “reply:Bool)l;

startService = { p+: initProt |

p.start;
n:Text := p.name;
sys.out := "about to start " +n + "...\n";

-- ... some code here
p.reply := true;

sys.out := "server: " + n + " started\n";
};
remoteStarter = { p -: initProt|
name:Text := "Registry";
p.start;
p.name := name;
started:Bool := p.reply;
if started = true then
sys.out := name + " started";
end
};

cell = (ch::initProt; remoteStarter(ch);
startService(ch));

cell();

P& - p
CJ ch::initProt

startSerice remoteStarter

cell

Figure 3: A diagram corresponding to the program of Listing 15

75

3.2.6 Select statement

There are situations in which a process is willing to communicate with more than one
process. The select statement allows such process to choose between several possible
communications. The process can enable or disable alternative communications (branches)

using Boolean guards.

Select = (select |loopselect) Policy { Guard Sequence } end .
Policy = [fair |ordered |random|.
Guard = ‘|’ [Rvalue] ‘|’ .

The loopselect is a shorthand for a common situation in which select is nested with a

loop. The following are equivalent:

loop

loopselect select

end end

end

A select statement must have at least one branch.

The Ruvalue of a guard must be a Boolean expression. The empty guard ‘||’ is equivalent

to the guard ‘|truel’.

The sequence in a branch of a select statement cannot be empty and the first statement
must be a communication statement. This is called the principal communication of the

branch. A branch of a select statement is ready if its guard evaluates to true and the

76

principal communication is feasible. The principal communication may be a send or a

receive statement.

The Policy determines the order in which the ready branch of the select statement is tested.
The default is fair, meaning that the branches are tested in a way that avoids starvation
of any of the branches. If the selection is ordered, the branches are tested in the order in
which they appear in the code. If the selection is random, the branches are tested in an

arbitrary order.

At most one of the two communicating partners may use a select statement. Only one
of the branches of a select statement will be executed. The policy makes a difference only

when more than one branch of the select statement is ready.

Listing 16 shows a process that provides deposit, withdrawal and balance enguiry teller
services using a select statement. The listing also defines a protocol named tellerProt
which models a pattern of interactions between a server and a client. The protocol defines
three alternative signals: deposit, withdraw and enquiry. The signals represent deposit,
withdrawal and balance enquiry services respectively. To deposit or withdraw an amount,
the client sends a signal indicating the service required to the server. Then it sends a pair
representing an account number and an amount to deposit or withdraw. For a balance
enquiry service, a client only sends an account number as shown in the protocol. When the
server has completed a service, it sends a reply to the client; in this case, it sends the new
balance after a deposit or withdrawal or the current balance, if the service was a balance

enquiry.

Listing 16 also defines a protocol named cntrlProt that a process uses to start or stop the

teller server. The protocol defines two alternative signals separated by |. The signals are

77

Listing 16: A teller server that uses select statement

tellerProt =
[*((((deposit|withdraw);
acctNo:Integer; amt:Float) |
(enquiry; eAcctNo: Integer)
)
"balance: Float)

1;
cntrlProt = [*(start | stop); “reply: Booll;

svr = { p +:tellerProt; q +:cntrlProt|

q.start;
cashAvailable: Bool := true;
loop
select
| lp.deposit;
acctNo:Integer := p.acctNo;

amt: Float := p.amt;

bal:Float := 0;

--- fetch account record into bal

bal += amt; -- update balance

p.balance := bal; -- send the new bal
|cashAvailable| p.withdraw;

acctNo:Integer := acctNo;

amt: Float := p.amt;

bal:Float := 0;

--- fetch account record into bal

bal -= amt; -- update balance
p.balance := bal; -- send the new bal
| |p.enquiry;

acctNo:Integer := p.eAcctNo;
bal:Float := 0;
-—— fetch account record into bal

p.balance := bal; -- send the balance
|lq.stop;
sys.out := "Shutting down ...";
q.reply := true;
exit;
end

end

};

78

Listing 17: Clients to test the teller server

client = { p -:tellerProt|
p.deposit;
p.acctNo := Bb5577;
p.amt := 2005.55;

sys.out := "\nBalance=" + text p.balance +"\n";
};
¢ntrlCl = { p -:cntrlProt|

p.start;

n:Integer := 0;

-- some delay here

p.stop;

status :Bool := p.reply;
if status = true then

sys.out := "Server terminated.\n";
end

used in cntrlCl to start and stop the teller server as shown in Listing 16 and Listing 17.

The process, sur first receives a signal — start — from its port ¢ and then proceeds to
execute the following select statement. When it receives a signal from either port p or
g, it executes the sequence that corresponds to the selected branch. The loop terminates
when the process receives a stop signal from its port g. Listing 17 shows possible clients for

the teller server process shown in Listing 16.

3.2.7 Recursion, Dynamic Process Creation and Composition

Erasmus processes may be created recursively. Listing 18 shows a program for generating
prime number using sieve of Eratosthenes. The process filter has an input port and an
output port. It receives a sequence of integers on its input port and sends a subsequence to

its output port. It prints and stores the first integer it receives which is a prime number.

79

Listing 18: Generating prime numbers

prot = [arg: Integer] ;

filter = {p +: prot|

prime: Integer := p.arg;
sys.out := text prime + ’ ’;
q —: prot;
filter(q);
loop

n: Integer := p.arg;

if n % prime <> 0 then

g.arg :=n
end
end
};
prog = { p -: prot |

sys.out := "Primes to 7";
max: Integer := int sys.in;
cand: Integer := 2;
loop

p.arg := cand;

cand += 1;

until cand > max
end

};
cell = (p::prot; filter(p); prog(p));

cell();

Subsequently, it checks each number that it receives; if the number is a multiple of p, it
does nothing; otherwise it sends the number to its output port. The process, prog prompts

the user for a number N and then send the sequence 2, 3, 4 ..., N to its output port.

Listing 19 shows a client-server application. The server provides a factorial service. The

80

client makes multiple requests to compute factorials of numbers from 1 to 10. The proto-
col factProt is a simple request-reply protocol: the client makes a request and the server
responds with a reply to the request. Much like the program in Listing 18, the factorial pro-
gram illustrates how an Erasmus closure can delegate computation to another closure. Upon
receipt of a number from its port p, process factService creates an instance of factorial.
It then passes the number received onto the new process, factorial through a new port,
q. Each new instance of factorial creates an instance of itself if it receives a number that
is greater than one. The child and the parent processes run concurrently. The processes
factService and client are encapsulated by the cells factServiceCell and clientCell
respectively. When mainCell is instantiated, clientCell and factServiceCell begin to

execute concurrently.
The diagram shown in Figure 4 corresponds to the program shown in Listing 19.

The cells, factServiceCell and clientCell are nested within mainCell. Both cells (factSer-
viceCell and clientCell) have a process each and are connected via the channel labeled

ch:factProt in the diagram. Messages are transferred using the ports via the channel.

Summary of the features provided by Erasmus

Erasmus provides safe concurrency through processes and cells. Ports, Channels and Pro-
tocols are at the heart of communication in Erasmus. Ports provide interfaces for cells and
processes to communicate with other cells or processes. A channel represents the medium
for transferring message from one entity to another. Protocols ensure that interactions con-
form to some well-defined rules, thus helping to detect errors. The select statement is an

elegant construct for introducing and controlling non-determinism in Erasmus programs.

81

Listing 19: A factorial service application

factProt = [*(query: Integer; “reply: Integer)];
factorial = { p +:factProt |

n: Integer := p.query;

if n <= 1 then
p.reply := 1;

else
q —:factProt;
factorial(q);
g.query :=n - 1;
p.reply := n * q.reply;

end
I
factService = { p +:factProt|
loop
in: Integer := p.query;
q —:factProt;
factorial(q);
q.query := in;
p.reply := q.reply
end
+;

factServiceCell = (port +: factProt |
factService(port));

client = { p -: factProt |
num : Integer :=1
loop

p.query := num;

sys.out : "factorial of " + text (num) ;

sys.out := " =" + text(p.reply) + "\n\n";

num += 1;

until num > 10

end

};

clientCell = (port -: factProt | client(port));

mainCell = (ch ::factProt; clientCell(ch);
factServiceCell{ch));

mainCell(); 82

e N e ™
P H—& >—0Op
C 4 ch::factProt N)
factorial client
\. J \. J
factServiceCell clientCell
\. J
mainCell

Figure 4: A diagram corresponding to the program of Listing 19

Processes in Erasmus may be created dynamically as shown in the last two examples. Cells
may also be nested. This capability helps to build scalable applications. Cells may be

extended by adding more cells or processes.

83

Chapter 4

Communication in Erasmus

In the previous chapter, we presented an overview of the Erasmus programming language.
Recall that Erasmus processes in different cells communicate only by passing messages over
synchronous channels. A cell has a single thread of control and as a consequence, race
conditions do not exist when processes within the cell communicate via shared variables.
In this chapter, we take a detailed look at communication in Erasmus and, in particular,

we discuss the implementation of the mapping of cells to processors.

4.1 Communication

First we discuss the implementation of communication in Erasmus as proposed in [31]. We

then discuss the implementation of the mapping of cells to processors.

84

4.1.1 Notation and Definitions

Small Greek letters, such as p and o denote processes. The letter p suggests receiving while

o suggests sending.

A process is runnable if it is running or can be run. There exists a ready queue for runnable
processes. A uniprocessor system has a single, global ready queue. A multiprocessor system
has one ready queue for each processor. In a shared-memory multiprocessor system, the
number of ready queues depends on how the memory is partitioned. However, a global
queue might be a bottleneck, especially if the number of processors is sufficiently large.
A queue for each processor, which is more likely, might complicate load-balancing among

processors; an hybrid of the two may also be feasible.

A blocked process is removed from the ready queue and placed in another queue. It should

be assumed that critical sections cannot be interrupted.

4.1.2 Channel Structure

A cell or a closure that creates a channel owns the channel. Processes — possibly residing in
a different address space — that are connected to a channel have references to the channel,
Each channel has a globally unique identifier. As we saw in the previous chapter, a channel
is associated with a protocol and protocols have fields. The letter p denotes a typical
protocol and the letter £ denotes a typical field. Table 2 gives the meanings of the functions

used, in pseudocode. We write p.f to denote field £ of protocol p.

Each field of a channel’s protocol has two queues: a reader queue and a writer queue. Each

entry in a queue is a pair, (p,r) consisting of a process p and a reference r. We write

85

p.f.writers and p.f.readers to denote the queues of p.f. The idea of having a queue

for each field of a protocol is based on Brinch Hansen’s implementation of Joyce {17].

If process p is in queue p.f.readers, then p is blocked until it can receive data using p.f.

Similarly, if process o is in queue p.f.writers, then it is blocked until it can write data

using p.f.
Table 2: Functions used in pseudocode
empty ¢ true if the queue ¢ is empty, false otherwise.
first q The first element of queue g.

add(p,r) to ¢ Remove p from the ready queue, thereby making p non-
runnable. Add the tuple consisting of process p and refer-
ence r to the queue ¢

resume p Put the process p in the ready queue, thereby making p
runnable.

4.1.3 Basic message transfer

Recall that, to receive a message, a process executes an assignment statement involving a
port expression as an rvalue. Therefore if p wants to read, it executes a statement of the

form:

v :=p.f

where v is a variable or an lvalue, in general. This is implemented as follows: if no writer
is waiting i.e. p.f.writers is empty, the pair (p,v) is added to p.f.readers and process
p is removed from the ready queue. If on the other hand, some processes os are waiting on
p.f.writers, i.e. p.f.writers is non-empty, the first entry is removed from p.f.writers

and the value of the expression is copied into reference v. Process o is then entered into

86

the ready queue. The following pseudocode implements this:

if empty p.f.writers then

add (p, v) to p.f.readers

else
(o, e) := first p.f.writers
v i= e
resume o -- become runnable

Similarly, if process o wants to write, it execute the statement of the form:

p.f i=e

where e is an expression or rvalue. The following pseudocode implements the statement:

if empty p.f.readers then

add (p, v) to p.f.writers

else
(o, e) := first p.f.readers
v i= e
resume p -- become runnable

87

A receive operation always waits after storing an Ivalue in the channel record. The write
operation waits only if necessary for an lvalue to be present, and then uses it to store the

appropriate rvalue. Consequently, this implementation assumes that:

A process may store an address belonging to its memory space in a

channel; another process may use that address for a write operation.

4.1.4 select Statements

A select statement consists of several alternatives or branches. Each branch consists of a
guard; the principal communication statement and a sequence of statements. The sequence
may contain sends and receives which are treated like the “basic message transfer” described

in Section 4.1.3.

Since there is no feasible way of implementing communication between two processes that

both have select statements, we impose the following restriction:

At most one process connected to a channel may access the channel

with a select statement.

A branch of a select statement is ready if its guard is true and the channel for its read
(write) operation has a process waiting in its writers (readers) queue. The post-condition
of a select statement is that exactly one branch of the select statement has been executed.

The post-condition is satisfied by ensuring that:

1. if no branches are ready, the process blocks until a branch becomes ready and then

executes that branch;

88

2. if more than one branch is ready, one branch is chosen for execution.

The choice of which branch is chosen in the second case is determined by the policy. A
select statement can have one of three possible policies: ordered, fair and random. The

actions corresponding to each policy are defined in Table 3.

Table 3: Policies for the select statement.
ordered Execute the first ready branch, using the ordering defined
by the source text of the program.

fair Choose a branch fairly and execute it. This is the default
policy.

random Choose a branch at random and execute it.

Where fairly is defined as:

A branch b of a select statement with N branches is said to be chosen
fairly if, when b becomes ready, it is executed after no more than N —1

executions of the select statement.

An execution of a select statement can be viewed as performing any of the following actions:

1. if no branches are ready, set the program counter back to the beginning of the select

statement and yield to the scheduler.
2. If one branch is ready, execute it.

3. If more than one branch is ready, apply the appropriate rule from Table 3.

Case (1) enables the scheduler to schedule another process from the ready queue and to
re-schedule the process executing the select statement after all of the processes running

on this processor have had a chance to run. If the ready queue is implemented as a circular

89

queue, the desired effect is achieved simply by advancing the queue index to the next entry.
Case (2) is the correct action of a select statement for each policy and case (3) is correct

by definition.

The following section considers a detailed description of the implementation of the select

statement consistent with the three actions just described.

e S stands for the select statement.
e B or b denotes a branch of S.

e There is an unsigned integer counter, ¢, associated with S and initialized to zero.

Each branch B has a field B.c that stores a copy of c.

L denotes a list of branches

|L| denotes the number of entries in list L.

We show the implementation in pseudocode in Listing 20. The algorithm constructs a list
of ready branches and then chooses an action based on the length of the list and the policy

of select statement.

In Listing 20 if the policy is fair and |L| > 1, we claim: (1) the branch with the smallest

counter has been waiting longest; and (2) the fairness requirement defined above is satisfied.

From the last three line of Listing 20, we can infer that, after a branch has been executed,
it has a higher counter than any other branch, it therefore follows that the branch with the

smallest counter has been waiting longest.

90

Listing 20: Implementation of the select statement

L := the empty list
for each B of S:
if B is ready:

add(B, L)
if IL| = 0:
for each B of S:
B.c: =0
c :=0
reset PC and relinquish control
else
B: Branch
if L] = 1:
B := first (L)
else
case policy of:
ordered:
B := first(L)
fair:
B := the branch in L with minimum B.c
random:
B := a branch randomly chosen from L
execute B
c +=1
B.c :=¢

The maximum number of times that the select statement can execute before choosing branch
B is the number M of branches with counters less than B.c. Clearly, M < N — 1 (where

N is the total number of branches), and the second part of the claim follows.

If B.c =0, it is clearly fair to execute B. All of the counters are set to zero if |L| = 0;
after this has happened, any branch can be executed fairly and no ready branch will have

to wait for more than N — 1 iterations. Thus fairness is maintained.

There is the potential for the branch counters in pseudocode in Listing 20 to overflow if the

select statement is executed many times. The pseudocode shown in Listing 21 remedies

91

this problem.

Listing 21: Implementation of the select statement

n:=c
loop
if Bn is ready then
¢ := case policy of:
ordered: 0
fair: (c + 1) mod |B]
random: rnd in [0, |B|]
execute B
exit
else
n := (n+1) mod |B]
if n = ¢ then reset PC and relinquish control
end
end

4.1.5 Embedded Receives

Erasmus allows receive expressions to be used as rvalues. For example, the following is a

valid statement in Erasmus.

p.f :=q.g+r.h+ 1.5

q.g and r.h are receive expressions. Statements like this must be implemented in such a
way that their meaning does not depend on the order in which values becomes available. A

naive implementation of the statement above is:

tl = q.g
t2 :=r.h

p.f :=t1 +t2 + 1.5

92

but this implementation can easily lead to deadlock. However, the statement might correctly

be implemented with a select statement as shown below:

select

llp.f := q.g+r.h + 1.5

llp.f :=r.h + q.g + 1.5

end

The only problem with this approach is scalability. The solution requires n! branches where
n is the number of receive expressions. However, it is unlikely that typical programs would
require large values of n. Erasmus programmers should be aware that expressions with

many receiving terms will generate code that is both bloated and inefficient.

In general, if

E(ri, r2, r3, ... , rn)

is an expression and r;, ¢ < m and 7 > 1 is a receive expression. The compiler should
translate v := E in a manner that ensures that all of the r; are processed in the order in
which they become ready, and then E is evaluated using the values read. The following code

outlines a possible implementation.

93

b1, b2, ..., bn :

loop while bl or
select

ipl| t1

[p2] t2 :

|on| tn

end
end;

v := E(t1, t2,

Boolean :

b2 or b3 ...

ri; bl

, tn)

r2; b2 :

rn; bn

true;

or bn;

false;

false;

false;

94

4.2 Mapping of Cells to Processors

We have discussed in the previous section the underlying communication concepts in Eras-
mus programming language. A process that is ready to communicate waits for its com-
municating partner. This mechanism reminds one of a telephone call: the caller waits for
the person at the other end of the line to pick up the receiver before communication takes
place. When both processes are ready, communication takes place. In this section, we
look at the implementation of inter-process communication in distributed architectures; in
particular, how Erasmus facilitates refactoring of programs through separation of concerns

is explained. A similar approach has been used in Mozart/Oz [47].

Software is an investment and refactoring applications when environments change can be
very expensive and may be infeasible in commercial environments. To overcome this chal-
lenge, Erasmus separates program semantics from its deployment: programmer defines cells
and messages that cells exchange; separately, the programmer specifies how cells are as-

signed to processors — a task commonly referred to as mapping.

There are other benefits for explicit mapping of cells onto processors. Cells that communi-
cate too frequently may be mapped onto processors that are close to the scheduler to reduce
communication time. Being familiar with the nature of the problem that is solved by the
program, programmer may map cells onto processors considering the specific nature of the

problem and the characteristics of the individual processors [7].

An Erasmus program may be compiled to run on a uniprocessor system. The same program
may be re-compiled to run on a multicomputer — a network of computers with independent

memory. Similarly, the same program code may be moved to a multiprocessor system

95

Listing 22: A simple client-server program

L}

sqProt = [*(query: Float; “reply: Text)];

square = { p +:sqProt |
loop
q: Float := p.query;
p.reply := text (q * q);
end

};

squareCell = (prot +: sgProt | square(prot));
client = { p -: sgProt |

num : Float := 10;

p.query := num;

sys.out := text num + "2 =" + p.reply + "\n";
3

clientCell = (prot -: sqProt | client(prot));

mainCell = (chan::sqProt; clientCell(chan); squareCell(chan));

mainCell();

with shared memory. All this is possible without changing the source program. However,
compilation of an Erasmus program for a multiprocessor or distributed system requires
a separate configuration file that specifies specific detail about mapping of cells onto the

participating processors.

Consider the program shown in Listing 22, if the program is compiled without any config-
uration file, it generates code for uniprocessor systems. However, the two cells: squareCell
and clientCell may be mapped onto different processors by submitting a configuration file
to the compiler. Listing 23 shows a sample configuration file that maps squareCell onto

processor alpha.encs.concordia.ca and clientCell to latvia.encs.concordia. ca.

96

Listing 23: A simple configuration file

<mapping>
<processor> alpha.encs.concordia.ca
<port> 5555 </port>
<cell> squareCell </cell>
</processor>
<processor> latvia.encs.concordia.ca
<port> 5556 </port>
<cell> clientCelll </cell>
</processor>
<processor> portugal.encs.concordia.ca
<port> 5556 </port>
<cell> clientCell2 </cell>

</processor>
</mapping>

- A

() 4)

p Om oO—0@p
g chan::sqProt h D
square client
\ J \. J
squareCell clientCell

\. J

mainCell

Figure 5: A diagram corresponding to the program of Listing 22

The cells are connected to the channel, chan. The processes square and client have ports
that are connected to chan. The port p of square is a server port (i.e. it provides a service)
while clientProc has a client port (i.e. it needs a service). Figure 5 corresponds to the

program shown in Listing 22.

97

4.2.1 Design

Configuration file

A typical configuration file for mapping Erasmus cells onto processors is a valid XML file

with specific tags defined. We are interested in:

1. name/IP address of a processor;

2. an operating system port for a special process, named broker. Every processor has a

running broker;

3. a list of cells mapped onto the processor.

A mapping specification is enclosed within <mapping> and </mapping> tags. The tag
<mapping> is followed by records containing properties of processors participating in the
system. Each processor has a record enclosed within <processor> and </processor> tags
and the record comprises of the name or the IP address of the processor, a port number
that the processor uses to communicate with cells in other processors, and a list of cells
mapped to this processor. The port number is enclosed within <port> and </port> tags
and the name of each cell mapped to the processor is enclosed within <cell> and </cell>

as shown in Listing 23.

XML is a suitable choice for Erasmus because most programmers are familiar with it and
there are widely-available tools for processing it. In fact, the XML standard has been
adopted by the web community to represent data sent in messages exchanged by clients
and servers in web services [23]. The verbosity problem is minimal because mapping file

requires only four pair of tags as shown in Listing 23.

98

Compilation of an Erasmus program whose cells have been mapped to some processors
requires a configuration file. The compiler reads the XML file (if any is provided), extracts
the data therein and organizes the contents into a table. The compiler generates a unique
identification for each cell. Later, it retrieves mapping information for each cell. This
includes the processor name, port of the communication broker (discussed later). This is
eventually appended to a file — hosts.txt — in an order determined by cell id; each line
of the file contains a record about a cell. If there is no entry in the configuration file,
‘localhost’ and port number 0 is written for that cell. This means that the cell has not
been mapped to any particular processor; it may therefore be reasonable to execute the cell

on the processor running the broker.

Inter-process Communication

Various approaches for implementing communication and synchronization between isolated
processes in concurrent languages have been proposed and implemented. Gregory Andrews
(3] proposed a centralized message passing implementation that uses a “clearing house”. A
clearinghouse process matches pairs of communication requests. A template is a message
that describes a communication request. When a process wants to communicate, it sends a
template or a set of templates, if several communications are possible. When the clearing-
house receives a template, it checks if it has received before a matching template otherwise,
it stores the template. If it has a matching template, it sends some synchronization mes-
sages to the processes that sent the matching templates. These processes then use the
information received from the clearinghouse to communicate. Subsequently, both processes

continue at their next statements after exchanging data. A disadvantage of a centralized

99

implementation is the inherent potential for the clearinghouse to become a bottleneck in
the system. This is likely to be exacerbated where large number of processes is involved.

Other implementations can be found in [50, 10, 49, 20, 6].

The major challenge is to build a reliable communication and synchronization between pro-
cesses that exchange messages using the minimal number of messages. The implementation
described in this chapter uses a distributed clearinghouse for inter-process communication.
Since we require reliable communications and TCP/IP guarantees that messages are deliv-

ered in the order in which they have been sent, our implementation is based on TCP/IP.

The Broker process

Each processor runs a special process named broker. The broker is responsible for handling
all communications by the processés. The port address on which the broker attached to a
processor runs is specified as part of the properties of the processor in the configuration file.
During start-up, a broker loads a table with the data from the file, hosts.tzt created earlier
during compilation by the compiler. As described earlier, a record in hosts.twxt comprises
of a host name and a port number. Brokers are daemons that match communications, i.e.,

they run in the background without human intervention and are always runnable.

A cell that wishes to communicate with another cell sends the request to its local broker. A
broker also maintains a table of valid connections to cells and brokers running on other hosts.
Cells must first establish connections to their local brokers before executing any instructions.
If a connection has been established, the cell activates its processes. Meanwhile, the broker
listens for connections for commuﬁication requests from communicating agents (cells or

brokers). When a broker receives such request, it stores it until it finds a matching request

100

from another cell. The message transferred in a particular request depends on whether the

request is a read (receive) or write (send) operation.

] O
e

server client

hostA hostB

Figure 6: Communication between a client and a server processes

Listing 6 shows a connection between a client process and a server process. The server
process labeled server in the diagram runs on the host labeled hostA. Similarly, the client
process, client runs on hostB. Running on each host is a communication module, labeled
broker. Every link shown in the diagram is bidirectional. The broker is responsible for

matching communication between communicating processes.

The distributed nature of the broker reduces the likelihood of a broker becoming a bottleneck
in the system. Messages received by a broker are addressed to cells running in the host that
runs the broker. In practice, it is unlikely that a host will execute many cells in different
address spaces. A broker does not match communications for pairs in which none of the

cells is executed by the host that runs the broker.

Every cell that communicates with another cell is given a port to do so. A port is connected
to a shared channel. A channel connects two or more processes. Ports are shown in the

diagram as small circles. The following describes an implementation of a port.

101

struct Port

PortState state;

int field; // protocol field
int ccid; // client cell id
int scid; // server cell id

Process *server; // pointer to the server process
Process *client; // pointer to the client process
bool *pBool; // buffer for bool type

int *pInt; // buffer for integer type
double xpDouble; // buffer for double type

string *pString; // buffer for string type

The data member field above denotes the protocol field referenced in a qualified name that
refers to a port variable. The pointers, client and server store the addresses of the processes
connected via the client and server ends of a channel respectively. The pointers are not valid
across address spaces. The members pBool, pInt, pDouble, pString are buffers and hold data

of type Bool, Integer, Double, Text respectively.

The data members ccid and scid of Port shown above hold the ids of the client and the server
cells respectively. Communication takes place when a cell is referenced (i.e. a qualified name
refers to a field of the associated protocol). When a process in a cell sends a message to
another cell, it constructs a message containing some useful headers and sends the message

to the broker running on the host. The broker inspects the message and retrieves some of

102

the headers to determine the location of the communicating partner. The content of the

composed message is as follows:

a port direction which indicates whether the sending port is a server or a client.

Possible values are 0 and 1;

e the cell id of the server connected to the channel referenced by the port;

o the cell id of the source of the message — could be a client or a server;

e policy type; values include: 0 (ordered), 1 (fair) and 2 (random) ;

e input/output direction; possible values are 0 (read) and 1 (write);

e the type of the data carried, if the request is a write operation;

e the cell id of the destination cell (client or the server) connected to the channel refer-

enced by the port;

¢ a tag for the beginning of the data;

e the data to be sent, if it is a write operation; empty if it is a read operation;

a tag for the end of the data; message may carry more than one request.

When a process sends a write request to a broker, it sends along with the message the
data to be written to the other process. If the broker receives a matching request, the data
is copied into the variable of the other process and both the sender and the receiver can
proceed independently and concurrently. Considering the program shown in Listing 22 and

the XML file shown Listing 23, when the square process executes

103

q:Float := p.query;

assuming that squareCell and clientCell have been assigned unique ids, 1 and 2 respectively,
the compiler builds a message (used later by the runtime system to send and receive data)

of this form:

011001238

this is explained as follows:

1. the first item (0) means that the port, p used in squareCell is a server port, i.e. it

provides some service
2. the second item (1), is the identifier of the server cell connected to the channel.

3. the next item (1) identifies the source of the message which coincidentally is the same

as the server;
4. Item four (0) represents the policy which in this case corresponds to the default policy
5. the fifth item (0) indicates that the process is attempting a read operation;
6. the sixth item (1) indicates that the data type of the data to be read;

7. item seven (2) corresponds to the id of the client that is currently connected to the

channel;

8. item eighth and nine ($3) are tags that demarcate the beginning and the end of the

data in a message;

104

This message “0 1 1 0 0 1 2 $3” is then sent to the broker. When the broker receives
the message, it retrieves the first two items in the message and performs one of the following

two actions:

1. if the port is a client port, it checks whether the server that is connected to the
channel is running on this host or on a remote host. If the server is on a remote host,
it forwards the request to the broker running at the host of the server and waits for

a reply from the broker. The reply is subsequently forwarded to the client cell.

2. if the port is a server port, the broker queues the message until (hopefully) a matching

request is received from the client.

Therefore in this case, the broker running on alpha.encs.concordia.ca forwards the message
to the broker running on latvia.encs.concordia.ca. This message is matched by the receiving
broker when it receives a matching request i.e. a message of the form 1 1 2 0 1 1 1 4
from clientCell. The symbol d denotes the data which can be of any size. This message is

generated when clientCell executes the statement

p.query := num;

Marshalling is the process of converting a collection of data items into a form that is
suitable for transmission in a message over a network. The data items are flattened into a
stream of bytes. Unmarshalling does the opposite by converting a message received at the
destination into an equivalent collection of data items. Marshalling and unmarshalling blur
the distinction between different data representations across architectures. For instance,

there are two ordering for integer: the little-endian order represents data by considering

105

the least significant bytes first before other bytes in a piece of data and, the big-endian
order which considers the most significant bytes first when representing data. In addition,

floating-point numbers also have different representations between architectures.

Typically, the communication broker marshals the data carried in a message before sending
the message to a broker on another host. It unmarshals the data when it receives a message
from another broker. This process, i.e. marshalling/unmarshalling may be avoided if both
the source and the destination hosts are known to have the same architecture. Apart from
the Erasmus basic types discussed in Section 3.2.1, Erasmus cells, processes and ports are
first-class entities: they can be transmitted from one process to another and may be sent

over a network.

Matching occurs when a broker receives two messages that are complementary; one from a
client and another from a server. The two input/output requests must be opposite. One
of the communicating partners must be a read operation while the other must be a write
operation. The type of the data in the messages must also match. During matching, data
received is copied and sent to the process executing a read command. The message may

contain a set of requests if the process is executing a select statement.

4.2.2 Testing and Results

I'modified the original compiler (described in Section 1.2) by adding features that implement
communications and mapping of cells onto processors. The compiler has been used to
compile the program shown in Listing 22 to work on a stand-alone computer. The same
program was also distributed on two computers: the server cell running in one process

on a computer while the client runs in another process in a different host. The broker

106

processes on both machines matched communications between these cells. The program
works as a client-server system as specified by protocol sgProt. The client process sends
repeated requests to compute squares of numbers ranging from 1 to 10. Each time, the
server responded by sending the corresponding result to the client. Although the program
in Listing 22 solves a trivial problem, it nevertheless shows how Erasmus programming
language facilitates distribution of programs to different architectures. In practice, this

approach may help preserve software investment where software environment changes.

The next section describes some tests conducted to evaluate the impact of communications

on the overall performance of programs written in Erasmus.

The two computers used for these tests have the following specifications:

1. latvia.encs.concordia.ca: Intel(R) Pentium(R) 4 CPU 3.00 GHz, 2.99 GHz, 1.00 GB

of RAM; Operating System: Windows XP Professional, version 2002; Service Pack 2.

2. lithuania.encs.concordia.ca: as in 1 above.

The tests are grouped into two cases namely:

1. Case one: examines the impact of frequent inter-process communications on perfor-

mance of programs.

2. Case two: examines the impact of infrequent inter-process communications.

Case One

Considering the program in Listing 24, it takes 145s on latvia.encs.concordia.ca for clientcell

to display the squares of the numbers from 1 to 1500. It should be noted that there is no

107

Listing 24: A client-server program showing no communications between a client
and a server process

sp = [*x(ask: Integer; “answer: Integer)];
square = { p +:sp |

loop
in: Integer := p.ask;
x: Integer := in * in;

--- do more work
j: Integer := 0;
loop while j < 1000000

=1
end;
p.answer := X;
end

I
client = { p -: sp |

x: Integer := 1;
loop
xs: Integer := x * Xx;
stdout := text x + ""2 =" + text xs + "\n";

--- do more work
j: Integer := O;
loop while j < 1000000

j+=1

end;

X :=x + 1;

if x > 1500 then exit end
end
}
squarecell = (p +: sp | square(p));
clientcell = (p -: sp | client(p));

cell = (p ::sp; clientcell(p); squarecell(p));
cell();

communication whatsoever between clientcell and squarecell as shown in the listing,.

e Scenario one: it takes clientcell in Listing 25 289s to display the squares. In this
case, clientcell communicates with squarecell by sending numbers whose squares

are computed by squarecell through the port p.

108

Listing 25: A client that communicate frequently with square process of Listing 24

client = { p -: sp |
x: Integer := 1;
loop
p.ask = x;
xs: Integer := p.answer;
stdout := text x + "2 = " + text xs + "\n";

--- do more work
j: Integer := O;
loop while j < 1000000

=1
end;
X 1=x +1;
if x > 1500 then exit end
end
};

Listing 26: Configuration file for test case in scenario two

<Mapping>
<Processor> latvia.encs.concordia.ca
<Port> 5555 </Port>
<Cell> squarecell </Cell>
<Cell> clientcell </Cell>
</Processor>
</Mapping>

The two processes in Listing 24 and 25 run in one address space. The difference in the
elapsed-times for clientcell to display all the computed results can be attributed to the

communication overhead in executing the program shown in Listing 25.

¢ Scenario two: if the program shown in Listing 25 is compiled using the configuration
file shown in Listing 26, it takes 236s on latvia. encs.concordia.ca for clientcell running

in a separate address space to display the squares of the numbers from 1 to 1500. It

109

is interesting to note that clientcell runs faster than in the previous scenario. This
suggests that the combined effect of the inter-process communication and the runtime
process scheduling overheads is higher in scenario one than the communication delay

in scenario two.

o Scenario three : if the same program is compiled with the configuration file shown in
Listing 27, it takes clientcell running on latvia.encs.concordia.ca 241s to completely
display the squares of all the numbers from 1-1500 as specified in the program of
Listing 25. This is slightly higher than that in scenario two. This means that in this
case, clientcell runs slower than in scenario two. Frequent network communications
between the client process in one host and the server process in another host cause
delays, which are likely to offset any performance gains in faster execution of clientcell

due to the host’s processor having fewer processes to execute.

Listing 27: Configuration file for test case in scenario three

<Mapping>
<Processor> latvia.encs.concordia.ca
<Port> 5555 </Port>
<Cell> clientcell </Cell>
</Processor>
<Processor> lithuania.encs.concordia.ca
<Port> 5555 </Port>
<Cell> squarecell </Cell>
</Processor>
</Mapping>

In scenarios two and three, communication brokers add to the communication delays. One
broker is involved in scenario two but two broker processes (one on each host) are involved

in scenario three.

110

Case Two: Infrequent inter-process communications

Similar to the tests conducted under in case one, the test described here is similar to the
last three scenarios in case one. However, all the tests are based on the program shown in

Listing 28.

Listing 28: A client process showing infrequent communications with the server
process of Listing 24

client = { p -: sp |
x: Integer := 1;
loop
xs: Integer;
if x % 800 = O then

p.ask := x;
XS != p.answer;
else
XS := X * X;
end;
stdout := text x + "2 = " + text xs + "\n";

--- do more work

j: Integer := O;

loop while j < 1000000

=

end;

X :=x + 1;

if x > 1500 then exit end
end

If the processes run in one address space, clientcell takes 145s to display all the squares.

However, if the configuration file shown in Listing 27 is used, clientcell takes 116s to finish.
It takes 116s if the file in Listing 28 is used.
Tables 4 and 5 give a summary of the tests in case one and case two respectively.

It can thus be concluded that a distributed environment may be more suitable for a system

111

Table 4: Summary of tests in Case one (Frequent Communications)

Scenario Execution time
Scenario one 289s
Scenario two 236s
Scenario three 241s

Table 5: Summary of tests in Case two (Infrequent Communications)

Scenario Execution time
Scenario one 145s
Scenario two 116s
Scenario three 116s

where processes rarely communicate. Frequent communications between the participating

nodes in a distributed system may degrade the overall performance of the entire system.

4.2.3 Granularity of Communication

Communication granularity concerns the frequency and the size of messages sent from one
process to another process within a system. In a system that uses fine-grained communi-
cation; small messages are sent by processes. This might be reasonable in environments
where the processors are physically close to one another (closely coupled environments e.g.
multi-core architectures). In contrast to fine-grained communication, in a system that uses
coarse-grained communication; few large messages are sent from one process to another
process. This is most useful in a loosely coupled (processors are physically dispersed) dis-
tributed environment where processes perform large computations and send very few but

large messages.

Erasmus is intended for communication at any level of granularity. However, programmers

are supposed to match granularity to hardware. While it does not make sense to send an

112

integer over a network to find its square, it might make sense to send it to another processor

on the same chip!

113

Chapter 5

Communication in Erasmus and

other languages

In the previous chapter we discussed how Erasmus cells/processes communicate. We also
considered how Erasmus cell may be mapped onto processors. In chapter two, we re-
viewed some concurrent programming languages and concluded the chapter with a discus-
sion around the languages reviewed. In this chapter, we compare communication in Erasmus

with the languages discussed in chapter two.

5.1 Language Syntax for Communication

In the previous chapter, we discussed how Erasmus achieves its network transparency by
separating the semantics of a program from its deployment. A direct benefit of this approach
is that the syntax for expressing local and remote communications is essentially the same.

This permits an execution of the same program using a different topology/model. This is

114

similar to the approach used in Mozart/oz [47]. Many languages that provide support for
building distributed systems do not provide network transparency. Programmers have to
change the underlining source programs when they are ported to different environments. In
Erlang, except where process ids have been used throughout the programs, changes may be
necessary to the code when they are moved from one environment to another. In Java and
many other languages, the syntax for expressing remote communication is different from
that required for local communication. For instance, every remote object in Java RMI must
implement an interface which must be a sub interface of Remote. This makes refactoring of

applications written in Java unnecessarily difficult.

5.2 Communication via shared variables

Communicating through shared memory is not new. It has remained the de-facto standard
for inter-process communication in multithreaded applications. The danger of this approach
which stems from data inconsistency is also well recognized [53]. However, shared memory
is an efficient means of communication by communicating processes. Therefore a language
that provides shared-memory communication must prevent the problems inherent with this
approach. This explains in part why CSP, its derivative languages (e.g. Occam, Occam-m
and Joyce) and Actor-Based Language such as SALSA, Erlang and ABCL/1 do not allow

inter-process communication via shared memory.

Java and Cilk allow inter-thread communication via shared variables. When more than one
thread has access to a shared memory, the result can be largely unpredictable. A thread

does not know when another thread is accessing the same location. Programmers must

115

carefully control the potential non-determinism in this approach.

Typically, shared variables are protected by monitors or its variants such as protected
types in Ada™][1]. Mozart/OZ data stores are abstract stores that allow legal operations
on stored entities. In practice however, correctness of multithreaded programs in which
threads (or processes) communicate through shared variable may be difficult or impossible
to guarantee. Despite the obvious performance gain of inter-process communications via
shared variables as compared with message passing where data have to be copied from one
process to another, message passing approach is a better alternative. Lee contends that
by using threads as a computation model, achieving reliability and predictability might
be impossible for many applications [43]. Reliability should not be traded for efficiency
in language design at least, not in a language designed for programming mission-critical
applications, e.g. missile control systems — where the danger posed by unreliable programs

can be catastrophic! Brinch Hansen writes:

. efficiency, portability, and generality should never be sought at the expense
of simplicity, reliability, and adaptability, for only the latter qualities make it
possible to understand what programs do, depend on them, and extend their

capabilities [15].
The designers of Erasmus emphasize the importance of a 'failure model’ for highly reliable

software.

Erasmus cells communicate only by message passing. Processes within the same cell may
communicate safely via shared variable: a running process continues until it suspends when

it needs to communicate with another process. There is only one thread of control within

116

a cell hence; only one process can access a shared location at a time. This effectively
eliminates data races. Processes in one cell communicate with processes in another cell
only by sending messages to them using their local ports that conform to some common

protocols.

5.3 Communication by message passing

We have seen that in some of the languages reviewed in chapter two, parallel units (processes
or threads) communicate over synchronous channels while in others communication is via
asynchronous channel or similar mechanisms. While synchronous communication can be
compared with the telephone system, asynchronous mechanism can be compared with the
postal service system or recently, telephone voice mail system. In the postal service system,
a mail is sent to a given address by the sender and the mail is collected from the same
address, at a convenient time, by the owner of the address. While in synchronous message
transfer, the sender and the receiver need to be synchronized before an exchange of data
takes place, in an asynchronous transfer of message, there is no synchronization between
the sender and the receiver. However, asynchronous transfer of messages requires a buffer

or mailbor between the sender and the receiver of messages.

The functional languages reviewed in chapter two: Erlang, Mozart/Oz and ABCL/1 provide
asynchronous communication by message passing. This is not altogether surprising. Objects
in functional languages are usually created when needed and often objects can be as large as
a computer’s available memory which of course, is not infinite. This means that unbounded

buffer fits seamlessly into this paradigm.

117

Indeed, past and future semantics of ABCL/1 have potentials to increase concurrency of
applications. Threads or processes can proceed independently and retrieve responses when
needed. However, problems with asynchronous communication are well known. Message
buffer can easily be filled with messages thereby raising a buffer overflow error. In addition,
direct communication is less complicated and more straightforward than communication
via a third-party such as mailbox in Erlang. Hoare argues that unbuffered communica-
tion is a better approach where fast interactions are more important than heavy processor
utilization [40]. It is also straightforward to implement asynchronous communication (if re-
quired, as in Ada 95) with synchronous mechanism by simply introducing a buffer between

communicating units.

5.3.1 Channel and Protocols

Erasmus builds on older languages such as Joyce and CSP. For instance, Erasmus port
protocol is similar in some respect to Joyce channel alphabet. However, Erasmus protocol
is more elegant and versatile. Protocol expressions are like regular expressions. This gives
programmers numerous ways of modeling systems with communicating components much
more than remote procedure call (RPC)/ remote method invocation (RMI) that is simply an
extension of local procedure call. Communication statements within the program code can
be checked and analyzed statically for conformity with the associated protocols. This means
that Erasmus protocols may facilitate programming of robust applications. For example, if
all communications satisfy the associated protocols then the reliability of the system with

respect to the given protocols can be guaranteed.

In contrast to other languages, interaction patterns between a client and a server can be

118

expressed explicitly by an Erasmus port protocol. For instance, consider an interaction
where a client must repeatedly send either integer or float values to the server until a stop
signal is sent. This pattern of interaction can easily be expressed with an Erasmus protocol

as shown in the following protocol definition.

-- Erasmus (3)

protocol = [*(intVal: Integer | floatVal: Float), stopl

CSP or Joyce’s channel alphabet may not be able to explicitly express this kind of interaction
completely: it gives alternatives but not sequencing of messages. A Joyce equivalent of the

above is:

-~ Joyce (4)

protocol = [intVal(integer), floatVal(float), stop]

Erasmus allows interaction pattern to be made explicit as in (3). This not only improves
the expressiveness of the language but also improves program quality by improving its
understandability and maintainability. A likely consequence of this is that the long run cost

of software maintenance may be reduced. Errors can also be detected during compilation.

CSP inspired several languages, including Occam, Joyce and Occam-7. These languages use
communication channels with protocols. Channel simplifies synchronization of interactions.
Channel protocol serves to prevent channel misuse and this can be checked at compilation
time. CSP and Occam have unidirectional channels. This is an obvious limitation. Unidi-
rectional channels are inadequate for implementing reliable communication where messages
need to be retransmitted, if not received by the destination process. The receiving pro-

cess needs to pass messages in the opposite direction to acknowledge receipts of messages.

119

Erasmus Ports are of two types: those that provide a service and those that need a service.
This is a request-reply mode of communication. The client sends a request and the server

responds with a reply.

5.3.2 Select statement and Non-determinism

We saw in chapter two how many of the languages reviewed allow programmers to introduce
and control non-determinism in a program. In a seminal paper, Dijkstra [24] formalized non-
determinism by introducing ‘guarded commands’ (see Section 2.3.1) as a building block
for alternative and repetitive program constructs that allow non-deterministic program
components. Guarded commands were adopted by Hoare [39] as a means of introducing

and controlling non-determinism in CSP.

Many concurrent programming languages including CSP (alternative command), Joyce
(poll statendent), Occam (ALT command) and Occam-m (ALT command), Ada (select
statement) use guarded commands or some variations for introducing and controlling non-
determinism in concurrent programs. Erlang has a receive statement; SALSA provides
join continuation; Mozart/Oz uses Ports (future variables) as channels for asynchronous

communication.

Erasmus uses select statements for sending and receiving messages non-deterministically.
This makes it possible to program a variety of safe interactions. Lee argues that non-
determinism should be explicit in programs and introduced only when needed [43]. Unlike
languages such as Java which allows inter-process communication that is difficult or impos-
sible of being safely and deterministically controlled (communication via shared variables)

and like Joyce, CSP, Occam, non-determinism is explicit and localized in Erasmus.

120

As mentioned in chapter two, output statements cannot be used as guards in CSP. Erasmus
does not have this limitation. A principal communication statement may be a send or a
receive statement. Receive expressions may also be embedded in an expression as described
in Section 4.1.5. Such an expression behaves like a select statement, each expression
corresponds to a branch of the select statement. This capability is an elegant alternative to
using an explicit select statement and a way of expressing succinctly, solutions to common
problems. For example, different values computed and sent from different locations might be
combined in one compound expression to compute a value at a different location. Consider

the statement

grandSales =

london.totalSales + montreal.totalSales + beijing.totalSales;

assuming that london, montreal and beijing are ports connected to processes in London,
Montreal and Beijing respectively. The value of grandSales is the sum of the values received

via the three ports.

For controlling and scheduling processes waiting for communications, CSP leaves fairness to
implementation, suggesting FIFO model for selecting matching output commands. As we
saw in chapter three, Erasmus provides policies: order, fair, random for select statement.
The policy is used to determine the order in which a branch is selected when more than one
communication is feasible. Joyce implements only the policy that Erasmus called ordered.

We believe that a production-quality language should be able to ensure fairness.

121

5.3.3 Message Typing and Serialization

The increasing needs fbr distributed systems highlights the reasons for languages to provide
support for distributed programming. Languages such as Java supports automatic serializa-
tion of data transmitted from one process to another. Serialization concerns the flattening
of the data in a data structure into a serial form that is suitable for storing on disk or
transmitted in a message. Java uses reflection (the ability to enquire about the properties
of a class, such as the names and types of its members [23]) to serialize Java objects so that

they can be sent over a network and reconstructed at the destination process.

Apart from the primitive types, Erasmus cells, processes and ports are first-class entities:

they can be transmitted from one process to another and can be sent across a network.

Summary: Erasmus and other Languages

Though Erasmus builds on well-established past work, it differs from other languages in
many ways. This chapter highlighted the main differences between Erasmus and the lan-
guages reviewed in chapter two. The same syntax is used for expressing local and remote
communications. The benefit and the disadvantage of shared variables as means of com-
munications were discussed. The chapter also reviewed why synchronous communication
is suitable for Erasmus. The chapter compared non-determinism in Erasmus and other
languages. The select statement represents a powerful abstraction for expressing and

controlling non-determinism in Erasmus programs.

122

Chapter 6

Conclusions and Future Work

In this final chapter, we present conclusions and discuss avenues for future research.

6.1 Conclusions

So far we have considered a number of issues related to the implementation of concurrency in
Erasmus. Erasmus provides modular concurrency [29] through nested cells. This facilitates
development of software that scales over time and needs. In chapter one, we reviewed the
object and the process models and showed why the process model is superior to the object

model in representing concurrent units.

In chapter two, we reviewed some related work to highlight how Erasmus builds on the
success of the past while at the same time avoided the mistakes of the time. Despite the
proliferation of concurrent languages, problems associated with concurrent programming are

still not uncommon. Erasmus is capable of reducing or eliminating many of these problems.

123

In chapter three, we considered an overview of the Erasmus programming language. In
particular, we showed the importance of protocols and how Erasmus protocols can be used
to model a variety of systems. The simple syntax of the language encourages fast learning
by both new and experienced programmers. We also described how Erasmus provides non-

determinism through the select statement.

In chapter four, we described how Erasmus cells and processes communicate. Processes
in different cells communicate only by exchanging messages over synchronous channels but
processes within a cell may communicate through shared variables. Ports and protocols
together form the primary means through which cells communicate. The chapter also
considered how cells may be mapped onto different architectures and showed how this
capability enhances refactoring of software. We believe through this approach, software

maintenance can be made less expensive and less difficult.

In the previous chapter, we compared Erasmus with other languages and showed how Eras-

mus builds on well-established past work, both theoretical and practical.

To implement communication and mapping of processes on to different architectures, the
prototype compiler described in chapter one was modified. The new compiler together with
the run-time system is capable of compiling an Erasmus program with processes that run on
the same processor. It is also capable of compiling the same source code to run on different
architectures; thus achieving the stated objectives of the research. The main contributions

of this thesis are as follows:

e modification of an existing compiler;

o introduction of one broker process for each processor;

124

o design of XML format for metaprograms;

e tests with two Erasmus cells running in the same memory space, in different memory

spaces on the same processor, and on different processors.

Time measurements show that true concurrency improves performances. The modified
compiler has some limitations. It is capable of mapping cells onto processors in isolated
computers and distributed systems. It does not explore multi-core architectures. Further

limitations are highlighted in the next section.

Internet use has seen phenomenal growth within the last decade. This was largely driven
by advances in telecommunication, government policies (bridging the digital divide), the
growth of internet applications and technologies, affordability and other factors. To be
considered useful, a modern concurrent language must provide support for building large,
scalable real-time and distributed applications that leverage internet platform. Erasmus

seeks to make programming these non-trivial applications a triviality.

6.2 Future Work

Erasmus is an ambitious project. There is still a lot of work to be done. In this section, we

highlight some important aspects of Erasmus that are yet to be implemented.

e Erasmus requires further rigorous testing of how its capabilities are supported; in
particular how cells on more than two hosts may safely interact without deadlock. It
is reasonable to build some non-trivial applications that demonstrate the capabilities

of the Erasmus language.

125

e We mentioned that cells, processes and ports may be sent from one process to another
and over a network. It would be worthwhile to implement this capability and provides
test cases that show how and where this might be useful. To achieve this objective,
Erasmus must provide automatic serialization of the structural types such as maps,
processes, ports and cells. The current prototype compiler implements only the basic

types — Char, Integer, Float, Bool and Text.

¢ Erasmus will eventually provides mobile code/cells that may be executed in different

hosts over their life times.

o Erasmus must ensure that mobile code/cells run in constrained environments; i.e.
they must be prevented from accessing certain resources in the host in which they

run.

126

Bibliography

1]

Ada. Ada 95 Reference Manual. Revised International Standard ISO/IEC 8652:1995,

1995. www.adahome.com/rm95.

Gul A. Agha. A Model of Concurrent Computation in Distributed Systems. The MIT

Press, 1986.

R. Gregory Andrews. Foundations of Multithreaded, Parallel, and Distributed Pro-

gramming. Addison-Wesley, 2000.

Joe Armstrong. A History of Erlang. In HOPL III: Proceedings of the Third ACM
SIGPLAN Conference on the History of Programming Languages, pages 6.1-6.26, New

York, NY, USA, 2007. ACM Press.

Joe Armstrong, Robert Virding, Clases Wikstrom, and Mikes Williams. Concurrent

Programming in ERLANG. Prentice Hall, second edition, June 2004.

R. Bagrodia. Synchronization of Asynchronous Processes in CSP. ACM Transaction

on Programming Languages and Systems, 11(4):585-597, October 1989.

127

7]

[9]

[10]

12)

[13]

[14]

Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming Lan-
guages for Distributed Computing Systems. ACM Computing Surveys, 21(3):261-322,

September 1989.

Fred R.M. Barnes and Peter H. Welch. Communicating mobile processes. In Ian East,
Jeremy Martin, Peter Welch, David Duce, and Mark Green, editors, Communicating

Process Architectures, pages 201-218. IOS Press, 2004.

F.R.M. Barnes and P.H. Welch. Prioritized Dynamic Communicating and Mobile Pro-

cesses. IEE Proceedings - Software, 150(2):121-136, April 2003.

Arthur J. Bernstein. Output Guards and Non-determinisn in CSP. ACM Transaction

on Programming Languages and Systems, 2(2):234-238, April 1980.

Per Brinch Hansen. An Outline Of A Course On Operating System Principles. In
C. A. R. Hoare and R. H. Perrot, editors, Operating Systems Techniques, Proceedings
of a Seminar at Queen’s University, Belfast, Northern Ireland, pages 29-36, New York,

NY, USA, 1971. Academic Press.

Per Brinch Hansen. Operating System Principles. Prentice Hall, Englewood, NJ, jul

1973.

Per Brinch Hansen. The Programming Language Concurrent Pascal. /EEE Transac-

tions on Software Engineering, 1(2):199-207, June 1975.

Per Brinch Hansen. The Solo Operating System: A Concurrent Pascal Program. Soft-

ware Practice & Ezxperience, 6(2):141-149, June 1976.

128

[15]

[16]

[17]

21]

[22]

23]

Per Brinch Hansen. The Architecture of Concurrent Programs. Prentice Hall, Engle-

wood Clis, NJ, 1977.

Per Brinch Hansen. Joyce - A Programming Language for Distributed Systems. Soft-

ware Practice & Experience, 17(1):29-50, January 1987.

Per Brinch Hansen. A Multiprocessor Implementation of Joyce. Software: Practice &

Ezxperience, 19(6):579-592, June 1989.

Per Brinch Hansen. Java’s Insecure Parallelism. ACM SIGPLAN Notices, 34(4):38-45,

April 1999,

Per Brinch Hansen. The Invention of Concurrent Programming. In Per Brinch Hansen,
editor, Origin of Concurrent Programming: From Semaphores to Remote Procedure

Calls, pages 3—61. Springer-Verlang, New York, 2001.

G. N. Buckley and Abraham Silberschatz. An Effective Implememtation for The Gener-
alized Input-Output Construct of CSP. ACM Transaction on Programming Languages

and Systems, 5(2):223-235, April 1983.

Alan Burns and Andy Wellings. Concurrency in Ada. Cambridge University Press,

second edition, 1998.

William Douglas Clinger. Foundations of Actor Semantics. Technical Report TR 633,

Department of Artificial Intelligence, MIT, May 1981,

George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems Concepts

and Design. Addison-Wesley, second edition, 2005.

129

[24] Edsger W. Dijkstra. Cooperating Sequential Processes. In F. Genuys, editor, Pro-
gramming Languages: NATO Advanced Study Institute, pages 43-112. Academic Press,

1968.

[25] Edsger W. Dijkstra. Guarded Command, Nondeterminancy and Formal Derivation of

Programs. Association for Computing Machinery (ACM), 18(8):453-457, August 1975.

[26] Martin Fowler, Beck Kent, John Brant, William Opdyke, and Don Roberts. Refactor-

ing. Improving the Design of Ezisting Code. Addison-Wesley, June 1999.

[27] James Gosling, Bill joy, Guy Steele, and Gilad Bracha. The Java Language Specifica-

tion. Addison-Wesley, third edition, May 2005.

[28] Irene Greif. Semantics of Communicating Parallel Processes. Technical Report TR-154,

Department of Artificial Intelligence, MIT, September 1975,

[29] Peter Grogono. Modular Concurrency. Keynote Speech for Canadian University Soft-

ware Engineering Conference (CUSEC) 2006, January 2006.

[30] Peter Grogono, Nurudeen Lameed, and Brian Shearing. Modularity + Concurrency
= Manageability. Technical Report TR E-04, Department of Computer Science and

Software Engineering, Concordia University, September 2007.

[31] Peter Grogono and Brian Shearing. A Note on Communication. Technical Report TR
E-05, Department of Computer Science and Software Engineering, Concordia Univer-

sity, August 2007.

130

[32] Peter Grogono and Brian Shearing. MEC Reference Manual. Technical Report TR E-
06, Department of Computer Science and Software Engineering, Concordia University,

January 2008.

(33] Boehm Hans-Juergen. Threads cannot be implemented as a library. In PLDI °05:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 261-268. ACM Press, 2005.

[34] Tim Harris and Keir Fraser. Language Support for Lightweight Transactions. ACM

SIGPLAN Notices, 38(11):388-402, October 2003.

[35] Carl Hewitt. Viewing Control Structures as Pattern of Passing Messages. Technical

Report AIM-410, Department of Artificial Intelligence, MIT, December 1976.

[36] Carl Hewitt and Henry Baker. Actors and Continuous Functionals. Technical Report

MIT/LCS/TR-194, Department of Artificial Intelligence, MIT, December 1977.

[37] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR For-

malism for Artificial Intelligence. MIT, 13(4):238-242, April 1973.

[38] Charles Anthony Richard Hoare. Monitors: an Operating System Structuring Concept.

Communications of the ACM, 17(10):549-557, October 1974.

[39] Charles Anthony Richard Hoare. Communication Sequential Processes. Communica-

tions of the ACM, 21(8):666-677, August 1978.

[40] Charles Anthony Richard Hoare. Communicating Sequential Processes. Prentice Hall

International, third edition, June 2004.

131

[41]

[43]

[44]

[45]

[46]

48]

[49]

[51]

Nima Jafroodi. A Type System for the Erasmus Language. Master’s thesis, Department

of Computer Science and Software Engineering, Concordia University, January 2008.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised Report.

September 2002.
Edward A. Lee. The Problem With Threads. JEEE Computer, 39(5):33-42, May 2006.

Charles E. Leiserson et al. CilK 5.4.6 Reference Manual. MIT

http://supertech.lcs.mit.edu/cilk, June 1998.

SGS-THOMSON Microelectronics Limited. QOccam 2.1 REFERENCE MANUAL.

SGS-THOMSON Microelectronics Limited, 1995.

Kunle Olukotun and Lance Hammond. The Future of Microprocessors. ACM Queue,

3(7):26-34, September 2005.

Peter Van Roy. General Overview of Mozart/Oz. Slides for a talk given at
the Second International Mozart/Oz Conference (MOZ 2004). Available online at

http://www.cetic.be/moz2004/talks/GeneralOverview.pdf, 2004.

Jerome H. Salzer. M. I. T. Project MAC. Technical Report MAC-TR-16, Department

of Artificial Intelligence, MIT, March 1965.

Fred B. Schneider. Synchronisation in Distributed Programs. ACM Transaction on

Programming Languages and Systems, 4(2):125-148, April 1982.

Abraham. Silberschatz. Communication and Synchronization in Distributed Programs.

IEEFE Transaction on Software Engineering, 5(6):542-546, November 1979.

Bjarne Stroustrup. The Design of C++0x. C/C++ Users Journal, May 2005.

132

[52] Herb Sutter. The Free Lunch Is Over - A Fundamental Turn Toward Concur-
rency in Software. Dr. Dobb’s Journal, 30(3), March 2005. Available online at

http://www.gotw.ca/publications/concurrency-ddj.htm.

[53] Herb Sutter. The Trouble With Locks. Dr. Dobb’s Journal, March 2005.

[54] Herb Sutter and James Larus. Software and the Concurrency Revolution. ACM Queue,

3(7):54-62, September 2005.

[55] Carlos Varela and Gul Agha. Programming Dynamically Reconfigurable Open Systems

with SALSA. ACM SIG PLAN Notices, 36(12):20-34, December 2001.

[56] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-Oriented Con-
current Programming in ABCL/1. OOPSLA 86 Proceedings on Object Oriented Pro-

gramming Systems, Languages and Applications, pages 258-268, September 1986.

133

Appendices

134

.1 Syntax

Keywords

Types: Bool Decimal Float Integer Text

Functions: float int rand text

Other: alias and assert copy div elif else end exit fair
false if loop loopselect mod mnot or ordered random

region select share skip then true until while

Symbols

Assignment operators: 1= 4= -= 4= [= Y=

Binary operators: + - x /%

Comparison operators: = = < "= < <= > >=

Protocol operators: 7 o0+ + 7

Declaration operators: A)

Separators: s 3

Brackets: C Yy [1 { }

Programs

Program = { ProtocolDefinition | ClosureDefinition | CellDefinition },
Instantiation.

Definitions

135

ProtocolDefinition = ProtocolName ‘=’ Protocol .

ClosureDefinition = ClosureName ‘=’ Closure .
CellDefinition = CellName (‘=> | “+=?) Cell .
Descriptions

Protocol = ProtocolName

| ¢[’ ProtocolExpression ‘1’ .
Closure = ClosureName

| “{’ [{ Declaration },] ‘|’ Sequence ‘}’ .
Cell = CellName

| <O [{ Declaration }, ‘1’]{ Declaration | Instantiation })’ .

Protocols
ProtocolEzpression = [~ | Declaration
| [Multiplicity | ProtocolEzpression
| { ProtocolExpression },
| { ProtocolExpression }
| ¢’ ProtocolEzpression ‘)’ .
Multiplicity = 7 | wr | e
Declarations

136

Declaration

VariableDeclaration

PortDeclaration

Mode

Direction

Type

BasicTypeName

Statements

VariableDeclaration | PortDeclaration .
{ VariableName } [“:? [Mode | Type | | “:=’ Rvalue | .
{ PortName }, Direction Protocol | ‘:=" Ruvalue] .
copy | share |alias.
BasicTypeName | Cell .

Bool | Integer |Decimal |Float | Text .

137

Sequence

Statement

Assertion

Instantiation

Assignment

AssOp

{ Statement }, .

skip

exit

until Fzpression

while Ezpression

Assertion
Declaration
Instantiation
Assignment
Conditional
Loop

Select .

assert ‘(° Rwalue ¢,’ Rvalue)’ .
(Cell | Closure) <’ { PortName |VarName | Rvalue },)’ .
{ QualifiedName } AssOp Rualue .

(:=: ' [y | [) = } ‘/=, | ‘%:’ .

138

Region = region Sequence end .

Conditional = if Rwvalue then Sequence

{ elif Rwvalue then Sequence }

[else Sequence | end .

Loop = loop Sequence end .
Select = (select |loopselect) Policy { Guard Sequence } end .
Policy = [fair |ordered |random] .
Guard = ‘1’ [Rvalue] ‘1" .
Values
Rualue = UnOp Rualue

| Rwalue BinOp Ruvalue

| FunctionName Factor

| Literal

| { Factor }, .
Factor = QualifiedName | Literal | ‘ (* Rvalue ‘)’ .
FunctionName = 1int |float |text |rand.

139

Lvalue = { QualifiedName } .
QualifiedName = [QualifiedName ¢.’ | (VariableName | PortName) .
Operators
UnOp = |+’ | ‘=’ |not.
BinOp = ‘x> | ¢/ |div | ‘%’ |mod | ‘+* | ‘-? |
@ e [0 [mr [ear |1 |
and |or .
Constants
Literal = Bool |Integer | Decimal | Float | Text | Closure | Compound .
Bool = false |true.
Integer = { Digit} .
Decimal = { Digit} ‘.’ { Digit } .
Float = {Digit} “.” {Digit} [(‘e’ |‘E>) [+ |‘=>]{Digit}].
Text = { Character } .

140

