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ABSTRACT

Joydip Sanyal

A rotating gear pair experiences high vibration and noise mainly due to tooth
profile error, mounting error, tooth wear, friction backlash and periodic change of
meshing stiffness. The combined effect of the manufacturing error, mounting error and
elastic tooth deformation is considered as the static transmission error that introduces
internal displacement excitation within the gear pair. Such internal excitation generates
torsional vibration through the driving and driven shafts even in absence of external
excitations. Thus the vibration problem of a geared system involves homogeneous
equations of motion with time dependent boundary conditions. The present research is to
investigate the torsional vibrations of a geared system by developing a continuous model
that converts the homogeneous equations with non-homogeneous boundary conditions
into non-homogeneous equations with homogeneous boundary conditions. The influence
of friction, tooth wear, backlash and other nonlinear variables have been ignored in the

formulation.

The free vibration results of the proposed model are validated by developing the
classical Rayleigh-Ritz model with Bhat’s boundary characteristic orthogonal polynomial
functions. The results are also validated by performing experiments in the laboratory for a
simple geared system. Torsional vibration responses are determined in both time and

frequency domains. In addition to the proposed continuous model the discrete model is

il



simulated to determine torsional vibrations and dynamic torque generated due to static

tooth error.

The experimental investigations are carried out by measuring free torsional

vibrations with strain gauge and frequency analysis by a spectrum analyzer.

iv
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DYNAMIC RESPONSE OF GEARED SHAFT
SYSTEMS WITH TIME —-DEPENDENT BOUNDARY
CONDITIONS SUBJECTED TO STATIC
TRANSMISSION ERROR

1 Introduction

1.1 General

Gears are most often regarded as the icon of Mechanical Engineering. Gear is a
toothed wheel that transmits torque to another toothed component when they are meshed
together. It transmits rotary motion from one shaft to another and normally turns the
driven shaft at a different speed from the driving shaft. It also sometimes adjusts direction

of rotation of the driven shaft to a desired angle with respect to the driving shatft.

One of the primary objectives of gear design is to ensure uniform rotary motion
transmission from the driving shaft to the driven shaft. The closer the rotary motion
transmission is to the constant angular velocity transmission, the lower is the vibration
and -noise level within the gear drive. High-speed and high power gear transmission
systems experience significant dynamic loads due to variation of relative velocities of the
mating members. Manufacturing errors, eccentric mounting of gears and bearings,
periodic tooth stiffness variations, variation of meshing position, backlash, sliding
friction and tooth wear are the major factors of dynamic loading on gears in meshing. At
slow speeds, load on gear teeth is mainly due to the transmitted torque. However with

increase in speed, dynamic load exceeds the tooth load caused by the transmitted torque.



Geared shafts experience torsional vibration even when prime movers or driven
machines do not transmit external excitation. The periodic internal excitation generated
within the gear pair introduces dynamic loading that becomes significant with increase in
total transmission error. Total transmission error is the deviation of angular rotation of the
driven gear with respect to the driving gear generated by tooth profile error, periodic
changes of tooth elasticity and variation of meshing position. Mounting error of gears and
bearings and misalignment of the geared shafts, as well as the askew input/ output shafts
further contribute to the transmission error. As a result gears within the robust gearboxes
generate vibration and noise which can reach catastrophic levels if not monitored and

addressed in time.

1.2 History of Gear

Gear is one of the oldest mechanical components in power transmission system.
Ovef 3000 years ago primitive gears first meshed with each other and transmitted rotary
motion. The earliest gears were made of hard wood. Water wheels were used to convert
energy of moving water into mechanical (rotational) energy. Wooden gears were mostly
used to connect the water wheels to the machines that would grind wheat and hammer
metéls. In the middle age stone gears were used in Sweden. Greeks introduced metallic
gears with wedge shaped teeth for the first time. The Romans made considerable use of
gears in their mills. Later on invention of steam engines and electric motors created a

substantial demand for heavy duty gears.



The industrial revolution in Britain in the eighteenth century experienced an
extensive explosion in the use of metal gearing. Use of high speed steam turbines and gas
turbines in power plants and high speed compressors and pumps in chemical process
industries motivated analysis of gear dynamics that gradually improved gear design all

through the nineteenth century.

1.3 Basic Geometry of Spur Gears:

The fundamentals of gearing are illustrated in figure 1.3.1 through the spur-gear

tooth since it is the simplest and the most widely used gear.
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Figure: 1.3.1 Geometry and nomenclature of a spur-gear pair



Following is the brief description of basic geometry and nomenclature of a spur-

gear mesh as shown in figure 1.3.1.

1.3.1 Pinion - When two gears mesh together, the one with the smaller number of
teeth is called the pinion.
1.3.2 Gear - When two gears mesh together, the one with the larger number of teeth is

called the gear.

1.3.3 Pitch point - The point at which the pitch circle diameters of two gears in mesh

collinear.

1.3.4 Pitch Circle - The circle derived from a number of teeth and a specified
diametral or circular pitch. Circle on which spacing or tooth profiles is

established and from which the tooth proportions are constructed.

1.3.5 Diametral pitch (P,) - The number of teeth per inch of pitch circle diameter.
The diametral pitch determines the size of gear tooth. A higher P, indicates

finer tooth spacing.

1.3.6 Module (m) - Used for metric gears and is the ratio of pitch circle diameter (in

mm) to the number of teeth; a higher module indicates coarser tooth spacing.



1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

Addendum (a) - is the height of the tooth above the pitch circle diameter, i. e.

is the height by which a tooth projects beyond the pitch circle or pitch line.

Dedendum (b) - is the depth of a tooth space below the pitch line. It is

normally greater than the addendum of the mating gear to provide clearance.

Clearance (¢) - is the amount by which the dedendum in a given gear exceeds

the addendum of its mating gear.

Whole depth (£,) - is the total depth of a tooth space, equal to the sum of the

addendum and the dedendum. It is also equal to the working depth plus

clearance.

Working depth (%, ) — is the total depth of the space between adjacent teeth,

i.e. the depth of engagement of two gears; that is, the sum of their addendums.

Outside diameter (D, ) — is the outside diameter of the gear.

Base Circle diameter (D, ) - is the diameter of the base cylinder from which

the involute portion of a tooth profile is generated.



1.3.14

1.3.15

1.3.16

1.3.17

1.3.18

1.3.19

Pitch circle diameter (D) — is the diameter of the pitch circle. In parallel shaft
gears, the pitch diameters can be determined directly from the center distance
and the number of teeth.

Root Diameter (D, ) - is the diameter at the base of the tooth space.

Circular tooth thickness (¢) - is the length of arc between the two sides of a
gear tooth on the pitch circle, unless otherwise specified, i.e. the width of a

tooth measured along the arc at the pitch circle diameter.

Involute Teeth - of spur gears, helical gears and worms are those in which the

active portion of the profile in the transverse plane is the involute of a circle.

Pressure angle (¢) — is the angle at a pitch point between the line of pressure
which is normal to the tooth surface, and the plane tangent to the pitch surface.
In involute teeth, pressure angle is often described also as the angle between the
line of action and the line tangent to the pitch circle. Standard pressure angles

are established in connection with standard gear-tooth proportions.

Backlash (B) - is the amount by which the width of a tooth space exceeds the
thickness of the engaging tooth on the pitch circles. As actually indicated by
measuring devices, backlash may be determined variously in the transverse,

normal, or axial-planes, and either in the direction of the pitch circles or on the



line of action. Such measurements should be corrected to corresponding values

on transverse pitch circles for general comparisons.

1.3.20 Contact Ratio (m,) -in general, the number of angular pitches through which a

tooth surface rotates from the beginning to the end of contact.

1.3.21 Centre distance (C) - The distance between the axes of two gears in mesh.

1.4 Dynamic Load on Gear

Gear teeth experience dynamic loads when a pair of teeth mesh together to
transmit torque and the resulting motion is not smooth. Each successive tooth pair of
mating gears would pick up some dynamic load even when they are accurately
manufactured and properly mounted. Due to elasticity, or springiness of gear tooth
material a single pair of teeth under significant amount of load deflect from their
unloaded ("perfect") positions. Deflection of teeth allows the rest of the driving gear to
move slightly ahead of its theoretical undeflected position and the rest of the driven gear
to lég slightly behind its theoretical undeflected position. Eccentric mounting of gear,
backlash, sliding friction, shaft misalignment etc. further deviate the tooth from its

perfect position.

These phenomena shift all unloaded teeth of gear and pinion slightly out of their
correct positions with respect to the tooth-pair carrying the load. Because of it, when the

next tooth-pair comes into mesh, they touch each other earlier than they would if there



were no deviation. Thus they pick up a disproportionate amount of the load very quickly.
This sudden load application produces an impact force, which can cause the teeth to
bounce apart and re-contact later in the mesh causing another impact. With increase in
speed the forces exerted by the teeth become significantly greater than the load applied

by the transmitted torque.

It is not always possible to manufacture absolutely perfect gear teeth. The AGMA
Quality Number is a measure of the accuracy of the tooth locations and the tooth profiles.
A gear with a lower Quality Number has greater errors in tooth location and tooth profile.
As the errors in tooth location and profile increase, the magnitude of the dynamic load
increases. Misalignment and mounting errors further increase the dynamic load with

increased vibration and noise and reduce gear life.

1.5 Factors Influencing Gear Dynamics

1.5.1 PRIMARY FACTORS:
Primary factors that influence the meshing action directly and are present in all
types of gears are given below.

a. Gear Transmission Error: Also known as Total transmission error, it
comprises manufacturing errors, mounting errors and teeth deflection and /
or deformation under applied load. This combined error is dynamic in
nature. For any instantaneous position of a gear it is defined as the
departure of the mating gear from the position it would occupy if the

system were ideal with constant velocity ratio and constant contact ratio.



b.

Variable Mesh Stiffness: Stiffness of teeth pair is a function of contact or
load position. It varies with change in load position. Load sharing between
the teeth when more than one pair of teeth are in contact, is influenced by

the variable mesh stiffness.

Non-Linear Backlash Element: With lightly loaded gears at higher speed,
tooth separation and subsequent reverse or forward impact can occur

resulting in higher dynamic loads.

1.5.2 SECONDARY FACTORS:

a.

Shaft Elasticity: Variation of shaft elasticity shifts the system natural
frequencies, indicating the influence of other factors in the system on the

gear dynamics.

System Inertia: Like shaft elasticity it also determines the influence of

other components in drive on gear dynamics.

Damping in the System: While the primary factors and system inertia
determine the critical regions, the severity of the response at the critical

regions is determined by the damping in the system.

Input Torque Fluctuation: It has significant influence on system stability.

Variation in Contact Ratio: It is the ratio of contact patch to the base
pitch, and indicates how many teeth share the load for how long during

one mesh period.



f. Effect of Friction: Induces non-linearity and requires elasto-hydrodynamic

lubrication study.

g. Coupling Between Torsional and Lateral Modes: At higher speeds it is
necessary to include the effect of coupling between torsional and lateral

modes.

A complete and accurate study, covering all the above factors has not yet been
carried out to evaluate the actual pattern of gear dynamics. Among the above variables

the gear transmission error plays the most dominating role.

1.6 Literature Survey

Primitive gear design mainly emphasized on the strength of gear material. Real
studies on gear dynamics in fact commenced in the eighteenth century with developing
empirical formulas of dynamic factor. It was a great initiative to focus gear design from
the static load bearing capacity of gears to its dynamic behavior. Spring-mass vibratory
models were introduced in gear dynamics in 1950s that inaugurated comprehensive

studies of a number of dynamic properties of gear drives.

Earlier studies considered tooth stiffness as the potential energy storing element in
the system and devised single degree of freedom spring mass systems neglecting stiffness
of shafts and bearings. Later objectives of dynamic modeling of gears emphasize studies
of bending stress, transmission efficiency, natural frequencies of the system, lateral, axial

and torsional vibratory motion, stability analysis and loads on driver and driven machine

10



components. Dynamic behavior of gears in mesh appeared with vibratory models that
incofporated many of the variables with linear and non linear properties. Models between
1970s and 1980s include effect of three-dimensional stiffness of gear teeth, non-linearity
of the system elements, damping and frictional effects. Later on discrete model analysis
of torsional, lateral and axial mode vibrations of gears came forward. In recent years
ﬁnité element analysis and other numerical approaches are used to study the coupled
lateral, torsional and axial vibrations. Increasing demand of high-speed machinery
induced extensive research on dynamic analysis of gearing since 1920s. Most

representative ones of different study-focuses are referenced here.

Buckingham [1] developed a dynamic load equation referring change in tooth
profiles due to elastic deformation and/or manufacturing error behind the cause of gear
load variation. It was shown that load variation mainly depends on effective masses,

effective errors and speed of gears.

Tuplin [2-3] introduced the first spring-mass model with equivalent constant mesh
stiffness. Dynamic loads due to transient excitation were modeled by the insertion and
witﬁdrawal of wedges of various shapes at the base of the spring. This model ignored
periodicity of the excitation and can be used to estimate dynamic factors of lightly loaded
gears at conditions well below resonance.

Harris [4] first emphasized the effect of transmission errors in the dynamic load of
gea? teeth. A SDOF photo-elastic gear model was used to identify the manufacturing

errors, variation in tooth stiffness and nonlinearity in tooth stiffness as the sources of gear
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vibration. The excitation was treated as periodic and specified “static transmission error”
as the magnitude of the excitation function. Dynamic instability due to parametric

excitation of the gear mesh was also studied.

Johnson [5] investigated the influence of elastic deformation of teeth on gear
dynamics. It was found that elastic deformation of teeth dominates over the tooth profile
error at higher speed and heavy load condition. The departure of constant velocity ratio
due to elastic deformation was indicated as the main forcing function behind the dynamic
loading. However, the study assumed constant stiffness and the characteristics of the

forcing function was shown in the frequency domain.

Gregory et al. [6] assumed the stiffness variation as sinusoidal function and
devised a torsional vibratory model for dynamic analysis of geared system. With
extensive experimental observations it was shown that non linear effects diminish with
increase in system damping. For heavily damped systems, they have referred simple
linear damping model to be a perfect choice. Aida et al. [7] first considered time varying
mesh stiffness along with periodic tooth profile errors for analyzing dynamic load. The

stability regions and steady state vibration were also determined by the study.

Ozguvent and Houser [8] conducted a comprehensive survey on mathematical
models used in the dynamic gear analysis with a brief discussion on the assumptions and

approximations made in most of the models. 188 papers from 1910 to mid eighties were
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classified into five groups: (i) Simple Dynamic Factor Models, (ii) Models with Tooth
Compliance, (iii) Models for Gear Dynamics, (iv) Models for Geared Rotor Dynamics
and (v) Models for Torsional Vibrations. Simple Dynamic Factor Models included
empirical and semi-empirical approaches to determine the dynamic factor used in gear
root stress formulae. The second group models studied the influence of tooth stiffness as
the only potential energy storing system, neglecting the flexibility of shafts and bearings.
While the third group included the uncoupled lateral and coupled lateral-torsional models
considering the flexibility of shafts and bearings besides the tooth properties. The fourth
group, however, extended the study including whirling motion of shafts. Models of
Torsional Vibrations within the detailed survey neglected flexibility of gear teeth -and

included the constant torsional stiffness of shafts connected with rigid gears.

Among the recent works Velex and Maatar [9] analyzed the influence of shape
deviations and mounting errors on three-dimensional gear dynamics by a lumped
parameter non-linear model. A unified approach was followed including time-dependent
non-linear mesh stiffness, mounting errors, flank modifications, profile, and lead errors in
that analysis. It was found that amplitude of vibration due to eccentricity is weaker than
the pitch errors. Mesh resonance frequency lowers with increase in misalignment for spur
gears. The transmission error considered for the study combines rigid body and static

deflection and varies from point to point along the face width.

Huang and Liu [10] developed a lateral continuous model considering the teeth of

a spur gear as a variable cross-section Timoshenko beam with involute cross section to
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investigate dynamic response of a single tooth and a gear pair. Dynamics of two gears
were also modeled by two beams connected by non linear contact stiffness. In the single
tooth model the time varying stiffness method was incorporated in order to investigate
the response of a gear tooth subject to meshing force. It was found that initial meshing
causes displacement at the tooth tip, followed by a sinusoidal displacement with an
exponential decay. Blank portion of the gear generates lower frequency vibration with
less amplitude whereas higher modes generated by the toothed portion play dominant

role. Damping ratio does not significantly influence the peak amplitudes at higher modes.

Nodolski and Pielorz [11] used a discrete-continuous model with two torsionally
deformable shafts and four rigid bodies with constant inertia in order to investigate the
effect of variable tooth stiffness on dynamic load of a single pair gear transmission
system. They also studied the influence of the number of gear teeth, damping and mass
moments of inertia on amplitude of response at various rotating speeds. It was shown that
with the decrease of number of teeth the resonant region widens. However in all cases
significant changes of the amplitude of the dynamic loads occur in third resonant region
and above this speed amplitudes remain almost constant. With increase in damping the
amplitude decreases in the first and third resonant regions, while in the second resonant

region amplitude increases with damping.

Theodossiades and Natasivas [12] analyzed periodic steady state motions and

their stability properties by a two DOF torsional model under the excitations generated by

torsional moments and gear geometry errors. The interaction of backlash and non-
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linearities (damping) was focused with variable mesh stiffness to investigate the response
and stability of some practical gear-pair models. The nonlinear periodic motion was
assumed for the single side tooth impact and the double side tooth impact on mating
gears. It was shown that an increase in stiffness gradually decreases the effect of double
side tooth impact and the resulting non linearity and decreases the resonant response
amplitude. For relatively large values of external forcing parameter, effect of backlash
and damping on response is negligible and for small values of the forcing parameter,

linear effect of meshing stiffness becomes weak.

Parker et al[13] used contact mechanics besides finite element analysis to
investigate the influence of nonlinear dynamic mesh forces due to change in teeth number
in mesh and contact loss across a wide range of operating speeds and torques. In order to
isolate the tooth meshing effects from other complications, the shaft and supports were
considered rigid and the response was assumed to be purely due to gear rotation. It was
shown that amplitude of resonance significantly increases with increasing torque. Torque
independent time-varying stiffness showed non-linear behavior whereas in case of torque
dependent stiffness, non-linearity decreased. It was also shown that the maximum tooth
load is considerably larger when contact loss occurs. Such contact loss of meshing teeth

was identified as the main source of non linear behavior.
Vaishya and Singh [14] modeled a two DOF discrete torsional system for a spur

gear and incorporated nonlinearity induced by sliding friction. The harmonic balance

method was employed to study the influence of frictional coefficient, static damping ratio
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and contact ratio subject to sliding friction on the dynamic transmission error. With
increase in friction, amplitude of second harmonic region significantly decreases.
Increase in damping ratio results in unstable responses with strong sub-harmonics at
higher frequency zone. However, with increase in contact ratio resonant frequency region
widens. It was shown that at certain resonant conditions, the non-linear sliding friction
acts like system damper reducing oscillation, however, at non-resonant speeds it has no

significant role.

Velex and Sainsot [15] analyzed the tooth friction excitations in errorless spur and
helical gears using Coulomb model. The pinion and the gear of a pair were modeled as
two rigid cylinders linked by a time-varying set of stiffnesses due to contact deformation
and structural deflection of gear teeth. The influence of gear geometry on torsional and
translational tooth friction excitation was found almost identical. It was shown that
contact length variation has minimum influence on frictional excitation. However,
depending on the position of the actual pitch point, high contact ratio gears can generate
substantial friction excitation. It was also observed that torsional vibration is much less

sensitive to tooth friction than bending vibration.

Wojnarowski and Onishchenko [16] investigated the effect of deformation and
tooth wear on spur gear dynamics with the help of geometric and kinematic models and
an elastic two DOF model. The geometric model identified tooth wear as the dominating
factor behind the change of the gear ratio over mounting and manufacturing errors. The

same phenomena were observed in a rigid model with a single-DOF system and in an
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elastic model with a two-DOF system. It was also shown that the variation of dynamic

load is harmonic and amplitude varies with the degree of teeth wear.

Vedmar and Anderson [17] calculated the dynamic gear tooth force and bearing
forces for different speeds of the gears using a model that mounts gears on linear elastic
bearings and external inertias on stiff bearings. Time-variant gear stiffness, non linear
friction between gear teeth in contact and viscous damping in the gear mesh were also
incorporated in the dynamic load analysis. It was observed that the number of natural
frequencies with flexible bearings is higher than those with stiff bearings. Two additional
frequencies appear in both frictional and normal direction of gear contact. The
frequencies in normal direction are dynamically coupled through gear contact, while
those in frictional direction are uncoupled to each other. The influence of gear
deformation on gear forces is dominating over other factors. It was also shown that
friction can produce significant bearing forces depending on the natural frequencies in

frictional direction.

Li and Yu [18] investigated the effect of parallel and angular misalignment of
gear shaft developing a non-linear coupled lateral torsional vibration model of rotor-
bearing-gear coupling system using Lagrange’s equations of motion. Involute tooth
profile and the engagement relations between the hub and the sleeve of gear coupling
were represented in the moving co-ordinate system, fixed with the sleeve. It was shown
that even-integer multiples of the rotating speed of lateral vibration and odd-integer

multiples of the torsional vibrations occur in the misaligned system and the integer
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multiples of vibrations are apparent around the gear coupling. The vibrations of rotors far

away from the couplings are not visible.

Li et al. [19] analyzed the coupled vibration of lateral, torsional and axial
displacements of a rotor-bearing system of bevel gears. Critical speeds, threshold speed
of stability and unbalance responses of the rotor bearing system were examined using
Lagrange’s equations of motion. It was shown that coupling between lateral and
torsional vibrations is more significant in most of the modes while axial displacement is
momentous in a few higher modes. However, critical speeds are roughly independent of
pitch cone angle of bevel gears. The threshold speed of stability of coupled system is less
than that of the uncoupled system. Significant unbalance responses were also noticed

along axial and torsional directions besides the lateral direction.

Luo et al. [20] introduced substructural modal synthesis method to analyze the
effect of coupling of torsional-lateral-axial vibration on multistage and multi-mesh
comi)lex geared systems. Finite element method was used for the dynamic analysis of
individual substructures disengaging each pair of gears. The modal synthesis method
incorporated matrix operations to extract useful data from a set of information about the
modes of all of the substructures. The modal analysis involving the first two natural

frequencies identified cross coupled interaction of lateral, torsional and axial vibrations.

Ananda Rao et al. [21] analyzed torsional-lateral vibrations of a three-pinion

complex geared shaft system. Substructural modal synthesis method was used to
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investigate the effects of backlash on torsional frequencies and effect of gear-meshing
stiffness on the torsional-lateral coupled frequencies. A two-node six DOF beam element
was employed for modeling each shaft. Lateral and torsional motions were coupled with
the introduction of meshing spring at each of the gear pair. It was also observed that the
influence of backlash in lower modes depends on the meshing stiffness, while backlash
effect in higher modes is insignificant. Coupled natural frequencies increase with increase

in gear-mesh stiffness.

Lee et al. [22] studied coupled lateral and torsional vibration responses of a speed
increasing geared rotor-bearing system. A detailed examination was carried out to
analyze the coupled and uncoupled free vibrations at variable gear mesh stiffness with
rotating speeds under consideration. The result showed that some modes may yield
coupled lateral and torsional mode characteristics with the increase of gear mesh stiffness
over a certain range. However, a given dominant mode may change from an initial

lateral one to torsional one or vice versa.

Vinayak et al [23] examined the multi-mesh transmissions of external, involute,
fixed center, helical and spur gears. Each spur or helical gear is modeled as a rigid body
with six degrees of freedom. The stiffness matrix coupled all six degrees of freedom
between gear teeth to describe position varying teeth contacts. Meanwhile the rolling
element bearings of the geared shafts were modeled as simple radial stiffness elements to
device a combined bearing-shaft-gear model. The steady state response of linearized

equations with time or position-varying coefficient (LTV) model was calculated by using

19



two solution techniques: numerical integration and Galerkin’s multi-harmonic balance
method as a semi-analytical approach. The eigen values of the linear time-invariant
(LTI) model for single and multi-mesh gears well matched with the results of finite

element method using ANSYS software.

Rook and Singh [24] developed a lumped parameter torsional model for studying
the impact effects on a reverse-idler geared system. The concept of effective stiffness was
introduced to determine the natural frequencies of non-linear system with the existence of
backlash and rattle phenomena in each gear in addition to the viscous damping. External
pulséting torque was considered as the only source of excitation without considering the
static transmission error. The periodic response of a system with multiple clearances was
calculated by using Galerkin method (multi harmonic balance method). The Floquet
theory is used to study the stability of such solutions. The result of the multi-harmonic

method well matched with the predictions of the numerical integration techniques.

Yuksel and Kahraman [25] developed a computational model of a planetary gear
set to study the influence of surface wear on the dynamic behavior of planetary gear set
forrﬁed by spur gears. The wear model employed a quasi-static gear contact mechanics
model to compute contact pressures and Archard’s wear model to determine the wear
depth distributions. Different amounts of wear depths were introduced in the dynamic
model to quantify the differences in dynamic behavior from the baseline behavior

representing a gear set having no wear. It was observed that the tooth surface wear
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influences the fundamental harmonic of the gear mesh forces the most. It was also shown

that wear has negligible influence on the nonlinear behavior.

Lee and Ha [26] developed a finite element model to study the unbalance
response orbit of a gear-coupled two-shaft rotor-bearing system. The method was applied
to the unbalance response analysis of a turbo-chiller rotor-bearing system, having a bull-
pinion speed increasing gear. The driver rotor-bearing system consists of the motor and
bull gear and the driven rotor-bearing system consists of the compressor impeller and
pinion gear. The coupled and uncoupled unbalance responses of the driver and driven
rotor-bearings were found almost identical except a bump at the first torsional natural
frequency. The torsional resonance has influenced the lateral unbalance responses
because of the coupling effect of the lateral and torsional dynamics due to gear meshing.
It was also predicted that the lateral coupling between the driver and driven rotor systems

is very limited.

Litak and Friswell [27] examined the effect of broken tooth and meshing stiffness
fluctuations on the vibration response of nonlinear geared systems. Periodic change of
meshing stiffness was considered in the analysis. Various types of tooth errors were
analyzed with a random distance between their increasing teeth contact. It was identified
that regular and chaotic dynamic jump phenomenon are present in the vibration response.
It was shown that the system is more sensitive to errors in the teeth pitch than fluctuations
in the stiffness magnitude, although the qualitative effect is almost similar. One broken

tooth has little influence on the dynamics of the gears, although two broken teeth can
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have a significant effect. If two adjacent teeth are broken, a complex response is observed
with the jump phenomenon changing from the regular to the chaotic attractor. The time
history also detected the reverse jump from chaotic to regular attractor. It was predicted
that for a sufficiently large noise level, the vibration response returns to the intermittent

behavior with jumps between the regular and chaotic phenomena.

Velex and Ajmi [28] investigated the role of transmission errors as excitations in
gear dynamics using some existing models and devising three-dimensional models of
single-stage geared transmissions. It was observed that the time derivatives of no-load
transmission errors (NLTE) appear as additional excitations whose contributions increase
with speed and also depend on the nature of tooth deviations/errors. The spectrum
analysis depicted that amplitude of low-frequency vibration generated from eccentricities
and cumulative pitch errors are moderate in terms of time derivatives of NLTE. However,
higher frequencies associated with individual tooth deviations yield amplitudes lower
than those associated with low frequencies. It was deduced that minimizing the
ﬂuctuations of quasi-static transmission error under load, reduces displacements and

reduces dynamic tooth loads.

Bonori and Pellicano [29] used the classical one-degree-freedom model to analyze
non linear vibrations of spur gears in the presence of manufacturing errors. One-degree-
of-freedom system included backlash, profile errors and time varying stiffness that was
obtained on static basis by means of a finite element analysis. Statistical approach was

used to involve transmission error combining profile error distribution given for each
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tooth as a random basis. It was shown that manufacturing errors induce a considerable
vibration amplitude increase at all frequencies. This behavior is more evident at low
speeds, where contact loss can also occur. The presence of manufacturing errors
magnifies the amplitude of vibration and leads to chaotic vibrations in a wide range of
rotation speeds when the external torque is negligible. On the other hand, an extremely
narrow region of chaos is observed in the absence of manufacturing errors. The use of
measured errors gives more realistic information; however, a large set of gear pairs have

to be measured in order to obtain a full statistical error distribution.

Mahalingam and Bishop [30] used modal analysis technique to resolve a multi-
DOF discrete torsional system coupled by a pair of gears. An internal displacement
excitation was applied within two mating gears as a harmonic function of total
transmission error. Total transmission error is considered as the combination of mounting
error of the geared system, manufacturing error of teeth, and elastic deformation of teeth.
With a numerical example of a simplified four DOF system, natural frequencies and
principal modes are derived. The modal inertia and stiffness coefficients are calculated to
investigate the transient and periodic response and dynamic torque due to the internal
displacement excitation. The resonant response and dynamic torque of the most

influencing mode are calculated assuming a reasonable dynamic magnification factor.

23



1.7 Motivation for the Thesis Work

Above vibratory models investigated gear dynamics from different perspectives
and identified several factors contributing to dynamic loads in geared systems.
Manufacturing error, mounting error of bearings and gears, periodic variation of tooth
elasticity, variation of meshing position, tooth wear, backlash, friction etc. are identified
as the major sources of dynamic loading on gears generated by the system itself. The
effegt of the individual factors varies with rotation of gears and causes internal excitation,
investigation of which does not capture the overall picture as a consequence of the
combined effect. Finite Element Method is extensively used in recent works to analyze
dynamic loads incorporating most of the above contributing factors and also to
investigate coupling of lateral, torsional and axial responses. Such a discretization
method, however, involves a large number of degrees of freedom that is in fact

computationally less efficient and sometimes yields incorrect results.

Total transmission error approach [30] was found to be more realistic to
investigate dynamic loads caused by internal excitation within the meshing gears as a
periodic function of combined effect of manufacturing error, mounting error and elastic
deformation. The interest grew more when modern optical encoder and highly sensitive
accelerometers make it possible to precisely measure the total transmission error resulting
from the tooth wear, manufacturing error, improper mounting of shafts, bearings and
gears as well as the periodic changes of meshing stiffness. However, the discrete model
holds a constant value for the torsional stiffness of the shafts and ignores the distributed
mass and elasticity of the shafts. Moreover, the equivalent mass approach for lumping the

gear pair is not able to investigate the responses of the gear and the pinion individually.

24



Mode shape of the discrete analysis on the other hand lacks consideration of rotational
direction of the driving and driven gears. A continuous model is considered to be better
for the investigation of the self-excited vibration that incorporates mass and physical

properties of the shafts as well as the direction of rotation of the meshing gears.

1.8 Objectives and Scope of Work

The main objective of the thesis is to develop a continuous model to study the
inﬂﬁence of self-excitation on torsional vibration of a geared shaft system. In the absence
of external excitation, the equation of motion of the torsional vibration becomes
homogeneous. However, the internal displacement excitation between the gear and the
pinion introduces time-variable boundary conditions to the homogeneous partial
différential equation of torsional vibration. Proposed model resolves the problem by
converting the homogeneous equation of motion with non-homogeneous boundary
conditions into a non-homogeneous equation with a set of homogeneous boundary
conditions. It is a new continuous approach for analyzing the self-excited torsional

vibration of geared system.

It is proposed to first study the lumped mass model [30] and then to develop a
SIMULINK model for analyzing dynamic load of gear due to transient and steady state
tranémission error. The results of free torsional vibration of the proposed continuous
model will be compared with the results of the numerical example in [30] based on the
discrete model. Then the higher mode natural frequencies will be verified by devising the

classical Rayleigh-Ritz model for the geared system. Boundary characteristic orthogonal
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polynomial functions [39] will be used as deflection shape functions in the Rayleigh-Ritz
model. A simplified gear model will be designed and tested to validate the proposed

mathematical model and for rendering future extension of this study.

1.9 Organization of Thesis

In Chapter 1, an introduction to gear geometry, dynamic loading of gear, factors
influencing the gear loadings are briefly explained. A complete literature review is
provided, which gives an insight into the research done for analyzing the influence of
different factors on dynamic loading of gears. It also includes the motivation, objectives

and scope of the thesis work.

In Chapter 2, the 4DOF example [30] has been analyzed by developing a
SIMULINK model to determine the response and dynamic torque due to the transient and
steady state transmission error. Simulation results are analyzed and discussed.
Magnification factor of resonant dynamic torque at the most influential mode is
compared with the assumptions made in the numerical illustration [30], while

determining the responses of individual lumped masses.

Chapter 3 develops a new continuous model for torsional vibration analysis of the
geared system due to internal displacement excitation as a harmonic function
approximating the total transmission error. The torsional vibration of the geared system is
analyzed considering continuously distributed mass and torsional rigidity of the shafts.
The proposed mathematical model resolves the problem of homogeneous partial

differential equation of motion with non-homogeneous boundary conditions caused by
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the harmonic transmission error in the gear pair. The natural frequencies and mode shape
of the first four modes have been compared with the results of the discrete analysis. The

responses of the driving and driven gears are displayed in time and frequency domains.

In chapter 4, the Rayleigh-Ritz torsional model for geared system is developed to
compare the free vibration results of the continuous model. Boundary Characteristic
Orthogonal Polynomial Functions are used as deflection shape functions. Deviations of

natural frequencies from the Rayleigh —Ritz model are also analyzed.

Chapter 5 presents the experimental investigations on a simplified geared shaft.

Results of the experimental model of the geared system are also displayed and discussed.

Chapter 6 discusses conclusions based on the results obtained and

recommendations for the extension of the work in future.
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CHAPTER 2

DISCRETE MODEL FOR GEARED SHAFT

2.1 Introduction to Discrete Model

The numerical example discussed in [30] is shown in figure 2.2.1 and is used as
a base for the comparison of the results of the proposed mathematical model with the
non-homogeneous time dependent boundary conditions. The angular deflection of the
rotating masses are considered as the generalized co-ordinates of the torsional vibration
model. The time variable ordinary differential equation of motion of the system is

obtained using Lagrange’s equations.

In this chapter natural frequencies and principal vibration modes of the 4DOF
torsional model are analyzed. Periodic responses due to harmonic transmission error and
torsional excitation have been analyzed employing SIMULINK models. The
magnification factor of the resonant dynamic torque, approximated for the solution of the

4DOF torsional model [30] is also investigated.
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2.2 Equations of Motion:

The geared system A has a driving sub-system B and driven sub-system C
coupled by a pair of rigid gears 3’ and3”. The sub-system B consists of two shafts

having torsional stiffness K1 and K, and three rigid bodies having mass moments of

inertia ,,, Ip,and I,, where as the sub-system C consists of one shaft with torsional

stiffness K3 and two rigid bodies with mass moments of inertia 1,,. and /,,.

A schematic diagram of the 4 DOF geared shaft system is shown in figure 2.2.1

Ip4

| Im . .)N
(—— N

i 4«—Sub-System C  —P
Sub-System B~ ———>

”l

[ System A >

Figure 2.2.1 Schematic diagram of a 4-DOF lumped mass torsional model

For simplicity, disks and gears have been considered to be rigid and the shafts to
be massless having constant elasticity all along the length. Non-linear effects such as

backlash, friction, or gap between meshing teeth pair have been neglected.
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With a constant gear ratio N, ideally the sub-system C rotates at N times the
rotation of the sub-system B. Even accurately mounted gears with perfect tooth profile
introduce an additional angular displacement due to variation of tooth deflection, which
is termed as angular transmission error. With inclusion of mounting error and/ or teeth
proﬁle error the total transmission error further increases and the driven gear gets an

additional angle of twist with respect to the driving gear.

If g,and g, are the angular displacements of the driving and driven gears and
7(t). is the time variant angular transmission error, then gq,.(¢) = Ng, (£) + 7(¢).

Similarly g, (1) = Ngy (1) + 7(0)

Since the sub-system B is capable of rotating the sub-system C, the total kinetic

energy of the system is given by

T_l- I 2 I . 2 I .2 I N o\ 2 v 2
= 2[ pidi tLpoqy +1pyqGy + 1o (NGy +7)" + 15,45 ]
—11'21'21 N*I1,.)¢% +2NIL ¢, 7+ 1wy + 1,67
—2[ pdy Ty +Upy + py )y t 2Ny Gy +1ppy™ +1,,4,]

T = 5[L,,ql2 +1p,Gs +1pyG3 + 2N oy ¥y + 1 pp? + 15,41 ] 2.0

The mass moments of inertia of the mating gears are referred to the driving side

and hencel,, = I, + N’I,,. and the corresponding angular displacement is that of the

driving gear (g, = g).
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Strain energy of the system is given by

1 2 2 2
U ==K - 00" + K3 (0, 40 + K3 (g =0,
_ 1[ 2 2, K _ 2]
"_2'K1(Q1_Q2) +K,(q, —q5)" +K;(Ng, +7 —q,)

1 1 1 1 1
U = EK,qf +5Klq§ -K,q,9, +5qu22 +5qu§ -K,q,4; +5K3N2q§

1 1
+'§K372 +§K3qéf +NK,q,7 - Ky, — NK3q,9, (2.2)
Applying Lagrange’s equation with generalized co-ordinates g, —%(—S—Z—) + Z—U =0,
q; q;

One can get four equations of motion for i = /, 2, 3, 4, which can be written in the matrix

form as:
1, 0 0 ol|9]| [K  -K 0 0o 1|4
0 I, 0 0 <6'1'2} -K, (K,+K,) -K, 0 |9 _
0 0 I, 0||4d:|T| 0 -k, K,+NKk, -NK,||4
00 0 I,|lg4) | O 0 ~ NK, K, |44
Q
& ) (2.3)
O, —NK,y — NI,y

O, +Kyy

where ), O, Q3 Qg are the periodic torsional load applied to the system and y(¢)
is the internal displacement excitation due to the periodic transmission error within the
meshed teeth. Even in the absence of the external torsional loading, the equation (2.3)

remains non-homogeneous.
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I, 0 0 0](4) |k -K 0 0 q, 0
0 1, 0 01}4, + -K, K +K;) -K, 0 92| _ 0
0 0 I, 0|4, 0 -K, K,+N°K, -NK, ||q;| |-NKy—NLj
0 0 0 I,|lg4] | 0 0 —NK, K, |4 Ky

2.4
The right hand side of the equation (2.4) thus provides the forcing function due to

the internal displacement excitation generated within the meshed teeth of coupled gears.

The homogeneous form of equation (2.4) is used to study the free vibration

behaviour of the system. Accordingly, the homogeneous form is given by:

I, 0 0 01]/4g K, -K, 0 0 q,] [0
0 I, 0 0}|]g, + -K, (K| +K)) -K, 0 92| _ 0
0 0 I, O0]]|qg, 0 -K, K,+N’K, -NK, ||q,| |0
0 0 0 [Ip](g4) | O 0 - NK, K, |la.) (0

2.5)

The equation (2.5) can be symbolically represented as:

[/}a}+ (& Ka}={o} (2:6)
Under free vibration conditions the system will vibrate with its natural

frequenciesw,, [ i = 1, 2, 3 and 4 for a 4DOF discrete model], with
q(t) = Asinw;t , where A is the amplitude of the vibration, and
q@) = —Aa),.2 sinw;t = —wizq(t)
The eigen values and eigen vectors can be obtained by solving the eigen value

problem
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[xKa}-?[7Ha}= {0}

(&]-2[7]a} = {0} where, 4, = @} @.7)
Since ¢(¢) has a finite value, the nontrivial solution of the equation (2.7) is

possible only if the determinant of ([K |- 4,[/]) vanishes. Hence
[&]-4[7]=0 | (2.8)
The roots of the characteristic equation (2.8) are the eigen values, the positive

square roots of which are the natural frequencies ;. For each value of 4, the equation

(2.7) has a nontrivial vector solution {g*’}termed as eigen vector which represents the

natural mode of vibration.

2.3 Results of Free Vibration:
Solution of the eigen value problem in equation (2.8) will provide four natural
frequencies w,,w,,m, and @,and a set of modal matrix [{qi(l)},{qi(z)},{qi“)},{qi“)}].

After normalization one can get the normal modes of the system as

v w4 vy,

The parameters of the numerical example in [30] used in this study are as follows:

I,,=0.6 kg-m® I,,=2Kg-m* Gear ratio, N =

W | =

I,,=10 Kg-m® K, = 800,000 N-m/rad
I,,=0.1 Kg-m’ K, = 1,200,000 N-m/rad

I,,=0.6 Kg-m* K, = 800,000 N-m/rad
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Table 2.3.1 provides the natural frequencies of the system. The corresponding
mode shapes are given in Table 2.3.2. These mode shapes specify the actual angle of
rotation at the four degrees of freedom. Each column of the table represents a mode. It

must be noted that at the gear location at station 3, the angular deflection corresponds to

driving side and at the station 4, the angular deflection corresponds to the driven side.

TABLE 2.3.1 NATURAL FREQUENCIES OF 4DOF LUMPED MASS MODEL

Modes st 2nd 3rd 4™
Natural Frequencies 0 5,881 11,350 26,797
TABLE 2.3.2 NORMAL MODES:
1st 2nd 3rd 4th
1 1 1 1
1 0.7155 -0.059483 -4.906
1 -1.7359 -0.065572 313.1
0.33333 -11.199 0.0086338 -5.5851

The mode shapes are shown in figures 2.3.1 t0 2.3.4.

PN
_—— e - =

NE-—-d-—-d— -
WH—-=1T=-=---

4
Station

Figure 2.3.1 Mode shape at rigid body mode of the discrete model
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Figure 2.3.4 Mode shape at 4th natural frequency of discrete model

In a parallel geared system, direction of rotation of the driven shaft is opposite to
that of the driving shaft. This phenomenon is observed in the 3™ and 4™ mode shapes.
Accordingly, in the rigid body mode (mode-1) and 2" mode, angular deviations of the
driving and driven gears corresponding to the stations 3 and 4 should have been in
different direction. However, they are in the same direction. Thus it has been observed

that the discrete analysis does not consider the direction of rotation.

24 Modal Analysis

With the derived normal modal matrix, the orthogonality of the normal modes can

be verified. Since the mass moment of inertia matrix is a symmetric matrix, we have

O v }=Le] fori=j

and {y/(i)}r[.l]{t//(f)} =0 fori # j
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2.5 Simulation of Forced Vibration:

Equation (2.3) represents the governing equation of motion for the torsional

vibration of the system illustrated here. A simulation model is formulated using
MATLAB SIMULINK for equation (2.3) in order to analyze the angular deflection-

responses of the four discrete masses.

SIMULINK MODEL FOR STEADY STATE VIBRATION WITH TRANSMISSION ERROR

—Pduidt

Derivative1 Denvativg2

Nl

Regponsss
Accumulated

aw|
Y

e "
—»mz o 1

I ]

nl
Y|

3 =F3Sinwt >

n
Y|

{2 = F2°Sinwt

ft = F1*Sinwt

Figure 2.5.1 SIMULINK model for steady-state vibration due to internal

excitation of total transmission error and external excitation

Responses of each mass element with different values of transmission errors in
the absence as well as in the presence of external torsional loads are shown in the
following figures 2.5.2 to 2.5.9. In each case the responses of disk-1, disk-2, and the

equivalent mass 3 and disk-4 are arranged from top to bottom chronologically.
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Figure 2.5.2 Responses of mass elements with transmission error in radian,

¥(t) = .0001 sin @t and external excitation in N-m, F(t) = 0; @ =1256.6 rad/s
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Figure 2.5.3 Responses of mass elements with transmission error in radian,

y(t) = .0005 sin w¢ and external excitation in N-m, F(t) = 0; @ =1256.6 rad/s
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Figure 2.5.4 Responses of mass elements with transmission error in radian,

v(t) =.001 sinw¢ and external excitation in N-m, F(t) = 0; @ =1256.6 rad/s
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Figure 2.5.5 Responses of mass elements with transmission error in radian,

v(t) = .0025 sin w¢ and external excitation in N-m, F(t) = 0; w =1256.6 rad/s
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Figure 2.5.6 Responses of mass elements with transmission error in radian,

¥(t) = .0001 sin wt and external excitation in N-m, F(t) = 50 sinwt ; w =1256.6 rad/s
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Figure 2.5.7 Responses of mass elements with transmission error in radian,

¥(t) = .0001 sin w¢ and external excitation in N-m, F(t) = 100 sinwt ; w = 1256.6 rad/s
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Figure 2.5.8 Responses of mass elements with transmission error in radian,

y(t) = .0001 sin ot and external excitation in N-m, F(t) = 150 sinwt; @ =1256.6 rad/s
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Figure 2.5.9 Responses of mass elements with transmission error in radian,
Y(t) = .0001 sin wt and external excitation in N-m, F(t) =250 sinwt ; @ =1256.6 rad/s
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Figures 2.5.2 to 2.5.5 represent the steady state responses of the discrete masses
due fo harmonic transmission error in the absence of the external excitation. On the other
hand figures 2.5.6 to 2.5.9 show the influence of the external excitation on the geared
system with negligible transmission error. It has been observed that the torsional
vibration of the equivalent mass (mass 3) is mainly caused by the transmission error. The
31 fnass responds more significantly at the higher transmission error. However, with
increase in external excitation, torsional vibration of the equivalent mass remains the
same. It has also been observed that the torsional vibration of the 4th mass gradually
increase with increase in transmission error, although the response is far less than the
equi-valent mass. Conversely, the internal excitation has negligible influence on the 1%
mass, and the 2" mass. Torsional vibrations of these two masses are mainly occurred due

to the external excitation.

External excitations at forcing frequency introduce beat vibration, which is
distinctly shown in figure 2.5.8 and 2.5.9. The beat vibration occurs as the forcing
frequency approaches the 3™ natural frequency. Frequency of the beat vibration is the
difference of the forcing frequency, 1256.6 rad/s (12,000 cpm) and the 3" natural

freqﬁency of the geared system, 11,350 cpm.
Frequency of the torsional vibration of the equivalent mass is observed to be 2.25

times the driving shaft frequency although the gear speed ratio is 1/3. The reason behind

the phenomenon is not identified.
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2.6 Dynamic Torque
The Lagrange’s equation with the generalized co-ordinate y(¢)yields the dynamic torque

d 0T. oU
fi dt(ay) oy @7

Differentiating the system kinetic energy in equation (2.1) w.r.t. y(¢)yields

or .
= =Ny + 1y
7

Again differentiating equation (2.2) w.r.t y(¢)reveals that %E =K,y +NK,q,-K,q,
4

Noting that g, = ¢, equation (2.7) becomes:

7(t) = Nl pyqy +1py 7 + K3y + NK g, —K3q4 (2.8)

The numerical example [30] analyzed the dynamic torque of an engine driven
geared system with a pinion of 20 teeth. At the engine speed of 1310 rpm, the gear mesh
frequency (26,200 cpm) is close to the most dominating, 4" natural frequency (26,797
cpm). Magnification factor of the resonant torque at the 4™ mode was assumed to be 30
times the steady-state dynamic torque. Such magnification was used to derive torsional
responses by modal analysis. A SIMULINK model of the equation (2.8) can be devised

to investigate the steady-state and resonant dynamic torque.
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Figure 2.6.1 Dynamic torque of a geared system with transmission error in radian:

0.0001 sinat ; w=137.2 rad/s (f=1310 cpm)

Figure 2.6.1 shows the synchronous dynamic torque of about 2800 N-m at the
shaft speed of 1310 rpm (137.2 rad/s). The amplitude of transmission error of the driven

gear with respect to the driving gear has been considered as 0.0001 radian.
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Figure 2.6.2 Dynamic torque of a geared system with transmission error in radian:

0.0001sinwt @ =2,743.65 rad/s (f=26,200 cpm)

With a driving gear of 20 teeth, the gear mesh frequency of the gear drive is 1310
X 20 cpm = 26,200 cpm which is close to the fourth natural frequency, 26,797 cpm. The
resonant dynamic torque is about 117,600 N-m as shown in figure 2.6.2. Thus the
amplification factor of the resonant dynamic torque is about 42 times the steady state
dynamic torque at shaft frequency 1310 rpm. It can be compared to the assumed
magﬁiﬁcation factor: 30 in the numerical example [30] while deriving the 4" mode

resonant responses of discrete masses by modal analysis. A beat vibration is thereby
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observed at the frequency of (26,797 — 26,200) = 597 cpm = 10 Hz, due to the responses

at the forcing frequency of and the fourth natural frequency.

2.7 Summary

The free vibration analysis of the 4DOF discrete model yields natural frequencies
and 'corresponding mode shapes. It is observed from the normalized mode shapes that the
discrete analysis neglects the direction of rotation of the driven gear with respect to the
driving gear. Meanwhile, the forced vibration analysis indicates that the geared systems
experiences torsional vibration due to internal displacement excitation in the absence of
torsional excitation. The simulation results provide more realistic value of magnification

factor of dynamic torque at the 4™ patural frequency.

In this model, Mass-3 is regarded as the equivalent mass of driving and driven
gears. Thus mode shapes and responses do not clearly identify the angular deflections of
driving and driven gears. Moreover, the geared shafts of discrete model are considered
massless with constant elasticity. But in reality, shafts possess mass. Mass and elasticity
of the shafts may also vary from point to point along the length of the shaft. For accurate
investigation of the influence of internal excitation, the following chapter will study the
system with shafts having continuously distributed mass and elasticity. The direction of
rotation of driven gear with respect to the driving gear will also be taken under

consideration.
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CHAPTER 3

CONTINUOUS MODEL WITH TIME DEPENDENT

BOUNDARY CONDITIONS

3.1 Introduction to Continuous Model

In the previous chapter it is observed that geared systems experience significant
torsional vibrations due to the periodic transmission error even in the absence of external
excitation. However, discrete analysis does not consider mass and elasticity of geared
shafts. For more realistic analysis of the torsional vibration of the geared system, a
continuous model is proposed in this chapter. In addition to the distributed mass and
elasticity of the geared shafts, the direction of rotation of the driven sub-system with

respect to the driving sub-system is maintained in the analysis.

For approaching a continuous model for the geared system illustrated in the
previous chapter, position of each point in the elastic system needs to be specified using a
coordinate system. The equation of motion then takes the form of a partial differential
equation with respect to time and space in each of the three regions of the geared system.
Each region has specific boundary conditions, which also have to be satisfied by the

solution.
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3.2 Mathematical Model

In the proposed continuous torsional model of the geared system it is assumed
that the shape of the cross sectional area of each of the shafts is such that the motion can
be régarded as a torsional twist of the cross-sectional plane as a whole and without

warping. The shaft material is also considered isotropic and homogeneous.

As in the previous chapter the driving and driven sides of the geared system here
also are termed as sub-systems B and C, respectively. The shafts of both the sub-systems
are supported on rigid bearings. The torsional stiffness of each shaft is represented by the

elastic properties.

G, p,

XK | o ( Je ((XI

+— L —>]
— L, "

¢ L ‘ >
—————»X

< Sub-System B —"*—Sub-System C—%
< System A >

Figure 3.2.1 Schematic diagram of the proposed continuous model
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The material properties are given in Table 3.2.1.

TABLE 3.2.1 MATERIAL PROPERTIES

Material Properties  [Symbol Unit

Poisson’s Ratio H - 0.3
Modulus of Rigidity G N/m? 8.0769X10™
Density P Kg/m’ 7800

3.2.1 EQUATIONS OF MOTION

The three shafts are made of the same material. Consequently, the governing
partial differential equation for the torsional vibration of the geared system with periodic

torsional excitation z(¢) can be represented by:

d? H(x ) o’ H(x )]

GJ,()— 5= +7() = p(x)J] ,(X)——5—

or p(x)J, (x)é(x, ) —GJ ,(x)0"(x,t) =7() (3.0)

where the corresponding quantities in the three regions are given by

Jp],91 no<x<lIlL
JP3’€3 ian <x<L

For the convenience of presentation p(x) and Jp,(x) have been represented by p

and J, , respectively.
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The scope of this thesis is to investigate the influence of internal displacement

excitation on the torsional vibration of the geared system, while external excitation z(¢)is

assumed to be zero. Thus the equation (3.0) becomes:
pO(x,1)—GO"(x,t)=0 (3.1

3.2.2 BOUNDARY CONDITIONS:

The torque balance equation [31] for the constant inertia of the disk 1 at x=0
is
GJ »,0,(0,¢) = I1,6,(0,1)

= GJ,,6/(0,6)=1,,6,(0,0)=0 (3.2.1)

For the continuity of angular deflection from shaft 1 to shaft 2 atx =L,
6,(Ly,1) =6,(L,,?)

= 0,(L,,1)—0,(L,,t) =0 (3.2.2)

The torque balance equation for the constant inertia of the disk 2 at x=1L;:

GJ 03 (Ly 1) = GJ 0 (L) = 1,0, (L, 1)

= GJ p, 05 (Ly,t) = GJ py0)(Ly 1) = 15,6, (L;,£) = 0 (3.2.3)
For the continuity of angular deflection from shaft 2 to shaft 3 at x =L,

-0,(L,,t)=NO,(L,,t)+y(t)

= —0,(L,,t) = NO,(L,,t) = y(t) (3.2.4)
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[t should be noted that the continuity condition at the gear location considers the

change in direction of rotation for the driven gear.

The force balance equation with the constant inertia of the driving gear and the

driven gear at x = L, yields that

, N 1 , ..
GJ py0;(Ly,t) = 1 p3n 0, (L, , 1) = ——J\;[GJ,,ZQ2 (Ly,t)+1,3.0,(L,,1)]
Substituting for 6,(L,,¢) from equation (3.2.4) we get

, 1 , J ..
= G 0y (Lyo )+ G Oy (L 1)+ (N g+ =20, (L ) = L 70 (3.2.5)

The torque balance equation for the constant inertia of the disk 3 at x = L reveals

that

GJ 005 (L,t) = =1 ,0, (L, 1)

GJ p,05(L,t) +1,,,0,(L,t) =0 (3.2.6)

Equations (3.2.4) and (3.2.5) are identified as time-dependent non-homogeneous

boundary conditions among the six boundary conditions [(3.2.1) to (3.2.6)].

Thus in the absence of the external torsional excitation within the geared shaft the
equation of motion remains homogeneous with non-homogeneous time dependent
boundary conditions due to the presence of periodic transmission error within the meshed

gears.
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The torsional vibration problem with time-dependent boundary conditions can be
solved by using Laplace transformations. However, difficulties arise in the computation
of inverse transforms which requires integration in the complex plane. Meirovitch’s
technique [32] solves the problem by transforming the homogeneous equation with non-
homogeneous boundary conditions into the non-homogeneous equation with
homogeneous boundary conditions. And finally the non-homogeneous equation can be
solved by convolution integration. Such an approach was followed while analyzing
lateral vibration of Bernoulli-Euler beams [33] and investigating the influence of internal
cutting forces in whirling motion in deep hole-boring process [34]. The proposed
continuous model is a modified approach to torsional vibration analysis of geared shafts

subjected to internal displacement excitation.

At first, solution of the boundary-value problem described by equation (3.1) and

boundary conditions (3.2.1) through (3.2.6) are assumed in the form

G (x,t) = 9,(x,1) 0<x<L,
9, (x,8) = @, (x,0) + f,(x)7(?) Li<x<L, (3.3)
G (x,8) = @, (x,0) + f3(x)y(0) Ly<x<Ls

Functions f,(x)and f;(x) are chosen so as to render the boundary conditions for

the variables ¢, (x,¢) , @,(x,?) and @, (x,f)homogeneous [32].

To introduce the boundary conditions of the current problem for ¢, (x,¢) ,

@, (x,t) and @, (x,?), equations (3.3) are substituted into equations (3.2.1) through (3.2.6).

56



Consequently we get,

GJ 1 0,(0,8) =1 p,9,(0,) =0 (3.4.1)
o (Ly,t) = 0, (Ly,0) + f5,(Ly)y ()

= ¢1(L1’t)“¢2([‘1at)=f2(L1)7(t) (3.4.2)
GJ oy [ (Ly, 1) + 3 (L) y(9)] - GJPl(r”’l (Ly,8) = 1p[ @, (Ly, ) + fo(L)F(D)]

= GJ oy (Ly,8) = GI @ (L) = L py oy (Ly,8) = =G p, £ (L) y (8) + L, /5, (L) F(D) (3.4.3)
=@, (L, 1) = f3(Ly)y (@) = N[@,(L,,0) + [, (L)y )] + y (@)

= =@3(L,,t) = No,(L,,t) =[Nfy (L) + f3(L,) + 1]y (?) (3.4.4)
GI I (Last) + (L)Y O+ -G pllp} (L) + f(Lo)r O]+

(VL py + 25, (L) 4 Fo(L)FO) = =L 0)

, G , Ioo ..
= GJP3¢’3(L2J)+'I—V‘JP2¢2(L2’t) + (NI ps +';\}_3)(P2(Lz’t) =

1 s , . .
- FGJmfz (Ly) = GJ p3 f3(L)]y(8) = [( M py + —A",")fz (L)) +1p3.17(2) (3.45)
GJ p3 @3 (L, t) + [ (L)y ()] = =L py[ @5 (L, 1) + fo (L) 7 (1))
= GJ py @3 (L, 8) + L py 3 (L, 1) = =1y [y (L)Y (1) — GJ 3 f; (D)7 (1) (3.4.6)

In order to get the homogeneous boundary conditions for variables ¢, (x,?) ,
@, (x,t) and @,(x,t), the terms on the right hand side of the equations (3.4.1) through

(3.4;6) must be equal to zero. Accordingly,

fr(L)y@) =0 (3.5.1)
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~GJ ) f[5(L)y (@) + 1, /,(L) ()= 0 (3.5.2)

[N, (Ly) + fo(Ly) +117(6) =0 (3.5.3)
- [% GJ py (L) + G 5o fi(L) (D) ~[(NI o + %)fz L)+ 1 0)=0  (354)
Lo fy(D)F©) = GJ oy L)y () =0 (355

The fundamental harmonic of the periodic transmission error, y(¢)is assumed as
the dominant component given by y(¢) = y,Sinwt .

Since 7(f) # 0, equation (3.5.3) indicates the relation between f;(x) and f,(x) as

Ji(x) =1+ Nf, ()] (3.6)

Similarly equations (3.5.1), (3.5.2), (3.5.4) and (3.5.5) yield

L) =0 (3.7.1)
—Gjpzﬂ(Ll)“wzlefz(LJ:O (3.7.2)
86 fi (L) G i )1+ 0 (VT 22 () + 1] =0 (3.7.3)
@’ I py f,(L) = GJ s f3(L)=0 (3.7.4)

Since there are four conditions to be satisfied by f, (x), let us assume
f1(x)=D,x* + D,x+D,

3 2

fz(x)=D,i3—+ Dz—%—+ D,x+D, (3.8.1)
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3 2

£, =-[1+N{le3—+D2%+D3x+D4}] (3.8.2)

The constants are evaluated using equations (3.7.1) through (3.7.4), and they are given in

Table 3.2.2.

TABLE 3.2.2 CONSTANTS OF THE FUNCTIONS TO RENDER THE
BOUNDARY CONDITIONS HOMOGENEOUS

Natural Freqcpm | 0 5,882 11,348 26,803
D1 0 | 1.0192 1.002 -8.3596
D2 0 | -0.4893 | 0.0647 | 19.3619
D3 0 | 0.0498 0.164 -5.5251
D4 0 | -0.002 | -0.0706 | 0.8692

Equation of motion in the zone 0 < x < L;:

pfp?é, (x,8)—GJ 10/ (x,t) =0 (3.9)

A 1§, (x,0) = GJ ,p{(x,£) =0 since 4 (x,1) = ¢, (x,1)

Here the forcing function F,(x,t)=0 (3.10.1)

Equation of motion in the zone L; <x <L,:

pJ 26, (x,t) = GJ ,,65(x,t) =0

Since 9, (x,1) = @, (x,t) + f,(x)y(?)
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9y (x,8) = §, (x,0) + f,(x)7(t) and 5 (x,1) = @} (x,0) + £;(x)7 (0)

Equation of motion becomes

P 2@, (x,t) = GJ L, 05 (x,8) = GJ , [;(x)y (O) = pJ ./, (X)F(2)

The forcing function here is F, (x,t) = GJ ,, f5(xX)y () = pJ ,, /,(X)7 (1) (3.10.2)
Equation of motion in the zone L, <x <L:

N’pJ 30,(x,6) - GJ ,,05(x,t) =0

Since 9, (x,1) = @, (x,8) + f(x)y(¢)

8,(x,0) = $,(,0)+ f,()F(@) and I(x,1) = PI(x.0) + F0)¥(0)

A 36, (5,0) = GI o 1(5,0) = GJ oy 1Y (O) = U 3 S5 ()F(0)

In this region, F;(x,t) = GJ 5 fy(xX)y(1) — pJ ,3./3(x)7 (1) (3.10.3)

Thus the Homogeneous equation (3.1) with time dependent non-homogeneous
boundary conditions takes the following general form of non-homogeneous differential

equation with homogeneous boundary conditions:

pJ §(x,0) ~ GJ 9" (x,£) = F(f) (.11)

After substituting equations (3.7.1) to (3.7.6) into equations (3.4.1) to (3.4.6)
those take the form of six homogeneous boundary conditions:

GJ p01(0,8) = 1, $,(0,£) =0

= GJ p9](0,0) +1,,0°¢,(0,£) =0 (3.12.1)
0, (L)~ 9, (L) =0 (3.12.2)
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GJ p, 0 (I—j]’t) -GJm(D{(fpt) 1,9, (Zlﬂt) =0
= GJ )0 (L,8) = GJ | (Lys1) +1 5, 0° 0, (L) = 0 (3.12.3)

-9, (L,,t) = No,(L,,1) =0 (3.12.4)

’ 1 ] I \ .
GJ p303(L, 1) +—A7GJP2¢2 (Ly,0) + (N pye + 'ﬁ)(oz (L,,0)=0

’ 1 1 I [N
= GJ py05(L,, 1) +WGJP2¢2 (L,,t)— & (NI o, +—]%/3—)(o2 (L,,t)=0 (3.12.5)

GJ ps @3 (L,t) =1 py 5 (L,2) =0

:>G_JP3¢3’(ZJ)+IP4@2¢3(EJ)=O (3.12.6)

A set of partial differential equations [(3.10.1) to (3.10.3)] with homogeneous

boundary conditions [(3.12.1) to (3.12.6)] define a boundary value problem.

If there remains no internal displacement excitation, y(¢) = 0, and the system

experiences free vibration. Then F(f) = 0 and the equation (3.11) becomes

pP(x,1)~ G(x,1) = 0 (3.13)

Assuming a free vibration solution, we have @(x,t) = ¢(x)Sinwt
P(x,t) = — p(x)Sinct
[pw’¢(x) + G@"(x)]Sinwt =0 since Sinwt # 0

2

P’ P(x) + Gi2—¢(x) =0 (3.149)
dx
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Since the equation (3.14) and six boundary conditions (3.12.1 to 3.12.6) are
homogeneous and depend on the values of @ the problem becomes an Eigen value problem.

The non-trivial solution is possible only for certain values of w’.

Let the non-dimensional distance along the axial direction, X = —z-

Then[)i=—1—

Cdx
amdLLd

dc Ldx

. 1 4t
Similarly —; 7 F:

Then equation (3.14) becomes pw’@(X) +— Iz d_2 ¢( )= 0
2L 42+ L g =0
¢"(X)+ B H(F) =0 (3.15)
where 3, = EE)—’;EZ—
B = £ a)GL1 and %
,32,-2 =—'0—wi—;z—22 and L, :%
'Byz’_pa)éfz and [ _-Ilf 1
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The complementary solutions for the three zones are:

é,(x) = 4,Sin(B,%) + 4,Cos(B,%) 0<x<L,

6,(X) = A,Sin(B,%) + A,Cos(f3,X) L <x<L, (3.16)

#,(X) = A;Sin(B,X) + A;Cos(5,x) L,<x<1

|

Again for the i-th mode, f,° = !

i

2 —gClzf2 where C, =

t~|

B =0 -g—CZZPWhere C, =

h||~hl

With the above relations, equation (3.16) takes form of
6, (%) = 4,Sin(C,\Ja, %) + 4,Cos(C,Ja, ) 0<x<L,
by (%) = 4,Sin(C,\[a, %) + 4,Cos(C,[a, %) L<x<L, (3.17)

b, (%) = A;Sin(Cy1[a; %) + 4,Cos(C, [, %) L, <x<l

Constants A, Aj Ag can be evaluated by the six homogeneous boundary

conditions stated in equation (3.12.1) to (3.12.6).
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Substituting the variables of equation (3.16) and their respective derivatives into
the equations (3.12.1) through (3.12.6) six equations are obtained which can be arranged

in the following matrix form: [H ] y6{4}¢x1 = {O}sx1
For a nontrivial solution, lH l = 0, which ultimately yields the characteristic

equation. Here |H i is the determinant of the coefficient matrix [H]

H, H, 0 0 0 0
H, H, Hy H, 0 0
Hy, Hy, H, H, 0 0
H= |0 0 H, H, Hys H (3.18)
0 0 Hy Hy, Hss Hg
0 0 0 0 H, Hg
H, =GJ,Ca,
Hy, =a,,

Hz,' = Sin(C,Ly[a,)
H,, = Cos(C,L,\a,)
H,, =-Sin(C,L,\Ja,)
H24' = —Cos(C,L, Ja_i)

Hy = _GJpla\[a-icos(azl\/;i-)
Hy, = GJ ,,C,\Ja,Sin(C\L,Ja,)

Hy, = a,1,,Sin(C,L, \/Zx—) + GJp262 \/‘;i-cos(gzzl \/Z)

H,, = a1 ,,Cos(C,L, '\/;t—) - GJp262 \/a—iSi”(ng'l \/;;_)
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H,, =-NSin(C,L,+Ja,)
H,, =-NCos(C,L,+[a;)
H,, =-Sin(C,L,a,) (3.19)
H,, =—Cos(C,L,+Ja,)
H,, = % GJ ,,Cos(C,L,\/a,)C,fa, —a(NI 5 + —I]‘;[—")sm(i‘; L\a))
H, = —%GJPZEZ Ja;Sin(C,L,Ja,) —a,(NI Jr%'ijf'-)cos(@‘i2 Ja)
Hy = GJ ,,CyJa,Cos(C,Lya,) + I pya, sin(C,L,[a,)
Hy =~GJ ,,C;+[a,Sin(C,L,\[a,) + 1 pypa, c08(C, Ly ya;)
Hg = GJ ,,C;Ja,Cos(C,LJa,) —a,1 ,,Sin(C, L fa;)
Hy =—GJ,,CyJa,Sin(C, L fa,) ~a,1,,,Cos(C,L Ja;)
Solution of equation (3.18) will provide the natural frequencies and the equation

[H]{4} = {0} will provide the corresponding mode shapes. Further the non-homogeneous

problem is solved as follows.

Dividing both sides by GJ, equation (3.11) becomes

%q'i(f,t)—¢”(f,t)=Q(t) (3.20)
where Q) = gﬁtz
=0 0<x<L,
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=ﬁ(f)y(t)-—§f2 63740)

= @rO-Z L@

L <x<L,

L,<x<1

To solve the non-homogeneous equation (3.20) one can assume the solution in

terms of normal modes:
P(x,0) =Y 9,(¥)q, ()
i=l

where g, (¢)is the modal coordinate.

Then equation (3.20) takes the form of i[g 0, (X)g;() - /(X)g; (t)) = Q(1)

Since @, (X),,; (%), s (¥) and o, satisfy equation (3.15)

d> | _ pwI*

X =0

Thus equation (3.22) takes the form of

i((% O+ wizqi(t))'g(/’i (J—C)j =0(t)

i=l

where 0@ =0
S A€3740) —gfz 63520

= 3"(3?)7(t)—§f3(7€)7(t)
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To obtain the solution in the three regions equation (3.15) can be multiplied by

¢@,(x) throughout and integrated in each region with respect toX . The equations will

then be uncoupled in view of the following orthogonal property:

L L, 1
[t (D)0, D)+ [6,, (D4, B)E+ [$, (D, (T =, Fori=}
o L L,

I L, 1
|0u D), GMx+ [,,(D,; (DWE+ [, (Dg, (X =0 Fori=j
(] L L,

(3.24)

Thus one will get an infinite set of uncoupled ordinary differential equations for

the three regions of the shaft:

G, () + o q,(t) =LRi(t) For i = j
.

1

=0 Fori=#j

R,(1)= [ (DIQWNMT+ [¢,(DIQOT + [, (D)Q(0)dx

where Q) =0

= I},7(t) - %12,»70)

= I;i}/(t) “%I3ij;(t)

0<x<L

(3.25)



i
L, = [, fiF)dx

&~

2

I = [_qjg—@,-(x)fz (X)dx (3.26)

1
I ;i = _I¢3i(k—)f;”(3_c)df

I; = _§¢3i (%) f;(X)dx

The uncoupled non-homogeneous equations can be solved by convolution
integration. It is donevby taking a dummy variable of the integration A between the limits
of integration 0 and time t and elemental impulse is A(A4)dA . Here original time variable ¢

is a parameter, which represents a particular value of 4.

Then the complete solution for these equations with zero initial conditions is:

ii o

q,(t) = [L ]'Rl.(l)sin w,(t - l)dﬂ}

The complete solution for the current problem for the three regions is as follows:

0,(%,1) = i% o, ()_c)( ]R,. (A)sin @, (¢ - z)dzJ 0<x<I

i=l iYi o

5]

0.G0=Y ——0, (a—c)[ (R (Dsina, ¢~ z)dﬂj F L@ L<x<I, (327)

i=1 i
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00

0,(%,1) = ZL% ()_c)[ ’J'Ri (A)sin o, (¢ - /l)d/?,) @ L<x<1

i=] &

Substituting the values of R,(4) in the equation (3.27) we get

o0

6,(%.1) = Zﬁco“(rc)[ I(I;’,-y(z) 2L+ Ly —%amﬂsm o, - ﬂ)dﬂ)

i=l

0

%ﬁﬁ=2ﬁw&@)(Gﬂ@—g&ﬂ@+§ﬂ@—g%ﬂ@%m@0—ﬂdl+ﬁﬁW@

=l Y

0

6=~ 0,3 (1;7(1)——2’—;12,-7@)+1;:-y(z)—§13i7(1>)sina)i(t—z)dz + £, @)

i=l Y

(3.28)
Substituting y(4) = y,Sin(w,A) and j(1) = —a),.2 7,Sin(w;A) into equation (3.28)

0 t
6=~ 0@, (I;,- +§—12,. +15y(2) +—§13,~jjsm(w,ﬂ)smw,. (-Adi; 0<x<I,

i=1 @

e

¢
0,(x,1) = z_l_%i (3_5)(1; +'g'[2i + 13*1‘7(]') +_§ISiJJ.Sin(a)i/1)Sinwi (t = A)dA+ [,(X)y, sin(@,1) 5

i=1 %

L <x<L,

© t
@(z,t){% a@)| L+E +I;‘,-7m)+§13,-] [Sirta )Sines ¢~ DA+ £, @y, Sirtcar)

i= O

L,<x<1
(3.29)
For each of the three regions the definite integral term is given by
! n(w;t t
[Sin(a,2)Sine,(t — A)dA = Sin(@1) _, C"S;”" ) (3.30)
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33 Analytical Results

The proposed analytical model for a geared system with homogeneous equations
of motion and time dependent non-homogeneous boundary conditions validated by
comparing the natural frequencies and the mode shapes with those obtained by the

discrete model illustrated in the previous chapter.

Since the three shafts of the lumped-mass model have non-variable stiffness K,
K,and K, the corresponding polar moment of inertia of the 1%, 2™ and 3™ shafts with

constant cross-section are:

K|l
I —‘_“9] :
K,l
K.l
I py 933

where [, [, and /, are the length of the shafts.

3.3.1 NATURAL FREQUENCIES OF THE CONTINUOUS MODEL

With the numerical data of the geared system and the material properties such as
density, p = 7800 Kg/m3 , modulus of elasticity, E =2.1X10" N/m? and Poisson’s ratio,
4= 0.3 the components of the equation (3.19) are derived. Plotting the above characteristic
equation against a,(= a),.z) as shown in figures 3.3.1 to 3.3.5, the fist six roots are found

as:
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f(on”)

a, = co,z =0 (Radian/s)’

a, = w,” =0.3807X10° (Radian/s)’

a, =w,” =1.4082X10° (Radian/s)’

a, =w,” =7.8952X10° (Radian/s)’

a, = ;" =4.0249X10° (Radian/s)®

a; = w,’ =1.38076X10° (Radian/s)* and so on.

x10 ® Frequency Equation Plot with Respect to Wn 2
6
5 T T
4 \
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1
//
|
0 "
4
) (2ndNatural Freq)2 =0.3807K10° (Rad/s 2 \
-3
0 0.5 1 1.5 2 25 3 35 4
wn 2in(radis) 2 x10 °

Figure 3.3.1 Plot for the 2" root of the characteristic equation
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x10 2 Frequency Equation Plot with Respect to Wn?

(3rdNatural Freq¥| = 1.082X10 5 (Radss) 2

2
flwy”) o =
\
4
\
3 \__/
2 4 6 8 10 12 14 16
wn Zin(radis) 2 x 10

Figure 3.3.2 Plot for the 3" root of the Characteristic Equation

x10 2 Frequency Equation Plot with Respect to Wn 2

2
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0 et
-1 (4th Natural Freq) 2 = 7.8952X105(Rad/s) 2 //’\
-2
1 2 3 4 5 6 7 8
wn 2 in (rad/s) 2 x10 ©

Figure 3.3.3 Plot for the 4™ root of the Characteristic Equation
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x 10 34 Frequency Equation Plot with Respect to Wn 2

(5th Natural Freq) > = 4.0249X10 ® (Rad/s) ? /
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-
e
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Figure 3.3.4 Plot for the 5™ root of the Characteristic Equation
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Figure 3.3.5 Plot for the 6™ root of the Characteristic Equation

Natural frequencies of the continuous model are compared with those of the

discrete model in Table 3.3.1.
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TABLE 3.3.1 NATURAL FREQUENCIES OF CONTINUOUS MODEL
IN COMPARISON TO DISCRETE MODEL

Mode Discrete Model

f, (cpm) fx (cpm)
1st 0 0
2nd 5,881 5,892
3rd 11,350 11,332
4th 26,797 26,833
5th - 191,580
6th - 354,838

Proposed Continuous
Model

Difference %

0
0.19
-0.16
0.13

Mode shapes of the continuous system are shown in figures 3.3.6 to 3.3.10. It must be

noted that the directions of rotation change at the gear locations following the gear ratio.
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Figure 3.3.6 Mode shape at the 2™ natural frequency
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Mode Shape at 3rd Natural freq
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Figure 3.3.8  Mode shape at the 4™ natural frequency
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Figure 3.3.10 Mode shape at the 6™ natural frequency
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A negligible deviation is observed between the natural frequencies of the discrete
model and the continuous model up to the 4™ mode. The continuous mode shapes of the
gear drive accommodate the direction of rotation of the driving and driven shafts. The
direction of the angular deflection of the driven gear at each mode is in opposite direction
of the driving gear. Consequently discontinuity is observed at the gear pair location of
each mode shape as indicated by dotted areas in figure 3.3.6 to 3.3.10. Mode shapes of
2™ and 3™ shafts become non-linear at natural frequencies above 4™ order. The linear
mode shapes up to the 4™ order are discretized and normalized, the magnitudes of which

match with the normal mode shapes of the discrete model.

Table 3.3.2 provides the normalized mode at the four rigid mass locations. The
normalized modes incorporate the opposite direction of angular deflection of the driven

gear with respect to the driving gear.

TABLE 3.3.2 NORMALIZED MODES AT FOUR RIGID MASS POSITIONS OF

THE CONTINUOUS MODEL:

Location Ist 2nd 3rd 4th
Disk-1 1 1 1 1
Disk-2 1 0.7188 0.0491 4.8452

Gear Pair 1 1.7115 0.0636 308.11
Disk-3 -0.33333 -11.4856 -0.0059 -4.5061
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Mode Factar

Normalized mode shapes at four rigid mass locations are shown in figures 3.3.11 to

3.3.14. In comparing these modes with those of the discrete model it must be noted that

the sign changes at the gear location.
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0.4
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Mode Factar

Normalized Mode Shape at 1st Natural Frequency
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1
0.333 0.667 1
X bar

Figure 3.3.11 Rigid body mode shape (normalized) at discrete mass locations
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Nomalized Mode Shape at 2nd Natural Frequen,

X bar

Figure 3.3.12 2™ mode (normalized) at discrete mass locations
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Figure 3.3.13 3™ mode (normalized) at discrete mass locations
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Figure 3.3.14 4™ mode (normalized) at discrete mass locations
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Steady-state responses due to harmonic transmission error at driving shaft speed: 3000

rpm are shown in figures 3.3.15 to 3.3.19.

x10 7 Response of Disk 1
1.5 T T T : 1

| \/\/\/\ |

5 L 1 1 1 1 1 ] 1 1 J
50 50.05 50.1 50.15 50.2 50.25 50.3 50.35 50.4 5045 50.5
Time

o
[¢)]

 Deflection [Radian]
o

Figure 3.3.15 Steady-state response of Disk-1 with harmonic transmission error in radian,

¥(t) =.0001 sin@wt ; @ =314.16rad/s (f=50 Hz)

-7 Response of Fly Wheel 2
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50 50.05 50.1 50.15 850.2 50.25 50.3 50.35 50.4 50.45 650.5
Time

Figure 3.3.16 Steady-state response of Disk-2 with harmonic transmission error in radian,

¥(t) = .0001 sinwr ; @ =314.16rad/s (f =50 Hz)
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Deflection [Radian]

% 10-5 Response of Driving Gear
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Figure 3.3.17 Steady-state response of Driving gear with harmonic transmission error in
radian, y(t) = .0001 sinwf; @ =314.16rad/s (f =50 Hz)
% 410-5 Response of Driven Gear
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Figure 3.3.18 Steady-state response of Driven gear with harmonic transmission error in

radian, y(t) = y(t) = .0001 sinwt; @ =314.16rad/s (f=50 Hz)
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Deflection [Radian]

Response of Fly Wheel 3
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Figure 3.3.19 Steady-state response of Disk-3 with harmonic transmission error in radian,

¥(t) =.0001 sinwt ; @ =314.16rad/s (f=50 Hz)

The influence of harmonic transmission error is observed at driving and driven
gears. However, the angular deflection of the driven gear is higher than that of the driving
gear. Similar behavior is observed for the 3" mass in the time domain of the 4DOF
discrete model. In reality transmission error does not introduce harmonic excitation.
Rather the factors involving into the static transmission error, such as shaft misalignment,
mounting error, bearing misalignment, tooth error and variation of meshing stiffness
introduces excitation of different frequencies. The linear combination of the sine
components of those excitations as well as the natural frequency components are
introduced within the gear pair as mixed harmonic transmission error. The responses at

the time and frequency domains are determined as shown in figures 3.20 to 3.28.
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Figure 3.3.20 Response of disk-1 with mixed harmonic transmission error 0.0001 rad
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Figure 3.3.21 Response of disk-2 with mixed harmonic transmission error 0.0001 rad
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Figure 3.3.22 Response of driving gear with mixed harmonic transmission error 0.0001
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Figure 3.3.23 Response of driven gear with mixed harmonic transmission error 0.0001 rad

4 x 107 Response of Fly Wheel 3
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Time
Figure 3.3.24 Response of Disk-3 gear with mixed harmonic transmission error 0.0001 rad

The modulated time waveforms of torsional vibration of the geared system as shown in
figures 3.3.20 to 3.3.24 are the combined effect of vibrations at different frequencies induced
by misalignment, tooth error and mounting error. Vibrations of different frequencies represent
the influence of various factors contributing to the transmission error, which can be explained

by the FFT responses in figures 3.3.25 to 3.3.28.
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Figure 3.3.25 FFT response of Disk-1 with mixed harmonic transmission error 0.0001 rad
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Figure 3.3.26 FFT response of Disk-2 with mixed harmonic transmission error 0.0001 rad
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71073 FFT Response of Driving Gear
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Fig. 3.3.27 FFT response of Driving gear with mixed harmonic transmission error 0.0001 rad
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Fig. 3.3.28 FFT response of Driven gear with mixed harmonic transmission error 0.0001 rad
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In the above FFT plots, vibration peaks at 50 Hz, 189.2 Hz and 450 Hz are the
amplitudes of torsional vibrations corresponding to the driving shaft frequency, 31
natural frequency and the 4" natural frequency. The 4" natural frequency plays the major
role in the overall vibration responses at all discrete mass locations. This phenomenon
satisfies the dominant role of the 4™ mode in the modal analysis. 2X shaft frequency
vibr;ations represent the shaft misalignment which is clearly identified within the
spectrum of the driven gear at 100 Hz. The FFT response of the driven gear also shows
the side bands of vibration close to the 4™ natural frequency. Such vibrations are
observed when the gear pair experience significant tooth wear. Manufacturing error or
defe;;tive tooth can be identified by the high vibration at frequency lower than the shaft

frequency which is observed at 22 Hz in the FFT plot of the driven gear.

Gear mesh frequency of a 20-tooth gear pair is out of the frequency range of the
above FFT plots. The influence of eccentric mounting of gears could be observed by the
high-amplitude side bands and harmonics closer to the tooth-mesh frequency. The
simulation also excludes the effect of cracked tooth that produces wide bands across the

spectrum.
From the above spectrum analysis it must be noted that the FFT plot of the driven

gear provides the best information to identify manufacturing error, misalignment,

mounting error, tooth wear, back lash etc within the geared system.
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3.4 Summary

In this chapter torsional vibration of a geared system has been analyzed with two
rigid masses and two rigid gears coupled by three shafts with continuously distributed
mass and torsional rigidity. The continuous model is dedicated for the investigation of the
influence of internal displacement excitation on gear dynamics. External excitation
therefore is not considered in this analysis. A mathematical model has been proposed for
solving the torsional vibration problem of a set of homogeneous differential equations
with non-homogeneous boundary conditions arising from the presence of harmonic

transmission error generated within the gear pair.

Natural frequencies up to the 4™ mode of the continuous system have a minimum
deviation over the discrete results. Mode shapes and normalized mode shapes at rigid
mass locations accommodate the direction of rotation of the driven sub-system with
respect to the driving sub-system. The continuous model is able to analyze the individual
response of driving and driven gears within the geared system. FFT plot of the driven
gear is found as the best indicator to identify the root cause/s of transmission error within
the gear pair. On the contrary, the time response of the equivalent mass of the 4DOF
discrete model merely identifies the presence of transmission error within the geared
system but can not characterize the vibrations arising from individual causes. Moreover,
the continuous analysis is found to be computationally efficient and informative that can
be effectively used for identification of the source/s behind the internal excitation within

the geared system.
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The higher mode natural frequencies can be compared with the free vibration
results of a classical model that incorporates shaft mass and elasticity. In the following
chapter Rayleigh-Ritz method is used to devise a torsional vibration model with

approximation of a set of shape functions closer to the actual mode shapes.
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CHAPTER 4
RAYLEIGH-RITZ METHOD USING BHAT’S
ORTHOGONAL POLYNOMIAL FUNCTIONS

4.1 Introduction to Rayleigh-Ritz Torsional Model

In the previous chapter a mathematical model has been developed for analyzing
torsional vibrations of the geared system with shafts having distributed mass and
torsional rigidity. The natural frequencies and normal modes of first four modes of the
model agreed with the results of the 4-DOF discrete model analyzed in the chapter 2. In
order to consider the distributed elasticity of the shaft and retain the simplicity of a
discrete system model, the Rayleigh-Ritz model is developed in this chapter for the four
mass geared system. Finite element method or any other numerical method also would be
a potential tool for such analysis. However, “...... such discretization methods provide a
general framework for general structures, they invariably result in problems with a large
number of degrees of freedom” [36]. The Rayleigh-Ritz method is simple and becomes

computationally efficient if orthogonal polynomial shape functions are chosen.

The Rayleigh-Ritz method involves equating the maximum potential and kinetic
energies of vibration. The outcomes of the classical method greatly depend on the
appropriate assumption of the shape functions. For better accuracy of results and
computational efficiency, the boundary characteristic orthogonal polynomial functions

proposed by Bhat [39] are used.
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4.2 Equations of Motion
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Figure 4.2.1: Schematic diagram of the Rayleigh-Ritz model for the analytical geared shaft

Let the angular deflection of the continuous system A be d(x) . It should be noted

that the sub- system B is capable of rotating the sub system C and hence the maximum

kinetic energy of the vibrating system A is given by

2 2
T =221, [ 0ax+ 0,y [ 0° x40, [ 07 ()] + L8 O+

1p,0% (L)) + 1307 (Ly) + 13007 (Ly) + 1,07 (L)] (4.1)

Here wis the frequency of the free vibration of the system and w” = T%*

max

Thus 7', = -’i”-[J,,1 ['o*@ax+,, 1: 0> (x)dx + J », f 07 (x)dx] +%[1P,92 ©)+

Ipzez L)+ 11’3’02 (L) + 1133"92 (L) + 11’462 (D)l 4.2)

Maximum potential energy of the system “A” is given by

G Ly Ly py L
U =L [ (x)dx + 7, jL 0" (x)dx + J 5, La 2(x)dx] (4.3)
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The modulus of rigidityG = E/2(1+ u) ; where E is the modulus of elasticity,
uis the Poisson ratio and pis the density of the shaft material, distributed along the

length.

. . : . x
Let us consider a non-dimensional variable, & = I

Then a = 1 Then dx = Ld&
dx L

d0 _do_ d¢

Again — =
dx d& dx

' — l i

00 =6
Then equations (4.2) and (4.3) take the non-dimensionalized form as:

* L 1 2

T =220 [ 02©)dE +0, [0 @40, [ 07(OdE)+
SUEn0* O)+ [0 (E) + 150 (6) + [0 () + 10” (D) (4.4)

Upe =5 [ 0@ 40, [ 02@dE+ 7, [ 07(9)dE] @3)

max 2L Pl P2 3 P3 2 .

: L L L
Here& =—, & =2 and &, == =1
f=" 6= amd g =2
According to the Rayleigh-Ritz method, the deflection of a vibrating structure
(here angular deflection of the complete gear drive or system A) can be expressed as the
linear combination of the deflection shape functions ¢,(£) and deflection coefficients 4, .
[i=1, 2, 3,.....n, and n is the number of modes or degree of freedom, associated in the

Rayleigh-Ritz analysis].
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Accordingly, 8(8) =Y 4,()4, 4.6)

Values of natural frequencies obtained by the Rayleigh-Ritz method depends on
the selection of the deflection shape functions for all individual modes and number of

degree of freedom considered for the analysis.

Procedure of Rayleigh-Ritz method starts with Rayleigh’s equation [37]

a)2=U
T

max

= 4.7)

*

where U, is the maximum potential energy and w’T,, is the maximum kinetic

energy of the vibrating system.

The deflection coefficients can be adjusted so that the natural frequencies remain
statibnary with respect to the shape functions. The natural frequencies are not to be
always minimum with respect to the shape functions; rather they are minimum with

respect to the natural modes [38]. The condition of stationarity of the natural frequencies

2
with respect to the deflection coefficients is Y =0.

i

The partial differentiation of equation (4.7) with respect to each deflection

function yields that
. oU oT.
2 Tmax d - — Umax — =
ow- 0 (U, |_ 04, 04, _0
afli aAl T::mx Tr::x
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*

oU U o 07,

max —- r:lax max - 0
o4, T, o4,

This results in the eigenvalue problem,

*

aUﬂ — w? % =0 (4.8)
04, 04,

1 1

The maximum kinetic and potential energies can also be expressed in terms of

“mass” and “stiffness” matrices M p and K j ast

T, =%Z iMyAiAj 4.9)
i J
1 n n
U... =EZ ZK,}.A,.Aj (4.10)
i J
aT* n n
S M A, 4.11
04, Z Z Y 1D
%4%:2 YK, 4, (4.12)

=l j=1

Substituting equations (4.11) and (4.12) into equation (4.8) one will get

> DK, —0’K;14, (4.13)
=1 j=1

Correlating equations (4.4), (4.5) (4.11) and (4.12) the mass and stiffness matrices

for the existing system become:
n

(M,1= YY1 n [ 68O+ [ 4O +T | 60,

i=l j=1
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{018,008, (0 + 1§ (£, (E) + 1es8,(6)0;(6) + 11y, (§)8;(6) +nd D, (D3] (4.14)

K,1= 33 20 n [ 4OHDdE+T 1, [ 6,0, 21d2] @15)

Expanding equation (4.13) one will get

[4(K, —* M)+ A, (K;y = 0" M) + oo +4,(K, -o°M,)]=0 (4.16)

i=1

For i=123,........ n , such equations in a matrix form is as follows:

K, _szn K, ‘a)lez K, —0)2M1n 4,

K, —o’M A
21 21 2(_ @.17)

LKnl —a)zMnl Knn —a)zMnn_ An

For the nontrivial solution of equation (4.17) its determinant must be equal to

zero, which yields the characteristic equation for free vibration. It is an eigen value

problem, the solution of which renders n numbers of eigen values A; = a),.2 and eigen

vectors {V,(') } for the i mode.
The deflection coefficient modal matrix is given by

1=} VDY e V1.

Normalizing it one can get the normal deflection coefficient modal matrix [l//]
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The physical (angular) deflection mode is the product of the deflection

coefficients modes and the deflection shape functions, as defined in equation (4.6).
4.3 Development of Deflection Shape Functions

Increasing the number of degrees of freedom one can refine the natural
frequencies of the lower modes in the Rayleigh-Ritz analysis. However, the accurate
values of natural frequencies depend on the selection of deflection shape functions that
should satisfy at least the geometrical boundary conditions of the system. Bhat’s
boundary characteristic orthogonal polynomials [39] with the Rayleigh-Ritz method
provide excellent approximation for the natural frequencies of beams, plates and various
structures of arbitrary shapes and have been conveniently used in huge number of
research papers. The same method is used here for developing angular deflection shape
functions of the geared system with a goal of obtaining excellent natural frequencies. In
this method the orthogonal polynomials have been generated that satisfy the geometric
boundary conditions of the system. Orthogonality of adjacent shape functions on the
other hand reduces the computational work in the Rayleigh-Ritz method involving a large

number of degrees of freedom.

The polynomial functions have been assumed for the shape functions that satisfy

the following geometric boundary conditions for each mode.

"L 6(0) %0 (4.18.1)

II. (&)= afinite value (4.18.2)

1. 9(§)|D =—NO(&) (4.18.3)
DE

97



It must be noted here that the direction of rotation is taken into account between driving
and driven shaft, as considered in the proposed continuous model.
IV. 6(Q1) = a finite value (4.18.4)
The deflection shape function of the first mode is assumed so that it satisfies the

rigid body mode shape of the geared shafts at 1* natural frequency. Accordingly,

$ (&) =1 0<ELE
=1 5135552
=-N £ <£<1

Let the 2™ mode deflection shape function, ?,(&)=(&—-B,)g, (&)

For computation efficiency, the 2" mode deflection shape function must be orthogonal to

the 1% mode function.

ie. [4,(6,&)dE=0 (4.19)

or ['4.((Ods + [ 4(E9.(OdE+ [ 4., (E)dE =0 (4.20)
Simplifying equation (&) and (9)

~ f &47 (§)dé + E TEPL(EME + E Ep (E)dE

1= - (4.21)
- [aone [ g e+ [ o
Let the higher order deflection shape functions be:
¢i )=~ B, )¢i—1 (I Ci—l¢i—l () (4.22)

where i =3,4,........ n
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The higher order polynomials are chosen so that those are orthogonal to two of
their adjacent lower functions, which will make them orthogonal to all the previously

constructed polynomials. Accordingly.

[6.(©)9., (&M =0 and [4,E)2(E)E =0

Then

[ 4©.1@xg + [ 4,0+ [ 4,091 =0 (423.1)

and

[ 6:©02&1E+ [ 0:62EME+ [ 4.(d,(£)E=0 (423.2)

Simplifying equations (4.22), (4.23.1) and (4.23.2) the constants can be derived as
, _Lehoue [t oaee [ gioa )
T [ ens s [on @ [ oo |

[ ©0DdE+ [ 50102 OdE+ [ 810§ .

[ g+ [ 0.&ae+ [ #2,(de

2

Above polynomial functions, also satisfy the slope continuity relationship

7 )IDE e )INDE
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44 Modal Analysis:

Solution of equation (4.17) will provide the natural frequencies @, and

corresponding mode shapes {1//(") } Using this information, response evaluation of the

structure can be carried out using modal analysis.

Orthogonality of the modes is checked with the normal deflection coefficient

modal matrix [] . Following operation makes the mass and stiffness matrices diagonal.

OV MKy P} =M, fori=j

{l//(i) }T [M]{w(j)} =0fori#j and

b Of [kl )= 1K) fori=)
b oYl o) omriss
M, and K, are the generalized mass and generalized stiffness for the ith mode.

Then the physical coordinate, (angular distortion) {q(t)} = [l//] { p(t)} (4.26)

where {p(z‘)} is time variable modal coordinate.
Since there is close agreement between the natural frequencies and mode shapes

obtained by the Rayleigh-Ritz method and the previous methods, the response analysis is

not repeated for this approach.
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4.5 Analytical Results of Rayleigh-Ritz Model

The natural frequencies are given in table 4.5.1 and normalized modes are shown
in table 4.5.2. It must be noted that the proposed continuous model results and those from

Rayleigh-Ritz analysis are compared with the results from the discrete model.

TABLE 4.5.1 NATURAL FREQUENCIES OF CONTINUOUS MODEL AND
RAYLEIGH-RITZ MODEL IN COMPARISON TO DISCRETE MODEL

Mode | Discrete Proposed Continuous Rayleigh-Ritz Model
Model Model
fu fa Difference fa Difference
(cpm) (cpm) % (cpm) Y
Ist 0 0 0 0 0
2nd 5,881 5,892 0.19 6,156 4.48
3rd 11,350 11,332 -0.16 11,605 2.35
4th 26,797 26,833 0.13 27,454 2.31
5th - 191,580 - 190,857 -
6th - 354,838 - 346,910. -

TABLE 4.5.2 NORMALIZED MODES AT FOUR RIGID MASS POSITIONS:

Location 1st 2nd 3rd 4th
Disk-1 1 1 1 1
Disk-2 1 0.4805 0.0598 0.9252

Gear Pair 1 1.7104 0.1143 54.9701
Disk-3 -0.33333 -7.6686 -0.0228 -1.3043

Normalized mode shapes are shown in figures 4.5.1 to 4.5.4
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Figure 4.5.2 2" mode (normalized) at discrete mass locations
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Figure 4.5.3 3™ mode (normalized) at discrete mass locations
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Figure 4.5.4 4™ mode (normalized) at discrete mass locations
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It has been observed that 2", 3™ and 4™ order natural frequencies obtained
by Rayleigh-Ritz method are larger than the corresponding mode results of the
continuous model. On the other hand natural frequencies at 5™ and 6™ modes are
smaller than those of the continuous model. Normal mode shapes at lumped mass
locations indicates that the 4™ mode is dominating. However, the deflection of the
Mass-3 (equivalent mass of gear pair) at 4™ mode of Rayleigh-Ritz model is less
than those observed in the discrete analysis in chapter 2 and in the normalized 4

mode (of lumped mass locations) of the continuous model in chapter 3.

1* mode of thé gear system is a rigid mode, while the 4™ mode is stronger
than the adjacent modes. Thus the shape functions of the 2™ and 3™ modes share
major contribution of the shape function of the 4™ mode. As the shape functions
of the 2™ and 3™ modes hold some portion of the higher mode shape components
within them, the natural frequencies of 2™ and 3™ modes are higher than the
actual values. Such analysis is also satisfied by a comprehensive study of Bhat
[40] that investigates the influence of relative strengths of normal mode contents

in the shape functions affecting the Rayleigh Ritz results.
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4.6 Summary

In this chapter torsional vibration of geared system is analyzed by the
Rayleigh-Ritz method. Natural frequencies of the continuous model are compared
with results of the Rayleigh-Ritz method. Maximum deviation is 4.5% at the 2n
mode. Orthogonality of modes have been checked. The analytical results show
that the use of Bhat’s boundary characteristic orthogonal polynomials [39] in the
Rayleigh-Ritz method for torsional vibration analysis of gear drives give results

which are quite close to those by the continuous system model.

The proposed continuous model of chapter 3 will be further validated by
an experimental investigation. The experimental aspects are described in the

following chapter.
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CHAPTERSS

EXPERIMENTAL ASPECTS

5.1 Introduction to Experimental Aspects

Free vibration results up to the 4™ mode of the proposed continuous system model
closely match with those of the 4DOF discrete model [30]. Minor deviations are observed
while comparing the results of the continuous model with the corresponding mode results
of the classical Rayleigh-Ritz method. An experimental investigation of free vibration is
done to validate the continuous model and the Rayleigh-Ritz model. This chapter
describes the experimental aspects and measurement of torsional free vibration of a
simplified geared system. The experimental model comprises of two shafts coupled by a
pair of épur gears. Bonded resistance strain gauges are used to measure the free torsional
vibration. The results obtained by the application of the proposed mathematical model

and the discrete model [30] are compared with the experimental results.
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5.2 Experimental Model

le 1000 mm N

) )

500 mm

Figure 5.2.1 Schematic diagram of the experimental model

The experimental model consists of two shafts with 1 inch diameter and mounted
by a spur gear pair. Two rigid disks are installed at the driving and driven sides as shown
in the schematic diagram in Figure- 5.1. Length of the driving shaft is 500 mm and that of
the driven shaft is 1000 mm. CATIA V-5 Release 12 is used for designing the model.
Bearing pillows, precision shafts and high-precision spur gears have been purchased from
the local market. Other accessories are fabricated and the complete model is assembled in
the Machine Shop of Concordia University. Material and sizing details are mentioned in

the table 5.2.1.
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Figure 5.2.2 Experimental model- a simplified geared system

Heavy supporting pedestals and thick plate top of experimental tables are made of
aluminum, in order to suppress the resonant response of the supporting structure. Very
low clearance deep groove ball bearings are mounted on pedestals, which are rigidly
fastened to the experimental table. Free end of the driven shaft is machined to hexagonal
shape iﬁ order to tightly hold the torsion bar, which is used for torsional excitation by

impact.

The Bill of Material used in the experimental setup is given in Tableb5.2.1.
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Figure 5.2.3: Experimental model, designed and fabricated by CATIA V-5 Release 14

TABLE 5.2.1: BILL OF MATERIAL OF THE EXPERIMENTAL MODEL

Part # Description Qty Size Material
1 Disk 2 4 inch dia, 0.75 inch thick Steel
2 Driven Shaft 1 1 inch dia, 1000 mm length Steel
3 Driven Gear 1 4 inch dia, 0.75 inch thick Steel
4 Driving Gear 1 2 inch dia, 0.75 inch thick Steel
5 Driving Shaft 1 1 inch dia, 500 mm length Steel
6 Rigid Coupling 1 Steel
7 Pillow Block 4 HRP bearings SKF
8 Supporting Pad 4 Aluminum
9 Variable speed Motor | 1 5 hp, 3600 rpm, 575V, 60 Hz Steel Shaft
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5.3 Experimental Setup

The experimental set up is shown in figure 5.3.1 and a schematic diagram of the

set up is shown in figure 5.3.2.

8 Oscilloscope

L nferface Modem

i

hN

AN Driven Sha |

‘ \ S SN FFT Analyzer
Induction Motor & ; e " ?

Figure 5.3.1 Experimental setup for free torsional vibration measurement
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Figure 5.3.2: Schematic diagram of experimental setup

A simplified %2 Wheatstone Bridge is used for the measurement accuracy, which

is illustrated in the figure 5.4.2.

5.4 Strain Gauge

Figure 5.4.1 Bonded metallic foil grid resistance strain gauge
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Bonded Resistance Strain gauge is most widely used to measure the torsional
deflection. The BRS gage consists of a grid of very fine metallic wire, foil, or
semiconductor material bonded to the strained surface or carrier matrix by a thin
insulated layer of epoxy (Figure 2-5). When the carrier matrix is strained, the strain is
transmitted to the grid material through the adhesive. The variations in the electrical

resistance of the grid are measured as an indication of strain.
5.4.1 PRINCIPLE OF STRAIN GAUGE

Wheatstone bridge principle is used in the commercially available bonded
resistance strain gauges. A general Wheatstone Bridge consists of four resistive arms
arranged in a diamond orientation with an excitation DC voltage, Vex, supplied across

the bridge.

Figure 5.4.2 Wheatstone bridge circuit

The output voltage of the bridge, Vo, will be equal to:

Vo= A & *Vix
R,+R, R +R,

When R;/R; = R4/R3, the voltage output Vo will be zero and then the bridge is

completely balanced. Any change in resistance in any arm of the bridge will result in a
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nonzero output voltage appear across the middle of the bridge. In case of torsional
vibration measurement the resistance of the strain gauge changes only in response to
torsiona} deflection. However, strain gauge material, as well as the specimen material to
which the gauge is applied, will also respond to changes in temperature. Compensated

gauges are used to reduce the thermal sensitivity.

In a quarter bridge arrangement one resistance arm is an active resistor and other
resistors have fixed values known as completion resistors. On the other hand in case of
half-bridge configuration, two resistors are used for measuring strain and two for
completing the circuit. The half-bridge circuit yields an output voltage that is linear and
approximately doubles the output of the quarter-bridge circuit. For better sensitivity and

compensating the effect of temperature, half-bridge configuration is preferable.

5.4.2 INSTRUMENTATION
The experimental set up comprises of the following instrumentation:

= Strain Gauge

» Power Supply Unit with Input voltage 20 volt DC

» Hi gh Pass Filters

» Amplifier with gain 10

» An Oscilloscope for torsional free vibration measurement in time domain

= FFT analyzer for torsional free vibration measurement in frequency domain
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Some of the advantages of the strain gauge are:

Better accuracy, +/-0.10%

Highly sensitive to strain.
Compact size with negligible mass
Auvailable in a short gage length
Negligible temperature effect
Comparatively less expensive

Suitable for a wide variety of environmental conditions

The following are some limitations of the strain gauge:

Electrical noise and interference may alter the micro-level strain readings.

Shielded leads and adequately insulating coatings prevent these problems.
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5.5 Experimental Procedure

Torsional gauge

' ~:_‘ : 1 /
R !

" Figure 5.5.1  Free torsional vibration measurement on the driven shaft

An instrumented impact hammer is applied on a torsion bar, rigidly attached to
the free end of the driven shaft. The impact of the hammer generates free torsional
vibrations within the system. Torsional vibrations of the experimental model are
measured by bonded resistance torsional strain gauges, installed on the driving shaft. The
signal is amplified by an amplifier and then displayed in time domain on an oscilloscope.
Torsional free vibration in the frequency domain is measured and recorded by a spectrum

analyzer.
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The spectrum of free vibration of the geared system is mixed with external noise
disturbance. Kistler 4382, uni-axial piezoelectric type accelerometers were mounted on
the table and supporting pedestal to investigate the nature of disturbance from these
components. The tip probe of the impact hammer captures the disturbance vibration of
the impact hammer-torsion bar system. Nature of disturbance si gnals from the supporting
structures and torsion bar-impact hammer are characterized by the FFT analyzer. The
peak frequencies of the accelerometer signals match with some of the side band
frequencies in the free torsional vibration measurement. Free vibration peaks are
identified neglecting the peaks at disturbance frequencies. The same procedure is
followed to measure the natural frequencies of the geared drive with installation of the

strain gauges on the driven shaft.
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5.6 Experimental Results

Free torsional vibration analysis of experimental model with torsional strain gauge

installed on driving shaft are represented in figures 5.6.1 to 5.6.5.

4 : ~
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Figure 5.6.1 Spectrum of free torsional vibration measured by torsional strain gauge

installed on driving shaft with disturbing signals of structural support and torsion bar.
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Figure 5.6.3 Spectrum of the disturbing signal of supporting structure
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Figure 5.6.4 Spectrum of the disturbing signal of impact hammer-torsion bar and

supporting structure
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5.6.5 Spectrum of free torsional vibration measured by torsional strain gauge installed on

driving shaft after subtracting disturbing signals of structural support and torsion bar.
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Free torsional vibration analysis of experimental model with torsional strain

gauge installed on driven shaft are represented in figures 5.6.6.and 5.6.7.
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5.6.6 Spectrum of free torsional vibration measured by torsional strain gauge installed on

driven shaft with disturbing signals of structural support and torsion bar.
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Figure 5.6.7 Spectrum of free torsional vibration measured by torsional strain gauge

installed on driven shaft after subtracting the signals of structural support and torsion bar.

Eliminating the external noise, three peaks are observed in the measured response
spectra at the driving and driven shafts, which are shown in Figures 5.6.5.and 5.6.7. The
third peak frequency matches with the third natural frequency of the experimental geared
system as determined by using the continuous model and by the discrete analysis.
Similarly, the frequency of the second peak is close to the 2™ natural frequency of the
experimental geared system applying the proposed model and the discrete model. The
first peak frequency of the measured response spectra at both of the driving and driven
shafts is however just half of the 3rd natural frequency. It can be mentioned that the 1%
mode of the geared system is a rigid body mode with zero natural frequency. Table 5.6.1
summarizes the experimental values of the natural frequencies measured by torsional

gauges installed on the driving and driven shafts. Table 5.6.2 on the other hand compares
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the experimental results with the analytical results applying the proposed continuous

model and discrete analysis for the simplified experimental geared system.

TABLE 5.6.1 SUMMARY OF NATURAL FREQUENCIES OF THE
EXPERIMENTAL GEARED SYSTEM

Experimentally Measured Natural Frequency, cpm
Mode | with T01.rsi.onal Gauge | with Tor_sional Gauge Average
at Driving Shaft At Driven Shaft
1 0 0 0
2 38,040 37,920 37,980
3 51,240 51,300 51,270
4 Limited by the Frequency Range of the FFT Analyzer: 1000 Hz

TABLE 5.6.2 NATURAL FREQUENCIES OF ANALYTICAL MODEL IN

COMPARISON TO THE EXPERIMENTAL RESULTS:

Natural Frequency of the Simplified Geared System
Experimental 3 DOF Discrete Model
Mode pResul A Cont Model Results Results
fin, cpm fn, cpm leff):rence fn, cpm lefgrence
Yo Yo
1 0 0 0 0 0
2 37,980 38,520 +1.42 37,320 -1.74
51,270 50,880 -0.76 50,520 -1.46
Limited by .
Limited
4 range of FFT | 144,480 - by 3DOF -
analyzer
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5.7 Summary

While comparing the analytical results with the experimental natural frequencies, it is
observed that the results of proposed continuous model for the experimental geared
system are slightly closer than those of the discrete model. The third mode dominates
over the second mode. The peak at half of the 3" natural frequency is anticipated to be
caused by the misalignment of the driving shaft with respect to the driven shaft. A
detailed investigation is required in future experiments for periodic torsional vibration

analysis.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

A new continuous model is proposed for dynamic analysis of self excited geared
system that involves time dependent boundary conditions. Natural frequencies of first
four modes of the proposed model closely match with the results of a 4DOF discrete
model of a previous paper [30]. SIMULINK models are added to the discrete analysis for
investigating the influence of transient and steady state transmission error within the

system.

Natural frequencies of the continuous model are also compared with the
corresponding modes of Rayleigh-Ritz model and a minor deviation is observed.
Boundary characteristic orthogonal polynomials are used with the Rayleigh-Ritz method
for the determination of natural frequencies. Influence of a stronger mode is observed in

adjacent modes.

A simplified geared system is designed and fabricated for the experiment of free
torsional vibration. Bonded metallic foil grid resistance strain gauges are installed on the
driving and driven shafts for comparing the natural frequencies of both of the shafts.

Thus the experimental aspects validate the proposed continuous model.
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6.2 Conclusions:

The following important conclusions can be drawn from the analytical and

experimental studies undertaken in this research:

1. The proposed continuous model provides better results and can be used for the

dynamic analysis of gear drives.

2. Rigid body mode is observed at 1% natural frequency in both of the discrete and
continuous models. However non linear mode shapes are found for two shafts

coupled by a gear pair in the continuous model at higher modes.

3. The SIMULINK model determined the magnification factor of resonant dynamic

torque for accurate measurement of responses by the discrete modal analysis.

4. The discrete model merely indicates the development of transmission error.

However, the continuous model identifies the sources of transmission error.

5. The continuous model determines the mode shapes and responses of the driving and

driven gears individually.

6. The Rayleigh-Ritz method with boundary characteristic orthogonal polynomials
provides better approximation of natural frequencies and can be conveniently used

for forced vibration analysis of geared shaft.

7. In the Rayleigh-Ritz model the 4™ mode is stronger than the adjacent modes and
causes upper bound natural frequencies in lower modes and lower bound natural

frequencies at higher modes.
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8.  Rayleigh-Ritz method with Bhat’s boundary characteristic orthogonal polynomials
is easier for computer implementation, but the proposed continuous model is

computationally more efficient.

6.3 Future Work

This thesis has built a concrete foundation of a new continuous approach for
analyzing the sélf excited dynamic load in gear drives that encompasses effects of
manufacturing error, mounting error, elastic deformation and linear meshing stiffness
variation. Although the comparative model analysis proves the effectiveness of this
model, incorporation of following aspects further improve the dynamic load analysis,
which ultimately improves gear design.

* Free and Forced vibration analysis with non-homogeneous anisotropic shaft material

with variable cross section.

* Integrating damping, backlash, friction and other nonlinearities within the continuous

model of the geared systems.

* Extending the continuous model incorporating the coupled effect of lateral, torsional

and axial vibrations considering rotor-bearing system of geared systems.

* Extending the experimental investigation for studying the individual influence of
tooth profile error, misalignment, eccentric bearing and gear installation as well as the

bent shafts on the natural frequencies and responses of geared systems.

* A comprehensive study of analyzing the influence of modes on the natural

frequencies of the Rayleigh-Ritz model for geared systems.

* Developing the Rayleigh-Ritz model for forced vibration analysis of geared systems.
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