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Abstract

Semantical Representation and Retrieval of Natural Photographs and
Medical Images using Concept and Context-Based Feature Spaces

Md Mahmudur Rahman, Ph.D.
Concordia University, 2008

The growth of image content production and distribution over the world has ex-
ploded in recent years. This creates a compelling need for developing innovative tools
for managing and retrieving images for many applications, such as digital libraries,
web image search engines, medical decision support systems, and so on. Until now,
content-based image retrieval (CBIR) addresses the problem of finding images by
automatically extracting low-level visual features, such as color, texture, shape, etc.
with limited success. The main limitation is due to the large semantic gap that

currently exists between the high-level semantic concepts that users naturally asso-
ciate with images and the low-level visual features that the system is relying upon.
Research for the retrieval of images by semantic contents is still in its infancy. A
successful solution to bridge or at least narrow the semantic gap requires the investi-
gation of techniques from multiple fields. In addition, specialized retrieval solutions
need to emerge, each of which should focus on certain types of image domains, user’s
search requirements and applications objectivity.

This work is motivated by a multi-disciplinary research effort and focuses on
semantic-based image search from a domain perspective with an emphasis on nat-
ural photography and biomedical image databases. More precisely, we propose novel
image representation and retrieval methods by transforming low-level feature spaces
into concept-based feature spaces using statistical learning techniques. To this end,
we perform supervised classification for modeling of semantic concepts and unsuper-
vised clustering for constructing codebook of visual concepts to represent images in
higher levels of abstraction for effective retrieval. Generalizing upon vector space
model of Information Retrieval, we also investigate automatic query expansion tech-
niques from a new perspective to reduce concept mismatch problem by analyzing their

correlations information at both local and global levels in a collection. In addition, to

iti



perform retrieval in a complete semantic level, we propose an adaptive fusion-based
retrieval technique in content and context-based feature spaces based on relevance
feedback information from users. We developed a prototype image retrieval system
as a part of the CINDI (Concordia INdexing and DIscovery system) digital library
project, to perform exhaustive experimental evaluations and show the effectiveness

of our retrieval approaches in both narrow and broad domains of application.

iv
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Chapter 1

Introduction and Motivations

.

We are living in the age of multimedia information technologies. The falling price
of storage, wide availability of digital devices, and the World Wide Web (WWW)
accelerate the growth of multimedia content production and distribution all over the
world. Among the variety of multimedia contents, images are the most prevailing and
widely used currently. Technological breakthrough makes it even possible to generate
images million of miles away from the Earth by space rovers. Hospitals and medical
research centers pfoduce an increasing number of digital images of diverse modalities
everyday for clinical decision making and research purposes. The needed technologies,
such as digital cameras, multimedia portable phones, and personal computers are
becoming available with reasonable price for general use. As result, creating and
storing personal digital photos, such as holiday pictures and pictures of friends and
family members, is getting easier and more affordable.

The exponential growth of images has created a compelling need for innovative
tools for managing, retrieving, and visualizing them for many applications, such as
digital libraries, medical decision support systems and teaching applications, Web
image search engines, photo journalism, crime prevention, fashion design, trademark
registration, and so on. These applications need has led researchers to the consensus
that indexing and management is necessary for image data to be valuable in the
long term. The existing and widely adopted text-based search methods have proven
out to be inadequate for image retrieval purposes. For example, Figure 1 shows the

search results of a popular Web image search engines; the AltaVista Image Search *.

thttp://www.altavista.com/image/default
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Figure 1: Images returned by AltaVista Image Search

The search engine returned most similar twelve images when we performed a keyword
search with “CN Tower”; one of the famous landmark in Canada. In this case, images
are indexed and returned based on their associated or collateral text in web pages.
From the results, we observe that the search returned unwanted images even at the
very top positions, i.e., 1st and 2nd ranked images (consider left to right and top to
bottom) in Figure 1.

The above mis-hits point to a need for an effective way to search images based on
their visual contents commonly known as content-based image retrieval (CBIR) [1, 2,
3,5,6,7,9, 10, 11]. In CBIR, access to information is performed at a perceptual level
based on automatically extracted low-level image features, such as color, texture, and
shape. The relevance of image retrieval for many applications makes CBIR research
as one of the fastest growing fields in information technology [1]. Unfortunately, even

after more then a decade of intensive research, the CBIR systems still lag behind of



the today’s best text-based search engines, such as Google ?, Yahoo %, and AltaVista
4.

One of the fundamental problems of CBIR is the semantic gap, which is the
mismatch between user’s search requirements and the capabilities of the systems to
represent images [1]. Many studies show that users would like to pose semantic queries
in image collections to search images of particular type of objects, activities, location,
and events [25]. Though many sophisticated feature extraction methods have been
designed during the last decade to represent low-level image features, they cannot
adequately depict images at a semantic level. As images with the same semantic
content often have variable visual appearances and many perceptually similar images
might have different semantic interpretations. Hence, retrieval results based on simi-
larities of pure visual content do not necessarily possess semantic similarities that are
of interest to the user.

CBIR exhibits a varying degree of difficulty and complexity depending on the
user’s search requirements, objectives and extents of application domains. The com-
plexity arises because images are richer in information content than text, and because
same image can be interpreted differently in various application contexts. For exam-
ple, a medical image retrieval system can assist users for different tasks [128]. In
particular, a system objective can be for diagnostics (e.g., for case-based reasoning),
research (e.g., to support evidence-based medicine), teaching (e.g., for the composi-
tion of case collection), and hybrid (e.g., any combination of previously mentioned
one). For diagnostic purpose, a physician may search for images with different disease
categories in a particular modality, such as search for computed tomography (CT)
images of lung with bronchitis or emphysema in ASSERT system [137]. In this case,
related images should have similar disease related properties or attributes compared
to an unknown query image. Whereas, search requirements can be quite different for
teaching and training purposes. Students can search large heterogeneous image repos-
itories of various modalities for important or interesting cases and patterns based on
perceptual similarity to see relevant diagnostic and potential problems.

Another important factor in the complexity of CBIR problem is the scope or ex-

tent of image domains. A narrow image domain has only a limited and predictable

2
3
4
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variability in all aspects of appearance whereas a broad domain has unlimited and un-
predictable variability of images with little or no domain-specific knowledge available
[1]. For example, in a medical image collection of a particular modality, the recording
circumstances for all images are almost constant, i.e., same illumination and no occlu-
sion. Although each image has large variability with disease related properties, there
are obvious geometrical, physical, and color-texture related constraints governing the
domain. For such domain, the gap between image features and their semantic inter-
pretation is usually smaller as domain-specific knowledge can be fairly exploited. The
domain would be broader, on the other hand, had the images been part of a larger
heterogeneous collection of different modalities [58]. In such a broad domain, seman-
tics of images can not be described by visual only features and search requirements
are also always at a higher level. For example, search for images with “tumors” in a
heterogeneous medical collection is at a higher semantic level then search for images
with “cancer” in a particular modality. The broader the domain is, the higher the
semantic gap due to the less availability of domain knowledge [1]. Similar criteria
can be observed for general photographic images. For example, in a narrow domain
of personal photo collection, users might search for images of a particular category,
such as indoor or outdoor images. Whereas in the broad domain Web images, a
user may prefer browsing or open-ended searching instead of any particular category
information in his/her mind.

Due to the immense need for effective image retrieval applications, new semantic-
based trends for image retrieval using semantic image classification, automatic an-
notation, and interactive retrieval are being investigated during the past few years
[13, 14, 15]. In the majority of cases, however, these new techniques do not focus on
domain objectives and real search requirements and try to suggest solutions that are
applicable for all retrieval purposes. As we observed, to develop a retrieval system to
meet all criteria would be unrealistic due to the varying complexities.

We stress the fact that the semantic gap cannot be bridged in a general way, but
rather expect that specialized CBIR solutions need to emerge, each of which should
focus on certain types of image repositories, application domains, user’s needs, and
query paradigms. Some of these solutions need to exploit domain knowledge by
utilizing learning-based techniques, whereas some may need to rely on contextual in-

formation as added semantics and propagate user’s perceived semantics to the system



in an interactive fashion. Hence, successful solutions to bridge the gap might require
a significant paradigm shift, involving techniques originally developed in other fields,
such as Machine Learning, Human Computer Interaction, and Information Retrieval
(IR). This is the main focus of the work in this thesis. To overcome the limitations
of low-level feature based CBIR systems, we use a multi-disciplinary approach to
develop domain dependent retrieval frameworks for semantic-based image retrieval.
We specially analyze the characteristics of both narrow and broad domains of gen-
eral photographic and medical images. The available domain knowledge, and the
types of use are considered as the prime factors to determine the appropriate image
representation and retrieval approaches.

The other major motivation of this work is to create a link between techniques
of Machine Learning and IR fields from our image retrieval perspective. In this
direction, being inspired from ideas of these fields, we perform statistical semantic
modeling to represent images by using both supervised and unsupervised off-line
learning and increase retrieval effectiveness by using both automatic and interactive
on-line learning techniques in the form of query expansion and relevance feedback
[205, 206, 208, 217, 218]. Within this research, we provide both theoretical and
practical contributions to the field of multimedia information retrieval in general and
CBIR in particular. Promising results have been reported in our papers (provided
at the end of this chapter) and will be summarized in this dissertation. For better
clarification, we briefly summarize some of the major contributions of our work in

following:

1.1 Contributions of the thesis

e We propose and develop a global concept-based image retrieval framework
based on exploiting image categorization information in semantically organized
databases, such as in a collection of medical images with different modalities,
body parts, orientations, and so on [205, 206]. The automatic semantic classifi-

 cation of images is a major trend in semantic-based image retrieval [13, 15]. The
majority of the systems, however, did not relate classification to retrieval di-

rectly, instead only stressed the usefulness of classification for image pre-filtering



purpose [24, 99]. In this framework, we exploit the global classification infor-
mation directly from a new perspective to transform various low-level image
feature spaces into intermediate level semantic feature spaces based on proba-
bilistic outputs and classifier combination of multi-class support vector machines
(SVMs) [165]. Further, we present an adaptive statistical similarity matching
technique in a low-dimensional feature space by exploiting the category-specific
feature distribution information of a collection, on-line classifier’s predictions,
and feedback information from the users. By empirical analysis in Section 8.3
of Chapter 8, we showed that the proposed techniques achieved retrieval im-
provements as compared to commonly used low-level feature representations

and geometric similarity matching functions.

e A local concept-based image representation framework is proposed for narrow
to broad domain of photographic images by performing statistical modeling
based on utilization of both supervised classification and unsupervised cluster-
ing techniques [209]. In this framework, codebook of visual concept prototypes
(e.g., visual entities like dominant color and texture patches) are automati-
cally constructed by utilizing self-organizing map (SOM) [32] based clustering
and statistical models are built for local semantic concepts (e.g., semantic en-
tities like water, sand, grass, sky, snow, etc. in local image regions) by using
multi-class SVMs [165]. The main limitation of some of the related techniques
[96, 95, 126] is that the correspondences between image regions to real objects
(local concepts) are always one-to-one. Although, there might be several objects
with almost as good match as the one detected for a particular image region. To
overcome the limitation, images are represented in this framework in concept-
based feature spaces by exploiting fuzzy and probabilistic outputs of the clas-
sifiers, topology preserving local neighborhood structure of the codebook, and
concept ordering structure in individual images [209, 207|. The proposed repre-
sentation schemes demonstrate their effectiveness (detailed retrieval evaluations
are provided in Section 8.4 of Chapter 8) when compared to low-level features

and concept frequency-based features without any feature enhancement.

e Generalizing upon the vector space model of IR, we propose automatic query



expansion techniques on the local concept spaces to overcome the concept mis-
match (similar to the word mismatch problem in text retrieval domain) prob-
lem [209]. Due to the nature of the low-level continuous feature representa-
tion, there appears to be less interest for such techniques in CBIR domain.
Our query expansion techniques are inspired by ideas from text retrieval do-
main. The methods are based on local analysis that takes into account metrical
constraints based on neighborhood proximity of concepts and global analysis
of concept-concept similarities or correlations in a collection. The automatic
query expansion approaches have a significant advantage over interactive ones
as they require no effort on the part of the user. The improved effectiveness of
the proposed approaches compared to original queries will be demonstrated in
Section 8.4 of Chapter 8.

The large semantic gap is one of the fundamental problems for CBIR in broad
domains. To reduce the gap, additional contextual infofmation, such as as-
sociated annotation or collateral text needs to be integrated with CBIR. Re-
cently, some research projects investigated multi-modal retrieval techniques by
combining text and images in a single framework towards web-based image re-
trieval [115, 120, 123]. We observe a lack of systematic evaluation of many of
these approaches and it is unclear about how much improvements they achieved
and in what context. Motivated by this, we propose interactive and adaptive
fusion-based search approaches in single modal content and context-based fea-
ture spaces as well as in multimodal feature space by combining both modalities
in a simultaneous or sequential way [208, 217, 218]. The proposed retrieval ap-
proach can propagate a user’s perceived semantics from one modality to another
based on a cross-modal multiple query expansions mechanism and dynamically
update the inter and intra modality weights based on feedback information.
Exhaustive experimental analysis are performed (Section 8.6 of Chapter 8) in
broad domain benchmark photographic and medical image collections to show

real effectiveness of the search approaches.

Another important contribution of this work is our successful participation in
ImageCLEF [57, 58], an evaluation forum for comparing image search tech-
niques, during the last three years (2005, 2006, and 2007). Such a benchmark



event is very essential in image retrieval domain as there are very few widely-
available image collections for comparative studies. The details of the bench-
mark collections and different runs submitted by us as well as analysis of the
results in the past years are available in our workshop papers [216, 217, 218§]

and also reported in Chapter 8 of this thesis.

e Users search requirements and systems objectives can be very specific in a nar-
row domain. For example, in a domain of dermoscopic images, the objective of
a retrieval system might be to assist dermatologist as a diagnostic aid for skin
cancer or melanoma recognition. Large number of digital dermatological images
are regularly being generated in clinics and hospitals. Until now, most of the
works in this domain have only focused on the problem of skin cancer detection
by classification-based systems and there is no CBIR system (as per our knowl-
edge) yet to be developed in this domain. Motivated by this, we developed
a CBIR system for dermoscopic images [210]. To this end, we propose a fast
segmentation technique for automated lesion detection by exploiting specific
image characteristics and domain knowledge and extract lesion-specific local
image features for a fusion-based similarity matching function to compare an
unknown query and database images. We demonstrate the effectiveness of our
CBIR system based on experimentation on a collection of dermoscopic images
in Section 8.7 of Chapter 8.

In summary, from our contributions, we can say that instead of focusing on a single
retrieval solution for different application domains (which we assume as unrealistic at
this moment), we propose several retrieval techniques where each of them is suitable
only for the corresponding application domain. Exploiting ideas from multiple fields
and focusing on specialized retrieval solutions are the main motivation of this research.
All the proposed techniques are implemented in a prototype retrieval system and

validated by experimental evaluations as will be described in Chapter 8.

1.2 Organization of the thesis
The reminder of the thesis is organized as follows:

e Chapter 2: Literature Review



We review the state-of-the-art in CBIR and present some ongoing trends and
techniques towards semantic-based image retrieval in both general and medical

domains.

Chapter 3: A Global Concept-based Image Retrieval Framework
This chapter presents a retrieval framework for image representation at global
concept level and adaptive similarity matching technique based on image cate-

gorization and user’s feedback information.

Chapter 4: Image Representation in Local Concept Spaces
We present several image representation schemes in local visual and semantic
concept spaces by utilizing both supervised multi-class SVMs and unsupervised

SOM-based clustering techniques.

Chapter 5: Query Expansion Based on Local and Global Analysis
The automatic query expansion techniques in concept-based feature spaces are
presented in this chapter based on both local and global analysis of concept

correlations information.

Chapter 6: Fusion-Based Retrieval in Content and Context Feature
Spaces
We present the interactive and dynamic fusion-based retrieval approaches by

utilizing both content and context information of images in a single framework.

Chapter 7: CBIR as a Decision Support System for Dermoscopic
Images

This chapter presents the image retrieval based decision support system for
dermoscopic images based on domain specific specialized image pre-processing

and segmentation techniques.

Chapter 8: Retrieval Evaluation
We present the details about the data sets used for the experiments and ex-
haustive experimental evaluations of the proposed techniques in different ex-

perimental settings.

Chapter 9: Conclusion



Finally, we provide our conclusion of the dissertation in this chapter. We sum-
marize our major contributions as well as limitations of our retrieval approaches

and future research directions.
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Chapter 2
Literature Review

This chapter provides a brief overview of image retrieval techniques, their limitations,
and current trends toward semantic-based image retrieval in general as well as in

medical domains.

2.1 Content-Based Image Retrieval

The first generation of image retrieval systems developed in late 70’s, was mainly
linked to traditional database management or text retrieval systems (3, 4]. In those
early systems, manually inserted annotations describing both the contents of the
image and other metadata such as the file name, image format, creator, date, and so on
were used as indexing terms. Unfortunately, manual assignment of textual attribute
is both time consuming and costly. When the database is large and dynamic, such as
images available in the World Wide Web, it is almost impossible to manually annotate
all the images. In addition, keywords based annotation is inherently subjective in
nature as the interpretations of images may vary depending on the context. Another
problem is that some visual properties of images, such as certain textures and shapes,
are difficult or nearly impossible to describe with text. What is needed in this case
is the use of more concrete description of visual contents that are closely related to
human perception.

To overcome the limitations of text-based image retrieval, content-based image
retrieval (CBIR) systems emerged in the early 1990’s [8, 16]. In CBIR, the images

are automatically or semi-automatically indexed by features directly derived from
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their visual content by using image processing techniques. Image indexing differs
substantially from keyword-based indexing of associated annotations since the desired
attributes of image region or whole image are complex functions in a continuous scale.

The common functionalities in CBIR can be summarized as follows [1, 2, 6, 7]

¢ Image processing and pattern recognition techniques are used to extract low-

level features, such as color, texture, shape, etc. from images.

e For a given feature, a representation of the feature in a vector form and a notion

of similarity are determined, and image is represented as a collection of features.

¢ Finally, image retrievals are performed based on computing similarity in feature

spaces and results are ranked based on the similarity values computed.

Research in CBIR has gained widespread popularity from different communities dur-
ing the last decade and has evolved and matured into a distinct research field. As a
result, the past decade has witnessed the development of the first commercial CBIR
system and many research prototypes from different industrial, research and aca-
demic arena. Typical commercial systems are: QBIC [16] from IBM !, Virage Image
Search Engine [17] from Virage Inc. 2, and VisualRetrievalWare 3 from Excalibur
Technologies. Well known prototypes of the academic world include Photobook [18]
from MIT Media Lab, VisualSeek/WebSeek [19] from Columbia University, NeTra
[22] from UCSB, MARS [20] from University of Illinois at Urbana-Champaign, and
SIMPLIcity [24] from Stanford University. The interest in CBIR is growing rapidly

with an upsurge in publication of different techniques in the last few years.

2.1.1 Challenges in CBIR

Even after a decade of intensive research, the performances of the CBIR systems
in reality lag far behind compared to today’s text-based retrieval systems or search
engines. The most fundamental challenge that CBIR faces is the wider extent of
mismatch between user’s semantic search requirements and the capabilities of the
technology to fulfill the requirements. For a machine, extracting the semantic content

from an image is an exceedingly difficult task due to the variability of objects in

http://www.gbic.almaden.ibm.com/
Zhttp:/ /www.virage.com/
3http:// www.excalib.com/
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visual appearances and many semantically different objects, on the other hand, are
perceptually similar [9]. We can easily identify different objects in an images or the
same object with different variations based on our previous experience or learning
and high reasoning ability. Unfortunately, this kind of knowledge is inherently hard
to duplicate in a CBIR system. This discrepancy is commonly referred to as semantic
gap problem, which is “the lack of coincidence between the information that one can
extract from the visual media and the interpretation that the same data have for a user
in a given situation” as quoted from [1]. A user mainly looks for images of particular
type of object, phenomenon or event, whereas, image descriptions in a traditional
image retrieval system rely on low-level image properties (e.g., color, texture, shape
and so on) and the two may be disconnected.

Depending on the search requirements and search types, the CBIR exhibits a vary-
ing degree of difficulty. The user search requirements on images can vary considerably
as it is a rich and subjective source of information. Eakins in [13], identified three
distinct levels of abstraction of search requirement with increasing complexity. Level
1 comprises retrieval by primitive features such as color, texture, shape or the spatial
location of image elements. For example, "find images with 50% red and a uniform
texture pattern”. Queries at level 2 may contain specific objects and scenes. At this
level, some degree of object and scene recognition as well as inference about the image
content is required. A query example may be as “find group of people on a sea beach”.
At the highest level of complexity, level 3 comprises retrieval by abstract attributes,
involving a significant amount of high-level reasoning about the meaning and purpose
of the objects or scenes depicted. This includes retrieval of named events of pictures
with emotional or religious significance, etc. For example, queries may contain ab-
stract concept as “find pictures of a joyful group on a sea beach”. Here, it is difficult
if not impossible to describe the concept joyful with low-level image features and
without any high-level reasoning. Users formulate queries mostly on levels 2 and 3
and expect the systems to operate at the same levels of complexity and semantics but
the current CBIR systems operate mainly at level 1 and partially in level 2.

In general, users like to present a very diverse set of different search scenarios in
CBIR, which the system should support. Searches in CBIR can also be distinguished
into three major categories [26]: (1) target search (2) category-specific search and

(3) open-ended search or browsing. The most precise search task is target search,
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in which a user tries to find a specific target image which may or may not be ac-
tually present in the database and which is the only relevant image for this query.
An example situation for a content-based target search takes place when a user is
interested about a particular person’s face out of all the images in a database of face
images that matches to a query image. Category-specific search aims at retrieving
an arbitrary image representative of a specific class generally from a narrow domain.
In category search, the user may have available a group of images and the search
is for additional images of the same class. For example, to find abdomen computed
tomography (CT) images with liver blood vessels or chest CT images with micro nod-
ule structures in medical domain, a user might prefer category-specific search based
on pre-determined categorization of imaging modalities, body parts, etc. Category
searches may be enhanced during the query in a natural way by relevance feedback,
i.e. grading the returned images on whether they belong to the class in question and
communicating this information back to the retrieval system, thereby providing more
information about the class of relevant images and thus guiding the system toward
the remaining relevant images in the database. In open-ended search or browsing, the
user has a vague or inexact search goal in mind and he/she browses the database for
any interesting things. Image searches of this type are highly interactive and often
constitute a nonlinear sequence of actions, thus requiring a flexible user interface. A
database visualization tool providing an overview of the database as well as relevance
feedback techniques are useful to help a user in open-ended searches. This search
requirements are therefore in a higher semantical level, i.e., in levels 2 and 3 in [13]
and in levels 5 through 10 in [27]. .

The ten-level visual structure presented in [27] provides an elaborate and sys-
tematic way of abstracting images based on syntax and semantics. Syntax refers
to the way visual elements are arranged without considering the meaning of such
arrangements (e.g., color, texture, etc.). Semantics, on the other hand, deals with
the meaning of those elements and of their arrangements (e.g., objects, events, etc.).
By analyzing Figure 2 from top to bottom, it is apparent that at the lower levels of
the pyramid, more high-level reasoning and domain knowledge is required to perform
indexing as represented by the width of each level. Although inter-level dependen-
cies exist, each level can be seen as an independent perspective or dimension when

observing an image and the way each level is treated will depend on the nature of
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Figure 2: Ten-level indexing pyramid [27]

the database, users and purpose. For clarification, example images for each level of
the visual structure is shown in Figure 3 based on [27]. Using structures such as the
ones presented, is beneficial not only in terms of understanding the users and their
interests, but also in characterizing the limitations of CBIR according to the levels of
descriptions used to access visual information.

The most significant gap in CBIR at present lies between levels 1 and 2 in [13] and
between the syntax (e.g., levels 1 through 4) and semantics level (e.g., levels 5-10) in
[27]. The overwhelming majority of CBIR system offer nothing but level 1 retrieval
of [13], and syntax (e.g., levels 1-4) based retrieval of [27]. However, techniques to
perform semantic retrieval fully at levels 2 and 3 of [13] and at levels 5 through 10 of
[27] are highly desirable. As a result, recent research has been increasingly focusing
on moving toward these high levels retrieval [13, 14, 15], which is also the main focus
of this research.

The following sections provides a brief overview of the basic components of typical
CBIR systems as well as new trends and techniques that are currently prevailing in

this domain and the relationships with our work.

2.2 Building Blocks of a Typical CBIR System

The majority of the CBIR systems have some common building blocks or modules

although they differ largely in application domains and objectiveness. The building
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Figure 3: Example images for each level of the visual structure [27].

blocks are [1, 2J:

e A feature extraction module performs extraction of low-level global or region-
based local features, such as color, texture, shape, etc. Generally, the feature
extraction process is performed off-line for database images due to the large

time complexity.

e An index module stores the feature vectors in a file or organize them by applying
some multi-dimensional index structure in a logical database. Index mechanism
helps filter out irrelevant images compared to a query image based on a nearest-

neighbor (NN) search mechanism.

e A similarity matching engine, which compares a query vector and database

image feature vectors for rank-based retrieval by applying a distance metric.

e A query processor with an interface in the client side that allows users to for-

mulate queries and to visualize the query results.

Figure 4 shows the functional diagram of the above modules of a typical CBIR system.
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2.2.1 Feature Extraction and Representation

Extraction and representation of image features for indexing purpose is the basis of
CBIR system [2, 5]. A feature refers to any characteristic which, in some way, de-
scribes the content of an image. In feature extraction, each image in the database
is transformed with N sets of different feature extraction methods to a set of NM
low-dimensional feature descriptors or vectors as shown in Figure 5. Hence, for any
given features, such as, color, texture, etc. there exist multiple descriptors (e.g., color
histogram, color moment, wavelet-based feature for texture, and so on), which char-
acterize the feature from different perspectives. Because of perception subjectivity,
there does not exist a single best descriptor for a given feature. As shown in Figure
5, generally a weight is assigned to each of these features and their descriptors for
similarity comparison.

Visual features can be either extracted from the entire image as global feature or
from image regions as local feature [2, 5, 10]. Global features are well suited for pro-
cessing the type of queries that deal with images as single entities during the matching
process. In local feature-based retrieval approach, which is generally termed as region-
based image retrieval (RBIR) [21, 22], the images are segmented into a collection of
homogeneous regions and low-level features are extracted from each region. However,
the global features fail to capture enough semantic information due to their limited

descriptive power. Although there is a strong correlation between segmented regions
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and real world objects, the accurate automatic segmentation for object detection in
broad domain images is still an unsolved problem [24]. Usually, the general-purpose
visual features, applicable for a variety of image types, are said to include color, tex-
ture, and shape. MPEG-7 [62], a noteworthy standardization initiative for describing.
multimedia content also follows this categorization, recognizing color, texture, and
shape as the three fundamental types of visual features applicable to automated still
image content description. MPEG-7 also defines a set of standard visual features or

descriptors which have also been used in our work.

Color:

Color is the most widely used feature in CBIR, since it is an important dimension of
human visual perception and it is invariant with respect to image scaling, translation
and rotation and above all it is computationally least intensive [2, 10]. Histogram is
the most commonly used color descriptor, which are obtained by quantizing the color
space, such as RGB, LAB, LUV, HSV (HSL), YCrCb, HMMD, etc. and counting
how many pixels fall in each discrete color. The drawback of the global histogram
representation is the lack of spatial information it retains. To overcome this limitation,

many other variants of color representation, such as color moment [59], color coherence
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vector [60], color sets [12], and color correlogram and autocorrelogram [61]. In MPEG-
7 [62], dominant color, scalable color, group of frame or group of pictures, color
structure and color layout were defined as a color descriptors as part of the standard.
The robustness, effectiveness and efficiency of use of color in image indexing are still

open issues.

Texture:

Although there is no strict definition of the image texture, it is easily perceived
by humans and is believed to be a rich source of visual information. The existing
texture descriptors are classified based on three different approaches as Statistical,
Model-based and Transform-based [64, 65, 66, 68]. Haralick in [64], proposed the
co-occurrence matrix representation based on statistical approach, which can be used
feature to describe spatial relationships between grey-levels in a texture. Many other
researchers followed the same line and further proposed enhanced version [65, 66).
Numerous random field models for texture representation [69, 70] were developed
based on texture model analysis and a review of some of the recent work can be
found in [70]. Transform methods gained its popularity in the late 80’s and early
90’s. Transform methods based texture representation with Gabor [68] and wavelet
transforms [67] are popular now in CBIR. The texture descriptor in MPEG-7 facilitate
browsing and similarity retrieval in image and video databases. There are three
texture descriptors as homogeneous texture, edge histogram, and texture browsing
[63].

Shape:

In many situations, people can recognize an object only by its shape and it is prob-
ably the most important property that is perceived about objects. Generally, there
are two groups of shape descriptors [71]: boundary or contour-based shape descrip-
tors and region based shape descriptors. Boundary representations emphasize the
closed curve that surround the shape. This curve has been described by numerous
models, including chain codes, polygons, circular arcs, splines, explicit and implicit
polynomials, and boundary fourier descriptors. Region based shape descriptor on

the other hand, emphasize the material within the closed boundary or based on the
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entire shape region. Descriptors of this class include moment invariants, Zernike mo-
ments, the morphological descriptors etc [72, 73]. MPEG-7 standard defines three
descriptors for shape with different properties: the region-based shape, the contour-
based shape, and the 3-D shape spectrum descriptors. It has selected curvature scale
space descriptors (CSSD) as contour-based shape descriptors and Zernike moments
descriptors (ZMD) as region-based shape descriptors [62].

Several other types of image feature have been proposed as a basis for CBIR
[2]. Most of these rely on complex transformations of pixel intensities which have no
obvious counterpart in any human description of an image. The most well-researched
technique of this kind uses the wavelet transform to model an image at several different

resolutions [24].

2.2.2 Similarity Matching

In a traditional database implementation, the user ordinarily makes exact queries
and the items matching the query criteria are returned. In CBIR, this kind of exact
queries are not that useful as with general images it is difficult to find appropriate
matching criteria which would pick only the relevant images. Instead of matching,
images are graded using a similarity criterion, resulting in a permutation of all the
images in the database sorted according to the used measure of similarity. There are
three types of search scheme that are commonly supported by similarity matching
schemes [74]: the Range search retrieves all the images within a region of the feature
space specified the user, the Nearest Neighbor search finds the k-nearest neighbors
to a template (e.g., query) and Within-Distance (or a-cut) find all images with a
similarity score better then « with respect to a template, or find all the images at
distance less then d from a template.

The above search schemes usually use a distance metric for similarity matching
between query and database images [74]. The distance function generally takes two
feature vectors as input and outputs a real value as the similarity measurement. In
~most cases, the smaller of the distance value, the more the similarity between each
of the input features. A distance function d(f;,f;), of feature vectors f; # f; #
fi of images I;,I;, and I, which is a metric, must satisfy [75](i) reflexivity, i.e.,
d(f;,f;) = 0, (ii) non-negativity, i.e., d(f;,f;) > 0, (iii) symmetry, ie., d(f;,f;) =
d(f;, £;), and (iv) the triangle inequality, i.e., d(f;, f;)+d(f;, f) > d(£;, f;). Some widely
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used distance measures in CBIR are based on Minkowski-form distance, Quadratic
distance, Histogram intersection, and Mahalanobis distance [2, 6, 76, 77]

However, the similarities between images cannot be quantified in an ideal manner.
The extent to which the images are similar will change when query requirements are
varied. For instance, in the case of two pictures, one of a blue sea with a sunrise
and the other of a green mountain with a sunrise, when the sunrise is considered,
the similarity between these two images should be high, but if the object of interest
is the blue sea, the similarity between these two images should be low. Therefore,
when evaluating a CBIR system, one should remember that the retrieval effectiveness

depends on the types of query requirements that users make.

2.2.3 Feature Indexing

When the number of images in the database is very large there is a need for indexing to
avoid sequential sca(nrﬁng and to support the similarity-based queries. Indexing image
databases is much more complex and difficult problem than indexing in traditional
databases. Image feature vectors usually have high dimensions. For example, some
image feature vectors can have more than 100 dimensions with integrated features
of color, texture, shape, etc. High-dimensional spaces lack many intuitive geometric
properties we are accustomed to in low-dimensional spaces [11]. This is the well-known
curse of dimensionality problem [84, 85]. Creating a generalized high-dimensional
index that can handle hundreds of dimensions is still an unsolved problem to date. In
addition, it may be required to rely on using many features simultaneously in image
retrieval as we present such a simultaneous retrieval approach in Chapter 6.

In general, there are two broad categories of index structures for high-dimensional
spaces. The first approach is to apply a divide-and-conquer strategy. The data or the
feature space is divided into categories (clusters) or subspaces with the intention that
only one or a few of these have to be processed in one given query. Some commonly
used indexing structure in this category are R-tree [86] and its variants [87], SS-tree
[88], agglomerative hierarchical clustering [89], tree-structured vector quantization
(VQ) [90], and SOM [36]. Alternat.ively, we can transform the original feature space
into a new space where the operations needed to process a database item are less
demanding. This usually means reducing the dimensionality of the original feature

space. The mapping from a higher-dimensional to a lower-dimensional space, i.e.
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dimensionality reduction, can be accomplished with linear methods such as principal
component analysis (PCA) [183, 184] or nonlinear methods such as multidimensional
scaling (MDS) [91]. In Chapters 3 and 7, we use PCA-based dimension reduction for

effective and efficient similarity matching.

2.2.4 Query Processing

Another important part of the functionality of a CBIR system is the processing of user
requests. Current research on CBIR is centered on designing efficient query schemes
in order to provide a user with effective mechanisms for image database search. A
study conducted by the QBIC group of IBM [16] has shown that users are likely to
use the simplest searching interface (i.e., click on an image to find similar images)
instead of using more sophisticated user interfaces, as provided in [21, 22].

One of the most popular forms of query in this domain is the “query by example”
(QBE) image, which requires that the user provides a pioﬁotype image to the system
as a reference example. In QBE, the image query is based on an example or refer-
ence image shown either from the database itself or the user may provide the image
externally. The task of the retrieval system is then to return images as similar to the
example image as possible. A closely related query type to using an external exam-
ple is query by sketch, in which the example image is generated by the user on the
fly using a sketching tool included in the retrieval interface [10]. The main problem
with sketching is that users often find it difficult to produce an adequate sketch of
the visual concept they are looking for. In certain restricted domains such as trade-
mark retrieval, query-by-sketch can be a valuable search option. Iconic querying is a
variant of the sketch approach where the user creates an example image by selecting
predefined icons, such as human faces, trees, sky etc. They are selected from a prede-
fined set and combined through Boolean connectives so as to create a visual sentence
according to a visual language. This approach is also usually infeasible in a general
setting, as it requires rather sophisticated object recognition and the queries can only
contain visual concepts supported by the system. Keyword-based search techniques
of text retrieval domain would also be applicable to image searching if annotation of
the contents of the images are available (e.g. commercial image libraries and medical
databases) or they could be automatically produced. In this case, traditional query

by keywords can be used in conjunction with QBE or other querying methods (such
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a multimodal query approach will be presented in Chapter 6).

2.3 Towards Semantic-Based Image Retrieval

While the above functionalities behind the CBIR systems is undoubtedly impressive,
user take-up of such systems has so far been minimal. Users typically do not think
in terms of low-level features, i.e., user queries are typically semantically oriented
and most of the CBIR systems have poor performance for these type of queries. By
semantics we mean how meaning is embodied in the features and what concepts can
infer from the images.

In order to improve the retrieval accuracy and overcome the limitations of CBIR
systems, research focus has been shifted from designing sophisticated low-level feature
extraction algorithms to reducing the semantic gap between the visual features and
the richness of human semantics. Although we have witnessed some new trends in this
research direction during the last several years [13, 15], research into techniques for
semantic retrieval is still in its infancy. Many of the techniques now being applied to
the problem have been adapted from other classical fields, such as object recognition,
machine learning, information retrieval, and human computer interaction. To develop
a complete understanding of image contents at the semantic level for broad domain
images is a formidable task, well beyond the capabilities of current technology. Much
success has been achieved in recognizing a relatively small set of objects or concepts
within specific domains or constraint environment, such as face, finger print, and iris
recognition or detecting people in a scene [13].

However, we can be optimistic with the fact that it may not require a complete
understanding of images as a human being to perform effective image retrieval at
least at level 2 in [13] and levels 5-8 in [27]. Instead, sometimes it only requires
to interpret only major objects and their relationships in images. Similar analogy
can be made in text retrieval domain where majority of the systems are successful
without a complete understanding of the contents in a document. New research also
suggests that instead of giving more reasoning and logic to the system or machine, it

is effective to involve users to interact with the system. As a result, some successful
interactive CBIR systems have emerged [108, 109, 110, 114, 113]. Due to the huge

growth of the web, research also focuses on context instead of content based retrieval
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or a combination of both [117, 120, 123, 125]. By context, it means finding semantics
or meaning of images from the related text associated with images. Unifying texts
with images is the major trend along this direction, which focuses on an integrated
approach to retrieve image data.

In the following sections, we briefly describe some of the new trends and techniques
currently prevailing either in a direct or an indirect way to CBIR and also show their

relationships with our work.

2.3.1 Semantic Classification and Annotation

Classification means grouping of images into semantic meaningful classes. In a
database whose semantic description is reasonably well defined, automatic semantic
classification can greatly enhance the performance of CBIR systems. We can observe
few research prototypes that successfully classify the following images in photographic

and medical domains:

e Natural photographs vs. artificial graphs and textures vs. non-textured images
[24].

¢ Indoor vs. outdoor images and further classified as city (man made) vs. land-

scape (natural objects) [98, 99].

o Medical images of different modalities (e.g., x-ray, CT, MRI, etc.), body parts
(e.g., head, chest, abdomen, etc.), orientations (frontal, sagittal, post anterior,
etc.) and so on [145, 144].

In most cases, to derive high-level semantic classification requires the use of statisti-
cal learning techniques [15]. Supervised learning-based methods such as SVMs (will
be described in Section 3.1 of Chapter 3), Bayesian classifier, and Neural Networks
[92, 99, 97, 100, 93, 103] are often used for image classification at a semantic level.
The above statistical approaches have the advantage of not requiring the construc-
tion of complex and possibly domain-specific models of each type of object to be
recognized, relying totally on statistical associations between image semantics and
quantifiable low-level properties, learnt in most cases from a training set of a few
hundred examples at best. Approaches of classification can be divided as low-level

global and region-specific local features depending on how the features are used in the
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classification tasks. Some approaches mainly used low level global features as their
sole classification scheme to classify image collection at a global level [92, 98]. On the
other hand, few approaches used region-specific local features to classify objects in
individual images instead of classifying the entire collection [100, 24, 126, 96, 102].
These classification-based systems can permit a degree of automatic annotation
by assigning keywords at a global level, such as beach, mountain, city scene, etc. or
at a local level, such as sky, water, etc. for natural photographic images. Automatic
annotation or linguistic indexing of images is essentially important to CBIR, which
will lessen the cumbersome manual annotation by an expert. We will focus more on
this issue in Chapter 3 and Chapter 4 to show that how effectively retrieval can be
performed based on automatic annotation of images both at global and local levels

by utilizing machine learning and information retrieval techniques [206, 207].

2.3.2 Interactive Image Retrieval

The approaches of early CBIR systems were isolated, since there was no real human-
computer interaction, except only when the user provides a set of weights for different
features. Such isolated approach had limitations as a user is an indispensable part of
the CBIR system when compared to any pattern recognition systems. To overcome
the limitations of the isolated approach, majority of the current retrieval systems
have moved to an interactive mechanism that involves users directly as part of the
retrieval process. A natural way of getting user in the retrieval loop is to ask him/her
to provide feedbacks regarding the current output of the system, which is commonly
known as relevance feedback (RF) [104, 108, 109] technique. Though this is an idea
that was originally generated in text retrieval field [104], it performs better in image
domain as it is easier to tell the relevance of an image than that of a document.
Compared to the off-line machine learning techniques, RF is an on-line processing
which tries to learn the user’s intentions on the fly. A typical scenario for RF in
CBIR is as follows [109]: a user presents an image query to the system where upon
the system retrieves a fixed number of images using a default similarity metric. The
user then rates each returned result with respect to how useful the result is for his or
her retrieval task at hand. Ratings may be simply relevant or not relevant or may
have finer gradations of relevancy such as somewhat relevant, not sure and somewhat

wrrelevant. The RF algorithm uses this information to select another set of images to
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Figure 6: Basic Block diagram of an Interactive RF-based Retrieval System

retrieve for the user; whether the new and previous sets are disjoint depends on the
particular system. The goal of a system is to effectively infer which images in the
database are of interest to the user based on this feedback. The user could then rate
these images in the second set in a similar way and the process may iterate indefinitely
in this closed-loop fashion until the user is satisfied with the results. Figure 6 shows a
block diagram of a typical interactive RF-based system based on the above mentioned
processes.

A number of RF based techniques have been proposed, such as query point move-
ment, feature re-weighting, and active learning [108, 109, 110, 111, 112, 113]. A more
detailed survey of these techniques can be found in [109]. The majority of these ap-
proaches estimate the ideal query parameters from the low-level global image features
[108, 110, 111]. However, for high-level concepts or semantics that cannot be suffi-
ciently represented by low-level features, these systems will not return many relevant
results even with a large number of feedback iterations. To address this limitation,
recently some systems incorporate RF on both low-level content and high-level con-
text (keyword) based feature spaces {113, 120, 114] for web image retrieval. Being
motivated by the success of these systems, we present an interactive cross-modal re-
trieval framework in Chapter 6. The proposed retrieval technique is highly adaptive in
nature, since in addition to perform query point movement and feature re-weighting
(e.g., both inter and intra modality weights), it also perform cross-modal multiple

query expansions based on user’s feedback information.
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2.3.3 Multimodal Image Retrieval

Image retrieval based on multi-modal information sources has been recently gaining
popularity due the the huge amount of multi-modal information available on the web
(e.g., images with collateral texts in image captions, headers, titles and other places in
HTML or XML documents) [115, 116, 117, 124, 125, 120, 123]. Retrieval systems of
these kind showed improvement in performances by fusing the evidences from textual
information and visual image contents in a single framework. The results of the past
ImageCLEF tracks [55, 56, 57, 58] also validated this fact that in many cases the
combination of visual and text based image search provides better results than using
the two different approaches individually. In CBIR systems based on the query-by-
example strategy it is also hard to find an initial image to give to the system as an
example to find similar image, which is called as page zero problem [120]. By adding
text to images, the user can type some words and find relevant images to start a
visual search in next iteration.

In general, there are two main combination techniques currently investigated [115]:
(1) The text and image modalities are sequentially used; and (2) The text and image
modalities are simultaneously used, combined either linearly or nonlinearly. In a se-
quential approach, only one modality is used at each iteration for a query. The user
can browse a set of images within a category. When both modalities are used simul-
taneously, a composite query is formed to include both text and an image. During
retrieval, the system combines the similarities computed from the text and images
[119, 124, 119]. The combined similarity is the weighted sum of similarities com-
puted from both modalities. Different systems differ in the computation of similarity
measures and inter-modality weights. There are three general ways to set the inter-
modality weight. (1) The weight may be set manually according to prior knowledge.
For example, the two modalities are given equal weight to linearly combine similari-
ties from textual features (using dot products) and visual features (using Euclidean
distances) in the iFind system [124]. (2) The weight may be learned off-line. For
example, to find the optimal weight set for the multiple modalities, a training phase
is used to learn a group of optimal weights for a selected set of representative queries
in the MMIR system [122]. In the retrieval phase, the individual models for differ-
ent modalities are linearly combined using the weight set of the representative query

which is the most similar to the current user-submitted query. (3) The weight may be
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adjusted on-line based on user’s feedback. For example, relevance feedback (RF) is
used to adjust the intra-modality and inter-modality weights in [125, 124, 119, 121].

Text and images may also be seamlessly integrated in a probabilistic model. Sev-
eral probabilistic learning models used for matching image and text are evaluated in
a paper by Barnard et al. [126]. The models can be used for cross-modal information
retrieval, for retrieval with a composite query, and for automatic image annotation.
In multimodal image retrieval, based on the assumption that semantically related
images may be visually similar and vice versa, semantic networks also can be created
to link keywords with images or regions of images [125]. Semantic networks may be
used to expand a query in various ways: expand a text query using related keywords,
expand a text query using visual content related to the keywords, and expand an
example based image query using text related to the images.

Many systems combine one or more of these above techniques in a single frame-
work. For example, RF is combined with machine learning techniques [127], some
web-based image retrieval systems employed both context features and RF methods
to reduce the semantic gap [120, 113, 114] and we also present such an integrated
interactive multimodal retrieval appraoch in Chapter 6.

In the following section, we aiso provide a brief review of image retrieval techniques
that are prevailing in medical domain due to the special characteristics of images and

significance of this domain in our work.

2.4 Image Retrieval in Medical Domain

The digital imaging revolution in the medical domain over the past three decades has
changed the way present-day physicians diagnose and treat diseases. Hospitals and
medical research centers produce an increasing number of digital images of diverse
modalities everyday [128, 129, 131, 130, 215]. Examples of these modalities are the
following: standard radiography (RX), computer tomography (CT), magnetic res-
onance imaging (MRI), ultrasonography (US), angiography, endoscopy, microscopic
pathology, etc.. These images of various modalities are playing an important role in
detecting the anatomical and functional information about different body parts for
the diagnosis, medical research, and education. Due to the huge growth of the web,
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medical images also are now available in large numbers in online repositories and at-
lases [128, 132]. Modern medical information systems need to handle these valuable
resources effectively and efficiently.

However, characteristics of medical images differ significantly from general photo-
graphic images. Medical images are multi-modal where each modality reveals anatom-
ical and/or functional information of different body parts. Each of the imaging modal-
ity has its own set of requirements, such as file format, size, spatial resolution, di-
mensionality, and image acquisition and production technique. Generally, images
are stored as two-dimensional arrays of pixels that can represent calculated x-ray
attenuation values, sound intensity, electron density, or various properties of radio
waves. The common file format for radiological images is DICOM (Digital Imaging
and Communication in Medicine) [134], which contains some additional information
regarding image modality, acquisition device, and patient identification in its header
along with raw image data. A two-dimensional DICOM image may have a size much
larger than other general image formats, such as JPEG, GIF, TIFF etc. Moreover,
images of some modalities, such as PET, fMRI contain functional information, which
require different kinds of processing. The large image size, high resolution, multi-
modality, data heterogeneity, structural and functional contexts afe the key issues
in medical domain and special attention is required when performing image analysis
and retrieval techniques [128, 129, 131].

2.4.1 Retrieval Techniques

Currently, the utilization of medical images is limited due to the lack of effective
search methods; text-based searches have been the dominating approach for medical
image database management [128, 129]. Many hospitals and radiology departments
nowadays are equipped with Picture Archiving and Communications Systems (PACS)
[133]. In PACS, the images are commonly stored, retrieved and transmitted in the
DICOM format [134]. Such systems have many limitations because the search for
images is carried out only according to the textual attributes of image headers (such
as standardized description of the study, patient, and other technical parameters).
The annotations available are generally very brief in the majority of cases as they
are filled out automatically by the machine. Moreover, in a web-based environment,

medical images are generally stored and accessed in other common formats since they
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Figure 7: Block diagram of a CBIR system as a diagnostic aid

are easy to store and transmit compared to the large size of images in DICOM format.
However, there is an inherent problem with the image formats other than DICOM,
since there is no header information attached to the images and thus it is not possible
to perform a text-based search without any associated annotation information. The
representation and retrieval of clinical images within text-based framework is prob-
lematic as medical image data differs in many ways from text based medical data
[135]. Pathological and anatomical information contained in medical images are do-
main specific and need sophisticated computer vision and image processing algorithm
to extract and retrieve it.

As a result, CBIR systems have emerged in this domain and one of the main
focus of the researchers during the last decade [137, 138, 139, 140, 141, 142, 128].
However, CBIR is more challenging in medical domain than other general-purpose
image domains. The main reason is that, important features in biomedical images
are often local features rather than global features. Generating local features that
can describe fine details of images, is much more complex than global features [135].

The design of a CBIR system will also depend on its application domain. For
example a CBIR for teaching and research need to be designed differently than one is
required for diagnostic purpose. In a diagnostic based retrieval system, visual features
of normal and pathological images are typically separated by only subtle differences
in visual appearance, which may not be captured by traditional features such as color,
texture or shape [128, 131]. Here, a combination of prior modality specific domain

knowledge and image primitive content related to anatomic structure is necessary
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[131, 135]. These may include size measurements such as organ volumes, volumes of
pathological tissues, relative position of anatomical structure or specific rules such
as ABCD rule for detecting melanoma in dermoscopic images [149]. Different image
modalities have significantly different visual properties; hence require different types
of processing [128]. In radiology images (X-ray, CT, MRI, PET) gray-scale and
texture and in microscopic slides and dermoscopic images color and texture features
might play more important role. For example, in CT images of lung, pathology
bearing regions (PBR) can be better described by a small change in texture of the
lung tissues [137]. To extract local features from PBR, segmentation is always a very
important step in medical imaging. However, automatic segmentation algorithms for
detecting PBR’s are not mature enough and manual segmentation is a widely used
option at this moment.

Figure 7 shows a block diagram of a typical CBIR as a diagnostic aid. The im-
ages are generally registered to a common global coordinate system to ensure that
subtle pathologies apparent in the query image are matched to a correct region of a
database image of a similar pathology. So registration can up to some extent solve
the rotation or transformation variance problem in image retrieval. The pathology
bearing region (PBR) is then highlighted with a manual or automatic segmentation
scheme and various features and measurements are extracted or computed from this
region of interest. These features or measurements are mainly robust to slight mis-
alignment and invariant to various imaging artifacts and highlight the indication of
any pathology. Theses features are indexed in the database as an index file along
with the original raw imageé or a pointer is kept to locate the original images stored
somewhere else. When a query image is submitted, it must also be aligned to the
database global coordinate system and the same way segmentation and feature ex-
traction is performed as shown in the bottom level in Figure 7. The features are then
matched in a similarity retrieval subsystem to every image in the database and the
top matching images are shown to the query interface according to their ranks along

with any additional information such as case or lab report related to them.

2.4.2 Application Areas and Projects

Medical image retrieval systems with advanced browsing and searching capabilities

can play an increasingly important role in medical training, research, and diagnosis
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(128, 129]. However, requirements for retrieval in this domain differ based on the
application areas and need special attention due to the image properties. In a clinical
decision-making process or diagnostic purpose, a CBIR system can supply the physi-
cians with cases that offer a similar visual appearance. For instance, in evidence-based
medicine, if a doctor encounters a difficult case and needs some supporting evidence
to make his diagnosis, the CBIR would allow him to consult similar images associ-
ated with a confirmed diagnosis [131]. Medical imaging archives may act in the same
way as data warehouse for database management systems. As important patterns
are mined in a data warehouse to predict future outcomes, physicians can mine the
image repositories for finding similar pattern or images based on the current image
under examination. In research and clinical trials, physicians may want to detect the
changes recorded in a current image based on the previous images generated for the
same patient. This is a very common scenario for detecting the growth of a tumor
in a radiological or dermatological images. For example, brain MRI image databases
used in clinical trials to detect and track the growth of lesions (multiple sclerosis)
automatically [136]. Medical retrieval systems also can be an effective tool for web-
based biomedical education [129]. Students can browse large image repositories by
their visual content, lecturers can find important or interesting cases based on visual
similarity to show relevant diagnostic and potential problems.

During the last decade, several image retrieval prototypes have been implemented
in the medical domain [137, 138, 139, 140, 141, 142, 143, 128]. For instance, the
ASSERT system [137] is designed for high resolution computed tomography (HRCT)
images of the lung, where a rich set of textural features and attributes that measure
the perceptual properties of the anatomy are derived from the pathology-bearing
regions (PBR). The WebMIRS * system [138] is an ongoing research project. The
project aims at the retrieval of cervical spinal X-ray images based on automated
image segmentation, image feature extraction, and organization along with associated
textual data. I-Browse [139] is another prototype, aimed at supporting the intelligent
retrieval and browsing of histological images of the gastrointestinal tract. In IGDS
system [140], a classification based approach is performed to detect different kind

of blood cells in cytopathology images based on the properties of cell nucleus. The

majority of these current prototypes or projects concentrate mainly on a specific

4http://archive.nlm.nih.gov/proj/webmirs/
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imaging modality [128]. The main limitations of these systems is the lack of accurate
and semantically valid automatic segmentation of pathology bearing region (PBR)
or region of interest (ROI). Most of them are currently relying on manual or semi-
automatic segmentation methods.

To date, only a few research projects has as their objective to create CBIR sys-
tems for heterogeneous image collections. For example, the IRMA (Image Retrieval
in Medical Applications)® system [141] is an important project that can handle re-
trieval from a large set of radiological images obtained from hospitals based on various
textural features. The medGIFT 6 project [142] is based on the open source image
retrieval engine GNU Image Finding Tool (GIFT). It aims to retrieve diverse medi-
cal images where a very high-dimensional feature space of various low-level features
is used as visual terms analogous to the use of keywords in a text-based retrieval
approach. In other general purpose medical CBIR systems, such as in [?C [143] or
in COBRA [133], the low-level visual. features are extracted either from an entire
images or from segmented image regions. However, using only low-level features di-
rectly without any semantic interpretation has very limited applicability for these
approaches. Many other CBIR systems in medical domain are currently available
and a brief introduction of each of the systems are available in [128]. In this research,
we propose and develop a classification-driven image retrieval framework for hetero-
geneous medical image collection by exploiting category-specific information in two
different ways (Chapter 3) as well as develop a CBIR system for a specific modality
(e.g., dermoscopic images) as a diagnostic aid (Chapter 7) by exploiting the domain

specific knowledge and the image characteristic.

Shttp://phobos.imib.rwth-aachen.de/irma/
Shttp://www.dim.hcuge.ch/medgift/
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Chapter 3

A Global Concept-Based Image

Retrieval Framework

In this chapter, we present a learning-based classification-driven image retrieval frame-
work to bridge the semantic gap by transforming low-level feature spaces to high-level
generic or global concept-based feature spaces. The concepts are inferred from en-
tire images instead of individual object based semantics and used for both image
representation and adaptive similarity matching for effective retrieval in a semantic
level [205, 206, 212, 213, 214]. Current CBIR systems can be distinguished as either
global or region-specific in nature based on their feature representation and employed
similarity matching functions [2, 5]. Therefore, the similarity comparison between a
query and target images in CBIR is performed either globally based on visual features
from entire images or locally based on features derived from automatically segmented
image regions. As we mentioned earlier in Chapter 1, images with high feature sim-
ilarities might be different from a query image in terms of the semantics at a global
context or semantics as perceived by users. The main reason is that both global
and local features fail to capture enough semantic informaticn due to their limited
descriptive power. Although there is a strong correlation between segmented regions
and real world objects, the accurate automatic segmentation for object detection is
still an unsolved problem in computer vision.

There exist some image domains (generally narrow domains) where images can
be organized with prior semantic groupings in a generic way that can depict the

semantics of images as a whole instead of individual object-based semantics in images.
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For example, in a heterogeneous medical image collection for teaching and training
applications, images are generally organized at different levels of abstraction with
imaging modalities, body regions, orientations, biological system, and so on [145].
A collection of natural photographic images or consumer photos can be classified as
indoor and outdoor at the very top level and further they can be classified as natural
scenery (e.g., mountain, lake, etc.) and man-made objects (e.g., city, road, etc.) for
outdoor images and it can go further deeper levels [98, 99].

To enable effective search in such semantically organized collections, it might be
advantageous for a retrieval system to be able to recognize the current image class
prior to any kinds of post-processing or similarity matching [144, 145]. A successful
categorization of images would greatly enhance the performance of CBIR systems by
filtering out irrelevant images and thereby reducing the search space. For example,
for a query like “Find posteroanterior (PA) chest X-rays with an enlarged heart” in
a medical collection, images at first can be pre-filtered with automatic categorization
according to modality (e.g., X-ray), body part (e.g., chest), and orientation (e.g., PA).
The latter search could be performed on the pre-filtered set to find the enlarged heart
as a distinct visual property. The automatic classification will also allow the labeling
or annotation of unknown images up to certain axes. For example, a categor}; could
denote a code corresponding to an imaging modality, a body part, a direction, and
a biological system, in order to organize images in a general way without limiting
them to a specific modality, such as the IRMA code [145] in medical domain. Based
on image categorization and subsequent annotation, semantical retrieval can be per-
formed by applying techniques analogous to commonly used ones in CBIR domain.
This simple yet relatively effective solution has not been investigated adequately in
current CBIR systems. Many approaches have been explored recently to classify
image collections into multiple semantic categories in general photographic and med-
ical domains [98, 92, 93, 145, 99, 13, 15]. However, these approaches did not relate
directly the usefulness of classification information towards semantic-based image re-
trieval. For example, images are classified as indoor/outdoor and further classified
as city (man made)/landscape (natural scenery) in general photographic domains
[98, 99, 92] without any direct relation to image retrieval. An automatic soft image
annotation approach is investigated recently in [93] by using Bayes Point Machines

(BPMs)-One against the others ensemble. Only, the approach in [93] showed some
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promising direction towards semantic-based retrieval by performing keyword-based
search on annotated images at a global level. In medical domain, the automatic cat-
egorization of radiological images is examined in [145] by utilizing a combination of
low-level global texture features with low-resolution scaled images and a K-nearest-
neighbors (KNN) classifier. In [132], the performances of two medical image catego-
rization architectures with and without a learning scheme are evaluated on images
based on modality, body part, and orientations. These approaches demonstrated
promising results for medical image classification at a global level. We will extend
the above approaches further for semantical image representation, feature level fu-
sion, and adaptive similarity matching by exploiting category-specific information of
a collection.

The aim of our retrieval framework is to reach some important global or generic
semantic concepts that are inferred from entire images by utilizing low-level image
features at different levels of abstraction. In this framework, support vector machines
(SVMs) [165], a popular supervised learning technique is utilized for semantic mod-
eling of images at the global concept level. Instead of hard classifying an image to
only a single category in a mutually exclusive way, we perform a soft classification
approach based on probabilistic outputs of the classifier. In this approach, various
low-level global, semi-global and low-resolution scale-specific image features are ex-
tracted to represent different aspects of images. The SVMs are utilized to associate
these low-level features with their high-level global semantic categories. The utiliza-
tion of the probabilistic outputs of multi-class SVMs and the classifier combination
rules derived from Bayes’s theory [173] are explored for representation of images in
global concept-based feature spaces with a successive semantic level of information
abstraction. In addition, to perform retrieval effectively in low-dimensional feature
spaces without transforming them to the concept spaces, we exploit the category-
specific feature distribution information in an adaptive similarity matching function
[205]. In this approach, a classifier is trained based on low-dimensional image fea-
tures to predict the global categories of unknown query and database images on-line.
Based on the on-line prediction, pre-computed category specific first and second order
statistical parameters are utilized in a similarity matching function on the assump-
tion that distributions are multivariate Gaussian. The proposed image representation

and similarity matching schemes have proved to be effective compared to commonly
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used low-level image features and L-norm or geometric similarity measures in CBIR
domain, as demonstrated experimentally in Chapter 8. In the following sections, the
classification technique based on multi-class SVMs is presented at first and then we

will describe the proposed image representation and similarity matching approaches.

3.1 Multi-class SVMs

Recently, SVMs have become a standard tool for supervised learning-based classifi-
cation and the subject of intense research in both theory and application [165, 167,
168, 166]. In supervised learning, a semantic concept is defined at first by a sufficient
number of training samples. A classifier creates a function from the training data,
where instances in the training set contain category or class specific labels along with
their feature descriptors [174, 173]. The task of the supervised learner or classifier
is to predict the label of a newly encountered unknown data after having seen only
a small number of training examples. To achieve this, the learner has to generalize
from the presented data to unseen situations in a reasonable way. Hence, the success
of a classifier is highly dependent on its generalization ability [173]. The empirical
success or good generalization ability of SVMs has already been proved to detect and
analyze complex patterns in data, such as in text categorization [169], hand-written
character recognition [171], face recognition [170], general photographic and medical
image classification [132, 92], and so on.

Briefly, SVMs constructs a decision surface between the samples of two classes,
maximizing the margin between them differing from the other classifiers [165, 167].
The basic training for SVMs involves finding a function which optimizes a bound
on the generalization capability, i.e., performance on unseen data. We are given N
observations {xi,...X;,...,Xy} that are vectors in space x; € R?¢ with associated
labels y; € (+1,—1)". The objective is to train a mapping x — y = f,(z) and
to find the vectors « of parameter that balances empirical risk and generalization
error. The set of observations or training vectors are linearly separable if there exists
a hyperplane (wf,b) € R%*! where w' € R¢ is its normal and b € R is its canonical
distance to the origin, for which the positive examples lie on one side and the negative
examples on the other. Provided that all of the observations are linearly separable,

the goal is then to find the parameters w and b for the optimal separating hyperplane
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Figure 8: Maximal margin classifier (separable case) .

(OSH) to maximize the geometric margin ﬁ between the hyper planes as shown in
Figure 8. The OSH is found by minimizing the L, norm of w by solving the following
constrained minimization problem [166]:
min 1,
—whw
w,b 2 (1)
subject to, y; (Wix;+b) —1>0, Vi.

Using Lagrangian multipliers, the primal form of the objective function is:

L(a,w,b) = %wtw — ai(y; (W'x; +b) - 1) )

subject to,a; >0, Vi.

The function L(a,w, b) is minimized with respect to w, b and maximized with respect
to a. A local minimum of L(«,w,b) is found when its underlying gradient vanishes
with respect to w and b and can be specified using only the parameter o. Now, the
dual form of constraint optimization problem is changed to a constraint quadratic
problem. Again, when solving this problem, training data for which the coefficients
a; are different from zero values are called support vectors (e.g., circles with two rings
in Figure 8) and are the closest data elements to the OSH. The general form of the

binary linear classification function is

Fx) = wix +b ®

40



Figure 9: Maximal margin classifier (non-separable case).

In the case when the training set is not linearly separable, slack variables &; are defined
as the amount by which each x; violates the constraint y; (wix; +b) > 1. Using the
slack variables as shown in Figure 9, the constraints in (1) are relaxed, if necessary,
and the new constrained minimization problem becomes:
min 1 N
t
—w'w+C ;
whe VVTOLE
subject to, yi(w'x; +b) >1—§

Here C is a penalty term related to misclassification errors.

In SVM training, the global framework for the non-linear case consists in mapping
the training data into a high dimensional space where linear separability will be
possible. Here training vectors x; are mapped into a high dimensional Euclidean
space by the non linear mapping function ¢ : ®¢ — R”*, where h > d or h could even
be infinite. Both the optimization problem and its solution can be represented by the

inner product. Hence,
Xi - %; = $(x:) d(x;) = K(xi,x;5) (5)

where the symmetric function K is referred to as a kernel under Mercer’s condition
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[167]. Under non-linear case, the SVM classification function is given by [165]:

f(x) = sign (Z oy K (%, %) + b) (6)

Thus the membership of a test element x is given by the sign of f(x). Hence, input
x is classified as 1, if f(x) > 0, and as -1 otherwise.

The SVMs were originally designed for binary classification problems. However,
when dealing with several classes, as in general medical image classification, one need
an appropriate multi-class method. As two-class or binary classification problems
are much easier to solve, a number of methods have been proposed for its extension
to multi-class problems [177, 93]. They essentially separate L mutually exclusive
classes by solving many two-class problems and combining their predictions in various
ways. For example, One against one or pairwise coupling (PWC) method [176, 175]
constructs binary SVMs between all possible pairs of classes. Hence, this method"
uses L * (L — 1)/2 binary classifiers for L number of classes, each of which provides
a partial decision for classifying a data point. During the testing of a feature x, each
of the L+ (L —1)/2 classifiers votes for one class. The winning class is the one with
the largest number of accumulated votes. On the other hand, One against the others
method compares a given class with all the others put together. It basically constructs
L hyperplanes where each hyperplane separates one class from the other classes. In
this way, it generates L decision functions and an observation x is mapped to a class
with the largest decision function. In [177], it was shown that the One against one
or PWC method is more suitable for practical use than the other methods, such as
One against the others. Hence, we use the One against one multi-class classification

method by combining all pairwise comparisons of binary SVMs [175].

3.2 Low-Level Image Feature Representation

The success of an image classification system depends on the underlying image rep-
resentation, usually in the form of a feature vector. In this framework, our aim
is to reach global semantic concepts which can be inferred from the entire image in-

stead of individual object based semantics. Therefore, low-level features are extracted
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from entire images at a global or semi-global levels. In recent years, numerous low-
level feature representation schemes based on color, texture, and shape are proposed
[2, 10, 11]. We characterize images by color layout, edge distribution, color and
texture moments, and average grey-level features to generate the feature vectors as
initial inputs to the classifiers. These features are selected so that they can represent
images from different aspects according to their compatibility with the global seman-
tic concepts. Following sections briefly describes each of the feature extraction and

representation approaches.

3.2.1 Color Layout Descriptor (CLD)

To represent the spatial structure of images, we utilize the Color Layout Descriptor
(CLD) of MPEG-7 [62]. CLD is a compact and resolution invariant representation
of spatial distribution of colors in an image [63]. It is especially recommended for
applications that need to be fast and are based on spatial-structure of color. It is
obtained by applying the discrete cosine transformation (DCT) on the 2-D array of
local representative colors in the YCbCr color space where Y is the luma component
and Cb and Cr are the blue and red chroma components. Each channel is represented
by 8 bits and each of the 3 channels is averaged separately for the 8 x 8 image blocks.
The scalable representation of CLD is allowed in the standard meaning that one can
select the number of coeflicients to use from each channel’s DCT output. For each
channel, 3, 6, 10, 15, 21, 28 or 64 coefficients can be used. The coefficients are taken
from 8 x 8 arrays in zigzag scan order. Hence, for different collections, the coeflicient

fCLD

can be set differently to form a feature vector , whose dimension depends on the

total number of coefficients.

3.2.2 Edge Histogram Descriptor (EHD)

In this work, spatial distribution of edges are utilized for image classification by using
MPEG-7 Edge Histogram Descriptor (EHD) [62]. The EHD represents local edge
distribution in an image by dividing the image into 4 x 4 sub-images and generating
a histogram from the edges present in each of these sub-images. Edge detection is
performed inside each of the sub-images. Edges in the image are categorized into five

types, namely vertical, horizontal, 45° diagonal, 135° diagonal and non-directional
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Figure 11: Region generation from sub-images

edges. The filters for edge detection are shown in Fig. 10. After applying the filters,
if maximum result obtained by the filters exceeds a threshold, an edge with the type of
the filter is reported to be found and the corresponding histogram bin is incremented.
The histogram, constructed by the result of this process, is then normalized according
to the size of the image. Finally, for 16 sub-images, a histogram with 16 x 5 = 80
bins or an 80-dimensional feature vector is obtained as f®P. Both the EHD and
CLD are selected by MPEG-T7 because of their success and reliability as a result of
some experiments. Using these features as classifier’s inputs give us the chance to
gain experience about a newly emerged standard that will probably constitute the

core of future multimedia applications.

3.2.3 Moment-Based Feature

A simple grid-based approach is used to divide the images into five overlapping sub-
images [211]. These sub-images are obtained by first dividing the entire image space
into 16 non overlapping sub-images. From there, we cluster four connected sub-images
to generate five different clusters of overlapping sub-images as shown in Figure 11.

The first (mean), second (standard deviation) and third (skewness) central moments
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of each color channel are extracted in HSV (Hue, Saturation, and Value) color space
from each cluster. We also extract texture features from the grey level co-occurrence
matrix (GLCM) [64] of each sub-image. A GLCM is defined as a sample of the joint
probability density of the gray levels of two pixels separated by a given displacement
d and angle 0. Typically, the information stored in a GLCM is sparse and it is often
useful to consider a number of GLCM’s, one for each relative position of interest.
In order to obtain efficient descriptors, the information contained in GLCM is tra-
ditionally condensed in a few statistical features. Four GLCM’s for four different
orientations (horizontal 0°,vertical 90°, and two diagonals 45° and 135°) are obtained
and normalized to the entries [0,1] by dividing each entry by total number of pixels.
Haralick [64] has proposed a number of useful texture features that can be computed
from the GLCM. Higher order features, such as energy, entropy, contrast, homogene-
ity and maximum probability are measured based on averaging features in GLCMs
to form a 5-dimensional feature vector. Finally, color and texture feature vectors are
normalized and combined to form a joint feature vector of 14-dimensions (9 for color
and 5 for texture) for each sub-image and a 70-dimensional moment based feature

vector fMomet for an entire image.

3.2.4 Average Grey Level Feature

Images in a collection may vary in size for different categories or within the same
category and may undergo translations. Resizing them into a thumbnail of a fixed
size can reduce the translational error and some of the noise due to the artifacts
present in the images, specially for images in medical domain. This approach is
extensively used in face or fingerprint recognition and has proven to be effective. We
use a similar approach for feature extraction from low-resolution scaled images where
each image is converted to a gray-level image (one channel only) and scaled down
to the size 64 x 64 regardless of the original aspect ratio. Next, the down-scaled
image is partitioned further with a 16 x 16 grid to form small blocks of (4 x 4) pixels.
The average gray value of each block is measured and concatenated to form a 256-
dimensional feature vector, Y. An example of this approach is shown in Figure 12
where the left image is the original one, the middle image is the down-scaled version
(64 x 64 pixels), and the right image shows the average gray values of each block

(4 x 4 pixels). By measuring the average gray value .of each block we can partially
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Figure 12: Feature extraction from a low-resolution image

cope with global or local image deformations and can add robustness with respect to

translations and intensity changes.

3.3 Image Representation in Global Concept Space

This section presents our approach of converting the low-level feature vectors de-
scribed above to an intermediate level global concept-based feature vectors based on
probabilistic outputs of the multi-class SVMs and classifier combination strategies
that are derived from Bayes’s theory [173]. For training of the SVMs, the initial
inputs are the feature vectors (e.g., EHD, CLD, Moment, and Avg. Grey) of sample
images in which each vector is associated with a single category label selected out
of all categories. Let, {C1,---,Ck, -+ ,Cum} is a set of M global categories where
each Cjy characterizes the representative global semantic concept of a collection. In
the testing stage, each image without a label is classified against the M categories.
The output of the classification produces a ranking of the M category labels with
probability or confidence scores. The confidence scores represent the weight of the
category (concept) labels in the overall description of an image. The probability or
confidence scores of the categories form an M-dimensional global concept label vector

as follows

pj' = ﬁ"'PZ;'“P"A}-]T (7)

for a test image I; with feature vector ;" where m € F' and :
F = {EHD, CLD, Moment, Grey}. Here, Pi,1 < k < M, denotes the posterior
probability that an image I; belongs to category Cj in terms of input feature vector

f". Finally, an image I; belongs to a category C),l € {1,---, M} is determined by
! = arg max[p’] (8)
k
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that is the label of the category with the maximum probability score. In this context,

given a feature vector f", the goal is to estimate

Although the voting procedure for multi-class classification based on One against
one ensemble [176, 175] requires just pairwise decisions, it predicts only a class label.
To generate the class prediction as probabilistic output, we use a probability esti-
mation approach as described in [175]. Following the setting of the one-against-one
approach in [175], the pairwise class probabilities r; are estimated as an approxima-

tion of uy as .

1+ eAf—%-—E (10)

ru~=Ply=k|ly=Fkorlff') =

where A and B are the parameters estimated by minimizing the negative log-likelihood
function, and f are the decision values of the training data based on v-fold cross-
validation (CV) to form an unbiased training set. Finally, P, is obtained from all
these r;’s by solving the following optimization problem based on the second ap-
proach in [175]:

M M
1 . )
xgg%n 3 E E (rupr — rklpl)z subject to E e = 1,p: > 0,VEk. (11)
k=1 L1£k k=1

where p7* is the M-dimensional global concept vector as presented in (7), for image
I; based on feature vector f]*. The detailed implementation of the solution of (11) is

given in [175].

3.3.1 Concept Feature Fusion

The feature descriptors, as described in Section 3.2, are in diversified forms and of-
ten complementary in nature. Since, the features represent image data from different
viewpoints; the simultaneous use of different features might lead to a better classifica-
tion result. A traditional method is to concatenate different feature vectors together
into a single composite feature vector. However, it is rather unwise to concatenate
them together since the dimension of a composite feature vector becomes much higher

than any of individual feature vectors. Hence, multiple classifiers are needed to deal
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Figure 13: Process diagram of concept feature fusion with classifier combination.

with different features resulting in a general problem of combining those classifiers
to yield improved performance. The combination of ensembles of classifiers has been
studied intensively and evaluated on various image classification data sets involving
the classification of digits, faces, photographs, etc. [178, 179, 180, 181]. In general,
a classifier combination is defined as the instances of the classifiers with different
structures trained on the distinct feature spaces [178, 179]. It has been realized that
combination approaches can be more robust and more accurate than the systems
using a single classifier alone.

In this framework, we consider combination strategies of the SVMs with different
low-level features as inputs, based on five fundamental classifier combination rules
derived from Bayes’s theory [178]. These combination rules, namely product, sum,
max, min, and median, and the relations among them have been theoretically ana-
lyzed in depth in [178]. These rules are simple to use but require that the classifiers
output posterior probabilities of classification. This is exactly the kind of output the
SVMs classifiers produce as described in Section 3.3.

Each classifier is trained with a particular input feature m € F and
F = {EHD, CLD, Moment, Grey} from the training set and measures the posterior
probability p(Cy|f*) of a test image I; belonging to class C,k € {1, -+, M} using
feature vector fi". In these combination rules, a priori probabilities P(Cy) are as-
sumed to be equal. The decision rules for the product, sum, max, min and median
are made by using the following formulas in terms of the a posterior: probabilities

yielded by the respective classifiers for image I; as
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[ = arg}rcnax [pk,]; 7 € {prod, sum, max, min, med} (12)

where for the product rule

o™ = P (cy) T cul) )

meFr

Similarly, for the sum, max, min and median rules

™ = (1= [FDP(C) + Y p(CAlE) .
meF
Pl = (1= [FI)P(Cy) + max p(Cr[f") "
s = PUFID(CL) + min (Gl (16)
and 1
P = T > p(CrlEm) (17)
meF

In the product rule, it is assumed that the representations used are conditionally
statistically independent. In addition to the conditional independence assumption
of the product rule, the sum rule assumes that the probability distribution will not
deviate significantly from the a priori probabilities [178]. Classifier combination based
on these two rules often performs better then the other rules, such as min, max and
median [178, 178, 217]. The probabilistic outputs of SVMs with different test feature
descriptors m are combined with the above rules based on equations (13)-(17) and

finally represent a test image I; as an M-dimensional global concept vector as

P =[pi, ok, Py, (18)

Here, the element p},1 < k < M denotes the probability or membership score ac-
cording to which an image I; belongs to class Cy in terms of the combination rule
r € {prod, sum, max, min, med}. Figure 13 shows the process diagram of the classifier
combination and concept vector generation process.

The above concept vectors are computed off-line for database images (e.g., test

images) based on the prediction of the SVMs and application of the combination rules.
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Figure 14: Block diagram of the image representation and retrieval in global concept
spaces.

Similarly, the global concept vector of a query image I, can be computed on-line as
P, =p}, - ph, - Ph)” (19)

Based on the global concept-based image representation, we can now compare a query
and database image for rank-based retrieval. One common measure of similarity is
the cosine of the angle between the query and document vectors in IR [44]. In
many cases, the direction or angle of the vectors are a more reliable indication of the
semantic similarities of the objects than the Euclidean distance between the objects
in the term-document space. The proposed feature representation scheme closely
resembles the document representation where a category or global concept label may
be considered as analogous to a keyword in a document. Hence, we adopt the cosine
similarity measure between feature vectors of query image I, and database image I;

for a particular combination rule r as follows:

My r
Zk:l pkq * pkj

) =
VL) /A (0, )2

Sy (Ig, I; (20)

This approach of semantic image categorization and representation may not attain

high accuracy due the present state of the computer vision and pattern recognition
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technologies. However, the reliability of the global concept vector representations
based on probability or membership scores is significantly better then the low-level
image feature representations due to the exploitation of domain knowledge with su-
pervised learning. The block diagram of image representation and similarity matching
in the proposed feature spaces is shown in Figure 14 from a query image perspec-
tive. The features for database images are calculated off-line and stored in a logical
database as feature indices for later on-line comparison with a query image feature.
In the following sections, we investigate an image retrieval approach from a differ-
ent perspective where the image categorization information is utilized indirectly in a
similarity matching function on a low-dimensional feature space. The major advan-
tage of this approach is that due to the adaptive nature of the proposed similarity
measure, it can effectively exploit category specific distribution information as well

as captures correlations or variations between feature attributes in on-line matching.

3.4 Adaptive Statistical Similarity-Based Retrieval

In general, the majority of CBIR systems are similarity-based, where similarity be-
tween query and target images in a database is measured by some form of distance
metrics in feature spaces [1]. These systems generally conduct the similarity matching
on a high-dimensional feature space without any semantic interpretation or without
paying enough attention about the underlying distribution of feature spaces [78, 79].
For example, the Euclidean distance is the most commonly used metric in CBIR whose
effectiveness depends on the assumption of a sphere shape distribution of similar im-
ages around the query image point in feature space [80]. However, this assumption
is not always true in reality. In addition, high-dimensional feature vectors not only
increase the computational complexity in similarity matching but also increase the
logical database size. Similarity measures based on empirical estimates of the distri-
butions of features have also been proposed in CBIR [79]. However, the comparison
is most often point-wise or statistics of the first order (i.e., mean vector) of the distri-
bution is considered only with limited success [82]. To overcome the limitation and
consider both first and second order statistics, several statistical distance measures
are proposed based on multivariate Gaussian assumption of underlying probabilistic

distribution of feature space [82, 78]. This assumption is a reasonable approximation

51



for many image databases as distribution of feature vectors are sums of many random
variables, where central limit theorem can be applied [172].

Statistical distance measure, defined as the distances between two probability dis-
tributions captures correlations or variations between attributes of the feature vec-
tors [172, 173]. In this scheme, query image I, and target image I, in the database
are assumed to be in different classes and their respective probability density func-
tions (pdf) are pq(f,) and pi(f;). When these densities are multivariate normal,
they can be approximated by mean vector g and covariance matrix ¥ as pq(f;) =
N1 2q) &  pilfs) = N(f; py, ) where,

N(f;p, %) = m exp~ 3 (F-H 7 (E-p) (21)
here, f € ®¢ and | - | is matrix determinant [172].

A popular measure of similarity between two Gaussian distributions is the Bhat-
tacharyya distance [81], which is equivalent to an upper bound of the optimal Bayesian
classification error probability. The Bhattacharyya distance between query image I,

~and target image I, in the database is given by [81, 172]:

(Eq+34)
1 I 3

1 (B + 3]
DBhattacha a(I 7It) = —(“‘ 2 )T 'i‘q__-—jl (IJ' — M ) + = A== (22)
Iyy q q t 2 q t 9 /___‘qulztl

8

where p, and p, are the mean vectors, and ¥, and X; are the covariance matrices
of the feature distributions of I, and I, respectively. Equation (22) is composed of
two terms, the first one being the distance between mean vectors of images, while the
second term gives the class separability due to the difference between class covariance
matrices. When all classes have the same covariance matrices, the Bhattacharyya
distance reduces to the Mahalanobis distance, which is also a widely used similarity
measure in CBIR [82].

DMahaIanobis(Iqa It) = (I"l‘q - p’t)Tz_l(y‘q - Mt) (23)

However, if inclusion of both query and target covariance matrices is useful, Bhat-
tacharyya distance will outperformm Mahalanobis distance. In general, the visual fea-

tures such as texture or color are often defined at the output of a window operator or
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pixel-wise computations [78, 82]. From the ensemble of outputs, statistical informa-
tion about the variation of the feature in an image are computed by a mean vector
and a covariance matrix and can be utilized in the distance measures as described in
equations (22) and (23).

For many frequently used visual features in CBIR, often their category specific
distributions are also available in a semantically organized image database. In this
case, feature descriptors may vary substantially from one category to another. Here,
an image can be best characterized with its feature vector and by exploiting the
information of feature distribution of its semantic category. Another observation is
that most of the energy of a multivariate feature is often contained in a low dimen-
sional subspace. Often the feature vectors belong to a subspace and the complexity
of the retrieval process can be decreased if the effective dimension of the feature is
taken into account [82]. To consider these properties into account, we propose an
adaptive similarity matching scheme between features based on the utilization of the
Bhattacharyya distance in (22). In this approach, training samples in the form of
low-dimensional feature vectors of known categories are used to estimate the statis-
tical parameters and train the SVMs. We assume that, features in each category
follow a multivariate Gaussian distfibution and based on this assumption, images are
characterized with the first and second order statistical parameters. These category
specific parameters are utilized by a statistical similarity matching function based on
the on-line category prediction of SVMs. This work is motivated by the fact that the
statistical similarity measures have not been investigated so far by exploiting cate-
gory specific distribution information in semantically organized collections. Similarity
measure based on the parameter estimation of category specific distribution would
perform better if the right categories of query and database images are predicted in
real time. Hence, we utilize on-line predictions of the SVMs, so that the proposed
similarity measure function can be adjusted with category specific parameters for

query and database images.

3.4.1 Feature Dimension Reduction

A high dimensional combined feature vector based on the color, edge and texture
features would increase the computational complexity of the similarity matching as

well as increase the logical database size. Often the feature vectors belong to a

53



subspace where most of the energy of a multivariate feature is contained. Hence,
we perform a dimension reduction by projecting a combined vector in a low-level
feature space to a low-dimensional subspace based on principal component analysis
(PCA) [183, 184]. PCA reduces the dimensionality of the feature to a basis set of
prototypes that best describes the images. Each image feature vector is described by
its projection on the basis set and similarity matching is performed on the projected
feature vector of query and target images in the database. The basic idea of PCA is
to find n linearly transformed components so that they explain the maximum amount
of variances in the input data and mathematical steps used to describe the method
is as follows.

Given a set of N feature vectors of training samples images, let the vector of
image I; in the training set be represented as f; € R4i = (1---N) in a combined

feature space. The composite feature vector f; is formed by simple concatenation of

CLD ¢EHD Moment Grey
fi 3 fz ’ fi fi

each individual feature vectors , and where d is the sum of
individual feature vector dimensions. The mean vector (p) and covariance matrix

(X) of the training samples are estimated as

N N

u*—:%zfi & EZ%Z(fi_H)(fi*N)T | (24)

=1 =1

Let v; and A; be the eigenvectors and the eigenvalues of covariance matrix 33, then

‘they satisfy the following:
N

A=Y 0T (6 - ) (25)

i=1
Here, Zf;l A; accounts for the total variance of the original feature vectors set.

The PCA method tries to approximate the original feature space using an n dimen-
sional feature vector, that is using n largest eigenvalues account for a large percentage
of variance, where typically n << min(d, N). These n eigenvectors span a subspace,
where S = [sy,8s, - ,8,] is the d X n-dimensional matrix that contains orthogo-
nal basis vectors of the feature space in its columns. The n x d transformation ST

transforms the original feature vector from R¢ — R" ones. That is

ST(f;—p)=f,i=1---N (26)
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where f; € R and kth component of the f, vector is called the k-th principal com-
ponent (PC) of the original feature vector f;. So, the feature vector in the original
R? space for query and database images can be projected on to the R" space via the
transformation of ST [183]. After generating the reduced dimensional feature vectors
for both training and database images, they will be utilized in consequent parameter

estimation and similarity matching functions as described in the following sections.

3.4.2 Parameter Estimation and Similarity Matching

Computing the statistical distance measures between two multivariate Gaussian (nor-
mal) distributions requires first (mean) and second order (covariance matrix) statis-
tical parameters of the distributions as depicted in (22). Let us consider, we have M
different semantic categories in the database as {Cy,---,C;, -+ ,Cun}, where features
in each C; assumed to have a multivariate normal distribution. The true values of
the parameters in each category are not known in advance and must be estimated
from the set of training samples [172]. To estimate the parameters of each category
specific distribution as well as to train the multi-class SVMs, a set of IV images with
M categories is selected as a training set. Now, for each category Cy,7 € {1,--- , M},
the mean (p¢,) and covariance matrix (3¢;) are estimated by following the maximum
likelihood estimation (MLE) [173] as

Mo, = N Z £ ; (27)
2 ]=1
1 o, .
So. = w1 2 s = mo)(fig — po)” (28)
1] ]=1

where f,] is a sample vector in PCA subspace of image I; from category C;, N; is
the number of training samples from category C; and N = (Ny + N + ... 4+ Ny).
These parameters are estimated off-line during the training of the SVMs and stored
in a logical database. During similarity matching between a query and database
image, the corresponding parameters will be accessed and utilized based on the on-
line predictioﬁs of the SVMs for the query and target image categories. The detail
steps required for the statistical similarity-based retrieval are given in Algorithm 1.

Hence, the main difference between the Bhattacharyya distance measure in (22) as
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Algorithm 1 Adaptive Statistical Similarity Matching

1: (Initialize): Consider, there are M different semantic categories in the database
as {Cy, -+ ,C;,--- ,Cy}. Extract the feature vector f of database images in a
PCA-based subspace.

2: (Off-line): Select a set of N training feature vectors of M categories with associ-
ated category label to train the multi-class SVMs and calculate the parameters
pe, and Yg, for i € {1,---, M} using equation (27) and (28) and store these in
a logical database.

3: (On-line): For on-line similarity matching of query image I, and database image
I;, get the category prediction of SVMs as C;(q) and C;(j), where C;(q), Ci(j) €
{C1, - ,Cu}.

4: Lookup the corresponding category-specific covariance matrices X¢,(,) and X¢,(;)
from the logical database.

5. Utilize the covariance matrices in statistical distance measures as D(I,, [;) =

1 (@) E0;6)

3 ; (Zc; )+ ¢, () 3 o 2
s(fg — )7 [“‘L)g"‘(“])‘] (f—f;)+31n N ]

6: Convert the distance measure function into a similarity measures as S(I,, I;) =
exp PUaLi)/o  where o2 is the distance variance computed separately over the
training image set.

7: Finally return the images based on the similarity matching values in descending
order.

commonly used for similarity matching of images in CBIR, [82, 23] and the proposed
one is the estimation of the statistical parameters and the dynamic nature of the
matching function where parameters are adjusted on-line based on predictions of the
SVMs. Instead of estimating parameters for each image and store them in a logical
database, our approach requires only to estimate parameters from each category.
The number of image categories are generally far less then number of images in a
database. Thus, our approach decreases the logical database size by saving spaces.
The adaptive nature of the overall similarity matching technique demonstrates its
effectiveness empirically for category-specific searches, which will be shown in the

experimental Section 8.3 of Chapter 8.

3.4.3 Query Parameters Updating by Relevance Feedback

A user might have a different interpretation of the semantic description in his/her
mind or the prediction of the classifier might go wrong. Hence, it may be advantageous

to have the option to interact with the system to refine the search process, which
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is commonly known as relevance feedback (RF) [108, 109]. It is an iterative and
supervised learning process used to improve the performance of information retrieval
systems [104]. A number of RF techniques have been proposed in CBIR [108, 110,
112, 111, 120] as described in Section 2.3.2 of Chapter 2. We now present a RF-based
approach in this section where user selected positive or relevant images are used for
calculating new query point and updating the statistical parameters of query image
in each iteration.

Let, Np(; be the number of positive feedbacks from a user which are selected from
top retrieved k£ images compared to a query image I,. f’j(t) € R" is a feature vector
in PCA subspace that represents j-th image for j € {1,---, Np} at a particular

feedback iteration ¢. The new query vector at the next iteration is estimated as
Np)

. 1 .
foei1) = 7 > E (29)
j=1

as the mean vector of positive images. The covariance matrix of the positive feature

vectors is estimated as

Np()
. 1 . . . .
By = Npg —1 ; (i — Ea)) (Bioy — £0)” (30)

Based on the above parameters, we use two different approaches of statistical
similarity matching. In the first approach, for the updated query vector fq(H—l)v the
query image category Ci(q(t+1)),i € {1,--- , M} is determined based on the on-line
prediction of the SVMs at feedback iteration (t+1). After finding the query category,
corresponding pre-determined category-specific covariance matrix ¢, (qt41)) is used

at iteration ¢ + 1 for the statistical distance measure between I, and I; as follows:

l (So; 1) B0 ()
2

1. ovr [ Beaeny +Za@)] ™ 2, 1
Drr1(Ig, 1) = 2 (fgern—£)" [ n l (fge+1)—fj)+5 In
8 2 T2 VB Ze)]
_ (31)

In the second approach of similarity matching, instead of using the pre-determined
covariance matrix from a logical database, we utilize the one estimated by the positive

feedback images as f)q(t+1) by using (30). Hence, the adjusted distance matching

57



Feature

v Extraction
{Color, Texture, Edge)

PCA
{Low-dimensional Vector)

Figure 15: Block diagram of the statistical similarity-based retrieval approach

function is:
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(32)

Based on the above distance based similarity matching, system will present top k&

14 - . 1
Drra(1y; I;) = g(fq(t+1)—fj)T (foe+n—f)+5 In

images to the user and he/she may continue to provide feedback till the system con-
verges, i.e., no changes are noticed. The MindReader [111] retrieval system formu-
lates a minimization problem on the parameter estimating process where the distance
function is not necessarily aligned with the coordinate axis and allows for correlations
between feature attributes. It was proved in [111] that, when using positive feedback
(scores) and the Mahalanobis distance, the optimal query point is a weighted average
based on available set of good results. In some way, our approach is related to the
approach in [111] to update the parameters related to the query image based on user’s
positive feedback information. Though our RF method differs in the way in which
query parameters are used in distance measures based on the equations (31) and (32).
Figure 15 shows the block diagram of the proposed image retrieval approach based
on adaptive statistical similarity matching and query parameters updating by user’s

positive feedback information from a query image perspective.
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3.5 Summary

In this chapter, a novel image retrieval framework is presented based on global catego-
rization of images in semantically organized databases. This is a first step to narrow
the semantic gap in CBIR. The main drawback of the proposed framework is that it
is suitable only when the categorization information at a global level is available in a
particular image collection. This framework is not extensible when there is little or no
domain knowledge available, such as images in the Web or any other broad domains.
Another fact is that in majority case, queries are based on more complex concepts
than the ones inferred from entire images at a global level. In following chapters, we

will present image retrieval techniques by considering this fact.
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Chapter 4

Image Representation in Local
Visual and Semantic Concept

Spaces

In this chapter, we propose a local concept-based image retrieval framework for gen-
eral purpose (broad domain) to domain-specific (narrow domain) image collections
[209]. In this framework, local visual and semantic concepts are modeled by employ-
ing both supervised classification and unsupervised clustering techniques [174, 173].
Based on the concept modeling, database images are segmented and encoded with
visual and semantic concept labels. We propose effective feature extraction and repre-
sentation methods that are robust against classification and quantization errors based
on a soft image encoding scheme and effective to capture spatial ordering information
of concepts in encoded images. Before investigating the proposed techniques, the

central questions that are raised:
e What are the local “visual” and “semantic” concepts?
¢ How can we generate or model the concepts from images?

By the term “local visual concept”, we refer to perceptually distinguishable color
and/or texture patches that are identified locally in image regions. Although things
which are similar perceptually may not be similar semantically. For example, a pre-
dominant red color patch with smooth texture can describe either a red apple or a

red car in images. Based on the color and texture feature, both apple and car are
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visually similar, semantically we know they are quite different. This is one of the
major limitations in CBIR as we mentioned earlier in Chapter 2. The local visual
concepts can be modeled by applying any statistical clustering techniques [174] to
generate a codebook of concept prototypes. When images are represented with such
visual concept prototypes based on their frequency of occurrences, it has proved to
be effective and efficient in retrieval compared to low-level features calculated from
pixel-level statistics [28, 209].
On the other hand, by the term “local semantic concept”, we refer to semantically
distinguishable local patches/regions in individual images. For example, in an image
collection of natural scenery, specific local patches such as, water, sand, grass, sky,
snow, and so on can be identified with different semantic interpretations (i.e., what
is the image about). However, being similar semantically does not always conform
perceptual or visual similarity. For example, water and sky can have different sheds of
color and texture patterns depending on the location and other contexts. Sea water
might be perceptually different from river or lake water and color of the sky might
be different at different times of the day. Although as a human being, we can easily
distinguish such semantic concepts with many variations in different perspective due
to our long accumulated knowledge, it is always difficult for a machine to do the
same. Based on a supervised learning mechanism, a system might be able to model
these concepts with limited variabilities and can detect them in unknown images in
a closely similar way we identify objects based on our previous learning experiences.
Some recent approaches also investigate in this line to manually or automatically
genérate local concepts from image regions and finally represent or annotate images
with the concept labels [28, 30, 31, 96, 97, 126]. In most cases, to model the high-level
concepts require the use of formal tools such as supervised or unsupervised machine
learning techniques. For example, a framework is proposed in [28] by applying Gen-
eralized Lloyd Algorithm (GLA) [34] and Learning Vector Quantization (LVQ) [193]
based clustering techniques to generate codebooks of different visual concepts (termed
“as “keyblock”). In this framework, images are encoded with the codebook indices and
finally they are represented as a generalization of vector space and n-gram models
of IR [44]. The work in [31] manually identifies local semantic concepts (termed as

“visual keyword”) as a set of pixel blocks where each set containing similar semantic

concepts, such as face, crowd, building, and so on. Here, each image is indexed as a
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spatial tessellation of the semantic concept distributions to form a core signature of its
visual content for image retrieval. Supervised learning based classification approaches
are investigated in [96, 97, 94], where non-overlapping image regions are classified into
local semantic concept categories. Many other statistical modeling based image clas-
sification and annotation approaches at local image level are investigated recently in
CBIR. Eakins in {13] and Ying in [15] provide an overview of some of the techniques.

We observe some limitations in majority of these approaches to different extents.
One of the main limitations is that during the image encoding process, a region is
classified or matched to a single concept (object) only and rest of the concepts are
overlooked or ignored [28, 30, 96, 94, 126, 127, 102]. Hence, the correspondence of
an image region to a local concept is in general one-to-one due to the nature of hard
classification or clustering schemes utilized by these approaches. In reality, there
are usually several concepts with almost as closely match as the one detected for a
particular image region. Considering only a single concept and ignoring others for
image encoding and annotation processes might be problematic. For example, with
a one-to-one matching approach, an encoded image can be represented as a set of
labels where each region is associated with one concept label. However, this kind of
representation is very sensitive to quantization or classification errors. Two regions
will be considered totally different if they match to different concepts or objects even
though they might be very similar or correlated to each other. Another drawback is
that images are annotated and represented without considering the relative ordering
of the associated concept labels in encoded images [30, 96]. However, the quantization
errors and spatial relations of the local visual or semantic concepts are not negligible,
which need to be exploited further for effective image annotation and representation
purposes.

Motivated by this, we propose a local concept-based image representation frame-
work to overcome the above limitations [209, 207]. In this framework, a visual con-
cept vocabulary (codebook) is automatically constructed by utilizing Self-Organizing
Map (SOM) [32] based clustering or vector quantization (VQ) and statistical mod-
els are built for local semantic concepts using probabilistic multi-class SVMs [165]
(described in Chapter 3). The SOM has a topology preserving capability, which is
a useful property lacking in basic clustering algorithms and the SVM has good gen-

eralization ability compared to other classifiers. These properties are helpful for the
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concept modeling and consequent feature generation processes as will be described in

the following sections. The main functionalities of this framework are described as

e Selection of a training image set that closely represents the corresponding image

collection.

e Segmentation of sample images from the training set to automatically and/or

manually generate a set of image blocks as local regions.

e Generation of a codebook of local visual concept prototypes by unsupervised
learning of SOM and modeling of local semantic concepts by supervised learning
of multi-class SVMs based on input feature vectors of the image regions in the

training set.

e Segmentation of database images into regions and encoding of individual images
by classifying their corresponding region vectors with both soft (e.g., fuzzy and

probabilistic) and hard or crisp concept labeling approaches.

e Represent images in local visual and semantic concept-based feature spaces
by exploiting the soft annotation scheme, local neighborhood structure of the
codebook, and relative ordering information of the concept labels in encoded

images.

The block diagram of the retrieval framework is shown in Figure 16. As can
be seen from the top portion of the figure, to model the local visual and semantic
concepts, i.e., to generate codebook and SVM model file, learning of SOM and SVMs
are conducted by using input region vectors of a set of training images. Based on the
model generation, several feature vectors are constructed to represent images where
the details of vector generation processes will be described in the following sections.
The training and feature extraction of database images are conducted off-line, whereas
the feature vectors generation of a query image (which is not present in a collection)

and similarity matching are conducted on-line as shown in Figure 16.
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Figure 16: Block diagram of the concept-based image representation framework.

4.1 Local Visual Concept-Based Image Represen-

tation

This section presents our visual concept modeling and consequent image encoding
and feature generation processes. The major issue of this approach is to construct
an optimal codebook or visual concept vocabulary that will be representative enough
of all possible visual concepts in a particular image collection. In this context, a

codebook is defined as follows

Definition 1 A codebook C = {c1,--- ,¢j,--- ,cn} is a set of prototype visual con-
cepts and N 1is its size. Each prototype visual concept c; is associated with a label j

and a vector ¢; = [cj1 -~z cja)t of dimension d in an Euclidean space.

To generate the codebook based on SOM clustering, a reasonable training set of
images needs to be selected either manually or in a random manner. Let D be an
image database and a subset of this database D= {h,---,1;---,L,} C D forms a
training image set of m images where /; is an image in the training set. Generally,

for a narrow domain, we need to group images into different categories and pick few
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images from each category to make a reasonable training set. When a collection is
very large in size without any category information (e.g., broad domain), the way
of choosing a training set is to randomly pick a suitable percentage of the database
images and use them as the training images.

After forming the training set, the next step is to segment the training images
into regions and extract low-level image features from each region as a representative
of initial visual concept vectors. Since, automatic segmentation schemes usually offer
only an unreliable object description and regions are encoded with soft concept labels
in our framework to make it robust against week segmentation, we use a fixed parti-
tioning scheme. Let an image [; € D be partitioned into a (r x r) grid of [ blocks as
segmented regions to generate region vectors as {Xi;, - ,Xy;, " ,X;,}, where each
Xk, € R¢ is a vector of d-dimension in low-level feature space. In this work, to rep-
resent each region as a feature vector x;, the mean and standard deviation of each
channel in the HSV (Hue, Saturation, and Value) color space as 6-dimensional color
feature vector and second order moments (such as, energy, maximum probability,
entropy, contrast, and inverse difference moment) as 5-dimensional texture feature
vector are extracted from a grey level co-occurrence matrix (GLCM) [64]. Finally the
color and texture vectors are combined as a single region vector after re-scaling the
feature attributes with zero mean and unit variance [80].

There are in total m number of training images. So, finally the partition scheme
will generate n = (I x m) region vectors for all the training images and collectively
we can refer to them as a set of vectors X = {xi,---,,X;," - X,}, where each x; =
[z, @iy -+ 2i,]T is a vector of d-dimension. Since, features from blocks rather than
individual pixels are used as vectors, some information on the spatial relationship
among the neighboring pixels in the images are already retained. In general, there
might be several similar regions in terms of image features in an individual image as
well as in different images in the same training set. Since our visual system should
tolerate some small errors, if the difference between two regions is below a certain
preset threshold, they are deemed as the same. Hence, a subset of these representative
vectors needs to be selected as a codebook of visual concept prototype by applying a
clustering or VQ algorithm {174, 192].
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4.1.1 Codebook Generation by SOM

SOM is a competitive learning-based clustering algorithm, which maps the high di-
mensional input vectors to a low-dimensional (usually two-dimensional) regular lattice
or grid of map units and preserve the topological relationships between the vectors
[32, 33]. In other words, similar input vectors are mapped to neighboring regions.
Most clustering algorithms are based on iterative square error partitioning techniques
[174, 192]. Square-error partitioning algorithms attempt to obtain the partition which
minimizes the within-cluster scatter or maximizes the between-cluster scatter [174].
For example, the GLA [34], an iterative square error clustering algorithm, is used to
generate codebooks in [28, 30]. On the other hand, even without exploiting its topol-
ogy preserving properties, SOM has been shown to yield codebooks for image com-
pression that are better than those generated by GLA [195]. It has been successfully
applied to various problem domains such as data visualization, text retrieval, speech
recognition, image compression, segmentation and so on [41, 42, 38, 195, 39, 197, 197).
Due to the topology preserving property, SOM is also successfully utilized in CBIR for
indexing structure and browsing purposes [35, 36, 37]. In this framework, we also ex-
ploit this property from other perspectives as for feature enhancement process based
on a local neighborhood structure and for an automatic query expansion process (will
be presented in Chapter 5).

The basic structure of the SOM consists of two layers [32}: an input layer and a
competitive output layer as a map. The input layer consists of a set of input node
vectors X = {xy,---X;, - -X,}, where each x; = [z;, z;,---x;,]T is a vector of d-
dimension. The output map consists of a set of N units organized into either a one
or two-dimensional lattice structure, where each unit m; is associated with a weight
vector w; € R?. The architecture of a SOM based on an input layer of n vectors and
two-dimensional output map with N = 25(5x5) units is shown in Figure 17. The map
attempts to represent all the available observations in X with optimal accuracy by
using the map units as a restricted set of models. During the training phase, the set
of input vectors is presented to the map multiple times and the weight vectors stored
in the map units are modified to match the distribution and topological ordering of
the feature vector space. The first step of the learning process is to initialize the

weight vectors of the output map. Then, for each input vector x; € £¢, the distances
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Figure 17: Structure of the SOM

between the x; and weight vectors of all map units are calculated as
i = well* = min |lx; — w,||*, forj=1,2--,N (33)
J

where ||.||* is a distance measure in Euclidean norm. The unit, which has the smallest
distance is called the best-matching unit (BMU) or winning node. The next step is

to update the weight vectors associated with the BMU, m, as
w;(t + 1) = w;(t) + a(t).0c; () (xi(t) — w;(t)) (34)

Here, t is the current iteration, w;(t) and x;(t) are the weight vector and target input
vector at iteration ¢, whereas 6(t) and «(t) are the smooth neighborhood function and
time-dependent learning rate. The a(t) = exp~® +b, is shrunk in each training cycle
(iteration),where a and b are the parameters which control the decay. The neighboring

function 6.;(t) is usually a time-decreasing Gaussian function of the coordinate or
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position vector p, and p; of these two map units c and j, given by

Ip; — pell’
O = eXP(——]—zgz“‘!—) (35)

where o is the maximum neighborhood range. The major steps of codebook genera-

tion process are summarized in Algorithm 2.

Algorithm 2 Codebook Generation Process by SOM Clustering

: Set the size of the two-dimensional output map as N.
for j=1,2,--- ,Ndo
Initialize each weight vector w; of the map units with random values.
end for
repeat
Present the set X of input block vectors to the map in batch mode.
for each x; € X do
Traverse each unit in the map and find the BMU, m, with associated weight
vector w, based on equation (33).
9: Update the weight vectors in the neighborhood of m, by pulling them closer
to the input vector based on equation (34).
10:  end for
11: until a(t) and 0.;(t) are less then a threshold or the w;’s are not changed

Due to the process of self-organization, the initially chosen w; gradually attain
new values such that the output space acquires appropriate topological ordering.
After the learning phase, the map can be acted as a codebook, where the map units
represent the prototype visual concepts and their associated weight vectors represent
the prototype concept vectors. Hence, a weight vector w; of unit m; resembles a
visual concept vector c¢; of concept c; in the codebook C based on Definition 1. In
general, the visual concept prototypes in the resulting codebook represent the most

general structures extracted from all the training input vectors.

4.1.2 Image Encoding and Feature Representation

The codebook can be effectively utilized as a simple image compression as well as
image representation scheme [197, 197, 28]. To encode an image with visual concept
prototype labels or indices of the codebook, it is also decomposed into an even gird-
based (r x r) partition, where similar low-level color and texture features are extracted

from each region as is performed for training images. Let an image I; be partitioned
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into [ = (r x r) blocks or regions to generate vectors: {Xi,, -+ ,Xx;, " ,xij}; where
each xx; € R?. For each vector x4, in I; , the codebook is searched to find the best

match concept prototype (e.g., BMU in the map) ¢, 1 <k < N as
. 2
cx = arg min oy ||xx, — | (36)

where k denotes the label of ¢, and ||.||> denotes the Euclidean distance metric between
the region vectors of I; and the concept prototype vectors.

After this encoding process, each image is represented as a two-dimensional grid
of concept prototype labels where image blocks are linked to the corresponding best
matching concept prototypes in the codebook. Figure 18 shows the codebook gener-
ation and image encoding processes. The codebook generation process is performed
in the top portion of the figure and the bottom portion shows how an example image
is encoded with the indices (e.g., prototype concept labels) of the codebook. Based
on this encoding scheme, an image I; can be represented as a histogram or feature

vector

f;/—concept — [flj f2j . fij PN fN,-]T (37)
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where each dimension of the vector (e.g., bin of the histogram) corresponds to a
prototype concept label of the codebook. The element f;; represents the normalized
frequency of occurrences of visual concept label ¢ of ¢; appearing in encoded I;. This
feature representation captures only a coarse distribution of the visual concepts that
is analogous to the distribution of quantized color in a global color histogram. As we
already mentioned, image representation based on the above hard encoding scheme
(e.g., to find only the best concept prototype for each region) is very sensitive to
quantization error and lacks any spatial relationships information. Two regions in
an encoded image will be considered totally different if their corresponding labels
fall into two different bins even though they might be very similar or correlated to
each other. In the following subsections, we propose image encoding and consequent

feature representation schemes, which overcome these limitations.

4.1.3 Fuzzy Visual Concept-Based Feature Representation

This section presents a feature representation scheme based on the observation that
there are usually several concept prototypes in the codebook with almost as good
match as the best matching one for a particular image region. This scheme considers
this fact by spreading each region’s membership values through a global fuzzy mem-
bership function to all the concept prototypes in the codebook during the encoding
and consequent feature extraction process.

The vector or histogram f¥—°"¢Pt in (37) is viewed as a visual concept distribution
from the probability viewpoint. Given a codebook of size N, each element f; of the

concept vector f;V-CO“cep i

for an image I; is calculated as f;; = l;/I. It is the probability
of a region in the image encoded with label i of visual concept ¢; € C, and [; is the
total number of regions that map to ¢;. According to the total probability theory

[172, 190}, fi, can be defined as follows
! L
fi; = Z Py, P = 7 z P, (38)
k=1 k=1 )

where Py is the probability of a region selected from image I; being the k;th region,
which is 1/I, and P, is the conditional probability of the selected k;th region in I;

maps to the concept prototype ¢;. In the context of visual concept vector fV—concept,
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the value of Py, is 1 if the k;th region is mapped to the ¢; concept prototype or 0
otherwise. Due to the crisp membership value, this feature representation is sensitive
to quantization errors as already mentioned.

In such a case, fuzzy set-theoretic techniques can be very useful to solve un-
certainty problem in classification tasks [186, 187, 188]. This technique assigns an
observation (input vector) to more than one class with different degrees instead of
a definite class by crisp classification. In traditional two-state classifiers, an input
vector x either belongs or does not belong to a given class A; thus, the characteristic
function is expressed as

1 ifxeA
pa(x) =
0 otherwise.
In a fuzzy context, the input vector x, belonging to the universe X, may be assigned
a characteristic function value or grade of membership value p4(x) (0 < pa(x) < 1)
which represents its degree of membership in the fuzzy set A [186].

Many methods could be adapted to generate membership from input observations.
These include the histogram method, transformation of probability distributions to
possibility distributions, and methods based on clustering [186, 187]. For example,
fuzzy-c-means (FCM) [187] is a popular clustering method, which embeds the genera-
tion of fuzzy membership function while clustering. Few schemes have been proposed
to generate fuzzy membership functions using SOM [199, 200], where the main idea
is to augment the input feature vector with the class labeling information. However,
without any class label information (as in our case), it might be difficult to generate
such fuzzy membership functions. Due to this, we perform a two-step procedure,
where in the first step we generate the proper clusters (e.g., concept prototypes in
codebook) based on the SOM clustering and next the fuzzy membership values are

generated according to the clusters (concept prototypes) in the first step as follows
[188]:

Definition 2 The membership degree px; of a region vector X, € REE=1,2,---,1,

of the k;th region in I; to concept prototype vectors ¢;,i=1,2,--- | N is:




The higher the distance of an input vector from a concept prototype vector, the lower
is its membership value to that concept prototype based on (39). It is to be noted
that when the distance is zero, the membership value is one (maximum) and when
the distance is infinite, the membership value is zero (minimum). The values of j,
lies in the interval [0, 1]. The fuzziness exponent n—f’ji controls the extent or spread of
membership shared among the concept prototypes.

In this approach, during the image encoding process, the fuzzy membership values
of each region to all concept prototypes are computed for an image I; based on (39),
instead of finding the best matching concept only. Based on the fuzzy membership
values of each region in I}, the fuzzy visual concept vector (FVCV) is represented as

fFVEV = [fy,,-+, fiyr o fv,]T, where

l l
R 1 .
fij = E uikj Pk='l— E /J"ikj; forl:1727“" ,N (40)
k=1 k=1

The proposed vector essentially modifies probability as follows. Instead of using the
probability P;;, we consider each of the regions in an image being related to all the
visual concept prototypes in the codebook via fuzzy-set membership function such
that the degree of association of the k;-th region in I; to the ¢; concept prototype
is determined by distributing the membership degree of the ji;;; to the correspond-
ing index of the vector. In contrast to the simple visual concept vector (V-concept),
the proposed vector representation (FVCV) considers not only the similarity of dif-
ferent region vectors from different concept prototypes but also the dissimilarity of
those region vectors mapped to the same concept prototype in the codebook. A
similar approach to represent color histogram in a fuzzy space is proposed in [190].
However, our approach is computationally efficient due the less number of image re-
gions/blocks and smaller codebook sizes as generated when compared to the number
of image pixels and their colors. This representation is also in a higher level due to
the exploitation of both color and texture features. In addition, there would be only
few concepts prototypes as similar to the best matching one for a particular image
regions. So, instead of considering the membership values based on global fuzzy mem-
bership function in (39), we can effectively estimate the values by considering only
those few closely matched concepts by exploiting the topology preserving property

of the codebook (e.g., output map). To address this issue, we present an efficient
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method in the following section to compute membership values based on an adaptive

local membership function and consequent feature representation.

4.1.4 Fuzzy Visual Local Concept Vector

Since, the codebook is generated by SOM where the trained map represents the
codebook and map units represents the visual concept prototypes, we can exploit the
topology preserving property to generate a local membership function. Based on the
topology preserving structure of the SOM, the distance between two units on the map
indicates the degree of similarity of the input vectors represented by the units. The
basic idea is based on this fact that if two similar blocks map to two different concept
prototypes in a codebook then the distance between the corresponding prototype
vectors should be small and should be located close to each other in the codebook.
In a similar aspect, we can say that there are usually several related visual concept
prototypes in the codebook that are situated in a local neighborhood of the best
matching one for a particular block. The local topological neighborhood in a two-

dimensional codebook is defined as follows:

Definition 3 Fach visual concept prototype c;j(z,y) € C has a local y-neighborhood

LN,(z,y) in a two-dimensional grid of codebook as depicted in Figure 19. We have
LN,(2,y) = {ck(u, v)| max{fu — z}, [v — y|} = 7} (41)

Here, the coordinate (x,y) and (u,v) denote the row and column wise position of any
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two concept prototypes c; and ci respectively, where T,u € {1,---,M} and y,v €
{1,--- , M} for a codebook of size N = (M x M units). The value of v can be from

1 up to a maximum of M — 1.

For example, Figure 19 shows the local neighborhood structure of a concept pro-
totype in a two-dimensional codebook based on the Definition 3. Here, each concept
prototype is visualized as a circle on the grid and the black circle in the middle de-
notes a particular concept prototype c;(z,y). Here, the concept prototype cx(u,v)
is three (e.g., LNN3) neighborhood level apart from ¢;(z,y) based on the Definition
3 as the maximum distance between them (coordinate wise) either in horizontal or
vertical direction is three. Basically, all the gray circles within the square are posi-
tioned in LN neighborhood, the gray and yellow circles are positioned up to LNy and
gray, yellow and blue circles in combine are positioned up to LNz neighborhoods of
¢; as shown in the Figure 19. As the value of y increases, the number of neighboring
) (foncept prototypes increases for c;.

Based on the above neighborhood structure, we calculate the local fuzzy mem-
bership values in a set of visual concept prototypes .S,, which contains the best
matching visual concept prototype c,, for a particular input vector and all other
closely related visual concepts prototypes located up to LN.,-neighborhoods of cy,.
Let us consider, there are n, concept prototypes located only in LN,, so the total
number of concept prototypes of S, or the size be |S,| = (1 +ny + -+ +n,), e.g,
[Sil=9=(1+mn)=(1+8) and |Sy| =25 = (1 +ny +n2) = (1+ 8+ 16). For
example, in Figure 19 n, counts all the grey color circles in LN; and ny counts all
the yellow color circles in LN;.

Now, the membership degree u;, of a k;th region vector x; € RLE=1,2,---,1

in I; to a concept prototype ¢; is calculated as following

2

1 m—1

“ “2
Xp . —Cq
k:J 1

Hik; = le”ll ) I (42)
" [feny —en |

where ¢;,c, € S,. Hence, the fuzzy membership values are calculated locally in a

neighborhood of a best matching concept prototype for a particular input vector x;

during the image encoding process instead of considering the entire codebook. Due

to the nature of the membership value computation from local neighborhood, the
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Figure 20: Vector Generation based on Local Neighborhood

proposed feature vector is termed here as fuzzy visual local concept vector (FVLCV).
Summarizing, the steps involved in the feature vector computation are given in Al-

gorithm 3.

Figure 20 shows a sample example as a process diagram of the above feature vector
(histogram) generation approach. The left side of the figure shows a partitioned image
with a particular block r; mapped to the best matching concept ¢, € C. Based on S,
(e.g., up to LN, neighborhood of ¢,,), the elements in the corresponding indices (such
as labels m, j, k for concepts cm, ¢; and ci) in the feature vector are incremented with
fuzzy membership values by performing the above steps of the Algorithm 3. Due to
the space limitation, we illustrate only three connections in the example instead of
all twenty-five in |Ss].

In order to calculate the global membership degree of a region vector, we need
to compute the distances between the vector to all the visual concept prototype
vectors with extra computation to determine fuzzy membership values. The distance
computation is also essential to find the best matching concept prototype for local
neighborhood determination or in case of image en.coding with a single concept index
for a frequency based image representation approach (e.g., V-concept). However,
the local neighborhood based approach is comparatively efficient to the global one

as only few computations are required to determine the membership values due to
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Algorithm 3 Feature Generation based on Local Fuzzy Membership values

1: Initialize the fuzzy wisual local concept wvector of image I; as
fJFVLCV = [flj fgj s fij v fNj]T with each fij = 0.
2: Decompose I; into a (r x r) grid of ! blocks and generate the vectors as
{x1;," ,Xx;,-*+ ,X1;}, where each x; € Re.
for k=1,2,---,ldo
Find the best matching concept prototype c,, € C for vector xy;
Consider up to local neighborhood LN,
for each concept prototype c; € S, do
Calculate the membership values 1, based equation (42)
Increase the value of the corresponding element f;; at an index position ¢ of
vector £VEOV as fiit = pa,.
9: end for
10: end for
11: for¢i=1,2,--- ,N do
12:  Normalize each element of the vector as fi; = fi;/I.
13: end for
14: Finally, obtain the fJFVLCV of image I;.

Figure 21: Intra class perceptual variability of concepts sky and water

the presence of much less number of visual concept prototypes in a neighborhood

compared to considering all them in a codebook.

4.1.5 Probabilistic Local Semantic Concept-Based Image Rep-

resentation

For some narrow domains, such as natural scenery or geographic image collections,
various local semantic concepts at the region level are instantly available. For ex-
ample, we can easily identify specific local patches, such as, water, sand, grass, sky,
cloud, soil, snow, etc. that are semantically distinguishable from each other in these

collections. Figure 21 shows several patches of sky (top row) and water (bottom row)
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that are cropped from a fixed partition-based image segmentation. Although the
images here depict only two different concepts (e.g., sky and water), we can notice
large variability in appearances in terms of color and texture features. This makes
them distinguishable from local visual concepts and we called them as local semantic
concepts in the beginning of this chapter.

In Section 4.1, we showed how images can be represented in visual concept-based
feature spaces by concept modeling in the from of a codebook generation. Due to
the unsupervised nature of the codebook generation process by SOM clustering [32],
we could not incorporate enough domain specific knowledge of the collection in the
feature representation schemes. Although for broad domain, an unsupervised learning
is the only viable option available. When the domain knowledge is available, it
would be effective to exploit the knowledge by utilizing any supervised learning-based
techniques. A supervised learner can create a model to capture the variabilities of
local semantic concepts with sufficient training samples. In this context, an instance
(e.g., local patch) in the training set can be represented by a feature vector along with
its local category specific labels. In this section, we present a local semantic concept-
based feature representation scheme based on semantic modeling of local concepts
by using the probabilistic multi-class SVMs [175] (described in Chaptér 3). The
proposed image representation scheme is closely related to the fuzzy visual concept
-based image representation described in Section 4.1.3. The main difference is that
instead of using fuzzy membership values, here the probabilistic membership values
are utilized for image representation as a natural outcome of the class predictions of
SVMs. This approach is effective due to the soft semantic labeling of image regions
with category membership scores that reduces the effect of classification error in
feature representation.

The main step of this approach is the training of multi-class SVMs for model
generation of local semantic concepts. For this, we need to construct a training set of
local semantic patches from individual image regions. Since, there exist large differ-
ences in visual appearances of patches from the same local concept category as shown
in Figure 21, an effective training is essential to model such concepts. We consider a
semi-automatic approach for the semantic patch generation. In this approach, train-
ing images are at first equally fixed partitioned into a (r X r) grid of non-overlapping

regions as described previously in the case of visual concept modeling. Due to the
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fixed partitioning scheme, some regions or patches would contain multiple local con-
cepts. Hence, instead of considering all the patches from fixed partitioning, a subset
of these are manually selected based on the criteria that the area of each region should
correspond to a particular concept by at least 70-80%. Although this will create a
reasonable training set, problem will arise in later encoding or annotation process.
What will happen when a region corresponds to two concepts where each of them
covers half of the region? In case of a hard classification scheme, the region will be
classified to either one of the concepts and totally ignore the other one. This will
lead to quantization error in image encoding due to the obvious reason. However,
instead of such a hard classification, it would be more effective if we can generate
probabilistic output so that each region can be associated with the concept categories
based on probability or confidence or membership scores. In that way, we will be
able to generate probabilistic semantic concept vectors in lieu of fuzzy visual concept
vectors as described in section 4.1.3. Only difference is that instead of using the
membership values generated by global fuzzy function in case of fuzzy visual concept
based representation, here the membership values are used from probabilistic outputs
of the multi-class SVMs. '

In order to perform the multi-class SVMs training based on the local concept
categories, a set of L labels are assigned as SC = {scy,sca,- -, scp}, where each
s¢; € SC characterizes a local concept category. A training set of local patches
are annotated manually with the above concept labels in a mutually exclusive way.
Hence, each patch is labeled with only one local concept category. The patches
are represented as a combined vector of color and texture moment-based features as
described in Section 4.1. For the SVMs training, the initial input to the system is the
feature vector set of the patches along with their manually assigned corresponding
concept labels. The details of the local concept extraction process and training of
SVMs will be described in experimental Section 8.4 of Chapter 8 for a particular
image collection.

To encode database images with local semantic concept labels, each image I; is
also partitioned into a (r x r) grid of I vectors as {xi,,--- ,X,,--- , Xy, }, where each
Xk; € R? is a d-dimensional combined color and texture feature vector in an Euclidean

space. For each xi;, the local concept category probabilities are determined by the
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Figure 22: Representation of Images with Concept Occurrences [96].
prediction of the multi-class SVMs [175] as
pikap(y=i|xkj)7i:17“',L (43)

for a L number of local semantic concept categories. The probability or confidence

scores of all categories now form a L-dimensional vector for a region z,; of I; as

pk‘j — [plk,- p2k]_ .o 'pikj . .kaj]T (44)

Here each py,,1 <1 < L, denotes the probability that a region x; belongs to category

sc;. Based on the probability scores, the category label of zy; is determined by

m = arg max|py, | (45)
1<m<L
that is the label of the category sc,, with the maximum probability score. This way,
the entire image is thus encoded as a two-dimensional indices linked to the local
semantic concept labels assigned for each region. Based on this encoding, an image
I; can be represented as a vector in a local semantic concept space as

fjsfconcept = < hlj?"' ,hi]_7 .. 'hL~ > (46)

7

where each element h;; corresponds to the normalized frequency of a concept label

s¢i,1 <4 < L in image I;. Similar to f¥-nPt the fS-concert capn be viewed as a
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Figure 23: Image encoding with probabilistic membership scores

local semantic concept distribution from the probability viewpoint. Each element h;,
of the concept vector ff —eoncept s calculated as hi; = n;/l. It is the probability of
regions in the image belonging to the sc;-th concept label, and n; is the total number

of regions that are categorized to sc; € SC. Each h; is defined as follows:

:\.[)...\

! 1
hi =Y Pu,Pe =7 P, (47)
k=1 k=1
where P is the probability of a region selected from image I; being the k;th region,
which is 1/1, and Py, is the conditional probability of the selected k;-th region be-
longing to the concept category of label sc;. In the context of fs‘c"”ce’;‘, the value of
Pyy; is 1 if the k;th region is categorized to sc;-th concept category or 0 otherwise.
This representation is closely related to the £¥Y—"¢Pt in Section 4.1 and concept
occurrence vector (COV) in [96], where only the frequency of occurrences of the
semantic concepts is considered. For example, Figure 22 shows an example image from
[96], where it presents the percentages of different concepts as normalized frequency
of occurrences for that image. However, this feature representation approach has
similar limitation as we-mentioned for local visual concept vector (e.g., V-concept)

based representation.

As we have already mentioned, a region might belong to more then one concept

category or whose category membership might be very fuzzy in nature. Using a hard
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classification for such regions based on (45) would introduce only quantization er-
ror in image encoding process. Thereby it might be more effective, if we can utilize
the probabilistic output as membership or confidence scores of each region in image
encoding and consequent feature representation processes. Therefore, the proposed
feature representation scheme distributes each region’s class confidence values based
on the semantic categories in SC to the corresponding vector indices. For example,
Figure 23 shows a particular region in a segmented image and its probabilistic mem-
bership scores to different local semantic categories. Finally, the probabilistic semantic
concept vector (PSCV) of an image I; is represented as fF5°V == [illj e il,ij oo b,
where

X l 1

hiy =D p Pe= 7D puyy fori=1,2,---,L (48)

k=1 k=1

where py, is determined by applying (43). Instead of using the probability P, =
{0, 1}, here we consider each of the regions in image being related to all the concept
categories via probabilistic membership values. So that the degree of association of
the k;-th region of I; to the s¢-th concept category is determined by distributing
the confidence scores p;, to the i-th concept index in the vector. Due to the ex-
ploitation (;f domain knowledge in a supervised manner and encoding images with
soft category membership scores, this representation scheme is robust compared to
the representation based on only frequency of semantic concept occurrences (e.g.,

S-concept).

4.2 Visual and Semantic Structure Descriptors

One of the main drawbacks of the above visual and semantic concept based feature
representation schemes is that no spatial relationship information between concepts
are exploited. However, there might be instances, where spatial ordering informa-
tion is required. As an example, if we partition the three images in Figure 24 as
r =4 x r =4 and encode it with a codebook, then they will generate identical visual
concept vectors, although the images will be different perceptually based on the or-
dering of the concept labels. Due to this limitation, we present a spatial relationship-
enhanced feature representation scheme on top of the visual and semantic concept-

based representation. It captures both the concept frequencies and information about
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Figure 25: Example of Visual Concept Structure Descriptor (VCSD) generation

the local spatial relationships of the concepts. Specifically, it is a histogram where
each bin counts the number of times a visual or semantic concept prototype label is
present in a windowed neighborhood determined by a small square structuring ele-
ment. The size of the structuring element is (b x b) units where each block represents
a unit and (b < r). For example, the left side of Figure 25 shows an encoded image
with concept prototype labels which is partitioned into (r = 16 x r = 16) = 256
blocks. If we consider each block as a unit, then the encoded image has m = 16
rows and n = 16 columns. When the structuring element progresses over the rows
and columns of the encoded image, it enables to distinguish, for example, between
an image in which the local concepts labels are distributed uniformly and an image
in which the concept labels are occurred in same proportions, but are located in
distinct block units. The feature extraction method embeds local concept structure
information into the feature vector by taking into account all the concept labels in
the structuring element that slides over the encoded image, instead of considering
concept label of each block separately.

The accumulation process is illustrated in Figure 25 for an encoded image with
visual concept labels. For each unique concept label that falls inside the structuring

element at a particular position in encoded image, the corresponding histogram bin
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or vector index is only incremented once. As shown in Figure 25, in this case of
two different labels of visual concepts c¢; and ¢, inside the structuring element, the
corresponding histogram bins or vector indices are incremented once.

The proposed technique is closely related to the MPEG-7 color structure descrip-
tor (CSD) [62] where instead of considering image block as a unit it considers each
pixel unit and quantization is performed only in a color space. As already mentioned,
color based histogram has many limitations and pixel level statistics always require
time consuming calculation. Unlike the original CSD [62], we also need not require
to measure the spatial extent of the structuring element since the images are equally
partitioned into blocks and after encoding, each image contains the same number of
blocks in total. As the basic mechanism is closely related, we call the proposed rep-
resentation as visual concept structure descriptor (VCSD). Hence, an encoded image

I; is represented as a vector as fJY CsD

= [ft;--- f5--- f&;]", where each dimension
corresponds to a visual concept label. The element f;; represents the number of struc-
turing elements in the image containing one or more region with the visual concept ¢;
and is normalized by the number of locations of the structuring element, which lie in
the range [0, 1]. The origin of the structure element is defined by its top-left sample
and the locations of the structure element over which the elements of the vector aré
accumulated are defined by the position of the block (e.g., the smallest unit in the
encoded image) that contains the visual concept index.

In a similar fashion, for semantic concept based representation, it is termed as
semantic concept structure descriptor (SCSD), where an image is represented as

£595P = [f;--- f5-- f&;]7. Here, each dimension of the vector corresponds to a

local semantic concept category label or index. The element f;; represents the the
number of structuring elements in the image containing one or more region with the
local semantic category sc; and is normalized. Hence, both VCSD and SCSD express
local concept structure by visiting all the location in encoded images with the struc-
turing element. The size of the structuring element may vary between visual and
semantic concept-based representation due to the variations in number of regions as

generated by image partitioning scheme to encode an image.
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4.3 Summary

In this chapter, we have explored some alternatives for improving accuracy of image
retrieval by representing images in various intermediate local visual and semantic con-
cept levels. In summary, the proposed image representation schemes realize semantic
abstraction via prior learning when compared to representation based on low-level
features. Experimental results (will be described in Chapter 8) validate this assump-
tion and show that the proposed representation schemes improve retrieval accuracy.
Hence, we feel that the computational resources devoted to prior learning and in-
dex generation are good trade-off for effective retrieval performance. The proposed
approaches are applicable in different domains where visual concept based represen-
tations are suitable for both broad and narrow domains and semantic concept-based
representation schemes are more suitable for narrow domain as domain knowledge

needs to be exploited for effective semantic modeling based on supervised learning.
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Chapter 5

Query Expansion Based on Local
and (lobal Analysis

There is a strong similarity between the keyword-based representation of documents
in vector space model (VSM) of IR [44, 45] and the local visual and semantic concept-
based image representations described in Chapter 4. This model relies on the premise
that the meaning of a document (image) can be derived from its constituent keywords
(concepts). Depending on the context, a keyword has an amount of information
in individual documents as well as in a collection as a whole. For example, in an
information retrieval archive about “computer science”, the word “computer” does
not add much information since it is is very likely to appear in many documents in the .
collection [44]. In our image domain, the visual and semantic concepts also contain
information from both perceptual and sem;antical perspectives. Some concepts are
very likely to appear in all images in a collection, whereas other concepts occur often
in few images but relatively rare in the entire collection of images. For example,
a semantic concept “sky” would occur in many outdoor images, whereas a concept
“snow” might be found only images of a mountain category in an image collection of
natural scenery.

The rationale is that concepts that occur frequently in the entire collection have
low information content. However, if a single image contains many occurrences of
a concept then it is probably valuable to distinguish that image from other images
in a collection. To consider this effect into account, several term weighting schemes

have been developed in IR, in which the term-frequency - inverse document frequency

85



(tf-idf) weighting is the most commonly used one [44, 45]. This weighting scheme is
based on a combination of both global and local weights. A global weight indicates the
overall importance of a keyword across the entire collection, whereas a local weight of
a keyword indicates its importance in individual documents. Generalizing upon the
VSM in our image retrieval domain, a concept also can be given a weight, depending
on its information content. In this context, for the tf-idf based scheme, the local
weight is denoted as L; ; = aﬁ’lﬂﬁ—], where f; ; be the raw frequency of occurrence of a
local visual concept c; or a local semantic concept sc; in image I; and the maximum
is computed over all the concepts which are presented in I;. The global weight G;
is denoted as inverse image frequency (e.g., inverse document frequency in text) as
G; = log(M/M;) + 1,4 = (1,---,, N), where M; be the number of images in which
concept ¢; (sc;) is found [44, 45]. Finally, an element w;; is expressed as the product
of local and global weight as w;; = L; ; * G;. Based on the above weighting scheme,
an image [; can be represented as a vector in a concept space as

FM = [wyy way - wiy - - wiy] " (49)
where w;; be the weight of concept ¢; (sc;). In case of visual concept-based repre-
sentation, the vector dimension N equals the size of the codebook and for semantic
concept-based representation, it is equal to the number of local semantic categories.
In order to distinguish them in the following sections, the vectors will be referred as
fV-YM and £5-YM for visual and semantic concepts respectively.

In the above representation scheme, images are modeled using a bag-of-concepts
(e.g., bag-of-words in text) approach [44, 45]. Besides the loss of all ordering struc-
ture, each concept is considered independent of all the other concepts in this model.
Although this simple assumption has proved to be effective for keyword-based repre-
sentation in text retrieval domain, it is found that the keywords are related by use, for
example in phrases, and their similarity of occurrence in documents can reflect under-
lying semantic relations between them. In reality, there are often strong patterns of
dependence between keywords used to describe similar topics in documents. For ex-
ample, in a text retrieval system about tourist information, the occurrence of a word
accommodation in a text will give the word hotel a higher probability of co-occurring
than any random word. Another problem with this model is that the words used in

a query are often not the same as the words used to represent relevant documents, -
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which is commonly termed as word mismatch problem [44, 48, 49]. Similar words can
have multiple meanings (polysemy) and different words can have the same meaning
(synonymy). For example the words car and automobile are synonyms where the
polysemous word jaguar can either mean a large cat or can denote a model of car
[119)].

Similarly, in image domain, the same concept might represent different things
and different concepts might depict the same thing depending on the context. For
example, in an outdoor image under broad day light, an yellow color concept probably
depicts a sun, whereas in an image of a garden the same color may represent a
flower. Here, the concept of yellow color has different meaning (polysemy) in different
context. In another example, different shades of water color with varying texture as
different visual concepts might actually represent the same thing (synonymy), i.e.,
water, in a visual concept-based image representation. Similar to text retrieval, we
can usually find several correlated or co-occurring concepts for a particular one. For
example, in the outdoor image in the previous example, there is a higher probability
of occurrence of a blue sky around the sun. Whereas, a yellow color flower has
more probability to co-occur with green leaves in the garden image. Hence, there is
indeed a need to expaﬁd the visual and semantic concepts in the original query image
by exploiting the information on correlation or co-occurrence patterns to improve
retrieval effectiveness.

To increase retrieval effectiveness and reduce ambiguity due to the the word mis-
match problem in IR, a variety of query modification and reformulation strategies
have been investigated during the last four decades [104, 46, 48, 105, 44]. There are

mainly three approaches of query reformulation [44]:

1. Interactive approaches based on feedback information from the user as com-

monly known as relevance feedback (RF);

2. Automatic approaches based on global information derived from the entire col-

lection or corpus as commonly known as thesaurus based query erpansion, and

3. Automatic (might be interactive also in some cases) approacheé based on lo-

cal information from top retrieved results, which is commonly known as local
feedback.

Among these approaches, RF is the most popular query reformulation strategy
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which prompts the user for a feedback on the retrieval results and then use that
information on subsequent iterations with a goal of increasing retrieval performance
[44, 45, 105]. Although the RF approach initially developed for text retrieval domain
[45], the ease with which the relevance of an image can be evaluated accelerates the
development of it into CBIR systems [108, 109] (reviewed in Section 2.3.2 of Chapter
2). We also presented a RF-based similarity matching approach in Section 3.4.3 of
Chapter 3. Although RF-based approaches have been shown to provide dramatic
performance improvement in retrieval systems [108, 109, 110, 111, 112, 113], one of
the major drawbacks is that the users are not always able or motivated to provide
feedback information to make the methods perform effectively. It has been often
proved to be a complex mechanism with different levels of feedback (e.g., relevance
levels in MARS [110], goodness scores in Mindreader [111]) and a time consuming
aspect for users.

The automatic query reformulation based on term co-occurrence or term similarity
has been investigated for more then four decades in text retrieval domain with varying
successes [46, 48, 49, 47, 50, 52]. These approaches of query refinement exploit term
(keyword) dependency as term clustering in document collection, e.g., grouping sets of
related terms with a view to select query expansion terms from these sets [46, 48, 105].
Approaches of these kinds have a significant advantage over interactive relevance feed-
back as they require no effort on the part of the user. The techniques that have so far
been investigated can be described as being based on either global or local analysis
[46, 48]. Both local and global analysis are highly dependent on clustering algorithms
based on the term-term correlations in feature space. In a global analysis, all doc-
uments in the collection are analyzed to determine a global thesaurus-like structure
which defines term relationships. This structure is then utilized to select additional
terms for query expansion. In local analysis, the top retrieved documents for a query
are examined (without any assistant from the user in general) at query time to deter-
mine the terms for query expansion. There is also an underlying notion of clustering
that supports the RF strategy [44]. In this particularity, known relevant documents
contain terms that can be used to describe a larger cluster of relevant documents with

user interaction. However, the global and local analysis techniques attempt to obtain
a description for a larger cluster of relevant documents automatically.

Due to the nature of the low-level continuous feature representation in majority of
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the CBIR systems [2, 5], the automatic query reformulation techniques based on term
co-occurrence or term similarity have not been investigated yet in CBIR domain. In
a continuous feature space, each feature attribute has a value on a continuous scale.
Hence, there is no notion about whether an attribute (term) is occurred in an image
feature or not. Since, the local concept-based feature representations in VSM is
closely related to the keyword-based representation of documents in text retrieval
domain, we explore analogous query expansion techniques in image domain from
a new perspective to investigate whether they can improve retrieval effectiveness
when compared to search without using any query expansion. Hence, inspired by
ideas from text domain, we propose automatic query expansion approaches for image
domain based on both local and global analysis. For automatic query expansion
based on local analysis, we exploit the concept-concept correlations by analyzing
a local clustering method which takes into account metrical constraints based on
neighborhood proximity between concepts in encoded images. For global analysis, we
construct a global structure or thesauruses in the form of a similarity matrix, which
consider the similarities between visual concept prototypes in a codebook. Finally,
we also propose an efficient query expansion and similarity matching technique by

combining both local and global analysis in a single process.

5.1 Query Expansion Based on Local Analysis

Query expansion based on local feedback and cluster analysis (commonly known as
local analysis) has been found to be one of the most effective methods for expanding
queries in text retrieval domain [46, 48]. Generally, the techniques based on local
analysis expand a query based on the information from the top retrieved items (with-
out any assistant from the user) for that query. In most expansion methods making
use of local analysis, there are five key stages. First, the original query is used to rank
an initial set of documents. This set is then retrieved from disk and all terms are
extracted from those documents. Correlated terms are identified and ranked in order
of their potential contribution to the query. The top ranked terms are re-weighted
and appended to the query, and finally the reformulated query is reissued and a fi-
nal set of documents is ranked [48, 46]. Techniques based on local feedback analysis

are interesting because they take advantages of the local context provided with each
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query, hence it aims at optimizing the current search. Before presenting our query

expansion method in image domain, some basic terminologies are defined as follows:

Definition 4 For a given query image I,, the set S; of images retrieved is called
the local image set. Further, the set C; C C of all distinct concepts ¢; € C) in the
local image set S) is called the local vocabulary of concepts. Here, for simplicity c;
represents either a visual concept prototype or a local semantic concept category (e.g.,

sc;) depending on the feature representation scheme.

Since, correlated terms for expansion are those present in the local cluster, we first
need to generate such a cluster from S; and thereby from C). To generate the cluster,
we rely on a local correlation matriz that is built based on the co-occurrence of

concepts inside images. The matrix is defined as follows:

Definition 5 Let, Aycyxic) = [ayy] be a local concept-concept correlation matriz in
which the rows and columns are associated with the concepts in C;. Each element ay,

expresses a normalized correlation factor between concepts ¢, and ¢, as

n

uv = Ny + n:v— . ' (50)

where n, be the number of images in S; which contain concept c,, n, be the number
of images which contain concept ¢,, and n., be the number of top retrieved images
in S; which contain both concepts. The a,, measures the ratio between the number
of tmages where both ¢, and ¢, appear and the total number of images in S; where
either ¢, or c, appear and its value ranges to 0 < ay, < 1. If ¢, and ¢, have many co-
occurrences in itmages, then the value of a,, increases, and the images are considered

to be more correlated.

The global version of this matrix, which is termed as a connection matriz, is
successfully utilized in a fuzzy information retrieval approach in [53]. The local cor-
relation (connection) matrix A; is created based on the frequency of co-occurrence
of pairs of concepts in images and does not take into account where the concepts are
located in an encoded image. Since, two concepts which occur relatively close in a
neighborhood seem more correlated than the two concepts which occur far apart in

an image. We provided such an example in the previous section for the concepts of
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Figure 26: Distance between concepts c; and ¢; in an encoded image based on neigh-
borhood relationship

sun and sky for outdoor images. Hence, it would be worthwhile to factor the distance
between two concepts in the computation of their correlation factor.

To resolve this issue, metric cluster was introduced in text retrieval domain a long
time ago in [46]. In this cluster generation process, correlation factors are computed
by considering inverse of a distance between two terms. A document can be viewed
as a one dimensional ordered list of terms where the distance between two terms are
calculated by counting the number of words between them in a document. For our
image domain, concepts are organized in a two-dimensional grid in encoded images.
To measure the distance between two concepts, we need to rely on some sort of
neighboring relationship to count how many block units (maximally) they are apart by
considering both horizontal and vertical directions. Such a neighborhood relationship

is defined as follows:

Definition 6 Let, a two dimensional encoded image I; is represented as a grid of
P columns and Q) rows of block units. Each block r(x,y), in a co-ordinate position
z,y,[0<z < P—-1,0<y<Q~1, has a topological d-neighborhood and s mapped
to a concept c; € Cy of the local codebook as shown in Figure 26. The value of d can
go up to a mazimum of P — 1 or () — 1 for horizontal or vertical directions. If we

consider two blocks r(z,y) and r(u,v) for 0 < z,u < P —1,0<y,v < Q —1 are

91



Figure 27: Concept c; as a neighbor of the concept ¢; based on a local cluster

mapped to concepts c; and c; respectively. The distance dis(c;, c;) between these two

concepts is measured as
dis(ci, ¢;) = dis(r(@,y), 7(u,v)) = max{lu — z|, jv - y|} = d (51)

Hence, if ¢; and c; are 1 neighborhood apart then dis(c;,¢;) = 1 and if ¢; and ¢; are

in distinct images then, we consider dis(c;, ¢;) = 00.

For example, Figure 26 shows the distance between concepts ¢; and ¢; as dis(c;, ¢;) = 3
based on the definition above. Now, a local concept-concept metric correlation matrix
is defined as follows [46]:

Definition 7 Mll cxial = [mu] be a local concept-concept metric correlation matriz.
Each element m,, of M; expresses a normalized metric correlation factor between

concepts ¢, and ¢, as

Muv = 150 % 1S(] (52)

where S(c,) and S(c,) indicate the sets of the concepts ¢, and ¢, based on coordinate
positions that are mapped at different regions in encoded images of local image set S;.

The metric correlation c,, s calculated as

Z Z dis cu,cv) (53)

cu€ S(cu) € S(cw)

Given the above definitions of local connection matrix A; and metric matrix My,

we can use them to build local association and metric clusters respectively for query
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expansion. For a concept c;, that occurred in a query image [,, we consider the ¢-th
row in matrix A; or M;. Let f;(n) be a function which takes the i-th row and return
the ordered set of n largest values a;; from A; or m;; from M;, where j varies over
the set of local concepts and ¢ # j. Then f;(n) defines a local correlation or metric
cluster around the concept c¢; as a blue star as shown in Figure 27. Here, the concept
¢; (e.g., red star)is located within a neighborhood f;(n) associated with the concept
G;.

Now, concepts that belong to clusters associated to the query concepts can be
used to expand the original query. Often these neighbor concepts correlated by the
current query context [44]. The steps of the query expansion process based on metric
cluster are given in Algorithm 4. Similar steps also can be applied for query expansion

based on the correlation cluster, where we just need to replace M; with A;.

Algorithm 4 Query Expansion through Metric Clusters

1: Initialize a temporary expanded query vector that need to be added to the original
vector of query image Iy, as £2 = [iyq Waq - - - Wig- - - Wny)" where each w, = 0.
2: For an original query vector f = [wig Waq -+ Wig+ -~ wng)T of I, perform initial
retrieval by applying a similarity (e.g. cosine) matching function.
3: Consider, the top ranked K images as the local image set S; and determine the
local codebook C;.
4: Construct, the local metric matrix M; based on equations (52) and (53) at query
time.
fori=1to N do
if wiy > 0 then
Consider the ¢-th row in the metric matrix M, for concept ¢;.
Return f;(n), the ordered set of n largest values m;j, where ¢ # j, therefore
c; € Cr—{c}.
9: for each c; do
10: Add and re-weight the corresponding element in query vector as Wj,+ =
Wiqg — ((wig — 0.1) x k/n), where k is the position of ¢; in the rank order.
11: end for
12:  end if
13: end for
14: Obtain the re-formulated or modified query vector as " = f7 + f7.
15: Perform the retrieval with the modified query vector £". _
16: Continue the process, i.e., steps 3 to 15 until the system converges or no more
changes are noticed.

Based on the step 10 of the Algorithm 4, weights are given in such a way that a

top ranked concept in a ordered set gets the largest weight value and the next one
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gets the second largest value and so on. After this expansion process, new concepts
may have been added to the original query based on the step 10 and the weight of a
original query concept may have been modified had the concept belonged to the top
ranked concepts based on the step 14 of the algorithm. The main drawback of the
above algorithm is that it might take too long to construct the local metric matrix
M; in the step 4 of the algorithm. As a result, the query modification process might
reduce drastically the interactive nature of a system. However, this query expansion
approach would be of great assistance for application domain where effectiveness is
the major issue then efficiency. As it empirically demonstrates the effectiveness in

image domain, which will be shown in the experimental Section 8.5 of Chapter 8.

5.2 Query Expansion Based on Global Analysis

In this section, we present another query expansion approach in the visual concept
space based on global analysis of a collection. This approach is basically a modified
version of a query expansion model in text retrieval domain as proposed by Qiu and
Frei in [47]). In global analysis, the query is expanded using information from the
entire collection [49, 47, 50]. The basic idea is almost similar to local analysis based
approaches as presented in previous section. The main difference is that in global
analysis a thesaurus (matrix) is constructed based on a term-term (concept-concept)
correlation or similarity relationship in entire collection instead of a local set in IR.
The global analysis techniques are computationally intensive, but the computations
are done off-line once per database. The only component done on a per query basis is
the actual query expansion itself. The early days of research based on global analysis
did not yield good improvements in text retrieval performance [50, 51, 52]. The query
expansion methods tend to add a term from a thesaurus when it is strongly related
in terms of similarities or correlations to one of the query terms [51]. However, query
expansion need not to be limited to terms that cluster together with query terms.
Based on this observation, a query expansion model in text retrieval using a
similarity thesaurus is presented by Qiu and Frei in [47]. They obtain a relatively
large improvement (15-30%) in performance by adding terms that have the largest
similarity to the entire query concept, rather than individual terms. To determine

the ranking of each of the selected terms, the approach in [47] relies on a term-term
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similarity matrix. It is based on how the terms in the collection are indexed by
documents, i.e., for each term there is document vector space. The query expansion
terms are weighted according to the similarity between these terms and the query.
If we consider the approach in [47], then each concept (term) ¢;,¢ € {1,---,N} is
associated with a vector ¢; =< wjyy,--- ,w;j, -+ ,wip > where M is the number of
images (document) in the collection. The element w;; is a weight for concept ¢; in

image I;, which is computed (54) in a rather distinct form as [47):

(7 1) K

Wy =
g ZM ( far )2 kf?
1=1\max; (fu) Wi

(54)

where f;; be the frequency of occurrence of the concept c¢; in the image I; and
max; (f;;) computes the maximum frequency of ¢; under all images in the collection.
Further, the inverse concept frequency ik f; for I;, (e.g., analogous to the inverse im-
age (document) frequency), is computed as ik f; = log%, where k; be the number of
distinct concepts in the I;. After generating the concept vectors, a similarity matrix
SNxN = [Su,»] is built through the computation of each element s, , as the normalized

cosine relationship or dot product between two concept vectors ¢, and c, as

M
Sup = Cu* €y = D Wy; * Wy (55)

j=1
Unfortunately, construction of the matrix S is prohibitively difficult for large col-
lections. Many collections are available now-a-days, with several hundred thousand
images or documents. Although the matrix need to be computed only once and can
be computed off-line, still the approach in [47] is not computationally feasible for the
on-line query expansion process. This is due to the fact that a virtual query (query
concept) is constructed for query expansion as the union of all the terms that it con-
tains and terms are represented in a feature space whose dimension is the same as

the number of images, which can be very large.
To overcome this limitation, we propose a modified query expansion approach
based on a.global similarity matrix, which is constructed by considering the similar-
ities of visual concept prototype vectors in a much lower dimensional feature space

compared to the above one. Since, these prototype vectors are already represented
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in a feature space based on color and texture feature, we can use them directly to

generate a concept-concept similarity matrix.

Definition 8 The concept-concept similarity matric Sk = [Sun) 15 built through
the computation of each element s, , as the Euclidean similarity values between two

vectors ¢, and ¢, of concept prototypes ¢, and ¢, as

1

up = STM(Cy, Cy) = -7
Suw = st ) 1+ dis(cy, cy)

(56)

where .
dis(cu, €y) = D (e — )] (57)

i=1
Here, ¢, and c, are d-dimensional vector in a combined color and texture feature

space and c,, c, € C where N is the size of the codebook C.

Given the global similarity matrix S*, query expansion is performed in the follow-

ing four main steps [47]:

e First, we map an original query vector f; = [wi, Wag -+ Wig- - Wn,|T from the
visual concept space to a space as virtual query concept vector c:‘] that is used
for representation of concept vectors in an Euclidean-based combined feature

space based on color and texture features. The ¢ is computed as

c, = Z Wyg * Cu (58)

cy€ly
where w,, is the weight of concept ¢, in I, or in other words, w,, - ¢, expresses
the importance of concept vector ¢, for the query [47].

A temporary expanded query vector is also initialized with each element has
a zero value as ff = [y, Way - - - Wig- - Wy,]T, that need to be added to the

original vector fJ.

e Second, based on the similarity matrix S*, a similarity between each concept

¢y € C and query image I, is computed as

sim(ly, c,) = cf;T ccy = ( Z Wy - €)Y - €y = Z Wyq - (Cy Cy) (59)

cu€ly cu€ly
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where (cpc,) = S, is the similarity between two concept ¢, and ¢, that is

pre-computed and defined in (56).

e Third, based on the sim(l,, c,) value, each concept ¢, € C is ranked and top n
ranked concepts are selected for query expansion. After selecting the additional
search concepts, we need to weight them so that they can be added to the

original query vector. The weight of each concept ¢, is calculated as [47]:

sim(1y, cy)

Zc“elq Wug

weight(1,, c,) = (60)

where 0 < weight(I,c,) < 1.
» Finally, we obtain the re-formulated or modified query vector as f* = (f7 + £7).
For f¢ = [ibyg tyq - - - Wig- - - Wng) T,

weight(ly, ¢,) from (60), if ¢, belongs to top n ranked concepts;

~

Wyq =
0, otherwise;

Finally, fi" is used to retrieve images to the user.

With the above steps, the query and the concepts most similar to the virtual query
concept are classified in the same cluster. After this expansion process, new concepts
may have been added to the original query and the weight of an original query concept
may have been modified had the concept belonged to the top ranked concept based
on (60) [47].

To illustrate the above process, Figure 28 shows a virtual query concept vector

*

q
Euclidean space. The closeness is defined by the similarity calculation based on (56)

c; (e.g., the red star) and its relationships with other close concept vectors in an
and the closer two linked concepts (based on solid or dashed line) are to each other,
the more similar they are. From the Figure 28, it is clear that concepts c. and ¢4
are closer to individual query concepts c,, ¢, € I, (e.g., the gray stars) respectively.
However, in terms of the whole query concept (i.e., the virtual query vector c;),
concepts ¢, and ¢, are qualified as the closer one, if we consider only two concepts out
of all other concepts in the vocabulary. It implies that, the concepts selected here for

query expansion might be distinct from the ordinary global or local analysis method.
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lg={cy, cy}

Figure 28: Relationships between conceépts and virtual query concept in an Euclidean
space

5.3 Similarity Matching and Query Expansion in
Inverted Index

In this section, we propose a retrieval approach that combines both local and global
analysis from a different perspective. In this approach, a global matrix as generated
in the previous section is utilized in a Quadratic form of distance measure [16] to
compare a query and database images. However, due to its quadratic nature, this
distance measure is computationally expensive. To overcome this, only a subset of
images from the entire collection is compared based on a local neighborhood analysis
in an inverted index built on top of a codebook of visual concept prototypes.

The Quadratic distance measure is first implemented in the QBIC [16] system
for the color histogram-based matching. It overcomes the shortcomings of L-norm
distance functions by comparing not only the same bins but multiple bins between
color histograms. Due to this property, it performs better compared to the Euclidean
and histogram intersection-based distance measures for color-based image retrieval
[16]. For example, Figure 29 shows the concept of the quadratic distance measure

function, where instead of a one-to-one matching of the bins between two histograms,
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Figure 29: Example of Quadratic similarity matching in Color Histogrms [12]

each bin (e.g., red here) in one histogram is matched with all other bins in the other
histogram. The matching is performed with a weighted similarity score based on
the matrix A on the right side of Figure 29, where each element a;; of the matrix
depicts the similarity between two colors ¢ and j in some color space. However, as
mentioned earlier, similarity based on only color feature does not always indicate
semantic similarities between images due to the semantic gap problem.

The visual concept-based feature representation is at a higher level then the simple
pixel-based color feature representation due to the incorporation of both color and
texture features in a region level. Hence, instead of using a matrix based on similarities
in a color space, we can effectively utilize the global visual concept-concept similarity

matrix S* as defined in Definition 8 for the distance measure computation as follows

Disg (14, I;) = \/(f‘y—VM - fJ_\LVM)TS* (f{;/—VM — fJY*VM) (61)

Since, the above distance measure computes the cross similarities between concept
prototype vectors, it requires longer computational time compared to the cosine and
L-norm based distance measures. One solution is to compare only a subset of images
from the entire collection by utilizing some indexing or pre-filtering techniques [84,
85]. In large database applications, indexing or pre-filtering techniques are essential
to avoid exhaustive search in the entire collection. Some multi-dimensional tree or
clustering based indexing structure has been proposed recently [2, 84, 85]. However,
the accuracy of these algorithms largely depends on the feature dimension, which
degrades rapidly as the dimension increases and commonly termed as the curse of
dimensionality problem [84].

Inverted file is a very popular indexing technique in IR [44]. In text retrieval, fea-

ture vectors of both query and database documents are sparse, where they have only
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a small subset of all possible features or terms. The search is thus can be restricted
to a subspace spanned by terms of the query. An inverted file contains an entry for
every possible terms and each term contains a list of the documents if the documents
have at least one occurrence of that particular term. In CBIR domain, an inverted
index is used in a suitable sparse set of color and texture feature space of dimension
more then ten thousands in [29]. We now present an enhanced inverted index [209]
that considers the correlations or similarities between visual concept prototypes by
exploiting the topology preserving property of the codebook. Our goal is to efficiently
decrease the response time, where the codebook is acted as an inverted file to store
the mapping from concepts to images. In this index, for each visual concept proto-
type in a codebook, a list of pointers or references to images that have at least one
region map to this concept is stored in a list. Hence, an image in the collection is a
candidate for further distance measure calculation if it contains at least one region
that corresponds to a concept ¢; in a query image.

Now to consider the correlation or similarity factor between concepts, this simple
lookup strategy in inverted index is slightly modified. In this approach, for each
concept prototype ¢; € I, with a weight (e.g., tf-idf based weighting) w;,, we expand
it to other |w;, % (|S,] — 1)] concept prototypes based on the topology preéerving
ordering in a codebook. Here, S, contains all the concept prototypes including c;
up to a local neighborhood level LN, (we defined it in Section 3 of Chapter 4).
So, for expansion, we only consider the concepts other then ¢; by subtracting it
from S,. After the expansion, those images that appear in the list of expanded
concepts are deemed as candidate for further distance measure calculation, while the
other images are ignored. A larger v will lead to more expanded concepts, which
means more images need to be compared with the query. This might lead to more
accurate retrieval results in trade off larger computational time. After finding the
|S,| — 1 concept prototypes, they are ranked based on their similarity values with
¢; by looking up the corresponding entry in the matrix S*. This way relationship
between two concepts are actually determined by both their closeness in the topology
preserving codebook and their similarity obtained from the global matrix. Finally,

the top |wiq x (|S,] — 1)) concepts are selected as expanded concepts for ¢;. Hence,
a concept with more weighage in a query vector will be expanded to more closely

related concepts and as a result will have more influence to retrieve candidate images.
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Therefore, the enhanced inverted index contains an entry for a concept which consists
of a list of images as well as images from closely related concepts based on the local

neighborhood property. The steps of the algorithm are described below;

Algorithm 5 Query Expansion and Similarity Matching in Inverted File

1: Initially compute the global visual concept similarity matrix S* off-line. Let, the
feature vector of a query image I; be £/"Y™ = [w, - wiq---wy,]" in a visual
concept-based feature space. Initialize the list of candidate image as L = ¢.

2: fort=1to Ndo

3. if wy >0 (ie., ¢; € I;) then

4: Locate the corresponding concept prototype ¢; in the two-dimensional code-
book C.

5: Read the corresponding list L., of images from the inverted file and add it
toLas L« LUL,.

6: Consider up to LN.,, neighborhoods of ¢; to find related |S,| — 1 concept
prototypes.

T For each ¢; € S, — {c;}, determine its ranking based on the similarity values
by looking up corresponding entry s;; in matrix S*.

8: Consider the top k = |w;q X (|S,] — 1) ranked concept prototypes in set S*
for further expansion.

9: for each ¢, € S* do

10: Read the corresponding list as L(cx) and add to L as L — LU L., after

removing the duplicates.

11: end for

12:  end if

13: end for

14: for each I; € L do

15:  Apply the distance matching functions of Equation (61) between I, and I;.

16: end for

17: Finally, return the top K images by sorting the distance measure values in as-
cending order (e.g., a value of 0 indicates closest match).

Figure 30 shows a sample example of the above processing steps. Here, for a
particular concept c¢; with associated weight in vector as wj, that is presented in
query image I, the corresponding location of the concept in the codebook is found
out. Suppose, based on LN, neighborhood of the above algorithm, only two concepts
¢, and ¢y, are further selected for expansion. After finding the expanded concept
prototypes, images in their inverted lists are merged with original set of images and
considered for further distance measure calculation for ranked-based retrieval. There-

fore, in-addition to consider all images in the inverted list of ¢; (images under black

101



Codebook

. Inverted Index
Query Vector

Figure 30: Example process of Query Expansion in an Inverted File

dotted rectangle), we also need to consider images in the list of ¢ and ¢, (under the
blue dotted rectangle) as candidate images. Due to the space limitation, all actual
links are not shown in Figure 30. In this way, the response time is reduced while the

retrieval accuracy is still maintained.

5.4 Summary

In this chapter, we investigate automatic query expansion techniques in image domain
inspired from the ideas of text retrieval in IR. These approaches exploit the correla-
tions between concepts in different ways based on local and global analysis of an image
collection. Due to the nature of the image representation schemes in concept-based
feature spaces, there always exists enough correlations and/or similarities between
the concepts. Hence, exploiting this property has proved to be effective in retrieval

performances as will be demonstrated in the experimental section of Chapter 8.
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Chapter 6

Fusion-Based Retrieval in Content

and Context Feature Spaces

In a broad domain application, such as retrieval of web images, it is simply not
possible to exploit domain knowledge of any kinds due to large variability among
images and huge size of the collection. Many studies also suggest that a user in
general would prefer browsing and posing semantic queries in broad domains to find
images of particular activities, event, geographic constraints, proper names, or more
abstract concepts at a much higher level (e.g., level 3 in [13] or levels 8-10 in [27])
[25, 26]. Hence, the large semantic gap is one of the fundamental problems in CBIR
for broad domains. To reduce the gap, additional associated information is required
to complement visual features of images. Adding visual information to the keyword-
based search also might help to distinguish specific visual only features. Fo'r example,
Figure 31 shows the differences in results (constructed manually) that we might obtain
by using only keyword, only visual, and both keyword and visual example to search
for a “red bike” in an image collection. It is clear from the Figure 31 that better result,
i.e., what the user is actually looking for, can be achieved when a combined keyword
and visual example based search is performed. This is because, an annotator tend to
leave out what is visually obvious in the image (e.g. the color of the bike) and mention
properties that are very difficult to infer using vision (e.g. the concept of the bike as
a keyword). Another example from a medical domain, could involve a physician may
searching for chest CT images with certain kinds of micro nodule structures. By using

merely keyword search in this case will only succeed if relevant images are sufficiently
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Query Result

a

“Bike”

Bike field woman

‘Bike field woman Whizel grass Feiry wheel forest

“Bik e”

Bike field woman Bike black Bike garage onfside

Figure 31: Constructed example of querying an image database. (a) using text only,
(b) using images only, (c) combining images and text.

Figure 32: Example chest CT images with micro nodules

annotated with different kinds of nodule structures in addition to the term “chest
CT”. Here, users would like to see chest CT images with certain textural properties
such as, small scattered nodules and irregular sharp objects as shown in Figure 32.
However, manual annotation or description of such visual properties are difficult to
achieve as mentioned in [120]. Hence, in this case, it would be more appropriate
to refine a keyword-based search (e.g., using the keyword “chest CT”) result by
later applying a visual example-based search (e.g., considering some texture-based
feature). This might significantly improve the initial text-based result. The above
examples draw the conclusion that single-modality information retrieval, either using
text as contextual information or images as visual feature, has limitations. Therefore,
integration of textual information in a CBIR system or image content information to
a text retrieval system might improve the retrieval performance [115, 116, 122, 119].

While there is a substantial amount of completed and ongoing research in both
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text retrieval as well as in CBIR, much remains to be done to see how effectively
these approaches can complement each other, and how the text and image modalities
can be seamlessly integrated in a single framework. Image retrieval based on mul-
timodal information sources is recently gaining popularity due the the huge amount
of multimodal information available on the web [115, 116, 117, 124, 125, 120, 123].
Majority of these systems basically perform retrieval by combining collateral text of
images from web pages and visual features of images (e.g., color, texture, etc.) to-
wards web-based image retrieval. However, we have found a lack of in-depth research
and systematic evaluation along this direction in CBIR as well as in multi-modal
image retrieval domains. To achieve real retrieval effectiveness, more experimental
evaluation in benchmark collections is also required as it is often done in text re-
trieval domain, such as large-scale evaluation of text retrieval methodologies in Text
REtrieval Conference (TREC) 1.

Motivated by this, we present an interactive multimodal fusion-based retrieval .
framework to search images in broad domain photographic and medical image collec-
tions [208, 211, 217, 218]. In this framework, for a text-based image search, keywords
from the annotated files are extracted and indexed by employing the vector space
model of IR. For a content-based image search, V.arious global, semi-global, region-
specific local and concept-based features are extracted at different levels of image

representation. The main contribution of this work can be summarized as follows:

e Propose a relevance feedback (RF) based data fusion strategy that in addi-
tion to query reformulation in both context and content-based feature spaces,
also dynamically adjusts the similarity matching functions, and inter and intra

modality weights in a linear combination of similarity matching.

e Propose a function to measure the effectiveness of the features based on consid-
ering both precision and ranked order information in their corresponding result

lists.

e Investigate how information from one modality can be propagated to another

with a cross-modal multiple query expansion mechanism.

e Investigate the effect of retrieval performances based on both sequential and

simultaneous retrieval approaches in a single retrieval framework.

Thttp://trec.nist.gov/overview.html
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e Experiment and evaluate our retrieval approaches in benchmark photographic
and medical image collections under ImageCLEF track |57, 58]. The details of
the data sets will be described in Chapter 8.

6.1 Context-based Image Search Approach

This section presents the context-based image retrieval approach based on indexing
of the associated caption or annotation files of database images under ImageCLEF
2 benchmark [57, 58]. In this approach, a user submits a textual query with few
keywords and expects the system to return a set of relevant images associated with
the top retrieved annotation files that conform to the user’s query. Each annotation
file in the collections is linked to the image(s) either in a one-to-one or one-to-many
relationships.

For example, Figure 33 shows an example of a lung X-ray image from a medical
collection [58] with tuberculosis and its annotation with several XML tags on the
right side. Figure 34 shows another image from a photographic collection [57] and
its annotation with several SGML tags on the right side. As we can notice, the most
important information in the above annotation files is mainly contained inside the
description tag. For context-based image search, it is necessary to transform the
annotation files into an easily accessible representation known as indexing. Indexing
can be used to facilitate the location of those files and thereby corresponding images
that are most likely to be relevant. There are a variety of indexing techniques which
mostly rely on keywords or terms to represent the information content of documents
[44]. In our case, information from only relevant tags are extracted and preprocessed
by removing stop words that are considered to be of no importance for the actual
retrieval process. Subsequently, the remaining words are reduced to their stems,
which finally form the index terms or keywords of the annotation files. Next, the
annotation files (document) are modeled as a vector of words based on the popular
vector space model of IR [44, 45]. Let T' = {t,ta, - - ,tn} denote the set of terms in
the collection. Then it can represent a document or annotation file D; as vector in a
N-dimensional spaces fp, = [w;1 wjp - wj - - -w;jn|T [45]. The element w;x denotes

the weight of term ¢; in document Dj, depending on its information content. We used

2http:/ /ir.shef.ac.uk/imageclef/
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Figure 33: An example medical image
CLEFmed collection [58].
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the popular tf-idf term-weighting scheme [45] as described in Chapter 5. A query
D, is also represented as a vector of length N as fp, = (W1 Wyz -+~ Wk - qu]T. To
compare a query and document vector, the cosine similarity measure is applied as
follows [44]

N
Simgext (Dg, D;) = cos(fp,, fp,) = 2 izt Wai * Wi (62)
Ty (wgi)? 4/ L (wsi)?

where, w;, and w;; are the weights of the term t; in D, and D; respectively. The
main advantages of this representation model include a ranked result of the retrieved
documents, the possibility to enter free text and in exact matching of the documents
[44, 45].

6.2 Content-Based Image Search Approach

The performance of an image only or content-based search mainly depends on the
underlying image representation scheme [1]. Based on our previous experiments in
[211], we found that the low-level image features at different levels of abstraction are
complementary in nature and together they might contribute effectively to distinguish
images of different visual and/or semantic categories. With this assumption, various
low-level global, semi-global, region specific local, and visual concept-based image
features are extracted from images and distance matching functions are defined for

the features as follows.

Global feature:

For image representation at a global level, the MPEG-7 based Edge Histogram De-
scriptor (EHD) and Color Layout Descriptor (CLD) [62, 63] are extracted as described
in Section 3.2 of Chapter 3. Let EHD and CLD be represented as vectors ff;‘d and
ff;d respectively of image /;. The CLD and EHD descriptors are in combine termed
as global feature. The overall distance measure between global feature vectors of
query image I, and database image I; is defined as a linear combination of individual

distance measures as
s s 1d 1d : hd hd
Dlsglobal(lzp Ij) = wedDisgq (fjc'q afICj ) + WehdDiSend (f)?q ,fg )7 (63)
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Figure 35: Region generation based on segmentation of a photographic image

where, Discld(ff;d, ff;d) and Disehd(f ehd fehd) are the Euclidean distance measures for
CLD and EHD respectively and wqg and weng are weights for each feature distance
measure subject to 0 < wed, Wena < 1 and welg + weng = 1. Initially these are taken to

be equal weights with wgq = 0.5 and wepg = 0.5.

Semi-Global Feature:

For image representation at a semi-global level, we use the grid-based decomposition
and feature extraction approach as described in Section 3.2.3 of Chapter 3. In this
approach, images are divided into five overlapping sub-images and color and texture
moment-based features are extracted from each sub-images. Color and texture feature
vectors are normalized and combined to form a joint feature vector f7% of each sub-
image r; € I; and finally they are combined as the semi-global feature vector for the

entire image as fff. The semi-global distance measure between I, and I; is defined as

Dise giobai (Ig: 1) = Dag (75, 1) = Z w,Dis, (£, £2£) (64)
where, Dis, (f7¢, £7¥) is the Euclidean distance measure of the feature vector of a region

r € Iy, I; and w, are the weights for the regions, which are initially set as equal.

Region-Specific Local Feature:

The above fixed partitioning scheme is comparatively simpler and has limitations as
it might not match with the actual semantic partitioning of the objects. Region-based
image retrieval aims to overcome this limitation by fragmenting an image automat-
ically into a set of homogeneous regions based on color and/or texture properties
[21, 22, 24, 23]. Representation of images at region level is proved to be more close to

human visual system where each region can be described by means of local features.
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Figure 36: Region generation based on segmentation of a medical image

To perform region-based retrieval, the first step is to implement image segmentation.
Then, low-level features such as color, texture, shape or spatial location can be ex-
tracted from the segmented regions. The overall similarity between two images can
be defined based on all the corresponding region-based local features.

We use a clustering-based image segmentation technique [24] and a robust image
to image level similarity matching function based on clusters or regions generated
from automatic segmentation [211]. For images in broad d(;mains, currently there is
no image segmentation algorithm that can perform at the level of the human visual
system. The segmentation accuracy of our system is not crucial because we use a more
robust similarity matcliing scheme which is insensitive to inaccurate segmentation.
To automatically segment the images with distinct regions, a fast k-means clustering
method is utilized [43, 24]. The clustering method is fully automatic and unsupervised
in nature that can adaptively generate the number of regions as an iterative process
since the number of region is unknown before the segmentation. To segment an image,
we partition the image into non-overlapping blocks with (2 x 2) pixels. We choose
block-wise segmentation since it has little effect in retrieval with the benefit of 4 times
faster segmentation. The average color components of each image-block are extracted
as feature vector in RGB color space. Suppose there is a set X = {z;,--- ,zL} of
L blocks for each image to be segmented. The goal of the k-means algorithm is to
partition the blocks into & clusters with means V' = {u;,-- - , ux} such that

D) =3 3 b — el )

i=1 z;€C;

is minimized, where p; is the centroid or mean vector of the ¢-th cluster C; and x;

is the block vector (e.g., average color) of a particular block z; € X. We primarily
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select the number of clusters with £ = 2 and gradually increase k until either the
the number k exceeds an upper bound or the distortion D(k) is below a threshold.
A low D(k) indicates high purity in the clustering process. For experiments, we set
maximum k = 10, therefore allow an image to be segmented into a maximum of 10
regions and threshold value as 1073,

After segmentation, every cluster is corresponding to one region in the segmented
image. Since clustering is performed in the feature space, blocks in each cluster do not
necessarily form a connected region in the image space. Figure 35 shows an example
of segmentation result of a photographic image of mountain with four regions where
it clearly separates the major objects, such as sky, water, hill and grasses. Whereas,
Figure 36 shows the segmentation result with separation of brain, background, and
skull in different regions of a MRI-head image in a medical collection. We do not apply
any post-processing methods to smooth region boundaries or to delete small isolated
regions because these errors are rarely significant. The non-connected property of
some regions preserves the natural clustering of an object that is good enough for our
proposed image level similarity matching function.

To represent each region with local features, we considt?r information on weight

and color and texture related feature as in [23]. Let, w,, is the weight of a region

Ny
N,

and Ny, is the total number of blocks in I;. The average color feature vector £ of

r; € I; and is defined as w,, = , where N, is the number of blocks in region r
each region r is represented by the k-means cluster center, i.e., the average value for
each of the three color channels in RGB space of all the image blocks in this region.
Texture feature of each region is measured in an indirect way by considering the
cross-correlation among color channels due to the off diagonal of the 3 x 3 covariance

matrix C,; of region r of I; and is estimated as

N»

Cry = g7 2 — B, — 5 (66)
k=1

where f, is the average color vector of a block x3 € r. Finally, the mean color vector
f7, and color covariance C;; of each region r of I; are combined or concatenated to
form a region-based local feature vector f}‘;ca] of variable lengths.

In region-based image retrieval systems, image similarity is measured first at region

level and after that at image level. That is to measure the overall similarity of
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two images which might contain different number of regions [15]. In a “one-to-one”
matching scheme, each region in the query image is only allowed to match one region
in the target image [23]. Whereas, each region in the query image is allowed to
match more than one region in the target image and vise versa in a “many-to-many”
matching scheme, for example the Integrated Region Matching (IRM) in [24]. We
propose an image level “one-to-one” matching scheme [211] between I, and I; by
integrating properties of all the regions in both query and database images. This
matching scheme is closely related to the one proposed in [23]. The main difference
is that, instead of only one way matching in [23], i.e., from query image regions to
database image regions, here we allow both ways of matching. One region of an image
is to be matched to several regions of another image and vice versa by considering
only the best matching pair for final distance calculation and finally averaging out the
distance scores obtained from both ways. This scheme is more robust against poor
segmentation as it considers properties of all regions in both query and database
images. Suppose, there are M regions in image J; and N regions in image I;. Now,

the image-level distance is defined as

M wy, Disy, (4,7) + pey Wry Dise, (4, 9)
q q 7 J
2

Disjocat (I, I;) = (67)

where Wr,, and wy, are the weights for region r;, and region ry, of image I, and I;
7
respectively. For each region r;, € I, Dis,, (g,7) is defined as the minimum distance

between this region and any region ry, € I;

Dis,,, (g,7) = min(Dis(ry,,7y,), - - - , Dis(ri,, 7n;)) (68)
Similarly,

Dis,,, (4, ) = min(Dis(ry,, 71,), - - - , Dis(rx;, ra,)) (69)

Now, to compute the distance between any two regions r;, and ry, of I, and I;

respectively, we apply the Bhattacharyya distance measure [172] as follows:

Tiq

- -1
(Cry +Cn)
2

1
Dis(r;,, mx,) = §(fc £ )7 {

112



(Oriq +Crp )
2

1
(£, ~£5, )+ 5 ln et
q kj 2 !C"q

(70)
C)|

where f,?iq and ffk]_ are the mean color vectors and C’% and Crkj are the covariance
matrices of region r;, and ry, respectively. Equation (89) is composed of two terms,
the first one being the distance between feature vectors of image regions, while the
second term gives the class separability due to the difference between covariance
matrices. This definition of image-level distance between two images captured by
the overall distance between the region sets of two images is a balanced scheme in

distance measure between regional and global matching.

Visual Concept-Based Feature:

In addition, we extract the normal frequency-based visual concept-based feature vec-
tor from images as described in subsection 4.1.2 of Chapter 4. Here, an image /; can

be represented as
f};—concept = [fy, foj- fiy fN,-]T (71)

where each element f;; represents the normalized frequency of a éoncept c; € Cof I
and NV is the size of the codebook C'. Since, the concept-based feature representation
is closely related to the keyword-based representation of documents, we apply the
similar cosine measure to compare image I, and I; as described in (62). For the
experiments in Chapter 8, codebooks of size of 400 (e.g.,20 x 20 units) are constructed
for the photographfc and medical collections by manually selecting 2% images from
each collection as training sets.

In the following sections, from a data fusion perspective, we present several query
reformulation methods in both contextual and visual domains and show how they can
be dynamically integrated in an interactive retrieval framework for a better retrieval

accuracy.

6.3 Contextual Query Refinement

For the context-based retrieval approach, users might often find it difficult to express

their information need in the form of a short query with few keywords. Moreover,
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query terms might not exactly match the terms appearing in the annotation files with
only few keywords or caption. Hence, a query reformulation process is essential to add
additional query terms and re-weight the original query vector. Here, we investigate
interactive ways to generate multiple contextual query representations by applying
few well known RF-based techniques in text retrieval domain [106, 107, 105]. The
main motivation is that different RF methods might have different properties and gen-
erate quite different modified query vectors [202, 203]. Multiple query representations
can provide different interpretations of a user’s underlying information need, or pro-
vide more detail about how the user is making relevance assessments. It is well known
that different query representation could retrieve different set of documents in text
retrieval domain [203]. From data fusion research perspective in IR [201, 202, 203], it
also has been shown that if two search retrieve different sets of documents, significant
improvement can be achieved by combining the retrieval results.

In order to investigate the effectiveness of a fusion approach in the context-based
retrieval approach, we at first generate an initial query vector for a given query topic
and perform the retrieval to rank an initial set of annotation files and thereby rank
the images linked to the files. Based on the user’s feedback information from the
top retrieved images and thereby from associated annotation files, we next generate
multiple query vectors by applying several RF-based methods [106, 107, 105]. The
main idea of RF in text retrieval is to refine the original query by adding new terms
from relevant documents (i.e. query expansion) and enhance the importance of query
terms appearing in relevant documents (i.e. term re-weighting). One of the best
known query refinement approaches is the Rocchio algor:lthm [106]. In this approach,
the problem of retrieval is defined as that of defining an optimal query; one that
maximizes the difference between the average vector of the relevant documents and
the average vector of the non-relevant documents. In most systems, the following

improved version of the original Rocchio’s formula is utilized [106]:

- . o 1 1 -
f5. (Rocchio) = a £+ ﬂ@ Z fp, — 'yﬁ Z fp, (72)
ijER féj cR

where, {5, and f3_ are the modified and original query vectors, R and R are the sets of
relevant and irrelevant document vectors and «, 3, and y are weights attached to each

term. These control the balance between trusting the judged document set versus the
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query: if we have a lot of judged documents, we would like a higher § and . This
algorithm generally moves a new query point toward relevant documents and away
from irrelevant documents in feature space [106]. The original Rocchio’s formula also
modified in [107] by eliminating the normalization for the number of relevant and non-
relevant documents and allowing limited negative feedback from only the top-ranked
non-relevant document. Although this technique, known as “Ide-dec-hi” formula, did
not improve results greatly it was more consistent; improving the performance of

more queries.
f5 (Ide) =a £y +8 > fp, - 'ymlgx(fpj) (73)
fp;€R
where max(fp;) is a vector to the highest ranked non-relevant document.

In addition to utilizing the above two RF approaches, we also perform two different
query modification based on local analysis as described in section 5.1 of Chapter
5. Generally, the local analysis approaches consider the top K most highly ranked
documents for query expansion without any assistance from the user. However, we
consider only the user selected relevant images for further analysis as that information
is already available from the RF-based approaches.

At first, a simpler approach of query expansion is considered based on identifying
useful terms or keywords from the associated annotation files for the relevant im-
ages. This approach extracts the keywords after removing the stop words from the
relevant annotation files based on user’s positive feedback information. After extract-
ing the keywords, the method determines the most frequently occurring k£ keywords
and add them to the original query. The query vector is modified as fg‘q(Locall)
by re-weighting its keywords (e.g., original plus added keywords) based on the tf-idf
weighting scheme and is re-submitted to the system as the new query. We also utilize
a local cluster-based query reformulation approach based on expanding the query with
terms correlated to the query terms. Such correlated terms are those present in local
clusters built from the relevant documents as indicated by the user. There are many
ways to build the local cluster before performing any query expansion [46, 51, 52].
We generate similar local cluster based on the local correlation matrix as defined in
Section 1.2 of Chapter 3. However, instead of using local concepts, here we use the
extracted keywords of relevant annotation files as indicated by a user. Let us consider,

for a given query D,, the set of all distinct terms as T; called the local vocabulary in
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a set of relevant documents. A correlation matrix A xjzy) is constructed in which
the rows and columns are associated with the terms in the local vocabulary. The

element of this matrix a,,, is defined as

Nw
e e Ty — Tl (™)
where, n, is the number of local documents which contain term ¢, € T;, n, is the
number of local documents which contain term ¢, € 7j, and n,, is the number of
local documents which contain both terms. Now, given the correlation matrix A4;, we
can use it to build the local correlation cluster as follows. Consider the u-th row in
matrix A; (i.e., the row with all the correlations for the keyword t,). From each row,
it returns the set of n largest correlation values a,;, where I # 7. Now, for a query
D,, we are normally interested in finding clusters only for the |D,| query terms. After
extracting there additional n terms for each query term, the query vector is updated
as fg’q (Local2) by re-weighting its keywords based on the tf-idf Weighting scheme.
Hence, we obtain for different query vectors (e.g., £, (Rocchio), f5, (Ide), f5, (Locall),
and f})”q (Local2)) by applying the above methods. In Section 6.5, we will present an
elaborate methods to dynamically weight each of the representations for on-line re-
trieval, so that they can contribute effectively according to their importance for a

particular query.

6.4 Visual Query Refinement

This section presents our visual query refinement approach based on RF that not
only performs query point movement but also adjusts the distance matching functions
and the feature weights for different image representations [208, 217, 217]. In this
approach, it is assumed that, all positive feedback images at some particular iteration
belong to a user perceived semantic space and obey the Gaussian distribution to
form a cluster in that space. We consider the rest of the images as irrelevant and
they may belong to different semantic categories. However, only relevant images are

considered for query refinement in this case. The modified query vector at iteration
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k is represented as the mean of the relevant image vectors as follows

. 1
50 = TRel > f (75)

fIlac ERy,

where, R be the set of relevant image vectors at iteration k and x individually
represents the CLD or EHD features for global, and color or texture moment-based
features for semi-global feature vectors. Since, there might exist significant corre-
lations between the feature attributes of the positive individual feature vectors of
relevant images, we capture this information in the form of covariance matrices and
finally use them in Mahalanobis distance measure functions [172]. The covariance

matrices of the positive feature vectors are estimated as

| Rk}
1 T

) = WZ(% — £z ) (B — T2 ) (76)

=1
However, singularity issue might arise for the inverse computation of covariance ma-
trices in distance measure functions if fewer training samples (e.g., positive feedback
images) are available compared to the feature dimension. This will be the most prob-
able case as users tend to provide only few positive or negative feedbacks. So, we add

the following regularization to avoid singularity in matrices as follows[185]:

~

Cry =aCly + (1 —a)l (77)

for some 0 < o < 1 and I is the identity matrix. After generating the mean vector and
covariance matrix for a feature z, the individual Euclidean-based distance measure
functions in equations (63) and (64) are replaced with the following Mahalanobis

distance measure [172] for query image I, and database image I; at iteration k as
: S em
Disx(lq, I;) = (f}'g(k) - flf)TCx(k)(fIg(k) - f!;“) (78)

The Mahalanobis distance differs from the Euclidean distance in that it takes into
account the correlations of the data set and is scale-invariant, i.e. not dependent on
the scale of measurements [172].

We do not perform any query refinement for region-specific feature at this moment
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due to its variable feature dimension for variable number of regions in each image.
Since the visual concept-based image feature is closely related to the keyword-based
feature of text retrieval, the “Ide-dec-hi” formula in equation (73) is used for its better
performances for query refinement. In this case, the modified query vector is defined

as
fr=afy +8) f - 'ym}%x(flj) (79)
fi,€R
where maxR(fI].) is a vector to the highest ranked non-relevant image.

The modified query vectors of both contextual and visual feature spaces are sub-
mitted to the system for the next iteration. In the following section, we propose a
dynamically weighted linear combination of similarity fusion technique based on rel-
evance feedback information. This technique updates both inter and intra modality
feature weights in similarity matching for the next iteration to obtain a final ranked
list of images either from a individual modality (e.g., text or image) or combination

of both in a single search.

6.5 Adaptive Linear Combination of Multiple Ev-

idences

It is difficult to find a unique representation to compare documents and images accu-
rately for all types of queries. In other words, each feature representation along with
its similarity matching function might be complementary in nature and will have its
own limitations. In IR, the category of work is known as data fusion. Data fusion or
multiple-evidence combination describes a range of techniques in IR whereby multiple
pieces of information are combined to achieve improvements in retrieval effectiveness
[201, 202, 203]. The information can take many forms including different query repre-
sentations, different document representations, and different retrieval strategies used
to obtain a measure of relationship between a query and a document. Recently, some
multimodal image retrieval approaches also adopts some of the ideas from data fu-
sion research, where the most commonly used approach is a linear combination of
text and imag&based similarity scores based on pre-determined or adaptive feature
weights [125, 124, 119, 121]. This section presents an improved adaptive linear com-

- bination scheme based on user’s feedback information. It considers the importance
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of a feature based on both precision and rank order information of top retrieved im-
ages in its result list. By considering two criteria at a time, it provides us a better
measurement of importance or weightage of the features.

Before performing any linear combination, the distance measure scores of each
representation are normalized and converted to the similarity scores with a range of

[0,1] as
Dis(t,, £;) — min(Dis(£, 1)

im(f £ =1 —
Sim(fy, &) max(Dis(f,, f;)) — min(Dis(f,, f;))

(80)

where min(-) and max(-) are the minimum and maximum distance scores between
query and database images (documents) for a particular feature vector f. Generally,
a similarity score is the converse of a distance score. So, when the similarity score is
one (i.e. exactly similar), the distance score is zero and vice versa.

For the multi-modal retrieval purpose, let us consider ¢ as a multi-modal query
which has an image part as /, and a context part as annotation file as D,. In a linear
combination scheme, the similarity between ¢ and a multi-modal item j, which also

has two parts (e.g., image I; and context D), is defined as
Slm(q,j) = wISimI(Iq, I]) + wDSimD(Dq, l)J) ' (81)

where w; and wp are inter-modality weights within the context and image feature
spaces, which subject to 0 < w;,wp <1 and wy +wp = 1.

In this framework, the image-based similarity, Sim;(1,, ;) is again defined as the
linear combination of individual similarity measures in different level of image repre-

sentation as
Simy(1y, I;) = ZW}F Simi” (1, 1;) (82)
IF

where IF € {global,semi — global, region, visual — concept} and w!¥ are the weights
within the different image representation schemes (e.g., intra-modality weights). Whereas,
the context based similarity, Simp(D,, D;) is defined as the linear combination of
similarity matching based on different query representation schemes (as obtained by

query reformulation approaches in section 6.3) as

Simp(Dy, D;) = > wi” Simf* (D, D;) (83)
QF
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where QF € {Rocchio, Ide, Locall, Local2} and w®F are the intra-modality weights
within the different query representation schemes.

The effectiveness of the linear combination depends mainly on the choice of dif-
ferent inter and intra-modality weights. We provide an equal emphasis by providing
equal weights to all the features along with their similarity matching functions ini-
tially. However, the weights are updated dynamically during the subsequent iterations
by incorporating the feedback information from the previous round. To update the
inter-modality weights (e.g., w; and wp), we at first need to perform the multi-modal
similarity matching based on equation (81). After the initial retrieval result with a
linear combination of equal weights (e.g., wy = 0.5 and wp = 0.5), a user needs to
provide feedback about the relevant images from the top K returned images. For
each ranked result list based on individual similarity matching, we also consider the
top K images and measure the effectiveness of a feature by applying the following
function

_ Zszl Rank(i)

E(Dorl) = “Kxa * P(K) (84)

where Rank(i) = 0 if image in the rank position ¢ is not relevant based on user’s
feedback and Rank(i) = (K —i)/(K — 1) for the relevant images. Hence, the function
Rank(i) monotonically decreasing from one (if the image at rank position 1 is relevant)
down to zero (e.g., for a relevant image at rank position K). On the other hand,
P(K) = Rk /K is the precision at top K, where Ry, be the number of relevant images
in the top K retrieved result. Hence, the equation (84) is basically the product of
two factors, rank order and precision. The rank order factor takes into account the
position in the retrieval set of the relevant images, whereas the precision is a measure
of the retrieval accuracy, regardless of the position. Generally, the rank order factor
is heavily biased for the position in the ranked list over the total number of relevant
images and the precision value totally ignores the rank order of the images. To
balance both the criteria, we use a performance measure that is the product of the
rank order factor and precision. If there is more overlap between the relevant images
of a particular result set and the final one from which the user provides the relevant
feedback information, then the performance score will be higher. Both terms on the
right side of equation (84) will be 1, if all the top K returned images are considered
as relevant. The raw performance scores obtained by the above procedure are then

normalized by the total score as E(D) = &p = E(TE)(:% and E(I) = &y = E(T%(—-:%
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to generate the updated context and content feature weights respectively. For the
next iteration of retrieval with the same query, these modified weights are utilized for

the multi-modal similarity matching function as
Sim(q, j) = &Simy (I, I;) + &pSimp(Dy, D;) (85)

This feedback and therefore weight updating process can be continued as long as no
changes are noticed in final retrieval result due to the convergence of the system.

In a similar fashion, to update the intra-modality weights (e.g., ng and wif’),
we consider the top K images in individual result lists. So, for image-based simi-
larity in equation (82), we consider the result lists of different image features, IF €
{global, semi — global, region, visual — concept} and measure their weights by using
equation (84) for the next retrieval iteration. For text-based similarity in equation
(83), the top K images in result lists of different query features,

QF € {Rocchio, Ide, Locall, Local2} are cc;nsidered and text-level weights are deter-

mined in a similar way by applying equation (84).

6.6 Cross-modal Interaction and Integration

This section presents both sequential and simultaneous search approaches by consider-
ing query refinement and dynamic weight updating approaches in a single framework.
The approaches can be used to expand a contextual query using related keywords ob-
tained from top retrieved relevant (based on user’s feedback) annotation files based
on a context or content search in previous iteration. In a similar fashion, a visual
example-based query can be reformulated using image features from top retrieved
relevant images based on a content or context search in previous iteration. Hence,
the flexibility of the search processes can implicitly creates a semantic network to link

keywords with image features or vice versa.

6.6.1 Sequential Search with Pre-filtering and Re-ranking

Since a query can be represented with both keywords and visual features, it can
be initiated either by a keyword-based search or by a visual example image search.

Here, we consider a pre-filtering and re-ranking approach based on the image search
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in the filtered image set that is obtained previously by the context-based search.

This approach would be more appropriate and effective for searching images when

the queries are in totally abstract level, i.e., level 3 in [13]. Hence, a context-based

search can be performed at first to locate and filter images with high-level semantic

contents and latter we can perform an image-based search to refine or re-rank the

filtered images. In this process, combining the results of the context and content-based

retrieval is a matter of re-ranking or re-ordering of the images in a context-based pre-

filtered result set. The steps involved in this entire search process based on user

interaction are described in Algorithm 6.

Algorithm 6 Sequential Search Approach

1:

10:

11:
12:
13:

14:

15:
16:

Initially, for a multi-modal query q with a document part as D,, perform a textual
search with vector fp, and rank the images based on the ranking of the associated
annotation files by applying equation (62).

: repeat

Obtain user’s feedback from top retrieved K images about relevant images for
the textual query refinement.

Calculate the reformulated query vectors as f75 (Rocchio), f5; (Ide), f7, (Locall)
and f7; (Local2).

Re-submit the modified query vectors for context-based search.

Calculate the query weights w? by using (84) based on individual result lists.
Use the linear combination of similarity matching scores based on (83) with
updated weights to obtain a final ranked list.

: until user switches to visual only search

For the image part as I, of g, extract different query features as fi} obal f;2, f};’cal,
and f}/—concept.‘
Perform visual only search in filtered L images retrieved by previous context-
based search and rank them based on the similarity values by applying equation
(82) with an equal feature weighting.
repeat
Obtain user’s feedback about relevant images from the top retrieved K images.
Perform visual query refinements as 7", based on Equations (75) for global and
semi-global and (79) for visual concept-based feature respectively.
Re-submit the modified query vectors for content-based search, where each
individual Euclidean distances are replaced by Mahalanobis distance based on
Equation (78).
Calculate the feature weights w!F by using (84) based on individual result lists.
Use the linear combination of similarity matching scores based on (82) with
updated weights to obtain a final ranked list.

17: until user is satisfied or no more improvement
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Figure 37: Process flow diagram of the sequential search approach

Figure 37 shows the process flow diagram of the above multi-modal sequential and
filtering based search approach. Based on the algorithm, the context-based search
with query reformulation is performed first as shown in the left portion (1) of the
Figure and content-based search is performed in the filtered image set as shown in
the right portion (2) of the Figure 37. However, we can perform the textual and
visual searches in different order also depending on the relative importance of visual
and semantic features in a query, which make the whole process flexible enough to

search for any particular order.

6.6.2 Simultaneous Search

This section presents our simultaneous multi-modal search approach, where contex-
tual and content-based searches are performed simultaneously from the beginning and
the results are combined with an adaptive linear combination scheme as described in
Section 6.5. Due to the simultaneous nature of the search, user’s feedback infor-
mation can be propagated easily from one modality to another for query refinement
and dynamic weight updating. The steps involved in this approach are depicted in
Algorithm 7.
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Figure 38: Process flow diagram of the simultaneous search

Algorithm 7 Simultaneous Search Approach

1:

9:

Initially, for a multi-modal query ¢ with a document part as [, and an image
part as I, extract textual query vector as fp, and different image feature vectors
as f};qlobal, f;fy }anl’ and fl\zfconcept' .

Perform a multi-modal search to rank the images based on equation (81), where

'SimD(Dq, D;) is initially performed through Simye(D,, D;) equation (62) and

Simy (14, I;) is performed through equation (82) with initially equal weighting in

both inter and intra-modality weights.

repeat
Obtain user’s feedback about relevant images from the top retrieved K images.
Calculate the modified textual query vectors as f7, and image query vectors as
f}’; for different query representations.
Perform the individual context and content-based searches based on Equations
(83) and (82).
Update the inter (e.g., w; and wp) and intra-modality (e.g., w'F and w?F)
weights based on equation (84) by analyzing individual result lists.
Finally, combine the similarity scores with the updated weights based on Equa-
tion (85) to obtain a final ranked list of images.

until user is satisfied or no more improvement
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Figure 38 shows the process flow diagram of the above multi-modal simultane-
ous search approach. Here, the top-middle portion shows how a search is initiated
simultaneously based on both text and image parts of a multimodal query and later
the individual results are combined for a final ranked result list. Both sequential
and simultaneous search processes would be effective when there is a direct relation
between annotated keywords and image features. The majority of the multimodal
retrieval systems are based on this assumption [115]. Although in reality, we can find
many situation where search requirements and image annotations are so abstract that
there is practically no relation in between context and content (e.g., text and image)
information. In that case, a text-based search might be the only viable option. The
positive side is that there also exists many situations where text and images are corre-
lated and we can exploit that information in a better way by performing multimodal

searching, either sequentially or simultaneously as described in the previous sections.

6.7 Summary

One of the main drawbacks of the fusion-based (content and context) or multimodal
image retrieval research is that it lacks standard benchmarks to evaluate the re-
sults. In literature, almost all the systems [125, 124, 119, 123, 121] report better
performance for multimodal search compared to using only a single modality, i.e.,
either text or image. However, these systems use different data sets, different query
sets, and there is no standard comparison metrics. A standard image database with
a query set and corresponding performance measure model is needed for objective
performance evaluation of multimodal image retrieval systems. For a solution, the
ImageCLEF 2 retrieval benchmark was established in 2003 with the aim of evaluating
multimodal and multi-lingual image retrieval techniques. ImageCLEF provides tasks
for both system-centered and user-centered retrieval evaluation within two main ar-
eas: retrieval of images from photographic collections and retrieval of images from
medical collections. This chapter mainly presents our works in ImageCLEF’06 and
ImageCLEF’07 workshops [217, 218] for ad hoc image retrieval of photographic and
medical images in benchmark collections. A detailed description of the image collec-

tions, query sets, and the results we achieved will be described in Chapter &.

3http://ir.shef.ac.uk/imageclef/

125



Chapter 7

CBIR as Decision Support System

for Dermoscopic Images

In previous chapters, we have presented several image representation and retrieval
approaches for both narrow and broad image domains. There also exist some very
narrow application domains with specific retrieval objectives. In a decision support
based medical retrieval system, a physician mainly search for images according to
different disease categories (e.g., category search) in a particular modality, such as
looking for CT images of lung with bronchitis or emphysema in ASSERT system [137].
Due to the specific search requirements and very narrow extent of these application
domains, specialized image processing and pattern recognition techniques need to be
applied and domain knowledge needs to be exploited as much as possible for effective
retrieval. This chapter presents a CBIR approach in a specific narrow d;)main of
dermoscopic images as a diagnostic aid to dermatologists for automated melanoma
recognition [210]. Malignant melanoma is one of the most common skin cancers in
human being in the world [146, 147]. In Canada, an estimated 76,000 new cases
of common skin cancers were expected in year 2004 compared to 58,500 new cases
for 1994, which is up by 30%, as it was mentioned in the webpage of the Canadian
Dermatology Association (CDA) !. Detection of malignant melanomnia in its early
stages considerably reduces mortality, hence this a crucial issue for dermatologists.
In CBIR context, here the ultimate aim is to support decision making by retrieving

and displaying relevant images with past cases, either benign or malignant, compared

Yhttp://www.dermatology.ca/
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to an unknown query image. Dermoscopic images are produced by a technique that
allows in vivo microscopic examination of skin lesions. The technique is interchange-
ably named as dermoscopy, dermatoscopy, epiluminescence microscopy (ELM) and
skin surface microscopy [147, 148]. Dermoscopic images have proved to be very ef-
fective for early detection of malignant melanoma. Recently, digital imaging and
pattern analysis has been found to produce objective and reliable patterns of dermo-
scopic images of the pigmented skin lesions (PSL) [155, 156, 157]. In clinical practice,
several scoring systems and algorithms such as the ABCD rule (ie, asymmetry, border,
color, and differential structures), the seven-point checklist, and the Menzies method
have been proposed to improve the diagnostic performance of the less experienced
clinicians [149, 150]. However, these techniques require formal training and skills
in image interpretation and are highly dependent on the subjective judgment. The
identification of specific diagnostic patterns related to the distribution of colors and
differential dermoscopy structures can better suggest. a malignant or benign PSL and
demonstrates that computer aided diagnosis can be a very helpful tool, particularly
in areas which lack experienced specialists [154, 155].

Todate, most of the work in the dermatology area have focused on the problem of
melanoma recogﬁition, in which the likelihood of malignancy is computed based on
some feature extraction and classification schemes. A variety of statistical and ma-
chine learning approaches to classification of dermoscopic images to melanoma, benign
or common and dysplastic nevi are currently available [151, 152, 153, 155, 157]. Dig-
itization of the dermoscopic images after the initial visual assessment permits the
storage and use for the comparison when a lesion is being followed over time [156].
As a result, it also makes them a suitable candidate for the application area of CBIR,
where it could be used to presents cases that are not only similar in diagnosis, but
also similar in appearance and in cases with visual similarity but different diagnoses
for better understanding the diseases [128]. In the medical domain, there are already
some successful implementation of CBIR as decision support systems for different
modalities, such as CT images of lung in ASSERT [137], X-ray images of cervical
spine in WebMIRS [138], histological images in I-Browse system [139], or patholog-
ical images in IGDS [140] (reviewed in Chapter 2). Although, most of the systems
currently available are based on the radiological or pathological domain [128], there

is yet no CBIR system developed (as far we know) in the dermatological domain.
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Motivated by this, we developed an initial CBIR system for digital dermoscopic im-
ages with the aim to make it a decision support system in dermatology domain. By
observing the specific characteristics of the dermoscopic images, we proposed a fast
segmentation method for the automatic lesion detection as an image pre-processing
step [210]. Lesion specific various local color and texture related features are ex-
tracted for the image representation and a fusion-based similarity matching function
is proposed as a weighted combination of the Bhattacharyya and Euclidean distance

measures in color and PCA-based feature spaces.

7.1 Segmentation and Lesion Detection

Detection of the lesion is a difficult problem in dermoscopic images as the transition
between the lesion and the surrounding skin is smooth and often it is difficult to notice
accurately even for the trained dermatologist [154, 155]. Various image segmentation
methods have been proposed in the literature to delineate lesion boundaries from the
skin cancer images [158, 159, 154, 155]. In [158], an elaborate method was proposed
by reducing the color image to an intensity image and using a double thresholding and
a elastic curve fitting techniques to finally detect lesion boundary. The assumption is
based on the fact that the majority of the dermoscopic images are captured in a way
so the lesion is generally situated close to the center of the image and the background
healthy skin surrounds the lesion and more likely to be visible along the periphery
of the images. Color changes from the background to a lesion or from a lesion to
the background is more important then the color variations within a lesion or in the
background. However, their proposed method has three parameters, which might
require user interaction to tune the parameters and also require longer processing
time. Six different color image segmentation techniques for skin cancer images were
compared in [159]. It was found that lowest average error could be achieved by
adaptive thresholding and when two or more techniques are combined, the accuracy
can be improved further. In accordance with the above observations, we utilize an
iterative thresholding based segmentation method [162] by first transforming an image
in RGB color space to several intensity images and later combine them to detect the

lesion as described in following sections.
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7.1.1 Intensity Image Generation from HVC Color Space

Many color spaces have been designed to facilitate the color specification and the
key issue being considered in selection of a perceptually uniform color space. HVC
color space comes from Munsell color coordinate system, which is considered for its
successful imitation of human color perception [160]. It represents a color in terms
of hue (H), which indicates the types of the color; value (V), which tells the total
amount of light; and chroma (C) that describes how much white light is mixed with
the color (purity). There are several ways to mathematically transform the RGB to
the HVC(C color space. Because CIEL*a*b* color space is known for its good percep-
tual correspondence and simple computation, RGB values are first transformed into
CIEXY Z, and then changed to CIEL*a*b*, and then altered to HV C values using
the following formulas [160]:

X =0.607TR 4+ 0.174G + 0.201B

Y =0.299R + 0.587G + 0.114B

Z = 0.000R + 0.066G + 1.117B

L* = 116(Y/ Y)Y — 16, (Y/Y,) > 0.008856
L* = 903.3(Y/Yy), (Y/Yp) < 0.008856

a* = 500((X/Xo)"* — (Y/Y0)'/?)

b* = 200((Y/Yo)'"* — (2/Z0)'7)

H = arctan(b*/a*)

V=L

C = (a® + b?)1/?

X, Y, Z are the primaries in XYZ color system, while Xg, Yy, Zy are values of a nom-
inally white object-color stimulus, which are usually chosen to be 0.9642, 1.0 and
0.8249 respectively. If AH, AV and AC be the differences of H,V,C color compo-
nents of an image pixel A = (H,, V4, C)) and its background B = (H,, V3, Cs), then
NBS (National Bureau of Standards) color distance between A and B is defined as
follows [161]:

Enps(A, B) = 1.2 % \/ 20,0 {1 - cos(l—zo%AH)} +(AC)2 + (4AV)2  (86)
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(a) (b)

Figure 39: (a) Original color image (b) Grey level image of the original
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Figure 40: (a) Grey level histogram (b) Iterative thresholded image

There is a close relation between the human color perception and the NBS color
distance, which is shown in Table 1 [161]. Taking advantage of the above properties
of the HVC space and the NBS distance, we transform the image from original RGB
space to HVC space and determine the mean HVC values of the pixels from the
border (2 pixels wide from each side) of an image. Next, a color image in HVC space
is transformed into an intensity image in such a way that the intensity at a pixel
f(z,y),1 <z < M,1 <y <N for an image of size M x N shows the NBS color
distance of that pixel with the color of the background (e.g., mean of the border).
Hence, we obtain an intensity image in which it has higher grey level values in the
lesions and lower values in the background after re-scaling as shown in Figure 41(a).
We can observe the differences between the grey level histogram in Figure 40(a) of
an original image in Figure 39(a) and that of the intensity image in Figure 41(b)
generated by the above approach. The later has a more clear separation between

the background and foreground pixel intensities with a threshold value of around 27.
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Table 1: Correspondense between human color perception and NBS distance [161]

NBS Value || Human Perception
0~ 15 Almost the same
1.5~ 3.0 Slightly different
3.0 ~ 6.0 || Remarkably different
6.0 ~ 12.0 Very different
12.0 ~ Different color

006

Fraction of pixels

(a) (b)

Figure 41: (a) Intensity image generated from HVC space (b) Histogram of the in-
tensity image

Hence, by this transformation, lesion can be distinguished better from the background

skin by applying any thresholding methods.

7.1.2 Intensity Image Generation from Fuzzy C-Means Clus-

tering

To take spatial properties of images into account, we also consider another approach to
generate an intensity image by utilizing the fuzzy c-means (FCM) clustering [187, 188]
in a multi-dimensional feature space. FCM [187] is the most widely used fuzzy cluster-
ing algorithm which assigns degrees of membership in several clusters to each input
pattern. This algorithm is based on an iterative optimization of a fuzzy objective
function [189]:

c

Trem(U,V, X) = (uf)D(x:,v;) (87)

=1 j=1
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Figure 42: (a) Intensity image generated from FCM (b) Histogram of the intensity
image

where X = {xy,---,X;, - ,Xny} be a finite set of N unlabeled feature vectors, ¢
is the number of clusters and V = {vy,---,vj,---,v.} represents the unknown
prototype vectors (centroid), where x;,v; € R% The fuzzy c-partition is defined
by a ¢ x N matrix U = [u;] where, pj is the membership degree of vector x;
to the v;th prototype and satisfies p;; € [0,1],Vj,i. The distance measurement
D(x;,v;) is in general an Euclidean distance. The parameter m controls the fuzzi-
ness of membership of each datum and is usually set larger than 1. The properties
Yoig i = 1,4 and 0 < 3N, u; < N,Vj must be true for U to be a non
degenerate fuzzy c-partition. This iteration will stop when certain termination cri-
terion is met. That is, maxj,-{lu;-fﬂ)
superscript k£ denotes iteration number. For clustering, the parameters are set to be

m =2 and € = 107°. '

In [189], two eigen-based FCM clustering algorithms are proposed to accurately

- yfl} < € where ¢ satisfies 0 < € < 1 and the

segment images, which have the same color as the pre-selected pixels. Here, we utilize
the FCM with number of clusters is set to 2 to mainly generate an intensity image
for latter processing. In this approach, at each pixel, two membership values are
determined, where one representing the degree of certainty of a pixel belonging to
background normal skin and the other representing the degree of certainty of a pixel
belonging to foreground lesion. For input to the FCM, we extract the mean and stan-
dard deviation of RGB values as a 6-dimensional feature vector x in a neighborhood
of 5 by 5 pixels around each pixel of an image. After generating the cluster member-

ship values of each pixel based on applying FCM, we only consider the background
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(a) (b) (c)

Figure 43: (a) Thresholded image from the intensity image of Figure 41(a), (b)
Thresholded image from intensity image of Figure 42(a), (c) Final segmented im-
age with lesion mask.

membership values, which produces the intensity image after re-scaling as shown in
Figure 42(a). Here also we can observe the differences between the grey level his-
tograms of the original image (as shown in Figure 40(a)) and that of the intensity
image in Figure 42(b) generated by the above approach. The later has a much deeper
and wider valley, which would be more reliable for using any thresholding method.
The following section describes the thresholding operation to be performed on the

pre-processed intensity images.

7.1.3 Iterative Thresholding & Post-processing

Thresholding is a computationally inexpensive and fast technique for image segmen-
tation, which is suitable for real time application, such as the on-line retrieval in
this CBIR approach. However, thresholding simply based on gray-level dermoscopic
images is not enough as the transition between lesion and background skin is often
very smooth and not clear. Therefore, the above pre-processing operations are per-
formed to increase the distinguishing ability between the lesion and the background
skin. Correct threshold detection is crucial for successful segmentation. We utilize
the iterative thresholding algorithm as described in [162] by performing the follow-
ing steps of Algorithm 8. The above algorithm basically uses an iterative clustering
approach. An initial estimate of the threshold is made (e.g. mean image intensity).
Pixels above and below the threshold are assigned to the foreground and background
classes respectively. The threshold value is iteratively re-estimated as the mean of

the two class means [162]. After computing the threshold values for the two intensity
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Algorithm 8 Segmentation by iterative thresohlding

Compute pg, the mean intensity level of the border pixels as background
Compute up, the mean intensity level of the center pixels as foreground lesion
Toa=0
Thew = (BB + /J'F)/2
while T,,.., # Toq do
Up = EﬂN:_y) for f(x,y) < Thew and Np = Number of background (healthy
skin)-pixels
pr = ﬁ:y) for f(z,y) > Thew and Np = Number of foreground (lesion)-
pixels
Told = Tne'w
Tnew = (uB + MF)/2
end while

images generated in the pre-processing stage, we obtain the binary images as shown
in Figures 43(a) and 43(b). It clearly shows the better separation of the lesion from
the background healthy skin in both cases as compared to the image in Figure 40(b).
In some cases, the segmentation produces several skin lesion candidates due to the
presence of small non-lesion objects. So, a post-processing operation is applied on the
binary segmented images to reduce the number of objects based on the morphological
operation of opening and closing [163]. Specially, for a binary image, let the lesion
be represented by the set X and its background by the set complement X€¢. Both the
opening X o B = (X © B)® B and closing X e B = (X @ B)© B are derived from the
fundamental operations of erosion © and dilation @ [163]. Here B is usually called
a structuring element and has a simple geometrical shape and a size smaller than
the image X. The size of the structuring element in both the cases is chosen as a
square of 5 x 5 pixels. This size is good enough for removing small isolated objects or
filling the holes in this context. Both opening and closing operations act as nonlinear
filters that smooth the contours or lesion border of the input image and tiny artifacts
or holes are removed from background and lesion images. After detecting the lesion
masks from the segmented images, a simple union (OR) operation is applied to obtain
the final lesion mask as shown in Figure 43(c). Usually the largest object is the skin

lesion and is thus selected for further processing for feature extraction.
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7.2 Lesion-Specific Feature Extraction

Feature extraction from skin lesion is another very important step to develop an effec-
tive retrieval system for dermoscopic images. Many feature selection and extraction
strategies have been proposed [155, 156, 157] from the perspective of classification
of images as malignant or benign. These features are calculated, which attempt to
reflect the parameters used in medical diagnosis, such as ABCD rule or more ad-
vanced features. These features are certainly effective for the classification purposes,
as seen from the performances of some classification-based systems in this domain
[154, 155, 157]. However, features good for classification or distinguishing one disease
from another, may not be suitable for the presentation. In a retrieval system, we
are looking for similar images in terms of color, texture, shape etc. By selecting and
extracting good representative features, we may be able to identify images similar to
an unknown query image, whether it belongs to the same disease group or not.

In this direction, suitable local color feature in the form of a feature vector is
extracted by considering the mean or average color of the lesion in HV (' color space
and variance-covariances of the color channels by estimating the covariance matrix. If
average color feature f2'8 of a lésion is represented as £2'8 = [uy, py, uc|*, where py,
py and pc is the average H, V and C values in HV C space, then the cross-correlation
among color channels due to the off diagonal of the 3 x 3 covariance matrix ¥; of the

lesion of I; is estimated as

N;
Z (£F% — favg ka _ favg)T (88)
k‘:

'Q

where f** is the color vector of pixel z; and N; is the number of pixels of the lesion
of I;. Since the covariance matrix is symmetric, only 6 values of it need to be stored
in the feature vector for later similarity matching based on a Bhattacharyya distance
measure [81].

In addition, local texture features are extracted from the grey level co-occurrence
matrix (GLCM) [64] (similar feature extraction is described in Section 3.2.3 of Chap-
ter 3). Higher order features, such as energy, maximum probability, entropy, contrast
and inverse difference moment are measured based on each GLCM to form a five

dimensional feature vector and finally obtained a twenty dimensional feature vector
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frexture by concatenating the feature vector of each GLCM. We also uniformly quan-
tized the HVC space into 12 bins for hue (each bin consisting of a range of 30°), 3 bins
for the value and 3 bins for the chroma, to generate a 108-dimensional color histogram
feature vector £°°°*, Finally, the color histogram and texture moment based feature
vectors are normalized to the zero mean and unit variance and combined or concate-
nated to form a single vector. Since, the dimension of the combined feature vector
is large enough (e.g., 108 for color and 20 for texture for a total of 128) to contain
redundant information, we applied principal component analysis (PCA) [183, 184]
based dimension reduction technique (we also used the same technique in Section
3.4.1 of Chapter 3) to reduce the feature dimension. The feature vector with reduced
dimension is called as pr “ € R™ for an image I;. For the experimental purpose, the
dimensionality of the combined color and texture feature vector is reduced to m = 10
from d = 128 dimension by applying the PCA, where the first 10 eigenvalues re-
lated to the 10 principal components (PC’s) account for 99.9% of the total variances.
The advantage of using a smaller subset of eigenvectors is that it could increase the

retrieval speed when the large image databases are searched for.

7.3 Similarity Matching

For similarity matching based on color covariance-based feature, the distance between
the regions or segmented lesions of query image I, and database image I; is computed

by way of the Bhattacharyya distance metric as follows [172):

(Z, + zj)r

1 av,
DBhatt(Iqa Ij) = g(f;vg - f; g)T [ 9

l (ZQ+Zi1)
D)

V IZqHEH

where V% and f7*® are the average color feature vectors, and X, and X are the

1

(5" — £%) + 3 In (89)

covariance matrices of the lesions of image I, and I; respectively. Equation (89) is
composed of two terms, the first one being the distance between feature vectors of
image regions, while the second term gives the class separability due to the difference
between covariance matrices.

Euclidean distance measure is used for comparing feature vectors of I, and I; in
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Figure 44: Block diagram of the CBIR system.

PCA sub-space as

DEuclidean(Iqa I]) = l[f;m - f;’)call = Z ( é)cai - f]pca;) (90)

=1

For the above distances, the following function is used to transform the distance mea-

Dial)/op | where o3 is the distance

sures into a similarity measures as S(Iy, ;) = exp~
variance computed for each distance measure separately over a sample image set. Af-
ter the similarity measures of color and feature in PCA-subspace are determined as
Sehatt(Ig, I;) and Sguciidean (I, Ij), We aggregate them into a single similarity matching

function as follows:

S(14, I;) = wehattSphatt(Ig, I;) + WEuclideanSEuctidean (Ig; 1) (91)

Here, wghatt and Weuclidean 8r€ Don-negative weighting factors with normalization
(WBhatt + WEuclidean = 1), which needs to be selected experimentally. Figure 44 shows
the block diagram of the proposed CBIR approach. When a query image is sub-
mitted, pre-processing, segmentation and feature extraction are performed the same
way as database images as shown in the bottom level of Figure 44. The features of
query and database images are then matched in a similarity retrieval subsystem. The
match score is compared and sorted, where the top K matches are shown to the query

interface according to their ranks.
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7.4 Summary

In this chapter, we proposed and developed a CBIR based system as a diagnostic aid
for melanoma recognition. The system is evaluated for the retrieval of dermoscopic
images of pigmented skin lesions. The experimental results, as provided in Chapter
8, indicate that the proposed CBIR approach is effective to retrieve visually similar
lesions from a database compared to an unknown query image. From the image
retrieval context, we conjecture that by presenting images with known pathology that
are visually similar to the image being evaluated, it may provide a more intuitive aid
to the dermatologist, potentially leading to improvement in their diagnostic accuracy.
However, it is recognized that many other advanced image-based features and features
from other sources in the form of a case or lab reports would be necessary towards
a complete decision support system. The presence of an expert dermatologist is
considered necessary for the overall visual assessment of skin lesions and for the
final diagnosis based on ob jective. ev.aluation suggested by the system and contextual

information from lab report, such as histopathological tests.
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Chapter 8
Retrieval Evaluation

This chapter presents the detailed empirical analysis of the proposed retrieval tech-
niques described in this thesis. Specially, we present the data sets used for the exper-
iments, experimental settings, accuracy comparisons of classification and retrieval,
and analysis of results. This chapter is organized in such a way that in different
sections we present the experiments and result analysis that correspond to the tech-
niques proposed in different chapters (Chapters 3-7) of this thesis. In the following

section, we at first present the different image collections used for the experiments.

8.1 Image Collections

Several image collections from natural photographic and medical domains have been
used to test the retrieval effectiveness from different perspectives and compare the

techniques with existing well known image representation and retrieval methods.

8.1.1 The General Photographic Collection

The photographic image collection is the IAPR TC-12 benchmark created under Tech-
nical Committee 12 (TC-12) of the International Association of Pattern Recognition
(IAPR) [54]. This collection is publicly available for research purposes and currently
contains around 20,000 photos taken from locations around the world that comprises
a varying cross-section of still natural images. It is currently used for ad-hoc photo-
graphic retrieval task in ImageCLEF [57]. Few example images of this collection are

shown in Figure 45. The size of the images are in 360 x 480 or 480 x 360 pixels in
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Figure 45: Example images of the Photographic collection [54]

this collection. The domain of the images in this collection is very generic that covers
a wide ranges of daily life situations. Unlike the commonly used COREL ! images,
this collection is very general in content with many different images of similar visual
content, but varying illumination, viewing angle and background. Thﬁs making it
more challenging for successful application of image retrieval techniques. Due to the
growth of the desktop search market and popularity of tools such as FlickR 2, this
type of collection is likely to become of increasing interest to researchers. Each image
in this collection has a corresponding semi-structured caption consisting of the fields
as a unique identifier, a title, a free-text description of the semantic and visual con-
tents of the image, notes for additional information, the provider of the photo and
fields describing where and when the photo was taken. This annotation information
helps us to perform experimental evaluation of our multimodal retrieval approach as

presented in Chapter 6.

8.1.2 The Medical Collection

The medical collection contains around 66,000 images of different modalities with an-

notations in XML format in three different languages. This collection consists of six

thttp://www.corel.com
http:/ /www flickr.com
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Table 2: Individual Databases used in Medical collection
Collection || #Images || #Cases || #Annotation
Casimage 8725 2076 2076

MIR 1177 407 407
PEIR 32,319 32,319 32,319
PathoPIC 7805 7805 15,610
myPACS 15,140 3577 3577

Endoscopic 1496 1496 1496
Total 66,662 47,680 55,485

Figure 46: Example images of the Medical collection.

different data sets and used for medical image retrieval task in ImageCLEF [57, 58].
Hence, all the data sets are made available by the organizers of the CLEF 3. The
detailed statistics of each individual collection is shown in Table 2. The Casimage *
data set represents images of mostly of radiology modalities, along with some patho-
logical images, photographs, and illustrations. The PEIR ® (Pathology Education
Instructional Resource) data set contains pathology and radiology images and each
image has an associated annotation file. The nuclear medicine data set of Mallinkrodt

Institute of Radiology (MIR) © contains images mainly from nuclear medicine with

3http:/ /www.clef-campaign.org/
*http:/ /www.casimage.com/

Shttp:/ /peir.path.uab.edu/
8http://gamma.wustl.edu/home.html
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annotations provided per case basis. The PathoPic 7 collection contains only pathol-
ogy images with extensive annotation on a per image basis in English and German.
The myPACS 8 data set contains radiology images and the Endoscopic ® data set
consists of only endoscopic images with an English annotation per image basis [58].
As the entire collection contains variety of image data sets, imaging modalities, image
sizes, and resolutions, it makes really difficult to perform semantic search based on
current CBIR techniques. Few example images of different modalities in the medical

collection are shown in Figure 46.

8.1.3 The Radiograph Image Collection

This collection contains 10,000 radiographs grouped into 116 categories, which is
made available by the IRMA (Image Retrieval in Medical Applications) group from
the University Hospital, Aachen, Germany [141]. The images are in grey level and
PNG (Portable Network Graphics) format. All the images are classified manually by
reference coding with respect to a mono-hierarchical coding scheme, which makes this
collection distinctive from all other collections. In this scheme, the technical code (T)
describes the imaging modality or technique used, the directional code (D) denotes
the body orientation, the anatomical code (A) refers to the body region examined,
and the biological code (B) describes the biological system examined. The entire
code results in a character string of not more than 13 characters (TTTT-DDD-AAA-
BBB). Based on this code, 116 distinct categories are defined [141]. The images have a
high intra-class variability and inter-class similarity, which make the classification and
retrieval task more difficult. For example, Figure 47 shows that a great deal of intra-
class variability exists in images of category label 3, mostly due to the illumination
changes, small amounts of position and scale differences, and noise. On the other
hand, Figure 48 exhibits an example of inter-class similarities between two different
categories. Images in the upper row of Figure 48 belong to category label 52 (“1121-
127-700-500” in IRMA code), whereas images in the lower row belong to category label
5 (“1121-115-700-400” in IRMA code). Although the images in both categories are
hard to distinguish with an untrained eye, they differ in orientations (anteroposterior

vs. posteroanterior) and biological systems (uropoietic vs. gastrointestinal). The

http://alf3.urz.unibas.ch/pathopic/intro.htm
8http:/ /www.mypacs.net/
http://www.cori.org
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Figure 47: Intra-class variability within the category label 3, (annotated as “X-ray,
plain radiography, coronal, upper extremity (arm), hand, musculosceletal system”)

Figure 48: Inter-class similarity between category labels 52 and 5 (Radiograph Col-
lection))
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Figure 49: Frequency of images in 116 categories (Radiograph Image Collection)

Figure 50: Sample dermoscopic images of all three categories

detailed classification scheme of this collection can be found in [141]. Figure 49 shows
the number of images in each category in this collection. The images in the categories
are not uniformly distributed, such as category 111 has 1927 images, whereas four
categories only have 10 images. It makes both the classification and retrieval tasks
more difficult compared to many experimental collections with less number of image
categories and more or less uniform distribution of images [128]. Currently, this

collection is utilized for medical image annotation task in ImageCLEF [58].
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8.1.4 The Dermoscopic Image Collection

This collection contains 358 dermoscopic images pigmented skin lesions that are ob-
tained from two dermatology image atlases [148, 164]. The images are classified to
three different categories: benign or common nevi (106 images), dysplastic nevi (118
images) and melanoma (134 images). In this collection, the images are captured in
such a way that majority of the pigmented skin lesions are located in the central
portion as shown in Figure 50. Since, images are collected from two different data
sets and are captured by different devices under different conditions, it makes both
retrieval and classification tasks even harder. Figure 50 shows example images of all
three categories from the collection, where image in the first, second and last rows
belong to benign nevi, dysplastic nevi, and melanoma respectively. As can be seen
from the figure, it is hard to distinguish with untrained eyes whether an image is

benign or malignant.

8.2 Performance Measure

A major problem in CBIR is the lack of a-common performance measure which
allows the researcher to compare different image retrieval systems in a quantitative
and objective manner. Several measures for evaluating the performance of CBIR
have been proposed in [204]. For example, the precision-recall graph, the rank of the
first retrieved relevant image, the average normalized rank, the precision after 20,
50, and N images retrieved, the recall at the point where precision is 0.5, the recall
after 100 images retrieved, and so on. The performance measures assume a ground
truth notion of relevancy, i.e., every image should known to be either relevant or
non-relevant to a particular query. The best-known and most widely used measures
of retrieval efficiency in text retrieval as well as in CBIR are precision and recall
[204, 44]. Precision is the ratio of the number of relevant images returned to the
total number of images returned and Recall is the ratio of the number of relevant
images returned to the total number of relevant images. So, when the top N images
are considered and there are @) relevant images, the precision within top N images
is defined to be Precision(N) = Q/N, whereas recall be Recall(N) = Q/R. Here,
R be the number of all images that are relevant to the query image. Both precision

and recall are insufficient measures when used alone. Precision is always higher if we

145



Medical Tmge |

[ Ultrasound l | Microscopy I

Figure 51: Classification structure of Med-DB.

consider only few retrieved images. On the other hand, we can make always recall
one by retrieving all the images in a database. As a result, precision and recall are
used together and yrepresented as a precision-recall (PR) graph, in which precision
values are plotted against different values of recall. In our experiments, the precision-
recall graph are used as the main performance evaluation measure for the retrieval

techniques.

8.3 Performance Evaluation of Global Concept-Based

Retrieval

This section presents the experiments and results analysis of the global concept-based
image retrieval framework described in Chapter 3. The proposed retrieval techniques
of the framework are classification-driven at a global label. Hence, we need an appli-
cation domain or image collection where images are semantically organized and where
domain knowledge can be exploited by applying learning-based techniques. We per-
formed exhaustive experiments in such two different medical image collections with
known categories to evaluate the retrieval effectiveness. The performance measures on
two different collections would provide us a fair analysis of the proposed approaches as
the characteristic of images varies in between the collections. The first collection (we
call it MED-DB) contains around 4000 biomedical images of 26 disjoint categories.
This collection is basically a subset of the larger medical collection [58] as described
in Section 8.1.2. In this collection, the images are manually classified into three lev-
els based on their annotation information. In the first level, images are categorized

according to the imaging modalities (e.g., X-ray, CT, MRI, etc.), at the next level,
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Table 3: CV Error Rate (MED-DB training set)

Image Feature || Kernel || C v [ Error Rate (%)
EHD RBF | 200 || .005 ~11.22
CLD RBF || 200 || .007 12.52

Avg-Grey || RBF | 100 05 1476
Moment RBF | 100 [ .09 13.16

Table 4: CV Error Rate (IRMA-DB training set)

Image Feature || Kernel | C ~ Error Rate (%)
EHD RBF | 100 || .0015 23.06
CLD RBF | 10 | .0025 25.75

Avg.-Grey RBF 20 .05 26.49
Moment RBF | 100 {| .0015 24.60

images in each of the modalities are further classified according to the examined body
parts (e.g., head, chest, knee, etc.) and finally it is further classified by orientation
(e.g., frontal, coronal, sagittal, etc.) and/or distinct visual observations (e.g. ultra
sound with gallstones, CT images with nodules) as shown in Figure 51. The disjoint
categories as global concepts are selected from the leaf nodes (grey in color). Images
in this collection are in both grey-level (e.g., X-ray, CT) and color (e.g., microscopic
slides, photographs) with different sizes and resolutions. We used the Radiograph
collection of 10,000 grey level images (we call it IJRMA-DB) as described in Section
8.1.3 for our second experimental data set. This data set is suitable for experimental
evaluation, since the images are already pre-classified into 116 distinct categories or

global concepts.

8.3.1 Training of SVMs

To generate the global concept models based on classifier learning, we need to create
a training set of images with all categories that can reasonably represent the corre-
sponding collection. Hence, for training of the multi-class SVMs, 40% images of each
collection are manually and carefully selected as training sets such that they contain
images of all categories of the actual image sets. The remaining of the 60% images
are considered as test sets for both collection for measuring classification and retrieval
accuracies.

We used the radial basis function (RBF), K (x;,x;) = exp(—7||x; — x;{|*),7 > 0

as the kernel, since recent work shows that it works well when the relation between
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class labels and feature attributes is nonlinear [92]. There are two tunable parameters
while using RBF kernels : C and -y. The kernel parameter v controls the shape of
the kernel and regularization parameter C' controls the trade-offs between margin
maximization and error minimization. Increasing C' may decrease training error,
but it can also lead to poor generalization. It is not known beforehand which C
and v are the best for the classification problem at hand and are selected by cross-
validation (CV). In the training stage, the goal is to identify the best (C and « ),
so that the classifier can accurately predict testing data. For training set, a 10-fold
cross-validation (CV) is conducted, where we first divide the training set into 10
subsets of equal size. Sequentially one subset is tested using the classifier trained on
the remaining 9 subsets. Thus, each instance of the whole training set is predicted
once so the cross-validation accuracy is the percentage of data which are correctly
classified. Basically pairs of (C,y) are tried and the one with the best cross-validation
accuracy or the lowest error rate is picked. The best values of the parameters C and
-~ that are obtained for the different feature representations are shown in Tables 3 and
4 for the MED-DB and the IRMA-DB training sets respectively in terms of lowest
error rates (e.g. converse of accuracy). The error rates are higher for the IRMA-DB
as shown in Table 4 due to the presence of large number of categories, intra-class
variability, and inter-class similarity of images as described in Section 8.1.3. After
finding the best values of the parameters C' and 7 for each classifier with distinct
input, we utilize them to generate the final SVMs model files for latter prediction
purpose. For SVMs-based classification, we utilized the LIBSVM tool [182].

The test sets are used to generate the 'concept-based feature vectors as described
in Section 3.3 of Chapter 3 for retrieval evaluation. In following, we at first present
the error rates in the test sets of individual classifiers as well as error rates when they
are combined with different combination rules. After that, we show the analysis of

retrieval accuracies in terms of PR graphs.

Classification Accuracies (Global Concept):

The accuracies of the classifiers are measured in terms of error rate, which is the
proportion of number of images misclassified to total number of images in a test set.
The error rates of the test sets for the individual classifiers with low-level features as

inputs is shown in Table 5. We observe that classifiers with KHD-based feature of
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Table 5: Error Rate of the Individual Classifiers (test sets)
Test Set EHD CLD || Avg.-Grey || Moment
MED-DB | 13.20% | 14.35% 16.09% 14.41%

IRMA-DB | 24.40% | 26.25% 28.05% 25.90%

Table 6: Error Rate of Different Classifier Combinations (test sets)
Test Set Prod Sum Max Min Med
MED-DB | 10.70% || 10.05% || 12.06% || 14.05 % || 13.75%

IRMA-DB || 21.3% | 20.20% [ 24.05% || 26.45% [ 23.50%

MPEG-7 [62] as inputs comparatively performed better in both test sets, since they
achieved the lowest error rates (e.g., 13.20 % for MED-DB and 24.40% for IRMA-DB).
It conforms the importance of edge-based features to distinguish images in diverse
medical collections.

The classification performances of the test sets show significant improvements as
shown in Table 6, when the classifier combination rules are applied as described in
Section 3.3.1 of Chapter 3. We can observe that there is an improvement in accuracy
around 3% for MED-DB test set, when the SVMs with the lowest error rate (e.g.,
13.20%) is compared to the lowest error rate among the combination rules (e.g.,
10.05%). For IRMA-DB, we achieved around 4% accuracy improvement in a similar
fashion. The classifier combination improves the results because each of the single
SVM classifier evaluates different aspects of the image representation. In general,
the product and sum rules showed better effectiveness in both collections compared
to other rules. This conforms to the fact that representations used are conditionally
statistically independent. The classifier results are therefore rather uncorrelated and

complementary in nature.

Retrieval Accuracies (Global Concept):

For a quantitative evaluation of the retrieval results, we selected all the images in the
test sets as query images and used “query-by-ezample” as the search method where a
query is specified by providing an example image to the system. A retrieved image is
considered to be a correct matcﬁ if it belongs to the same query image category. We
at first evaluated, whether the proposed global concept-based feature representation
schemes can achieve any improvements when compared to the low-level features in

terms of retrieval accuracy. Figure 52 shows the precision-recall (PR) graphs based
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Figure 52: Accuracy comparison of global concept and low-level feature spaces

Figure 53: A snapshot of the retrieval result based on fF*HP

on retrieval results of different concept and low-level feature spaces for both MED-
DB and IRMA-DB collections. As shown in Figure 52, there are clearly visible large
gaps in performances in between low-level and concept-based feature spaces. For
example, by comparing the curves in between the low-level EHD (f®"P) and the
concept-based feature that is transformed from EHD by SVMs prediction (p®HP),
we can see there are around 5-8% increase in precision at each recall level for both

fFEHD BHD are represented by dashed and solid blue color curves

collections. Here, and p
as shown in Figure 52. A similar trend of improvements are observed in Figure 52 for
other concept-based feature spaces when compared to their corresponding low-level
feature representations. Such results are expected as the proposed concept-based
features retain better semantic categorization information in their representations
when compared to their counterpart low-level features.

For a qualitative evaluation of the performances, Figure 53 and Figure 54 show
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Figure 54: A snapshot of the retrieval result based on p™P
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Figure 55: Accuracy comparison of concept-based feature fusion approaches

the snapshots of the retrieval result for a query image in IRMA-DB. In Figure 53, for
a query image of chest X-ray (the image in the left panel) that belongs to the category
label 111, the system returns 5 images of the same category out of the top 10 images
by applying the Euclidean similarity measure on f*"P. The 5 relevant images are
located in rank position 1, 3, 5, 7 and 9 where ranking goes from left to right and
from top to bottom. On the other hand, as shown in Figure 54, the system returns
7 (in position 1-4, 6, 8, and 9 ) images from the same category based on the global
concept-based feature, pPP. In both cases, the irrelevant returned images are from
category label 108, where the main difference between these two categories is in the
orientation (e.g., anteroposterior (AP) vs. posteroanterior (PA)). There is thus clear
improvement in performance in the concept feature space for this particular query in
terms of finding images of the correct categories.

Figure 55 shows the PR graphs for both collections based on the concept-based
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feature fusion approaches as described in Section 3.3.1 of Chapter 3. Like the im-
proved classification accuracies as achieved by majority of the combination rules, here
also we can observe improved performances in terms of precision-recall in the corre-
sponding feature spaces. For example, Figure 55 shows around 3-5 % increase in
precisions at majority of the recall levels for the fusion based concept feature spaces,
pF™? and pS“™ when they are compared to pPHP, i.e., the best performed concept
feature without any fusion. This improvement in performances conforms to the im-
provement in classification accuracies based on applying combination rules as shown
in Table 6. Hence, the retrieval performances are closely related to the classification
accuracies in general. To perform statistical similarity matching-based retrieval as
described in Section 3.4 of Chapter 3, category-specific parameters (e.g., mean and
covariance matrix) were estimated from low-dimensional image features of the same
training sets used for training the SVMs (Section 8.3.1). Before performing dimen-
sion reduction based on PCA, each low-level image features were normalized with
zero mean and unit variance to transform feature attributes to the same scale and
after that features are concatenated to form a combined feature vector [80]. For the
retrieval evaluation, we consider a composite feature vector based on the combina-
tion of CLD, EHD, and Moment-based feature descriptors as described in Section
3.2 of Chapter 3. Here, CLD with 10 Y, 3 Cb and 3 Cr coefficients were extracted
to form a 16-dimensional feature vector for the MED-DB collection and CLD with
only 64 Y is extracted to form a 64-dimensional feature vector for the IRMA-DB
collection as it contains only grey level images. CLD with these dimensions was also
used for the experiments described previously. The dimensionality of the combined
feature vectors in both collections are reduced from ¢ — R" in such a way that the
n largest eigenvalues account for 99.0 % of total variance. In this way, we obtained
16-dimensional feature vectors for images in MED-DB and 20-dimensional vector in
IRMA-DB images in a PCA subspaces as f7¢4,

For SVMs training, we used the low-dimensional feature vectors as inputs with
corresponding category labels in both training sets. The RBF kernel is also utilized
here and after 10-fold cross validation, the best values of C and « were determined
as shown in Table 7. These values were finally used to generate the SVMs model files
for latter on-line predictions. Form Table 7, we can observe that CV error rates in

low-dimensional PCA subspaces for both training sets are close to the lowest error
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Table 7: CV Error Rates in PCA subspace (training sets)

data set || Kernel | C vy Error rate

MED-DB | RBF | 100 || .0025 11.96%

IRMA-DB || RBF | 200 || .002 23.90%
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Figure 56: Accuracy comparison of statistical, Euclidean and cosine similarity match-
ing

rates in Table 3 and Table 4. It demonstrates that there were enough redundancies
among feature attributes in the original feature spaces. Mereover, the low dimensional
feature vectors are computationally efficient for similarity matching as well reducing
logical database size.

Figure 56 shows PR graphs of the proposed statistical similarity measure based
retrieval in low-dimensional feature spaces (fFCA) for both collection. The retrieval
accuracies were also compared with an Euclidean similarity matching in f*¢A and

PCA) that is generated by probabilis-

cosine similarity matching in a concept space (p
tic output of SVMs based on fFCA as input. From Figure 56, it is clear that, the
statistical similarity matching performed significantly better when compared to Eu-
clidean similarity matching in the same feature space. Such a result is expected as
the Euclidean distance does not consider the correlations or variations of its feature

attributes in a feature space. This justifies the assumption that search by exploiting
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Figure 57: A snapshot of the retrieval result based on Euclidean similarity matching

Figure 58: A snapshot of the retrieval result based on Statistical similarity matching

the category-specific feature distribution information is more appropriate in a seman-
tically organized database. Similarity between two images based solely on Euclidean
or any other geometric distance measures might not conform to their semantic simi-
larity. One more observation is that the performances were almost equal in between
cosine measure in global concept-based feature space and statistical measure in PCA
based subspace. Although there is no direct relation, both techniques utilizes cate-
gory specific information either in a feature space or in a similarity matching function.
Hence, in semantically organized collections, it is always effective to exploit category
information as much as possible. For a qualitative evaluation of the performances,
Figure 57 and Figure 58 show the snapshots of the retrieval result for a query image
of “X-ray-Fumer” category in MED-DB data set. In Figure 57, for the query image,
system returns 8 images of the same category out of the top ten images by apply-
ing the Euclidean similarity measure on low-dimensional feature space. Whereas, it
returns all relevant images in the top ten positions when the statistical similarity
matching is performed in the entire data set as shown in Figure 58.

Finally, the retrieval accuracy of the statistical similarity measure is evaluated

by considering first two iterations of relevance feedback-based method. We manually
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Figure 59: Accuracy comparison with and without RF

selected one image from each category to form query image sets for both collections
and provide judgement about relevant and non relevant images from top retrieved 20
images at each iteration. Figure 67 shows PR graphs for statistical similarity based
retrieval with and without RF-based method. We can observe that performances
are slightly improved when both query parameter updating approaches (e.g., RF1
and RF2) were utilized as described in Section 3.4.3 of Chapter 3. Some of the
retrieval results were already good without providing any feedback information. The
RF methods showed good performances only when images at the top ranked positions
were not in the same category as the query image. Due to the averaging out of the
results for all queries, the PR graph only show slight improvements in accuracies in

both collections.

8.4 Performance Evaluation of Local Concept-Based

Retrieval

In this section, we evaluate our proposed local concept-based image retrieval ap-
proaches (described in Chapter 4) on a collection of 4000 natural photographic im-
ages. The collection (we call it PHOTO-DB) is basically a subset of the larger IAPR
photographic collection as described in Section 8.1.1. The images in this collection

are manually classified into 18 disjoint semantical categories at a global level as shown
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Figure 60: Classification structure of Photo-DB.

in Figure 60 with grey level leaf nodes. The categories include people such as groups
and closeup of individual persons; natural landscapes, such as mountains and beaches;
man made objects, such as cities and old architectures; and so on. This category in-
formation will serve as ground truths for experimental purposes. The images in all
categories are chosen in such a way that we can extract both visual and semantic con-
cepts at local image level for indexing as described in Chapter 4. The collection can
be termed somewhere in between a narrow and broad domain due to the variabilities

of the images.

8.4.1 'Training for Local Visual and Semantic Concepts

To generate the codebook of visual concept prototypes based on SOM clustering and
SVMs models for semantic concepts, we need a training set of images beforehand for
the learning processes. The training set used for this purpose consist of 10% images
of the entire data set (4000 images) resulting in a total of 400 images. Images in all
categories are selected as equal portions and the remaining 90% images of the data
set are used for retrieval evaluation. The reduced size of the training set compared
to the global classification-based approach is reasonable as less images are required
due to their partition to sub-images to generate local patches.

To find an optimal codebook for image encoding and representation, the training
images are partitioned into 64, 144, and 256 sub-images in (8 x 8), (12 x 12), and
(16 x 16) grids respectively. After the feature vector generation from the sub-images
or blocks of each partition scheme, the SOM is trained to generate two-dimensional
codebook of four different sizes as 256 (16 x 16), 400 (20 x 20 ), 900 (30 x 30),
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Table 8: Statistics of the Training Set for Local Semantic Concepts

Concept Number of Regions Concept Number of Regions
‘Water 300 Sky-Blue 320
Sky-Cloud 250 Snow 250
Sand 200 Grass 250
Rock 200 Floor 200
Brick 250 Pavement 200
Sun 220 Dark Background 270
Skin-Light 230 Skin-Dark 210
Cloth-Plain 260 Cloth-Textured 200
Faces 245 Leaf 200
Green Foliage 290 Floral 280

Table 9: Error rates (training set)

Kernel C v || Degree || Error rate (%)
RBF 200 || 0.05 17.10
Polynomial || 100 1 21.22
Polynomial || T00 2 22.09

and 1600 (40 x 40) units. For retrieval based on visual concepts, the testing is
therefore conducted with twelve (3 different partitions x 4 codebook sizes) different
configurations. After the codebook construction process, all images in the test sets are
encoded with the indices of concept prototypes of a particular codebook and visual
concept frequency based feature vectors (e.g., V-Concept) are generated as described
in Section 4.1.2 of Chapter 4. The effective combination of image partition and
codebook size will be determined based on retrieval accuracies of their corresponding
vectors in the test set. For training of the SOM, we set the initial learning rate as
a = 0.07,

For modeling of local semantic concepts, we manually defined 20 local categories
based on image regions of the training set. To generate the local patches, each image
in the same training set are at first partitioned into an even grid of 8 x 8 sub-images.
Only sub-images that conform to at least 70-80% of a particular category (concept)
out of the 20 pre-defined categories are selected and labeled with the corresponding
category label.

Table 8 shows the statistics of each local semantic concept with number of regions
to present them in the training set for SVMs. For training of SVMs, we experimented
with both RBF and Polynomial kernels [165]. The error rate of training is measured
by a 10-fold CV. The lowest error rate is achieved with RBF kernel (17.10) as shown
in Table 9. Hence, after finding the best values of parameters C and v of the RBF
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Figure 61: Accuracy comparison of different codebook sizes and image partitions.

kernel, these are utilized to generate the final SVMs model file for later prediction

and annotation of images in the test set.

8.4.2 Retrieval Accuracies (Local Concept)

For a quantitative evaluation of the retrieval results, all the images in the test set are
selected as query images. A retrieved image is considered a match if it belongs to
the same category as the query image out of the 18 disjoint semantical categories at
global level.

Figure 61 shows the average precisions within top 20 images (P(20)) for visual
concept-based retrieval (e.g., V-concept) on four codebook sizes. It is clear from
the Figure 61 that a larger codebook size generally leads to higher precision and a
partition of images into 16 x 16 grid (black solid curve in the figure) achieved better
precisions for all different codebook sizes in this collection. The general trend here is
that larger codebook size with smaller blocks leads to higher retrieval accuracy and
in the same time more storage and computation requirements. Hence, we choose a
codebook of size 400 (20 x 20) units, which corresponds to the first turning point
in Figure 61 and consider the 16 x 16 partition scheme for the generation of all the

proposed feature representations and consequent retrieval evaluation.
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To show the effectiveness of the proposed fuzzy visual concept vector (FVCV)
and visual concept structure descriptor (VCSD) as described in Sections 4.1.3 and 25
of Chapter 4, they are compared with simple frequency-based visual concept vector
(V-concept). In addition, the performances are compared to a global color histogram
(GCH), which is quantized to a 64 bin (4 x 4 x 4) in RGB color space and 16-
dimensional MPEG-7 color layout descriptor (CLD) [62] by considering 10 Y, 3 Cb
and 3 Cr coefficients for each image. The reason of choosing these two low-level
feature descriptors is that they present different aspects of images, where GCH simply
counts the frequency of pixels in each bin of a histogram and CLD considers the spatial
layout of colors in images. For fuzzy visual concept-based representations, we consider
the value of m of the fuzziness exponent as 2 and an (8 x 8) structuring element for
the visual concept structure descriptor. In all representations, we apply a Ll-norm
(e.g., city block or Manhattan) based distance measure to compare a query and
database images. Figure 62 presents the PR graph of all the feature representation
schemes. We can observe that the performance of the V-concept is in between the
performances of GCH and CLD. However, both the proposed feature representation
schemes (e.g., FVCV and e VCSD) performed significantly better then GCH and V-
concept and slightly better then CLD. The results indicate that the proposed feature

representations better capture the information based on fuzzy and spatial relations
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Figure 63: Accuracy comparison based on global and local membership values

between concepts.

Figure 63 shows the PR graph of the proposed visual concept representation
schemes based on both global and local fuzzy membership values. For the local
fuzzy visual concept vector (FVLCV), retrieval were performed by considering up
to local neighborhood levels LNy, LN,, and LN3. The retrieval accuracies are al-
most similar in all these cases as shown in Figure 63. However, we achieved slightly
better performance when the membership values were computed from a neighbor-
hood level LN,. By increasing the level further, the performance was decreasing to
a point which matches to the performance based on global membership values. It
demonstrate that, it is effective if we consider membership values only from one or
two level of local neighborhood. Since the majority of correlated or similar concepts
prototypes are located close to each other due to the topology preserving structure
of the codebook. Moreover, it is also better from an efficiency viewpoint as less time
is required to compute the membership values from local neighborhood to generate
the final feature vector. _

To show the effectiveness of the probabilistic semantic concept vector (PSCV) and
semantic concep;t structure descriptor (SCSD) they are compared with the simple
frequency-based semantic concept vector (S-concept) as well as with GCH and CLD.
For SCSD, we used a small structuring element of size (4 x 4) units due to the 8 x 8

partition of images. We can observe that precisions of both PSCV and SCSD are
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alWays higher at all recall levels when compared to the other three representation
schemes. Overall, the precision of the semantic concept-based vectors are better
compared to the visual concept-based representations. The reason behind this is the
exploitation of domain knowledge in a supervised manner for concept modeling and
consequent feature extraction process. Finally, from both PR graphs in Figure 62 and
Figure 64, we can conclude that our feature representation methods better capture

the semantic information compared to the low-level features commonly used in CBIR.

8.5 Performance Evaluation of Query Expansion

Techniques

This section evaluates the retrieval effectiveness of the proposed automatic query
expansion techniques described in Chapter 5. For this, we performed experiments on
the same PHOTO-DB data set as described in previous section.

Figure 65 and Figure 66 show the PR graphs of the automatic query expansion
approaches in local visual and semantic concept spaces after two iterations of feedback
information. The performances are compared without any query expansion and with

a relevance (RF) method based on Rocchio algorithm [106] as described in Section
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6.3 of Chapter 6. For query expansion based on local analysis and RF, we consid-
ered top 20 retrieved images from previous iteration as local feedback for the next
iteration. The Rocchio’s RF method is interactive in nature, which relies on both
positive and negative feedbacks from users. Due to the automatic simulation of the
feedback information, we consider the first two irrelevant images as negative feedback
at each iteration. For query expansion approach based on global analysis in visual
concept space, we only need to perform one extra retrieval iteration to exploit the
information from global cluster and do not require any local or user’s feedback infor-
mation. For local analysis based approaches, we selected 3 additional concepts from
local clusters for each query concepts and for global analysis, 10 concepts are selected
from codebook for a query image.

It is clear from both Figure 65 and Figure 66 that performances were improved for
all the query expansion and RF-based approaches compared to the case when no query
expansion is utilized in vector space model based representation of visual and semantic
concepts (e.g., V-VM and S-VM). Although the performances of RF-based approach
(RF-Rocchio) were best in both visual and semantic concept spaces, there were no
significant differences when we compared with our query expansion approaches, spe-
cially in visual concept based feature space. The performances of query e-xpansion
based on local analysis of metric cluster (QE-Local-Metric) is comparatively better
then the local analysis based on correlation cluster (QE-Local-Correltion) in both
visual and semantic concept spaces. The most probable reason is that it is difficult
to capture enough concept correlation information from a local image set without
considering their relative ordering and distances in a neighborhood. Therefore, when
we encode that information in a metric cluster, we achieved better performances as
shown in both PR graphs. To also check the consistency of the query expansion
approaches in based on local feedback, we also considered 5 iterations of feedback
and compared the performances by considering the average precision within top 20
(P(20)) retrieved images as shown in Figure 67. From Figures 67(a) and 67(b), we
can observe one common trend that the precision increases rapidly at the first 2-3
iterations and after that the improvement subsides or the system converges. Hence,
we can say that the performances of the query expansion approaches are consistent
from one iteration to another and query expansion based on local analysis of metric

cluster (QE-Local-Metric) performed comparatively well in both feature spaces.
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Table 10: Improvement using expanded queries

Number of additional concepts 10 15 20 30
Without Query Expansion 0.3532 0.3532 0.3532 0.3532
With Query Expansion 0.3766 0.3845 0.3706 0.3478
Improvement +662% || +886 % || +4.90% [ -1.50%

Moreover, the query expansion approach based on a global analysis (e.g., QE-
Global) also performed equally well compared to the RF-based approach as shown
in Figure 65 and Figure 66. This validates the initial assumption that instead of

expanding the terms (concepts) based on each query term, it is effective to select

_expanded terms based on a single virtual query vector only. The results were also

evaluated by comparing the overall average precisions among the average precision
on top 20, 30, 50, and 100 retrieved images with and without query expansion with
different number of added concepts. From Table 10, it can be observed easily that the
improvement by expanded queries increases when the number of additional concepts
increases initially. But after adding certain number of concepts, the performance
started to decrease and at a point it even became lower then the original query.
This could be explained by the fact that fewer selected concepts contains better
information and when the number is getting larger, the expansion approach might
add the concepts that are not related to relevant images.

Figure 68 shows the effectiveness of Quadratic distance measure as described in

Section 5.3 of Chapter 5, it is compared with a cosine distance in the same visual
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Figure 68: Average Precision curves for the Quadratic similarity matching with and
without Inverted Index

Table 11: Retrieval time with and without indexing schemes

Linear Search (ms) || Inverted Index (ms) [ QE-Inverted Index (ms)
445 119 236

concept-based feature space (V-VM) as well as compared with and without query
expansion in inverted indexing scheme. For query expansion, we consider up to
two level of neighborhoods (e.g.,LNQ). The quadratic distance is much better then
L, distance and the result indicate that the correlation among the concepts is not
negligible. In addition, the result shows that the performances of the Quadratic
distance measure based on the sequential search in the whole collection and based
on query expansion in inverted index are comparatively close. The performance
in inverted index without query expansion degrades to the extent that can not be
ignored. ‘

To test the efficiency of the search schemes, we also compared the average retrieval
time (in milliseconds) with and without indexing schemes as well as with and without
query expansion (in an Intel Pentium 4 processor with Windows XP as the operating

system and 1 Gb memory) for the query set. From the results in Table 11, it is
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clear that the search in inverted index is about four to five times faster compared
to the linear search in the entire test set. Whereas, the search in inverted index
with query expansion is about two times faster then liner search with much improved
retrieval accuracy. Hence, the Quadratic distance matching in inverted index with
query expansion has proved to be both effective and efficient.

In summary, we can conclude that automatic query expansion approaches based on
correlation information both at local and global levels improve retrieval performances
of initial queries and also seems to be comparative when compared to a well known
RF-based algorithm. Hence, query expansion techniques need to be explored further

in CBIR domain in a similar manner it was investigated in text-retrieval domain.

8.6 Performance Evaluation of Fusion-Based Re-
trieval

This section presents the experimental results of the fusion based retrieval approaches
in both context and content-based feature spaces either using a single modality or
combining both modalities described in Chapter 6. We utilized the entire photo-
graphic collection of 20,000 images and the medical collection of 66,662 images de-
scribed in Sections 8.1.1 and 8.1.2 respectively. Since, we performed the experiments
in benchmark collections under CLEF [57, 58], the results are generated based on
the query topics (e.g., a short sentence or phrase describing the search request in
a few words with three relevant images) provided by the organizers of CLEF. The
performances of different methods/approaches are described here based on our sub-
mission of different runs in ImageCLEF competition for the year of 2006 and 2007
[217, 218]. We also extended our experiments based on two modified query sets for
both collections to show the limitation and real effectiveness of the proposed methods.

There are some differences among the data sets and the query topics used for the
evaluation in ImageCLEF’06 [55, 56] and ImageCLEF’07 [57, 58]. For example, the
medical retrieval task added two news data sets in 2007 and the query topics are also
different from the ones used in 2006. The photographic images were fully annotated
in 2006 with a “Description” tag, whereas in 2007, they were lightly annotated with
a “Title” tag only. Although, query topics and image collection were the same in

both years for photographic image retrieval. In following, we mainly describe about
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2 church with moere-than two towers 32 photos of female guides
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landscape in Patagonia 35 bird flying
5  animal swimming 6. photos-with Machu Piechn in
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Figure 69: Topics for the Photographic (IAPR) collection in ImageCLEF [57]

the topics in ImageCLEF’07 [57, 58] as well as the modified mixed mode query sets,

whereas the details of the topics for 2006 evaluation are provided in overview papers

[55, 56].

8.6.1 Query Set of General Photographic Images

A total of 60 topics were provided by the ImageCLEF’07 [57] for ad-hoc retrieval of
general photographic images as shown in Figure 69 with a short description of each
topic. In order to increase the reliability of results and to make the task realistic, we

can see that many topics are highly semantic in nature with geographic constraints

or named entities, which makes the content-based image search quite difficult.
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Visual Query: Mixed Query: Semantic Query:

V1. Cardiac MRI M1. Glioblastoma CT $1. Pathology image

V2. Mediastinal CT M2. Gastrointestinal with HIV

V3. Photograph of dark endoscopy with polyp $2. Merkel cell
brown skin lesion M3. Fetal MRI carcinoma

V4. X-ray hip fracture M4. Mediastinum PET $3. Bile duct cancer

V5. Ultrasound with M5. Lung x-ray pathology image
rectangular sensor tuberculosis $4. Gastrointestinal neoplasm

V6. Leg of person M. CT liver abscess 85. Tuberous sclerosis

V7. X-ray dental implant M7. Pathology non $6. Myocardial infarction
orfilling hodgkins lymphoma pathology image

V8. Images acute otitis M8. Photography of $7. Mitral valve prolapse
media insect bite $8. Image of nursing

V8. Medial meniscus M9. MRl or CT $9. Pulmonary embolism
MRI of colonoscopy all modalities

V10. Gout images foot  M10. Stress fracture X+ay $10. Microscopic giant cell
Figure 70: Topics for the Medical Collection in ImageCLEFmed [58]

8.6.2 Query set of Medical Images

For ad-hoc medical image retrieval, a total of 30 query topics were provided [58] that
were initially generated based on a log file of Pubmed °. All topics were categorized
with respect to the retrieval approaches expected to perform best, i.e., visual topics for
CBIR, semantic topics for text retrieval and mixed topics for multi-modal retrieval.
Each topic consisted of the query itself in three languages (English, German, French)
and 2 to 3 example images for the visual part of the topic. Figure 70 shows all three

types of topics based on a short description in English.

Performance Measures used in CLEF:

The relevant sets of all topics were crated by the CLEF organizers by considering
top retrieval results of all submitted runs of the participating groups. Results for
submitted runs were computed using the latest version of TREC-EVAL ! software.
Submissions were evaluated using un interpolated (arithmetic) Mean Average Pre-
cisions (MAP) and Precision at rank 20 (P20) because most online image retrieval

engines like Google, Yahoo, and Altavista display 20 images by default. Further

O0http:/ /www.pubmed.gov
Uhttp:/ /trec.nist.gov/trec — eval/
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measures considered include Geometric Mean Average Precision (GMAP) to test ro-
bustness, and the Binary Preference (BPREF) measure which is a good indicator for

the completeness of relevance judgments [57].

8.6.3 Result Analysis of the Submitted Runs in ImageCLEF’06

This section presents the techniques used and the analysis of different runs submitted
by us (CINDI group) in ImageCLEF’06 [217, 55, 56]. For the ad-hoc image retrieval
from both photographic and medical image collections, we experimented with cross-
modal interaction and integration approaches described in Chapter 6, based on the
relevance feedback in the form of textual query expansion and visual query point
movement with adaptive similarity matching functions. We submitted three different
runs for the ad-hoc retrieval of the photographic collection and three runs for the
ad-hoc retrieval of the medical collection as shown in Table 12 and Table 13. In
all these runs, only English is used as the source and target language without any
translation. For RF-based method, a user provided feedback from top retrieved 30
images. For content based search, the overall image level similarity is measured by
fusion of manually weighted combination of individual similarity measures of different -
image representation as described in Section 6.2 of Chapter 6 and in our workshop
paper in [217].

As shown in Table 12, for photographic image retrieval with run ID “Cindi- Text-
Eng”, we performed only an automatic text-based search without any feedback as
our base run. For the second run with ID “Cindi-TXT-EXP”, we performed manual
feedback in the text only modality. For textual query expansion, we used an ap-
proach similar to the “Locall” described in Section 6.3 of Chapter 6. In this case,
we considered 10 additional keywords for query expansion. For the third run with
ID “Cindi-Ezp-RF”, both text and image modalities are interactively combined in a
single search process (with only one or two iterations of feedback for each modality).
For image-based query refinement, a similar approach was used as described in Sec-
tion 6.4 of Chapter 6 and for final merging of the result lists, the weights are selected
as wp = 0.7 and w; = 0.3 for the text and image-based search as described in [217].
From Table 12, it is clear that the MAP scores are almost doubled for the last two
runs compared to the base run and the best performance is obtained with feedback

and integration of text and image search. In fact, these two runs ranked first and
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Table 12: Results of the photographic image retrieval (ImageCLEF’06)

Run ID Modality A/M RF QE | MAP
Cindi-Text-Eng Text Automatic || Without || No {f 0.1995
Cindi-TXT-EXP Text Manual With Yes || 0.3749

Cindi-Exp-RF || Text+Image Manual With || Yes || 0.3850

Table 13: Results of the medical image retrieval (ImageCLEF’06)

Run ID Modality RF MAP | R-prec | B-pref
CINDI-Fusion-Visual Image Without || 0.0753 || 0.1311 || 0.166
CINDI-Visual-RF Image With || 0.0957 || 0.1347 || 0.1796

CINDI-Text-Visual-RF | Image+Text | With | 0.1513 || 0.1969 || 0.2397

second in terms of the MAP score among the 157 submissions in the photographic
retrieval task in ImageCLEF’06 [57]. We performed manual submissions using rele-
vance judgement from the user. This along with the integration of both modalities
was the main reason for such good results. '

For the medical retrieval task, the results are shown in Table 13. We performed
a content-based search without feedback for the first run with ID “CINDI-Fusion-
Visual”. For this search, the overall image level similarity is measured by fusion of
manually weighted combination of individual simﬂarity measures of different global,
semi-global, local, and low-resolution image representations as described in [217].
We ranked first in this run in the category (automatic+visual) based on the MAP
score (0.0753) out of 11 different submissions. For the second run with ID “CINDI-
Visual-RF”, we performed manual feedback in the image only modality. For this
category (e.g., visual only run with RF), only our group has participated this year
and achieved a better MAP score (0.0957) than without RF as shown in Table 13.
For the third run with ID “CINDI-Text- Visual-RF”, we performed manual feedback
in both modalities and merged the result lists in a similar way as we did for the
photographic collection. For this search with a MAP score of 0.1513, it is clear that
combining both modalities is far better then using a single one and validates our
initial assumption for multimodal retrieval.

Overall, our participation was successful in ImageCLEF’06 as we achieved some
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Table 14: Results of the photographic image retrieval (ImageCLEF’07)

Run ID Modality MAP | BPREF
CINDI-TXT-ENG-PHOTO Text 0.1529 | 0.1426
CINDI-TXT-QE-PHOTO Text 0.2637 || 0.2515

CINDI-TXT-QE-IMG-RF-RERANK | Image+Text || 0.2336 || 0.2398
CINDI-TXTIMG-FUSION-PHOTO || Image+Text || 0.1483 || 0.1620
CINDI-TXTIMG-RF-PHOTO Image+Text || 0.1363 || 0.1576

very good results by applying our fusion-based retrieval approaches in both single

and multimodal search processes as described in Chapter 6.

8.6.4 Result Analysis of the Submitted Runs in ImageCLEF’07

This section presents the techniques used and the analysis of different runs submitted
by us (CINDI group) in ImageCLEF’07 [218, 57, 58]. For the ad-hoc image retrieval
from both photographic and medical image collections, we performed experiments
based on the multiple query reformulations and dynamic fusion-based approaches
described in Chapter 6.

The descriptions and performances of the different official runs are shown in Table

14 and Table 15 for ad-hoc retrieval tasks of the photographic and the medical col-
lection respectively. We submitted five different runs for the ad-hoc retrieval of the
photographic collection in ImageCLEF’07 [57, 58], where first two runs are based on
text only search approaches and last three runs are based on multi-modal searches.
For the first run “CINDI-TXT-ENG-PHOTQ?”, we performed only a manual text-
based search without any query expansion as our base run. This run achieved a MAP
score of 0.1529 and ranked within the top 30% out of all 476 submitted runs. Our
second run “CINDI-TXT-QE-PHOTO?” achieved the best MAP score (0.2637) among
all our submitted runs and ranked 21st ImageCLEF’07. In this run, we performed
. two iterations of manual feedback for textual query expansion and combination based
on dynamic weight update schemes for text only retrieval as described in Section 6.3
of Chapter 6. The rest of the runs are based on multi-modal approach, where for

the third run “CINDI-TXT-QE-IMG-RF-RERANK”, we performed the sequential
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Table 15: Results of the medical image retrieval (ImageCLEF’07)

Run ID Modality MAP | R-prec
CINDI-IMG-FUSION Image 0.0355 (| 0.0566
CINDI-IMG-FUSION-RF Image 0.0396 || 0.0574

CINDL-TXT-IMAGE-LINEAR | Image+Text || 0.1906 || 0.2366
CINDI-TXT-IMG-RF-LINEAR || Image+Text || 0.1227 || 0.1545

approach (Section 6.6.1 of Chapter 6) with pre-filtering and re-ordering with two it-
erations of manual feedback in both text and image-based searches. However, the
re-ordering approach did not improve the result as a whole (e.g., ranked 32nd) in
terms of MAP score (0.2336) as compared to the text only query expansion approach.
For the fourth run “CINDI-TXTIMG-FUSION-PHOTO”, we performed a simulta-
neous retrieval approach without any feedback information with a linear combination
of weights as wp = 0.7 and w; = 0.3 and for the fifth run “CINDI-TXTIMG-RF-
PHOTQ?”, two iterations of manual relevance feedback are performed. However, these
two runs did not perform well in terms of the MAP score as compared to the sequential
approach due to early combination and semantical nature of majority of the topics.
Table 15 shows the results of the four submitted runs for the image retrieval task in
the medical collections. In the first run “CINDI-IMG-FUSION”, we performed only
a visual only search based on various image feature representation schemes (Section
6.2 of Chapter 6) without any feedback information and with a linear combination of
equal feature weights. For the second run “CINDI-IMG-FUSION-RF”, we performed
only one iteration of manual feedback for visual query refinement and combined the
similarity matching functions based on the dynamic weight updating scheme. For this
run we achieved a MAP score of 0.0396, which is slightly better then the score (0.0355)
achieved by the first run without any RF. These two runs ranked among the top five
results based on pure visual only run in ImageCLEF’07. For the third run “CINDI-
TXT-IMAGE-LINEAR”, we performed a simultaneous retrieval approach without
any feedback information with a linear combination of weights as wp = 0.7 and
wy = 0.3 and for the fourth run “CINDI-TXT-IMG-RF-LINEAR”, two iterations of
manual relevance feedback are performed similar to the last two runs of photographic

retrieval task. From Table 15, it is clear that combining both modalities for the
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Figure 71: Example of a sematic topic in ImageCLEFmed’07 [58]

medical retrieval task is far better then using only a single modality based on the
MAP scores.

Overall, the performances of content-based search approaches are very low com-
pared to the the text-based and multimodal searches as observed in Table 13 and
Table 15. The main reason is the high-level semantic contents in query topics. It
strongly validates the point that for semantic retrieval of images in broad domain, as-
sociated or contextual information largely improve retrieval results. The similar trend
were also observed in ImageCLEF results for the last few years. From the results of
Table 14 and Table 15, we can also observe that our adaptive multimodal runs did not
improve the result as we expected. The reason for this might be the system did not
get enough feedback information to make the weight update algorithm perform effec-
tively as described in Section 6.5 of Chapter 6. In some cases, combining image and
text-based searches might also have negative effect in final retrieval result. Figure 71
shows a example semantic topic for medical retrieval with perceptually very different
relevant images. This topic should be well suited for textual retrieval approach only
and by refining or integrating it with a content-based search would only decrease the

performance of a final retrieval result set.

8.6.5 Extended Result Analysis for Mixed-mode Query Sets

In the introductory part of Chapter 6, we showed with an example that cross-modal or
multi-modal retrieval approaches would be only effective, when a search requirement
is in mixed-mode nature. Therefore, the contents of texts and images should have
some internal relationship. To show the real effectiveness of the proposed multi-

modal approaches, we performed additional experiments and evaluate the results
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Figure 72: Mixed-mode topics for Photographic collection [57]
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Figure 73: Mixed-mode topics for Medical collection[58]

based on mixed topics for both collections. For the IAPR collection, 30 mixed topics
are selected as shown in Figure 72, which were initially considered for visual only
retrieval task. For the medical collection, 10 mixed topics were already provided as
shown in Figure 73 or the topics in the middle column of Figure 70.

Table 16 and Table 17 show the mixed topic based retrieval results of photographic
and medical collection respectively. Only the MAP scores of different result sets that
are generated by different combination of methods as described in Chapter 6 are shown
here. This time, we provided feedback information from top retrieved 50 images so
that dynamic weight update method can perform effectively. By observing the MAP
scores, the effectiveness of multi-modal retrieval searches (e.g., Sequential and Simul-
taneous methods) are evident now. The proposed weight update method performed

well now in all cases compared to the corresponding equal weighting approach, i.e.,
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Table 16: Retrieval Results of the Photographic Images for Mixed-Mode Topics

Method Modality MAP

Visual-Fusion (Equal Weight) Image 0.0675
Visual-RF-Fusion (Dynamic Weight) Image 0.0832
Keyword Text 0.1656
Keyword-RF-Fusion (Equal weight) Text 0.2542
Keyword-RF-Fusion (Dynamic weight) Text 0.2785
Sequential (Equal weight) Image-+Text || 0.3051
Sequential (Dynamic weight) Image+Text || 0.3120
Simultaneous (Equal weight) Image+Text || 0.2875
Simultaneous (Dynamic weight) Image+Text || 0.2956

Table 17: Retrieval Results of the Medical Images for Mixed-Mode Topics

Method Modality MAP

Visual-Fusion (Equal Weight) Image 0.0445
Visual-RF-Fusion (Dynamic Weight) Image 0.0567
Keyword Text 0.1329
Keyword-RF-Fusion (Equal weight) Text 0.1845
Keyword-RF-Fusion (Dynamic weight) Text 0.1975
Sequential (Equal weight) Image+Text || 0.2251
Sequential (Dynamic weight) Image+Text || 0.2467
Simultaneous (Equal weight) Image+Text || 0.2066
Simultaneous (Dynamic weight) Image-+Text || 0.2170
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whether it was applied to a single modality (e.g., Visual-RF-Fusion or Keyword-RF-
Fusion) or was applied in multi-modal (e.g., Sequential or Simultaneous) searches.
In general, we achieved around 4-5% increases in MAP scores for all dynamic weight
update based search approaches compared to equal weight based searches for both
photographic and medical collections. In addition to the query topic characteristics,
feedback information from an increased number of images also contributed to better
retrieval effectiveness. Another observation is that the performances of the sequential
searches are always better then the simultaneous ones as observed in both Table 16
and Table 17. Hence, it can be concluded that for mixed-mode queries it might be
more effective to refine a text-based search result with content-based search. Finally,
the performances of the text-based and multi-modal searches are much more better
then the content-based searches even for the mixed-mode queries. This justifies the
initial prediction that for ad-hoc retrieval in a broad domain, we need additional
contextual information in addition to image content information to perform effective
retrieval. Finally, we can conclude that combining content and context-based fea-
ture as well as using relevance feedback and multiple query expansion techniques can

significantly improve retrieval performance.

8.7 Performance Evaluation for Dermoscopic Im-

age Retrieval

This section presents the experiments and results analysis of the CBIR framework
for dermoscopic images described in Chapter 7. We experimented with the database
described in Section 8.1.4. Every image in the database is served as a query image. A
retrieved image is considered to be a correct match if it belongs to the same category
as the query image. The performances of the three distance measures (e.g., Euclidean,
Bhattacharyya and Fusion-based distance) and three image categories (e.g., benign,
dysplastic and melanoma) are compared based on PR graphs. We have experimented
with different weighting combinations and have found out the best combination as
WBhatt = 0.7 and Wgyclidean = 0.3 for the the fusion-based similarity matching scheme.
More weight is assigned to the Bhattacharyya based similarity measure as it performed
better due to the consideration of the cross-correlation among the color channels.

Figure 74(a) presents the precision-recall curves for the Euclidean, Bhattacharyya
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Figure 74: (a) Accuracy comparison of three similarity measures (b) Accuracy com-
parison of three image categories.

Figure 75: Retrieval result based on Euclidean similarity.

and the proposed fusion based distance measures. From Figure 74(a), it is clear that
the best accuracy is achieved when other two distances are fused together as discussed
in Section 7.3 of Chapter 7, whereas the performance of Euclidean distance measure
is significantly lower then the other two. Based on the above observation, we can
conclude that similarity measures which utilize cross correlation between feature at-
tributes and fuse distances in different spaces perform better in CBIR. Figure 74(b)
presents the average precision curves for three different image categories (melanoma,
benign and dysplastic nevi). From Figure 74(b), it is clear that best accuracy is
achieved by melanoma category, which is more important from diagnostic point of

view as it can distinguish images better from other categories.” Figures 75 and 76 show
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Figure 76: Retrieval result based on Fusion similarity.

the snapshots of the retrieval results based on the Euclidean and the Fusion-based
similarity matching functions for a query image belongs to the melanoma category.
Here, the system returned 11 melanoma images out of 15 from the database by apply-
ing the proposed fusion-based similarity matching function, whereas the Euclidean
similarity measure returns only 7 images of melanoma category excluding the query

image in the first ranked position.

8.8 Summary

In this chapter, we provide the experimental details of different retrieval approaches
as we proposed for different image domains and different contexts. We introduce
the image collections, the query sets, the performance measures, and the effective-
ness of the results. We validate our techniques by showing their improved accuracies
compared to other commonly used feature representation, similarity matching, and
retrieval techniques. Distinct experiments were carried out and described in our pub-
lications also [205, 206, 209, 217, 218, 210]. Overall, we can say that the performances
of our proposed approaches in different narrow to broad domains of photographic and

medical images are encouraging.
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Chapter 9
Conclusion

This chapter provides an overview of our work in image retrieval domain presented in
this thesis. In Section 9.1 we state the main themes and scientific achievements of this
research. We mention some of the limitations of our approaches in Section 9.2, which
currently persist both in domain and technical (e.g., computational) perspectives.
Finally, in Section 9.3, we suggest some promising research directions and future

work to address these limitations.

9.1 Summary of Contributions

The main theme of this research is originated from the idea that in order to bridge
or at least narrow the semantic gap in CBIR, we have to look at the problem from
a domain perspective. Instead of focusing on the universality of the retrieval method
and finding a single retrieval solution that is applicable for all domains, we focused on
domain specific solution to fulfill the users varying search requirements. It is simply
not possible with current technology to develop a single retrieval solution to solve all
problems in a multitude of application domains. Although, many of the proposed
techniques in this field try to achieve this unrealistic goal. As a result, we can see the
limited success of the CBIR systems even after a decade of intensive research [13].
Depending on the scope of image domains (e.g., narrow or broad), users search
requirements at different levels, and the amount of domain knowledge available, the
CBIR exhibits a varying degree of difficulty as discussed in Chapter 1 and Chapter 2 of

this thesis. To overcome the difficulties and find specific domain dependent retrieval
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solutions, we focused on a multi-disciplinary research approach by incorporating ideas
originally developed in other fields, such as Machine Learning, IR, and Human Com-
puter Interaction. This is the main driving force for this research. Some of our
retrieval solutions utilized various off-line learning techniques to represent images in
both global or local concept levels, some exploited on-line learning based on human
computer interaction, and in some other cases, we relied on contextual information,
i.e., associated annotation of images. This work primarily focused on incorporation
and integration of these solutions for the semantic retrieval of natural photographs
and medical images. We present our work in this thesis in such a way that the pro-
posed techniques are easily distinguishable based on their domain dependent criteria.

In summary, we have made the following contributions:

e For the purpose of searching images in semantically organized collection, such
as medical images with different modalities, we proposed a-classification-driven
image retrieval framework at global concept level based on statistical modeling
by utilizing probabilistic multi-class SVMs [205, 206].

e We proposed local concept-based image representation approaches for searching
both broad and narrow domain images by utilizing both supervised SVMs based
classification and unsupervised SOM based clustering techniques. Images are
represented in both local visual and semantic concept spaces such that the
representations are robust against classification and quantization errors and in
a higher semantic level then the commonly used low-level feature representations
in CBIR [209).

e Inspired from ideas of text retrieval domain, we proposed automatic query ex-
pansion techniques in CBIR domain to reduce the concept mismatch problem
and remove the burden from users to provide feedback information to a system.
The proposed techniques are based on the concept correlation and concept sim-
ilarity analysis at both local feedback and global collection levels. The decision
to rely on techniques from text retrieval domain and generalize them to our

concept feature-based image domain has proved to be effective [209].

e For the purpose of searching images in a higher semantic level in broad domains,

we proposed and developed fusion-based multi-modal image retrieval framework
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that facilitates both visual and contextual querying [217, 218, 208]. The interac-
tive nature of the framework allows the user’s perceived semantics to propagate
from one modality to another as well as dynamic fusion of context (text) and
content (image) based modalities. The evaluation of this framework in a broad
domain general photographic and medical collection showed promising results
[217, 217].

To investigate retrieval effectiveness in a single modality medical image domain
and aid dermatologist as a decision support system, we developed a CBIR sys-
tem in the domain of dermoscopic images [210]. To this end, we proposed a
fast and automatic segmentation algorithm for lesion detection by exploiting
the domain knowledge. Lesion specific color and texture related features are
extracted and finally they are combined in a fusion-based similarity matching
function to retrieve database images. The initial retrieval results to find similar

images based on an unknown query image were promising [210].

For empirical analysis of the proposed techniques in different domains, we im-
plemented a prototype retrieval system and conducted exhaustive experiments
with different performance measures on a variety of image collections. In ad-
dition, by participating in ImageCLEF [57, 58] campaign during the last three
years, we were able to perform some of our experiments in standard benchmark
collections and compare our performances with different participating groups.
Our results were encouraging for the past two years (2006 and 2007) based
on both visual and multi-modal ad-hoc retrieval approaches in general pho-
tographic and medical image collections as reported in Chapter 8 and in our
papers [217, 218].

9.2 Limitations

Due to the main theme of this research, therefore developing retrieval solutions from

domain perspective, we already have some form of limitations in our proposed tech-

niques. For example, techniques for narrow domain, such as global and local semantic

concept-based retrieval approaches are not extendible in broad domain due to their

nature of exploitation of the domain knowledge by supervised learning. In addition,
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from technical and computational perspectives, we have some limitations in different

approaches, which are as follows.

e One of the main limitations of our global concept-based retrieval framework
is that we utilized only low-level global features as input to the classifiers to
transform them to intermediate level semantic feature spaces. Global features,
however, have limitations as they can not adequately capture the subtle details
of images, specially in medical domain. Although, it has proved to be quite
difficult in medical domain to automatically extract features from local region
of interest (ROI) of diagnostic relevance as perceived by physicians [128]. An-
other limitation is that, for classifier training, a large number of labeled training
samples are needed and the training set is fixed during the learning and appli-
cation stages. If images of a new category are encountered or inserted into the
database, then we might need to re-train the whole system with the new cate-
gory label. So for a dynamic database with many insertions or deletions, this

approach is not flexible enough to deal with that issue.

e For the local concept-based feature representation, we limited our approaches
by modeling only intermediate level visual concepts in broad and narrow do-
mains and semantic concepts in specific narrow domains (e.g., natural scenery
images). Although this limitation is obvious due to the current state of ob-
ject recognition in broad domain images. It would be more effective, if specific
objects, such as person, animal, house, car, etc. can be identified in large col-
lections irrespective to. their variations and occlusions. Many researchers from
computer vision community are investigating along this line with limited suc-
cess up to now [126, 103]. However, the main focus of our retrieval approach
is to represent images with a soft labeling approach that can exploit concept
correlations and overcome the quantization error due to inaccurate object iden-
tification. In future, when object recognition techniques will be mature enough
to a certain level, our approaches would be easily extendible with higher level

semantic concepts.

e The proposed automatic query expansion and interactive RF-based techniques
are effective only for a particular query session. The main limitation is that

they can not memorize each session and users behavior for effective retrieval in
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the long run. Another drawback is that, for query expansion techniques based
on local analysis, it requires large on-line computation which in some cases may
hamper the interactive nature of the system. And for RF-based technique for
multi-modal retrieval, users need to provide enough feedback information to
make the system work effectively. As already mentioned in Chapter 5, it may
create unnecessary burden to the reluctant users who are not willing to provide

reasonable feedback at each round or iteration of RF.

Finally, in majority of our approaches, we more or less focused on improving
retrieval effectiveness and in some cases in trade of computational efficiency
aspect. As a result, some of our feature extraction methods are computation-
ally expensive and features are high-dimensional. Although, it might not be a
problem for the off-line feature computation of database images, it would be
problematic for on-line query feature extraction and similarity matching. For
.exa,mple, feature extraction for the fuzzy visual concept vector (described in
Section 4.1.3 of Chapter 3) requires large computation to generate the fuzzy
membership values of each region in images and the feature dimension is gener-
ally higher that depends on the codebook size. A large size codebook provides
better feature effectiveness at the expense of higher feature dimension as shown
in Section 8.4 of Chapter 8. Although, due to the sparse representation of
some of the feature vectors, we were able to exploit inverted file-based indexing

technique as described in Section 5.3 of Chapter 5.

9.3 Future Research Directions

Due to the multi-disciplinary and multi-perspective nature of this thesis, we have a

good opportunity to expand our work in several directions. There are still many open

research issues that need to be solved before the current image retrieval systems in

both general photographic and medical domain can be of practical use. In following,

we have identified some of the promising directions, which can be extended from our

present work in the near future.

e Although some work has been done in developing intermediate level semantic

feature representation methods in this thesis as presented in Chapter 3 and
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Chapter 4, there is still room for considerable improvement. A successful se-
mantic level retrieval should involve images of complex objects in real life and
the system itself has to be able to adapt with the variations of the same objects
or scenes. We need to perform more research to automatically identify specific
objects in general broad domain images for retrieval in a higher semantic level
and pathology bearing region (PBR) in medical images for retrieval based on
diagnostic relevance. To achieve these goals, we need to investigate closely the

recent advancement in object recognition and image understanding fields.

e For the multimodal retrieval approach described in Chapter 6, we have shown
by experimental evaluation in Chapter 8 that one modality can make another
modality more informative and more precise, and the combination of content
and context information usually improve performances of mixed-mode queries.
However, in future we need to focus on constructing a model or formalism to
show how much the inclusion of text can contribute to the improvement of image
retrieval or vice versa. Another major issue is the scalability and efficiency.
Since we use different query and image representation for the dynamic fusion
of content and context feature spaces, there is a large computational overhead
currently persisting. To overcome this, we need to concentrate more on multi-
dimensional and specially multi feature indexing approach, which might be an

interesting topic in CBIR, research.

e In our proposed retrieval approaches, the actual data and feature vectors are
typically stored in files addressed by names. However, this approach is not
efficient and scalable due to the high disk access time and large memory re-
quirement for large image collections. Hence, in future, we need to connect our
image retrieval approaches with database research as instead of what to index,
database is more concerned with how to index the features. Making image re-
trieval as a plug-in module in an existing DBMS will not only solve the image
data integrity problem and allows dynamic updates, but also it will provide

natural integration with features derived from other sources.

e Another future work is the full integration of our image retrieval system with

CINDI (Concordia INdexing and Dlscovery System) !, a system for cataloguing,

 http://dumbo.encs.concordia.ca:8080/ cindimg2
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searching, and annotating electronic documents in a digital library, the library
being distributed over a computer communication network. The user of CINDI
is helped by an expert system that mimics the basic expertise of professional
librarians. We are currently working to make CINDI as an integrated digital
library with functionalities of searching images as well as documents for varied

collections.

Last of all, we want to continue our participation in ImageCLEF [57, 58, 55] in
upcoming years by extending our multimodal retrieval approaches from other
perspectives, such as addition of long term learning in RF, multi-lingual search
approaches, and use domain related thesaurus for query expansion. The contin-
uing participation in ImageCLEF is very essential as we can compare our image
retrieval techniques easily with other participating groups and investigate the

real retrieval effectiveness in benchmark collections.
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