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ABSTRACT

Tableau-based Reasoning for Description Logics with Inverse Roles and Number Re-

strictions

Yu Ding, Ph.D.

Concordia University, 2008

The tableaux algorithm is a general technique for deciding concept satisfiability problems in
description logics (DLs). It is useful not only for practical implementations, but also for studying
the correctness and complexity of concrete decision procedures.

There is a family of DLs that currently lack appropriate optimization techniques. The research
focuses on these DLs which typically have inverse roles and number restrictions (corresponding to
ontology languages OWL-lite and OWL-DL respectively). We provide solutions to known problems
such as the unsoundness of global tableaux caching, and present new tableau-based algorithms for
concept satisfiability problems in these DLs. The research presented in this thesis is significant in
several aspects. Firstly, based on an equivalence discovered during the course of the research, we are
able to show an elimination of inverse roles for a sub-family of DLs. Our experiménts have confirmed
the practicality of this technique. Secondly, we provide three sub-tableaux caching techniques that
are sound and global (but with different power in caching functionality). Finally, we present two
ExpTime tableau-based decision procedures, with the one for SHTQ achieving an improved worst-
case upper bound in the strong sense of binary coding of numbers (based on the integer linear

programming technique).
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Chapter 1

Introduction

Description logics (DLs) are a family of knowledge representation formalisms suitable for represent-
ing the terminological knowledge in a wide range of applications [BCM*03]. The Tableauz algorithm
[BSO1] is a general technique for deciding the concept satisfiability problems in description logics.
Historically, the tableauz algorithm provides an algorithmic framework that is parametric with re-
spect to language constructors and is useful for studying both correctness and complexity of concrete

decision procedures [DLNS96, BHLW03].

1.1 Background

Description logics were designed as an extension to frames [Min85] and semantic networks [LLOO],
which were criticized as “no;o equipped with logic-based semantics” [BCM*03]. Description log-
ics were given their current name in late 1980s. Prior to this they were called, among oth-
ers, terminological systems and concept languages. The research about finding the right “frag-
ments” that are both expressive for applications and “practical” for computation can be found in
[Baa90, DLNS94, Sat96, BCM*03]. The computational properties of various description formalisms
have been thoroughly investigated in the literature, e.g., [DLNN91]. The name description logic, on
the one hand, refers to concept descriptions used to describe a domain and, on the other hand, to the
logic-based semantics which can be given by a transla'pion into first-order predicate logic [BCM103].

Notably, today description logic has become a cornerstone of several areas for its use in the design



of ontologies, e.g., the Semantic Web, the DL-based software information system (SIS), practical

software engineering, etc.

There are various implemented DL systems based on tableaux algorithms, offering a palette of de-
scription formalisms with different expressive power. In the history, the first DL-like system was
KL-ONE [BS85]. KRIS [BHNP94] is one of the first description logic reasoners that implemented a
highly optimized tableauz algorithm. A worst-case optimal tableau-based procedure for the concept
satisfiability problem of the DL ALC was first given in [DMO00] in details. The proposed global
sub-tableaux caching technique is quite influential on practical tableau-based DL systems. Dozens
of different tableau-based DL systems!, with sophisticated optimization techniques, have been im-

plemented since the mid-1980s.

1.2 Syntax and Semantics

The fundamental representation unit of description logics is the so-called concept description. In the
literature, a concept description is also called a concept expression or a concept formula, but the most
common name is its abbreviation concept. Concepts are built from atomic concept names (and indi-
vidual names called nominals) using certain constructors, e.g., the common boolean operators® such
as M (for “conjunction”), and U (for “disjunction”), and - (for “negation”), and others with more
description logic flavor. Concepts can be used at the conceptual level for describing terminological
knowledge, e.g., the terminological azioms of a Thox. Oonéepts can also be used at the assertional
level for describing knowledge of individuals. In Section 1.3.2, we will introduce the notion of Abox

individuals.

In the following, we review the DL SHOZQ proposed in [HS05, HS07]. Formally, concepts are
inductively defined through a set of concept constructors, starting with a set N¢ of concept names
(and with a special nominal set Npo) and a set Ng of role names. The available concept constructors

determine the expressiveness of the DL.

LA list of DL reasoners is maintained at http://www.cs.man.ac.uk/ sattler/reasoners.html.
2A DL that provides all the boolean operators is called propositionally closed. DLs that are not propositionally
closed are called sub-boolean DLs (e.g., the £C-family [BBL05] DLs).



Definition 1. (Concept) Let Ng, No, and Ng be pair-wise disjoint sets of concept names, nom-
inals, and role names. Atoms are defined as the union of N¢ and Np, i.e., Natom = N¢ U No.
NrU{R™|R € Ng} is the set of roles. R~ stands for the inverse of a role name R. The set of

(well-formed) SHOZQ concepts is the set such that:
e each A € Najom is a SHOZ Q-concept; and

e if C and D are SHOZQ-concept formulae, R a role, and n a non-negative integer number,

then =C, CN D, CUD, 3R.C, YVR.C, (32" R.C) and (35" R.C) are also SHOZ Q-concepts.

3R.C is called the existential restriction, YR.C the universal restriction, (32" R.C) the at-least
restriction, and (3™ R.C) the at-most restriction. They are generally called modal constraints. We

use T for denoting AL A, and L for A -A.

The semantics of description logics is defined by interpreting concepts as sets of individuals and roles

as sets of pairs of individuals.

Definition 2. (Interpretation) An interpretation Z = (AZ,.7) consists of a non-empty set AZ,
called the interpretation domain, and a mapping .Z which associates with each A € Nagom a set
AT C A7, and with each role name R a binary relation RZ C AT x AZ, The interpretation is defined

as follows:
e CNDY¥=0C*NnD*
e (CuDY? =C*uD?

o« ~CT = AT\ (T

(3R.C)* = {d € AT|3e € AT with (d,e) € RT and e € C%}

(VR.C)T = {d € AT| for all e € AT, if (d,e) € R” then e € CT}

(32" R.C)T = {d € AT|§{e € C*|(d, e) € RT} > n}

(3" R.C)T = {d € AT|t{e € C¥|(d,e) € RF} < n}

for o € Np, of = {0’ € AT} and §{0o' € AT} =1

for a role R, (a,b) € R? iff (b,a) € (R™)*



e for a transitive role S, (a,b) € S% A (b,¢) € ST = (a,c) € ST

An element d € C7 is called an instance of concept C. For two elements d and e, if (d,e) € RZ,
then e is called an R-neighbor of d, and d is called an R™-neighbor of e. Note that a nominal is

interpreted as a singleton set (i.e., its cardinality is 1).

Definition 3. (Satisfiability, Subsumption, Equivalence, Disjoirxtriéss) A concept descrip-
tion D subsumes a concept description C' '(vi;ritten C C D) iff CT C D? for all interpretations Z.
We say that C is satisfiable iff there exists an interpretation Z such that C% # 0; C and D are

equivalent iff CT C D¥ and D* C C? for each Z; C and D are disjoint iff CT N DT = § for all Z.
As stated in [BCM*03], we have the following three propositions.

Proposition4. (Reduction to Subsumption) For concepts C and D:
e C is unsatisfiable & C C L;
e C and D are equivalent & C T D and D C C;

e C and D are disjoint & CNDLC 1.

Proposition 5. (Reduction to Unsatisfiability) For concepts C and D:
o C is subsumed by D < C M —D is unsatisfiable;
e C and D are equivalent < both (C T =D) and (=C N D) are unsatisfiable;

e C and D are disjoint <& C M D is unsatisfiable.

Proposition 6. (Reducing Unsatisfiability) Let C be a concept. Then the following are equiva-

lent:
o C is unsatisfiable;
o C is subsumed by L;
e C and L are equivalent;

o C and T are disjoint;



The concept satisfiability (subsumption, equivalence and disjointness) problem defined above is com-
monly called the pure concept satisfiability (subsumption, equivalence and disjointness) problem

because no Thox is taken into consideration.

DLName |M|U| 7| YEO | SIR |ERRCRCR R-| 5 | {0}
ALC J J o

ALCT J J J

ALCOT J J J J
ALCFT PR R I J

ALCHIQ J J J J J

SH J J J

SHOI J J J J J
SHIQ J J J J

Figure 1.1: Description Logics and Their Language Elements

Figure 1.1 lists the description logics that will be discussed in this thesis.

1.3 Tbox, Abox and Role Hierarchy

Besides the concept descriptions for describing sets of individuals or objects, the second major
representation mechanism of description logics is the knowledge base, which consists of a Thox and

an Abox. In this part, we introduce the Tbox, Abox, and Role hierarchy.

1.3.1 Tbox

The first component of a DL knowledge base is the Tbox (“T” for terminological). A Tbox can be

either a simple Tbox or a general Thox. A simple Thox was also called a terminology in the past.

3For description logics such as ACCOT or SH, it is known that these logics are so expressive that a whole Tbox can
be “internalized” as a single concept expression [BCM103]. For these description logics, the pure concept satisfiability
problem is as general as the concept satisfiability problem in a Tbox because the Tbox itself can be expressed in a
concept description. For description logics such as ACLCHZ, it is impossible to “internalize” a whole Tbox, therefore
we need to differentiate the case of the pure satisfiability problem and the case of the satisfiability problem in a Thox.



Definition 7. (Simple Tbhox) The elements of a simple Tbox are either concept inclusions (e-g.,

A C C) or concept definitions (e.g., A= C).

Both inclusions and definitions introduce symbolic names for complex concept descriptions. In a
simple Thoz, at most one concept definition is allowed per concept name. The concept inclusions or
concept definitions of a simple Thox can serve as “rewrite fules” to expand concept names to their
definition without compromising soundness. If concept names are not allowed to refer to themselves,
neither directly nor indirectly, then we have an acyclic simple Tbox. Otherwise, it is called a cyclic

simple Tbox.

As an example, the concept “MOTHER”, as interpreted in English as “a WOMAN who has a child”,
could be introduced by a description like:

MOTHER C WOMAN N 3has_child. PERSON

To state that a “WOMAN is a PERSON”, we could use a second concept inclusion like:

WoMAN C PERSON

Among these two concept inclusions there is no cyclic reference relationship, therefore together they

are acyclic.

Definition 8. (General Concept Inclusion) A concept inclusion is called general (a.k.a. general
concept inclusion, or GCI for short) if it is of the form C C D, where C and D are arbitrary

SHOZQ-concepts. A Tbox is a finite set of GClIs.

A Tbox having general concept inclusions is a general Tbor. As usually perceived by a knowl-
edge engineer in the knowledge representation area: the unfoldable part of a general Thoz provides

definitions; the GCI part (containing general concept inclusions) provides background knowledge.

The definition of the interpretation given in the previous section is extended for Thoxes as follows.
An interpretation T satisfies a GCI C C D if CT C DZ. T satisfies a Thox T if 7 satisfies all GCls

in T in this case, T is called a model of T', and T is coherent.

Likewise, the notions of Satisfiability, Subsumption, Equivalence and Disjointness are ex-
tended for a Tbox as follows. A concept C is satisfiable w.r.t a Thox T if there is a model Z of

T with C% # 0. A concept C is subsumed by a concept D w.r.t T (written C Cp D) if, for each



model Z of T, we have that CT C DZ. T'wo concepts are equivalent if each one subsumes the other.
Two concepts are disjoint if CT N D% = § for every model Z of T. Any one of the two reasoning
problems, satisfiability and subsumption, can be reduced to the other: C' is satisfiable w.r.t T iff C

is not subsumed by .L. w.r.t T; C T D iff C M —D is not satisfiable w.r.t T'.
Moreover, C = D is an abbfevia.tion forCEDand DEC.

The tazonomy of a Tbox T is a partial order (i.e. subsumption hierarchy) of the concept names
w.r.t. C7, and may be viewed as a mathematical structure, such as a lattice or Hasse diagram. The

process of computing the tazonomy of concept names is also called the classification of terminologies.

Checking Tbox coherence, computing the Thox tazonomy, testing concept subsumption and concept
satisfiability with respect to a Tbox are Tbox-related reasoning tasks, among which the concept

satisfiability problem is the fundamental one [BCM*03].

1.3.2 Abox

The second component of the knowledge base is the Abox (“A” for assertional). An Abox describes
named individuals and their relations while possibly referring to the concept descriptions in the

Thbox.

Definition9. (Abox Assertion) Given a set of individual names N;, an Abox assertion is of

either of the following two forms:
ea:C
e (a,b): R

where a,b € Nj are individual names, C is a concept, and R is a role. An Abox is a finite set of

assertions.

The definition of an interpretation 7 is also extended to an Abox. It associates with each a € Ny
some af € AT. An interpretation Z satisfies an Abox if: (1) for each assertion a : C, we have that
a® € C%; and (2) for each assertion (a,b) : R, we have that (a?,b%) € R%. An interpretation that
satisfies all the assertions in an Abox is called a model of the Abox. An Abox that has a model is

said to be consistent.



The Abox consistency test is the fundamental Abox-related reasoning task, which checks if a given

Abox is consistent.

1.3.3 Role Hierarchy

A role hierarchy (denoted by H as in ALCHZQ and SHZQ) is a mechanism for specifying the sub-
éumption relationships between roles. In addition to Thox and ABox, a role hierarchy is sometimes
regarded as a third component of a DL knowledge base and is called Rbox (“R” for Role). However,
there is no recognized reasoning task on a Rbox itself. A role hierarchy specifies the subsumption
relation between a pair of roles by using a role inclusion in the form of Ry T R3, where R; and R;

are roles. An interpretation Z satisfies a role inclusion Ry C Ry if R C RZ.

We should point out that this thesis is not intended for delineating the expressive differences for
different description logic formalisms. General information about expressiveness can be found in
[BCM*03] or at the website of “the DL Complexity Navigator” at www.cs.man.ac.uk/"ezolin/dl/.
Therefore, a comparison between the expressiveness of nominals versa Abox individuals and others
alike are out of the scope. In Section 1.4, small examples using description logic formalisms for
knowledge representation will be given. By working through those small examples, inexperienced
readers are expected to gain a better understanding of the notions central to description logics such
as concepts, concept inclusions, and named individuals (which can be equivalently represented either
in a nominal or in an Aboz individual). One thing to notice is that (general) concept inclusions are
used in all examples. We also expect that readers have no difficulty in finding out that an Aboz

assertion is a special form of a concept inclusion (Example 10 tries to give such a hint).

1.4 Examples

The convenience of using inverse roles has been long recognized. For example, it is difficult to
directly express a sentence? such as “mary likes all cats” even in SH®. By contrast, its equivalence

to “all cats are liked by mary” can be easily expressed® in ALCOT by using the inverse likes™ of

the role likes.

4There is a paper [LS00] discussing the right description logic to express “mary likes all cats”.
5In this thesis, we will show that inverse roles in examples like this can be eliminated, which means there exists
an automatic and “polynomial” translation from ALCOZT to ALCO.



In the following, CAT, MOUSE, ANIMAL and FEMALE are concepts, each of which is to be interpreted
as a set of individuals; {Mary}, {Jessica}, and {Tom} are named individuals (i.e., nominals, each
of which is a singleton set); likes and has_child are role names, and likes™ and has_child™ are their

inverse roles respectively.

Example 1. “Cat likes mouse” can be expressed simply in ALC as:

CAT E 3likes. MOUSE

Example 2. “No Dog likes a Cat” can be expressed either by
Dog C Viikes.~CAT or by

Jlikes—.DoG C ~CAT

Example 3. “Mary likes all cats, Mary is a female person and cat is an animal.”

CAT C ANIMAL N Jlikes~.{Mary} and {Mary} C FEMALE

Example4. “Jessica likes everything that Mary likes.”

Alikes™ .{ Mary} C Jlikes~.{Jessica}

Example 5. “Jessica does not like Mary”.

Alikes™ .{Jessica} T ~{ Mary}

Example 6. Given only the has_child relation, to express “Mary has at least five siblings”, it is
straightforward to use inverse roles and number restrictions:

{Mary} C Jhas_child~.32% has_child. T

Example 7. “Mary likes all her siblings” can be expressed in

~{Mary} M 3has_child~ .(3has_child. { Mary}) C Ilikes™ .{ Mary}

Example 8. “Each of Mary’s siblings, if any, likes Mary”. This can be expressed as:
—{Mary} 1 3has_child~.(3has-child.{ Mary}) C likes.{ Mary}
or as:

{Mary} C Vhas_child~ .(Vhas_child.({ Mary} U 3likes { Mary}))



<«<TOP>>

<<AnimalP>

O Named Individual
(C} Anonymous Individual
—> Role(Binary Relation)

Figure 1.2: A Pictorial Presentation of (Partial) Knowledge of the Examples

<<Dog>> <<Cat>> <<Mouse>>
(‘ j‘/"l'om ~’
<<Concept>>

<<Person>>

Example9. “Jessica and Mary share parents”. This can be expressed by either:

{Mary} © Jhas_child~.(3has_child.{ Jessica}) or by

{Jessica} T has_child~.(3has-child.{ Mary})

Example 10. “Tom is a Cat” can be expressed® either as an Abox assertion

Tom : CAT

or as a concept inclusion for a named individual (i.e., nominal)

{Tom} C CaT

Given the above “knowledge” as encoded in the form of description logic concept inclusions, a logical
consequence is that Jessica and Mary are the same person: Jessica and Mary share a common

parent (according to Example 9) but can not be siblings (for otherwise there will be a contradiction

by Example 8 and Example 5).

6This example shows that an Aboz assertion about an Abox individual is equivalent to a concept inclusion about

that named individual,
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1.5 Research Motivation, Contribution and Thesis Organi-

zation
1.5.1 Research Motivation

The tableaux algorithm is a general technique for deciding concept satisfiability problems in de-
scription logics. It provides an algorithmic framework that is parametric with respect to language
constructors, and is useful for studying the correctness and complexity of concrete decision proce-
dures as well as for designing practical implementations. In practice highly optimized tableau-based
algorithms have been implemented in DL inference engines. In the presence of inverse roles and
number restrictions (corresponding to the ontology languages OWL-lite and OWL-DL respectively),
however, most successful tableau-based DL reasoning systems exhibit problems, for example, de-
graded performance. The current loss of performance is largely due to the missing applicability of
some well-known optimization techniques, especially the one for caching the satisfiability status of
modal successors, and the new absorption technique which transforms GClIs into unfoldable axioms
by considering the Ramsey-rule [Ram31] for a role and its inverse. For more discussions please see

next subsection.

Our research initially started fl;om .carrying out a thorough investigation of the “current status”
(about which techniques become invalid or less efficient) and performing an in-depth cause-analysis
(of why current techniques for inverse roles and number restrictions are inefficient). During the
course of this research, we have found and proposed several new techniques (including an equiva-
lence about inverse relations, the elimination of inverse roles, and the sound global tableauz caching
technique) as solutions. For number restrictions, an algebraic method was proposed in [HMO01a]
for SHQ and was implemented in the DL reasoner RACER [HMO1b]. It is known from practice
that the algebraic method has a good run-time performance. However, there was no theoretical
explanation for this, thus it is questionable if the algebraic method is better than other approaches.
Indeed in [Tob01] a question was raised about whether a tableau-based approach could lead to an
optimal decision procedure for concept satisfiability tests of number restrictions. It was also unclear
about how to use the algebraic method for DLs having number restrictions and inverse roles. These

questions are answered in this thesis.
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1.5.2 Contributions

This thesis is based on a continuous research being carried out at Concordia University since five
years ago. Some research results in this thesis are collected from my thesis proposal and several

publications [DHO7b, DHW(07, DHO7a, DH06, DHO5]. The contributions are as follows:

(1) The “dynamic blocking” technique [HS02] has been adapted to a dynamic global tableauz caching
technique (as shown for the DL LALCZ in thisthesis). The proposed dynamic global tableauz caching
technique (first appeared in [DHOF:]) exemplifies a general mechanism of “anywhere blocking”” for

a family of DLs with inverse roles.

(2) An equivalence® about a role and its inverse was (re)discovered in the area of description logics
during the course of this research. In [DHO5] we pointed out its promising application to ab-
sorption algorithms [HT00]. A new framework [HWO06] considered this equivalence and extended
[HTO00] in many aspects for designing absorption algorithms. Recently in [WHO8], by combining with
planning techniques, a general usage of this equivalence (allowing a recursive extraction of usable
concept names) successfully transformed several very hard ontologies (from the model checking field
[BDTWO07]) into KBs without GCIs and showed orders of magnitude performance gain in experi-
ments. Also related to this equivalence is a result [DHWO7] showing that any unfoldable Tbox in

SHOT can be transformed into an unfoldable Thox in SHO while preserving concept satisfiability.

(3) A methodology to eliminate inverse roles for a family of DLs having inverse roles (e.g., from

SHOT to SHO, and from ALCZ Abox to ALC Abox).

(4) A worst-case optimal (ExpTime) tableau-based decision procedure for ALCFT is established.
This is achieved by a sound global tableaux caching technique that is the most powerful of the three
tableaux caching techniques proposed in this thesis. It is quite promising that the same technique can

be extended to SHZF, a DL corresponding to the ontology language OWL-lite (see www.w3c.org).

(5) A simplified condition for the termination (a.k.a. blocking) of tableaux algorithms for DLs with

inverse roles even when extended by qualified number restrictions. In contrast to the dynamic double

"TRecently a pairwise anywhere blocking technique was introduced in [MSHO7] foxr SHZQ.
8This equivalence and the dynamic global tableaux caching technique were reported in the thesis proposal and were
later presented in [DHO5]. In 2006, the author of this thesis found out that this equivalence is a variant of the Ramsey
Rule [Ram31] in modal logics. Related research for developing new absorption algorithms include [HW06, SGP06].
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blocking conditions previously known and popularly recognized today [HS99)], the new termination
condition is not only conceptually simple but also (potentially) practically easy for implementations.
A straightforward application of this termination condition is a sound global tableaux caching for
DLs with qualified number restrictions and inverse roles (see below for SHZQ). When connecting
to the depth-2 pattern broughf up in [BHLW03, HM04, Hla04], the new condition is intuitively

understandable and fits right to the notion of the depth-2 pattern.

(6) Based on the algebraic method [CL94, OK99, HMO1a] and the integer linear programming tech-
nique [Pap81], we demonstrate a worst-case ExpTime (with improved upper bound) tableau-based
decision procedure for SHZQ in the strong sense of a binary coding of numbers. This is achieved by
the use of sound global tableaux caching® and also by the use of a feasibility test for integer linear

inequalities.

1.5.3 Thesis Organization
This thesis has seven chapters plus two appendices.
Chapter 1 is the present introduction.

Chapter 2 introduces a dynamic global tableauzr caching technique for the description logic ALCZ.
This is the first (but the least powerful) of three global tableaux caching techniques to be presented

in this thesis.

In Chapter 3, we first show an equivalence about inverse relations which is a variant of the Ramsey-
rule [Ram31]. Then we introduce a translation technique to convert an ALCZ knowledge base (an
Abox plus an acyclic Tbox) to an ALC knowledge base. The Abox consistency problem with regard
to an acyclic Thox for a description logic with inverse roles is reduced to the same problem in a

description logic without inverse roles.

In Chapter 4, we present a second global tableauzr caching technique, the most powerful one of the
three caching techniques proposed in this thesis. We further show an ExpTime decision procedure

for the satisfiability problem in ALCFT.

9The pairwise anywhere blocking technique introduced in [MSHO07] for SHZQ is not able to guarantee a worst-case
ExpTime tableau-based decision procedure even in unary coding of numbers.
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Chapter 5 presents several reductions for eliminating the role hierarchy and inverse roles. This
chapter is related to Chapter 3 and also shows that satisfiability problems in SHZ can be reduced

to those in ALC.

Chapter 6 covers an upper-bound improved ExpTime decision procedure for SHZQ. We introduce
the algebraic method [OK99, HMO1a), the integer linear programming technique, the simplified ter-
mination condition as mentioned above, and then provide a third global tableauz caching technique,
which is the most general one of the three variants (of the global tableauz caching technique) to be

presented in this thesis.
Chapter 7 summarizes the thesis and discusses future work.

Appendix A is the result from the first phase of this research and reviews optimized tableaux

algorithms for description logics.
Appendix B presents the experimental results about the elimination of inverse roles.

Figure 1.3 illustrates the connections among different chapters and appendices of this thesis. For
example, Appendix A provides some extra background to Chapter 1, hence it might be better to
have a look at Appendix A when reading Chapter 1. Chapter 2, Chapter 4 and Chapter 6 share
commonalities in presenting tableau-based algorithms; Chapter 3 and Chapter 5 share commonalities
in using a reduction technique. Therefore, it might be helpful for readers to read them in groups.
It is hoped that a simple navigational map like this would help readers go through this thesis in a

more efficient way.

Figure 1.3: Organization of the Chapters and Appendices
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Chapter 2

Dynamic Tableaux Caching for

ALCT

Modern description logic (DL) reasoners are known to be less efficient for DLs with inverse roles
[DHO5, GNO7]. The current loss of performance is usually caused by the missing applicability of
well-known optimization techniques such as caching the satisfiability status of modal successors.
The “unsoundness” of (global) tableaux caching in the presence of inverse roles is the very reason
for people to dismiss its “applicability” [HST99a, DM00, HMO00a]. To recognize and avoid unsound
cases in tableaux caching is therefore a first step toward a correct use of the global tableaux caching
technique. This chapter studies the correct conditions for using tableaux caching in ALCZ and

shows a global tableauz caching technidue that is dynamic! and sound.

As shown in Chapter 1, ALCZ has propositional constructs, universal restrictions, and existential

restrictions. We assume readers are familiar with its syntax and semantics.
In this chapter (and throughout this thesis) we will use two conventions.

The first is about a shorthand notation for inverse roles. To express the inverse of a role R, we
simply denote it by R~. In some published work, an auxiliary function Inv(.) is used instead for
denoting the inverse of a role. Though Inv(R) could possibly denote an inverse of the role R in a

more precise way, it is less convenient in writing and does not give better clarity than the simple

1The name “dynamic caching” is taken after the “dynamic blocking” technique in [HS99]. In here and there the
word “dynamic” is used to denote a relationship (in tableaux structures) that should be dynamically updated and
maintained by the proposed techniques.
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notation R—. For a role S, if it is the inverse of a role R, then its inverse S~ will mean R. Therefore,

readers are not expected to see notations such as R~ in this thesis.

The second convention is related to discussing tableaux structures. It is sometimes inevitable to refer
to neighborhood relations between tableaux nodes. In the literature, it is common to see statements
like “r is an R-neighbor of y”, which can be easily understood as saying “zr is y’s R-neighbor”, or
put in another way, = and y are two adjacgnp nodes and there is an R relation from y to z. To be
consistent, when we say that x is an R-predecessor of y, we mean that z is ¢’s predecessor and there
is a relation R from y to z. Likewise, “z is an R-successor of ¥” means that z is y’s successor and

there is a relation R from y to x.

2.1 The Tableaux Rules

The notions of the C-label (initial label) and the unsat-cached clash will be used.

The C-label is used to keep those information propagated down the tableaux tree; while the L-label
is conventional and contains all information. It is required that C(z) C L£(z). As usual, a tableaux
node z is called completed or saturated if no tableaux expansion rule is applicable to L(z). In ALCZ,
the two-way computations on a tableauz tree, as caused by the back-propagation due to universal

restrictions, should be taken into account to accordingly reflect the satisfiability of ALCZ concepts.

'Recall that in [BCM*03] the basic clash trigger is defined as {4, A}, where A is some concept
name. As a reminder, L is used as an abbreviation for A -A. To integrate a global tableauz
caching functionality into the tableau expansion rules, a second clash trigger is needed. When
creating a successor node y for a node z, if there exists some label £(z) known to be unsatisfiable
and L(z) C L(y), then a clash trigger is applicable to node y’s £ label; likewise, if there exists some
label C(z) known to be unsatisfiable and C(z) C C(y), then a clash trigger is applicable to node y’s

C label. A clash of this kind is called an unsat-cached clash.

In the following, we present several auxiliary functions that will be used later.

Definition 1. (Negation Normal Form) The Negation Normal Form (NNF) nnf(.) of a concept
expression is defined as

(1) nnf(A) = A and nnf(—A) = —A for concept name A € Ng,
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(2) nnf(=(=C)) = nnf(C),

(3) nnf(C N D) = naf(C) Nnnf(D) and nnf(~(C N D)) = nnf(~C) Unnf(-D)
(4) nnf(C U D) = nnf(C) Unnf(D) and nnf(~(C U D)) = nnf(~C) Mnnf(—~D)
(5) nnf(VR.C) = YR.(nnf(C)) and nnf(~(YR.C)) = IR.(nnf(-C))

(6) nnf(3R.C) = 3R.(nnf(C)) and nnf(=(3R.C)) = VR.(nnf(-C))

Definition 2. (function sub(.)) The set of concepts sub(.) is defined as follows:
(1) sub(A) = {A} and sub(—A) = {—A} for concept name A € N¢

(2) sub(CnN D)= {CnD}Usub(C) U sub(D)

(3) sub(C L D) = {C U D} U sub(C) U sub(D)

(4) sub(VR.C) = {VYR.C} U sub(C)

(5) sub(3R.C) = {3R.C} U sub(C)

The following is a definition of the tableauzr structure. As usual, in the definition only L-labels are
used. It should be clear that C-labels are used in identifying safe conditions (for sound tableaux

caching) in Definition 6.

Definition 3. (ALCZ Tableau Structure) Let E be an ALC concept in NNF, Rg be the set of
roles occurring in E. A tableau structure for E is a triple (8, L, ), where § is a set of individuals,

L:8 — 25ubE) £ Rp — 25%S and the following properties hold:

(1) L ¢ £(s), and if C € L(s), then ~C ¢ L(s),

(2) if CND € L(s), then C € L(s) and D € L(s),

(3) if CUD € L(s), then C € L(s) or D € L(s),

(4) if VR.C € L(s) and (s,t) € £(R), then C € L(t),

(5) if 3R.C € L(s), then there is some ¢t € S s.t. (s,t) € E(R) and C € L(¢).
(6 (s,t) € E(R) iff (t,s) € E(R).

Below are two functions succ(.,.) and watch(.). Both functions help in characterizing the influence
of universal restrictions in a tableaux structure. The function suce(., .) specifies a set of role fillers;

the function watch(.) specifies a set of roles. They are used to form the (sound tableaux caching)
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preconditions in Definition 6. A label L(z) is locally completed if the r-rule and the U-rule are not
applicable to it. In subsequent chapters, this local completion will also be called propositionally

completed to reflect its relation to the propositional expansion rules.

Definition 4. (function succ(.,.)) Given a node z with a pair of labels (C(z), £(z)}), where L(z)
is a locally completed label, for R a role, the function succ(£(z), R) = {C|VR™.C € L(z)} specifies

a set of role fillers of the relevant universal restrictions.

Definition 5. (function watch(.)) Given a tableau node z with {C(z), £(z)}, where L(z) is
the (lqcally) completed label as prescribed above, the set of watched incoming-edges for z is

watch(L(z)) = {R~ |YR.C € L(z)}.

Definition 6. (Sat-Cached) Given a node z with {C(z), £(z)}, and its R-successor y with {C(y), L(y)},
and some node z with {C(z), £(2)} such that £(z) is completed and does not contain a clash. The

node y is sat-cached by node z if one of the following conditions? holds:
(1) C(y) € C(z) and R ¢ watch(L(z)); or
(2) L(y) C L(2) and R ¢ watch(L(z)); or
(3) C(y) € C(z) and succ(L(z), R) C L(z); or
(4) C(y) € C(2), z is a R-successor to w, L£L(w) € L(z), succ(L(z), R) € L(w); or
(5) Both y and z are z's R-successors and C(y) C C(z).

Table-2.1 is a set of tableaux expansion rules for ALCZ with caching integrated. The first half of
the V-rule is for backward propagation and the second half for forward propagation. The 3V-rule

generates successor nodes and creates their initial labels.

2Following the fundamental idea of “dynamic blocking”, it is sufficient to use condition-3 as the only terminating
condition for the underlying tableaux procedure. Nonetheless, considering several other cases might benefit run time
performance further. For example, condition-5 is quite special and in some situations it can significantly prune the
search space; while condition-1 and condition-2 could lead to static global tableaux caching [DHO05].

18



M-rule if 1. C;NC; € L(z), and
2. {C1,Co} N L(z) # {C1, Ca}
then L(z) = L(z) U {Cy,C2}
U-rule if 1. C1UC; € L(x), and
2. {01,02} N E((L‘) = (0
then L(x) = L(z) U {E} for some E € {C},C3}
V-rule if . 1.1VR.C € L(z), and
1.2 there is an R-predecessor y of  with C ¢ L{y)
then L(y) = L(y) U{C}
if 2.1 VR.C € L(z), and
2.2 there is an R-successor.y of = with C ¢ C(y)
then C(y) = C(y) U{C}, L(y) = L(y) U{C}
IV-rule if 1. 3R.C € L(x), and
2. x is not sat-cached, and
3. = has no R-neighbor y with C € C(y)
then create a R-successor y such that
L{y) =C(y) = {C}U{DIVR.D € L(x)} and L((z,y)) = R

Table 2.1: Tableau rules for ALCZ with an integrated generalized cache.

Proposition 7. The above tableau procedure is sound for the satisfiability testing of ALCZ con-

cepts.

Proof. The tableaux rules given in Table 2.1 are commonly seen in the literature except the sat-
cached conditions. Its soundness therefore largely relies on the correctness of the five sat-cached
conditions. The following is a proof for each case.

(case 1) Figure 2.1 illustrates the first case and gives an example.

Considering the facts that £(z) is a completed label supporting the satisfiability of C(z) and the first
precondition C(y) € C(z), it is trivial to see £(z) supports the satisfiability of C(y). Unless z can

not be completed?, it is guaranteed that no clash is introduced for y in the final tableau structure.

The second precondition R ¢ watch{L(z)) further guarantees that no wuniversal restriction like
VR™.C occurs in £L(y) (an L-label for y supporting the satisfiability of C(y)). Therefore, the expan-
sion of C(y) (to L(y)) does not incur backward propagation of constraints to its predecessor node

Z.

31f £(z) can not be completed in the end, it means that £(z) is not satisfiable. In this case, the “relation” of y
being cached on z should be invalidated. A label £(y) will be computed from C(y) and subject to tableaux expansion
rules. Readers are now expected to understand better the meaning of “dynamic” as in the name dynamic tableaux
caching.
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Condition 1: if C(y) C C(z) and R ¢ watch(L(z))
then y is cached by z.

L]

T mamicoached by C() ={3RCVRD}
. S LA try,, CY={3RCN
Example: & . **£(2) = {3RC,VR.D}

¢(y) = {3RCNVR.D}

Figure 2.1: Dynamic Caching: Condition 1

Condition 2: if L{y) C £{z) and R ¢ watch{L(2))
then y is cached by z.

PEESLELELEE 1) T

Iy tyy
.N"‘“H dynamic cached by “wg%

L{z) = {3IRC}

L) ={3R.C}

Figure 2.2: Dynamic Caching: Condition 2

' (case 2) Figure 2.2 shows the second case and gives an example. The proof relies on the construction
of a sub-tableau T" for y such that no extra constraints will be introduced to £(z) due to backward
propagation. Since L£(z) is given as a (locally) completed label, T"(y) can be copied from a subset

of T'(2) so that no backward propagation to z will be introduced.
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Condition 3: if C(y) € C(z) and succ(L(z), R) € L(z)
then y is cached by 2.

2, L
Y

*wgtxﬁﬁgﬁiﬁ**§§iﬂ§ptq‘

8 -
Example: 5% 4 M*‘*z* €(2) = {3R.CNVE~.D}]
- *1L(z) = {3RC,VR".D} |

"‘%

§ succ(L(z), R) = {D} € L{z) Cly) ={3R.CNVR".D}
£{z) = {3R(BR.CNYR".D), D}

Figure 2.3: Dynamic Caching: Condition 3

(case 3) Figure 2.3 shows the third case* and gives an example. Given C(y) C C(2) and a completed
label £(z), there must exist an L-label for y s.t. L(y) € L(z). So, for any VR™.C, if VR™.C € L(y),
it must be the case that VR™.C € L(z). Given succ(z, R) C L(x) as a known pre-condition, it means
that for any VR™.C € L(z) it holds that C' € L(z). So, for any VR™.C, if VR™.C € L(y), then it is
true that C € £(z). To construct the tableau structure T, we need £(R) 2 {(x,2) € S x S| L({z,y))

is an R-edge and y is Sat-Cached by z} to reflect case 3.

Condition 4: if L{w) G L(z) and suce(L(2), R) € L(w)
Then R-successor y is cached by R-successor Zz.

I [

Leat vt&?§?4¥”3§“b¥ww,
wat

. st mic cached [,
Example: ﬁ‘w» dyna Ca by w.‘“m’(
r~ R . s . A ¢(x) = {vR~.D}
W ' (W — 7] £(z) = {YR~.D}
L&) ={3R(R".D),D,VSC} Cly)={VR".D} L{w) ={3R.(VR".D}), D} \

Figure 2.4: Dynamic Caching: Condition 4

4A variant of this case is L(y) C L(z) and succ(L(z), R) C L(zx), which resembles condition 2.
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(case 4) Figure 2.4 shows the fourth case and gives an example. As already stated in the definition,
the witness z is locally saturated (for no rule is applicable to £(z) any more) and does not contain
a clash, and so does its predecessor w. This means that succ(£(z), R) € L(w) C L(z). According

to case 3, y is sat-cached by z.

(case 5) This is a case in which two nodes share a common parent and each of them has the same
role relation to the pérént. If the two sibling nodes 2 and y satisfy C(y) C C (2), then only node z
need to be expanded. In other words, if a label C(z) is satisfiable, then so is the label C(y). In DLs
having no inverse roles, global tableaux caching techniques commonly use set inclusion relétionship
among initial labels. In ALCT, generally it would be unsound to use initial labels for global tableaux

caching. However, this case shows an exception.

The above constitutes the soundness proof. O

2.2 Summary

In this chapter, a dynamic global sub-tableauz caching technique is presented for ALCZ. The relation
between a witness node and its blocked nodes is specified in a global scope so that it is possible to
cache intermediate computations (satisfiable results) during the execution of tableau-based proce-
dures. However, the “blocking” relation here is dynamic in that whenever the precondition changes
the “node” being “blocked” then it should be unblocked and the tableaur expansion rules should be
applied to them. This caching technique is dynamic in nature and is a generalization of the dynamic

blocking technique [HS99].

The proposed technique uses a pair of labels per tableau node. The idea of using more than one label
per node is not new and readers are referred to [HST98]. The label £(y) is required to be locally
(i.e., propositionally) completed, while C(y) is the initial label of 4. The obvious weakness is that no
inconsistency propagation is provided. In this sense, this dynamic caching technique is the weakest
of the three caching techniques proposed in this thesis. The next chapter (Chapter 3) presents a
conversion from ALCZ to ALC so that a full inconsistency propagation in ALC can be exploited.
In Appendix B, we show that by utilizing a fully-fledged global tableauz caching capability (with

inconsistency propagation enabled), the tableaux algorithm runs faster in orders of magnitude. In
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Chapter 4, we will present a second global tableauz caching technique for ACCFZT which integrates

the capability of inconsistency propagation as if there were no inverse roles.
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Chapter 3

Inverse Role and ALCZ Abox

In this chapter, first we show an equivalence on inverse relations, and then show we may convert an

ALCT Abox to an ALC Abox.

3.1 An Equivalence on Inverse Relation

Due to lack of appropriate optimization techniques in the presence of inverse roles, DL tableau-based
procedures are very sensitive in their performance but resolution-based approaches to DL reasoning
are relatively unaffected [Tsa03]. Therefore it might be beneficial for us to consider the fragment of
first order logic (FO) translated from expressions of the basic description logics with inverse roles,

ie., ACCT.

(1) Firstly, let us consider C © VR.D.
Based on the standard semantics, a translation into FO would look like:
Vz(c(z) = (Yy(r(z, y) — d(¥))))-
Its prenexr form is VazVy(—c(z) V —r(z,y) V d(y)).
(2) Secondly, let us consider ~D T VR™.—~C. The corresponding FO expression is:
Vz(=d(2) — (Vw(r™(z,w) — —c(w)))).
Its prenex form is V2Vw(d(z) V —r~ (2, w) V —c(w)).
It is easy to see that VzVw(d(z) V -~ (2, w) V —c(w))
& VaVw(d(z) V —r(w, 2) V —c(w))

& VaVw(—e(w) V ~r(w, z) V d(2)).

24



Based on the variable substitution {x/w,y/2}, it is easy to see that the two FO formulae are logically
equivalent. In this sense, we can conclude that C C VR.D and —D EVR™.~( are equivalent w.r.t.

the above mentioned translation into first-order logic.

The above analysis shows a property that the universal restriction has and that regards the inverse
relationship in a context of concept inclusion axioms or general concept inqlusions. We also notice -
that it is the role filler of a universal restriction that plays a function in the inverse relation. This
equivalence was first presented in {DHO05] and was motivated by observing that current absorption

algorithms largely fail to consider this equivalence in their absorption process’.

In this chapter, we show how to use the equivalence to eliminate inverse relations for an ALCT
Abox in presence of an acyclic Tbox. It consists of three simple steps (i.e., tagging, recording, and

polarisation).

3.2 Abox Consistency with Acyclic Tbox
3.2.1 The Intuition Behind the Conversion

A Tbox (a.k.a. terminological boz) is a set of unfoldable axioms (concept definitions or concept
inclusions). By the standard semantics, concept definitions like A = C are expressed as two inclusion
axioms A C C and =A £ —~C [BCM*03]. For an acyclic Tbox, if it has only concept inclusions and
the right-hand-side of each concept inclusion is in negation norm form, then it is a simplified Thox
[Lut99]. Recall that an acyclic Thox does not allow a concept name (or its negation) to refer to itself
(or its negation) either directly or indirectly. This restriction at the syntax level is an important
factor to be considered when it comes to the PSPACE decidability for a family of DLs. Below, we
introduce two notions that characterize such “reference relationship” occurring at the syntax level

for an acyclic Tbox.

Definition 1. (Modal Depth) The depth depth(.) of a concept is defined as:

(1) for each axiom A C C, it holds that depth(A) = depth(C);

L A presentation was given in DL Workshop 2005 with an example to show the “optimal” result of an old absorption
algorithm can actually be further optimized when taking the equivalence into consideration. This equivalence was
named as C-rule by the author in various events. In November 2006, the author found that this equivalence actually is
a syntactic variant of the well-known Ramsey-rule pointed out by Frank P. Ramsey {Ram31} in 1925. New absorption
algorithms [HW06, WHO08, SGP06] considered this equivalence.
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(2) depth(C' M D) = maz(depth(C), depth(D));
(3) depth(C U D) = maz(depth(C), depth(D));
(4) depth(3R.C) = depth(C) + 1;
(5) depth(VR.C) = depth(C) + 1.

(6) for an atomic concept A not occurring on the lhs of any axiom, depth(A) = 0.

Also related to Thoxes is the notion of acyclic ordering, which is defined as follows.

Definition 2. (Acyclic Ordering) The ordering relation? > is as follows:
(1) for each axiom A C C or —~A C C, there is ord(A) = ord(C);

(2) ord(C 1 D) = ord(C) and ord(C M D) > ord(D);

(3) ord(C U D) = ord(C) and ord(C U D) > ord(D);

(4) ord(3R.C) = ord(C);

(5) ord(YR.C) > ord(C).

The notion of modal depth and the notion of acyclic ordering are extensively used in the literature
for proving termination in decision procedures dealing with acyclic Thozes. The acyclic Thoz is -
commonly regarded as a shorthand and a compact notation for concept expressions. It is clear that
at the syntax level a concept expression (with respect to an acyclic Thox) can be put in a tree
shape, as Figure 3.1 shows. For convenience, existential restrictions and universal restrictions are

also called modal constraints; others are called propositional constraints.

= A A

oK ==

I
/
!

g’

%

DG —-
¢ ——
DG

1

o Propositional Expression
< Modal Expression

Figure 3.1: The Syntax Tree of Concept Expressions

2Due to acyclicity, ord(A) > ord(A) is not induced.
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For all possible concept expressions, Figure 3.1 shows several common patterns. The small square
stands for “propositional expression” and the small circle stands for “modal expression.” Recalling
from Chapter 1 about DL syntax, it is the mutually recursive reference (of a propositional expression
to 5 modal expression and vice versa) that makes up.a complex concept expression. For acyclic
Tboxes, it is important to use notions of modal depth and acyclic ordering when considering (direct)
“reference relationships” émong concept expressions at the syntax level [Lut99, BML*05]. However, -
for an acyclic Thox in a DL With/inverse'rgles, we need to consider the modal depth or acyclic
ordering in a slightly extended way. We need to consider all “reference relationships” (e.g., indirect
reference) at the syntax level except the impossible references such as a sub-expression referring to
its (syntactical) parent expression. For example, because ord(3R.3S.¥S~.C) = ord(C), we need to

consider the “indirect reference” of AR.ASNVS~.C to C.

An Abox (a.k.a. Assertional boz) consists of individual assertions and role assertions.

Figure 3.2: The Role Assertions In Abox

Figure 3.2 shows how changes are made to Abox individuals a and b. On the left, two Abox individual
a and b are connected with a role assertion (a,b) : R. By conversion, we additionally append a
second role assertion which says (b,a) : R~. For the figure on the right, an Abox individual a
has a self-loop (a,a) : R, similarly one role assertion (a,a) : R~ is added. Note that the newly

introduced role assertions are redundant.

Figure 3.3 shows the polarisation of Figure 3.2. Note that each R-edge and R™-edge is replaced
with R®-edge and RP-edge respectively, where R® is a new role name in ALC for role R in ALCZ,

and R® is a new role name in ALC for role R~ in ALCT.
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R* \

Figure 3.3: The Role Assertions In Abox After Polarisation

We assume one individual has at most one individual assertion, because two individual assertions
d: C and d : D can be replaced by a single assertion d : CM.D. If an Abox has several unconnected
components, each of them can be treated alike separately. Without loss of generality, we consider®
a single-component Abox A and each individual has at most one assertion. We denote the label

(i.e., individual assertion) of d; as L(d;).

Below we introduce three simple steps (i.e., tagging, recording, and polarisation) and show how to

perform them sequentially on an Abox and an acyclic Tbox.

3.2.2 The Three Steps

The first step is called tagging. Intuitively, it assigns each modal constraint a new concept name. It

should be clear that the tagging operation changes neither the acyclic ordering nor the modal depth.

Definition 3. (Tagging) The function tag(z) is defined as follows:

(1) if z is individual d; with £(d;), then tag(z) = d; : P(z) N tag(L(d,));
(2) if z is an individual d; without a label, then tag(z) = d; : P(z);

(3) if z is C N D, then tag(z) = tag(C) Mtag(D);

(4) if z is C U D, then tag(z) = tag(C) U tag(D);

(5) if = is AR.C, then tag(z) = P(z) N 3R.(tag(C));

(6) if z is VR.C, then tag(z) = P(z) NVR.(tag(C));

(7) if z is A C C, then tag(z) = A C tag(C);

(8) otherwise, tag(z) = =;

3Without making such an assumption, an alternative to get a single component is to introduce a special individual
and connect it to all other individuals with a special role. This resembles the use of a nominal to internalize an Abox.
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where P(z) is a unique name for each .

The original Abox/Tbox are denoted as Ag/7o, and their tagged counterparts are denoted as A; /7;.
Notice that we do not tag role assertions. We also write P(d;) instead of P(z) if the tag is for an
individual d;. The set of tags for all individuals of the Abox is D = {P(d;)|d; € Ao}. We introduce
two sets of constraints U(.) and £(.). Let C denote any (sub)formula. Then by the tagging operation
above, we have: )

(%) for z = 3R.C, there is P(z) N ER.tag(d) € E(R);

(%) for y =VR.C, there is P(y) MVR.tag(C) € U(R);

(*) for an Abox individual d;, there is the tag P(d;) € D;

We additionally require ord(P(d;)) > ord(tag(L(d;))), for any individual d; and d; (even when
i = j). This forces P(d;) to get a higher order than tag(L£(d;)) (and higher than subformulae
of tag(£(d;)) but it does not introduce cycles. Please note that > is transitive and that extra
requirement forces ord(P(d;) @ tag(L(d;))) > ord(P(d;)) > ord(tag(L(d;))}). Therefore, for i # j we
have: (1) ord(tag(L(d;))) and ord(tag(£(d;))) are incomparable; (2) ord(P(d;)) and ord(P(d;)) are
incomparable; (3) ord(P(d;)) > ord(tag(L{d;))).

Next, we introduce the second step called recording. This step respects acyclic ordering and modal

depth and will generate new axioms (concept inclusions).

Definition4. (Recording) Initially 7(a) = 0. For two tuples o € (£(x) JU(*) UD) and 8 € U(x),
where * denotes any role, if the following conditions are met:
(1) ord(e) > ord(B); and
(2) a = P(z) NYRy.tag(C) or
a = P(z) M 3R;.tag(C) or
o = P(z) and z is some Abox individual d;; and
(3) 8= P(y) MVRy.tag(D);

then we perform the operation: 7, = 7, U {P(z) T (VR; .—P(y)) Utag(D)}.

Figure 3.4 shows two examples. The left part shows a relational structure in which two different nodes
z and y are associated with different modal constraints. The right part shows a relational structure

concerning a self-loop. In both cases, the recorded axioms are { P(z) T (VR.—P(y)) U tag(C)}.
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Figure 3.4: Backward Constraint Propagation

It should be clear that the axioms newly introduced for 7, change neither the acyclic ordering nor

the modal depth. The final step is called polarization.

Definition 5. (Polarisation) Pol(z) is performed on the tagged Abox .A; to get Az, and performed
on the augmented Tbox 7; U7, to get Ts:

(1) if z is (¢,d) : R € Ay, then Az = A; U {(c,d) : R%, (d,c): R*};

(2) ifz is (¢,d) : R~ € Ay, then Ay = A, U {(d,c) : R%, (c,d) : R*};

(3) if wis d; : P(d;) ® L(d:) € Ay, then Ay = Ay U {d; : P(di) 1 Pol(L(dy))};
(4) if z is C 1 D, then Pol(zx) = Pol(C) N Pol(D);

(5) if z is C U D, then Pol(z) = Pol(C) U Pol(D);

(6) if z is IR.C, then Pol(z) = IR*.Pol(C);

(7) if z is VR.C, then Pol(z) = VR*.Pol(C);

(8) if z is IR~.C, then Pol(z) = 3R®.Pol(C);

(9) if z is VR™.C, then Pol(x) = YR®.Pol(C);

(10) if z is A C C, then Pol(z) = A £ Pol(C);

(11) otherwise, Pol(z) = z.

where R® (R? ) is a fresh role name unique for R (R™).
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Figure 3.5: An Example Abox

Example 1. Consider the Abox as shown in Figure 3.5 (1).

The Abox individual assertions are as follows:

a: T
b:VR,~.C
c: BHVR;;D

d:3R4(ATMVRs4™.B)
The Abox role assertions are as shown in the figure.
The acyclic Tbox 7 has one concept inclusion B CTVR3™ 3Ry~ . A.
(1) Perform the tagging operation. After tagging, the Abox will be
a: P,NT
b: PB,MQsNVR™.C
c: P.MBMNQ4MNVYR3.D
d: P4 QsM3R. (AN Qe MYRs™.B)
The tagged Tbox has one concept inclusion BT Q1 MVR; ™ .(Q2M IRy ™. A).
The newly introduced concept names are Q; (i € {1,2,3,4,5,6}) for modal constraints, and P,, P,
P., P; for Abox individuals.
(2) Perform the recording operation, T, will have the following concept inclusions:
P,UP,UP, LUP;CVR.~QsUC
P,UP,UP. P EVR3™.~QuUD

P,UP,UP,UP;CVRy~QgU B
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P,UP,UP, UP;UQsUQs CTVR;.~Q: U(Q2M3R,™.A)
Qs CVR4.—Qs U B ‘
In the above, 4; U Ay... U A, € C is a shorthand for A; C C (i € {1,2,3,...,n}).
(3) Perform the polarisation operation, the final Abox individual assertions will be
a: PN T
b: P,NQsNVRL.C
c: P,MBMNQyMNVYR3*.D _
d: P;MQsN3IR.(ANQe MVYRL.B)
The final Abox role assertions* are depicted in Figure 3.5 (2).
The final Thbox will be
BLC Qi MVYR3%.(Q, M 3R, A)
P,UP,UP,UP;CVR*—QsLC
P,UP,UP,UP;CVYRs®~QsUD
P,UP,UP.UP;CVR.-Qs UB
P,UP,UP.UP;UQsUQs T VR3*~Q1 U (Q2 MR’ A)
Qs CVR4*.—Qs U B
The roles R1®, R3* and R;® are newly introduced for R;, R3 and Ry; the roles Ry%, R3® and R,®

are newly introduced for Ry ™, Rz~ and R4™.

3.2.3 Proofs

Lemma 6. Ay and Ty have a model iff Ay and Ty have a model.

Proof. It is obvious to see that introducing new conjunct of fresh concept names is harmless to

congistency. 0O
Lemma 7. If Ay and 71 have a model, then T, is satisfiable in that model.

Proof. We prove it by contradiction. Assume 7, can not be satisfied in the interpretation Z which
is a model for both A; and 7;. Then, there must exist at least one axiom of 7, being violated at

some domain element of the interpretation. Without loss of generality, suppose the violated axiom is

4 Actually for Abox consistency problems, it is sufficient for the final Abox to have role assertions as depicted
in 3.5 (3) (by taking off self-loops and cycles). However, for conjunctive query problems, according to [Lut07], it is
necessary to form the role assertions as Figure 3.5 (2).
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P(z) & VR.~P(y) Utag(C), and suppose the domain element of Z causing the violation (w.r.t. that
axiom) is a. Consider two element a,b € A7 such that a € P(z)? and b € P(y)? and (a,b) € RZ.

(case 1) a # b: In this case, we are considering two different individuals. By recalling the tagging
operation given in Definition 3, we can see that P(y) is a tag introduced for the universal restriction
VR~ .tag(C). Given b € P(y)%, it follows that b € (VR .tag(C))*. Given (a,b) € RZ, it is true that
(b,a) € (R™)Z. Therefore a € tag(C)*. This means that the given axiom P(z) T VYR.~P(y)Utag(C)
actually is satisfied at the domain element d,uwhich contradicts the assumption.

(case 2) a = b: In this case, we are discussing one single individual a. The conditions to be
considered are: a € A%, a € P(z)%, a € P(y)%, (a,a) € R? and P(z) # P(y). Siﬁilar to case 1, it
is able to show that the given axiom P(w) C VR.-P(y) Utag(C) is satisfied at the domain element
a.

Readers are referred to Figure 3.4 for an illustration of the above two cases. Since each axiom

of T, is satisfied at all domain elements of Z, the lemma is proved. [l
Lemma 8. A; is satisfiable w.r.t. Ty UT, iff A1 is satisfiable w.r.t. Ty.

Proof. (=) It is trivial.
(«=) Let M3 be a model for A; and 77. According to the lemma above, 7, is always satisfied in

the model for both 7'1 and A;. It follows that My is a model for A4; and 7 UT,. O
Lemma 9. A; is satisfiable w.r.t. Ty UT, iff A is satisfiable w.r.t. Tp.

Proof. Note Az = Pol(A1) and T = Pol(T1 UT,).

(If Direction) Let My = (AZ2, 22) be a model (possibly non-tree) for A; and T;. For m/,n’ €
AT consider a mapping to m,n € ATt such that

(1) if (m’,n’) € (R®)%2, then (m,n) € R™;

(2) if (m',n') € (S*)™2, then (m,n) € (S7)™;

(3) if m/,n’ € Pol(C)*2, then m,n € CT1,

(Only If Direction) Let M; = (A7!,.Tt) be a model (possibly non-tree) for A; and 7_1" For
m,n € ATt consider a mapping that maps them to m/,n’ € A%

(1) if (m,n) € RTY, then (m/,n’) € (R*)%2 and (n',m’) € (R®)??;

(2) if (m,n) € (S7)%, then (m/,n') € (§%)%2 and (n/,m’) € ($*)%;
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(3) if m,n € C™t then m/,n’ € Pol(C)™.

R, S— are roles in ALCT; R*, R®, §%, S? are roles in ALC.

In both directions, for each element of the target interpretation, all constraints are satisfied both
locally, and w.r.t. its neighbor elements provided the given (AZk, T¥) (where k = 1.,2) is a model.
This concludes that the polarisation operation preserves equisatisfiability (for a tagged and recorded

problem). 0O

Theorem 10. The above tagging,/recording and polarization converts an ALCZ Abox to an ALC

Aboz and preserves consistency.

3.3 Discussion

By eliminating inverse relations, we obtain an ALC Abox from an ALCZ Abox. In [DHWO07], we
have shown a proof that the consistency problem of an ALCT Abox w.r.t. an acyclic Tbox is PSPACE
decidable by using this elimination technique. By available techniques [Lut07, DHW07, BML*05],
it is simple to convert an ALC Abox to an acyclic ALCO Tbox. So, it is not surprising for one to
see that any ALCZ Abox (with respect to an acyclic Tbox) is representable in an (acyclic) ALCO
Thox. According [BML*05], the consistency problem of ALCOQ with an acyclic Thox is PSPACE
decidable by tableaux algorithms. Therefore, it is easy to see that the consistency problem of an

ALCT Abox with respect to an acyclic Tbox is still PSPACE decidable.

Experiments have been carried out to test pracﬁcality of the technique described in this chapter
(currently only for concept satisfiability test in ALCT). A concise report can be found in Appendix
B. Though the sizes of the new ontologies were slightly increased (less than a constant factor of 5
times the sizes of the original ontologies), RACER [HMO1bj solved all converted ontologies within
an acceptable time (see Appendix B), demonstrating a “robustness” behavior for realistic problems

due to switching on global tableauz caching.

In the next chapter, we will use a variant of the same technique to take away the effect of “backward

propagation” of (universal and functional) constraints for the DL ALCFZT instead.
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Chapter 4

A Tableaux Procedure for ALCFL

4.1 Introduction
4.1.1 A Brief Review

For Description Logics (DLs) having no inverse roles, the global (sub-)tableaur caching functionality
is known to be an effective runtime optimization and was built into some highly-optimized tableau-
based DL systems, e.g., FaCT [Hor98|, DLP [Pet98], and RACER [HMO1b]. Roughly speaking,
tableaux caching is a looking-up mechanism consisting of consistency caching and inconsistency
caching. 'i‘he use of cached results can effectively avoid repeated searches by a fast retrieval of
previously stored information about a label and its satisfiability status. However, for DLs with
inverse roles, the soundness of tableaux caching is problematic [BCM*03] because conventionally
tableaux caching mechanisms do not take backward-propagation of constraints into consideration?.
It is evident that the above mentioned DL systems and their successors when reasoning for DLs with
inverse roles do not use the full-fledged tableaux caching functionality previously implemented for

DLs without inverse roles.

There is another approach to DLs with inverse roles [THO06, SPG*07]. By contrast to the global
tableauz caching, this approach uses some optimizations (e.g., dynamic blocking and pseudo model
merging [THPS07]) that adapt and scale better to DLs with inverse roles. For example, FaCT++

[THO6] implemented a “ToDo List” architecture and is able to schedule propagation of constraints

IThough it is possible to do so, the implementation would be complicated and the run-time penalty might be high.
IR~ .(VR.1) is not consistent though its sub-concept VR. .. is; an overlooking of backward propagation of constraints
(L here) leads to unsoundness. A second source of unsoundness as was pointed out in {HMO00a] is an inadvertent use
of caching for Abox individual. The two sources of unsoundness might occur in ALCZ Abox problems.
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[THPS07]. This approach is influential and is a prominent feature of some new DL systems. It can
be understood that managing constraint propagation in the presence of inverse roles is an important

issue for tableaux systems.

A sound and restricted global tableauz caching was reported in [DHO5]; the idea is to compute
labels potentially unsafe for reuse and then exclude them from caching. An experimental system
has been implemented as a hybrid of an .A,C_C-,_style (restricted) tableauz caching functionality with a
standard ALCI-style tableaux system. But the preliminary results were mixed [DH06]. Therefore,
this chapter continues on developing a new way that can fully utilize the power of caching (available

for DLs without inverse roles) rather than being restrictive as in [DHO5] (see also Chapter 2).

4.1.2 Why Inverse Relation Is The Problem

Here, let us take an inside look at some common issues from tableau-based systems for DLs, and see
the difference between an ALC system and an ALCZ system. Recall that to restore the tableaux
" structure (a.k.a. completion graph) to a previous state during a backtracking phase, it is necessary
to make a copy of (portions of) the tableaux structure for each sequence of deterministic operations.
In ALC the scope of the undoing area (i.e. the portion of changes to be reverted) is bounded below
a subtree rooted at the source of a conflict; in ALCZ the scope of undoing is hard to calculate
even when sources of conflicts can be optimally located. Moreover, it is more difficult to efficiently
propagate inconsistency results in ALCZ, which also means that the inconsistency caching function-
ality is weaker in ALCZ. The left graph below shows an inconsistent structure where no nontrivial

inconsistency is inferred.

VRC € £(}) VR-CeL(c) ANVRCeL() ANVRC €LH)
-4 € L(b)

(1) inconsistency propagation (2) backward propagation don’t-care

Figure 4.1: Inconsistency Propagation and Backward Constraint Propagation
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In an ALC tableaux structure, a node does not propagate constraints to its predecessor, and its
sibling nodes can be handled independently; this is not true in ALCZ. It is the issue of backward
propagation of constraints that makes an ALCT tableaux system behave differently from ALC’s. The
two rightmost pictures above show that backward propagation of constraints can be circumvented by
way of enforcing some general concept inclusions® (a variant of the technique presented in Chapter

3).

ALCFT has been well studied in the literature [CGR98, HS99, Tob00, Lut04]. It extends the basic
DL ALC with inverse roles and functional restrictions. A functional restriction is of the form (<) R)
which restricts the number of R-neighbors to be at most one, and can be viewed as a partial function
over the interpretation domain [Lut99]. When considering general concept inclusions, this logic still
has the tree model property but no finite model property. For example, it is only possible with an
infinite model to satisfy the concept —A and a general concept inclusion T E (€1 R7) M 3R.A. To
avoid incorrect infinite models, the dynamic pair-wise blocking technique [HS99) is used to guarantee

soundness.

o B e R .¢ R .o R .
-4 A A

Figure 4.2: A Model for —A w.r.t. 7= {T C (<; R™), T C 3R.A}

It is appropriate in this context to discuss blocking technigques, which are also known as cycle detection
and termination mechanisms. Generally speaking, a node z is blocked if none of its ancestors are
blocked, and z has a witness ' (one of z’s ancestor nodes) such that the labels of z and ' meet
certain prior conditions. For example in the equality blocking technique, if L(z) = L(z') (note that
L(.) is a set of concept expressions denoting a label for a tableau node), then it is said that z
is blocked by z’. Provably tableau-based decision procedures can safely ignore any blocked node
without compromising soundness. It was shown in [HS99] that, even for ALCZ, static blocking is

inadequate and unsound. Therefore it is necessary to use dynamic blocking for DLs with inverse

2When the predecessor node does not get backward propagated constraints, a primitive clash like {A4,-A} will
be triggered at the successor node (when the recorded axioms are enforced at the predecessor node). This is called
“backward propagation don’t-care”, see Figure 4.1 and Lemma 12. )
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roles. If the original conditions have been changed (due to backward constraint propagation), it
is necessary to break the established blockings to reflect the changes®. Also presented in [HS99)] is
a dynamic pair-wise blocking technique (and its optimized variants) designed for searching infinite
models. The dynamic pair-wise blocking is also known as “double blocking” because the blocking
condition is specified in patterns of depth 2 [BHLW03, HM04, Hla04], i.e., the matching is specified
by the relation of two pairs of predecessor-successor nodes (for an illustration and explanation please

see “double blocking” in Section 6.4.3 of Chapter 6).

It is known that the global caching of both consistency and inconsistency label sets is sufficient to
get an ExpTime tableau-based decision procedure [DM00}, however, no example has been set up for
DLs with inverse roles so far!. We will show a worst-case exponential time decision procedure for

ALCFI.

Let us connect two related notions, namely, the blocking technique and the global tableaux caching
(in the context of DLs having no inverse roles). This connection is plausible because the primary
purpose of both is to ensure the termination of tableau-based decision procedures. These two notions,
usually discussed in a tree or forest structure®, differ in their applicable scope: blocking is applicable
only between a node and (one or many of) its ancestor nodes; caching is globally applicable as long
as its application does not destroy soundness. The second difference is that caching is applicable to
both satisfiable and unsatisfiable situations; but blocking is only applicable to satisfiable situations,

which means blocking is not able to prune away “unpromising parts” of the search space.

4.1.3 A New Approach

In this chapter, the backward propagation of constraints (on a tableau structure) is characterized
as general concept inclusions in the language of the logic itself, similar to the encoding method
mentioned before. During the run of the decision procedure, a cyclic tableaux structure might be
built and the unraveling technique [HS99] is used to construct infinite models. It should be clear that

the tree model property for the description logic ALCFZT is used. Please note that a restart strategy

is used in the decision procedure for an illustration purpose. In other words, the correctness of the

3 A broken blocking might later be re-established again {HS99).

41t was recently shown in [GN07] and {DHO07a] that ExpTime tableau-based decision procedures were proposed for
DLs with inverse roles.

5And also including a finite-sized non-tree structure in DLs containing ALCOZIQ as a fragment.
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decision procedure does not depend on a use of this strategy. The decision procedure is required to
be capable of propagating inconsistency: at least one new inconsistency need to be found when a
model cannot be constructed. The tableaux caching techinique proposed in this chapter is inspired

by and uses similar data structures (Nogood and Witness) as in [DM00].

Before starting the major part of this chapter, let us take a look at a simple example. Suppose
{VR.C} is cached as a witness. However, this cached witness cannot be reused to test the satisfiability
of ~C M3R~.(VR.C). An improper use of the cached witness in this scenario (and others alike)
would lead to an unsound conclusion that —~C M 3R~.(VR.C) is satisfiable, which is actually not
true. The culprit is the unanticipated propagations of constraints from the cached witness, i.e.,
{VR.C’} propagates along the R~ edge backward a constraint C. This phenomenon is the very
reason behind the unsoundness of global tableaux caching. By a preprocessing step, the source
problem is converted to a target problem with a concept ~CM3IR~.(ANYR.C) and a general concept
inclusion T © CUVR~.—A. Working on the converted problem prevents inadvertent uses of cached
witnesses. The soundness of the global (sub)tableéux caching here relies on those explicit general

concept inclusions (characterizing backward propagation of constraints on a tableau structure).

We will present a satisﬁébil.ity-preserving conversion (in Section 4.3) that transforms general prob-
léms in ALCFT to target problems in the same logic, and continue to describe a tableau-based
decision procedure (composed of two cooperative sub-procedures and a restart strategy) that de-
cides the satisfiability of the target problems in deterministic exponential time. Thus, it will be
shown how a combination of these two ingredients enables a sound use of the global (sub)tableaux

caching technique as freely as in the case of ALC [DMO00] for a logic with inverse roles.
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4.2 ALCFT Syntax and Semantics

Conventional notations are used: A for atomic concept, C' and D for arbitrary concepts, and R for
a role. The concept formulae in ALCFZ are formed as follows:

C,D:=T|A|-C|CND|CUD|3RCNR.C| <1 R|>2 R

An interpretation Z = (A7, T) consists of a non-empty domain AZ, and an interpretation function

Z which maps every concept to a subset of AT and every role name to a subset of AT x A% such

that:
(T)t =47 : (cnD)*:=CctnD?
(CuD)* :=Cc*uD? - (=0)E =0T\ CT

(3R.C)T := {a € AT| There is b € AT with (a,b) € R* and b € C*}
(VR.C)T := {a € AT| For all b € AZ, (a,b) € R” implies b € C*}
(<1 R)T := {a € AT|Vb,c € A7, (a,b) € R* and (a,c) € R? implies b = ¢}

(>2 R)T := {a € AT|3b,c € AT s.t. (a,b) € RT and (a,c) € R and b # c}

A role is a role name or the inverse of a role, which is interpreted as a binary relation on a subset
of elements of the interpretation domaiﬁ AT, The related inverse role is interpreted as the inverse
of that binary relation. For example, let- z,y € AT, (z,y) € RT iff (y,z) € (R™)%, where R~ and R
are two roles in the inverse relationship. Simply, each binary relation has a unique inverse relation;
and the inverse of an inverse relation is the original relation itself. In this chapter, it is assumed that
each role has a unique inverse role. For a role R, for example, R~ is considered as the only inverse

role® of R, and vice versa.

A Thbox T of general axioms is a set of axioms of the form T C C7. An ALCFZT concept C is

satisfiable w.r.t. a Tbox 7 iff C and 7 have a model (i.e. non-empty interpretation) in common.

61t takes a linear cost to identify equivalent roles that are implied by inverse relationship declarations in a namespace
(of role names).

7Equality axioms of the form C = D are converted to two inclusion axioms like C © D and D T C. An inclusion
axiom of the form C C D can be converted to T C -C U D.
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4.3 A Preprocessing Step

A variant of the technique given in Chapter 3 will be presented to take functional restrictions into
account. For convenience, concept formulae/expressions are required to be in the Negation Normal
~Form (NNF) (by pushing negation signs inward fo concept names through the use of De-Morgan’s
law and dualities, see also its definition in Chapter 2). For an input concept formula Fy and a Tbox
Ko consisting of general axioms of the form T & C, where Ep and C' are in NNF, a preprocessing

step is introduced as follows.

Definition 1. The operation tag(.) oﬁ an expression (incl. axiom) z is:
(1) if z is C N D, then tag(z) = tag(C) Mtag(D);

(2) if z is C U D, then tag(z) = tag(C) Utag(D);

(3) if z is AR.C, then tag(x) = P{z) M 3AR.(tag(C));

(4) if z is VR.C, then tag(z) = Q(z) NYR.(tag(C));

(6) if z is T C C, then tag(z) = T C tag(C);

(6) otherwise tag(z) = .

where P(z), Q(z) are fresh names unique for each z; C, D are subformulae.

Eo/E; denote the formulae before/after tagging; Ko/K1 denote the Tboxes before/after tagging.
By using the tagging operation, it is possible to collect tagged universal constraints of the form
Q(z)NVR.(tag(C)) into a set U(R), and tagged existential constraints of the form P(z)M3IR.(tag(C))
into a set £(R), where R is a role, and U and £ are sets indexed by different roles. Let = denote any

(sub)formula of Ep and Ko, we have:
e for £ = JR.C, there is P(z) M 3R.tag(C) € E(R);
e for y =VR.D, there is Q(z) MVR.tag(D) € U(R);

Definition 2. Initialize KCq = 0. For o € £(x) and 8 € U(*), where * denotes any role, perform the
following operations:
(1) if e is P(z) M 3R.tag(C) € E(R), then
Ka = Ka U{T C (VR™.(=P(z)U 22 R)) Utag(C)};
(2) if B is Q(z) MVR.tag(D) € U(R), then
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M-rule: if 1. C1 N C; € L(z), z is not blocked, and
2. not {C1,C2} C L(z)
then L(z) = L(z)U{C1,Cs}
U-rule: if 1. C1 UCy € L(z),  is not blocked, and
2. {C1,C}NL(z) =10
then L(z) := L{z) U {C;} for some C; € {Cy,C2}
-rule:  if 1. 3R.C € L(z), z is not blocked, and
2. (€1 R) ¢ L(z) and z has no R-neighbor y with C € L(y)
then create a successor node y with £L{(z,y)) = {R} and L(y) := {C};
if 1. 3R.C € L(z), z is not blocked, and
2. (€1 R) € L(z) and « has no R™-predecessor, and
3. z has no R-successor y
then - create a successor node y with L((z,y)) := {R} and L(y) .= {C};
if 1. 3R.C € L(z), = is not blocked, and
2. (£1 R) € L(z) and z has no R~ -predecessor, and
3. = has an R-successor y
then L(y):=L(y)u{C}
>-rule: if 1. (>2 R) € L(z), z is not blocked, and
2. z has no R-neighbor y
then create a successor node y with L((z,y)) := {R} and L(y) :=0
V-rule: if 1. VR.C € L(z), z is not blocked, and
2. there is an R-successor y of z with C ¢ L(y)
then L(y) = L(y) U{C}

Table 4.1: The tableaux expansion rules for ACCFT.
Ka =Ko U{T C (VR™.=Q(z)) Utag(D)}.

Similar to the 7, (used in the recording step) in Chapter 3, K, consists of axioms that will help
achieve an effect of “backward propagation don’t-care” in the tableau-based decision procedure to
be introduced shortly. A small example (of the preprocessing) was given in the middle of Section
4.1.3, and we will present a correctness proof in Section 4.6 for this conversion. Hereafter, Ky is used
to denote K, UKy, and E; to denote F;. In the following, we will introduce a tableaux procedure

working on E; and K; (both of which are obviously expressed in the description logic ALCFT).

4.4 ALCFT Tableau Rules

We consider the converted problem, i.e., the satisfiability problem of Ey w.rt. Ky. Without loss
of generality, the Tbox of a set of general axioms is simplified and expressed as one general axiom
T £ G2. To be precise, G2 = Mr; for all T C r; € K3, Table 4.1 is a set of tableaux expansion rules

for (the converted problem in) ALCFZ.

We use the notion of a completion tree (see Appendix A.1). Given a completion tree, a node y
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1-0: {~T} € L-set.

L-1: {C,~C} € L-set.

1-2: - {(<1 R),(22 R)} € L-set.

1-3: if o€ l-setand o C 3, then § € 1-set.

1-4: if aU{C}e€ L-set and U {D} € l-set, then a U {C U D} € L-set.

1-5: if ae l-setand 8= {3R.Ey,VR.E,...,YR.E,}(where R is any role)
and a C {Eq, Ey, Ea, ..., E}, then 8 € L-set.

1-6: if ae€ l-setand §={(>2 R),YR.E:,...,YR.E,}(where R is any role)
and a C {E, By, ..., E, }, then § € 1-set.

Table 4.2: The inconsistency propagation rule for ACCFZ.

is called an R-neighbor of a node z if y is ‘an R-successor of z, or if z is an R™-successor of y.
Predecessor nodes are deliberately ignored in some of the rules above. The correctness relies on the

back-propagation-don’t-care property (a proof will be given in Section 4.7.2).

To obtain a potentially infinite model, it is necessary to apply the unraveling technique on the
completion tree using the notion of a path [HS99]. Instead of going to a directly blocked node,
the path goes to the blocking node. Thus, if the blocking occurred, an infinite model can be
obtained through the unraveling technique (in cases when an ancestor node and a descendant node

are involved).

To generalize the notion of the clash triggers [BCM*03] in ALCFZ, the notion of a L-set (a.k.a.
Nogood) presented in [DMOO] is adapted here. To avoid generating irrelevant L-sets (which would
be the case if the L-rules were considered as a parallel calculus to derive inconsistent concept sets
bottom-up rather than top-down), inconsistency inferences .based oﬁ the L-rules are carried out on
demand in the decision procedure. This “on demand” inconsistency propagation® also follows from

[DMO0Q]. Table 4.2 shows the inconsistency propagation rules for L-sets.

8The author is aware of a bottom-up approach (see reference in [DM00]) that performs inconsistency inferences
“aggressively”. However, that approach is irrelevant to the decision procedure here.
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4.5 ALCFT Decision Procedure

To get an exponential-time sound and complete decision procedure, certain search strategies must
be integrated with the expansion and propagation rules given above. In the following we outline
two procedures that cooperate and decide the concept satisfiability problem w.r.t. a set of general
axioms in ALCFZ. The procedure TEST (E2, G2) answers the satisfiability testing of E3 w.r.t. Ko

(Recall that G2 is RHS of the single GCI of Ky, see the discussion at the beginning of Section 4.4).

4.5.1 The Procedure TEST(. y o)

PROCEDURE TEST(C,G)
[01]  Nogood := §;
(02] WHILE (true)

(03] Witness := 0

[04] len := sizeof(Nogood);

[05) allocate a tableau node zp and let L(xo) := {C};

[06] SAT(zo, G, null, null); : when restarting, line 07
[07] IF (C € Nogood) RETURN unsatisfiable; will be run next

{o8] IF (len == sizeof(Nogood)) RETURN satisfiable;

[09) ENDWHILE
END-PROCEDURE {TEST}

The procedure TEST(-, ) takes a concept C and the RHS of a general axiom T C G as input. It
invokes the sub-procedure SAT(-,-,-, ) in the WHILE-loop. Nogood and Witness are two abstract
global data structures considered as sets (of set of formulae). Nogood is initialized only once and
memorizes everything augmented by the sub-procedure SAT(.,,-,-). Witness, used for the static
blocking is, however, emptied in each loop before invoking SAT(-, -, -, -).

The utility sizeof(.) gets the number of elements of a set. The variable len is used for keeping
the number of current elements in Nogood. There is a special tableau node named zy and L(zo) is
a label (a set of concepts that is subjeqt to satisfiability test).

There are two cases to exit the infinite WHILE-loop. The first is when the input concept C is
found in the global data structure Nogood, then T ESTY(-, ) decides the problem as unsatisfiable.
The second is when Nogood is not augmented by the sub-procedure SAT(:,,, "), then TEST{(.,-)

decides the problem as satisfiable.
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4.5.2 The Procedure SAT(.,.,.,.)

PROCEDURE SAT(x, G, parent, edge2parent)

[10]  IF (L£(z) € Nogood) RETURN false;

[11]  IF (L(z) € Witness) RETURN true;

{12]  BS := all the propositional branches of £L(z)U {G};
(18]  selected := false;

[14] FOR EACH B € BS

15] IF (B € Nogood) CONTINUE;

16] IF (hasclash(B)) THEN

17} Nogood := Nogood U{B};

18] ABORT; . restart

[19] ENDIF '

20 IF (B € Witness) THEN s

21 Witness := Witness U{L(x)}; ;?%:rt\.égé %g?giagsggcﬁi;g)
22 RETURN true;

23 ENDIF

24 selected := true;

25 BREAK;

26] ENDFOR

27]  IF (~ selected ) THEN

28 Nogood := Nogood U{L(x)}; initial label used for
29 ABORT; restart inconsistency inference
30] ENDIF

31 Successors(B, Succ(x, .), edge2parent);

32 AllSuccessors(B, Succ(z, .));

[33] Witness := Witness U {B};

34] Witness := Witness U {L(z)};

35 FOR EACH successor s € Suce(z,R)  (comment: R is any role)

36] ret := SAT(s,G,z, R™);

37) IF (= ret) THEN

[38] Nogood := Nogood .U {B};

39] ABORT; restart
40] ENDIF

41] ENDFOR
42]  RETURN true;

END-PROCEDURE {SAT}

The instruction Abort facilitates the restart strategy. An execution of Line-18 or Line-29 or
Line-39 will transfer the program control to Line-07 in procedure TEST(-,-). Note, a new element
is surely inserted into Nogood just before the execution of Abort.

When Line-15 is executed, the program control goes to Line-14 (because the use of Continue).

Line-35 to Line-41 performs a depth-first exploration of the tableau tree.

Line-17, Line-28, and Line-38 implement the Ll-rules. The utility hasclash(.) implements the
detection of primitive clashes.

Line-11, and thé code snippet from Line-20 to Line-23 implement the specific static blocking and
works on a new notion of propositional branches. A propositional branch abstracts the exhaustive
application of the M-rule and the U-rule (at the tableaux node ) over the topmost M and U operators
in concept expressions of £L(z) U {G}.

Succ(z,.) is a data structure holding a set of successors of node z, indexed on different roles.
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4.5.3 The Sub-Procedure Successors(.,.,.)

PROCEDURE Successors(B, Succ(z,.), edge2parent)

43] FOR EACH existential-restriction e € B (comment: e is of form 3R.C)
44 IF ((<1 R) € B) and (edge2parent # R) THEN

45 IF (Succ(zx, R) == @) THEN

46 allocate a new tableau node s;

47 Suce(z, R) := Succ(z, R) U {s};

[48 , £(s) = {C¥;

[49 L({z,s)) = {R};

50] ELSE

51 s := the single element in Succ(z, R);

52 L(s):=L(s)u{C};

53 ENDIF -

[54 ELSE IF ((<1 R) ¢ B) THEN

[55 IF (z has no R-neighbor y s.t. C € £(y)) THEN
[56] allocate a new tableau node s;

57) Suce(z, R) := Succ(z, R) U {s};

58] L(s):={C};

59 £{(z,5)) := {R};

60 EN

61 ENDIF

62) ENDFOR

END-PROCEDURE {Successors}

Successors(B, Succ(z, .), edge2parent) implements the J-rule and the <-rule. Succ(z,.) is an
output parameter. B and edge2parent are input parameters.
4.5.4 The Sub-Procedure All1Successors(.,.)

PROCEDURE AllSuccessors(B, Suce(z,.))
[63] FOR EACH universal-restriction v € 8 (comment: v is of form VR.C)

[64] IF (z has no R-neighbor) and ((>2 R) € B) THEN

[65) allocate a new tableau node s;

(66) L((z,s)) := {R};

(67] L(s) :=0;

[68] Suce(z, R) := Succ(z, R) U {s};

[69] ENDIF '

{70} FOR EACH s € Succ(z, R) (comment: R stands for any role)
[71] L(s) = L{s) U{C);

[72] ENDFOR

(73] ENDFOR
END-PROCEDURE {AllSuccessors}

AllSuccessors(B, Succ(z,.)) implements a combination of the V-rule and the >-rule, where

Suce(z,.) is an input and output parameter and B is an input parameter.

4.6 Equisatisfiability of the Preprocessing Step

A few comments are necessary: (1) Formulae like 3R.C are called ezistential constraints, and for-
mulae like VR.C universal constraints. Both of them are also called modal constraints, generally

denoted as %R.tag(C) hereafter; (2) The tag(.) operation (recursively) maps each occurrence of a
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specific modal constraint to a conjunction of two conjuncts, one of which is a Ramsey atom?; (3) In
each tagged constraint we stipulate that the Ramsey atom is on the left and the modal constraint

on the right. This simplifies our discussion by excluding (artificial) cases like %R.tag(C) nQ(x).

Definition 3. (p-model) Given E; /K, a tagged formula/Tbox, Q(z) I %R.tag(C) a tagged con-
straint in Ey and K, a p-model for B, an‘d 1 is a model (A%, .7) such that for any n € AT it holds
that

(1) if n € (Q(z))%, then n € (2R.tag(C))?; and

(2) if n € (3R.tag(C))* where 2R.tag(C) was tagged, then there is some Ramsey atom Q(z) for

2R.tag(C) such that n € (Q(z))%.
Lemmad4. If E; and K, are satisfiable, then they are satisfiable in a p-model.

Proof. Given E;/K; as the converted formula/axioms, let (A%, .71) be a model for them. To
construct a p-model (AZ2, 72), consider each n € A%t having:

(1) n € (Qi(z))** but there is no 3R.tag(C) s.t. n € (ZR.tag(C))*'; or

(2) n € (ZR.tag(C))™, but there is no Qi(x) s.t. n € (Qi(z))™.

Use .the sub-model generating technique'® to exclude the superfluous ZR.tag(C) or Q;(z) in
both cases when constructing Z, from Zj: let n be an element of 7;, we construct a corresponding
element n' in Z, by extracting other interpretations (i.e., concepts) from n unchanged to n’ (except
those superfluous concepts), extracting other elements in the domain of 7; in the same way, and
extracting role interpretations for elements in A%2. Starting from a root node no (corresponding to
the input concept E;) of Z;, one is able to construct a (A%2,.72) to meet the two requirements of

being a p-model. So, (A%2,.72) is a p-model provided that (AZ:,.71) be a model. [

Lemmab. If E; and Ky have a model, then K, is satisfiable in that model.

Proof. Suppose E; and K; has a p-model M = (A%, %) in which K, is not satisfied. This means

that the existence of at least one axiom s € K, being violated at some element n € AZ.

9Let us call the unique concept name introduced as Ramsey atom. It is in honor of Frank P. Ramsey, who in
1926 observed the C-rule (a.k.a. the Ramsey’s Rule [Ram31]) which is about the equivalence of converse modalities
in modal logics.

105ee [DMOO] and the reference therein for a foundational theory that also supports the subset tableauz caching
technique used in tableau-based decision procedures for DLs.
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Case-1: By the definition of &g, this s corresponds to some tuple Q(z) MVR.tag(C) € U(R) for
some role R. Suppose the axiom being violated at element n be T C tag(C) UVR™.~Q(z). This
means there is some m € A% such that

(1) (m,n) € R%, and

(2) m € (Q(=))*.

From the definition of the p-model, we know (Q(z))* C (VR.tag(C))*. So,

(3) m € (VR.tag(C))~. - o

By (3) and (1), it follows

(4) n € (tag(C))".

By (4), the axiom T E tag(C) U VR‘.-vQ(a:) is satisfied at n.

Case-2: Suppose this axiom s corresponds to some tuple P(z) M3R.tag(C) € E(R) for some role
R. In this case, T C tag(C) UVR™.(—P(z)U >3 R) is the axiom being violated at element n, which
requires an element m € AZ such that

(1) (m,n) € R*, and

(2') m € (P(z))%, and

(3 me (<1 R

By the definition of the p-model, we know (P(z))* C (3R.tag(C))*. So,

(4") m € (3R.tag(C))~.

Consider (1') (3') (4’), we have

(5') n € (tag(C))*.

By (5'), the axiom T C tag(C) UVR™.(=P(z)U >4 R) is satisfied at n.

Since in both cases the supposedly violated axioms are actually satisfied, this concludes that a

p-model for both E; and K; is also a model for ;. O
Lemma 6. E, is satisfiable w.r.t. K1 UK, iff E1 is satisfiable w.r.t. K;.

Proof. (only if direction) Let M; be a model for E; and Ky UK. Observe that K1 UK, is a superset
of K, E is satisfiable w.r.t. Ky (trivially in Mj).

(if direction) Let Mas be a p-model for E; and K;. According to the previous lemma, Kq is
always satisfied in the p-model for both F; and K;. It follows that Mj is a model for E; and

KiuKk,. O
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Lemma 7. Given a concept formula Ep and a Thox Ko, let the tagged formula and Tbox be E1 and

K1. Ey is satisfiable w.r.t. Ko iff E1 is satisfiable w.r.t. K;.

Proof. Given a model M; of E; and Ky, Ey and Ky are trivially satisfied in M;. In the other
direction, given a model Mg of Ep and Ko, adding @; accordingly as guided by Mg will produce a

model for E; and K1. This concludes that the tagging operation preserves satisfiability. [J
Theorem 8. Ey is satisfiable w.r.t. Ko iff E‘1 is satisfiable w.r.t. K1 UK,.

Proof. This immediately follows from Lemma 6 and Lemma 7. O

4.7 Correctness of the Decision Procedure
4.7.1 Completeness

For the completeness, it is proper to prove the correctness for what regards concept unsatisfiabil-
ity. Recall the procedure SAT(:,-,-,-) and that Nogood is a global and permanent data structure.
Taking the approach in [DMO00], we start with a lemma saying that L-rules correctly propagate

inconsistencies.
Lemma9. The L-rules generate only unsatisfiable sets.

Proof. By induction on the application of L-rules.

Base cases. Consider rules 1-0, 1-1 and 1-2. They are clearly unsatisfiable.

Inductive cases. Suppose the claim holds for the antecedent of each L-rule. Let’s analyze the

application of each L-rule.

e (L-3): We prove the claim by contradiction. Suppose & C 3, « is unsatisfiable and 8 is
satisfiable. Let M be a model for 8. Using the sub-model generating technique, there is a

sub-model N of M which satisfies o, and this contradicts the hypothesis that « is unsatisfiable.

e (1-4): We prove the claim by contradiction. Suppose oM C and oM D are unsatisfiable, but
a(C U D) is satisfiable. Let M be a model for oM (C U D), then either aMC or aM D is

satisfied in M. This contradicts the hypothesis.
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e (L-5): Assume a is unsatisfiable and a C {Eq, E, ..., E,}. By 1-3, {Eo, Eu, ..., E,} is unsat-
isflable. Suppose 3 is satisfiable in-a model M. This gives a sub-model for {Ey, Ey, ..., Ep}.

This results in a contradiction.

o (L-6): Assume « is unsatisfiable and o C {E1, ..., En}. By 1-3, we have {E}, ..., E,} unsatis-
fiable. Suppose £ is satisfied in a model M. This gives a sub-model for {Ey,..,E,} and is a

contradiction.

D —

Lemma10. If o € Nogood, then « is unsatisfiable..

Proof. Recall that Nogood is a data structure for storing 1-sets that are obtained by an application

of only the 1-rules in the sub-procedure SAT(:,+,-,-). O
Theorem 11. (Completeness) If « is satisfiable, then o ¢ Nogood.

Proof. This follows from Lemma 10. O

4.7.2 Soundness

Let T denote the tree constructed by the decision procedure. For each node t; € T, we use L(t;) to

denote t;’s initial label, and use B(t;) to denote t;’s label for its current propositional branch.

SAT(,-,-,-) takes a depth-first traversal to expand T starting from its root. If ¢; is explored (i.e.,
expanded, completed) before ¢;, let’s denote it as t; > t;. The blocking relationship of nodes, written
in the symbol &, is required to conform to the node exploration ordering!! (in symbol »). If ¢; blocks

t;, this is denoted in t;>t;.

Transitive blocking is allowed as long as the blocking node can be propositionally completed (i.e., it
has a current propositional branch not known to be unsatisfiable and to which the M-rule and the

Lrule are no longer applicable.).

Only for a completed node its label is added to Witness. If an element w € Witness is the label
of a tableau node z, we write node(w) = z. Recall the procedure SAT(:,-, -, ), if neither £(z) nor

B(z) is in Nogood or has clashes, they are added to Witness right before exploring z’s successors.

11y and & are two binary relations on tree nodes. Since > is acyclic, & is acyclic.
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When visiting/exploring/expanding a new node y, the procedure first checks if either L(y) or B(y)
matches any element of Witness. If there is a w € Witness equal to either B(y) or L(y), then y
is blocked by node(w). Clearly node(w) has been explored prior to y, and the blocking is recorded
as node(w)sy. Notice that if B(y) € Witness, then L(y) will be added to Witness!?. However,

Witness is emptied (by the restart strategy) whenever one new Nogood is inferred.

Lemma 12. (Backward Propagation Don’t-care) Let Q, and P, be the Ramsey atoms respec-
tively for VR~ .tag(C) and 3R~ .tag;(C). Given a node x that is completed and one of its R-successor

nodes y that is only propositionally completed:
* (1) if B(y) 2 {Q1,VR™ .tag(C)}, ‘then tag(C) € L(x);
o (2)if B(y) 2 {P1,3R".tag(C), (<1 R™)}, then tag(C) € L(z).

Proof. (1) Consider enforcing the general concept inclusion T & YR.—Qq Utag(C) at node z. It is
impossible for z to choose VR.=Q1, for otherwise y (an R-successor to z) will contain a primitive
clash {Q1,~Q1}. Therefore, it is only possible for z to choose tag(C).

(2) Consider enforcing T C VR.(-Py U (>2 R™)) U tag(C) at node z. It is impossible for = to
choose VR.(—P; U (22 R™)), for otherwise y (an R-successor tb x) will contain a clash {~P, U (>

2R7),(<1R"),A}. O

The above lemma states that, in the course of constructing a tableaux structure (a pre-model) for
a given concept satisfiability problem, “backward propagation” of constraints can be circﬁmvented if
one considers a set of extra general concept inclusions (which are obtained in the preprocessing step,
see Section 4.3). In ALCZ (and also SHT), the backward propagation of constraints is only caused
by wuniversal constraints. However, in ALCFI, functional constrainis can also cause backward
propagation of constraints. Lemma 12 considered these two cases of “backward propagation” in

ALCFT (and also SHIF).

Lemma 13. (Soundness) If there is a tableau tree T for Es w.r.t. T I Ga, then there is a model

T for Ep w.r.t. T C Ga.

12Gee line-33 and line-34 of procedure SAT(:,-, -, ).
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thlxodgv is for unravelling (i.c., vnwinding)
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abed...fghed...fghed.. fghed.... repeating forever

Figure 4.3: Blocking and Unravelling

Proof. Recall that (see the very beginning of Section 4.4) we discuss the converted problem which is
to test the satisfiability of Ey w.r.t. Ky ‘(T C Gg). It takes two steps. First, the tableau (completion
tree) T is updated to get T/, and then the unraveling technique is applied to T/ to get a model.

(1) For each node z €T that is not blocked, if (> R) € B(z) and z has only one R-neighbor y,
then make a copy ¥’ of y, put ¥’ as z’s R-successor, and establish the blocking y=¢/!3. This results
in the tableau T’.

(2) To admit an infinite model, it is necessary to consider paths in T”. The mapping Tail(p) is
used to return the last element in a path p. Give a path p = [z, ..., Z,], where z; are nodes in T’,

Tail(p)= z,. Paths in TV are defined inductively as follows:
e for the root node zp in T’, [zo] is a path in T'.
e for a path p and a node z; in T', [p, z;] is a path in T' iff

— x; is not blocked, and
* z; is a successor of Tail(p), or

* y is a successor of Tail(p) and z; (transitively) blocks y.

The model T = (AZ,.7) can be defined with:
A = {z, | pis apath in TV }
zp € (L(Tail(p)) N B(Tail(p)))*

{(@p,2q) | {(xp, 24) € (R} = {(zp,7q) € AX A | g = [p, Tail(q)] and

13The case (>2 R) € B(z) and = has no R-neighbor does not exist, see the >-rule and also line-64 of procedure
AllSuccessors(:,-).
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1. Tail(g) is an R-successor of Tail(p), or

2. 3y € T/, y is an R-successor of Tail(p) and Tail(q)~y }
U {@pze) €AXA| p=g Tail(p)] and

1. Tail(p) is an R~ -successor of Tail(g), or

2. 3y € T, y is an R~ -successor of Tail(g) and Tail(p)>y }

T is a model for E; w.rt. Go. 0O

4.7.3 Complexity

Lemma 14. FEach ezecution of the procedure SAT(:,-,+,) takes a cost of 20(m)  where n is the

problem size.

Proof. Notice that the procedure SAT(,-,-,-) terminates if a new Nogood is found or if the tablean
(completion tree) is saturated.

(1) For any tableau node z, considering the concept G (the RHS of a single general concept
inclusion T C G2) and the concepts in £(z). The number of topmost M and U operators (i.e., the M
and Ul operators that are subject to the M-rule and the Li-rule) is bounded by n (where n is the size
of the given problem aﬁd n > ||Gz]) for . This implies that the number of potential propositional
branches for node z is 20(™).

(2) The number of expanded nodes (i.e., those nodes having successors due to the application
of the 3-rule) is bounded by 2™ due to the blocking strategy (using Witness to avoid repetitive
propositional branch or initial label) in SAT(-,-,-,:). The number of nodes in the final tableau
structure (including blocked nodes which have no successors) is bounded by 2™ + 2™ x n.

(3) The cost per node could not surpass 2°(™" (considering the cost for selecting propositional
branches and the cost for cache look-up operations).

Considering all these three factors, the total cost for one execution of SAT(., -, -, -) is thus bounded

by 200, O
Lemma 15. The procedure TEST(-,-) stops after at most 30} oops, where n is the problem size.

Proof. (1) The size of Nogood can be bounded by h(n) = 29(™). This is justifiable when considering

the powerset of the space of sub-formulae for the given problem in question.
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(2) Each run of TEST(:,-) will report at least one new Nogood if that run does not produce a
saturated tableaux structure. After at most h(n) runs of TEST(:,"), the size of Nogood will not
grow (because the whole sub-formulae space is exhausted). At this point (i.e., in the worst case),

TEST(:,-) is able to decide the satisfiability of the problem in question and terminates. [

Theorem 16. The concept satisfiability test w.r.t. general azioms in ALCFI can be decided in

deterministic exponential time by. the presented tableau decision procedure.

4.8 Discussion

The DL ALCFZ is chosen not simply because it was extensively studied in the past, but because

this logic is the juncture point of several interesting research results established in the past as well.

For example, it is the logic where the finite model property is lost and the dynamic pair-wise blocking
technique was proposed for; it is the logic where functional restrictions can be eliminated; and it
is also the logic where the complexity of its satisfiability problem goes up to NExpTime-hard when
nominals are added. Each of the above mentioned results is an advancement and has impact on

either practical or theoretical research.

The encoding method for eliminating functional restrictions from an ALCFT knowledge base was
presented!4 in [Gia96, CGR98, GM00]. Our approach shares similarity with their work in introducing
new concept names and encoding new constraints in the form of general concept inclusions. The
difference is that we keep functional restrictions untouched but eliminate the effect of backward

propagation of constraints on a tableaux structure.

[Tob00, Lut04] proved that the DL ALCFIO is NExpTime-hard. The conversion would be incorrect
if there is a nominal. This limitation coincides with the “merging pattern” as pointed out in the
improved hardness proof in [Lut04]. If there are only nominals and inverse roles but no functional

restrictions, the presented conversion is satisﬁability—preservingls.

14In one of those works, the connection between an “infinite model” in ACCFT and its corresponding “finite model”
in ALCF was briefly pointed out. There exist further extensions for number restrictions, interested readers are referred
to [CGLNO1].

15Recently in [Lut07], it was proved that the conjunctive query entailment problem is NExpTime-hard in ALCT
but remains ExpTime-complete in SHQ.
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For DLs supporting inverse roles, the termination mechanism (a.k.a. cycle detection and block-
ing techniques) for tableau-based decision procedures is required to be dynamic to accommodate
backward propagation of constraints [HS99]. To further support number restrictions, the more so-
phisticated dynamic pair-wise blocking technique {HS99] and its optimized variants [HS02] weré
introduced to guarantee soundness. A study of the model properties of DLs with inverse roles shows
that various dynamic termination mechanisms are sufficient. Generally speaking, the bidirectional
traversal on a relational structure is a natufai consequence of enforcing tableau expansion rules over
inverse relations. However, there are some undesirable side effects from bidirectional propagation of
constraints, e.g., one major problem is the unsoundness of the tableau caching technique [BCM*03],
and the second problem is the save and restore problem (as mentioned before in Section 4.1.1 and
Section 4.1.2), the third problem is the lack of efficient propagation of unsatisfiability, and the final
problem is that the size of the tableaux structure could become unnecessarily large. Further, though
the book-keeping cost for a sequence of establishing, breaking and re-establishing of blockings is
minor for small knowledge bases, the cost could be amplified for larger knowledge bases, and it also
entails complicated design and implementation issues. This chapter presented a way to adapt a
static termination mechanism to tableau-based decision procedures for the concept satisfiability test
w.r.t. general axioms in ALCFZ. The static termination mechanism is intuitively simple and easily
implementable. The major run-time performance advantage for static blocking and one-way traver-
sal is that it requires a small footprint algorithm, thus it is well suited to resource limited computer
systems'®. The independence of sibling nodes of a tableaux structure also implies implementations

that explore the multi-threading mechanism and multi-core computer systems more efficiently.

In the beginning of this chapter, a transformation is introduced to convert a source problem to a
target problem and to preserve equisatisfiability in ALCFZ. The search of a model in the converted
problem can safely use the static equality termination mechanism (a.k.a. the equality blocking tech-
nique [BCM103]) globally. Based on the static blocking mechanism and (a very weak form of) the
inconsistency propagation capability, one is then able to show that the decision procedure runs in

exponential time in the worst case for the concept satisfiability problem in ALCFT.

16The virtual memory might be huge but is often much slower than physical memory, and frequent page swapping can
cause low-level performance thrashing. Small footprint algorithms can be significantly faster than memory intensive
algorithms.
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The decision procedure relies on two functionalities: the static equality blocking which is globally
applicable but transient, and the unsatisfiability caching which is globally applicable and persistent.
[DMOO0] is credited for this idea. As shown in [GNO7], the data structure Witness here can possibly
be persistent as well under certain conditions. We demoﬁstrated a decision procedure using the
restart strategy. Whenever one new unsatisfiable set (of labels) is obtained and it is not the given
problem itself, the decision procedure restarts. In other cases, the proceduré terminates and is able
to decide the satisfiability of the problem. T};ough the use of the restart strategy here is for an easy
analysis of the complexity, it is also of potential advantage to the run-time performance for realistic
problems. For example, it is possible to assert artificial elements in Nogood (as a penalty) to bypass
the searching of certain branches which were timed out before. Possibly this might help in practice

because the reasoning system can somehow choose to explore “easier” branches first.

An ExpTime decision procedure for a DL with both inverse roles and functional restrictions would
not be ready but for a polynomial-time conversion. This is because the decision procedure is correct
only for problems with a special property (which is called “backward propagation don’t-care”). By a
satisfiability-preserving conversion, nonetheless this decision procedure works for ALCFZ in general
(actually for SHZF which corresponds to the ontology language OWL-lite). The converted problem
is of size O(n?) where n is the size of the source problem. However, a linear conversion is possible

in theory according to [Lut99].

A transformation system!” was developed for the conversion and comparison tests were carried out.
It is observed that, as expected, fresh concept names and new general concept inclusions have a
modest size expansion by a factor of 5, and a run-time performance penalty of a factor of around
3 to 4. But for a set of hard problems, this penalty is well offset by the global tableaux caching
functionality, and magnitudes of performance gain have been achieved for half of the test cases.
As already discussed in the background section (at the end of Section 4.1.2), the tableauz caching
technique can serve not only as a static blocking technique, it can also prune away “bad parts” of the

search space. By contrast with running problems in DLs with inverse roles, running the converted

170ur current transformation system is not able to process ALCFZ. The tests were carried out in ALCZ only.
Recently we noticed a report [MSHO7] on using the “anywhere dynamic pairwise blocking” technique to classify the
GALEN (Simplified) Ontology in 104 seconds. Recall that the “anywhere dynamic pairwise blocking” is more or less
a variant of what was presented in Chapter 2 (with the least caching power of the three caching techniques proposed
in this thesis). The GALEN ontology is specified in SHIF. Once we have completed the extended transformation
for SHIF, it will be quite promising for us to test the proposed technique in this chapter against GALEN.
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problems in DLs without inverse roles likely demands less memory (for there is no need to make
an extra copy of the tableaux structure before branching so that an undoing will be possible). It
is quite promising that the global (sub)tableauzr caching technique can be used in tableau-based DL

systems to try some realistic problems yet unsolved because of inverse roles.

In Chapter 6, we will deal with SHZQ and present a more general, but less powerfull®, global

tableaux caching technique.

181n the sense that initial labels are not used for the propagation of inconsistency.
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Chapter 5

SHOI, SHQ, and ALCHOZ Acyclic
Tbox

This chapter presents three different conversions that eliminate either a role hierarchy or inverse
roles. The first is to convert SHQ to ALCQ by eliminating a role hierarchy and transitive roles.
The second is to convert SHOZI to SHO by eliminating inverse roles. The last one is to convert the

satisfiability problem from ALCHQT to ALCHQ while keeping Tbox axioms in an acyclic form.

5.1 Reducing SHQ to ALCQ

A conversion from a SHQ concept to an A.L;C Q Thox is described as follows. It eliminates a role
hierarchy and transitive roles by introducing new concept names and concept inclusions.
(1) First, introduce a new role name g for the conversion;
(2) Introduce a new concept name for each role name occurred in the given concept;
(3) Process the role hierarchy as follows: replace each role inclusion Ry T Ry with a concept
inclusion Cr, T Cr,, where Cpg, is the concept introduced for role R;.
(4) Process modal constraints on transitive roles as follows:
(4.1) for each VS.F (where S is transitive and the concept assigned to it is Cg), replace it with
a fresh concept name Q;
(4.1.1) introduce a new concept name Ap, and add the following two axioms:
(4.1.1.1) =Q T 3g.(Cs N -AF)
(4.1.1.2) Q CVg.(—-Cs L (Q T AFr))

(4.1.2) add two axioms Ar C F' and ~Ap C —F, and recursively deal with F and —F.
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(4.2) for each 3S.F (where S is transitive and the concept assigned for it is Cg), replace it with
a fresh concept name P;
(4.2.1) introduce a new concept name Ar, and add the following two axioms:
(4.2.1.1) =P C Vg.(-Cs U (=P M —AF))
(4.2.1.2) PC 39.(Cs M Ap)
(4.2.2) add two axioms Ar C F and —~Ar C —F, recursively procesé F and —F.
(5) Process modal constraints' on non—ﬁrz;nsitive roles. Replace 35" R.D with 3<"g.(Cr M Ap);
replace 32" R.D with 32"g.(Cr M Ap), where Ap is a fresh concept name for D. Then add two

concept inclusions Ap T D and —Ap C —D, and recursively process D and —D.

Example 1. Let the role hierarchy be {R; T R3, R T R3}. Given a set of number restrictions

{323R;.C,325R;3.C, 355 R;3.C, 324 R,.C} for satisfiability testing.

First, to eliminate the given role hierarchy, we introduce new concept names Cg, for Ry, Cr, for

Ry, and Cp, for Rs, and introduce concept inclusions Cg, © Cr, and Cpr, & Cg,.

Second, the set of number restrictions is converted to {323¢.(Cgr, NC), 32%¢.(Cr,MC), 35%¢.(Cr, N

0), 3249'(0122 no)}.

The converted problem has one role g, and a solution for the converted problem is:
2 g-successors with role filler {CRr,,Cr,,Cr,y,C}
2 g-successors with role filler {Cr,, Cr,,C}

1 g-successor with role filler {Cr,, Cr,,C}

A solution to the converted problem corresponds to a solution to the original problem (and vice
versa):

2 {Ry, Rz, R3}-successors with role filler {C}

2 {Ra, R3}-successors with role filler {C}

1 {Ry, Rs}-successor with role filler {C}

The idea behind an elimination of a role hierarchy is quite intuitive: introducing concept names to

simulate a role hierarchy. However, it would be difficult to eliminate a role hierarchy in the presence

1Please note that a untversal constraint like VR.C can be expressed in 350 R.—C and an existential constraints like
3R.C can be expressed in 32! R.C. Therefore, for modal constraints we only consider number restrictions in general.
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of inverse roles because inverse relations are not considered as Boolean expressible [0OK99]. In the

following we show a way to eliminate inverse roles from a role hierarchy.

5.2 Reducing SHOZ to SHO

In Chapter 3, we showed how to eliminate inverse relations from an Abox and an acyclic Tbox in
the DL ALCZ. In [DHWO7], we used a similar technique to eliminate inverse relations for a general
Tbox in ALCZ. We will use the same idea iﬁ this section to eliminate inverse relations from SHOZ,
a DL having expressive roles and nominals. We convert a SHOZ concept to a SHO Thbox.

(1) For each role inclusion in the role hierarchy, replace it with two axioms: .

(1.1) case R; C Rj, then introduce R C R$ and R? C RY

(1.2) case R; T R;, then introduce R? C R¢ and R? C R!

(1.3) case R; C R;, then introduce R{ © R% and R} C R?

(1.4) case Ry C R;, then introduce R{ C RY and R'C R;?

Note: R? (R?) is a unique role name introduced for role R (R™).

(2) For each universal constraint ¥S.C (where S is transitive), replace it with a new atomic
concept name P. Add the following axioms:

(2.1) 38°.PC PN Ac and P CVS°.(P M Ag)

(2.2) Ac C C, where Ac is a fresh concept name

(2.3) ~P C 358°%.(-A¢) and ~A¢ C -C

(2.4) recursively process C (and —C)

Similarly process universal constraints of the form VS~.C for transitive role S.

(3) For each universal constraint VR.C (R is not transitive), replace it with a new atomic concept
name Q. Add axioms as follows:

(3.1) IR*.Q C Ac, and Q CVR® Ac

(3.2) Ac C C, where Ac a fresh concept name

(3.3) ~Q C 3R%.(~Ag), and ~Ag T ~C

(3.4) recursively process C' (and —C)

Similarly process universal constraints of the form VR™.C for non-transitive R,
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Remark. The above steps convert a SHOZ concept to a SHO concept and a set of SHO general
concept inclusions.. Because in SHO general concept inclusions can be internalized to a SHO
concept, one can see that the above transformation results in a SHO concept from a SHOZ concept

(if further using the internalization technique [BCM*03]).

5.3 Reducing ALCHQT Acyclic Tbhox

In [Lut99] and [BML*05] PSPACE/tableau-based decision procedures have been shown respectively
for acyclic Tboxes in ALC and in ACCOQ. The notion of modal depth [Lut99, BML*05] is critical
in giving a polynomial upper bound on the length of any trace the tableaux decision procedure
explores. Here, based on a similar obsérvation, one is able to convert an ALCHQT acyclic Thox to

an ALCHQ acyclic Tbox2.

Let us consider a given acyclic Thox Ty and a given concept expression C in ALCHOZ. Assume
one wishes to test the concept satisfiability of C' w.r.t. 7Tp. In the following, to weave a “web” of
modal-reference relations for a concept and its role filler, it is necessary to clearly specify the position

of each modal constraint (a.k.a. qualified number restriction) in terms of “levels”.

Figure 5.1: The Modal-reference Relation of an Imaginary Acyclic Thox

Figure 5.1 shows a network of modal-reference relation for an exemplary acyclic Thox (modulo
propositional reference relations). A circle represents one modal concept, and an arrow represents

a modal reference. Assign a “level number” to each concept so that for all paths in the network

2The conversion here extends our previous work in [DHW07] and [DHO7b).
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starting from a source node to a sink node, the “level” of a predecessor node is higher than the
“level” of a successor node. Coded in hexadecimal numbers, Figure 5.1 shows a “linearization” of
the partial order induced by the graph. Nodes numbered with 2, 4, 6, B, and D are ordered in

0z02 < 0204 < 0206 < 0z0B < 0z0D.

(1) Introduce a new role name g (a super-role of any roles occurring in 7y and C), and for other
role R, add two role inclusions: R®* C g and RY C g. Further, process the role hierarchy of role

inclusions according to the step-1-of Section 5.2.

(2) Denote the lowest level (of the “modal reference” relation) as d.
(2.1) introduce new concept names Lg, and Ly, Ly, ..., Lg;
(2.2) add axioms Ly T Vg.Lg, and Ly & Vg.Ls, ..., and Lg—1 & Vg.Lg;

(2.3) introduce an axiom Lg C Vg.L1, and replace C with Lo M 3¢.C

(3) Assign a level number to each modal constraint as described above (and as exemplified in Figure
5.1). For each modal constraint at level ¢ > 0, we need to define its role filler. Syntactically, each
modal constraint has a unique role filler and vice versa. The definition of a role filler A, is based on
its propositional composition (of a modal constraint Ag at level ). In other words, A, is composed
by propositional connectives {e.g., M, LJ and — constructors) only; each of its sub-concepts is either
a concept name (or a negated concept name) or a lower-level modal constraint. For example, let Ag
be 3R;.(C N 3R7.D), then its role filler A, is C M 3R;.D and its definition is A, = CT1 M; where

M; = 3R5 .D is a second modal constraint.

(4) Let Ag be a modal constraint with an assigned level number 4 (for ¢ > 1), and let A4 be its role
R filler. Add more axioms as follows:

(41) LyU LoU...UL; 1 © —A, U (VRY.(Ag = PR A,) N MD)

(42) LyULyU..UL;—y C Ay U(VRY.(Ap = "R A,) N MD)

(4.3) MD CVRy.(Ag = P™R%.A,)
In the above, Ag = ™" R% A, is a shorthand for (—Ag UF"R* A,) N (Ag U~(F"R* A,)). Note
that ™" R® A, is the original definition of Ag; while ™"~ R% A4, is its fine-tuned constraint (see
an example in Section 6.3.1 of Chapter 6). The notation VR.X is a shorthand for V5. X MVS,. X N

..MVS,.X where S; (1 =1,...,n) is a role and S; Z R (according to the role hierarchy).
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(5) Repeat step-3 and step-4 until the maximum level d has been reached.
Below, we give a small example to show elimination of inverse roles for an acyclic ACCHQZ Tbox.
The language used in this example is a strict subset of ACCHQOT (i.e., ALCT) for which a simple

technique was given in Chapter 3. However, for an illustration purpose, let us just take it as if it is

in ACCHQT.

Example 1. Suppose we want to test satisfiability of 3R.(VR~.B M 35.A) w.r.t. an acyclic simple
Thox {A = VS~ .END,E = YR™.W} of two concept definitions (see Section 1.3.1 in Chapter 1
about the notion of a simple Tbox).

(1) To convert the concept IR.(VR™.B M 35.A) that is subject to a satisfiability test, extra concept

names (to weave a web of modal-reference relations) are introduced. We introduce new concept

names C, M and My and use them as follows:

C= M3

Mz = EZIR.(Ml mn Mz)
M; =3<°R- -B

M2 = 321314

(2) To convert the given acyclic Tbox, we further introduce new concept names (for modal constraints

in the Tbox) as follows.

A=M;ND
M, = 3<08- -F
E=Ms

Ms = 35°R~ -W
(3) Based on the previous two stéps, we are able to assign a “level” for each concept name (corre-
sponding to the five modal constraints) as follows: Mj is at level-4, My at level-3, M; and Ms at
level-2, while M3 at level-1.
(4) According to the “levels” introduced above, we introduce new concept inclusions as follows.

LituL,UuL;CTWu ( VR(M5 = (ES—IR—._'W)) ! MD5)

LiULyU Ly C-WU(VR.(Ms = (35°R™.-W)) N MDs)

MD5 CVS.(Ms = (3S°R~.-W)) N VS~.(Ms = (3S°R~.-W))

NYR™.(Ms = (35°R~.-W))

LiULy C-EU(VS.(My= (35718 .—E)) M MDy)

L1 ] L2 I_._: Eu (VS(M4 = (ESOS-."E)) M MD4)

MDy CYR.(My = 3505~ —~E)IVR™.(Ms = 3505~ —E) NVS~.(My = 350§~ -E)

L, C AUWNS™.(M; = (3218.4)) N MD,)
Ly AU (VS™.(My = (32°5.4)) N MD,)
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MD; CVR.(M; = 3218.A) NVR~.(M = 3215, 4) NVS.(M, = 3215.4)

L;C BU (VR‘(Ml = (ES—IR.—IB)) n MDl)
LiE-~BU (VR”.(Ml = (HSOR.'WB)) mn M.Dl) :
MD; CVS.(M; = 35°R.~B)NVS~.(M; = 35°R.~B) MVR.(M; = 35°R.-B)

(5) Introducing a new role g which is a super role of all other roles

S*Cyg
S*C g
R*Cyg
RCyg

The converted problem is reformulated as a satisfiability testing of the concept Lo M 3g.C w.r.t. an

acyclic Thox consisting of following concept definitions/inclusions.

C= M3

My = 321Re.(M; 1 My)
A=MsND

E= M5

Ly EVg.Iy

Ly EVg.Ly

Ly, EVg.Ls.

LiUL,ULzCWU ( VRa.(M5 (35’1R".—»W)) M MD5)

LiUL; ULy =W U (VR (Ms = (35°Rb.-W)) N MDs)

MDs C VS°.(Ms = (3S°RV.~W)) NVS®. (M5 = (ISORP.-W))
MNVRY.(Ms = (35°Rb.-W))

LiULy C-EU (V5% (Mg = (35-18°.-E)) 1 MD,)
LiUuL,CEL (VS“.(M4 = (ESOSb'—-,E)) M MD4)
MD4 CVR.(My = (35°5%-E)) MVRY.(My = (350S4 —E)) NVS®.(My = (35°8%.-E))

L1 C AU (VS .(M, = (3215%.A)) N MD)
L1 E -AU (VSb(M2 = (EEOSG‘A)) 1 MD2)
MD, CYR.(M, = (3215%.A)) NYRY.(M, = (32152.4)) NVS®.(M, = (321 5. A))

Ly C BU(YR.(M; = (35-1R%.~B)) N MD,)
Ll E ~-B U (VRb M1 = (ESORG,"'B)) M MDl)
MD; CVSe.(M; = (3S°R®.~B)) NMVSb.(M; = (35°R®.-~B)) NVR*.(M, = (3%°R*.-B))

o~

In summary, the above conversion relies on a hard encoding of “level” into new concept names and
a way of ensuring that in newly introduced axioms of the converted Tbox an original i-th level
modal constraint will not appear in any level lower than the i-th level. In contrast to Chapter 3 and
Section 5.2, the “encoding technique” presented in this section introduces high non-determinism and

therefore would not be practical for implementations (in its current presented form).
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5.4 Summary

This chapter indirectly gives one conversion from SHZ to ALC (by eliminating the inverse roles and
the role hierarchy in SHZ). The conversion from SHZ to ALC is straightforward by composing the

two conversions shown in Sections 5.1 and 5.2 in sequence (See Figure 5.2).

SHOI =»SHO  SHQ = ALCQ

SHT === SH
Xy 2
SHIT = ALC

Figure 5.2: A Conversion of SHZ to ALC

This chapter also showed a conversion of an ALCHQT acyclic Thox to an ALCHQ acyclic Tbox. It

relies on introducing “explicit level” concepts which are implicitly implied in the original Thox. This

conversion heavily uses non-determinism and is not intended for practical reasoning. This conversion

is not applicablé also when general concept inclusions are present.

In the next chapter, we take general concept inclusions into consideration and (by using a global

tableauz caching technique and the integer linear j)rogmmming technique) will show a worst-case

ExpTime decision procedure for SHZQ — a description logic more expressive than ALCHQT.
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Chapter 6

A Tableaux Procedure for SHIQ

The use of the atomic decomposition principle and the mathematical programming method is typical
of the so called algebraic methods [CL94, OK99, HMO01a]. The atomic decomposition introduced in
[CL94] works on role fillers, while in [OK99] another style of atomic decomposition of “roles” was
introduced. Soundness and completeness proofs on decompositions were given therein. In [HM01a]

the algebraic method of [OK99] was combined with a tableaux calculus for SHQ.

This chapter shows that the algebraic method [0OK99, HM01a) leads to a worst-case optimal tableaux

algorithm for the concept satisfiability problem in SHZ Q.

6.1 Two Questions
6.1.1 Big Number Values

Will a concept satisfiability test of 322 R.D{I3=3 R.D, be easier than that of 32311 R, D331 R, D,y?

This is the numerical scalability question for number restrictions.

In practice, the answer to this question varies depending on the type of DL reasoners used. For DL
reasoners designed to support only very small numbers, very likely the answer is yes. For algebraic
reasoners which take advantage of integer linear programming techniques, the answer is no. [HM014]
pointed out that even when numbers are increased by a factor of 100, the increased reasoning time is
negligible’. Therefore, the algebraic method scales better than other available methods for number

restrictions. Related to this scalability, this chapter will present that the algebraic method is worst

1 There is no comparable report from non-algebraic DL reasoners.
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case optimal in the strong sense (of binary coding of numbers).

6.1.2 Soundness of Tableaux Caching

Let Dy and D, be two satisfiable concepts w.r.t. one general concept inclusion asserting Dy T Ds.

As shown in Figure 6.1, 323R.D; N 3S3R. D, is satisfiable.

Dy Dy

3233.D1 n 3~<—3R.D2 Dy Dy

Dy Dy

Figure 6.1: 323R.D, N 3%3R.D; has a model w.r.t. Dy C D,

The dark node in the figure represents the given problem, the 3 grey nodes (R-neighbors to the
predecessor node) represent three identical subproblems. It is obvious to see that the given problem

323R.D; M 3S3R.D, is satisfiable.

Is -D; 1 Do N 3AR™.323R. D, M YR~.353R.D, satisfiable or not? In Figure 6.2, the dark node

represents a subproblem 323R.D; M 3<3R.D,, which has already been tested in Figure 6.1.

-D; N DyN3R-.323R.D, NVYR-3S3R.D, i}

BZSR.Dl n 353R.D2 f

Figure 6.2: A repeated subproblem 323R.D; M 3S3R.D,

Unfortunately for the “repeated subproblem” 323R.D, M3S3R. Dy, it is not “safe” to “reuse” the
previous tested result. It would be incorrect if we directly “copy” the satisfiability status of the dark
node from Figure 6.1 and reuse it here. The correct answer is that the “repeated subproblem” is
not satisfiable in the new case, and accordingly =Dy M Dy M3R~.323R.D; MYR~.353R.D, is not

satisfiable. This chapter will also present a global tableaux caching that is sound for SHZQ.
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6.2 Syntax and Semantics

We stipulate concept expressions are in the Negation Normal Form (NNF) (see Section 2.1 of Chapter

2). For a concept C (in NNF), we denote the NNF of —-C by C.

The notion of the inverse of a role R is defined as follows: if R is a role name, then Inv(R) = R~;

if R =S~ for a role name S, then Inv(R) = S.

To facilitate the use of the algebraic methdd to modal constraints on transitive roles, we perform a
_transformation? as follows: for universal restrictions like V5.C where S is transitive, replace it with a
new name A, and add three axioms: (1) A C VS.(CMA); (2) ~A C 35.~C; (3) 3(Inv(S)).A C ANC.
Recursively process C and ~C. Similariy process existential restrictions on transitive roles in a dual

way (see Section 5.1 of Chapter 5).

It is known that universal restrictions and ezistential restrictions can be expressed in qualified
number restrictions by using IR.C = 32'R.C’" and VR.C = 3SO0R.—~C. Therefore, it is justified to
assume? that only qualified number restrictions (also called modal constraints hereafter) of the form
32" R.C and 35" R.C occur in the language of the DL SHZQ. We use < as a placeholder for either

3< or 32, so0 an expression of the form P R.C might stand for either 35" R.C or 3Z"R.C.

Definition 1. (Syntax) We use A for atomic concept, C and D for arbitrary concepts, R (and R™)
for a role, and n for a hon-negative integer. Concept formulae in SHZQ are formed accofding the
following grammar:

C,D = T|A|~C|C N D|C U D|3$"R.C|32"R.C

Definition 2. (Semantics) An interpretation Z = (A%, .%) consists of a set AT (the domain) and
an interpretation function .Z. The interpretation function maps each concept name C to a subset
CZ of AT, each role name R to a subset R” of AT x AZ. Let the symbols C, D be concept formulae,

R and R~ be two roles in converse. The interpretation function is inductively defined as follows:

2This transformation is not new and can be found in the literature (e.g. in [GN07, MSHO7]).

3Clearly the two forms have only a syntactical difference. Although recently proved in [KSZ07] that “number
restrictions on transitive roles” is ExpTime decidable, it was shown that “number restrictions on a role having
transitive sub-roles (w.r.t. a role hierarchy)” is undecidable {HST99a]. Consequently in the DL SHOZQ and its
fragments, a role to have number restrictions is stipulated to be non-transitive and having no transitive sub-roles
(a.k.a. a simple role). It should be clear that the undecidability result of [HST99a] is not violated when we represent
VS.C in 3598.~C and 35.C in 3218.C for a transitive role S. Moreover, we are not considering the latest result in -
[KSZ07] because it would make (slightly) different semantics for SHZ Q.
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TZ:=AT (-0 :=AT\cT (CcnDI:=CTnDT (CuD):=CtuD*

(@stR.C)T := {z € AT | }{y € AT : (z,y) € R and y € CT} < n}

(327R.C)T := {z € AT | §{y € AT : (z,y) € R and y € CT} > n}

and additionally, (z,y) € R if and only if (y,z) € (R™)Z. For a transitive role S, if (z,y) € S* and

(y, z) € 8% then (x,z) € S%. For a role inclusion Ry T Ry, it satisfies R C RJ.

A tableau structure is a “completed” tree (-of graph in general) representing binary relations about
concept formulae [BS01]. Below are notions commonly employed in discussing “elements” and their

relations in a tableau structure.

Definition 3. (Successor, Predecessor, Neighbor) In a tableau structure, if R € £((z,y)), then
y is called an R-successor of z, and z is called an R™-predecessor of y. The R-neighbors of a node

T is a set of R-predecessors or R-successors of x.

Definition 4. (Specific Neighbor) For a role R and a node z in a tableau structure G, we define
the set of £’s R-neighbors with C in their labels, R®(z,C): R%(z,C) = {y | y is an R-neighbor of

z and C € L(y)}. In this thesis whenever G is obvious from context, we simply write R(z, C).

Definition 5. (Closure) The definition of clos(.,.) in the DL SHZQ is as follows. For an SHZQ
Thox 7 and a concept formula C, we define clos(7, C) as the smallest set X that contains C and

satisfies the following properties:
e for every subformula D, nnf(D) € X and nnf(-D) € X;
o forevery TE D € 7, nnf(D) € X and nnf(—-D) € X;

e X is closed under subformulae and the application of nnf(.) and —.

Definition 6. (Successor Constraints) The set of concepts (i.e., role fillers) occurring in number
restrictions, which is to be considered at successor and predecessor nodes, is defined by succ(7,C) =

{D | ("™ R.D) € clos(T,C) where R is any role}.

Definition 7. (Locally Consistent) A subset ¢ C clos(7,C) is locally consistent if and only if

the following hold
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e for every D € succ(7,0), it is that ¢ N {D, D} s 0 and {D,D} & ¢,

for every T C D € 7T, it is that nnf(D) € ¢,

if C;NCs € ¢ then {01,02} C ¢, and

if C; U C2 € ¢ then ¢ N {C1,Ca} # 0.

Below we assume 7 contains only one general concept inclusion of the form T C G, ie.,, 7 =
{T C G}. For convenience, we abuse the definition clos(T,.) and succ(T,.) by parameterizing their
second parameter for concept sets too. We overload clos(., .) and use the notion of clos(H,.) on a

role hierarchy H.

6.3 The Algebraic Method for SHZQ

The algebraic method first performs the atomic decomposition on a group of modal constraints and
thus generates subproblems to solve. What is special about atomic decomposition is that an integer
linear program will also be constructed thereof. This is achieved more or less by first arranging.
modal constraints in some preferred order, according to which an integer vector b of the numbers
(occurring in the modal constraints) will be formed. A coefficient matrix A will also be formed
according to that order, and its columns will be adjusted later depending on the satisfiability status
of the subproblems. The feasibility of the integer program A - ¥ = b (modulo slack and surplus

variables) indicates the satisfiability of the group of modal constraints.

Several modifications to the original algebraic method are introduced below for description logics
having both inverse roles and qualified number restrictions. These include fine-tuning of modal
constraints, an extended atomic decomposition, and an extended tableaﬁ structure. As a reminder,
in Section 6.6.3 an algorithm adapted from {Pap81] for testing the feasibility of special linear integer
inequalities will be shown, which is critical to the complexity proof in the sense of binary coding of

numbers.

6.3.1 Fine-tuning on Modal Constraints

For the satisfiability of modal constraints in SHZQ, there is a step to take the “neighborhood

information” into account before performing the atomic decomposition. Let us consider such a
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situation in which partial “neighborhood” information is given. For example in Figure 6.3, a,b and
c are distinct individuals (i.e., a % b, b X ¢, ¢ ¥ a ), there is one R-edge from a to ¢ and one
R~-edge from b to a respectively, and L(b) = {41, A, ~A3, A4} and L(c) = {—41, Az, A3, ~A4}.
Now consider to satisfy {324R.A;,3S3R.A,} at a, which requires at least 4 R-neighbors of type A;
(the specific neighbor f || R(a, A1)|| = 4) and at most 3 R-neighbors of type A, (the specific neighbor
| R(a, A2)]| < 3).

Original Goal:
324R.4;,35°R. Ay

Fine-tuned Goal:
323R.A;,35'R.A,

Figure 6.3: Fine-Tune of Modal Constraints

What is the “told” (or explicit) information that should be taken into consideration? As Figure 6.3
shows, £(b) and L£(c) respectively are supersets of an atomic partition of the modal constraints in
question. In this example, because b already counts as one R-neighbor of type A, a only needs 3
more R-successors of type A;. It is also ‘clear that a is only allowed to have one more R-successor
of type Aj, since the two distinct individuals b and c¢ already count as two different R-neighbors of
type As for a. Therefore, the subproblem to explore at node a is adjusted to be “to satisfy 351 R. A4,

and 323R.A;".

The adjustment of number values for modal constraints in a label is called the fine-tuning of
modal constraints. We denote the fine-tuned modal constraints by a designated label 7. For

the above example, the fine-tuned label for a (according to its neighborhood information) is F(a) =

{323R.A;,351R.A,).
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6.3.2 Atomic Decomposition and Integer Linear Program

Typical of the algebraic method is a principle called atomic decomposition. The atomic decomposition
is usually depicted in Venn diagrams [OK99, HMO1a]. For example, Figure 6.4 shows a decomposition
on C 1, Cz, Ca.

v :CiNCNCy

v : C1 M CyM -0y
v3:C1 M~ NCs
vg : C1N-=CyN-Cy
vy :-Cy NCeMNCy
vg : C1 NCe N =C3
vr:~CiM=CyNCs

OC1 :C2 (~\C3
-
Figure 6.4: An Atomic Decomposition on 3 Objects

For more objects, it is not easy to show its decomposition pictorially, e.g., consider the complex

diagram known as the Edwards-Venn-diagram below.

Figure 6.5: An Atomic Decomposition on 6 Objects [Edw04]

The problem of solving a system of linear inequalities dates back at least as far as Fourier [Vas83,
Sch86]. The system of linear inequalities is called a program. Many practical problems in operational
research can be expressed as integer linear programming (ILP) problems. The algebraic method

works by solving ILP problems as sub-problems.
Example 1. Let us consider an example. Let x be a tableaux node, and its current label L(z) =
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{3%3R.C1,322R.C,,324R.C3}. The atomic decomposition on role-fillers of the modal constraints

gives 7 pairwise disjoint combinations, see Figure 6.4,

The decomposition results in a coefficient matrix A = |w; ;| = (W1, W2, ..., W7). The variable v; is
associated with the i-th atomic decomposition. The resulting integer inequalities (W1, Waq,..., W) -

¥ 2 b is as follows:

IAIV

wy-v1+ wWp-v2+ w3 vzt wa-vgt 0-v5 4+ 0 ve+ 0-v7 <3
wy-v1+ we-ve+ O-vz+ O-vg+ ws-vs+ wes:ve+ 0.vy, 22
wi-vi+ O-vo+ wg-vs+ O-va+4 ws-vs+ O-v6+ wr-vr 24
Each w; takes a value of 0 (in the backtrack phase of the recursive process) if its “atomic decompo-

sition” (i.e., the i-th decomposition) turns out to be unsatisfiable and takes a value of 1 otherwise.

By introducing slack variables and surplus variables, the vector ¥ of variables is augmented to ¥ and
the integer linear inequalities above can be expressed as [A|B]-V' = b, where B is a m xm matrix. For
example, ¥' = (vy, vg, V3, v4, Vs, Vg, Uz, S1, S2, 83) |, and Ap has three more columns A-};[8] = (1,0,0),
A-'E[Q] = (0,-1,0)7, A—}g[l()] = (0,0,—1)7. The extended integer program is usually abbreviated as

Ag Vg = b.

To ease the presentation of a SHZ Q algorithm in Section 6.5, we introduce a function id(.) mapping a
decomposition p to its predefined order. When writing id(p) = 1, it means p is the i-th decomposition.
Similarly, the column vector of the coefficient matriz A relating to the decomposition p is denoted
by Alid(p)]; the variable of the variable vector ¥V corresponding to the decomposition p is denoted by

¥[id(p)]; and the number in the constant vector b corresponding to the decomposition p is denoted
by b(id(p)].

An integer program having no integer solution is called non-feasible, otherwise feasible. If the
i-th decomposition is unsatisfiable, then w; will be set to 0. If the satisfiability status of a sufficient

number of decompositions is known, the feasibility of an integer linear program can be decided by

integer linear programming methods [Vas83, Sch86].

Notice that for a number of m modal constraints the atomic decomposition generates a variable

vector of size 20(™) and a matrix A of size m x 20(™). 1t is interesting to ask whether an integer
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linear program of such a form could be solved in an exponential time to the total size of the m
constraints (considering a binary coding of the constant vector b). According to [Pap8l], the answer
is yes (even if the element a of matrix A is from the whole integer domain, i.e., allowing |a| > 1). A

proof will be given in Section 6.6.3.

6.3.3 A Concatenated Two-phase Decomposition

The algebraic method in [OK99, HMO1la] works in a role hierarchy and successfully handles SHQ.
In [CL94], the algebraic method decomposes solely on “concepts” instead. Here, we combine the
two styles in a sequence of two phases. In the first phase, an atomic decomposition is performed on

roles; in the second phase, an atomic decomposition is performed on role fillers.

The upper portion of an element of the resulting set P is called a role atom; the lower portion of
an element is called a concept atom. Clearly, elements are pair-wise disjoint, i.e., for z,y € P and

r#y, cNyC L.

R, R,
R R '
decomposition on roles
N
® ... b ; -
X X x .
Cy G
; [l B PPN
@
VW
w oo | -
i X { decomposition on concepts
A i 1
Cm;’ ‘:‘Jcm | i
S boao L did |

Figure 6.6: A Two-phase Concatenated Decomposition on Roles and Role Fillers

To ease the presentation of a SHTZQ algorithm in Section 6.5, we introduce two functions roles(.)
and concepts(.). The first function returns the roles (upper portion) for a given decomposition, while

the second one returns the decomposed concepts (lower portion) of a given decomposition.
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choose-rule: if PMR.C € clos(T,C) is not in C(2),
then choose some E € {C,C} s.t. C(z) =C(z) U {E}
M-rule: if 1. C1NCq € C(x), and
2. {Cl, Cz} ﬂC(:L‘) %+ {01,02}
then C(z) = C(z) U {C1,Cy}
Li-rule: if 1. C1 Uy € C(z), and
2. {C1,C}NnC(x) =10
then C(z) = C{z) U {E} for some E € {C1,C>}
p<trule: if z is not sat-cached ,
“then perform the concatenated atomic decomposition, and
generate upto 2™ successors

Table 6.1: The tableau expansion rules for SHZ Q.

6.3.4 Tableaux Structure

The tableauz structure usually used is a labeled tree; and the label is either a set of concepts or a set
of roles. Each tableaux node is labeled with a set of concepts; each tableaux edge is labeled with a

set of roles.

For SHZQ, the tableauz structure is also considered a labeled tree. However, additional labels are

provided as follows.
e each tableaux node is labeled with 0 or 1 integer linear program Ag - ¥g = b;

e each tableaux edge to the i-th decomposition is associated with a tuple (A;, v;) of two variables,
where A; is the i-th column vector of the 0/1 matrix A, and v; stores the solution value for v;

of the integer linear program.

If i-th decomposition P[i] is unsatisfiable, then the vector A g [i] will be set to 0, a vector of all Os;

—

otherwise, the vector Ag[i] remains unchanged. If the integer program is feasible, one solution to
Ag -Vg = b will be recorded at the second parts of the tuples {A;, v;). A; is a shorthand for AJi],

and v; is a shorthand for v [2]-

6.4 SHIQ Tableaux
6.4.1 Tableau Expansion Rules

Table 6.1 shows the tableau expansion rules that explicitly process the rmodal constraints and propo-

sitional constraints at a tableau node z by manipulating its initial label £(z), its local consistent
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label C(z) and the fine-tuned F(z). The choose-rule is nondeterministic and implements the first
condition of the local consistency. Note that the choose-rule is different from that of [BS01], but is
also highly non-deterministic. The M-rule and the U-rule are as usual. The t<-rule implements the

atomic decomposition principle.

6.4.2 Inconsistency Propagation Rules

1-0-rule: {~T} € 1-8et.

L-l-rule: {C,-C} € L-set.

4-2-rule: if (1) @ € L-set, and
@acs

then f € L-set. ,
L-3-rule: if (1) aU{C} € L-set, and
(2) aU{D} € L-set
then aU{CUD} € L-set.

1-4-rule: if (1) the set of fine-tuned modal constraints is M, and
(2) M’s atom decompositions is P, and
(3) P’s integer linear program Ag - Xg = b is nonfeasible

then M € L-set.

Table 6.2: The inconsistency propagation rule for SHZ Q.

Table 6.2 shows the vinconsistency propagation rules for L-set. The primitive clashes [BCM03]
in SHZQ include any superset of {—~T}, {C,~C} (as implied by 1-0, 1-1 and 1-2 here). Rule
1-3 is same as Chapter 4. Here to consider number restrictions, the patterns for clash triggers are
necessarily more complex. For example, {3S!R.A,352.R.—~A,324R.B} is inconsistent. Also, for
example the consistency of {3R.A,3R.B,3R.C,3R.D,3<3R.T} depends on a successful partition
that divides {4, B, C, D} into at most 3 parts without any conflict. The new rule 1-4 is for a set of
modal constraints and generalizes simple clash patterns such as {35~ R.C} (possibly resulting from
a fine-tuning of the modal constraint {IS°R.C}), and {3S"R.C, 32"*+1R.C}, and more complex

ones as well. Inconsistency inference is performed on demand during the backtracking phase.

6.4.3 Blocking

It is known from the literature that lots of efforts have been spent in investigating “optimized
blocking” for DLs having both inverse roles and qualified number restrictions, e.g. SHZQ. The

“blocking” method widely recognized nowadays is the “dynamic double blocking” technique and
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its optimized version [HS02] as shown in Figure 6.7.

Liz)= L")
L{y) = L)
C((.’l:, ?/)) = C((‘Jy’))

("))
W

Figure 6.7: Dynamic Double Blocking

The dashed line in Figure 6.7 indicatés that node z’ is a descendant of node y. The blocking
condition is specified in a pairwise manner: for node ¥’ to be blocked, it is sufficient to find an
ancestor node = and z’s direct successor node y such that £(z) equals to £(z'), and L(y) equals to
L(y"); moreover the labels of the two edges are also equal. As commented in [HS02], the conditions
required to trigger a “blocking” are more complex than in earlier tableaux algorithms. Below we

introduce a new style of block conditions that generalizes the idea of the dynamic double blocking.

C(z) = C(y)
Flx) = Fly)

Figure 6.8: New Blocking

The new one supports simplified pre-conditions for the blocking and potenti.ally leads to an easy
implementation. In the following paragraphs about “blocking”, both blocking nodes and blocked
nodes are requ;xred to be “propositionally completed”, i.e., the propositional rules (incl. the M-rule
and the U-rule) are not applicable to them (a.k.a. being locally consistent). Those tableau nodes
that serve as “blocking” nodes are also called witness nodes. A node y is blocked if none of its

ancestors is blocked, and there is a witness node x such that

e C(z) =C(y), and
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o F(z)=Fly)

where F(z) is the fine-tuned label of C(z) and C(z) is one locally consistent set of L(x). When the
two equalities hold, we say = blocks y. This blocking is static and is based on label equality (in
the sense of “set equality”). For a node z, obviously C(z) and F(z) should not be known to be
inconsistent. The dashed line in Figure 6.8 from node z to node y simply means z has been locally

saturated before y has been done.

Note that the fine-tuned modal con/straints might not necessarily belong to the clos(T,C). Nonethe-
less, the number of fine-tuned labels are of the same order of the original labels. In a tree-like tableau
structure, the number of tuples (i.e., combinations) of a label and its fine-tuned one (F,C) is 20(?)

where n = || 7| + ||C|.

6.5 SHZIQ Algorithm

The algorithm starts building a tableau structure (TS) from a root node labeled with the concept
subject to the satisfiability test. The decision procedure uses a restart strategy. It switches to explore
a different TS if the current one cannot be saturated without causing local inconsistency?. Since
it might restart, there could be many runs of the decision procedure. In each run, the decision

procedure takes a depth-first traversal to construct a tableaux tree.

There are two major data structures: Nogood (for unsat caching across different tableau structures)
and Witness (for static blocking of tableau nodes within one tableau structure). The two data

structures are described as follows:

e Nogood: Nogood permanently holds labels like C(x) or F(x) for inconsistent concept sets
encountered. Recall that F(x) is the fine-tuned version of C(z); while C(z) is one of the locally

consistent sets of L(x).

e Witness: Witness holds intermediate results like (F(z),C(z)), and is used for blocking.

The restart strategy resets Witness to empty whenever the decision procedure can infer a new

Nogood element bottom-up by using the 1-rules. The inconsistency inference is triggered by primitive

4To explore one TS, either DFS or BFS suffices. There is no assumption about the order in which TSs are explored.
The switching could be implemented either as restarting or backjumping, or any sound method that shares previous
computations.
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clashes or by a (cache) hit of the global data set Nogood. On the next page, we show two procedures

atomic decomposition and integer linear programming. Also note that for the purpose of a clear

presentation, the checking of primitive clashes is omitted.

The procedure decides C' as unsatisfiable if {C} € Nogood; or otherwise decides C as satisflable
if the size of Nogood is not changed. In all other cases, the procedure restarts. The termination
is guaranteed since the size of Nogood is bounded and each restart is triggered only when a new

(nontrivial) inconsistency set is found and added to Nogood.
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PROCEDURE TEST(C, GCT)

01) Nogood := @;

02] WHILE (true)

03] Witness := §;

04] len ;= sizeof(Nogood);

05) allocate a tableau node zg and let L(zo) := {C};

06 SAT(z0,GCI, 0, {C}, null); . . .

07} IF (C € Nogood) RETURN unsatisfiable; wt‘i? restarttl:ng this line
08] IF (len == sizeof(Nogood)) RETURN satisfiable; wi run nex

09] ENDWHILE

END-PROCEDURE {TEST}

PROCEDURE SAT(z, GCI, edge2me, L(x), parent)
[10] IF (L(z) € Nogood) RETURN false;

(11}  selected := false;

[12 FOR EACH local consistent set C(x) of L(x)

{13 IF (C(x) € Nogood) CONTINUE;

(14 F(zx) := fine-tune of C(z);

(15 IF (F(x) € Nogood) CONTINUE;

(16 IF ((F(z),C(x)) € Witness) RETURN irue;
(17 selected := true;

(18 BREAK;

(19) ENDFOR
[20] IF (= selected) THEN

[21 IF (parent == null) THEN

[22 Nogood := Nogood U {C};

{23 ABORT; restart
24] ENDIF

25) RETURN false;

26] ENDIF

27]  Witness := Witness U {{F(z),C(z))};
(28]  perform atomic decomposition about F(z) and build an integer linear program A .V = b;
[29] FOR EACH atomic decomposition p € NewAtomDecompose(x, H)

30] allocate a tableau node y and build an edge (labeled with roles) from x to y;
31) ret := SAT(y, GCI,roles(p), co_?}cepts(p),m);
32] IF (- ret) THEN A[id(p)] = 0; ENDIF

33] ENDFOR
[34] IF (A-¥=b is infeasible) THEN

35] Nogood := Nogood U {C(z)};

36] ABORT; ' restart
37) ENDIF

(38] IF (A.-¥=0 is infeasible) THEN

[39] Nogood := Nogood U {F(z)}; :

{40] ABORT; restart
[41] ENDIF

[42]  RETURN true;
END-PROCEDURE {SAT}
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6.6 Proof
6.6.1 Completeness

For the completeness, we need to prove the correctness for concept unsatisfiability. We start with a

lemma saying that L-rules correctly propagate inconsistencies.
Lemma 8. (Completeness) The 1-rules generate only unsatisfiable sets.

Proof. By induction on the applic;tion of 1-rules. We follow the proof steps as given in Chapter 4.

Here we only consider the inconsistency propagation rule .L-4.

e (L-4): The atom-decomposition exhausts all combinations of role fillers (and their negations).
The column vector of the coefficient matriz of the program takes a value 0 if the corresponding
role-filler combination is unsatisfiable; otherwise it keeps its initial value. We prove the claim
by contradiction. Suppose M is satisfiable, then this leads to a feasible configuration of
combinations of (negated) role fillers. This corresponds to a non-0 integer solution to the

integer program, which contradicts the hypothesis. O

The data structure Nogood implements 1-sets in the procedure TEST(:,-). By Lemma 8, no satis-
fiable concept (set) will be added to Nogood (i.e., L-sets), therefore any satisfiable concept will be

decided as “satisfiable”.

cluttering the space. Of course, it is necessary to have a mechanism to recognize fundamental
clashes (esp. propositional clashes). However, it should be clear that the functionality of primitive

clash triggers can be implemented by making minor modifications to line-10, line-13 and line-15.

Also, we would like to point out that in SHZQ the “inconsistency propagation” is weaker than in

through the use of the F label but not the £ label; by contrast in ALCFT the L label can be used

for the inconsistency propagation.
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node y is blocked by node x o= W <{rq, 1y, 3}, A, 5>
‘X’* prune e (T4, Tg, T7, T A 72

Figure 6.9: Global Tableaux Caching

P <{ry, Iy, I3}, A, 5>
e {04, Te, T Th A 7>

7 copies of the
sub-trecat x

5 copies of the sub-tree at x

Figure 6.10: Unravelling and Copying
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6.6.2 Soundness

The algorithm takes a DFS traversal to build a completion tree starting from the root node xo, and
uses the global data structures Witness and Nogood. Let T denote the completed tree. For a node

z; € T, denote its propositionally completed label by C(z;), and the fine-tuned label by F(z;).

If a node z; is expanded and completedibefore node r; does, we denote this ordering by z; > z;.
The blocking relationship conforms to this (node expansion) ordering (similar to Section 4.7.2 of
Chapter 4). As indicated before, ;he witness is required to be propositionally completed (which is
equivalent to say the M-rule and the Li-rule are no longer applicable), and is fine-tuned and is not
in Nogood. Only for a propositionally completed node x it is possible to add a tuple of two labels -

(F(z),C(z)) to Witness.

Lemma9. (Soundness) If there is a tableau tree T for L(zg) = {C} w.r.t. T C G, then there is

a model M for C w.rt. TCEG.

Proof. It takes two steps.
(1) To admit infinite models, we consider paths in T. The mapping Tail(p) returns the last
- element in a path p. Give a path p = [zq, ..., ,], where z; are nodes in T, Tail(p)= z,. Pathsin T

are defined inductively as follows:
o for the root node zq in T, [z] is a path in T.
e for a path p and a node z; in T, [p,z;] is a path in T iff

— z; is not blocked, and

* x; is a successor of Tail(p) and the variable® v,, > 0, or

* y is a successor of Tail(p) and z; blocks y and the variable v, > 0.

— z; is not known to be unsat (i.e., C(z;), F(z;) ¢ Nogood)

The pre-model M’ = (AZ', . T') can be defined with:

A ={zp| pisapathin T}

5Recall that (see Section 6.3.4) each tableaux edge is labeled with a tuple (Ai,v;), where v; is one variable of the
integer program at the predecessor node. The v; corresponds to the “number of copies” required for the node at the
endpoint of the edge.
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zp € (C(Tail(p)))”
{(zp,Tq) | (Tp,74) € (RYF'} = {(@p,%q) € A x A | ¢ = [p, Tail(g)] and
1. Tail(g) is an R-successor of Tail(p), or '
2. 3y € T, y is an R-successor of Tail(p) and Tail(g) blocks y }
U (o) €AxA| p= g, Tail(p)] and
1. Tail(p) is an R~ -successor of Tail(q), or
2.dye T,yisan R“-s/txccessor'of. Tail(g) and Tail(p) blocks y }

(2) For a tuple like (A;,vz), which is a label on the incoming edge to a tableau node z in M’,
if vz > 1, then generate new tableau nodes zi,...,2,,-1 by replicating x. Each new nodes takes
the same label as x’s and share x’s-predecessor, and has the same successors as the node z does.
This leads to M” = (AT", Z"). Each element of M" is locally consistent (see Definition 7) and is
saturated w.r.t. local cardinality restrictions. M" is a model for C and T C G.

By step-2, the compact pre-model from step-1 is exponentially expanded. O

6.6.3 Complexity

Lemma 10. The feasibility of the integer linear inequalities can be solved in 20(L") in the worst

case, where L is the size of the given modal constraints (in binary coding of numbers).

Proof. Denote the number of modal constraints by m; denote the maximum value of numbers (en-
coded in binary) by 2P; denote the number of variables by n. It is that m +p < L and n < 2™,

Recall that for a group of integer linear inequalities there is a matrix A which has n columns
and m rows, and there is a variable vector ¥ of n variables.

(1) Let us consider the i-th column AT;] of A. If we fix 1 but change the value of the variable
V[¢], there are (at most) 1 4 27 states for A—[;] without exceeding the limit.

(2) Let us introduce a m-dimension COUNTER, which will be used to add up from AE)] to A:[;l]
It is sufficient for us to allow each element of the COUNTER to take a range of values in [0,n - 2P].
So, the m-dimension COUNTER has at most (1 + n - 2P)™ states.

(3) To add.up one column, there is at most (1 +n - 2P)™ % (1 + 2P) combinations. So, to add up

to n-th column, it takes c = (1 4+n-27)™ x (1 + 2P) % (n — 1) steps.
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It is sufficient for each summation step to ha_.ve a cost proportional to the size of the input.

Therefore we have:

c=(1+n-2°)"%x(1+2")x(n—1) <d- 2L? for some constant d. [

Lemma 11. The number of nodes of any tableaus structure generated by the procedure TEST{,-)

is bounded by 200" where n is the problem size.

(1) Suppose line 25 is executing at a tableaux node z, the current label (F(z),C(z)) will not be
recorded in Witness, because the only line that enters a current label to Witness is line 27, which
is not executed yet. Further for node z, the program will not perform the atomic decomposition,
therefore, x must be a leaf node having no successors.

(2) By executing line 25, the program will return to the previous calling point located at line
31. Suppose this tableaux node is y. Since the program working at node y has executed 1ine-3i, it
must also have executed line 27 and line 30. Therefore, y is not a leaf node and for any non-leaf
node its label is cached in Witness. This implies that the number of non-leaf nodes is bounded by
20(") (the size of Witness). Observe also that in the program between line 28 and line 42 there
are only two possibilities for non-leaf nodes: the program must either “ABORT” or “RETURN true”,
so, eventually one Nogood will be reported or otherwise the tableau structure will be saturated.

(3) In the worst case, the number of tableaux leaf nodes like  might be of 20(™) and their
labels are neither in Nogood nor Witness. Other tableaux nodes that are not leaf nodes must be in
Witness (according to the second point above), thus the total number of tableaux nodes is bounded

by 200, O

Three factors are considered : (1) the maximum cost per tableau node; (2) the maximum size of a
tableau structure; (3) the maximum number of tableau structures required to be explored. We allow
a cost of 2°(™°) per node for some constant ¢, but require the size of each tableau structure to be of

20(n) and only 29 such tableau structures can be formed.

The procedure starts building a tableau structure (TS) from a root node and switches to explore a
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different TS if the current one can not be saturated without conflicts. When switching to explore
another TS, at least one new Nogood will be collected. Since the size of Nogood is bounded by 20(™),

at most 2°(") TSs will be explored.

By [Pap8l], the integer programs resulting from atomic decompositions can be solved in the worst
case in an exponen'tial time of the problem size even when numbers are binary coded. It is also
clear that it takes an exponential cost to perform atomic decompositions. These are taken care of

by allowing a cost of 2°(*) per node for some constant c.
By using Witness, the size of a tableaux structure is bounded by 20(n),

Therefore, the total cost is 29("°) x 20(n) 4 20(n) By lemma 10, the constant ¢ = 2.

Lemma 12. (Termination) The algorithm terminates in 2°("°) | where n is the size of the problem

and the constant ¢ = 2..

Theorem 13. The tableau-based decision procedure decides SHIQ concept satisfiability problems in

EzxpTime in the worst case for binary coding of numbers.

6.7 Discussion
6.7.1 Integer Linear Inequation

Recall that a system of integer linear inequations is called feasible if it has a solution. Otherwise it
is called infeasible. The following lemma says that an infeasible system of integer linear inequations

can not become feasible for any possible fine-tuning.

Lemma 14. Given a system of integer linear inequations Ag - & = b and its fine-tuned counterpart

A  Z= BI CIfAg - T = b is infeasible, then Ag - & = El is infeasible.

Proof. Recall that Ag is the extension of the coefficient matrix A after introducing surplus and

—/
slack variables. Observe that b results from a fine-tune by subtracting a certain positive vector

-

A[4] of A from b, ie., b =b- A[i] for some index i. Therefore, if Ap-% = b has a solution

X = (z1,%9, ..., i, ...), then Ag - X = b will have a solution X = (z1, 22,y 1 +x4,...). O
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6.7.2 Atomic Decomposition

The atomic decomposition process is known to have another form which is more economic than
what is presented in this chapter [HMTO1]. The idea for an “economic decomposition” is to process
at-least restrictions 32" R.C in a slightly different way, i.e., not introducing the negated role filler

C [HMTO01]. Besides the optimization of omitting negated role filler for at-least constraints, further

optimizations are possible.

As pointed out in [OK99], a number restriction over a role-filler composed of the “UI” operator has
relation to the algebraic operation “+” in integer domain. For example, assume A; and A; have
been “decomposed” already, i.e., for all (pair-wise disjoint) atoms p € P it is that (4 € p)V(;ﬁ €p)
and (Az € p) V (Az € p). Then a number restriction like 3_53R.(A1 L Ag) can be directly encoded
in an inequality as qugﬁ'[id(q)] < 3 by reusing available variables, where Q stands for the set

of atoms which either A; or A is an element of. Similarly, 323R.(A; L A;) can be encoded in
qug V[id(q)] > 3.

Recall that the atomic decomposition process generates a vector of variables and a coefficient matrix.
Each atom corresponds to a distinct variable as well as a distinct column of the constant matrix. It
is easy to see that in some cases reusing variables and matrix columns could restrict the unnecessary

exponential explosion.

6.7.3 Reachability Analysis

In [DHO7b], for ALCQT w.r.t. general concept inclusions, restricted cut-formulae were introduced
for the soundness of the global (sub)-tableauz caching [DMO0]. It is clear that the cut-formulae can
be treated like GCIs. In this chapter, instead of using cut-formulae [DHOTD], the notion of a locally

consistent set (corresponding to the choose-rule) is used.

The non-determinism from guessing “backward propagation” of constraints due to a combination
of inverse roles and qualified number restrictions could possibly be suppressed by a reachability
analysis similar to [DHO6]. It is conjectured that a combination of the reachability analysis and a
more restrained use of cut-formulae might lead to “acceptable” run-time performance for “realistic

application problems”.
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The usefulness of the algebraic method has been manifested in providing theoretical tableaux calculi
and in supporting practical reasoning tasks when dealing with a role hierarchy and transitive roles as
previously shown in [HMO1a]. It can provide worst-case optimal algorithms for concept satisfiability
problems in both the PSpace class® and the ExpTime class. We are quite convinced that the algebraic
method is a general tool for satisfiability pr_oblems involving qualified number restrictions.

In Section 6.8, we will give two small examples. The first example illustrates how to use the atomic
decomposition principle (Section 6.3.3) and how to form the corresponding integer linear inequalities
for a set of number restrictions. The second example illustrates how to use the simplified termination

condition to realize the global tableaux caching (Section 6.4.3).

6.8 Examplés

Examplel. (Decomposition and Integer Linear Inequalities) Given a role hierarchy H
consisting of two role inclusions {R2 © Ri1,Rs T Ri}, and M a set of 4 number restrictions
{354R1.(=C3 M (C1 U C2)), 323 Ry.(C1 M —C3), 322 Ry.(C1 M C3), 322R3.(Co M Cs)}. The question is
to test the satisfiability of M w.r.t. H.

First, we use the two-phase decomposition (see Section 6.3.3) on the role hierarchy H. This gives
the following decompositions:

(H1) {R1, Rs, R3}
(H2) {Ry, Ry}
(H3) {Ry1, R3}
(H4) {R:}

Second, we use the two-phase decomposition on role fillers of M (based on the discussion given in
Section 6.7.2). This gives the following decompositions (modulo some decompositions not used):

(F1) {C1,C2,C3}

(F2) {C1,C2,—C3}

(F3) {C1,—C4,C3}

(F4) {C1, =C2, ~C3}

(F5) {=C1,C2,Cs}

(F6) {~C1, Ca, ~Cs}

5For the algebraic method to use only a polynomial space, the atomic decomposition should be performed in a

space-economic way, i.e., generating a fixed number of atoms at a time and the integer linear program should be
implicitly formed and solved.

88



Third, for each number restriction in M, we form one integer linear inequality. There are 4 integer

linear inequalities as follows (one for each number restriction).

(1) v<r1,F2> + V<H1,F4> + V<HI1, F6> + V<H2,F2> + V<H2,F4> + V<H2,F6> + V<H3 F2>+
+ U<H3,Fa> + V<H3,F6> + V<HA, F2> + V< H4,Fa> + V<Ha,F6> < 4
(2) veH1,F2> + U<H1,Fd4> + U<H2,F2> + V<H2,F4> + V<H3 F2> + U<H3 Fa> + V<H4,F2>+
+ V<H4,F4> 2 3;
(3) v<H1,F1> + V<H1,F3> + V<H2,F1> + U<H2,F3> = 2;
(4) veH1,F1> + V<H1,P5> + V<H3 F1> + V<H3,F5> = 2;

Fourth, the set of the above 4 inequalities is feasible for there is a solution as follows.
V<H1,F1> = 2, U<H1,F2> = 3, and other variables take a value of 0.

Fifth, the solution gives a configuration of modal successors (to satisfy M w.r.t. H): 2 { Ry, Re, R3}-

successors with a role filler {Cy, Cs, C3}-and 3 {R1, Rz, Rs}-successors with a role filler {C1,C2,C3}

Example 2. (Generalized Blocking)

Given three roles Ry, Ry and Ry. There i3 one role inclusion Ry © Ry,

Cly)= {3531?1—.}11 CRAR T Ay, RTRg ™ As, EEGR;;“..‘Q}
{~4y, ~4e, Ag} € Clz)

C(Z) = {353}31 “.Ay, 3241?.1”‘142, 3’271?,3'".443, Bﬂﬁﬂg*.,‘h}

{=ds, =44} C C(w)

Figure 6.11: An Example of the Generalized Blocking (Global Tableaux Caching)

In this example, we give an example of the simplified termination condition (introduced in Section
6.4.3 as a notion of “blocking”). In the tableaux structure as shown in Figure 6.11, node y is an
R,-successor of node z, node z is an Rg-successor of node w. We assume the role hierarchy requires
Ry C Ry. 1t is known that C(y) = {IS3R; ™. A;,324R, ™ A2, 327 R3 ™. A3,350R3™ . A4}, and C(2) =
{353R,".A1,32*R1 . A2,32"Ra™ . A3, 38Ry A4}, Also, it is given that {~A;,-As, A3} C C(z)
and {-Aa, A2, ~As} C C(w).

Recall the notion of fine-tuning introduced in Section 6.3.1. By performing fine-tuning on modal
constraints in C(y) and C(z) respectively, we get F(y) = C(y) = F(z) = C(z). According to Section

6.4.3, node z is blocked by node y. Note that in contrast to the “dynamic double blocking” technique
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[HS02], it is not required that L£({z,y)) = L({(w,2)) nor is it required that y must be an ancestor

node of z.

6.9 Summary

In many areas of the engineering world, we frequently encounter various constraints regarding large
integer values’. For example, the IPv4 (Inerqet Protocol Version 4) specification stipulates that the
header portion of each Transport«Control-Protocol (TCP) segment should have at least 10 fields
and at mosi 11 fields; it is necessary to implement at least 4 different timers to develop the TCP
protocol in IPv4; an'd the minimum transfer unit (MTU) of Ethernet Network must be at least 576
bytes, etc. It was pointed out in [HMOia] that the algebraic reasoner scales smoothly for large

number values by implementing algorithms such as the simplex methods.

A binary coding of integer numbers is exponentially succinct than a unary coding; the coding of
numbers has been playing a critical role when it comes to examine if a decision procedure is indeed
worst-case optimal for the satisfiability problems in DLs with number restrictions. In the past, it
was not clear how the tableau-based approach could possibly achieve a worst-case ExpTime decision
procedure in the strong sense of binary coding of number values. So far, the known ExpTime decision
procedure, allowing binary coding of numbers, is automaton-based [Tob0l]. In that approach, a
looping tree automaton is constructed for the given concept and the GCIs. The automaton is
exponential in the size of the input and uses abstract “limiting functions” that are considered

impractical for implementations [Tob01].

This chapter investigated the concept satisfiability problem in the DL SHZQ (w.r.t. general concept .
inclusions), and also investigates the applicability of the global (sub )—tableauz caching technique in
tree structures restricted by local cardinality constraints and inverse relations. SHZQ is known to
have the tree rﬁodel property [BCM*03}. The global (sub)tableaux caching technique is inspired by
[DMO00]. We borrowed ideas and techniques from [Pap81, CL94, DMO00], and [OK99, HMO01a, Tob99,
Tob01, HS02], and [BHLWO03, HMO04, Hla04, HM04]. The algebraic method has been extended and
combined with the global (sub)-tableaux caching technique for a DL having number restrictions and

inverse roles. The worst case complexity for the satisfiability problem in SHIQ is 20("2>, where

"Yet there are applications using only very small numbers such as 1 or 2, as argued in [Hor02].
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n=||T|+|C| in the strong sense of binary coding of numbers. This upper bound is also applicable

to SHZQ Abox consistency problems (even not assuming unique name assumption).

91



Chapter 7

Conclusion and Future Work

Description Logics (DLs) are gaining popularity. In the presence of inverse roles and number restric-
tions, however, most successful tableau-based DL reasoning systems exhibit problems, for example,
degraded performance. The current loss of performance is largely due to lack of some well-known

optimization techniques, especially the one for caching the satisfiability status of modal successors.

Based on an investigation of the current research status in optimization techniques and an analysis
of why current approaches to handling inverse roles are either inefficient or invalid, several new
solutions (including elimination of inverse roles and the sound global tableaux caching techniques) are
proposed in this thesis. For number restrictions, it is known from the RACER [HMO01b] experience
that the algebraic method has better run-time performance. This thesis has extended the previous
approach of [HMO01a] to. SHZQ and proved that the algebraic method indeed leads to a worst-case
optimal decision procedure. This could be the first and important step to a plausible explanation

to the practical superiority of the algebraic method over other tableau-based approaches [BCM*03].

7.1 Summary
The following summarizes our research results.

e A dynamic global sub-tableauzr caching technique was presented in Chapter 2.

It addresses the soundness of the conventional sub-tableaux caching techniques. This technique

first appeared in [DHOS].

The technique presented in Chapter 2 uses two labels per tableau-node, and relies on the
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notion of “dynamic” which was previously seen in various “dynamic” blocking techniques
[HS02]. If further using the reachability analysis technique (also presented in [DHOS5]), the

proposed dynamic tableauz caching technique can be “static” (in certain situations).

The availability of the caching technique can speed up the reasoning process. First, the witness
space is no longer restricted to ancestor nodes. Second, the “static” version of the caching
technique [DHO5] requires no re-checking and thus it is safe to discard nodes once they are suc-
cessfully cached. By doing this, the tableau algorithm is more space-economic!. Our approach
can successfully deal with a set of (possibly cyclic) unfolding rules and a role hierarchy, thus
it well meets the typical requirement from real applications [DH06]. However, the proposed
“dynamic caching” technique (asv well as the popular “dynamic blocking technique”) has a
serious drawback, i.e., it has only a very weak inconsistency propagation capability. A weak
inconsistency propagation? would possibly result in, as also observed in [DHO06], a relatively

lower cache hit rate for a group of test cases specially designed.

To benefit from an effective reuse of previously computed satisfiability status as well as unsat-
isfiability status (as supported by global tableaux caching techniques [DMO0]), it is desirable _
to eliminate inverse roles. The elimination of inverse roles was presented in Chapter 3. The
empirical results were shown in Appendix B. This conversion technique is different from the
method of [Gia96] and [Sch91] in that ours relies on the Ramsey-rule [Ram31]. According to
[HST99a, HST99b], FaCT [Hor98] was able to classify a UML terminology (19 concepts and
42 axioms) in less than 0.1s of (266MHz Pentium) CPU time, but eliminating inverse roles
using an embedding technique [Gia96, Sch91] gives an equisatisfiable FaCT terminology with
an additional 84 axioms which FaCT was unable to classify in 12 hours of CPU time. By
contrast (see Appendix B), our elimination of inverse roles only slightly increased (less than
a constant factor of 5 times) the size of the original ontologies, and RACER [HMO01b] solved

all converted ontologies within an acceptable time (see Appendix B).

e In Chapter 4, a worst-case ExpTime tableau-based decision procedure was presented for the

1 This is also observed in the experiments of a recent paper [MSHO7) where a pairwise anywhere blocking technique
was proposed and implemented for SHZ Q.

2We conjecture that the weakness in inconsistency propagation is inherent for tableau-based decision procedures
when reasoning for DLs with inverse roles. Available techniques (such as the “pseudo model merging” technique
[Hor9s, THPS07] which is considered very useful for almost all DLs) do not prevent that tableau-based procedures
suffer from these deficiencies.
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DL ALCFZ. Part of this chapter is based on [DHO07a).

It is known that ALCFT lacks the finite model property, and consequently a sophisticated
double blocking technique is used to terminate the search for models [HS02]. This chapter
used the commonly-used equality blocking technique. This idea behind such a blocking shares
the intuition of the elimination of functional roles from [CGLNO1]. Moreover, this chapter
showed that recorded arioms are sufﬁcie_pt for the (sub)tableaux caching technique to be truly
“static” without the help of-a reachdbility analysis (as proposed in [DHO05]). Further, it is
quite promising that the technique presented in this chapter can be extended to SHZF, a DL

corresponding to the ontology language OWL-lite.

In Chapter 5 we showed three different reductions that convert concept satisfiability problems
from SHQ to ALCQ, from SHOZ to SHO, and from acyclic ALCHQT Thox to acyclic ALCQ

Tbox. This chapter improves our previous work in [DHW07] and [DHO7b).

In Chapter 6, the algebraic method [OK99, HM01a] was extended for SHZQ. By applying the
integer linear programming technique presented in [Pap8l}, we also showed that the integer
linear programs (resulted from applying the atomic decomposition principle [OK99, HMO01a]
on modal constraints) can be solved in 2°("*) where n is the size of the constraints (under

binary coding of numbers).

The decision procedure is worst-case exponential time (with an improved upper bound) in the
strong sense of binary coding of numbers. This solved the question raised (e.g., in [Tob01])
about how a tableau-based approach could possibly lead to an optimal algorithm for concept

satisfiability tests about number restrictions with respect to GCls.

Previously only Tobies [Tob01] had given an automata-based procedure in 20(n®) for binary
coding of numbers in ALCQZ;. Rajeev and Linh [GNO7)] recently gave a 20("*) tableaux
procedure for SHZ. Our upper bound for SHZQ is 20(n*) | This upper bound also applies to

SHIQ Abox consistency problems (even not assuming the unique name assumption [BCM+03]

for Abox individuals).
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7.2 Conclusion and Future Research Direction

This thesis has illustrated our research work in two aspects.

The first aspect is the search for new reasoning techniques (including a revitalizing of the global
tableauz caching technigue known to be unsound in the past for DLs with inverse roles, a (re)discovering
of a variant of the Ramsey-rule [Ram31], and the application of this rule to elimination of inverse
relations). We have demonstrated a use of the variant of the Ramsey-rule for elimination of inverse
relations for a sub-family of DLs w/ith inverse roles (i.e., SHZF and SHOZ), and have also showed
its usefulness by carrying out experiments on realistic ontologies (corresponding to knowledge bases
in the DL ACCZ). In contrast to simplicity of elimination of inverse roles in ACCFT and SHOZ, we
have also shown elimination of inverse roles for ACCHQTZ which otherwise becomes more complex
and less practical for reasoning (though it is possible to implement this transformation). By combin-
ing with tableau-based decision procedures, three variants of the global tableauz caching technique
have been shown with different ‘strength in “inconsistency propagation.” In terms of “inconsistency
propagation”, the dynamic global tableauzr caching is of the least power, and the global tableauz
caching for SHZQ (being the most general of the three variants) is relatively stronger than the
former. It should be pointed out that it is number restrictions (other than inverse roles) that make
the tableaux caching in SHZQ less powerful. Consequently, the largest fragment in SHZQ that
can benefit from the global tableaux caching technique as powerful as ALC is the DL SHZF, which

corresponds to OWL-Lite (an ontology language adopted in Semantic Web, see www.w3c.org.).

The second aspect of our research is to provide for a theoretical explanation for an existing technique
(i.e., the algebraic method scaling better in practice). Essentially, this thesis has shown that the
combination of the global tableaur caching technique and the integer linear programming technique

is sufficient for the algebraic method to be worst case optimal for binary coding of numbers.

This thesis has covered major fragments® (i.e., SHZQ and SHOT) of the DL SHOZQ [HS05, HS07].
For. the concept satisfiability problem in this language, an NEXPTIME hardness proof was given in
[Tob01] and refined in [Lut04]. A tableau-based decision procedure for SHOZQ appeared recently in

[HS05, HS07]. The DL SHOZQ corresponds to the ontology language OWL-DL, which is expected

3 Actually, as was pointed out in [DHO7b], the presented tableau-based algorithm for SHZQ can be adapted to a
worst-case optimal decision procedure for SHOQ also.
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to be the mainstream language in the ontology design and implementation. Given the successful
experience of RACER [HMOLb] in using the algebraic method for SHQ [HMO0la] and the proposed
extension for SHZQ, it is therefore meaningful to start investigating how to extend the algebraic

method for SHOZQ.
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Appendix A

Tableau-based Decision Procedures

and Optimizations

A.1 Tableau-based Decision Procedures

When discussing tableau-based decision procedures for description logics, many papers use a form
of constraint systems, while others use a form of labeled deduction on relational structures [Haa00,
BS01, BCM+O3]. As indicated before, tableau-based decision procedures were first applied to descrip-
tion logics as constraint systems [SSS91, HN90]. In practice, a majority of DL systems implement
their DL reasoners based on tableaux procedures, usually with sophisticated optimizations, e.g.,
RACER [HMO1b}, TWB [AGO07], HermiT [MSHO07], FaCT++ [THO06}, and Pellet [SP06]. It should
be noted that all these different formulations (or implementations) of tableau-based decision proce-

dure are more or less equivalent and their differences are inessential.

In general, tableau-based decision procedures work on labeled graphs (or labeled trees) whose nodes
stand for individuals of an interpretation. Each node is labeled with a set of concepts, namely those
it is assumed to be an instance of. Concepts (in each tableaux node’s label) are usually assumed to
be in negation normal form' [BSO01]. Each edge between two tableaux nodes is labeled with a role
or a set of roles, namely those that hold between the corresponding individuals. The completed and
saturated graph structure, in the form of a completion tree (or forest), serves as a partial description

of a model whose individuals correspond to tableaux nodes, and whose binary relations are taken

1Abbr. NNF, negation signs are recursively pushed inward until they appear only in front of atomic names,
normally by use of the De Morgan’s law and the duality property. For example, the well known disjunctive normal
form (DNF) and conjunctive normal form (CNF) belong to the NNF,
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from the (labels of the) tableaux edges.

To test the satisfiability of a concept C, a tableau-based algorithm starts (usually in a top-down
manner) with an instance zg of C, i.e., the root of a graph with C as an element of its label (written
as L(zo) = {C’}) The algorithm breaks down concepts in the label of each node syntactically
(according to a set of the so-called fableaur expansion rules), infers new constraints (a.k.a. sub-
goals) to be further satisfied by possibly generating new tableaux nodes (and their labels) or by
merging existing ones, and ultirhat’ely cons-tructs a saturated relational structure that could serve
as a pre-model for C. If no such structure can be found, then C is said to be “unsatisflable”. For a

tableaux procedure to be correct, soundness and completeness are critical issues to consider.

The first component of a tableau-based decision procedure is the tableaur expansion rules. There ex-
ists at least one expansion rule for each syntactic construct. If no more completion rule is applicable,
i.e., no application of any rule can change the tableau-structure (graph or tree) under construction,
then the final tableaux structure is said “completéd”, hence called a completion. A completion free

of clash serves as a pre-model that can be mapped into a model for C.

The second important notion is the so-called clash triggers, which are used for detecting obvious
contradiétions in labels. There are several clash triggers, each of which is usually designed for a
speciﬁc‘ restriction type and is used in specific inference algorithms. The most fundamental clash
trigger is the name clash, which recognizes situations in which a certain concept name and its
negation occur in the label of one common node. For an arbitrary concept name A and an individual
x, this name clash is triggered whenever {A4,-A} C L(z), a situation in which z is inconsistent
because z can not be interpreted as an instance of A and an instance of —A at the same time

without causing a contradiction.

When number restrictions are considered, the clash triggers are usually not specifiable in the above
form. For example, {IS'R.A,3%2.R.~A,32*R.B} is inconsistent. This inconsistency cannot be
detected unless by a combinatorial reasoning over a number of potential combinations. Consider
{3R.A, 3R.B, 3R.C, 3IR.D, 3S3R.T} as a second example, its consistency depends on if there is a
consistent partitioning of {A, B, C, D} of size less than or equal to 3. When nominals are considered,

it is necessary to ensure that a nominal can only be counted once (in the interpretation), for example
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323 R.{0} is not satisfiable because {0} can only be interpreted as a singleton (see Chapter 1 for
semantics). It is very clear that the integer linear programming technique can be used for checking

(and reésoning about) the existence of a specific combination (see Chapter 6).

To guarantee termination, tableau-based decision procedures need to stop explicitly, e.g. by the
caching or the blbcking technigues or simply rely on the sub-expression property. It will be clear
that for description logics with inverse roles, the termination condition is usually more complex than

their counterparts having no inverse roles.

Tableau procedures non-deterministically build and work on lab.eled (tree-like or graph-like) struc-
tures, if there exists a run with a completion free of clashes, then the input éoncept is satisfiable,
otherwise unsatisfiable. The non-determinism has to be circumvented for a better implementation,
usually by the global sub-tableauz caching technique, the optimized backtracking techniques and some
heuristics for branch selection. In summary, the don’t-care-non-determinism of tableau expansion
rules is good for the proof of soundness and completeness of tableau algorithms; the don’t-know-
non-determinism of disjunctions and number restrictions increases the complexity in searching for a

pre-model of the concept.

A.2 General Optimizations

It is well-known from practical experiences that the tableau-based decision procedure can achieve
better run-time performance by applying a wide range of optimization techniques®. In the following,
the focus will be on language-independent optimization techniques, i.e., those techniques not relying
on specific language features. This kind of techniques could be considered as general techniques. We
introduce some fundamental reasoning techniques that underly the tableau procedure of description
logics, and also discuss the possible problems they might have. A comprehensive and impartial
review on optimization techniques investigated so far is a complex task hard to attain. For another

review we refer to [THPSO7].

2 All optimization techniques are designed to improve the run-time performance of the tableau procedure. However,
not all of them are optimizing the tableau procedure directly. One simple criteria about whether a specific technique
optimizes the tableau procedure is to see if this technique will be called in the execution of the tableau procedure.
In this vein, internalization or absorption are techniques not for optimizing tableau procedure, but lexical normal-
ization and simplification, unfolding, caching, branching and backtracking could be. The relationship is very much
like a problem concerning the road, the cars and the transportation (car v.s. tableau procedure, road v.s. Tbox,
transportation v.s. DL system).
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A.2.1 Concept Unfolding

Given a KB 7 and a concept C whose satisfiability is to be tested w.r.t T, it is possible to eliminate
from C all concept names occurring in 7 using a recursive substitution procedure called the unfolding

of concept names [BCM*03].

For a non-primitive concept name A defined in 7 by an axiom A = D, the procedure simply
substitutes (also called unfolds) A with D wherever it occurs in C, and then recursively unfolds D

in the same manner.

For a primitive concept name A defined in 7 by an axiom A C D, the substitution to A is by A’/ D,
where A’ is a new concept name which represents the “primitiveness” of A, i.e., the unspecified
characteristic that differentiates A from D. Using unfold(C,7T) to denote the concept C after
unfolding w.r.t 7, we have 7 = C C D <= 0 |= unfold(C,T) C unfold(D,T), i.e., to test the
satisfiability of a concept C w.r.t 7, it is equivalent to a satisfiability test of the unfolded concept

w.r.t an empty Thox.

Generally there are two problems regarding concept name unfolding®: (1) a unrestricted recursive
unfolding could possibly produce a resulting concept expression of exponential size; (2) unfolding
would not be possible if 7 contains (2.1) multiple definitions for one concept name, e.g. {4 =
C,A = D} C 7, or (2.2) axioms like 323R C 35.D. Axioms that can not be transformed into
the unfoldable form, a format amenable for the unfolding process, will be internalized during the

execution of tableaux procedures?.

The unfolding of a concept name into its definition according to a given unfoldable Thox is a
basic process in the tableau-based procedure, however, unrestricted unfoldings might result in an
expanded label of exponential size.i The lazy unfolding technique addresses this problem by imposing
a restriction on the unfolding process, i.e. to replace only those occurrences of names outside the
scope of any modal operators with their definitions. In other words, lazy unfolding does not expand

the occurrences of concept names which are behind 3 or V.5 With this restriction, lazy unfolding

3 Label retaining is necessary when the unfolding process is dealing with the concept introduction azioms. To be
precise, the RHS must be added rather than replacing the LHS. For example, for an concept introduction aziom like
A C, when it comes to unfolding A, A should be retained with its RHS C rather than be replaced.

4The absorption technique tries to transform most of the non-unfoldable axioms into unfoldable axioms in an
equivalence-preserving way. '

51.e., lazy unfolding only applies to those names in the propositional part of a label. The modal parts (incl. those
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will not result in an exponentially sized label.

The unfolding and lazy unfolding afe dependency elimination processes. It is also considered as a
lightweight constraint propagaetion mechanism local to each node of the tableau-structure. In a sense,
lazy unfolding is a requisite rather than an optimization. But a combination of lazy unfolding with
label retaining is considered an optimization because it has been observed that clashes can usually
be detected earlier [Hor03]. For discussions on keeping the LHS when the unfolding process expands

it to its RHS definition, see [BHNP94, Haa00, Hor03].

A.2.2 Normalization and Simplification

The normalization and simplification mechanism [Hor95, Mas00, Hor03] provides a simple way for
structure sharing of concept expressions for a knowledge base. Comparatively speaking, it is a sim-
plified and lightweight version of those techniques identifying syntactic equivalence, contradictions,

and tautologies, and so on.

The lexical normalization produces the syntactic norm form by using DeMorgan’s law and the du-
ality between existential and universal restrictions, e.g., converting disjunctions to conjunctions,
existential restrictions to universal restrictions, at-most number restrictions to at-least number re-
strictions, and so on. For example, ~D U—C is expressed/stored as —M {C, D} where a conjunction
is treated as a set so that reordering or repeating the conjuncts does not effect equivalence. Likewise,
it is possible to have 3R.C — —VR. ~C and 35" R.C — 32+ R, —=C. The lexical simplification
simplifies 3R.L to 1, and 32°R.C to T, and so on. For nominals, e.g., 322R.({0} M C) can be
simplified to L, 3S3R.({o} N C) to T. Further in SHOQ, 323R.({0} U C) can be converted to
(3R.({o} N =C)U3R.({o} N C)) N F22R.(C N ~{o}); similarly I3R.({0} U C) can be converted
to (3R.({o} N =-C)U3R.({o} 1 C)) N FS2R.(C N —{o}). This simplification of number restrictions
in the presence of nominals relies on a notion of constraint fine-tuning (see Chapter 6). To the
best knowledge of the author of this thesis, there is no similar discussion available in the published

literature from the optimization field.

The elimination of redundancy and the sharing of syntactically equivalent structures may lead to a

compact KB. It complements lazy unfolding and improves early clash detection [Hor03]. However,

generated by lazy unfolding if any) lies behind each Y or 3 are handled only by the tableaux completion rules.
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some criticism says that for very unstructured KBs there may be no benefit and it might even slightly

increase the size of a KB.

A.2.3 Internalization

By using “internalization”, the whole Tbox can be “internalized” into a single concept, i.e., it 'is
possible to build a concept that expresses all the axioms of the Tbox, Cr = h( Ai=BeT)((A:U-By)M
(—A; U B;)) Tl Macser)(04; U Bj). Testing concept D w.r.t the Thox 7 is equivalent to
testing a single concept D M Cy MYU.Cr, where U is a transitively closed super-rolé of all the roles

in 7 (or equivalently, U can be considered as the universal modality).

The notion of internalization [CGLN01, BCM*03] has its origin from the research in propositional
dynamic logics (PDLs) [CGLNO1]. The notion of internalization is more of theoretical interests than
of practical interests. It is usually used, for example, to demonstrate that the concept satisfiability
w.r.t a Thox is in the same complexity class as the pure concept satisfiability problem. In practice,
however, if some axioms of a Thox can not be converted to a form amenable for concept name

unfolding, usually they are required to be internalized.

The problem with internalization is that the concept resulting from the internalization process
might contain too many disjunctions, which is known to increase non-determinism in tableau-based

reasoning, thus causes inefficiency in reasoning.

A.2.4 Branching

In the presence of a disjunction, possibly there are several branches open for search. Pruning
away fruitless choices beforehand is a key to achieve a good run-time performance. Obviously, the
exhaustive search of every branch should be avoided. However, it is necessary to keep a balance,
say, not sacrificing the completeness of the underlying decision procedure when trying to avoid an
exhaustive exploration of the search space. The semantic branching technique has been adapted from

a technique commonly used in the SAT community, namely, the Davis-Putnam-Logemann-Loveland

(DPLL) procedure [Fre95, Hor03].

When expanding the label of a node z, syntactic branching works by choosing an unexpanded

disjunction (CyU...UCy) in L(z) and searching the different models obtained by adding each of the
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disjuncts Cy, ..., Cp, to £(z). As the alternative branches of the search tree are not disjoint, there is

nothing to prevent the recurrence of an unsatisfiable disjunct in different branches.

The semantic branching works by choosing one disjunct D from one of the unexpanded disjunctions
in £(z). The two sub—tfees obtained by adding either D or =D to L(x) are then searched. The two
sub-trees are strictly disjoint, there is no possibility of‘wasted search as in syntactic branching. In
contrast to syntactic branching, where redundant search space may be repeatedly explored, semantic
branching uses a splitting rule which replaces the original problem by two disjoint sub-problems.
Usually, the semantic branching technique is supported by various techniques to speed up the search
[Haa00]: (1) a look-ahead algorithm or a constraint propagator tries to reduce orders of magnitude
of the open search space; (2) various heuristics, e.g.,, MOMS (Maximum number of Occurrences in
disjunctions of Minimum Size) [Fre95], are used to select the next open disjunct in a disjunction,

and a dynamic selection scheme is often employed.

A.2.5 Backtracking

“Intelligent” branching and backtracking in the case of “dead-ends” is a key to system performance.
Both select the “right” open sub-problem for further exploration. Syntactic branching for a disjunc-
tion might suffer from redundant sub-p;oblems; the backtracking mechanism supported by compilers
and operating systems is chronological in nature and suffers from a local thrashing phenomenon
[Hor03]. Both are not efficient for implementation. The conflict-directed backjumping is an op-
timized backtracking technique that enables the decision procedure to backtrack to the relevant
part (clashing participants) rather than chronological backtracking, see [Gin93, Haa00, Hor03]. A
good backtracking subsystem relies heavily on the efficiency of the underlying data structure, the

dependency maintenance and the inconsistency propagator [Haa00].

A.2.6 Axiom Transformation

When reasoning with description logic knowledge bases which contain a large number of general
concept inclusions (GCls), performance is the key concern in real applications. The absorption
technique is a general term used for techniques that transform a set of given GClIs into another form

so that much of it is unfoldable. This transformation makes tableau-based reasoning less dependent
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on the internalization technique, thus the GCI absorption improves run-time performance of the
tableau procedures and has been a central research issue for DL KBs, see {Hor95, HT00, Haa00,

HMO00b, Hor03].

In contrast to the conventional absorption centered around concept names (the unary predicates),
there is another notion about absorption on role names (the binary predicates), which originated
in [Haa00, HMOOb]. Later, this notion was slightly extended and was called the domain and range

absorption in [TH04].

There is a recent trend in utilizing certain properties of inverse roles for GCI absorption, see [HW06,
SGP06). Different from previous absorption techniques, [HWO06] is the first to show the new idea
to integrate the pattern matching algorithms into tableau-based procedures, very likely this would
lead to a new framework that allows for unfolding of a conjunction of concept names rather than

unfolding over a single concept name.

In summary, there are three kinds of absorption methods with different degree of emphasis on concept

names, role names, or conjunctions.

"A.2.7 Blocking

The tableau-based decision procedure checks the satisfiability of an input concept formula by trying
to construct a saturated (a.k.a. completed) and clash-free tableau structure. Its termination should
be guaranteed. In most cases, for example for unfoldable acyclic Tboxes or empty Tbozes, the
tableaux procedure (for testing concept satisfiability) would naturally terminate (due to syntactical
restrictions). However, for complex situations (e.g., expressive DLs), especially when cyclic Thozes
and general concept inclusions {(GCls) are considered, the decision procedure might not terminate.
The blocking mechanism is designed to ensure the termination of a tableau-based decision procedure®.
The termination of a tableau-based decision procedure should be guaranteed and this is done by
detecting cyclic computations and preventing rules from running into cycles. The difference of

various blocking techniques are characterized by their corresponding blocking conditions”.

SIn this sense, blocking falls in the requisite category.
TThis dissertation introduced a new “blocking” technique that complements those well-known “blocking techniques”
introduced in the literature.
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Typical blocking techniques in the literature include: (1) subset blocking; (2) equality blocking;
(3) pairwise blocking; and (4) dynamic blocking. The blocking mechanisms used [Baa90, HST98,
HST99b, HMO00a, HMO0Ob, Haa00] in Abox reasoning generally do not allow old individuals being

blocked by other individuals.

In brief, the blocking techniques characterize the run-time conditions the tableau structure under
construction must meet for the decision procedure to stay sound®. All blocking techniques guarantee
the termination of each trace in the tableau structure. It is observed that earlier termination of a

trace is desirable for a better performance.

A.2.8 Caching Technique

Sub-tableaux caching is a proof reuse technique. The effect of exploiting already computed subsump-
tion relations (i.e. unsatisfiability results) was carefully investigated in [BHNP94]. That is one of
the earliest practical work that proposed the idea of using caching for the tableau-based procedures
in DLs. In real world problems, it was observed later that the non-subsumption relations (i.e. satis-
fiability results) prevails over subsumption relations (i.e. unsatisfiability results). According to some
statistics, the ratio of satisfiable problems v.s. unsatisfiable problems is 95% to 5% or more. And
there might be such a problem that the number of distinct sub-problems are few but this small num-
ber of sub-problem patterns repeat numerous times and each of them is satisfiable. For problems of
this kind, caching unsatisfiability is impractical. As pointed out in [Haa00, HMO0Oa), caching both
satisfiable and unsatisfiable intermediate computation results is a necessary prerequisite to prove

the (in)consistency of many concepts terms.

A theoretical explanation of the usefulness of the global sub-tableauz caching was made by Donini
and Massacci in [DMO00] (and by Giacomo, Donini and Massacci in [GDM96]). They formally intro-
duced notions of nogood list and wvisited list. These two notions generally characterized the caching
technique. In [DMO0O0], they presented a tableau-based algorithm using a permanent caching of (in-
consistent, or unsatisfiable) sub-results and a somewhat restricted caching of satisfiable witnesses.
A worst-case optimal ExpTime tableau-based algorithm matching the lower bound was achieved

for the description logic ALC w.r.t general Thox. Their work theoretically manifested the power of

81n this thesis, all blocking techniques are viewed as special cases of the global sub-tableauzr caching technique.
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caching and the necessity of using it'in expressive description logics.

There are many successful abplications of the caching technique in real description logic systems
such as RACER. [Haa00, HM00a, HMTO1], FaCT and DLP [HPS98], and two kinds of strategies are
generally employed: (pseudo) model caching [Hor95] which reuses pseudo models of concepts, and
subtableauz caching which reuses sub-problems [DM00, Haa00, HM00a]. Empirical tests show that
global sub-tableaux caching is very effectiv_e for many Abox consistency. problems [Haa00, P.167],
e.g. TANCS benchmark (TANCS’2000 comparison problems). Refined caching techniqgue [HMOOD]
can have maximum performance by using both an equal cache and a subset as well as a superset
cache. Also, pseudo model merging {.Hor95, Haa00, HMTO01] extends the equal/subset/superset
comparison (look-up) to checking of a combination of several cached entries, more complex operations
on cached entri.es than simple cache look-ups. Recently there is a revived trend in using the pseudo
model merging technique on arbitrary graphs, e.g., [SGP06] showed that a combination of nominal
absorption and nominal-based graph model merging led fo a successful consistency checking of the
Wine ontology (see www.w3c.org). A recent work [GNO7] also discussed how a global tableaux

caching technique could also work on “graph-based models”.

It is always safe to cache the inconsistency of a sub-tableau [Haa00]. However, caching non-
inconsistent sub-tableaux is not trivial any more because it depends on the context [Haa00, HM00a),
i.e., in the case there is a blocking witness the dependency between the blocking witness and the cur-
rent (sub)problem should be carefully handled to ensure correct behavior. One solution is provided
in [HMO0Oa], i.e., a dependency tracking mechanism for cache entries is implemented in RACE (pre-
cursor of RACER). Once the system detects the inconsistency of a concept (or constraint system) on
which a cached entry is dependent, the corresponding cache entries are (recursively) removed. The
blocking technique, originally designed for the termination of a trace in one branch of the tableau tree,
could be viewed as a special caching technique working only on one trace. The witness in [DMO00] is
more general than the notion of blocking nodes presented in the literature.? Recently, Rajeev and

Linh have improved the work of [DMO0], readers are referred to [GNO7] for more information.

9Blocking only happens on one trace, but the notion of a witness (i.e., element of the visited list) in [DMO00] is not
restricted to one trace.
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A.3 Reasoning About Inverse Roles

The inverse role is regarded as one of the convenient, even indispensable, constructs of expressive
description languages. For example, it has been recognized long ago in the DL community that
one is able to use “inverse roles” to “indirectly” describe a concept like “a person has at least five
siblings” as 3has_child~.32%has.child. T, by reusing available roles instead of resorting to new roles.

For more examples, readers are referred to Chapter 1 (Section 1.4).

The convenience in using inverse roles, however, introduces a number of problems, inefficiency in rea-
soning in particular, for description logics. The first problem is very general and is the fundamental
one: computation is two-way rather than one-way, a notorious phenomenon also identified in other
logics such as converse-PDL, The second problem is that a label can not be explicated at the time
it is created. The third problem is that the global sub-tableaux caching techniques!! well designed
for ALC might be unsound for ALCZ. The fourth problem is that the so-called pre-completion
technique is unsound for Abox reasoning in the presence of inverse roles. The fifth problem is that
inconsistency propagation and conflict-directed backjumping are less effective in the presence of

inverse roles.

The current trend for reasoning issues of DLs with inverse roles takes an architectural approach, e.g.,
the “ToDo List” architecture as proposed in [THPS07]. This approach is typical of using “dynamic
double blocking” for the termination of its underlying tableaux algorithm, and lacks a powerful
inconsistency propagation capability. As pointed out in [Tob01], algorithms based on “dynamic
double blocking” are nondeterministic in nature and would take double exponential cost in the

worst case.

A.4 Reasoning About Number Restrictions

Number restrictions are concept constructors that are available in almost all implemented description
logic systems. They allow to restrict the number of role-successors (role-neighbors) of an individual

with respect to a given role. For example, if has_child is an atomic role and person is a concept,

101 e., converse propositional dynamic logic, denoted as CPDL [Gia96). PDL is originally a logic for program
verification and now is a general logic about action.
11 Also other well-designed caching related techniques turn unsound in the presence of inverse roles.
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then we can describe “persons having at least 3 children” by person N (3%3has_child.person).

[HB91] provided a worst-case EXPTIME tableau-based decision procedure based on unary

coding of numbers.

[Gia95] used “reification” to translate qualified number restrictions into functional restrictions.
Again it is based on an unary coding of numbers, and this translation gives a new KB with a

polynomial expansion of the original KB.

Later, Tobies [Tob99] gave a PSPACE algorithm based on a notion of “counters” for the pure

concept satisfiability problem in ALCQ and ALCOT.

A later work [BML*05] provided a PSPACE algorithm for ALCQQO w.r.t. acyclic Thoxes.
Based on a similar notion of “counters”, the algorithm of [BML*05] is PSPACE even when

numbers have a binary coding.

Instead of providing tableau-based algorithms, [Tob01] provided a method to construct a loop-
ing tree automaton for the concept satisfiability of a concept w.r.t. GCIs. Based on the
introduction of “limiting functions”, this construction is exponential to the size of the input

when numbers are in binary coding.

The algebraic method appeared in [OK99] and [HMO01a). However, the algebraic method is not
known to work for DLs with both qualified number restrictions and inverse roles. In Chapter 6,
we have presented a worst-case EXPTIME tableau-based decision procedure, with an improved

upper bound than the automata-based approach [Tob01]}, based on the algebraic method.
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Appendix B

Empirical Results

We have implemented the elimination of inverse roles as presented in Chapter 3 and have evaluated
its practicality. All satisfiability tests were performed with RacerPro 1.9.0 on a Pentium PC with
3.5 GB memory. The tested ontologies (in the ontology language OWL) were also converted on the

same machine. Note that the expressivity of the original ontologies corresponds to the DL ALCZ.

Table B.1 shows some empirical results (coherence check only), where the time indicated is the
average of 5 independent runs of the conversion system. It can been seen that although more time
is spent for testing Thox coherence for the converted versions of the first two KBs, the performance
is still acceptable since the KB sizes after conversion are less than five times larger than original.
Evidentl)", for. the UML ontology the runtime after conversion is quite impressive. Besides, we have
also divided the UML ontology into two sub-ontologies, both of which, if converted, require less time
to compute the satisfiability of all the concepts. Dramatic increase of performance is shown in the

last case, where the ontology contains one major class extracted from the ontology “revised-9-alci”.

KB Name Coherence Check Coherence Check | No. of Axioms
(original Thox) (converted Tbox) | (original/converted)

galen-irl-alci-newl 9.141 84.625 4645/5495

galen-ir2-alci-newl 9.549 76.156 4666/5508

uml-no-max-min- timeout after 1 hour | 0.110 524/739

new4

revised-9-alci  (par- | timeout after 1 hour | 3.297 3077/3099

tial)

Table B.1: Experimental results (all times are given in seconds)
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