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ABSTRACT 

Stability Analysis and Controller Synthesis for a Class of Piecewise Smooth Systems 

Behzad Samadi, Ph.D. 

Concordia Unviersity, 2008 

This thesis deals with the analysis and synthesis of piecewise smooth (PWS) 

systems. In general, PWS systems are nonsmooth systems, which means their vector 

fields are discontinuous functions of the state vector. Dynamic behavior of nons­

mooth systems is richer than smooth systems. For example, there are phenomena 

such as sliding modes that occur only in nonsmooth systems. In this thesis, a 

Lyapunov stability theorem is proved to provide the theoretical framework for the 

stability analysis of PWS systems. Piecewise affine (PWA) and piecewise polynomial 

(PWP) systems are then introduced as important subclasses of PWS systems. 

The objective of this thesis is to propose efficient computational controller syn­

thesis methods for PWA and PWP systems. Three synthesis methods are presented 

in this thesis. The first method extends linear controllers for uncertain nonlinear 

systems to PWA controllers. The result is a PWA controller that maintains the per­

formance of the linear controller while extending its region of convergence. However, 

the synthesis problem for the first method is formulated as a set of bilinear matrix 

inequalities (BMIs), which are not easy to solve. Two controller synthesis methods 

are then presented to formulate PWA and PWP controller synthesis as convex prob­

lems, which are numerically tractable. Finally, to address practical implementation 

issues, a time-delay approach to stability analysis of sampled-data PWA systems 

is presented. The proposed method calculates the maximum sampling time for a 

sampled-data PWA system consisting of a continuous-time plant and a discrete-time 

emulation of a continuous-time PWA state feedback controller. 
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Chapter 1 

Introduction 

1.1 Motivation 

Piecewise smooth (PWS) systems are multi-model systems that offer a good mod­

eling framework for complex dynamical systems. For example, many engineering 

systems of practical interest have nonlinear components that can naturally be mod­

eled by PWS characteristics. Some examples are: 

• Saturation [56], [32] 

• Dead-zone [32] 

• Backlash [73] 

• Electrical circuits with diodes [103], [22], [47] 

• Mechanical oscillators with clearance [77] 

• Moving parts with Coulomb friction [3] 

To illustrate PWS systems, consider a nonlinear mechanical system consisting 

of a box and a beam (Fig. 1.1) described by the following model 
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X\ —X2 

{ — /j,g cos(x3) — g s m ^ ) if x2 > 0 
(1.1) 

fig cos(xs) — g-sin^) if x2 < 0 

• ! / 
2:3 = - ( - ^ 3 +w) r 

where x\ = £{,, £2 = i&, x3 = 9, g = 9.8m/s2 and // = 0.1 is the static friction 

coefficient. « is the reference signal for 6 and r is the time-constant of the actuator. 

The set of state space equations (1.1) is a special case of PWS systems in the 

following form 

x(t) = fi(x(t)) + 9i{x{t))u(t\ x{t) E Ui. (1.2) 

where a subset of the state space X C Rn is partitioned into regions TZi for i= l , . . . ,M 

such that ufiiKi = X, TZiDTZj = 0, i ^ j , where TZi denotes the closure of TZi. In 

the case of the box and beam system, the regions are defined as 

TZX ={x E R3\x2 > 0}, 

Tl2 ={x E R3\x2 < 0} (1.3) 

In general, PWS systems are nonsmooth systems, which means their vector 

fields are discontinuous functions of the state vector. The PWS system (1.1) is itself 

an example of a nonsmooth system. However, most of the classical methods for anal­

ysis and synthesis of dynamical systems concentrate on smooth systems. Dynamic 

behavior of nonsmooth systems is richer than smooth systems. For example, there 

??;'.:.-- - *<> 
rJ 

Motor 

Figure 1.1: Box and beam model 



are phenomena such as sliding modes that occur only in nonsmooth systems. In 

fact, even the definition of trajectories of a system must be generalized to describe 

sliding modes of nonsmooth systems. Existing literature on nonsmooth systems 

mainly concentrates on the analysis of the dynamics of nonsmooth systems, while 

controller synthesis has not received much attention. 

1.2 Objective 

The objective of this thesis is to propose efficient computational controller synthesis 

methods for the following subclasses of PWS systems: 

• Piecewise polynomial (PWP) systems 

• Piecewise affine (PWA) systems 

• Piecewise linear (PWL) systems 

The main focus will be on PWA and PWP systems. Figure 1.2 shows the relative 

hierarchy of these classes of PWS systems. 

It is desired to address the controller synthesis problems with convex optimiza­

tion techniques such as linear matrix inequalities (LMIs) and sum of squares (SOS) 

programs. The reason is that there exist numerically efficient tools to solve these 

convex optimization problems. 

In the following section, the relevant literature is reviewed to show what has 

been done in the field and how the proposed methods relate to previous research. 

1.3 Literature Review 

A hybrid system is defined in [65] as a dynamical system with interacting continuous-

time-driven and discrete-event-driven components. The continuous part of a hybrid 
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Hybrid Systems ^_____ 

^ ^ - " P i e c e w i s e Smooth Systems 

ys Piecewise Polynomial Systems 

/ /^Piecewise Affine Systems'N. 

/ / Piecewise Linear Systems 

I ( Linear Systems ] 

Figure 1.2: The class of PWS systems and its subclasses 

system is usually described by a differential or difference equation and the discrete 

part is described by a finite-state machine or a set of logic-based rules. Therefore, 

a hybrid system has two distinct types of state variables: real-valued and discrete-

valued state variables. Modern computer-based control systems that act on physical 

systems can be modeled by hybrid dynamical systems. As a result, the analysis 

and design of such systems has recently received great attention. In the following 

subsection, previous research on hybrid systems is briefly reviewed. The literature 

on PWP and PWA systems will be reviewed in separate subsections to describe in 

more detail the background of the proposed research. 

1.3.1 Previous work on hybrid dynamical systems 

Hybrid systems have attracted significant attention in recent years. Special Issues 

on Hybrid Control Systems of the IEEE Transactions on Automatic Control (April 

1998), Automatica (March 1999), Systems and Control Letters (October 1999), the 

Proceedings of the IEEE (July 2000), International Journal of Robust and Nonlinear 

Control (April 2001) and anew journal, Nonlinear Analysis: Hybrid Systems (March 

2007) illustrate the fast pace of advances in this field. The development of a unified 

and systematic hybrid systems theory is still a growing and vibrant research area. 

There have been some important research efforts toward an overall unified model 
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[13,20,58], a unified analysis methodology for a class of hybrid systems [20,35], as 

well as a unifying view for the subclass of PWA systems [66]. Reference [105] is one 

of very few contributions toward a unified controller synthesis method that would 

provide a systematic control design tool for a large class of hybrid systems and enable 

designers to use the same methodology for a broad set of models and applications. 

A great deal of attention and efforts in hybrid systems have been focused on the 

modeling [11,46,111,126] and stability [15,19,35,61,79,91,93,128]. However, there 

are also many results on control design methods for hybrid systems. Most of the 

proposed controller synthesis methods fall into the following approaches: 

• Supervisory Control: In this approach, continuous controllers are combined 

with discrete logic. A supervisor is used to effectively switch between several 

continuous control laws [60,74,127]. 

• Hierarchical Control: The controller is decomposed into hierarchical levels 

and it can guarantee a certain performance [21,48,86]. 

• Optimal Control: The optimal control problem is to find an input that drives 

the system to a desired state while minimizing a cost function that depends 

on the trajectory followed and the control input itself. Optimal control has 

recently been extended to discrete-event systems [112] and hybrid systems 

[20,23,28,50,113,114]. 

• Distributed Control: The control task is divided among a collection of 

agents to increase reliability. These agents may communicate with each other 

to transfer information related to their sensing and decision making [2,84]. 

• Game theoretic approach: Control problems in this category usually re­

quire that all trajectories of the system satisfy certain properties. Properties 

include safety properties (for example, requiring that the state of the system 
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remains in a certain safety set) and liveness properties (requiring that the state 

eventually enters a certain target set or visits a set infinitely often) [10,125]. 

For a more detailed review on hybrid systems, the reader is referred to [5] 

and [33]. In the following, we review the special case of PWP and PWA systems 

and focus on the methods that have used the structure of these systems. 

1.3.2 Previous work on P W P systems 

PWP or spline approximation of curves and surfaces has been widely used in many 

different scientific contexts and engineering applications [1,34]. However, the lack 

of proper methods to check the sign of polynomials has prevented PWP systems to 

be commonly used in the field of control systems. Recently, Ebenbauer proposed 

analysis and design methods for polynomial systems using sum of squares techniques 

in [37]. For PWP systems, one of the first attempts to design controllers was made 

in [87]. Paul proposed in [87] to partition the state space of an affine in the input 

nonlinear system into cells and to approximate the dynamics of the system in each 

cell by a model that is polynomial in the state. A controller is then designed for 

each cell using feedback linearization. A global controller is then formed by joining 

the individual cell controllers. The proposed method was employed in [87] to design 

controllers for a few examples of nonlinear systems. However, there is no guarantee 

for the stability of the closed loop system because a switched system consisting of 

stable subsystems can be unstable in general. 

Recently, the class of discrete-time PWP systems was defined in [45] and a 

new method based on Cylindrical Algebraic Decomposition (CAD) was proposed to 

address the constrained finite-time optimal control problem for this class of systems. 

This seems to be the first systematic approach to controller synthesis for discrete-

time PWP systems. However, according to the authors of [45], the method suffers 

from excessive computational burden. 
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For continuous-time PWP systems, a stability analysis was proposed in [93] 

and [85] using PWP Lyapunov functions. The advantage of the proposed method is 

that the analysis problem is formulated as an SOS programming which is a convex 

optimization problem. There exist numerical tools such as SOSTOOLS [95] and 

Yalmip [76] to solve SOS programming problems efficiently. However, systems with 

infinitely fast switching or sliding modes are excluded from the discussion in [93] 

and [85]. This will be one of the main topics of the thesis. 

1.3.3 Previous work on PWA systems 

The roots of PWA systems date back to the pioneering work of Andronov (1901-

1952). Andronov's first major piece of research into nonlinear dynamics concerned 

what is known in Russian as the metod pripasovyvaniya, the technique in which 

separate solutions for the various linear regimes of a PWL problem are joined to 

form a complete solution - they are "stitched together" as the graphic alternative 

Russian term metod sshivaniya puts it. More details of Andronov's research can be 

found in [14]. 

The theory of PWA systems was also used in the analysis and synthesis of 

nonlinear electrical circuits with most pioneering works done up until the 1970's 

[4,29,30,120]. In the early 1980's, Sontag [117] developed a Piecewise Linear Alge­

bra mainly for discrete-time PWA systems. For continuous-time dynamics, a tech­

nique based on vector field considerations was developed by Pettit [92] to provide 

a qualitative analysis of PWL systems. In the following, the analysis and synthesis 

methods for discrete-time and continuous-time PWA systems are briefly reviewed. 
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Discrete-time PWA systems 

Algorithms for computing feedback controllers for constrained discrete-time PWA 

systems were presented for quadratic and linear objectives in [16] and [9], respec­

tively. Instead of computing the feedback controllers that minimize a finite time cost 

objective, it is also possible to obtain the infinite time optimal solution for discrete-

time PWA systems [8]. These problems are formulated as Mixed Integer Quadratic 

or Linear Programming. Even though these approaches rely on off-line computation 

of a feedback law, the computation can quickly become prohibitive for larger prob­

lems. This is not only due to the high complexity of the multi-parametric programs 

involved, but mainly because of the exponential number of transitions between re­

gions which can occur when a controller is computed in a dynamic programming 

fashion [16,69]. As a result, some methods were proposed to obtain controllers of 

low complexity for linear and PWA systems as presented in [52-54]. In general, syn­

thesis methods for discrete-time PWA systems can be classified into the following 

groups: 

• Infinite Time Optimal Control [8,51] 

• Finite Time Optimal Control [9,12,16,78] 

• Minimum Time Control [51,53,54] 

• Bilinear matrix inequality (BMI) based methods for stabilization [116] 

• PWA control with performance [40,42,43] 

The controller designed using any of these methods is typically much more complex 

than the PWA system to be controlled. As an example, for a PWA system with 4 

regions, the number of regions for the controller can range from 138 to 3904 [52]. 

In addition, one of the main drawbacks of the methods in [16] is the lack of an 
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a-priori stability guarantee for the closed-loop system. This problem has recently 

been addressed in [52]. 

Continuous-time PWA systems 

Sufficient conditions for analysis of continuous-time PWA systems by searching for 

a Lyapunov function to prove stability, can be formulated as convex optimization 

programs involving LMIs [17]. These mathematical programs can then be solved 

efficiently using polynomial-time algorithms [83]. The analysis methods are only 

approximate in the sense that there are no guarantees that a Lyapunov function 

can be found. However, if one is found, the result is unambiguous. This has been 

the trend of research in the linear parameter varying approach to gain scheduling 

(see [108] and references therein) and in the more recent work on the analysis of 

PWA systems based on Lyapunov functions and LMIs [18,35,49,56,67,90,91,103]. 

The work on switched linear systems initiated in [90] is one of the first at­

tempts to apply Lyapunov-based methods to PWA systems. Following this work, 

and its extensions to nonlinear dynamics [18], a unified approach to the analysis of 

PWA systems and a class of hybrid systems was formulated in [35]. Several promis­

ing Lyapunov-based methods have recently been developed to analyze PWL and 

PWA systems [49,56,67,91,98]. Some synthesis methods [55,56,67,101] have also 

been developed. A specific technique for state feedback control of PWA systems 

on simplices and rectangles was proposed in [55]. Synthesis methods using convex 

optimization programs based on the analysis methods in [56,67,91] were developed 

in [56,96]. The resulting controllers designed by these methods are either patched 

LQRs [96] or cannot guarantee that sliding modes are avoided [56,96] and, there­

fore, are not provably stabilizing. In [97,103], a synthesis method based on BMIs 

has been proposed for state and output feedback stabilization of PWA systems. The 

method has the advantage of guaranteeing that sliding modes are not generated at 
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the switching and the controllers are therefore provably stabilizing. Another impor­

tant feature of this method for practical implementation of the controllers is that 

continuity of the control input can also be guaranteed at the switching. However, 

BMI problems are not generally convex problems and thus, are not easy to be solved 

efficiently. 

A very important subclass of PWA systems is the class of PWA slab sys­

tems [101], for which the partition of the state space is a function of a scalar vari­

able. Hassibi and Boyd [56] proposed methods for quadratic stabilizability and 

£ 2 gain synthesis for PWA systems using PWL controllers. Three different algo­

rithms for PWA controller synthesis for slab PWA systems have also been proposed 

in [101]. It has been shown that by considering an affine term in the controller, the 

synthesis problem can be formulated as a set of Linear Matrix Inequalities (LMIs) 

parametrized by a vector. Furthermore, it has also been shown that by relaxing 

the problem to a finite set of LMIs, it can be solved efficiently to a point near the 

global optimum. In addition, the global solution can be exactly found under some 

conditions. 

In general, design methods for continuous-time PWA systems can be classified 

into the following groups: 

• Methods based on Hamilton Jacobi Bellman Inequality [66,96] 

• PWL and PWA stabilization of slab PWA systems [56,66,101] 

• BMI-based PWA controller design methods for stabilization of generic PWA 

systems [97,102,103] 

• PWL control with L2 gain performance [26,56,66] 

Considering the existing approaches for PWA and PWP controller synthesis, the 

contributions of this thesis are stated in the next section. 
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1.4 Contributions 

This thesis addresses the following questions 

• How can we design a PWA controller that keeps the performance of a linear 

controller in a neighborhood of the equilibrium point and guarantees a larger 

region of attraction? 

• Is it possible to formulate the PWA/PWP controller synthesis as a convex 

optimization problem? 

• For a sampled-data implementation of a continuous-time PWA controller, how 

large can the sampling time be? 

Therefore, the main contributions of this thesis are 

1. To present a unified approach for stability analysis of PWA systems with con­

tinuous and discontinuous vector fields. The Filippov definition is considered 

for the solution of PWA systems and then a Lyapunov stability theorem is 

proved. The importance of this theorem is to show that sufficient conditions 

for the stability of a PWA system can be formed using a differentiable Lya­

punov function without any need for a priori information about attractive 

sliding modes on switching surfaces. This is a great advantage over existing 

stability results for PWA systems in the literature because obtaining this a pri­

ori information is difficult in general. Sufficient conditions for quadratic and 

sum of squares (SOS) polynomial Lyapunov stability are then formulated as 

convex problems. The SOS conditions are less conservative than the quadratic 

conditions. It is shown in an example that the proposed SOS program can 

prove stability where quadratic and differentiable piecewise quadratic (PWQ) 

functions fail. 
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2. To propose a two-step controller synthesis method for a class of uncertain 

nonlinear systems described by PWA differential inclusions. In the first step, 

a robust linear controller is designed for the linear differential inclusion that 

describes the dynamics of the nonlinear system close to the equilibrium point. 

In the second step, a stabilizing PWA controller is designed that coincides with 

the linear controller in a region around the equilibrium point. The proposed 

method has two objectives: global stability and local performance. It thus 

enables to use well known techniques in linear control design for local stability 

and performance while delivering a global PWA controller that is guaranteed 

to stabilize the nonlinear system. 

3. To introduce for the first time a duality-based interpretation of PWA systems. 

This enables controller synthesis for PWA slab systems to be formulated as 

a convex optimization problem. PWA L2-gain analysis and synthesis is also 

extended to PWA systems whose output is a PWA function of the state (as 

opposed to a PWL function). In addition, a convex optimization program is 

proposed to compute a PWA differential inclusion for nonlinear systems for 

which the nonlinearity is a function of one variable. 

4. To propose a nonsmooth backstepping controller synthesis for PWP systems. 

The main contribution of the proposed method is to formulate controller design 

for a large class of PWP and PWA systems as a convex problem. The con­

troller synthesis problem is divided in two cases. The first case consists of the 

construction of a sum of squares (SOS) Lyapunov function for PWP systems 

with discontinuous vector fields. The second case addresses the construction 

of a PWP Lyapunov function for PWP systems with continuous vector fields. 

After constructing a Lyapunov function, controller synthesis for a PWP sys­

tem can be formulated as an SOS program, which is a convex optimization 

problem and can be efficiently solved. 
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5. To propose a time-delay approach to stability analysis of sampled data PWA 

systems consisting of a continuous-time plant and a discrete-time emulation 

of a continuous-time PWA state feedback controller. The sampled-data sys­

tem is considered as a delayed system with a variable delay. Conditions under 

which the trajectories of the sampled data closed-loop system will converge 

to an attractive invariant set are then presented. It is also shown that when 

the sampling period converges to zero, the conditions of the proposed theo­

rem coincide with sufficient conditions for the non-fragility of the stabilizing 

continuous-time PWA state feedback controller. 

The results of the current research were submitted to and published in a few con­

ferences and journals. The details of the publications is listed in the following 

subsection. 

1.4.1 Publications 

The following publications contain the main contributions of the thesis 

1. B. Samadi and L. Rodrigues, "Controller synthesis for piecewise affine differen­

tial inclusions: a duality-based convex optimization approach," under second 

revision for publication in Automatica. 

2. B. Samadi and L. Rodrigues, "Extension of local linear controllers to global 

piecewise affine controllers for uncertain nonlinear systems," accepted for pub­

lication in the International Journal of Systems Science. 

3. B. Samadi and L. Rodrigues, "Sampled-Data Piecewise Affine Slab Systems: A 

Time-Delay Approach," in Proc. of the American Control Conference, Seattle, 

WA, Jun. 2008. 

4. B. Samadi and L. Rodrigues, "Controller synthesis for piecewise affine slab 
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differential inclusions: a duality-based convex optimization approach," in Proc. 

of the 46th Conference on Decision and Control, New Orleans, LA, Dec. 2007. 

5. B. Samadi and L. Rodrigues, "Backstepping Controller Synthesis for Piecewise 

Affine Systems: A Sum of Squares Approach," in Proc. of the IEEE Interna­

tional Conference on Systems, Man, and Cybernetics (SMC 2007), Montreal, 

Oct. 2007. 

6. B. Samadi and L. Rodrigues, "Extension of a local linear controller to a sta­

bilizing semi-global piecewise-affine controller," 1th Portuguese Conference on 

Automatic Control, Lisbon, Portugal, Sep. 2006. 

1.5 Structure of the Thesis 

The thesis is structured as shown in Figure 1.3. Chapter 2 defines PWS, PWP and 

PWA systems and presents a unified approach for stability analysis of PWS systems 

with continuous and discontinuous vector fields. In Chapter 3, continuous PWA 

differential inclusions are defined and sufficient conditions for monotonicity of PWQ 

Lyapunov functions for these inclusions are proved. A two-step controller synthesis 

method is then presented for a class of uncertain nonlinear systems described by 

PWA differential inclusions. Chapter 4 introduces the parameter set and the dual 

parameter set for PWA slab systems. It then provides stability and performance 

analysis and synthesis tools for PWA slab systems. In Chapter 5, a backstepping ap­

proach to controller synthesis for PWP systems in strict feedback form is presented. 

Chapter 6 addresses stability analysis of sampled-data PWA systems consisting of 

a continuous-time plant in feedback connection with a discrete-time emulation of a 

continuous-time PWA state feedback controller. 
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Figure 1.3: Structure of the thesis 
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Chapter 2 

Lyapunov Stability for Piecewise 

Smooth Systems 

The main objective of this chapter is to present a unified approach to stability anal­

ysis of PWS systems with continuous and discontinuous vector fields. The Filippov 

definition is considered for the solution of these systems and then a Lyapunov sta­

bility theorem is proved. The importance of this theorem is to show that sufficient 

conditions for the stability of a PWS system can be formed without any need for 

a-priori information about attractive sliding modes on switching surfaces. This is 

a significant advantage over existing stability results for switched systems in the 

literature because obtaining this a-priori information is difficult in general. 

2.1 Introduction 

There have been different approaches to construct a Lyapunov function to provide 

sufficient conditions for the stability of PWS systems. For a survey of existing 

approaches for stability analysis of hybrid systems and switched linear systems the 

readers are referred to [35] and [75]. A general framework for analyzing stability of 

nonlinear switched systems using multiple Lyapunov functions is presented in [25]. 
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It is shown in [56] that by searching for quadratic Lyapunov functions, sufficient 

conditions for stability of PWA systems can be formulated as convex optimization 

problems with LMI constraints. Finding a common quadratic Lyapunov function 

for all linear modes is used to analyze the stability of switched linear systems under 

arbitrary switching in [74]. 

However, there are stable PWA systems for which a quadratic Lyapunov func­

tion does not exist. Examples of such systems are shown in [66, p. 47]. Conserva-

tiveness of a quadratic form is the motivation for studying nonquadratic Lyapunov 

functions. As an example, continuous PWQ Lyapunov functions were extensively 

investigated in recent years (see [19,66,91,102]). However, it is a common misun­

derstanding in the literature to believe that if there is a continuous PWQ or PWP 

function that is positive definite and decreasing with time along each vector field 

of a switched affine system then the system is stable. A counter-example will be 

provided in section 2.6.2. 

A recent result in [88] shows that the existence of a common quadratic Lya­

punov function for the linear parts of a PWA system in every mode is sufficient 

for exponential convergence of the system if the vector field of the PWA system is 

continuous. Exponential convergence is defined in the same reference. The case of 

discontinuous vector fields is studied in [89] and it is shown that the existence of 

a common quadratic Lyapunov function for linear parts of the system is not a suf­

ficient condition for convergence. Necessary and sufficient conditions for quadratic 

convergence of the special case of bimodal PWA systems are then derived. 

SOS polynomials were also proposed as candidate Lyapunov functions. In fact, 

quadratic Lyapunov functions are a special class of SOS Lyapunov functions [94]. In 

addition, by using the SOS approach, it is possible to analyze the stability of systems 

with nonlinear polynomial vector fields. Stability analysis tools based on the SOS 

decomposition for classes of nonlinear systems, hybrid systems, switched systems, 
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and time-delay systems are presented in [85]. In the same reference it is proposed to 

use PWP Lyapunov functions for hybrid systems, which is a generalization of PWQ 

Lyapunov functions. However, systems with infinitely fast switching or sliding modes 

are excluded from the discussion in [85]. 

Although there is a vast amount of work on stability of switched linear and 

PWA systems, sliding modes or infinitely fast switching are not usually considered 

in the literature. Important exceptions are the references [19,66,89,103]. In [19], it 

is proposed to add the sliding modes and their associated sliding dynamics to the 

modes of the system before doing the stability analysis. However, this needs a-priori 

information about the sliding modes of the system, which is typically hard to get. In 

another approach, an extra condition is introduced in [66, p.64] to extend the analysis 

to systems with attractive sliding modes. However, one needs to identify potential 

sets in which sliding modes can occur and then the corresponding condition can be 

formed and added to the analysis problem. This might again be hard and make the 

problem complex if there is no previous information about sliding modes. In [103], 

a synthesis method based on BMIs was proposed for state and output feedback 

stabilization of PWA systems. The synthesis method includes linear constraints on 

controller gains to guarantee that sliding modes are not generated at the switching. 

Finally, reference [89] has addressed sliding modes but has concentrated on the 

specific case of common quadratic Lyapunov functions for bimodal PWA systems. 

A question that still remains to be answered is when the necessity to check the 

existence of unstable sliding modes of a general PWA system can be removed. 

Based on the aforementioned limitations, this chapter will present a nonsmooth 

Lyapunov stability theorem. This theorem applies to PWS systems with continuous 

or discontinuous vector fields. The theorem states that a sufficient condition for the 

stability of a PWS system is the existence of a C1 positive definite function that de­

creases with time inside each region. The importance of the proposed theorem is to 
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show that by using a C1 Lyapunov function, no additional condition is needed to ad­

dress potential sliding modes of PWS systems and, therefore, no a-priori knowledge 

about sliding modes is necessary. 

This chapter is structured as follows. PWS systems are defined in section 

2.2. In section 2.3, a stability theorem is stated and proved. Sufficient condtions 

for monotonicity of nonsmooth functions and dissipativity of PWS systems are de­

scribed in sections 2.4 and 2.5, respectively. PWA systems and PWA slab systems 

are then introduced in sections 2.6 and 2.7, respectively. For PWA systems, as the 

first choice for a C1 Lyapunov function, a quadratic form is considered in subsec­

tion 2.6.1. Then, PWQ Lyapunov functions are discussed in subsection 2.6.2. As 

a counter example, it is shown that it is possible to find a PWQ positive definite 

function which is decreasing with time in each region for an unstable PWA system. 

A proposition for SOS Lyapunov functions is then proved in subsection 2.6.3. It is 

also shown by an example that it is possible to find an SOS Lyapunov function for a 

PWA system which does not admit any quadratic or C1 PWQ Lyapunov functions. 

PWP systems are then introduced in section 2.8 and a stability proposition based 

on polynomial Lyapunov functions is presented. 

2.2 PWS Systems 

The dynamics of a PWS system can be written as 

i = fi{x),xe7li (2.1) 

where x(t) G X C R" is the state vector and the initial state is x(0) = x0. A subset 

of the state space X is partitioned into M regions, IZi, i — 1 , . . . , M, such that 

V?ii% = X (2.2) 

•Ri nKj = <b,ij: j (2.3) 
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where IZi denotes the closure of TZi. The function fi(x) : IZi —> Rn is continuous 

and locally bounded. The Filippov definition of trajectories is considered for the 

solution of (2.1) (see [44] and [66]). 

Definition 2.1. (Filippov solution) A continuous function x(t) is regarded to be a 

Filippov solution to (2.1) if it is a solution of the differential inclusion 

x{t) £ T{x) (2.4) 

where 

^(x)^co{fi(x)\iel(x)} 

co stands for the convex hull of a set and 

(2.5) 

l(x) = {i\x e TZi}. (2.6) 

Note that if x ETZi, then 

H*) = {Mx)}. (2.7) 

Example 2.1. Consider the following simple scalar differential equation 

x = — sgn(x), x(0) = 1 (2.8) 

It can easily be seen that the differential inclusion (2.4) becomes 

i e -SGN(x) (2.9) 

where SGN is the set-valued sign function decribed below. 

SGN(x) = < 

{-1} , for x < 0 

{+1} , for x > 0 

[-1,1] , forx = 0 

(2.10) 
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2.3 Lyapunov stability 

In this section, a Lyapunov stability theorem is proved for nonsmooth Lyapunov 

functions. This theorem forms the theoretical framework for using piecewise smooth 

Lyapunov functions in stability analysis of nonlinear systems. There are other non-

smooth versions of Lyapunov theorems in the literature e.g. [24,31,59,106,118]. 

However, certain conditions in these theorems (such as, for example, the conditions 

on the Dini derivative, the proximal subdifferential or the upper bound of the Lya­

punov function) are difficult to check or not needed in the cases described in this 

thesis. The objective of Theorem 2.1 will thus be to extend the standard Lyapunov 

stability theorem in [70] to nonsmooth Lyapunov functions and to fit the framework 

needed in this thesis. To the best of the author's knowledge, this theorem in this 

exact form does not appear in the literature. 

Consider the following autonomous nonlinear system 

x(t)=f(x(t)) (2.11) 

where x(t) G K" is the state vector, the initial state, x(0) = XQ, is bounded and 

/ : X —> M.n is piecewise continuous and bounded in X C M.n. The following the­

orem describes sufficient conditions for stability of system (2.11) in the sense of 

Lyapunov based on a continuous Lyapunov function that is not necessarily differ-

entiable everywhere. Because of its importance, the theorem is proved here. The 

proof combines the proof of the standard Lyapunov theorem in [70] for stability and 

the proof of the nonsmooth Lyapunov theorem in [31] for asymptotic stability. 

Theorem 2.1. For nonlinear system (2.11), if there exists a continuous function 

V(x) such that 

V(x*) = 0 (2.12) 

V(x) > 0 for all x ^ x* in X (2.13) 

h < t2 =>• V(x(h)) > V(x(t2)) (2.14) 
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then x = x* is a stable equilibrium point. Moreover if there exists a continuous 

function W(x) such that 

W{x*) = 0 (2.15) 

W{x) > 0 for all x ^ x* in X (2.16) 

h < h =* Vixfa)) > V(x(t2)) + f 2 W(x(r))dr (2.17) 

and 

\\x\\ -> oo =4> V(a;) -> oo (2.18) 

t/^en all trajectories in X asymptotically converge to x = x*. 

Proof. For stability, we want to prove 

Ve > 0, 38(e) > 0 s.t. ||x0 - x*\\ <S=^ \\x(t) - x*\\ < e, Vt > 0 (2.19) 

Following [70], for a given e > 0 we choose r G (0, e] such that 

# r = {x| | |a;-x*| | < r } c A" (2.20) 

Let a = min\\x_x*i\=rV(x). Then a > 0 by (2.13). Take /? G (0, a) and let ftp = 

{x G Br\V(x) < /?}. Then ^ is in the interior of Br (Figure 2.1). If xo G £lp then 

(2.14) implies that x(t) G O^ for all £ > 0. As V(x) is continuous and V(x*) = 0, 

there is a S > 0 such that \\x - x*|| < 6 =>- V(x) < /?. Then 

B5 = {x\\\x - x*\\ < 5} C Sip C Br (2.21) 

and xo G B5 =̂> x0 G fi^ =$• x(t) G fis => x(t) G Br => x(t) G He. Therefore 

||x0 - x*|| < 5 => \\x(t) -x*\\<r<e,Vt>0 (2.22) 

This implies that x — x* is a stable equilibrium point. 

To prove asymptotic stability, following [31], we show that x(t) converges to 

x* as t —> oo. It follows from x(0) = £o and (2.17) that 

^(x(<)) + / W(x(t))dr < V(x0) (2.23) 
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Figure 2.1: Geometric illustration of sets in the proof of Theorem 2.1. 

Then (2.13), (2.16), (2.23) and the fact x0 is bounded imply that V{x{i)) and 

J0 W(x(t))dr are bounded. Because V(x(t)) is bounded, it follows from (2.18) that 

||x(£)|| is bounded. Since f(x) is bounded in X, x(t) is bounded and x(t) satisfies a 

global Lipschitz condition on t € [0, +oo) with constant L. 

Assume that x(t) fails to converge to x*. Then for some e > 0 there exists a 

sequence of points U tending to infinity such that 

\\x(ti)-x*\\ >£, z = 1, 2 , . . . (2.24) 

Without loss of generality, possibly by selecting a subsequence, the sequence 

U can always be chosen such that 

\U+i-ti\>^- (2.25) 

Since ||x(i)|| is bounded, there exists a A > 0 such that \\x(t) — x*\\ < A. 

Consider 

% A J = - M | < l k - x * | | < A } (2.26) 

A[£t\] is not empty since A > e > | . Let rj > 0 be such that 

x E Aihx] =* W{x) > v (2.27) 

Such r/ exists because of (2.16) and the fact that -4[£,A] is not empty. Consider t 

such that \t — U\ < ̂ -. Since x(t) is globally Lipschitz continuous with constant L, 
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we have 

W)-x{U)\\<£- (2.28) 

Inequalities (2.24), (2.28) and the following triangle inequality 

\\x{t) - x*\\ > \\x(U) - x*\\ - \\x(t) - x(U)\\ (2.29) 

imply \\x(t) — x*\\ > § and consequently x(t) G -4[^,A]- Therefore, from (2.27) 

W(x(r))dT > -!- (2.30) 
t-—S- Li 

and then using (2.25) and (2.16) 

1+1 W(x(r))dr > ^ (2.31) 

This would imply that JQ W(x(t))dr diverges as t —> oo, which is a contradiction 

with (2.23) and the conclusion that J0 W(x{t))dr is bounded. This proves that x(t) 

converges to x* as t —> oo. D 

Remark 2.1. In #w's worA;, the equilibrium point x = x* is said to be globally 

stable if all trajectories in X, the domain of nonlinear system (2.11), asymptotically 

converge to x = x*. 

The next section presents conditions to verify the monotonicity of nonsmooth 

functions. Using these conditions, one can verify (2.14) and (2.17) for nonlinear 

system (2.11) without needing to know the trajectories of the system. 

2.4 Monotonicity of nonsmooth functions 

In this section, sufficient conditions for monotonicity of nonsmooth functions of 

state variables along the trajectories of a piecewise smooth system will be provided. 

In the following, the concept of generalized gradient is introduced. Note that the 

monotonicity conditions can also be described by the Dini derivative (such as it 
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is done in [106]). However, in this chapter, the theorem of Rademacher [31, p. 

93] is used to define the generalized gradient. This definition will be employed 

to formulate the monotonicity condition for continuous piecewise quadratic and 

piecewise polynomial functions. 

Definition 2.2. [31] For a locally Lipschitz continuous function V : W1 —• R, the 

generalized gradient is defined as 

dcV(x) = conv{ lim VV(xi)\xi -^x,Xi<£ N} (2.32) 
i—>+oo 

where N is the set of measure zero where the gradient of V does not exist. 

Proposit ion 2.1. (Section 24 of [24]) Let T : Rn -» 2R" \ 0 be continuous and let 

V : M.n —• M. be Lipschitz continuous. V is nonincreasing along all solutions of 

x e T{x) (2.33) 

if and only if 

yX e W1, V/ e T{x), max{pTf\p 6 dcV(x)} < 0 (2.34) 

2.5 Dissipativity 

Consider the following piecewise smooth system 

x = fi(x) + gi(x)w, x eTZi 
(2.35) 

y = h(x,w) 

where x(t) G En denotes the state, w(t) € M.nw is the exogenous input and y(t) G M.Hy 

is the output. The functions fi(x) : % -> Rn, g^x) : %, -> E n x n - and h(x,w) : 

X x Kntu —> Enj/ are continuous in x and locally bounded. 

In this section, the notion of dissipativity is defined. Roughly speaking, a 

system is considered dissipative if the amount of energy that the system can provide 

to its environment is less than what it receives from external sources [110]. 
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Definition 2.3. [110] The system (2.35) is said to be dissipative with supply rate 

W(y,w) and storage function V(x), ifV(x) is a nonnegative function such that 

h<h^ V(x(h)) + [ 2 W(y(r), w(r))dT > V(x(t2)) (2.36) 

Two propositions are provided in the following to describe the sufficient con­

ditions for the system (2.35) to be dissipative in two cases of discontinuous and 

continuous vector fields. The importance of these propositions lies in the fact that 

to check the dissipativity of the system, it suffices to verify a condition on the stor­

age function, the supply rate and the vector field of the subsystem in each region 

separately. There is therefore no need to examine the storage function in one region 

with the vector field of another region, which would make the problem much more 

complicated. 

2.5.1 Piecewise smooth systems with discontinuous vector 

fields 

Proposition 2.2. (Smooth storage functions) The piecewise smooth system (2.35) 

is dissipative with a storage function V(x) and a supply rate W(y, w) ifV(x) is a 

nonnegative C1 function, W(y, w) is a continuous function in y and for all x G IZi, 

i = 1 , . . . , M and any w G En" 

VV(x)T{fi{x)+gi{x)w)<W{y,w) 

Proof. The inequality (2.37) can be rewritten as 
., T 

fi{x) + gi(x)w 

(2.37) 

W ( x ) 

-W{y,w) 
< 0 (2.38) 

By appending time (t) to the state vector of the system (2.35), we have the following 

differential equation 

x _ fi(x)+gi(x)w 

i 1 
, x efti (2.39) 

26 



In the following, using Proposition 2.1 the following function 

S(x, t) = V(x) - f W(y, w)dr (2.40) 
Jo 

is shown to be non-increasing along the trajectories of (2.39). The fact that V(x) is 

a Cl function implies that 

dcS(x, t) = conv r - > * (2.41) 
VV(x(t)) 

-W(y(t),w(r)) 

Let x(t) be a Filippov solution of (2.35). Therefore, x(t) is a solution of the following 

differential inclusion 

x 

i 
G conv 

fi(x(t)) + gi(x(t))w(r) 

1 
i G 1{x), T —> t (2.42) 

x 

i 
(2.43) 

Note that if x(t) E IZi and w(t) is continuous at t, the vector field of (2.35) is 

continuous and we have 

r fi(x{t)) + 9i(x(t))w(r) 

1 

Since (2.38) is satisfied for any w, it follows from (2.41) that (2.34) is satisfied for the 

differential inclusion (2.42). Therefore by Proposition 2.1, S(x,t) is nonincreasing 

along the trajectories of (2.35) in X i.e. 

h < t2 => V(x{ti)) - [ W(y,w)dr>V(x(t2))- [2W(y,w)dT (2.44) 
Jo Jo 

Therefore (2.36) is satisfied and the system (2.35) is dissipative with storage function 

V(x) and supply rate W(y, w). • 

2 . 5 . 2 P i e c e w i s e s m o o t h s y s t e m s w i t h c o n t i n u o u s v e c t o r fields 

Proposition 2.3. (Piecewise smooth storage functions) The piecewise smooth sys­

tem (2.35) is dissipative with a storage function V(x) and a supply rate W(y,w) 

if 
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V{x) is a nonnegative continuous function where 

V(x) = Vi(x),xeni (2.45) 

where Vi : Hi —*• R is a C1 function, 

W(y,w) is a continuous function in y, 

the vector field of the system (2.35) is continuous in x, i.e. for any i,j G 

{ 1 , . . . , M} such that % f]TZj ^ 0, 

fi(x) = fj{x) 

9i(x) =9j(x) 
VxeKif^Kj (2.46) 

for all x e Hi, i — 1 , . . . , M and any w € M"" 

VVi{x)T{fi{x)+gi{x)w)<W{y,w) 

Proof. The inequality (2.47) can be rewritten as 

(2.47) 

- , T 

-W{y,w) 

f%(x) + gi(x)w 
< 0 (2.48) 

x 

i 
, x 6 %i (2.49) 

By appending time (t) to the state vector of the system (2.35), we have the following 

differential equation 

Mx)+9i(x)w 

1 

In the following, using Proposition 2.1 the following function 

S(x, t) = Vi(x) - I W(y, w)dr, xeKi (2.50) 
Jo 

is shown to be non-increasing along the trajectories of (2.49). The fact that V(x) is 

a piecewise C1 function implies that 

VV5(x(0) 

-W(y(t),w(r)) 

dcS(x,t) = conv i £ I(X),T —> t (2.51) 
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Let x(t) be a Filippov solution of (2.35). Therefore, x(t) is a solution of the following 

differential inclusion 

' F fi(x(t))+gi{x(t))w(T) 

1 

X 

i 
G conv i G X(x), r —> t (2.52) 

Consider the following two cases 

• If x(t) G IZi, we have 

dcS(x, t) = conv 

and 

VV-(a;(t)) 

-VK(yW,W(r)) 
T - > £ (2.53) 

i 
G conv r - > t (2.54) 

fMt)) + gi(x(t))W(T) 

1 

Since (2.47) is satisfied for any w, it follows from (2.53) that (2.34) is satisfied 

for the differential inclusion (2.54). 

If x(t) is on the boundary of two or more regions i.e. x(t) G H i e i M ^ ' ^ 

follows from (2.47) that for any j , k in T(x), 

•, T 

vv;-(s) 

-W(y, w) 

fj(x) + 9j(x)w 

1 
< 0 

fk(x) + gk(x)w 

1 

W f c (x) 

-W(i/,u;) 

In addition, the continuity condition (2.46) implies that 

T _ ., T 

< 0 

(2.55) 

(2.56) 

WAX) 

-W(y,w) 

and 

VVfc(x) 

-W(y,w) 

fk(x) + gk{x)w 

1 

Wj{x) 

-W(y,w) 

fi(x)+gj(x)w 

1 

(2.57) 

< 0 

fj(x)+gj(x) w W f c (x ) 

-W(y,w) 

fk(x) +gk(x)w 
< 0 

(2.58) 
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From (2.55-2.58), it follows that (2.34) is satisfied for the differential inclusion 

(2.52). 

In conclusion, by Proposition 2.1, S(x, t) is nonincreasing along the trajectories 

of (2.35) in X i.e. 

*i < t2 =* V(x(h)) - f * W(y, w)dr > V(x(t2)) - / * W(y, w)dr (2.59) 
Jo Jo 

Therefore (2.36) is satisfied and the system (2.35) is dissipative with storage function 

V(x) and supply rate W(y, w). D 

2.6 PWA Systems 

A PWA system is described by 

x = A(X + ai, for x G TZi (2.60) 

where A{ € Kn x n , en G Mn for i = 1 , . . . , M. It is assumed that <u = 0 for i G J(0). 

Therefore, the origin is an equilibrium point of the system. A subset of the state 

space X C Mn is partitioned into M polytopic regions Hi. Each region is constructed 

as the intersection of a finite number of half spaces 

Ki = {x\EiX + e{^ 0}, (2.61) 

where Ei G MPiXn, e« G M.Pi and >- represents an elementwise inequality. Each 

polytopic region IZi can be outer approximated by a (possibly degenerate) quadratic 

curve Ei 

fti^ei = {x\xTEjKiEiX > 0} (2.62) 

where A* G M(pi+1)x(pi+1) is a matrix with nonnegative entries and 

Ei = 
Ei ei 

0 1 
(2.63) 
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A parametric description of the boundaries between two regions Hi and Hj where 

IZi n 1Zj ̂  0 can also be obtained as (see [56] and [103] for more details) 

TZinHjQ {x\x = FijS + fij, s e W1-1} (2.64) 

In this chapter, following [66], the following notation is considered 

\fx e En, x 
X 

1 

Equation (2.60) can then be written as 

i(t) = Aix(t), x{t) e Hi 

A = 

(2.65) 

(2.66) 

(2.67) 

where 

Ai di 

0 0 

In the following, three types of candidate Lyapunov functions are examined 

for stability analysis of PWA systems. 

2.6.1 Quadratic Lyapunov Function 

Perhaps the simplest candidate for a C1 Lyapunov function is the quadratic form 

V(x) = xTPx (2.68) 

where P — PT > 0. The following proposition describes the sufficient conditions for 

the stability of the PWA system (2.60) using a quadratic Lyapunov function. 

Proposition 2.4. (Sufficient conditions for quadratic Lyapunov stability) If for a 

given decay rate a > 0, there exists P = PT > 0 satisfying 

PAi + AjP < -aP, if(n = 0 and e< ̂  0 

< PAi + AjP + EjKiEi < -aP, if ai = 0 and e{ = 0 (2.69) 

PAi + AjP + EjKiEi < -aP, otherwise 
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(2.70) 

fori — l,...,M where 

P 0 n x l 

[ Olxn 0 

Aj € M.PiXpi andKi G R(^+1)x(«+1) have nonnegative entries, x — 0 is asymptotically 

stable for the PWA system (2.60). 

Proof. Consider V(x) = xTPx as the candidate Lyapunov function. For this func­

tion, W(x) = 2Px. In the following, the regions IZi will be divided into three 

groups: 

1. If ai = 0 and a ^ 0, we conclude from (2.69) that for all x G Rn 

VV(x)TAiX = 2xTPAx 

= xT(PAi + AjP)x 

< -axTPx = -aV{x) (2.71) 

2. If a* = 0 and a = 0, TZi = { x | ^ x > 0} and for any A* € M.PiXPi with 

nonnegative entries and for all I G K ; 

xTEjAiEiX > 0 

In this case, (2.69) leads to the following inequality for all x G TZi. 

VV(x)TAiX = 2xTPAiX 

= xT(PAi + AjP)x 

< -axTPx - xTEj\iEiX 

< —axTPx = —aV(x) 

(2.72) 

(2.73) 

3. If ai =fi 0, we have TZi = {x\Eix > 0} and similarly to the previous case, 

condition (2.69) implies that for all x G TZi 
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W(x)T(AiX + at) = 2xTPAiX 

= xr(PAi + AjP)x 

< -axTPx - xTEjRiEiX 

< -axTPx = -axrPx = -aV(x) (2.74) 

In summary, for all x € TZi, i = 1 , . . . , M, 

VV(x)T(AiX + at) < -aV(x) (2.75) 

Therefore using Proposition 2.2, the system (2.60) is dissipative with the storage 

functinon V(x) and the supply rate —aV(x). Therefore, considering (2.40), S(x, t) = 

V(x) + fQ aV(x(r))dr is nonincreasing along the trajectories of (2.60). This implies 

that the conditions of Theorem 2.1 are satisfied and all trajectories of the PWA 

system (2.60) in X asymptotically converge to x = 0. • 

Remark 2.2. In Proposition 2-4, the origin is not required to be the equilibrium 

point of all the subsystems the PWA system (2.60). This makes Proposition 2-4 

different from the common Lyapunov function approach in [75] which requires the 

origin to be the equilibrium point for all vector fields of the system. 

Proposition 2.4 provides sufficient conditions for quadratic stability of PWA 

systems as a set of linear matrix inequalities (LMIs). LMIs can be solved efficiently 

using interior point algorithms implemented in software packages such as Yalmip [76] 

and SeDuMi [121]. The following examples illustrate Proposition 2.4. 

Example 2.2. Consider the following Piecewise Linear (PWL) system: 

A\x, xi > 0 

x = < (2.76) 

A2X, x2 < 0 

33 



where 

A1 

-1 

2 

- 2 

- 2 
, A2 = 

-1 2 

-2 - 2 

For t/ws system, we have: 

Ei 0 1 Eo — 0 - 1 

Solving the following LMIs based on Proposition 2.4 

A\P + PAX + XiEjEx < -aP 

\ A\P + PA2 + X2EjE2 < -aP 

P > 0, Ai > 0, A2 > 0 

where a = 0.1, yields 

P = 

(2.77) 

(2.78) 

(2.79) 

, Ai = 1.1329, A2 = 1.1329. (2.80) 
0.6002 0 

0 0.5817 

Therefore x = 0 is asymptotically stable. It is interesting to note that this system has 

an attractive sliding mode on the negative side of the x\ axis (Fig. 2.2). However, 

no separate condition was considered to check the existence or stability of the sliding 

mode. 

Example 2.3. Consider the following system: 

Aix, x2 > 0 

x= < 

A2x, x2 < 0 

where 

Ax = 
1 

2 

- 2 

- 2 
, A2 = 

1 2 

- 2 - 2 

(2.81) 

(2.82) 
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Figure 2.2: Trajectories of a stable PWA system with a sliding mode 
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Figure 2.3: Trajectories of an unstable PWA system with a sliding mode 

For this system, E\ and E2 are defined as in Example 2.2. The LMI set (2.79) is 

infeasible in this case. In fact, although A\ and A2 are Hurwitz, there exists an 

unstable sliding mode and system (2.81) is unstable (Fig. 2.3). 

2.6.2 Piecewise Quadratic Lyapunov Function 

For stability analysis of PWA systems, PWQ functions are less conservative than 

quadratic Lyapunov functions [66]. However, PWA systems with sliding modes are 

not usually considered in the literature of multiple Lyapunov functions. The reason 

is that the existence of a continuous positive definite PWQ function that decreases 
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with time inside the regions is not a sufficient condition for stability of a PWA 

system. This is shown by the following counter-example. 

Example 2.4. Consider the PWA system (2.81) and the following PWQ Lyapunov 

function candidate. 

XTP\X, X2 > 0 

V(x) = < (2.83) 

XTP2X, X2 < 0 

The following set of constraints is a sufficient condition for (2.83) to be continuous, 

positive definite and decreasing with time inside the regions. 

Continuous at X2 = 0: 

1 0 (Pi - P2) 
1 

0 
= 0 

Positive definite: 

Pi > 0, P2 > 0 

Decreasing with time inside the regions: 

A\P^ + P±Ai + XiEjEx < -aP\ 

< A\P2 + P2A2 + X2EjE2 < -aP2 

Xi > 0, A2 > 0, a = 0.1 

One solution of the above problem is 

1.8073 -1.0745 
Pi = 

P2 = 

Ai = 

-1.0745 1.4261 

1.8073 1.0745 

1.0745 1.4261 

0.5755, A2 = 0.5755. 

(2.84) 

(2.85) 

(2.86) 

(2.87) 
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V(x) in (2.83) is a continuous PWQ positive definite function that decreases with 

time inside the regions of system (2.81). However, system (2.81) is unstable. There­

fore, the existence of such a function is not a sufficient condition for stability. 

In [66, p.64], an extra condition is introduced for PWA systems which have 

sliding modes. However, the limitation of this method is that it requires previous 

knowledge of geometrical properties of the sliding modes. One way to solve this 

problem is to use C1 PWQ Lyapunov functions, which is also proposed in [66, p. 

84]. 

Consider the piecewise quadratic candidate Lyapunov function continuous at 

the boundaries and defined in X by the expression 

V(x) = xTPiX, for x ElZi (2.88) 

where R = Pj G R(»+i)x(»+i) and 

Pi = 
Pi Qi 

T 
(2.89) 

F- = 
1 13 

(2.90) 

with Pi G Rn x n , qt e W1 and n G R. To simplify the notation, define 

i'ij fij 

0 1 

The following proposition describes the sufficient conditions for the stability 

of the PWA system (2.60) based on a PWQ Lyapunov function. 

Proposition 2.5. (Sufficient conditions for PWQ Lyapunov stability) Let there 

exist matrices Pi = Pj defined in (2.89), Zi, Zi, Aj and Aj that verify the following 

conditions for alii = 1 , . . . , M and a given decay rate a > 0 

Conditions on the vector field: 

fli = o, ifoelli 

(A* - A ^ = 0, if TZif^TZj^ 

(2.91) 

(2.92) 
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Continuity of the Lyapunov function: 

F${Pi-Pj)Fij=0, if K%{\K^ (2.93) 

• Positive definiteness of the Lyapunov function: 

ft = 0, n = 0, ifOeTZi 

Pi > el, ifOeKi andei ^ 0 

( ZihO 

[ Pi - EfZiEi > el 

ZihO 

< 
Pi - EjZiEi > e 

/ 0 

0 0 

(2.94) 

(2.95) 

(2.96) 

ifO£Ki (2.97) 

• Monotonicity of the Lyapunov function: 

PtAi + AjPi < -aPh if0e% and a ^ 0 

PiAi + AjPi + EfAiEi < -aPi 

Ai^O 

(2.98) 

, ifOe% anda = 0 (2.99) 

ifO^TZi (2.100) 
PiAi + AiPi + Ef KEi < -aPi 

Then all the trajectories of (2.60) in X asymptotically converge to x — 0. 

Proof. Consider V(x) = xTPiX for i G ^ a s the candidate Lyapunov function. It 

follows from (2.64) and (2.93) that for any x e %(]%, Vi{x) = Vj(x). Therefore 

V(x) is continuous over X. In addition, constraint (2.94) implies that V(0) = 0. 

The rest of the proof is divided into three parts: 

1. If ai = 0 and e?- ^ 0, we conclude from (2.95) that for all x ^ 0 in 7^ 

V(x) = xTPiX > e\\xf > 0 (2.101) 
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and from (2.98) that for all x # 0 

S7Vi(x)TAiX = 2xTPiAiX 

—• X \TiAi -\- A^ JrijX 

< -axTPiX = -aV(x) (2.102) 

2. If a* = 0 and ei = 0, we have TZi = {x\EiX > 0} and for any Zi G K^*^ and 

Aj G RPiXPi with nonnegative entries and for all x £ K j 

xrEjZiEiX > 0 (2.103) 

x^EjkiEiX > 0 (2.104) 

In this case, (2.96) leads to the following inequality for all x ^ 0 in TZi 

Vi(x) = xrP{X 

> xTEjZiEiX + e\\x\\2 

> e\\x\\2 > 0 (2.105) 

and (2.99) leads to the following inequality for all x ^ 0 in Ttj, 

VVi(x)TAiX = 2xTPiAiX 

= xT{PiAi + AjPi)x 

< -axTPiX - xTEjAiEiX 

< -axTPiX = -aV(x) (2.106) 

3. If m 7̂  0, we have IZi = {x\EiX > 0} and similarly to the previous case, 

condition (2.97) implies that for all x ^ 0 in Hi 

Vi(x) = xTPiX 

> xTEfZiEiX + e\\xf 

> e\\xf > 0 (2.107) 
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and condition (2.100) implies that for all x ^ 0 in 7£; 

Wi{x)T {AiX + en) = 2xTPiAiX 

= ^{PiAi + AjPJx 

< -axTPiX - xrEjhiEiX 

< —axTPiX = —aV(x) (2.108) 

In summary, for all x 6 TZi and for i = 1 , . . . , M, 

Vi(x) > e\\x\ 

VVi{x)T{AiX + en) < -aVi{x) 

(2.109) 

(2.110) 

Therefore using Proposition 2.3, the system (2.60) is dissipative with the stor­

age functinon V(x) and the supply rate —aV(x). Therefore S(x,t) = V(x) + 

JQ aV(x(r))dT is nonincreasing along the trajectories of (2.60). This implies that 

the conditions of Theorem 2.1 are satisfied and all trajectories of the PWA system 

(2.60) in X asymptotically converge to x = 0. • 

PWQ Lyapunov functions are less conservative than quadratic Lyapunov func­

tions. However, it is stated in [66] that for the following PWA system, it is not 

possible to find a C1 PWQ Lyapunov function although the system is stable. 

A\x — 
- 2 - 2 

4 1 
X, X2 > 0 

x= < 

A2x = 

i 

- 2 2 

- 4 1 

(2.111) 

X, X2 < 0 

In the next section, it is shown that a polynomial Lyapunov function exists for this 

system and can be found using the proposed method in section 2.6.3. 
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2.6.3 Sum of Squares Lyapunov Function 

In this section, it is proposed to consider a sum of squares polynomial as a Lyapunov 

function candidate. For a tutorial about recent system analysis techniques based on 

the sum of squares decomposition see [85]. A sum of squares polynomial is defined 

in the following. 

Definition 2.4. [94] A multivariate polynomial p{x\,..., xn) = p(x) is a sum of 

squares, if there exist polynomials pi(x),... ,pm(x) such that 

m 

p(x) = $ > 2 ( x ) . (2.112) 

SOS polynomials p(x) are globally nonnegative. Although verifying nonnega-

tivity of a polynomial is an NP-hard problem [81], the SOS condition can be formu­

lated as a convex problem in polynomial coefficients [94]. However, note that not 

all nonnegative polynomials are SOS. In the following proposition, nonnegativity of 

SOS polynomials is used to construct a Lyapunov function for PWA systems. 

Proposition 2.6. If for the PWA system (2.60), there exists a polynomial V(x) 

satisfying 

V{x) - \{\\xf) is SOS. ' (2.113) 

- VV(x)T(AiX + m) - Ti(x)T(EiX + et) - aV(x) is SOS for all i. (2.114) 

where A : K+ —> M+ is a strictly increasing polynomial function, A(0) = 0, a > 0 

and Ti : W1 —> M?iXl is a vector of SOS polynomials, x = 0 is asymptotically stable. 

Proof. Conditions (2.113) imply 

V(x) > A(||x||2) (2.115) 

Condition (2.114) leads to the following inequality 

VV(x)T(AiX + at) < -ri(x)T(EiX + a) - aV{x) (2.116) 

41 



Since Ti(x) is a vector of SOS polynomials and E{X + e* > 0 for all x in 7Zi, we have 

TiixfiEiX + et) > 0, Vx G % (2.117) 

Therefore (2.116) and (2.117) imply 

VV(x)T(AiX + at) < -aV{x) < 0, VxG%,x^0 (2.118) 

Thus, using Proposition 2.2, the system (2.60) is dissipative with the storage functi-

non V(x) and the supply rate —aV(x). Therefore, considering (2.40), S(x,t) = 

V(x) + fQ aV(x(r))dT is nonincreasing along the trajectories of (2.60). This implies 

that the conditions of Theorem 2.1 are satisfied and all trajectories of the PWA 

system (2.60) in X asymptotically converge to x = 0. • 

Remark 2.3. The parameters of the Lyapunov function can be computed by solving 

the SOS program in Proposition 2.6 using Yalmip [76] and SeDuMi [121]. 

Example 2.5. Consider the PWA system (2.111). There is no quadratic orC1 PWQ 

Lyapunov function for this system [66, p. 84]. However, by solving the following SOS 

program we can find a sixth order polynomial Lyapunov function. 

V(x)- 0.001 \\x\\2 is SOS. 

-VV.(AlX) - Ti(x){x2) - 0MV(x) is SOS. 

-VV.(A2x) - r2(x)(-x2) - 0.01V{x) is SOS. 

where Ti(.) and T2(.) are fourth order SOS polynomials. This is a convex problem 

and can be solved by SOSTOOLS [95] or Yalmip [76]. One feasible solution to the 

problem is 
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0.2-, 

0.154 

X2 X\ 

Figure 2.4-' The SOS Lyapunov function 

V(x) = (-0.0589a;i - 0.0567x2 - 0.00143xix2 - 0.02X2. 

-0.00269x? - Q.miAlxixlf + (0.00102xx - 0.0323x2 

-0.0651^1X2 - 0.00265x^x2)
2 + (-0.0156a;i + 0.0253x2 - 0.0257x2

: 

+0.00182x? - 0.00207xi^)2 + (+0.00717xi - 0.00439x? - 0.00863X2,)2 

+(-0.00957x2 + 0.00474xix2)
2 + (-0.0036x?x2 + 0.00118x^)2 

+(-0.00166x? + 0.00232xiX2)2 + (0.00124x?)2 + (0.00104x^)2 (2.119) 

This SOS Lyapunov function is shown in Fig. 2.4. Trajectories of the system (2.111) 

and contours of the SOS Lyapunov function are shown in Fig. 2.5. Notice that there 

is a stable sliding mode in this system. 
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-0.5 h 

Figure 2.5: Trajectories of a stable PWA system (black) and contours of the Lya-
punov function (gray) 

2.7 PWA Slab Systems 

A PWA slab system can be described by 

x — AiX + a,i, for x G TZi (2.120) 

where A{ e Rnxn, a, e W1. It is assumed that a* = 0 for i € X(0). Therefore, 

the origin is an equilibrium point of the system. The slab regions IZi, i = 1 , . . . , M 

partitioning a slab subset of the state space X cM.n are defined as 

Hi = {x | Oi < Cnx < ai+1}, (2.121) 

where Cu G R l x n and a* for i = 1 , . . . , M + 1 are scalars such that 

0"! < <72 < . . . < &M+1 (2.122) 

Each slab region can alternatively be described by the following degenerate ellipsoid 

TZi = {x\ \\LiX + li\\ < 1} (2.123) 
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fori (£1(0) (2.126) 
< 0 . 

where Li = 2Cn/(cri+i - <n) and k = -(ai+i + ai)/(ai+i - <Ji). 

We are interested to know if all possible trajectories in X asymptotically con­

verge to the origin. Note that the right-hand-side of (2.120) is not necessarily con­

tinuous and therefore there might exist attractive sliding modes. The following 

proposition provides sufficient conditions for the stability of system (2.120) based 

on Theorem 2.1. 

Proposition 2.7. All trajectories of the PWA slab system (2.120) in X asymptot­

ically converge to x — 0 if for a given decay rate a > 0, there exist P G M.nxn and 

Xi G R for i = 1 , . . . , M such that 

P > 0, (2.124) 

AjP + PAi + aP<0, Vz e 1(0), (2.125) 

Xi<0, 

AfP + PAi + aP + XiLfLi Pa* + X^Lj 

afP + XikLi A^Zf- l ) 

Proof. Consider the candidate Lyapunov function V(x) = xTPx for the PWA slab 

system (2.120) where P > 0. Consider the following function 

S(x,t) = V(x) + J aV(x(r))dT, (2.127) 

Jo 

where a > 0. In the following, we will show that S(x, t) is nonincreasing along the 

trajectories of (2.120): 

1. For x G %i where i G 1(0), multiplying the inequality (2.125) by xT and x 

from left and right, respectively, implies 

VV(x)TAiX + aV(x) < 0, for x e%,i e 1(0) (2.128) 

2. For x G TZi where i ^ T(0), it follows from the constraint (2.126) that 

VV(x)T(Aix + ai) + aV(x) + Xl(\\Lix-li\\
2-l)<0, (2.129) 
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Since A; < 0, conditions (2.129) and (2.123) imply 

W(x)T(AiX + en) + aV(x) < 0, for x G %, if 1(0) (2.130) 

Now, it follows from (2.128), (2.130) and Proposition 2.2 that the system (2.120) is 

dissipative with the storage functinon V(x) and the supply rate — aV(x). Therefore 

S(x,t) is nonincreasing along the trajectories of (2.120). This implies that the 

conditions of Theorem 2.1 are satisfied and all trajectories of the PWA slab system 

(2.120) in X asymptotically converge to x = 0. • 

2.8 P W P Systems 

The dynamics of a PWP system can be written as follows. 

x(t) = fi(x(t)),Xx(t)ePi (2.131) 

where x(t) G Kn denotes the state vector and /«•(#) G M.n are polynomial functions 

of x. The regions Vi, i G T = { 1 , . . . , M}, partition a subset of the state space 

^ C l " such that U*£{Pi = X,Vi<l Vj = ®,i^j, where Vt denotes the closure of 

Vi. Each region is described by 

Vi = {x\Ei(x) y 0} (2.132) 

where Ei(x) G RPi is a vector polynomial function of a; and >- represents an elemen-

twise inequality. 

Proposition 2.8. If for the PWP system (2.131), there exists a polynomial V(x) 

satisfying 

V{x) - A(||x||2) is SOS. (2.133) 

- VV(x)Tfi(x) - Tf[x)Ei{x) - aV{x) is SOS for all i. (2.134) 

where A : M.+ —» 1R+ is a strictly increasing polynomial function, A(0) = 0, a > 0 

and Fi : W1 —>• RPiXl is a vector of SOS polynomials, x = 0 is asymptotically stable. 
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Proof. Condition (2.133) implies 

V(x) > X(\\x\\2) (2.135) 

Condition (2.134) leads to the following inequality 

VV(x)rfi(x) < -Tj(x)Ei(x) - aV(x) (2.136) 

Since Ti(x) is a vector of SOS polynomials and Ei(x) > 0 for all x in Vi, we have 

Tj{x)Ei(x) > 0, Vz G Vi (2.137) 

Therefore (2.136) and (2.137) imply 

VV{x)Tfi{x) < -aV(x) < 0, Vxe%,x^0 (2.138) 

Thus, using Proposition 2.2, the system (2.131) is dissipative with the storage func­

tion V(x) and the supply rate — aV(x). Therefore, considerong (2.40), S(x, t) = 

V(x) + J0 aV(x(T))dr is nonincreasing along the trajectories of (2.131). This im­

plies that the conditions of Theorem 2.1 are satisfied and all trajectories of the PWP 

system (2.131) in X asymptotically converge to x = 0. • 

2.9 Conclusions 

In this chapter a general nonsmooth theorem for stability of nonlinear systems was 

stated and proved. Then, sufficient conditions for stability of PWA slab systems, 

PWA systems and PWP systems were formulated as convex problems subject to 

LMIs. The importance of the results of this chapter is to show that sufficient condi­

tions for the stability of PWA and PWP systems can be formed without any need 

for a-priori information about attractive sliding modes on switching surfaces. This 

is very important given that such information is very difficult to obtain for complex 

systems and, even when this information is available, it might lead to unnecessary 

conservati veness. 
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Chapter 3 

Extension of local linear 

controllers to global piecewise 

affine controllers for uncertain 

nonlinear systems 

A two-step controller synthesis method is proposed in this chapter for a class of 

uncertain nonlinear systems described by piecewise affine differential inclusions. In 

the first step, a robust linear controller is designed for the linear differential inclusion 

that describes the dynamics of the nonlinear system close to the equilibrium point. 

In the second step, a stabilizing piecewise affine controller is designed that coincides 

with the linear controller in a region around the equilibrium point. The proposed 

method has two objectives: global stability and local performance. It thus enables to 

use well known techniques in linear control design for local stability and performance 

while delivering a global piecewise affine controller that is guaranteed to stabilize 

the nonlinear system. The new method will be applied to numerical examples. 
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3.1 Introduction 

Linear control theory provides a variety of well established tools to guarantee robust 

stability and performance [36]. The controller is, however, valid only locally if the 

controller is designed for the linearization of a nonlinear system. In fact, the linear 

controller may not even stabilize the nonlinear system if the initial condition is far 

from the linearization point. On the other hand, most of the methods in nonlinear 

control theory address global asymptotic stability but not necessarily performance. 

Designing a controller that has both a large region of attraction and a good local 

performance is therefore one of the most interesting research problems in nonlinear 

control theory [80]. Having this problem in mind, a two-step method is proposed in 

this chapter to design a piecewise affine (PWA) controller for uncertain nonlinear 

systems described by piecewise affine differential inclusions (PWADI). The objective 

of the proposed method is to design a controller to satisfy a local performance 

requirement and to globally stabilize the nonlinear system. The method extends a 

linear controller designed for performance to a globally stabilizing PWA controller. 

One of the main advantages of this method is that it can be employed in many 

practical problems for which linear controllers currently exist without changing the 

local performance of the system. 

The structure of the proposed method is shown in Figure 3.1. In the first 

step, a robust linear controller is designed for the linear differential inclusion (LDI) 

that approximates the local behaviour of the nonlinear system in a neighbourhood 

of the desired operating point. Then, a PWA controller that coincides with the 

linear controller in a region around the equilibrium point and globally stabilizes 

the nonlinear system is designed in the second step. Since the design approach is 

based on finding a piecewise quadratic Lyapunov function, it is only approximate 

in the sense that there is no guarantee that a Lyapunov function can be found. If 

one is found, global stability is guaranteed. Otherwise, the method is inconclusive. 
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In spite of their approximate nature, Lyapunov-based methods for PWA controller 

design appear to work well in practice and have been widely used in the literature 

[40,56,66,96,103,104]. 

Local Linear 
Differential 
Inclusion 

Step 1: 

Robust Linear 
Control Design 

Uncertain 
Nonlinear 
System 

Global 
Piecewise Affine 

Differential 
Inclusion 

I.... 

Step 2: 
Piecewise Affine 

Extension 

S Local Performance 

S Global Stability 

x Inconclusive 

Figure 3.1: Structure of the proposed PWA controller design method 

The main result of this chapter is proved in Theorem 3.2. The contribution of 

this result is to provide the theoretical framework for extending a local linear con­

troller to a global PWA controller based on piecewise quadratic Lyapunov functions. 

In previous research, reference [103] has also used piecewise quadratic Lyapunov 

functions to synthesize PWA controllers. However, the method of [103] does not en­

able one to extend a local linear controller to a global PWA controller. Futhermore, 

it is assumed in [103] that there is one equilibrium point for the dynamic equations 

of each region. The equilibrium points of all regions are then selected a-priori by 

solving an optimization problem. It is also required that each of the equilibrium 

points be the extrema of the corresponding sector of any candidate Lyapunov func­

tion. By contrast, Theorem 3.2 now shows that it is in fact not necessary to compute 

those equilibrium points. This has the important advantage of relieving the designer 

from this tedious and non-intuitive task. 

Note that a PWQ function is not necessarily differentiable everywhere and 
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therefore it is a nonsmooth function. Despite this fact, none of the previously exist­

ing approaches to PWA controller design have developed a nonsmooth theory nor 

have they considered using well-developed nonsmooth analysis theory in the litera­

ture e.g. [31]. By contrast, in this chapter, we depart from previous approaches to 

PWA controller design by using Theorem 2.1, a Lyapunov theorem for nonsmooth 

Lyapunov functions. The theorem has the advantage of including the standard Lya­

punov stability theorem in [70] as its special case for C1 Lyapunov functions. The 

proposed PWA controller in this chapter has the additional advantage of coincid­

ing locally with a robust linear controller designed using linear control methods. It 

therefore combines local performance with global stability. One important appli­

cation of the proposed method can thus be to extend the region of convergence of 

existing linear controllers for nonlinear systems. 

The rest of this chapter is organized as follows. An illustrative example is 

employed in section 3.2 to clarify the need for the proposed method. Section 3.3 then 

explains the proposed method which consists of a robust linear controller design and 

its PWA extension. Finally, PWA controllers are designed for numerical examples 

in section 3.4 and conclusions are drawn in section 3.5. 

3.2 Illustrative Example 

In this section, the following nonlinear system is used to illustrate the design proce­

dure: 

x = 0.5(1 -x2) + u (3.1) 

The open loop system has two equilibrium points (figure 3.2), one at x = — 1 (un­

stable) and the other one at x = 1 (stable). The goal is to design a controller so that 

for any x(0) E X = [—4,4], the trajectory of the system asymptotically converges 
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to x* = 1. It is also required that for any x(0) € (0,2), the following cost function 

/>oo 

J= [Q(x - l)2 + Ru2}dt (3.2) 
Jo 

be minimized where Q = 2 and i? = 1. 

To achieve this goal, continuous PWA functions <7i(x) and 02(x) (Figure 3.3) 

are first defined so that 

x G conv{ai(x) + u, 02 (x) + M} (3.3) 

where conv stands for the closed convex hull [107] of a set and o\{x) and 02(x) are 

affine in x inside each of the following regions: 

TZ, = (-4, -2 ) , ft2 = (-2, 0), K3 = (0, 2), ft4 = (2, 4) (3.4) 

In 72-3 (where x* is located), the dynamics of the system are described by the 

following LDI, 

x e conv{-1.6(x - 1) + u, -0.4(x - 1) + u} (3.5) 

Defining z = x — x * = x — 1, we have 

i e conv{—1.6z + u, —OAz + u} (3.6) 

An LQR controller can be designed for (3.6) using the design method for robust 

linear controllers described in subsection 3.3.1. The resulting controller for 7Z3 is 

then described by 

• u =-1 .07a ;+ 1.07 (3.7) 

Figure 3.4 shows the phase plane of the nonlinear system in feedback connection 

with the linear controller. It can be clearly seen that the system still has two 

equilibrium points. Therefore, although the closed-loop system locally satisfies the 

required performance measure, it is not globally stable. In the following sections, 

a method for extending the designed LQR controller to a PWA controller will be 

presented. It will be shown in section 3.4 that the resulting PWA controller has the 

same local performance and, in addition, it is globally stablizing. 
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Figure 3.2: The phase plane of the open loop system. 

3.3 Extension of a Linear Controller to a PWA 

Controller 

This section proposes a method to extend a local linear controller to a global PWA 

controller. The method consists of two steps. In the first step, a robust linear con­

troller will be designed for a nonlinear system that is affine in the input. In this step, 

the designer can benefit from well established methods for designing robust linear 

controllers to make the nonlinear system locally stable and to satisfy a performance 

requirement in a neighbourhood of the desired equilibrium point. In the second step, 

the objective is to design a PWA controller that coincides with the linear controller 

in the neighbourhood of the equilibrium point and guarantees global stability of the 

nonlinear closed-loop system. 

Consider the following nonlinear system 

x = f(x) + g(x)u (3.8) 
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Figure 3.3: PWA differential inclusion 

where x G X C W1 and u G Rm. Let 

x G conv{ai(x ,«) , . . . , ate(x, u)} (3.9) 

where aK(x, u) is defined as 

aK(x, u) = AiKx + aiK + BiKu, x G TZi, (3.10) 

with AiK G E"x n , aiK G En , BiK G f T x m for i = 1 , . . . , M and « = 1 , . . . , K. The 

polytopic regions TZi are constructed as the intersection of a finite number of half 

spaces 

Hi = {x\EiX + eiy 0}, for i = 1 , . . . , M (3.11) 

where Ei € M.PiXn, ê  € M.Pi and >- represents an elementwise inequality. 

The objective is to stabilize system (3.8) to x = x* while satisfying a perfor­

mance requirement for x close to x*. The two steps of the proposed method will be 

presented in the following subsections. 
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Figure 3.4: The phase plane of the system with the linear controller. 

3.3.1 Step 1: Robust linear controller design 

The first step is to design a robust linear controller for the LDI describing local 

behaviour of the nonlinear system. Consider a region IZi* such that 

The dynamics of system (3.8) in this region can be described by the following LDI. 

x E conv{Ai*Kx + a,i*K + Bi*Ku\ K = 1 , . . . , /C} (3.12) 

Changing variables to z = x - x* and assuming a state feedback control input 

u = Ki*x + ki* yields 

z e conv{(Ai*K + Bi*KKi*)(z + x*) + ai*K + Bi*Kki*\ K = 1,...,/C} (3.13) 

To make z = 0 an equilibrium point of the system, the following condition must be 

satisfied. 

(Ai*K + Bi*KKi*K)x* + di*K + BiKki*n — 0, K = 1 , . . . , JC (3-14) 
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The closed-loop dynamics of the system can then be written as 

z <E conv{(A*K + Bi*KKi*K)z\ « = ! , . . . , £ } (3.15) 

The matrix gain Ki* can be designed using robust linear control methodologies to 

satisfy desired design objectives for the differential inclusion (3.15). The affine term 

of the controller ki* can then be computed if the linear equation (3.14) has a solution. 

The choice of the required performance measure depends on the application. In this 

work, a robust LQR is designed for the LDI (3.12) using the following result taken 

from [64]. 

Theorem 3.1. [64] Consider the cost function 

POO 

J= (Z
TQZ + u

TRu)dt 
Jo 

where Q > 0 and R > 0 for the following LDI 

z £ conv{AKz + BKU\K = 1 , . . . , K} 

where z € Kn and u 6 Km. / / there exist S and Y so that 

(3.16) 

(3.17) 

S>0 

SAT + AKS + YTBZ + BKY 

QV2S 

RV2Y 

SQ1'2 

-Ir, 

YTRl/2 

0 

J 777. 

(3.18) 

< 0 (3.19) 

for K = 1 , . . . , K, , then for u = Kz where K = YS 1
! we have 

J < z(0) r5-^(0) (3.20) 

• 
To avoid the dependency of the upper bound of the cost function on initial 

conditions of the system, it is proposed in [64] to assume that the initial condition 
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is a random vector with zero mean and identity covariance, i.e., 

E{z(0)} = 0 

E{z(0)z(0)T} = I (3.21) 

It is shown in [64] that Trace (51-1) is an upper bound on E{J} . Therefore it 

is proposed in the same reference to solve the following optimization problem to 

minimize the upper bound on the cost function. 

max Trace (S) 

subject to (3.18) and (3.19) (3.22) 

This optimization problem can be solved using SeDuMi [121] and Yalmip [76] to 

compute the controller gain K{*. The affine term hi* can then be computed by 

solving (3.14). The controller in region IZi* can then be written as 

u = Ki*x, where Ki* = 1\ i* Ki* and x = x 

1 

(3.23) 

The next step is to find a PWA controller that coincides with the linear controller 

(3.23) in Up and guarantees the stability of the closed-loop system in X. 

3.3.2 Step 2: PWA state feedback design 

The second step is to extend the robust linear controller to a PWA state feedback 

controller that stabilizes the nonlinear system (3.8) at the equilibrium point x*. A 

PWA control input of the following form is considered for this purpose 

u = K{X + ki = KiX, for x ElZi 

where 

Ki = J\ i Ki 

(3.24) 

(3.25) 

57 



The closed loop system is therefore described by 

x = f(x) + g(x)(Kix) for x £ IZi, (3.26) 

Consider the piecewise quadratic candidate Lyapunov function continuous at the 

boundaries and defined in X by the expression 

V(x) = xTPiX, for x E Hi (3.27) 

where A = P T e R(«+i)x(«+i) and 

Pi = 
Pi Qi 

T 
(3.28) 

with P, e qi G Rn and r; £ R. To simplify the notation, define 

AiK — 

1 = 

•"•IK ^ i n 

0 1 

I 0 

7 tj%K 

Bin 

0 
F • = 

Fij Jij 

0 1 

X 

1 

-a; 1 

I -x* 

0 1 

—a; 

(3.29) 

(3.30) 

The following theorem describes sufficient conditions for the existence of a 

continuous piecewise quadratic Lyapunov function of the form (3.27) and a PWA 

controller of the form (3.24) that coincides with the robust linear controller in the 

region where x* lies and guarantees global stability. 

Theorem 3.2. Let there exist matrices Pi = P? defined in (3.28), Ki defined in 

(3.25), Zi, Zi, AjK and AiK that verify the following conditions for all i = 1 , . . . , M, 

K = 1 , . . . , K, and for a given decay rate a > 0, desired equilibrium point x*, linear 

controller gain Ki* defined in (3.23) and e > 0 

• Conditions on the PWA controller: 

Ki = Ki*, ifx*e% (3.31) 

(AiK + BiKKi)x* = 0, ifx*£Ki (3.32) 

. (AiK + BiKKr)Fio = (AjK + B^K^Fij, if %[]% ^ 0 (3.33) 
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• Continuity of the Lyapunov function: 

F?(Pi - PijFij = 0, if % f | %; ^ 0 (3.34) 

• Positive definiteness of the Lyapunov function: 

PiX* = 0, ifx* e% (3.35) 

Pi > el, if x* EKi, EiX* + ei^0 (3.36) 

,ifx*eTZi,Eix* + ei = 0 (3.37) 
zt e Rnxn, ZihO 

Pi - EfZiEi > el 

Zi€K ( n + 1 ) x ( n + 1 ) , Zi^Q 
,ifx*tKi (3.38) 

i ^i-i^i R - EjZiEi > el 

• Monotonicity of the Lyapunov function: 

for i such that x* € IZi, EiX* + e; ^ 0, 

Pi(AiK + BiRKi) + (AiK + BiKKi)TPi < -aPi (3.39) 

(3.40) 

for i such that x* €.7Zi, EiX* + ej = 0, 

AiK e Rnxn, AiK h 0 

Pi(AiK + BiKKi) + {AiK + BiKKi)TPi + E?AiKEi < -aPt 

for i such that x* filli, 

AiKeR^n+1^n+1\ A 1 K ^ 0 
(3.41) 

Pi(AiK + BiRKi) + (AiK + BiKKi)TPi + EfAiKEi < -aft 

Then for the nonlinear system (3.26), all trajectories in X asymptotically converge 

to x = x*. 

Proof. Consider the change of coordinates z = x — x* or equivalently 

Z 1 zxX 

x 1 zx z 
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where 

T = 
-L ZX 

I -x* 

0 1 
1 X ZX 

I X* 

0 1 
(3.43) 

With this change of variables, the differential inclusions (3.9) with the control 

input u = KiX + ki for x G IZi is transformed into 

zeconv{al(z),...,a^(z)} (3.44) 

where az
K(z) is defined as 

°l{z)=Az
iKz+,az

iK, zeK*, (3.45) 

for i = 1 , . . . , M and K = 1,... ,JC where 

M 
A\K 

0 

< 

0 
= {AiK + BiKKi)fz 

and therefore 

•^•XK AiK + JDiKKi 

aL = (AK + BiKKi)x* + aiK + BjKA;i 

Polytopic regions 1ZZ can be written as 

Kz = {z\Ezz + ezyO}, fori = l , . . . , M 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

where £? - Et and ef = £,x* + et. If ft* f l ^ ^ 0 ( i-e. ft* f | ^ i 7̂  0 ) i* follows 

from (2.64) that 

Vx € Kif^Kj, 3s G Rn_1, x = F i j S + /„• 

Thus 

Vz G ft* p|ft*, 3 5 G K"-1, * = FijS + /, 

and one can define F^ = F^-, /?• = /^ — x* and 

n x 

(3.50) 

(3.51) 

Fz. = 
pz fz 

± I] JlJ 

0 1 
= T F-

-1 zx -* i] 

(3.52) 
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For the candidate Lyapunov function Vz(z) — V(x), for z EH* { i.e. x € 7̂ » ) we 

have 

V'(z) = V?{z), (3-53) 

where 

and thus 

Trp—T D Ti—l - - T T}Z -V?(z) = x'PiX = z'T^PiT^z = zlP?z (3.54) 

P- = 
P! qt 

qf rf 

P 

x* P + g] 

PiX* + qt 

x* PiX* + ql x* + x* qi + r. 
(3.55) 

In the following, it is shown that for any K G { 1 , . . . , JC}, the PWA system i = az
K(z) 

satisfies the conditions of Proposition 2.5. 

• Conditions on the vector field: 

It follows from (3.32) that if x* e Hi i.e. 0 G Tlf 

•"•IK &iK 

0 0 
+ 

BiK 

0 

r 

Ki 

, \ 

Ki 
I 

X* 

1 
= 0 

(A?K-A*K)F%=*07 i f ^ f j ^ V 

Thus (2.92) is satisfied. 

(3.56) 

This is equivalent to az
K = 0 and therefore (2.91) is satisfied. 

Using (3.33), for i and j such that lZif)lZj ^ 0 we have 

[(AiK + BtKKi) - (AjK + BJKKi)] T£TzxFii = 0 (3.57) 

and therefore from (3.46) and (3.52) 

(3.58) 

Continuity of the Lyapunov function: It follows from (3.34) that 

F^flf-JiP - Pd)T^TzxFi3 = 0, if % f|7^: ^ 0 (3.59) 
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and from (3.52) 

F£(P?-I*)F% = O, if n\[\n)^ 

Therefore (2.93) is satisfied. 

• Positive definiteness of the Lyapunov function: 

— The condition (3.35) can be rewritten as 

PiX* + qi = 0 
, Xx*e7li 

qjx* + r i = 0 

and therefore from (3.55), 

qt = 0 
, if 0 e f t ? 

v r? = 0 

Thus (2.94) is satisfied. 

It follows from (3.36), (3.55), (3.62) and (3.49) that 

P* > el, if 0 e % and e\ ^ 0 

Therefore (2.95) is satisfied. 

It follows from (3.37), (3.55), (3.62) and (3.49) that 

P? - EjZiEi > el, if 0 6 % and e? = 0 

Therefore (2.96) is satisfied. 

The condition (3.37) can be rewritten as 

rp—Tprp—l n=i-T S T 7 fi rp— 1 ^ C'T'—T T'T— 1 

x zx r^1zx J zx -^i z ' » £ ' i J z i -^ tJ-zx x±zx 

and then from (3.54), (3.49) and (3.30) that 

/ 0 
Pf - EfZiEf > e 

0 0 
, i fOgft* 

Therefore (2.97) is satisfied. 

(3 

(3 

(3 

(3 

(3 

(3 

(3 
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Monotonicity of the Lyapunov function: 

The condition (3.39) can be rewritten using (3.49), (3.55) and (3.56) as 

P*A\K + A\K Pt
z < -aP*, if 0 G Kl el ± 0 

This is equivalent to (2.98). 

It follows from (3.40), (3.49) and (3.55) that 

P*AiK + AlP* + Efk^l < -aP?, if 0 G ft* and e\ = 0 

Therefore (2.99) is satisfied. 

Multiplying (3.41),by Tzx and Tzx from left and right yields 

T-TPiiAi* + BiKKi)f;x
l + Tz-x

T(AlK + BiKKif Pif;x
x 

+ frjEjl^Eifr} < -af-Jpfr1 

(3.67) 

(3.68) 

(3.69) 

M K - ^ 1 - 1 ZX zx i -"• zx 

Since TZXTZX = / , the condition (3.69) can be rewritten as 

Tzx Pi^zx Tzx{AiK + BiKKi)Tzx + Tzx (AiK + BiKKi) TZXTZX P{TZX 

rp—T D T - l i rV—L p1-* A p rp—1 . mT~ P rT'~ 
' 1 zx -C/i ivinI2ji-Lzx ^ ui± zx ri±zx 

Note that from (3.43), it follows 

(3.70) 

Tzx {AiK + BiKKi) = 
I -x* 

0 1 

•*MK I D{Kl\.i &iK -\~ D{KKi 

0 0 

0 0 

= (AiK + BiKKi) 

Now using (3.71), (3.70), (3.46), (3.49) and (3.54), we have 

P1A\ + AfP* + EfhEt < -aPT, if 0 g % 

Therefore (2.100) is satisfied. 

(3.71) 

(3.72) 
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Since all the conditions of Proposition 2.5 are satisfied, it can be concluded that for 

any K € { 1 , . . . , /C}, the PWA system z = az
K{z) is stable at the origin (z = 0) and 

V*(x)>e\\z\\2,zeK: (3.73) 

Wz(x)T(Az
Kz + al) < -aVz{x), z 6 % (3.74) 

for i = 1 , . . . , M. 

The differential inclusion (3.44) can be described as 

i = f?(z), z € Kz (3.75) 

where 
K 

and ujK{t) > 0 for K = 1 , . . . , K, and alH > 0 are piecewise smooth functions such 

that 
K 

J>^) = 1 (3-77) 
K = l 

From (3.76) and (3.74), it follows 

W/ (* ) T / , ( z ) < -CLV?{X\ Z e % (3.78) 

Now using Proposition 2.3, the system (3.75) is dissipative with the storage functinon 

Vz(z) and the supply rate —aVz(x). Therefore S(z,t) = Vz(z) + JQ aVz(z(r))dr 

is nonincreasing along the trajectories of (3.75). This implies that the conditions 

of Theorem 2.1 are satisfied and all trajectories of (3.75) (the nonlinear closed loop 

system (3.26)) asymptotically converge to z — 0 [x = x*). • 

Remark 3.1. Theorem 3.2 shows that there is no need to assume that there is one 

equilibrium point for the dynamic equations of each region and to select them a-priori 

by solving an optimization problem (such as it was done in [103]). 
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Remark 3.2. The conditions in Theorem 3.2 include bilinear matrix inequalities 

(BMI) which make the problem nonconvex. Reference [124] showed that the problem 

of checking the solvability of a BMI is HV-hard. The complexity of the synthesis 

problem increases with the order of the system, the dimension of the partitioned 

space and the number of regions. However, PENBMI [71], a recent software package 

providing algorithms with local optimality guarantees, can be used in practice to 

search for a local solution to the problem as it will be shown in the next section. 

3.4 Numerical Examples 

Example 3.1. For the illustrative example in section 3.2, a PWA controller is 

designed to extend the region of convergence of the robust LQR controller. A feasible 

solution to the synthesis problem described in Theorem 3.2, was calculated using 

PENBMI [71] and Yalmip [76]. Figure 3.5 depicts the resulting piecewise quadratic 

Lyapunov function. The designed PWA controller (Figure 3.6) is described by the 

following gains. 

Kx = [-4.08 - 0.437], K2 = [-3.32 1.07] 

Ks = [-1.07 1.07], K4 = [2.45 - 5.97] (3.79) 

Note that the PWA controller coincides with the linear LQR controller in (0,2). 

Figure 3.7 shows the phase plane of the closed-loop system consisting of the nonlinear 

system in feedback connection with the PWA controller. Notice that the closed-loop 

system has now only one equilibrium point in X — [—4,4] and it is stable for all 

initial conditions in X. 

Example 3.2. Consider the following simple PWA system (adopted from [96] with 

slight modification) 
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Figure 3.5: The computed Lyapunov function - Example 3.1 

xi — x2 

X2 = — 0.1x2 + g{x\) + u (3.80) 

where g(x\) is the PWA function depicted in Figure 3.8. It is desired to stabilize the 

origin (x\ = X2= Q) for this system. The local performance criterion is 

/•oo 

J(x, u)= Ax\[t) + 4x2(t)
2 + uitfdt 

Jo 
(3.81) 

At first, a PWA controller was designed by applying the synthesis method proposed 

by [96] using PWLTOOL [57]. Figure 3.9 shows the trajectories of the closed loop 

system. It can be seen that, in this case, the PWA controller designed by PWLTOOL 

does not stabilize the origin even locally. 

We then employ Theorem 3.2 to stabilize the origin and to extend the following 

LQR controller with the cost function (3.81) to a PWA controller 

u = —3.2361;ci — 3.1376x2 (3.82) 
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Figure 3.6: The designed PWA controller - Example 3.1 

Figure 3.10 depicts the trajectories of the closed loop system. The PWA controller 

stabilizes the origin while it coincides with the LQR controller (3.82) for the center 

region (— 1 < x\ < 1). 

Example 3.3. Consider the following second order system 

Xi %2 

X2 = —X\ + 0.5X2 — 0.5x1X2 + U (3.83) 

Figure 3.11 shows the trajectories of the open loop system. A linear controller u — 

— 198a;i ~ 101^2 can extend the region of convergence to the origin as depicted in 

Figure 3.12. However, there still exist initial conditions in 

X = 
Xi 

x2 

30 < xi < 30, -60 < x2 < 60 (3.84) 

for which the trajectories of the system do not converge to the origin. 

To design a PWA controller, the nonlinear system (3.83) should first be in­

cluded by a PWADI. This is done by computing upper and lower PWA bounds on 
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Figure 3.7: The phase plane of the closed-loop system with the PWA controller 
(solid) and the linear controller (dashed) - Example 3.1 

the nonlinear function h{x) = 0.§x\x2 and then substituting this nonlinear function 

in (3.83) by its PWA bounds. Figure 3.13 shows the regions (triangles) for which 

the PWA bounds were computed. 

A PWA controller was then designed that satisfies all the conditions of Theorem 

3.2. The corresponding piecewise quadratic Lyapunov function is depicted in Figure 

3.14- The trajectories in Figure 3.13 clearly show that the PWA controller enlarges 

the region of convergence. 

3.5 Conclusions 

This chapter proposed a two-step synthesis method to achieve both local perfor­

mance and global stability for a class of uncertain nonlinear systems. In this method, 

a local robust linear controller is first designed for a neighborhood of the desired equi­

librium point to satisfy a local performance requirement. The local linear controller 

is then extended to a PWA controller to globally stabilize-the nonlinear system. 
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Figure 3.9: Trajectories of the closed-loop system for the PWA controller proposed 
in [96] - Example 3.2 
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Figure 3.10: Trajectories of the closed-loop system for the proposed PWA controller 
- Example 3.2 

- 6 - 4 - 2 0 2 4 6 
Xi 

Figure 3.11: Trajectories of the open loop system - Example 3.3 
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Figure 3.13: Trajectories of the closed-loop system for the PWA controller - Example 
3.3 
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Figure 3.14: Piecewise quadratic Lyapunov function - Example 3.3 

The PWA controller locally coincides with the linear controller and therefore has 

the same local performance. 
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Chapter 4 

Controller synthesis for piecewise 

affine slab differential inclusions: a 

duality-based convex optimization 

approach 

The main contribution of this chapter is to introduce for the first time a duality-based 

interpretation of piecewise affine (PWA) systems. This is a key concept to enable a 

convex formulation of PWA controller synthesis for PWA slab differential inclusions 

using a new convex relaxation. A convex optimization program is also proposed to 

compute a PWA differential inclusion that includes a nonlinear system for which the 

nonlinearity is a function of one variable. Therefore, by formulating the synthesis 

problem for PWA differential inclusions, the proposed method can also guarantee 

stability and performance for the original nonlinear system. Another important 

contribution of the chapter is to present stability and performance analysis and 

synthesis results that extend PWA L2-gain analysis and synthesis to PWA systems 

whose output is also a PWA function of the state (as opposed to a piecewise-linear 
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function). To this end, the definition of the regions of a PWA system is generalized 

in this chapter. These results work even when the PWA systems include sliding 

modes. Numerical examples illustrate the new approach. 

4.1 Introduction 

Controller synthesis for L2-gain performance of PWA systems has attracted growing 

attention in recent years [40-42]. Reference [40] formulates the L2-gain controller 

synthesis problem for uncertain PWA systems as a set of LMIs based on a piecewise 

quadratic (PWQ) Lyapunov function provided that the structure of the PWA con­

troller is constrained. Reference [42] proposed a method to design PWL controllers 

for PWL systems based on a PWQ Lyapunov function to limit the L2-gain of the 

system. The method was later extended to uncertain PWL systems in [41]. How­

ever, the approaches in [40,42] and [41] do not use any S-procedure in the design 

process, which means that each closed-loop subsystem of the PWL system has to 

be stable and this makes the proposed methods conservative. Attractive sliding 

modes are also ignored in [40,42] and [41]. There is therefore no guarantee for the 

closed-loop system to be stable in general. In addition, no method is proposed to 

obtain bounds on the uncertainty for nonlinear systems that are approximated by 

PWA systems. 

A very important subclass of PWA systems is the class of PWA slab sys­

tems [101], for which the partition of the state space is a function of a scalar 

variable. The synthesis of PWL controllers for stability and performance of PWA 

slab systems is formulated in [56] as a set of LMIs. Reference [100] applied PWL 

L2-gain controller synthesis to the problem of inventory control of production sys­

tems. Additional constraints were introduced in this chapter to limit the control 

input. However, for PWA controllers, it is said in [56] that "It doesn't seem that 
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the condition for stabilizability using this type of input command can be cast as an 

LMI". Reference [101] showed that by considering an affine term in the controller, 

the synthesis problem for PWA slab systems can be formulated as a set of LMIs 

parametrized by a vector. Three different algorithms for controller synthesis have 

been proposed in [101] and the bisection method has been used to find the controller 

that maximizes the decay rate of the trajectories. 

However, no convex optimization problem has been proposed for PWA con­

troller design for stability and performance without limiting the structure of the 

controller. To fill this gap in the literature, this chapter formulates PWA controller 

synthesis for stabilization as a set of LMIs. Then, this formulation is extended 

to L2-gain controller design. These results are based on a new key concept - the 

dual parameter set - that is introduced in this chapter for the first time. In addition, 

PWA slab differential inclusions (as opposed to equations) are considered here. This 

enables the design for stability and performance of nonlinear systems that can be 

included by a PWA envelope. Furthermore, for nonlinear systems for which the 

nonlinearity is a function of one variable, a convex optimization method is proposed 

in this chapter to compute the PWA envelope that includes the nonlinear system. 

The structure of the chapter is as follows. The definition of L2 gain of a 

nonlinear system and PWA differential inclusions are introduced in section 4.2 and 

section 4.3, respectively. A convex optimization method is then described in section 

4.3.1 to compute a PWA envelope for a class of nonlinear systems. Stability and 

performance analysis are presented in section 4.4. Section 4.5 addresses stabilization 

and L2-gain control design. Finally, numerical examples are shown in section 4.6 

and conclusions are drawn in section 4.7. 
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4.2 Mathematical Preliminaries 

Consider the nonlinear system 

x = fix) + q(x)w 

y = h{x) 

where f(x) and g(x) are defined almost everywhere and bounded for bounded ||x||. 

The L2 gain from w to y is defined as 

sup jjzf- (4.2) 
0<||«;||2<oo IM|2 

where the L2 norm of a signal z is defined as 

i 

(4.3) 

and the supremum is taken over all nonzero trajectories assuming x(0) = 0. 

* 2 = 

oo 
T/ z (r)^(r)dr 

o 

Lemma 4.1. /7/ TTie nonlinear system (4-1) has finite L2-gain less than 7 > 0 if 

there exists a locally bounded storage function V : WLn —» WL, such that V(x) > 0 for 

all x 6 Rn, 1/(0) = 0 and 

V< > 0, F(a;(<)) < V(x0) + / W(r)dr (4.4) 
Jo 

/or ^ e supply rate W(r) = -\\y(r)\\l + 72 | |w(r)| | | . 

4.3 Polytopic PWA Slab Differential Inclusions 

Polytopic PWA slab differential inclusions are a generalization of polytopic linear dif­

ferential inclusions in [17]. A polytopic PWA slab differential inclusion is described 

by 

x = A(x, t)x + a(x, t) + Bu(x, t)u + Bw(x, t)w 
(4.5) 

y = C(x, t)x + c(x, t) + Du(x, t)u + Dw(x, t)w 
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where x(t) € Kn denotes the state, u(t) € Rnu is the control input, w(t) G Rnw is 

the exogenous input and y(t) E K™*' is the output. The initial state is x(0) = XQ. It 

is assumed that system (4.5) satisfies 

x E conv{AKx + aiK + Bu. u + Bw. w, K = 1,2} _ ,A) 

for (x, w) E Tl? (4.6) 
y E conv{CiKx + ciK + DUiKu + DW.KW, K = 1, 2} 

where conv stands for the convex hull of a set and TZfxVV, i = 1 , . . . , M are M slab 

regions partitioning the cross product of a slab subset of the state space A ' c l " 

and the space of the exogenous input W defined as 

UfxW = {{x, w)\<Ji< Cnx + Dnw < ai+1}, (4.7) 

where Cn E M l x n , Dn E Rlxn™ and a* for i = 1 , . . . , M + 1 are scalars such that 

ai<a2< ... < CTM+I (4.8) 

Each slab region can be described by the following degenerate ellipsoid 

n*xW = {(x,w) | WLiX + U + MM < 1} (4-9) 

where U = 2C^/(cri+i-<Tj), k = -(ai+1+ai)/(ai+1-ai) and Mt = 2DTt/(ai+i-ai). 

It is assumed that aiK = 0 and ciK = 0 for i E X(0,0) and K = 1, 2 where 

J(x, tu) = {i\ (x, w) E K?XW} (4.10) 

The following subsection will formulate the computation of PWA envelopes 

for a class of nonlinear systems as convex optimization programs. These envelopes 

will be used to design PWA controllers for nonlinear systems. 
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4.3.1 PWA envelope for nonlinear systems 

In this subsection, a numerical method is proposed to compute a PWA envelope 

(bounding differential inclusion) for the following nonlinear system 

x = Ax + Bpp + Buu + Bww, x(0) = xo, 

q = CKX + DKW (4.11) 

y = Cx + Dpp + Duu + Dww 

where x G Rn, u G RUu, w G Rnw, y G Rny and the vector p G Rnp is a nonlinear 

function of the scalar q G R 

P = f(q), (4.12) 

with /(0) = 0. It is assumed that f(q) is measured at a finite number of sampling 

points qk for k = 1 , . . . , Ns. 

The objective is to find PWA vector functions Si(q) and ^O?) defined as 

£K(<?) = AqiKq + aQiK, for a{ < q < ai+1, K = 1, 2 (4.13) 

for i = 1 , . . . , M such that 

f(q)ecoxw{51(q),S2(q)} (4.14) 

and 5K(0) = 0, K = 1,2. It is also required to make the bounding envelope as 

tight as possible. Given Oi for i = 1 , . . . , M + 1 , the computation of the bounding 

envelope consisting oiSi(q) and S2(q) can be formulated as the following optimization 

problems. 

1. Optimization problem to compute 8\{q): 

min E*==i>...,JVJ/(gfc) - 5i{qk))f 
Ain 'ain 

s.t. Si(q) = Aza<? + %i> for °"i < 1 < ai+l, 

fa(Qk) < f(qk), for qk > 0 

Mflfc) > / ( * ) , for qk<0 (4.15) 
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2. Optimization problem to compute 62(g): 

min Ek=i,...,N.\\f(qk) ~ ^(%)) | |2 

s.t. 62(g) = Agi2g + aqi2, for d < g < ai+i, 

fa(qk) > f(qk), for gk > 0 

62(gk) < f(gk), for gk < 0 (4.16) 

Continuity of ^i(g) and ̂ 2(9) can be written as a set of additional linear con­

straints on Aa. and aa as 

AqiKai+1 + aqiK = Aq(i+1)Kai+1 + aq{i+1)it, (4.17) 

for i — 1 , . . . , M — 1 and K = 1,2. The quadratic optimization problems (4.15) 

and (4.16) (including constraints (4.17) if needed) can be solved efficiently because 

they are convex. The nonlinear system (4.11) can then be embedded in the PWA 

differential inclusion (4.6) replacing p = f(g) by the inclusion (4.14) where 

•fl-lK A ~T~ ^pAqiK, din " *-*pQ'qiKi -^Mj« ^ t i i 

wiK "wi ^in C/ + iJpAqiKi C{K UpQ,qiK, 

The next section addresses stability and performance analysis of PWA differ­

ential inclusions. 

4.4 Analysis 

In this section, stability and performance analysis of PWA differential inclusions are 

considered. The concept of the parameter set of a PWA differential inclusion is also 

introduced. This concept will be used to derive equivalent sets of conditions for the 

analysis. 
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4.4.1 Stability analysis 

In this section, the following PWA slab differential inclusion is considered 

x Gconv{^4iKx + aiK\n = 1, 2}, x G lZi (4-18) 

7li ={x\ \\LiX + k\\ < 1} (4.19) 

where Lt G R l x n , k G K , TU D Kj = 0 for z ^ j and U j ^ ^ = # . It is assumed 

that aiK = 0 for i G X(0) and K = 1,2. 

Definition 4 .1 . The parameter set of the differential inclusion (4-18) is defined as 

n = 
•"•in ^in 

•L/i li 

i - 1, . . . ,M, K = 1,2 (4.20) 

We are interested to know if all possible trajectories in X asymptotically con­

verge to the origin. Note that the right-hand-side of (4.18) is not necessarily continu­

ous and therefore there might exist attractive sliding modes. This prevents us from 

using standard Lyapunov theorems. The following proposition provides sufficient 

conditions for the stability of system (4.18) based on Theorem 2.1. 

Proposition 4.1. All trajectories of the PWA slab differential inclusion (4-18) in 

X asymptotically converge to x = 0 if for a given decay rate a > 0, there exist 

P = PTe E n x n and \iK G R for i = 1 , . . . , M and K = 1, 2 such that 

P > 0 , 

AfKP + PAiK + aP<0, Vz G 1(0), 

AiK < 0, 

A?KP + PAiK + aP + XiKLfLi PaZK + \iKULj 

aiKA + \J-iLi AjK(Zj — 1) 
< 0 , 

(4.21) 

(4.22) 

(4.23) 

fori £X(0). 
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Proof. Consider the candidate Lyapunov function V(x) = xTPx for the differential 

inclusion (4.18) where P > 0. It follows from Proposition 2.7 and the inequalities 

(4.19), (4.21),(4.22) and (4.23) that 

W(x)T(Anx + aa) + aV(x) < 0, for x <E %, (4.24) 

and 

VV(x)T(Ai2x + ai2) + aV(x) < 0, for x G % (4.25) 

Therefore by performing a convex combination of (4.24) and (4.25) 

VV(x)Tf + aV{x) < 0, for x € 7^, V/ e conv{A«a; + aiK\i e I(x), K = 1, 2} 

(4.26) 

Now, it follows from (4.26) and Proposition 2.2 that the differential inclusion (4.18) is 

dissipative with the storage functinon V(x) and the supply rate —aV(x). Therefore 

the following function 

S(x,t) = V{x) + / aV(x{r))dr, (4.27) 

Jo 

is nonincreasing along the trajectories of (4.18). This implies that the conditions of 

Theorem 2.1 are satisfied and all trajectories of the differential inclusion (4.18) in 

X asymptotically converge to x = 0. • 

In the following, the new concept of the dual parameter set of the differential 

inclusion (4.18) is introduced. 

Definition 4.2. The dual parameter set of (4-18) is defined as 

aT I-

The importance of the dual parameter set is that if we write the LMIs in 

Proposition 4.1 for f2T, the resulting LMIs are stability conditions equivalent to 

those of Proposition 4.1. This is shown in the following. 
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Proposition 4.2. All trajectories of the PWA slab differential inclusion (4-18) in 

X asymptotically converge to x = 0 if for a given decay rate a > 0, there exist 

Q = QT £ Rnxn and [ilK G E for i = 1 , . . . , M and n = 1,2 such that 

Q>0, 

AiKQ + QA[K + aQ < 0, Vz e 1(0), K = 1, 2 

Ikn < 0 

A*<3 + QAl + aQ + 

UQ + HiKkafK niK{if - 1) 

for i £ J(0) and K = 1,2. 

< 0 , 

(4.29) 

(4.30) 

(4.31) 

Proof. The conditions of Proposition 4.1 and Proposition 4.2 will be shown to be 

equivalent with the change of variables Q = P~l, aiK — -^-. Multiplying (4.21) and 

(4.22) by Q from the left and right leads to (4.29) and (4.30) respectively. To show 

that (4.31) is equivalent to (4.23), we multiply the matrix inequality in (4.23) by 

the following matrix from both sides 

Q 0 

0 1 
(4.3.2) 

to get the following inequality 

QAJK + AiKQ + aQ 

< 0 +±QLlUQ 

Using the Schur complement, inequality (4.33) is equivalent to 

—a 2 - i )<o • 
1 1 

QAjK + AiKQ + aQ + — Q L j U Q - (aiK + —kQLj ) 

(4.33) 

lj,iK(l*-ir1(al + —liLiQ)<0 
H'lK 

f-l'in 

(4.34) 

(4.35) 
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Replacing (If - 1) 1 by the following expression 

(1? - I )" 1 = - 1 + Z?(Z? - l ) " 1 (4.36) 

leads to the following inequality after some manipulations. 

AKQ + QAjK + aQ + iiiKaiKaJK - (QLj + fiiKkaiK) 

—(If - iyl(UQ + mJial) < 0 (4.37) 

From (4.34) and the fact that /j,iK < 0, it follows that 

(iiK(l? - 1) < 0 (4.38) 

Using the Schur complement once again, inequalities (4.37) and (4.38) are equivalent 

to (4.31). Therefore, all the constraints of Proposition 4.2 and Proposition 4.1 are 

equivalent and all trajectories of the PWA slab differential inclusion (4.18) in X 

asymptotically converge to x = 0. • 

Proposition 4.2 will be used in section 4.5 to formulate the PWA controller 

synthesis problem as a convex problem. In the next subsection, the L2-gain analysis 

of PWA differential inclusions is discussed. 

4.4.2 Li2-gain analysis 

In this subsection, the L2-gain analysis of the following system is considered 

x E comr{AiKx + aiK + BWiKw, K = 1, 2}, (x, w) € K?xW 

y € conv{C;Kx + ciK + DWiKw, K = 1, 2} (4.39) 

1ZfxW = {(x, w)\ \\LiX + k + MiW\\ < 1} 

It is assumed that aiK = 0, ciK = 0 for i G 1(0, 0) and K = 1, 2. It is also assumed 

that the PWA function CiKx + ciK + DWiKw is continuous in x for K = 1 and 2. 

Similar to the case of stability analysis, the parameter set of (4.39) is defined in the 

following. 
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Definition 4.3. The parameter set of the differential inclusion (4-39) is defined as 

$ = ^ 

' 

k 

A, 
•ri-%K\ 

U 

^iK2 

^IKl 

k 

ClK2 

Bw. 

Mi 

Dw. 
tK2 

i = l , . . . , M , M = 1,2, «2 = 1,2 (4.40) 

The following proposition describes sufficient conditions for the differential 

inclusion (4.39) to have a finite L2-gain less than 7 from w to y. 

Proposition 4.3. For a given 7 > 0, the PWA slab differential inclusion (4-39) has 

a finite L^-gain less than y/2^ from w to y if there exists P = PT e R n x n such that 

1. P>0 

2. for i e 1(0,0), KI = 1,2 and K2 = 1,2, 

A*, P + PAiKt + CiKnCi IK\ IK1 ' ^iK2 ZK'2 

BViK1
P + DViK2

Ci*2 
--fl + Dl Dw. 

1 wiK2 wi*2 

< 0 (4.41) 

3. there exists AiK1K2 < 0 for i ^ T(0, 0), ACI = 1, 2 and /c2 = 1, 2 SMC/I i/iait 

A K I ^ + ^ A K I 

V / 
aiKi^ ' CiK9 iK2 ~r ^iKi^i^i Aini^ih ~ ±) > C%K2C' IK2 JK2 

51. P 

^ - ^ 1 0 ^ 2 ^ K 2 

\ 

V + A i K 1 K 2 M i % J 

WiKOCiK2 /^JKlK2^'-'^'i 

- ^ 2 / 

+I>1 Dw. 
WtK2

 W l t 2 

\ 

\ +XiK1K2Mt
TMi J 

< 0 

(4.42) 

Proof Consider the storage function V(x) = xTPx for the differential inclusion 

(4.39) where P > 0. 
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1. For i € 1(0,0), inequality (4.41) implies 

V n * ) T / i + I M | 2 - 7 2 M | 2 < 0 (4.43) 

VV(x)Tf2 + \\yi\\
2 - 72|M|2 < 0 (4.44) 

V n x ) T / i + | | t / 2 | | 2 -7 2 | k l | 2 <0 (4.45) 

V^(*)T/2 + | | r f - 7 2 | M | 2 < 0 (4.46) 

where 

/i = Anx + ait + BWilw (4.47) 

h = Ai2x + ai2 + BWi2w (4.48) 

yx = Cnx + en + DWilw (4.49) 

2/2 = Ci2x + ci2 + Dwaw (4.50) 

From (4.43) and (4.44), it follows 

V ^ ) T / + | | y i | | 2 - 7 2 | k l | 2 < 0 (4.51) 

for any / G conv{AiKx + BWiKw\i e X(0, 0),K = 1,2}. It also follows from 

(4.45) and (4.46), 

VF(a;)T/ + ll?/2| |2-72 |kl |2<0 (4.52) 

Consider y E conv{yi,y2} so that 

y = ayx + (1 - a)y2 (4.53) 

where 0 < a < 1. One can write 

||?/ | |
2<2(a2 | |yi | |

2 + (l-a)2 | |2 /2 | |2) (4.54) 

From (4.51) and (4.52), one has 

|M|2 < 2[a2 + (1 - a)2](-VV(xff + 7
2 |k | |2) (4.55) 
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It is easy to verify that for 0 < a < 1, 

Thus, 

a2 + (1 - a)2 < 1 

MI2<2(-vn*)T/ + 72IMI2) 
or 

2vn*)v+iMr-27W<o 
2. For i ^ J(0, 0), it follows from the inequality (4.42) that 

W{x)rh + | M | 2 - 7
2 | M | 2 + \m(\\LiX + k + MiWf - 1) < 0 

W ( x ) T / 2 + \\yi\\
2 - 7

2 H | 2 + \i2i{\\Ux + h + MiWf - 1) < 0 

W ( x ) T / i + \\y2\\
2 - 7

2\\w\\2 + AaadlLfX + h + MiWf - 1) < 0 

VV{x)Th + Ibll2 - 72 |M|2 + \i22il\LiX + k + MiWf - 1) < 0 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

Since XiK1K2 < 0 for K\ = 1,2 and K2 = 1, 2, the expression (4.9) and the 

inequalities (4.59)-(4.62) imply that inequalities (4.43)-(4.46) are satisfied for 

x GlZi and i fi X(0, 0). Using the same arguments as above, one can conclude 

that the inequality (4.58) is satisfied x G 1Zi and i £ 1(0,0). 

Therefore the PWA differential inclusion (4.39) is dissipative with the storage func­

tion 2V(x) and the supply rate W(x, w) = 272||ty||2 — 

from w to y is less than "v/27. 

2 and the L2-gain of (4.39) 

• 

The dual parameter set is defined in the following. Note that, in this chapter, 

we consider polytopic PWA slab differential inclusions. Therefore U = ij is a scalar. 

Definition 4.4. The dual parameter set of (4-39) is defined as 

k $ r = { 

AT 

T 

IK2 

T 
^IK2 

B: MT DL 

i = 1,. . . ,M, «i = 1,2, K2 = 1,2 (4.63) 
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The following proposition shows that the L2-gain LMIs for $ in Proposition 

4.3 are equivalent to the L2-gain LMIs for $ T . 

Proposition 4.4. For a given 7 > 0, the PWA slab differential inclusion (4-39) has 

a finite L,2-gain less than \/27 from w to y if there exists Q = QT £ E n x " such that 

1. Q > 0, 

< 0 

2. for i e 1(0,0), «i = 1,2 and n2 = 1, 2, 

AiK1Q + QA[K1+BWzKiBTiKi 

CinQ + D^B^ - 7
2 / + DWiK2D^, 

3. there exists /iiKlK2 < 0 for i ^ 1(0, 0), K\ = 1,2 and K2 = 1, 2 such that 

I AiK1Q + QAT\ 

(4.64) 

IKl 

+BwiK1 BWiK1 

L^g + MiBliKx + / i ^^ l j f l ^ M ™ ( * ? - 1) + AfcA*̂  

T 
\ <^iKlK2CiK2aiKl J 

( 

UwiK,Mi +MiKiK2nci IK2 

v2I 

+DWiD^ 
2 " ^ 2 

y >lJ'iKlK2CiK2CiK2 / 

(4.65) 

< 0 

Proof. In the following, it will be shown that the conditions of Proposition 4.4 and 

that of Proposition 4.3 are equivalent with the change of variables Q — ^P'1 and 

HIKIKO
 = T~^—• Multiplying (4.41) from both sides by the following matrix 

MKIK2 

Q 0 

0 I 
(4.66) 

leads to the following inequality. 

^QA? + 7
2AiK1Q + QCTQK2Q 

^iK2^C » , , „ ' " 2 -72/ + <K2A^2 J 
< 0 (4.67) 
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It follows from applying the Schur complement that 

<y2QA?K1 + 7%K1Q + QCL2ClK2Q - tfBWrKi + QCl2Du 

(-YI + K^DWlJ-\lzB^ + D^CiK2Q) < 0 

Using the matrix inversion lemma [68], we have 

( -7 2 / + DliK2Dw^ = -±(I ~ ^DliK2DWiJ^ 

- ^ ( J + D L 2 (^2/ - ^DiiKyDWiK2) 

Replacing (4.70) into (4.69), after some manipulations we get 

(4.68) 

(4.69) 

(4.70) 

AK1Q + QA?K1 + BWiKiBliKi - (QCl2 + BWiKiDlj 

(-T2/ + Dv)tlt2DZ,)-\CiKaQ + DWiK2Bl ) < 0 (4.71) 

From (4.68) and the fact that nonzero eigenvalues of DT„ DW and Dw Dj. are 
2 wiK2 

equal, one can conclude 

"fl + D^D* <0 2 win,2 

(4.72) 

Applying the Schur complement to (4.71) and (4.72) yields inequality (4.64). 

The steps of the proof for inequality (4.42) are similar. If one writes (4.42) as 

•011 * 

021 ^22 

< 0 (4.73) 

where 

0i i = 

+ 

T n 

T 
C-

0 

1 

Lf 
k 

P 

0 

I 

0 

0 

2 J 

0 

"iKlKll 

+ 
P 

0 

r 
^IK2 

U 

0 

2 J 

Q/C2 

*i 

•*M/ti 

0 

^ I K I 

1 

(4.74) 



lj>21 = Bl. 0 
P 0 

0 IK\ « 2 
+ 

"J /nKlK2-' 

^22 = - 7 I + Dl. Mj 
I 0 A, 

M 

and multiply it from both sides by the following matrix 

Q 0 

0 

Then, using the following matrix inversion 

- 7 2 / + D T M T 

™i«2 * 

1 

" /^lfvlK2-' 

A, 

7 ^ , / + Dl Mj 

A, 

M-

M-

(72 

A 

- i 

J 0 

" l^iKlK.2 

Mj - I A 

M, 

(4.75) 

(4.76) 

(4.77) 

(4.78) 

and the Schur complement, after some manipulation, we get (4.65). Therefore all the 

constraints of Propositions 4.4 and 4.3 are equivalent and the PWA slab differential 

inclusion (4.39) has a finite L2-gain less than 7 from w to y. • 

Proposition 4.4 is an important result, which enables us to formulate the L2-

gain synthesis as a convex optimization problem in the next section. 

4.5 Controller Synthesis 

In this section, PWA controller synthesis for PWA slab differential inclusions will 

be formulated as a convex optimization program. 
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4.5.1 Stabilizability 

(4.79) 

Consider the following PWA slab differential inclusion. 

x £ conv{AiKx + aiK + BUIKU\K = 1, 2}, x eTZi 

Ki = {x\ \\LiX + h\\ < 1} 

We seek a PWA control signal of the form u = KiX + ki for x £ TZi to stabilize (4.79) 

to the origin. It follows from Proposition 4.2 that there exists a control signal 

u = KiX + hi, x ElZi (4.80) 

such that all trajectories of the PWA slab differential inclusion (4.79) in X asymp­

totically converge to x = 0 if for a given decay rate a > 0, there exist Q £ Rn x" 

and fa £ K such that 

Q > 0, (4.81) 

AiKQ + QAjK + BvJTi + Y?BT
UiK + aQ < 0, (4.82) 

for iGl (0) ,K = l ,2 , and 

Hi < 0 (4.83) 

( AlKQ + QAJK ^ 

+BUiYz + Y?B^ 

+aQ + fiiaiKaJK 

+alKZj B^+BUiKZi(xl < 0, 

V +BU. WiBl 

LiQ + /J,ihaJK 

MiZjBl 
mM2i - 1) 

for i fi 1(0) and K = 1, 2 where 

Z/j = HiKi 

Wi = ixihkl 

(4.84) 

(4.85) 

(4.86) 

(4.87) 
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The main problem in designing a PWA controller using constraints (4.81)-(4.87) is 

the equality constraint (4.87) because it prevents the problem to be formulated as 

a convex optimization. We propose two methods to overcome this difficulty. 

1. Convex relaxation: The first approach to formulate PWA controller synthesis 

as a convex program comes from the observation that considering ^ < 0 and 

(4.87), we have 

Wi < 0 (4.88) 

Therefore the term BUiKWiB^. in (4.84) is always negative semi-definite and 

can be omitted to make the problem convex. This idea leads to the following 

proposition. 

Proposition 4.5. There exists a PWA controller of the from (4-80) such 

that all trajectories of the PWA slab differential inclusion (4-79) in X asymp­

totically converge to x = 0 if for a given decay rate a > 0, there exist 

Q = QT e M.nxn and fteK such that for all i e 1(0) and K = 1,2 

Q > 0 , 

AiKQ + QAT + BUiYi + Y*BlK + aQ < 0, 

and for all i ^ 1(0) and K = 1, 2 

(4.89) 

(4.90) 

/ AiKQ + QAiK 

B^Yi + YfB^ 

^ < 0 

\ 

(4.91) 

+aQ + HiaiKafK 

y+a^B^+Bu^al J 

+hZt
TBl 

ti,iK\'-i 

<o, (4.92) 
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2. Trace heuristic: Equality constraint (4.87) can be written as the following 

rank minimization. 

minRank X 

s.t. Xi 
Wi Zi (4-93) 

< 0 
Zj Hi _ 

A well-known heuristic to solve the rank minimization problem (4.93) is to 

maximize the trace instead of minimizing the rank (for a negative semi-definite 

matrix) [39]. Using this approach, the following proposition formulates suffi­

cient conditions for the existence of a PWA controller for differential inclusion 

(4.79) as a convex optimization problem. 

Proposition 4.6. There exists a PWA controller of the form (4-80) such 

that all trajectories of the PWA slab differential inclusion (4-79) in X asymp­

totically converge to x = 0 if for a given decay rate a > 0, there exist 

Q = QT € M.nxn and fa € M such that the following optimization problem 

M 

max Y^ Trace Xt 

i = i 

subject to 

Xi = 
Wi Zi 

zi Hi 

< 0 , V i ^ J(0,0), 

(4.94) 

(4.95) 

and (4-81)-(4-84) has a feasible solution such that 

IHWi = ZiZl (4.96) 

For both Propositions 4.5 and 4.6 , the PWA controller gains can be computed as 

Ki = YiQ-1 

0 if i e 1(0) 
k. 

—Zi otherwise 

(4.97) 

(4.98) 

In the next subsection, L2-gain PWA controller synthesis is formulated as a 

convex optimization problem. 
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4.5.2 L2-gain synthesis 

In this subsection, the objective is to design a PWA control signal of the form (4.80) 

to limit the L2-gain from w to y for the following differential inclusion 

x € conv{^4 iKx + aiK + BUiKu + BWiiiw\ K = 1, 2}, 

y e conv{ClKx + ciK + DUiKu + DWiKw}, (4.99) 

for {x, w) e K?xW = {{x, w)\ \\LiX + k + MiW\\ < 1} 

Similar to the case of stabilizability, the same convex relaxations can be used to 

yield the following propositions. 

Proposition 4.7. For a given 7 > 0 ; there exists a PWA controller of the form 

(4-80) such that the PWA slab differential inclusion (4-99) has a finite L2-gain less 

than -\/27 from w to y if there exist Q = QT 6 M.nxn and ^ € M, such that for all 

i G X(0, 0) and Ki = 1, 2 and AC2 = 1, 2 

s^iKi W ~r~ ^uiK1 *i 

Q>0, 

\ 

TDT 
+QA(K+Y/Bi in\ 

\ +Bm„Bm., 

^iK2 V ~r "uiK„ *i 

+DwiK2 BwiK1 

(4.100) 

->y2T + D DT 

y J- n- ^Wi— ^M 
"iK2 Wii 

< 0 (4.101) 
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and for all i ^ J(0,0), fa < 0, «i 1,2 and AC2 = 1,2 

+BwiKi Bw 1 "" t l t l 
+ maiK1al 

OiK1Z?BT + BUiniZiafKl 

+BU. WiBl 

/ 
< 0 

UQ + MiBl 

+mkal + liZjB%iK 

^ I K 2 V ~*~ ^UiK0 *i 

T Jr-^wiK2
BWiK1 +A f i C JK2 a ; 

Mi(Zf-l)+M,M/ 

' A ^ A i ? \ / 

^ +kDUiK2Zf ) \ 

-7
2I + DW.D, 

" t 2 w iK ;2 

<faCiK2CiK2 ' C ' « 2 Z j - ^ V , 

+ ^ « 2 ^ C i K 2 

(4.102) 

Proposition 4.8. For given 7 > 0; there exists a PWA controller of the form 

(4-80) such that the PWA slab differential inclusion (4-99) has finite L^-gain less 

than \ /27 from w to y if there exist Q — QT G M.nxn and fa G R such that the 

following optimization problem 

M 

max Y^ Trace Xi (4.103) 
i = i 

subject to (4.100)^(4.102) and 

fa < 0, Xi = 

has a feasible solution that satisfies 

Wi Zi 

Z? fa 
<o. (4.104) 

faWi = Z%Zj (4.105) 

Note that the PWA controller gains can be computed using (4.97) and (4.98). 
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Figure 4.1: The commuted bounding envelope for a scalar function 

4.6 Numerical Examples 

Example 4.1. In this example, we consider the surge model of a jet engine taken 

from [72]. The model is described by the following state equations. 

X\ — X2 o*^l 9*^1 
(4.106) 

X2 = U 

Using the proposed method in subsection 4-3.1, a bounding envelope is computed for 

the nonlinear function / (xi) = — \x\ — \x\ which is shown in Fig. J^.l. 

By substituting the PWA bounds in (4-106), we get a differential inclusion with 

fti = ( - 4 -2 .5 ) , 

K3 = ( - l 1.5 ) , 

-19 - 1 

0 0 
An = 

Ti2 = ( _2.5 - 1 

#4 = ( 1.5 4.0 ) , 

-421 = 
2.013 - 1 

0 0 

-431 = 
-5.938 - 1 

0 0 
Mi = 

1.413 - 1 

0 0 
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an 

«31 

A12 = 

A 32 

a i2 

«32 

31.512 

0 
1 

-18.978 

0 
5 

-20.465 - 1 

0 0 

-6.44 - 1 

0 0 

24.861 

0 
1 

-16.759 

0 
5 

«21 = 

an = 

^ 2 2 = 

A 42 

022 = 

042 — 

0 

0 

-0.601 

0 

-3.8912 - 1 

0 0 

3.034 - 1 

0 0 

0 

0 

6.925 

0 

The approximation error of the nonlinear function is considered as a distur­

bance input (w) and the objective is to limit the L2-gain from w to x\. Using the 

computed PWA approximation, the nonlinear system (4-106) can be described by the 

following differential inclusion 

x G conv{AiKx + aiK + Buu + Bww\ n = 1, 2}, x £ TZi 

y = Cx + Dww + Duu (4.107) 

where i = 1 , . . . , 4, K = 1, 2 and 

B„ 
1 

0 
C = 1 0 Du = 0, Dw - 0 (4.108) 

Using Proposition 4-7, the following PWA controller was obtained for 7 = 0.2 using 
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Figure 4-2: Trajectories of the closed loop nonlinear system 

SeDuMi [121] and Yalmip [76]. 

K, = 

K2 = 

K3 = 

K4 = 

1036.3 

769.20 

899.15 

597.57 

-40.37 

-30.27 

-34.97 

-23.57 

, fa 

, k2 

, k3 

, k4 

= 280.40 

= 0.03 

= 0 

= -17.39 (4.109) 

Figure 4-2 shows the trajectories of the nonlinear system (4-106) in closed loop 

connection with the PWA controller. The contours of the storage function are also 

shown in Figure 4-2. Note that the PWA controller designed for the differential 

inclusion is guaranteed to stabilize the nonlinear system. 

Example 4.2. In this example, we consider a nonlinear system with a discontinuous 

vector field. The model is described by the following state equations. 

xi =f(xi) ~ 2 sgn(a:i)a;2 + w 

±2 =2\x\\ — 2%2 + U 

y=X!+x2-w (4.110) 
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Figure 4-3: The computed bounding envelope for a scalar function 

where f{x\) — — x\ — 0.5a;f. Using the proposed method in [109], a bounding envelope 

is computed for the nonlinear function f(xj) which is shown in Fig. 4-3. Trajectories 

of the open loop system are shown in Fig. 4-4- Notice that a sliding mode exists on 

xi = 0 . 

The objective is to design a PWA controller u to limit the L2-gain from the 

disturbance w to the output y. Substituting f{x\) by its PWA bounds in (4-110), 

one gets a PWA differential inclusion with 

ft3 = (o 2) , 

n2 = ( - 2 0), 

nA = (2 4) 

Using the PWA approximation proposed in subsection 4-3.1, the nonlinear system 

(4-110) can be described by the following differential inclusion 

x G conv{AiKx + aiK + Buu + Bww}, x € IZi 

y — Cx + Dww + Duu (4.111) 
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Figure 4-4'- Trajectories of the closed loop nonlinear system 

where i = 1 , . . . , 4, K = 1,2 anc? 

-B?/i = 

1 

0 
, C = 1 0 , Du = 0, Dw = 0 (4.112) 

Using Proposition 4-4: one can solve a set of LMIs using SeDuMi [121] and Yalmip 

[76] to compute 7 = 1.2 for the open loop system. The following PWA controller can 

then be calculated using Proposition 4-7 to achieve 7 = 1 for the closed loop system. 

Kt = 

K2 = 

K3 = 

K4 = 

-22.4985 

-31.6286 

-25.6282 

-35.2165 

-83.6140 

-117.2289 

-96.8814 

-114.3215 

h = 0.7609 

, k2 = 0 

, ^ 3 = 0 

k4 = 0.0489 (4.113) 

Figure 4-5 shows the trajectories of the nonlinear system (4-110) in closed loop 

connection with the PWA controller. Note that the PWA controller designed for 

the differential inclusion is guaranteed to limit the L2 gain of the nonlinear system. 
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Figure 4-5: Trajectories of the closed loop nonlinear system 

4.7 Conclusions 

In this chapter, an interesting duality relation was revealed in the LMIs describing 

sufficient conditions for the stability of PWA slab differential inclusions. This con­

cept was then employed to find the duality relation for the L2-gain design. As a 

result, the definition of the regions of a PWA slab system was extended, the La-

gain controller design was formulated as a set of LMIs and this design method was 

extended to PWA slab systems with an output that is also a PWA function of the 

state. The new method presented in the chapter enables stability and performance 

analysis, as well as controller synthesis, for a large class of nonlinear systems as a 

solution of convex optimization problems. 
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Chapter 5 

Backstepping Controller Synthesis 

for Piecewise Polynomial Systems: 

A Sum of Squares Approach 

This chapter addresses backstepping controller synthesis for piecewise polynomial 

(PWP) systems. The main contribution of the chapter is to formulate controller de­

sign for a large class of PWP systems as a convex problem. Integrator backstepping 

is proposed as the principal design step in constructing Lyapunov functions for PWP 

systems in strict feedback form. The controller synthesis problem is divided into two 

cases. The first case consists of the construction of a sum of squares (SOS) Lya­

punov function for PWP systems with discontinuous vector fields. The second case 

addresses the construction of a piecewise polynomial Lyapunov function for PWP 

systems with continuous vector fields. After constructing a (piecewise) polynomial 

Lyapunov function, controller synthesis for a PWP system can be formulated as an 

SOS program, which is a convex optimization problem and can be solved efficiently 

using available software [76]. The new synthesis method is applied to two numerical 

examples to illustrate its effectiveness. 
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5.1 Introduction 

PWP or spline approximation of curves and surfaces has been widely used in many 

different scientific contexts and engineering applications [1,34]. However, the lack of 

practical methods to check the sign of polynomials has prevented PWP systems to 

be commonly used in the field of control systems. One of the first attempts to design 

controllers for PWP systems was made in [87]. Paul proposed in [87] to partition 

the state space of a nonlinear system that is affine in the input into cells and to 

approximate the dynamics of the system in each cell by a model that is polynomial 

in the state. A controller is then designed for each cell using feedback linearization. 

A global controller is then formed by joining the individual cell controllers. The 

proposed method was employed in [87] to design controllers for a few examples of 

nonlinear systems. However, there is no guarantee for the stability of the closed loop 

system because a switched system consisting of stable subsystems can be unstable 

in general. 

Recently, the class of discrete-time PWP systems was defined in [45] and a 

new method was proposed to address the constrained finite-time optimal control 

problem for this class of systems. This seems to be the first systematic approach 

to controller synthesis for discrete-time PWP systems. However, according to the 

authors of [45], the method suffers from excessive computational burden. 

For continuous time PWP systems, a stability analysis was proposed in [93] 

and [85] using piecewise polynomial Lyapunov functions. The advantage of the 

proposed method is that the analysis problem is formulated as a sum of squares 

(SOS) programming which is a convex optimization problem. There exist numeri­

cal tools such as SOSTOOLS [95] to solve SOS programming problems efficiently. 

However, systems with infinitely fast switching or sliding modes are excluded from 

the discussion in [93] and [85]. 

The main contribution of this chapter is to propose a backstepping technique 
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to construct control Lyapunov functions for a class of PWP systems. The proposed 

method formulates the control synthesis problem for PWP systems in strict feedback 

form as an SOS feasibility problem. The synthesis of PWP controllers is formulated 

for two cases. The first case addresses the construction of (SOS) Lyapunov func­

tions [85] for PWP systems with discontinuous vector fields. The second case deals 

with the construction of piecewise polynomial Lyapunov functions for PWP sys­

tems with continuous vector fields. After constructing a (piecewise) polynomial 

Lyapunov function, controller synthesis for a PWP system can be formulated as an 

SOS program, which is a convex optimization problem and therefore can be solved 

efficiently. 

The chapter is organized as follows. Integrator backstepping is addressed in 

section 5.2. Controller design for PWP systems in strict feedback form is then 

described in section 5.3. Finally, a numerical example is demonstrated in section 

5.4. 

5.2 Integrator Backstepping 

Before introducing the recursive backstepping controller design, integrator back-

stepping is presented in this section for its simplicity. Consider the following PWP 

system 

x = fi{x) + gi{x)z, x E Vi (5.1) 

where x E Kn, z E M.nz and Vi for i = 1 , . . . , M is defined in section 2.8. Assume that 

there exist a stabilizing polynomial controller z = 7(2;) and a Lyapunov function 

V(x) which proves the stability of the closed loop system. Consider adding an 

integrator to this system, which yields the following PWP system 

x = fi(x) +gi(x)z, xEVi 

z = u (5.2) 
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The objective is to design a controller to stabilize the augmented system (5.2). In 

the following, two approaches to this problem are discussed. The first approach 

is to construct an SOS Lyapunov function for the case of a PWP system with 

discontinuous vector fields. The second approach builds a piecewise polynomial 

Lyapunov function for the case where the vector field of the PWP system (5.2) is 

continuous. 

5.2.1 P W P systems with discontinuous vector fields 

Consider the PWP system (5.1). Assume that there exists a polynomial control 

z = 7(x) where •j(x) & M.nz is a vector of polynomials so that 7(0) = 0 and V(x) is 

an SOS Lyapunov function for the closed loop system verifying 

(5.3) 
V(x) - \{x) is SOS 

( -VV{x)T(fi{x) + 9i(xh(x)) - ri(x)TEi(x) - aV(x) is SOS 

for i = 1 , . . . , M and any a > 0, where X(x) is a positive definite SOS polynomial, 

Ti(x) is an SOS vector function and Ei{x) is defined in section 2.8. Consider now 

the following candidate Lyapunov function for system (5.2), 

Vyix, z) = V(x) + ±(z- l(x))T(z - 7(a0) (5.4) 

Note that Vy(x, z) is a positive definite function. To compute a PWP controller, one 

can write 

VV^x.zf 
fi(x)+gi(x)z 

u 
=VV(x)T(fi(x)+gi(x)z) 

(z-1(x)f[u-d^(fi(x)+9l(x)z)] 
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=W(:z)T(/ i(:r) + 9i(xh(x)) + VV(x)T
9i(x)(z - 7(x)) 

+ {z- 7 ( X ) ) T [ K - ^-(Mx) + gi(x)z)} 

= V F ( f ( / i W + gi(xft{x)) + (z- 7(x))T[« + gJ(x)VV(x) 

d^{x) 

dx 
ifi{x) + gi{x)z)] (5.5) 

Using the following expression 

d/y(x) a 

VVy{x, Zf <-aV1{x,z)-Ti(x)TEi{x) (5.7) 

W^x,*)1 < —aV1(x,z) (5.8) 

u(x, z) = -gl (x)VV(x) + - ^ ( / { ( i ) + ft(:r)z) - - ( z - 7(x)), (5.6) 

and the SOS constraints (5.3) leads to the following inequality 

fi{x)+gi(x)z 

u(x, z) 

Therefore it follows from (2.137) that for x <E V~i and i = l,...,M 

fi(x)+gi(x)z 

u(x, z) 

From (5.8) and based on Proposition 2.2, it follows that the PWP system (5.2) with 

the following controller 

u(x, z) = -gJ(x)VV{x) + ^~(A(x) + 9i{x)z) - | ( * - 7(*)) , x e Vi (5.9) 

is dissipative with the storage function V~,(x, z) and supply rate —aVy(x, z). There­

fore it follows from Theorem 2.1 that the PWP system (5.2) with controller (5.9) is 

asymptotically stable. 

In summary, integrator backstepping consists of two steps: 

• Lyapunov function construction: The candidate Lyapunov function (5.4) was 

constructed using a known Lyapunov function V(x) and polynomial controller 

7(x) for the PWP system (5.1). 

• Controller synthesis: The control law (5.9) was designed to make the candidate 

Lyapunov function (5.4) decreasing with time. 
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5.2.2 P W P systems with continuous vector fields 

Assume that the vector field of the PWP system (5.1) is continuous for x G X and 

there exists a continuous PWP control z = ^y(x) where 

-y(x) = 7i(a;), xGVt (5.10) 

where "fi(x) £ M.nz is a vector polynomial so that the continuous piecewise polynomial 

V(x) = Vi(x), xeVi (5.11) 

where Vi(x) is a polynomial function verifying the following constraints 

VAx) - Aj(x)Ei(x) - X(x) is SOS 
(5.12) 

-V^(x ) T ( / , ( x ) +gi(xhi(x)) - Tj(x)Ei(x) - aV^x) is SOS 

for i = 1, . . . , M where a is a positive scalar, Ai(x) and Ti(x) are SOS vector 

functions and Ei(x) is defined in section 2.8. In the following, the objective is to 

construct a PWP Lyapunov function and a PWP controller for the PWP system 

(5.2). 

• Lyapunov function construction: Consider now the following candidate Lya­

punov function for system (5.2) 

Yy(x,z) = V^t{x,z), xEVi (5.13) 

where 

Vyi(x, z) = Vi(x) + \{z - n{x)f{z - ji(x)) (5.14) 

Note that V1(x, z) is a continuous piecewise polynomial function because V(x) 

and 7(x) are continuous piecewise polynomial functions. To compute a PWP 
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controller, we write 

VV^zf 
fi(x)+gi{x)z 

u 

= VVi(xf(fl(x)+gi(x)z) 

+ (z- 7i(x)f[u - <~~{h{x) + 9i(x)z)] 

= VVi(x)T{fi{x) + gl{x)ll{x)) 

+ (z- ^(x))r[u + g^xfVV.ix) - ^-(Mx) + 9i(x)z)] (5.15) 

Controller synthesis: Using the following expression 

u(x,z) = -g^xfVV^x) + *tM(fi(x)+gi(x)z) _ 2 ( z _ 7 J ( X ) ) ) (5.I6) 

the SOS constraint (5.12) and also (2.137) leads to the following inequality 

VV^Or,*)1 fi{x) + 9i(x)z 

u 

< -aVyt{x,z) (5.17) 

for x €Vi and i = 1 , . . . , M. Therefore if the following controller 

u(x,z) = -gi(xfvVi(x)+?^(fi{x)+gi(x)z)-%(z->ri(x)), xeVi (5.18) 

is a continuous function for x £ X, based on Proposition 2.3, the PWP system 

(5.2) with controller (5.18) is dissipative with the storage function V1(x, z) and 

supply rate — aV1(x, z). Therefore it follows from Theorem 2.1 that the PWP 

system (5.2) with controller (5.18) is asymptotically stable. However, there is 

no guarantee that the control input in (5.18) is continuous. 

The more general case of recursive backstepping controller design for PWP 

systems is formulated as a set of SOS programs in the next section. 
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5.3 Recursive Backstepping Controller Design 

In this section, a recursive PWP controller synthesis method is proposed for strict 

feedback PWP systems of the following form 

x\ = fiiiM + 9u1{xi)x2, for xi G Vi^ 

X\ 
x2 = f2i2(xi, x2) + g2i2{xi,x2)xs, for 

ik = fkik(xi,X2,...,Xk) + gkik(xi,x2,...,xk)u, for 

x2 

X\ 

x2 

Xk 

eV2i 2i2 

^vkik 

where the state vector of the system (5.19) is divided into k sub-vectors: 

X\ 

x2 

Xk 

x = G En , Xj G W1* 

?* = < 

X\ 

EjiAxi,..., XJ) y 0 

(5.19) 

(5.20) 

with X^/=i nj ~ n- F° r e a c n 3 £ {1J 2, • • •, k}, the regions Vjij for ij — 1 , . . . , Mj are 

disjoint sets defined as 

(5.21) 

where Eji^xi,..., Xj) G MPj is a vector polynomial function and >- denotes an 

elementwise inequality. For a given j , the regions Vji- for ij = 1 , . . . , Mj partition 

the projection of the state space I c K * onto the (xx,...,Xj) space. 

Assumption 5.1. It is assumed that for 1 < j \ < j 2 , the projection of each region 

"Pjiij for in = ! ) • • • ) ^K?2 on ^xe (xi) • • • ix3i) sPace is a subset of only one of the 

108 



regions Vj^ for ijx = 1 , . . . , Mjx. In other words, for each 1 < ji < k, j \ < 32 and 

ij2 € { 1 , . . . , Mj2} there exists a unique number i(ji,j2, ij2) in {1,..., M^} such that 

X\ 

x 31 

eV, J2> •32 

X\ 

Xjl 

^ "jii(jiJ2,ij2) 

Assumption 5.2. It is also assumed that 

/K(o,.. . ,o) = o, vi*6i j(o, . . ,o) 

where 

Xj{x1,...,xj) := < ii 

X\ 

eV. Jh 

(5.22) 

(5.23) 

(5.24) 

In what follows the stabilization problem for PWP systems in strict feedback 

form is discussed for two cases of PWP systems: discontinuous and continuous vector 

fields. 

5.3.1 P W P systems with discontinuous vector fields 

To design a PWP controller for (5.19), we start from the following subsystem 

X\ = fih{xi) + gu1(xi)x2, for xi G Vih, (5.25) 

with i\ = 1 , . . . , M\. It is assumed that there exist a polynomial Lyapunov function 

V\(x\) and a polynomial controller x2 = 7i(^i) such that for i\ — 1 , . . . , Mi 

' 7i(0) = 0 

14(0) = 0 

Vi(a:i)-A(xi) is SOS 

-VVi(a;i)T(/ l i l(a;i) +5-iil(a;i)7i(a;i)) - Flil(x1)
T Eii^x^ - aVx{xx) is SOS 

Tin On) e R n is SOS 
(5.26) 
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where a > 0 and X(x\) is a positive definite polynomial. 

Next, a polynomial controller should be designed for the following subsystem 

ii = fiii{xi) + 9ih(x1)x2, for x\ G VUl 

£2 = /2i2(xi, x2) + 92i2(xi, x2)x3, for 
X2 

eV-
(5.27) 

2i2 

Note that if f2i2(xi, x2) = 0 and g2i2(xi,X2) = 1, this would be an integrator back-

stepping problem. The design process consists of two steps. 

1. Lyapunov function construction: Consider the following Lyapunov function 

V2(xi, x2) = V1{xl) + -(x2 - ji(x1))
T(x2 - 71 (*i)) (5-28) 

2. Controller synthesis: The synthesis problem can be formulated as the following 

SOS program. 

Find 

s.t. 

^3 = 72(^1,^2), r 2 i 2 ( x i , x 2 ) 

-V !B lV2(a;i,X2)T(/li(l,2 Ii2)(^l)+^lt(l,2>*2)(^l)^2) 

-^7x2V2(x1,x2)
T(f2i2(x1,x2) + g2i2(xi, x2)x3) 

- r 2 i 2 (x i , x2)'
1'E2i2(xi,x2) - aV2(xi,x2) is SOS, 

T2i2(xi,x2) is SOS 

72(0,0) = 0 (5.29) 

where i2 — 1 , . . . , M2 and 72(2:1, x2) is a polynomial function of x\ and x2. 

If this SOS program is feasible then the procedure can be repeated for the 

next steps by adding the dynamics of x3 and so on. 

Assume that all the SOS programs in the backstepping procedure are feasible 

and we reach the last step with the following candidate Lyapunov function. 

Vk(xi, ...,xk) = Vk-i(xi,..., xk-i)+-{xk-jk-i(xi,..., xk-i))
T(xk—yk-i{xi, • • •, Zfc-i)) 

(5.30) 
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where 7fc_i(xi,..., Xk-i) is a polynomial function. Note that Vk(xi,..., xk) is also 

a polynomial function. The final controller u = jk(xi,... ,xk) will not be used 

to construct another SOS Lyapunov function. Therefore it does not have to be 

continuously differentiable. One can hence search for a PWP control of the form 

u = jkik(xi,...,xk), for 

Xi 

Xk 

^Vkik (5.31) 

for ik = 1 , . . . , Mk- In case that all gkik for ik = 1 , . . . , Mk are invertible, this step 

of the controller synthesis can be converted to integrator backstepping. In general, 

this step can be formulated as the following SOS program 

Find u = 7fcifc(xi,...,a:fe), Tkik (xi,..., xk) 

s.t. -VXlVk(x!,... ,xk)
T{fii(i,k,ik)(xi) + gu(i,k,ik){xi)x2) 

-VX214(^i, • • •, xk)
T(f2i(2,k,ik)(xi, x2) + 92i(2,k,ik)(xi, x2)x3) 

- . . . - VXkVk(xi,..., xk)
T(fkik{xi, ...,xk) + 9kik(xi, • • •, xk)u) 

-Ykik{x\, • . . , Xk)rEkik(xi,..., Xk) - aVk(xi,..., xk) is SOS, 

rfcifc(ar1,...,xfc)isSOS (5.32) 

for ik — 1 , . . . , Mk- The following theorem shows that if the SOS program (5.32) is 

feasible then the PWP controller (5.31) stabilizes the PWP system (5.19). 

Theorem 5.1. Let there exist polynomial functions Vi(xi) and •-fi(xi) satisfying 

(5.26) and let Vj{x\,..., Xj) for j = 2 , . . . , k be defined as 

Vj{xi, ...,Xj) = Vj-ifa, ..., Xj-_i) 

+ 2^Xj ~ 7 - ? ' - ^ X l ' • • • ' Xi-^T(XJ ~ 7 j - i ( ^ i , • • •, Xj-i)) 

where 
j arguments 

7 i ( C ^ ) = 0, j = l,...,k-l 

(5.33) 

(5.34) 
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Also assume that the PWP control (5.31) satisfies the conditions of the SOS program 

(5.32). Then the PWP control (5.31) makes the trajectories of the PWP system 

(5.19) in X asymptotically converge to the origin. 

Proof. It follows from (5.26) that V\{x\) > \{x\) and since A(xi) is positive definite, 

Ki(xi) > 0 , i f x i ^ O (5.35) 

From (5.33) we have 

Vk(xx,..., xk) = Fi(xi) 
k x 

+ 5 ^ 2 (Xj ~ 7 J - 1 ^ 1 ' • • ' ' a : i- i))T(x i ~ Ti-ifai, • • •, Xj-x)) 

(5.36) 

Therefore Vk(xi,..., Xk) is nonnegative. Now assume for some xi, X2, • •. and Xk, we 

have T4(xi, . . . , Xk) = 0. It follows from (5.36) that 

Vi(xi) = 0 (5.37) 

and 

xi = 7i-i(zi> • • • »^i-i), j = 2,...,k (5.38) 

Now, from (5.34) and positive definiteness of V\(x\) it follows that x\ = 0, X2 = 0 , . . . 

and x/fc = 0. Therefore Vk(xi,..., X&) is a positive definite function. 

From (5.21) and (5.32), it follows that 

Va:Vfc(xi,..., xfc)
Tx < -aVk(xi,..., xk), for x € P/bfc, ifc = 1 , . . . , Mk (5.39) 

Now, from Proposition 2.2 it follows that the PWP system (5.19) is dissipative with 

the storage function 14(xi , . . . , Xk) and supply rate —aVk(x%,..., Xk). From the fact 

that \4 (x i , . . . ,Xk) is a positive definite function and Theorem 2.1 it then follows 

that the trajectories of the PWP system (5.19) in X asymptotically converge to the 

origin. • 
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5.3.2 P W P systems with continuous vector fields 

In this section, it is assumed that the vector field of PWP system (5.19) is continuous 

for x G X. It is also assumed that for the following subsystem 

x\ = fui{xi) + gii1(x1)x2, for x\ G PUl, (5.40) 

with i\ = 1 , . . . , Mi, there exist a continuous piecewise polynomial Lyapunov func­

tion Vi(xi) and a continuous PWP controller X2 = 7i(xi) with 

Vri(xi) = F i i l ( x i ) 

, fo rage 7^ , (5.41) 

l\{x\) = l\h{x\) 

such that 7IJJ {x\) and Vi^ {x\) are polynomials and for i\ — 1 , . . . , M\ 

Vi(0) = 0 

71 (0) - 0 

VinM - ku^xxf Eu^xx) - A(xi) is SOS 

-VVij1(xi)T(/i i l(xi) +5fiil(xi)7ii1(xi)) - r l i l(m)T£ ,H1(xi) - aViij is SOS 

Aij^xi) and ^^(xi) are SOS 

(5.42) 

where a > 0 and A(xi) is a positive definite polynomial. 

Then, a PWP controller should be designed for the following subsystem 

( 
xi = / iu(xi) +gu1(x1)x2, for xi G Vih 

x2 = f2i2(xi,x2) + 92i2(xi, x2)x3, for 

Considering the following PWP Lyapunov function 

Xi 

x2 

eV: 
(5.43) 

2«2 

V2(xi,x2) = V2i2{x1,x2), 
X\ 

X2 

eP' 1i2 
(5.44) 

113 



where 

V2i2(x1,x2) = Vu(ii2)t2)(xi) + - (x 2 - 7ii(i,2,i2)(^i))T(^2 - 7it(i,2,t2)(^i)) (5-45) 

the synthesis problem can be formulated as the following SOS program 

Find x3 =/y2i2(xi,x2),T2i2(x1,X2),ci2li22(xi,X2) 

S.t. -VxlV2i2{xi, X2)
T (fU{l,2,i2){Xl) + gii{l,2,i2){xi)X2) 

-V X 2 V2i 2 (Xi , X2)
T (f2i2(xi, X2) + 92i2(x1,'X2)x3) 

-?2i2(xi,x2)
TE2i2(xi,x2) - aV2i2{x1,x2) is SOS, 

^2i2(xi,x2) is SOS 

72i2i fa, X2) - l2i22{.Xl-> X2) = {xi, x2)E2i2li22(xll x2) (5.46) 

for i2 = 1 , . . . , M2 and all i2\ and 2̂2 in { 1 , . . . , M2} such that T ^ i and ^2i22 are 

neighboring cells and E2i21i22(xi, x2) = 0 contains their boundary, i.e. 

\2i n v2i22 c 
Xi 

x2 

E2i21i22(xi,x2) = 0 (5.47) 

In addition, /~f2i2(xi,x2) and Ci2li22(x\,x2) are polynomial functions. 

If this SOS program is feasible then the procedure can be repeated for the next 

steps by adding the dynamics of x% and so on until Xk- If all SOS programs in the 

backstepping procedure are feasible, a continuous PWP controller 

u = lkik(xi,...,xk), for 

Xl 

Xk 

^Vkih (5.48) 

can be designed using the final SOS program 
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Find u = ^kik(x1,...,xk): Tkik(xx,..., xk),Ciklik2(xi,..., xk) 

s.t. -VXlVjKfc(a;i,..., xk)
T{fU(i,k,ik){xi) + gu(\,k,ik)(xi)x2) 

-Vx2Vkik(xi, . . . , Xk)
T(f2i(2,k,ik)(x1,X2) + g2i(2,k,ik)(xi,X2)x3) 

- • • • - VXkVkik(xi,..., a;fc)T(/fcife(xi, ...,xk)+ gkik(x!,..., xk)u) 

-Tkik(xi,..., xk)
T Ekik(xi,..., xk) -aVkik{xi,...,xk) is SOS, 

Tkik{xi,...,xk) is SOS 

fkikl (xi, x2,..., xk) + gukl (xi,x2,..., xk)-fkikl {xi,..., xk) 

-fkik2(xi, X2,..., Xk) + gkik2(xi, X2,..., Xkhkinixi, • • • , Xfc) 

cifci*fc2 v3'!) • • • i xk)-CJkikiik2 [Xl, • • • , Xk) 

(5.49) 

for ik = l,...,Mk and all ikl and ik2 in {l,...,Mk} such that Vkikl and Vkik2 

are neighboring cells where ^kik{x\,... ,xk) and Ciklik2(x-j_,... ,xk) are polynomial 

functions. 

Remark 5.1. The equality constraint in (5-4-9) is equivalent to the continuity of the 

vector fields of the closed loop system. Therefore, if the vector field of the open loop 

system is discontinuous, the controller should be discontinuous to make the resulting 

vector field continuous. Note that the final controller will not be used to construct a 

Lyapunov function. 

Theorem 5.2. Let there exist a PWP function V\(x\) satisfying (5.42) and Vj{x\,... 

for j = 2 , . . . , k is defined as 

Vj(xi,...,Xj) = Vj-i(xi,...,xj-1) 
I 

+ 2^Xj ~ 7 ^ - ^ X l ' • • •' xi-1^T(xi ~ 7i-i(zi, • • •, Zj_i)) 

(5.50) 
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where 
j arguments 

7i(0T^)-0, j = l,...,k-l (5.51) 

Also assume that the PWP control (5.48) satisfies the conditions of the SOS program 

(5.49). Then the PWP control (5.48) makes the trajectories of the PWP system 

(5.19) in X asymptotically converge to the origin. 

Proof. It follows from (5.42) and (5.21) that V\{x\) > X(xi) and since X(xi) is 

positive definite, 

Vi(xi) > 0 , if x i ^ O (5.52) 

From (5.50) we have 

Vk(x!,...,xk) = Fi(ari) 
k t 

+ Yl o(xi ~ 7;-i(zi, • • •, Xj^fixj - 7J_I(XI , . . . , Xj_i)) 
3=2 Z 

(5.53) 

Therefore Vk(x\,... ,Xk) > 0. Now assume for some xi,X2,... and Xk, we have 

Vk(xi,..., Xk) = 0. It follows from (5.53) that 

V1{x1) = 0 (5.54) 

and 

XJ ~ lj-i(xu • • •, Xj-i), j = 2 , . . . , k (5.55) 

Now, from (5.51) and positive definiteness of V\(x\) it follows that x\ = 0, x2 = 0 , . . . 

and Xk ~ 0. Therefore Vk(xi,..., Xk) is a positive definite function. 

From (5.21) and (5.49), it follows that 

VxVk(x1,...,Xk)Tx<-aVk(xi,...,xk), tor x eVkik,ik = I,..., Mk (5.56) 

Now, from Proposition 2.3 it follows that the PWP system (5.19) is dissipative with 

the storage function Vk(xi,..., Xk) and supply rate —aVk{x\,..., Xk)- From the fact 
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that Vk{xi,... ,Xk) is a positive definite function and Theorem 2.1 it then follows 

that the trajectories of the PWP system (5.19) in X asymptotically converge to the 

origin. • 

5.4 Numerical Examples 

Example 5.1. Consider the following PWA system: 

-0.25x1 + 0.05^2 « /x i<0 .2 

xi = < O.lxi + 0.05x2 - 0.07 if 0.2 < xx < 0.6 

-0.2x1 + 0.05x2 + 0.11 i / x i > 0 . 6 

x2 = -20xi - 30x2 + 24 + 20u 

The objective is to stabilize the system to xci = 

V\(xi) = \{x\ — 0.6429)2 and the following system 

0.6429 0.3714 

-0.25xi + 0.05x2 i / x i < 0 . 2 

i i = < 0.1x1+0.05x2-0.07 i / 0 . 2 < x i < 0 . 6 

-0.2xi + 0.05x2 + 0.11 if xx > 0.6 

The following expression for x2 can stabilize this system to x\ — 0.6429 

X2 = 7 ( X l ) = 0.3714 - 4.8344(xi - 0.6429) 

Considering the following candidate Lyapunov function 

1 1 

(5.57) 

Consider 

(5.58) 

(5.59) 

V2(xu x2) = -(xi - 0.6429)2 + - (x 2 - 0.3714 + 4.8344(xi - 0.6429))2, (5.60) 
Zu Zj 

the following PWA control input can be computed for the whole PWA system using 

the method presented in subsection 5.3.2. 

u= < 

-0.35009 - 0.1216xi + 1.2572x2, xt < 0.2 

-0.34175 - 0.20165xi + 1.2603x2, 0.2 < xx < 0.6 

-0.3784 - 0.13739X! + 1.2567x2, xx > 0.6 

(5.61) 

117 



0.8 

0.6 

H 0.4 

0.2 

0 

-

y 

, / 
/ " ' 

1 

^•^ 

' 

1 

-̂-""" 

1 

.̂-~-~"" 

i 

_ . 

1 1 

i i 

1 1 

-

-

0 2 4 10 12 14 16 18 20 
Time 

1 

0 

1 

j 
1 
I 

1 
i 

1 1 1 

^-. 

1 1 1 1 1 

1 

10 12 14 16 18 20 
Time 

0 2 4 6 8 
Time 

Figure 5.1: The trajectory of the closed-loop PWA system for x(0) = [0.1 0.5]T 

The trajectory of the closed-loop PWA system for x(0) = [0.1 0.5]T is shown in Fig. 

5.1. 

Example 5.2. Consider the single-link flexible-joint robot in Fig. 5.2. The dynamic 

equations of the robot are given by [115] 

X\ = X2 

MgL K 
x2 = j — sm(xi) - — (xi - x3) 

X3 — X4 

X4 = + -7(2:1 - x3) + —u 
1 

T 

(5.62) 

(5.63) 

(5.64) 

(5.65) 
J J 

where x\ = 9\, x2 = 9\, X3 = #2 and X4 = B\. u is the motor torque and Tf = /2OE4) 

denotes the motor friction which is described by [119] 

x 
Tf = bmx4 + sgn(x4) ( Fcm + (Fsm - Fcm) exp(—±\ (5.66) 
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Figure 5.2: Single-link flexible-joint robot 

The numerical values of the parameters are given as follows 

Ml2 

M = 0.25% L = lm 1= —— 

K = 7A7Nm/rad J = 0.216kgm2 g = 9.8ra/s2 

cm = 1.2rad/sec Fcm — 1.2 Nm Fsm = l.lbNm 

bm = 0.17Nm/(rad/sec) 

Fig. 5.3 depicts the state response of the open loop nonlinear model of the robot with 

the initial condition XQ = [n 0 0.87T 0]T. It can be seen that the system converges 

to a limit cycle. The limit cycles due to friction forces are investigated in [119]. In 

this example, the objective is to stabilize the nonlinear model at the origin. 

To build a PWP model, there are two nonlinear functions that should be ap­

proximated by PWP curves. The function fi(xi) = sin(xi) is approximated by the 
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Figure 5.3: State variables of the nonlinear model - open loop 

following function for x\ £ [—n, ir] 

(5.67) 

0.4031x? + 1.2464xi - 0.0211 -TT < xx < -?f 

fi(xi) = <j 0.908x1 -?f<Xl<U 

-0.4031x? + 1.2464xi + 0.0211 ^ < xx < n 

The nonlinear function Tf = f2(2:4) in (5.66) is approximated by the following PWP 

function for X4 € [—8, 8] 

HXA) =. 
-0.0057x5 + 0.0873x5 - 0.2472x4 + 1.8056 x4 > 0 

(5.68) 
-0.0057x1 - 0.0873x1 - 0.2472x4 - 1.8056 x4 < 0 

Next, the PWP approximation of the nonlinear model (5.62)-(5.65) can be written 

in the strict feedback form (5.19). To start the controller synthesis procedure in 

subsection 5.3.2, we first consider the following system 

Xi = X2 (5.69) 
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Figure 5.5: PWP approximation of f2{xi) 
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with 

Pn = {x1\x1eR} (5.70) 

The linear controller x2 — _ 2xi is considered in this step to make the quadratic 

Lyapunov function Vi(xi) = \x\ decreasing with time. 

In the second step, the following PWP system is considered 

X\ = X2 

X2 — — h \ x i ) -—{xx- x3) (5.71) 

with the regions defined as 

V2i = 

P22 = ' 

Viz —' 

1 U2J 

1 U2J 

1 U2J 

2TT 
—TV < X\ < Z-,^2 € 

2TT 2TT 

—Y <xi< -yx2e 

27T 1 
— < Xi < IT, X2 G K 

(5.72) 

(5.73) 

(5.74) 

Each of the following polynomials, using (5.47), describes a set that contains the 

common boundaries of the corresponding regions 

2n 
E212(X1,X2) =Xi + 

E223(X1,X2) = £ 1 -

7 

2TT 

(5.75) 

(5.76) 

Considering the Lyapunov function V^xi, x2) = \x\ + \{x2 + 2xi)2 and solving the 

SOS feasibility problem (5.46) for the PWP system (5.71), the following controller 

is computed 

L^2 ;]e?: 21 

x3 = 72(xi,x2) = < 

0.26137 + 0.8516l£i-0.1x2 

0.56043x1-0.1x2 l l 2 j t r 2 2 

-0.26137 + 0.85161x1-0.1x2 [£ ] e P23 

<xl..]eV2 
(5.77) 
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For the next step, the following PWP system is considered 

Xi = X2 

MgL~ K 
X2 —/i(a:i) - -j (ari - x3) 

x3 = x4 

(5.78) 

with the following regions 

V31 = 

V33 = 

X2 
^ 3 

XI 
X2 
X3 

Xl 
X2 
X3 

2TT 
7T < Xi < — — , X2 € M, X3 G 

2 ^ 2TT 
— < Xi < — , x2 e K, x 3 E . 

2TT 
< X\ < IT, X2 £ K, X3 £ 

and ifte following polynomials for the common boundaries 

2n 
E3i2(xx,x2,x3) =xi + 

E323(xi,x2,x3) =xi 

7 
2n 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

(5.83) 

Considering the Lyapunov function V3(xi, x2, x3) = \x\ + \{x2 + 2x%)2 + | ( x 3 — 

72(^1, X2))2 and solving the corresponding SOS feasibility problem for the PWP sys­

tem (5.78), the following controller is computed 

2.1731 - 77.5789xi - 75.8241x2 - 80x3 

x4 = 73(xi, x2, x3) = < -80xi - 75.8241x2 - 80x3 

-2,1731 - 77.5789xi - 75.8241x2 - 80x3 

Xl 
X2 
X3 

eP; 31 

eP ; 32 

eV: 33 

(5.84) 
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For the next step, the following PWP system is considered 

X\ = X2 

X2 = 

X3 = X4 

MgLf K 
—J—fl{Xl) - y (Xi - X3) 

x4 = h —{xi - x3) + —u 

with the following regions 

V4l = 

v42 = 

v43 = 

v44 = 

v45 = 

v4& = 

27T 

-n < xi < ——,x2 eR,x3 e R,x4 > o 
2n 2TT _ _ 

- — < xi < —, x2 £ R, x3 e R, x4 > 0 
2TT 

< xi < 7T, x2 e R, x3 e K, x4 > 0 

2TT 
- 7T < Xi < —, X2 £ R, X3 £ R, X4 < 0 

2TT 2TT 

- — < xi < —, x2 £ R, x3 £ R, x4 < 0 

2ir 
- < x\ < IT, x2 £ R, x3 £ R, x4 < 0 

and the following polynomials for the common boundaries 

2n 

7 
E412(x1,X2,X3,X4) =Xi + 

E4u(x1,x2,x3,x4) =x4 

E423(xiiX2,x3,x4) =xi - — 

E425{xx,x2,x3,x4) =x4 

E436{x1,x2,x3,x4) =x4 

E445(X1,X2,X3,X4) =Xl + 
2TT 

7 
, 2it 

E456{xi,x2,x3,x4) =xi - — 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

(5.93) 

(5.94) 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

The structure of the regions of the PWP system (5.85) is shown in Figure 5.2. This 
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X\ Vn 

(x1,x2) 

(xi,x2,x3) 

(xi,X2,X3,X4) VA\ V, 44 / 42 45 ^ 4 3 ^ 4 6 

Figure 5.6: The structure of the regions of the PWP system (5.85) 

figure shows that, for example, the image of the region V42
 on the (xi, x2) space is a 

subset ofV22. 

Considering the Lyapunov function V^xi, x2, X3,x4) = \x\ + \{x2 + 2xx)2 + 

|(x3 — 72(^1, X2))2 + | (x 4 — 73(^1, x2, xz))2 and solving the SOS feasibility problem 

(5.49) for the PWP system (5.85), the following PWA controller is computed 

737.0 - 9786xx - 11040x2 - 1311x3 - 162.7x4 [ Xl x2 x3 x4] G P*i 

-10610x1 - 11040x2 - 13110x3 - 162.7x4 

-736.2 - 9786xx - 11040x2 - 13110x3 - 162.7x4 

1 T 

Xi X2 X3 X4 

Xi X 2 X3 X4 

eV, 42 

en 43 

u — < 

736.2-9786x1-11040x2-13110x3-162.5x4 | Xl x2 x3 x4 I EV44 

-IO6IOX1 - 11040x2 - 13110x3 - 162.5x4 | Xl X2 X3 x4 \ E V45 

-737.0-9786xi-11040x2-13110x3-162.5x4 [ Xl x2 x3 x4 j e Vm 

(5.99) 

Fig. 5.7 shows the states of the nonlinear system in feedback connection with the 
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PWA controller (5.99) with the initial condition XQ = [ir 0 0.87T 0]T. The system 

converges to the origin in 4 seconds. However, by examining the transient changes 

of the control input in Fig. 5.8, we realize that the input is very large. Another 

possible controller is a PWP controller. Next, a PWP controller of third order in 

x\, first order in x2, first order in X3 and third order in X4 is designed. Considering 

the Lyapunov function V±{xi,X2,xz,X4) = \x\ + | (x 2 + 2xi)2 + \{xz — 72(^1, X2))2 + 

| (x 4 — 73(2:1, X2,xz))2 and solving the SOS feasibility problem (5.4-9) for the PWP 

system (5.85), the following PWP controller is computed 

u =11.46 + 832.0xi - 44.25^2 - 169.9x? + 23.74xix2 - 10.66x? - 10.42x^x2 

- 1490x3 + 24.93xix3 - 10.94x^x3 - 17.53x4 - 0.08227xix4 - 0.3943x2x4 

- 0.4231x3x4 + 0.01364x^ + 0.1917x^x4 + 0.3465xix2x4 + 0.3670xix3x4 

- 0.008023xix^ - 0.01344x2x4 - 0.01427x3x4
! - 0.001407x|i 

T 

for X i X 2 X 3 X 4 

(5.100) 

u =966.8xi - 70.87x2 - 0.0071x? - 0.009167xxx2 - 4.058x? - 3.835x?x2 - 1518x3 

- 0.01287xix3 - 4.11x^X3 - 17.92x4 - 0.6414xix4 - 0.6152x2x4 - 0.6545x3x4 

+ 0.009x^ + 0.06297x^x4 + 0.1xix2x4 + 0.11xix3x4 - 0.01316xix^ 

- 0.01344x2x^ - 0.01427x3x4
! - 0.001407x^ 

T 

for Xi X 2 X3 X 4 eV42 

(5.101) 
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Figure 5.7: State variables of the nonlinear model - PWA controller 
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Figure 5.8: Control input - PWA controller 
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u = - 10.69 + 832.0zi - 44.25x2 + 169.9x? - 23.75xix2 - 10.66x? - 10.42x?x2 

- 1490x3 - 24.95xix3 - 10.95x?x3 - 17.54x4 - 0.63xix4 - 0.2946x2x4 

- 0.3062x3 * x4 + 0.01371x1 - 0.4293x?x4 - 0.2568x!X2x4 - 0.279xxx3x4 

- 0.0184xix^ - 0.01344x2xl - 0.01427x3xl - 0.001407x1 

T 

for Xi X 2 X 3 X 4 en 43 
(5.102) 

u =10.69 + 832xi - 44.25x2 - 169.9x? + 23.74xix2 - 10.66x? - 10.42x?x2 

- 1490x3 + 24.93x!X3 - 10.94x?x3 - 17.36x4 + 0.634xix4 + 0.2984x2x4 

+ 0.31x3x4 - 0.01362x1 - 0.4328x?x4 - 0.26xix2x4 - 0.2825xix3x4 

- 0.01852xixl - 0.01349x2xl - 0.01431x3xl + 0.001045x1 

T 

for Xi X2 X3 X4 £^44 

(5.103) 

u =966.8xi - 70.87x2 - 0.0071x? - 0.009167xix2 - 4.058x? - 3.8347x?x2 

- 1518x3 - 0.01287x!X3 - 4.11x?x3 - 17.74x4 + 0.6477xix4 + 0.6215x2x4 

+ 0.6612x3x4 - 0.008877x1 + 0.0624x?x4 + 0.09985xix2x4 + 0.1086xix3x4 

- 0.01324xixl - 0.01349x2xl - 0.01431x3xl + 0.001045x1 

for Xi X 2 X 3 X 4 en 45 
(5.104) 

u = - 11.47 + 832xi - 44.25x2 + 169.9a:? - 23.75xix2 - 10.66x^ - 10.42x?x2 

- 1490x3 - 24.95xix3 - 10.95xiX3 - 17.35x4 + 0.08544xix4 + 0.3976x2x4 

+ 0.4266x3x4 - 0.01358x1 + 0.1946xiX4 + 0.3493xix2x4 + 0.37xix3x4 

- 0.008xixl - 0.01349x2x! - 0.01431x3xl + 0.001x1 

->T 

for X\ X 2 X 3 X 4 en. 46 
(5.105) 
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Fig. 5.9 shows the states of the nonlinear system in feedback connection with 

the PWP controller with the initial condition XQ = \n 0 0.87T 0]T. The system 

converges to the origin a bit slower in comparison to the case of the PWA controller. 

However, Fig. 5.10 shows that in this case the control input is much smaller. 

5.5 Conclusions 

In this chapter, the strict feedback form for PWP systems was introduced. Using 

backstepping, controller synthesis for this large class of PWP systems was formu­

lated as an SOS program, which is a convex optimization problem. The synthesis 

problem was addressed in two cases: SOS Lyapunov functions for PWP systems 

with discontinuous vector fields and PWP Lyapunov functions for PWP systems 

with continuous vector fields. One of the main advantages of the proposed method 

is that it addresses PWP systems with discontinuous vector fields regardless of pos­

sible attractive sliding modes. 
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Chapter 6 

Sampled-Data Piecewise Affine 

Systems: A Time-Delay Approach 

This chapter addresses stability analysis of sampled-data piecewise-affine (PWA) 

systems consisting of a continuous-time plant in feedback connection with a discrete-

time emulation of a continuous-time state feedback controller. The sampled-data 

system is considered as a continuous-time system with a variable delay. Conditions 

under which the trajectories of the sampled-data closed-loop system will converge to 

an attracting invariant set are then presented. It is also shown that when the sam­

pling period converges to zero, these conditions coincide with sufficient conditions 

for non-fragility of the stabilizing continuous-time PWA state feedback controller. 

6.1 Introduction 

The research work on continuous-time PWA systems has concentrated on Lyapunov-

based controller synthesis methods [56,66,96,101,103]. However, none of these ap­

proaches would be applicable directly to controller synthesis for computer-controlled 

or sampled-data PWA systems. This is the scenario mostly encountered in applica­

tions given the flexibility of control implementation in a microprocessor. 
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Although linear sampled-data systems are a well-studied matter [27], con­

troller emulation for systems with possible discontinuities at the switching, such 

as sampled-data PWA systems, has not had many research contributions. In fact, 

only recently these systems have started to be addressed in the literature in refer­

ences such as [6,62,63,99,122,123,129]. The approach by [123] established that, 

under certain conditions, the controllable subspaces of a continuous-time switched 

linear system and its discrete-time counterpart are the same. Canonical forms of 

switched linear systems based on controllability are presented in [122]. The refer­

ence [129] considers stability analysis of switched systems that can switch between 

a set of continuous-time plants and a set of discrete-time plants but does not han­

dle sampled-data systems involving a cascade of a discrete-time system between 

a sample-and-hold and a continuous-time system. Furthermore, it does not ad­

dress controller design. The approach by [6, 62,63] was probably the first where 

the term "sampled-data PWA systems" is used, although the systems described 

in this work do not posses the typical structure of a continuous-time plant being 

controlled by a discrete-time controller. The problem addressed in [6,62,63] is one 

where the controller is continuous-time and the switching events are the ones con­

trolled by the system logic inside a computer. In other words, in these systems 

it is assumed that the designer has command over the switching times of the sys­

tem, which does not occur often in practice. For this class of systems, reference [6] 

presents a probabilistic analysis of controllability. The preliminary study of [62,63] 

is interesting as it highlights important limitations of current discrete-time PWA 

control methodologies when applied to the control of a physical continuous-time 

system. As mentioned in [62] unexpected phenomena such as chattering can occur, 

depending on the switching times. This increases the interest in studying computer 

implementations of controllers designed in continuous-time. Reference [99] addresses 
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the classical structure of a sampled-data system whereby the system is continuous-

time and the controller is being implemented (emulated) in discrete-time inside a 

computer. However, the sampling time must be constant. 

This chapter departs considerably from previous research by addressing sta­

bility analysis of sampled-data PWA systems using a time delay approach. In fact, 

the discrete-time PWA controller is seen as a continuous-time PWA controller with 

a delay that varies with time. Using a Lyapunov-Krasovskii functional, LMI condi­

tions are derived as sufficient conditions for convergence of the sampled-data PWA 

system trajectories to an attracting invariant set. One of the advantages of the pro­

posed method is that it can be applied to sampled-data PWA systems with variable 

sampling time as opposed to [99] that deals with a constant sample time. A very 

important and interesting property of the LMI conditions proposed in this chapter 

is that when the sampling time converges to zero, these conditions coincide with 

LMI conditions for non-fragility of the continuous-time PWA controller. Therefore, 

to implement a continuous-time PWA controller in discrete-time, it is required that 

the controller be robust to variations in the controller parameters. This in itself is 

a very interesting result. 

The chapter starts by the stability analysis of the sampled-data system when 

a continuous-time controller is emulated in discrete-time. A numerical example is 

included to show the performance of the proposed method. Finally, the chapter 

closes by stating the conclusions. 

6.2 Stability of Sampled-Data PWA Systems 

Consider a PWA controller of the following form 

u(t) = Kix(t) + kh x(t) E TLi (6.1) 
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for the PWA system 

x — A{X + a.i + Bu, for x <E7Zi (6.2) 

with the region IZi defined as 

Ki = {x\Eix + eiyO}, (6.3) 

The closed-loop system is assumed to be asymptotically stable. It is also assumed 

that the vector field of the open loop PWA system (3.10) with u(t) = 0 is continuous 

across the boundaries of two or more regions and a; = 0 for i e X(0). 

If the PWA controller (6.1) is implemented as a digital controller and is con­

nected to the PWA system (6.2) through a sample-and-hold, the closed-loop system 

can be described by 

x(t) = Aix(t) + cii + B{Kjx(tk) + kj), (6.4) 

for x(t) ElZi and x(tk) E IZj where tk for k € N is the sampling time and tk < t < 

tk+i- The closed-loop system (6.4) can be rewritten as 

x{t) = Aix{t) + di + B{Kix(tk) + h) + Bw, (6.5) 

for x(t) € TZ{ and x{tk) 6 1lj where 

w(t) = (Kj - Ki)x(tk) + (kj - hi), x(t) E Hi, x(tk) G Kj (6.6) 

The input w(t) is a result of the fact that x(t) and x(tk) are not necessarily in the 

same region. 

Following [82], the time elapsed since the last sampling time will be denoted 

by 

p(t) :=t-tk, tk<t< 4+i (6.7) 

and TM (TD) is defined as the maximum (minimum) interval between sampling times. 

TD < tk+i -tk< rM,Vk G N (6.8) 
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Consider a Lyapunov-Krasovskii functional of the form 

V(xa,p) := V^x) + V2(xs) + V3(xs,p) (6.9) 

where 

xs(t) := 
x(t) 

x{tk) 
, tk <t < tk+1 

Vt(x) := xTPx 

Viixs) '•— / xT(s)Rx(s)dsdr 
J -TM Jt+r 

V3(xs,p) := (TM - p)(x(t) - x{tk))
TX(x(t) - x(tk)) 

and P, R and X are positive definite matrices. Therefore, the Lyapunov-Krasovskii 

functional V(xs,p) is positive definite. At the sampling times, V(xs,p) does not 

increase because V^(xs) and Vs(a;s,p) are non-negative right before each sampling 

time and they become zero right after the sampling time [82]. It can be shown that 

V(xs,p) satisfies the following inequality 

Ami„(P)||x||2 < V(xa, p) < <Ja\\xsf + ab (6.10) 

where 

°a = AmaJC(P) + 2(rM - p)Amax(X) + -f\maK(R), 

r: 
Ob 

M \ / p\ 
r. /*maxV-nv> 

where Amjn(.) and Amax(.) mean the minimum and maximum eigenvalues of a matrix, 

respectively, and 

R = argmaxAmax(JRii) 
1,3 

Kij 

A] 

' T D T K}B> Ai BKj ai + Bkj 

The main result of this chapter is now presented. 

aj + kjBT 

R 

(6.11) 

(6.12) 
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Theorem 6.1. For the sampled-data PWA system (6.5), assume there exist sym­

metric positive matrices P, R, X and matrices N for i = 1 , . . . , M such that 

for alii £1(0), 

a + TMMU + TMM2i < 0 

Ni 
Oi + TMMU TM 

m \ N? 0 

0 

-rMR 

< 0 

for alii £1(0), A; ̂  0; 

where 

fii + TMMU + rMM2i < 0 

fti = 

^ = 

Vti + TMMU TM 

r 

TH '[KT 

% 

BT' 

P 

• •0 

- r 

I 

-1 

fi " 

P 0 

At i 

X 

I -I 

N 

0 

0 
L J 

0 0 

P 

0 

-TMR 

B 

- 7 / 

BKi + 

I -I 

— 
I 

-I 

< 0 

) 

• 

P 0 

N tT + rjj hn x2nj 

(6.13) 

(6.14) 

(6.15) 

(6.16) 
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Mu = 

AI 

KlB 

BT 

R Ai BKi B 

Mo< = X A BKi B + 

Af 

K?B TBT 

BT 

X I -I 0 

fii = 

m,= 

B> 

p 

o 

o 

** 

P O O 

p 

0 

0 

B 

- 7 J 

Ai BKi BL + ai 

+ 

A[ 

K?BT 

k?BT + aT 

P O O X I -I 0 

Ni 

0 
/ - / 0 

0 

KT 0 

+ 
Vhnx2n 0 

0 0 
+ 

E? 0 

0 0 

'J 1 

A,: 
Ei 0 e i 

0 0 1 
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Mu = 

AI 

K?BT 

kfBT + a[ 

BT 

R At BKi Bh + cii B 

M2i = 
0 

0 

X Ai BKi Bki + ai B + 

AI 

K?BT 

k[BT + a[ 

BT 

X 7 - / 0 0 

Let there be constants A x and A& such that 

Ml< A*-||x(*fc)|| + Afc 

Define 

He 
V7Afe 

0V - yfj&K 

and the region 

$0 = {xs\ \\xs\\ < He} 

for some positive constant 9 < 1 that verifies 

V 7 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

Then, all the trajectories of the system (6.5) in X converge to the following invariant 

set 

n = {xs\ V(xa, p) < Oaiil + ab} (6.21) 

D 

Proof. The proof is divided into two parts. 

1. First, it is shown that the inequalities (6.13), (6.14), (6.15) and (6.16) are 

sufficient conditions for the following inequality to hold 

V(xs, p) < —vxjxs + 'ywTw (6.22) 
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for tk <t < tk+i- Since V\{x) = xTPx, one has 

Vi(x) = xv Px + xl Px 

V2(xs) can be written in the following form 

V2{xs) = / g(t,r)dr 
J —TM 

where 

Jt+i 
g(t,r) = / x (s)Rx(s)ds 

h+r 

Thus, since p — I iov tk < t < tk+i, 

V2{xs) = f ~g{t,r)dr 
' -TM 

dr 

The expression 

d_ 
dt 

then yields 

V2(x8) = rMxl{t)Rx(t) - J xl(s)Rx{s)ds 
't-TM 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

g{t, r) = xT{t)Rx(t) - xT{t + r)Rx(t + r) (6.27) 

(6.28) 

From (6.8) one has p <TM a n d considering the fact that R is positive definite, 

this leads to 

V2(x8) < rMxT(t)Rx(t) - J iT(s)Ri{s)ds (6.29) 
Jt-p 

Since R is positive definite, for any matrix N{ G Rnx2n one has 

iT(s) xJ(t)Nt 

R -I 

-I R-1 

x(s) 

N?xs(t) 
> 0 (6.30) 

and therefore 

\ T , -x(s)lRx(s) < xZtyNiR^NfXsit) - 2xl
s{t)Nix{s) (6.31) 
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Integrating both sides from t — ptot and using (6.7) yields, 

- / x(s)r Rx(s)ds < pxJtyNiR-iNfxsfr) 
Jt-p 

-2xJ(t)Ni I -I xs(t) 

(6.32) 

It follows from (6.29) and (6.32) that 

V2{xs) < TMxTRx + px^NiR~1Njxa 

I - l ] x s -2x^Ni (6.33) 

For Vs(xs, p), since p = 1 for tk < t < tk+i, one can write 

V3(xs, p) = ~{x(t) - x{tk))
TX{x{t) - x{tk)) + 2(TM - p){x(t) - x(tk))

TXx(t) 

(6.34) 

From (6.23), (6.33) and (6.34), it follows that a sufficient condition for (6.22) 

is the following inequality 

xTPx + xTPx + TMXTRX + pxT
sNiR~lNjxs 

-2xjNi 

T 
—xs 

I -I 

I 

-I 

Xs 

X I -I 

+2(TM - p)xj 
I 

-I 
Xx 

X.G 

+rjxs xs — ,ywTw < 0 (6.35) 

For i £ J(0), one has 

x = Ai BKi xs + Bw, (6.36) 

140 



for x(t) € 7Zi and x(tk) € 1Zj. Replacing x from (6.36) into (6.35) yields 

x. 
P 

0 
Ai BK + 

A] 

KJB^ 

+TM 

-Ni 

A 

KJB^ 

I -I 

R A: BKi 

P 0 

I J U T + pNiR~yNl 

I 

-I 
m 

I 

-I 

+{TM - p) 

X I -I 

X Ai BKi 

+(TM - p) 
A] 

KJB? 
X I -I + T}I \xa 

+xi 
P 

0 
Bw + wlB T D T P 0 X, 

+TMxJ 
AJ 

KJB? 
T D T ; RBW + TMW'B'R Ai BKi Ju a 

+(TM - p)x] 
I 

-I 
XBw + {TM-p)wLBlX I -I 

, T D T 
+TMW B RBW — -yw w < 0 (6.37) 

Since (6.37) is affine in p, if it holds for p = 0 and p = TM then it is satisfied 

for any p G [0, TM]- For p = 0, the inequality (6.37) can be written as (6.13). 

Using Schur complement for p = TM, the inequality (6.37) can be converted 

to (6.14). 

141 



For i ^ X(0), one has 

x = Ai BKi ai + Bh xs + Bw, x £ TZi 

where 

xs 

1 

(6.38) 

(6.39) 

It follows from (2.62) that 

r _ 

xT 1 
' Ej 0 " 

. e? !. 
A,-

Ei d 

0 1 

X 

1 
> 0, x e TZi (6.40) 

where Aj >- 0. Using (6.38) and (6.40), a sufficient condition for (6.37) when 

x G TZi with i ^ Z(0) can be written as 

/ 

UJ a 

P 

0 

0 

Ai BKi ai + Bh + 

A 
T o T KtB 

aJ + kjBT 

POO 

+ TM KJB^ 

aj + kjBT 

R Ai BKi ^ + Bh + P 
Ni 

0 
R - i iV,T 0 

Ni 
I -I 0 -— 

I 

-I 

0 

~ N? o\ — 

I 

-I 

0 

X I -I 0 

+ (TM - p) X Ai BKi ai + Bh 

+(TM - p) 

AJ 

K?& 7BT 

aj + kjBT 

X I -I 0 + V 

10 0 

0 10 

0 0 0 

\ 

/ 
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+ x 

p 

0 

0 

Bw + wTBT 
POO Xa 

+ TMxl 

A] 

kjBT + aJ 

T D T i RBW + TMW1B1R Ai BKi Bk + en X.s 

+ (TM - p)x 

I 

0 

XBW + (TM-P)W lBlX 7 - / 0 

J D T + TMW B RBW — 'jw w + x 

EJ 0 

0 0 

_ej 1 

Ai 
Ei 0 e< 

0 0 1 
xs < 0 (6.41) 

Inequality (6.15) is equivalent to (6.41) for p = 0 and using Schur complement, 

inequality (6.16) is equivalent to (6.41) for p = TM- Since (6.41) is affine in p, 

inequalities (6.15) and (6.16) imply that (6.41) is satisfied for any p 6 [0, TM\ 

In conclusion, (6.22) is satisfied for tk < t < tk+i, k = 0 ,1 ,2 , . . . and any 

x eUi,i = l,2,...,M. 

2. In the second part of the proof, it will be shown that for a given for 0 < 9 < 1, 

fl is an attracting invariant set. For any xs ^ Q, one has 

V(xs,.p) > <Taf4 + <7b 

It follows from (6.10) that \\xs\\ > fig and therefore (6.18) leads to 

(6.42) 

Sr]\\xs\\ > y^y(AK\\xs\\ + Ak) (6.43) 

It follows from (6.17) and (6.43) that 

6r]xs xs > "yw w (6.44) 
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The inequality (6.22) can be written as 

V(xs, p) < - ( 1 - 9)nx^xs — 9nxjxs + -ywTw (6.45) 

for 0 < 9 < 1. Therefore it follows from (6.44) that 

V(xs,p) < -{l-9)rjx]xs (6.46) 

and from ||xs|| > pg, one has 

V(xa, p) < - ( 1 - O^J/Q, for tk<t< 4+i (6.47) 

Therefore V(xs, p) decreases between the sampling times for ||xs|| > pe- As it 

was mentioned earlier, V(xs,p) also decreases at each sampling time. There­

fore there is a finite time te such that xs(t
e) € $0 and therefore from (6.18), 

one has V(xs(t
e), p) < aapj + (Jb, which means xs(t

e) € 0. Therefore, fl is an 

attracting invariant set. 

• 

Remark 6.1. The upper bound for \\w\\ defined in (6.17) can be obtained as 

A K = 

Ak = 

1,3=1,...,M 

1,3=1,...,M 
(6.48) 

Note that for the case where Ki = Kj and hi = kj, A# = A^ = 0 and (6.20) is 

automatically satisfied. In this case w = 0 and pe = 0. 

Remark 6.2. For TM —• 0 and 

P = 

where (3 > max(r|, 2) and 

P 0 

0 0 
, Ni = 

-PBKi +1 

-I 
X = {(5-2)1 (6.49) 

r]c=zV + (6.50) 
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the inequalities (6.13), (6.14), (6.15) and (6.16) are reduced to the following in­

equalities for all i € X(0) 

{Ai + BKiyP + PiA + BK^ + vJ PB 

BTP - 7 / 
< 0 (6.51) 

and for i ^ J(0) 

(Ai + Mi) TP + P(Ai + BKi) + EfhEi + Vc 

BTP 

I 0 

0 0 
PB 

- 7 / _ 

< 0 (6.52) 

Conditions (6.51) and (6.52) are sufficient conditions for input to state stability 

of the continuous-time PWA system (6.2) with the following condition satisfied for 

V(x) = xTPx 

V(x) < —ncx
Tx + ^wTw (6.53) 

This result establishes that the continuous-time PWA controller should satisfy a 

very important property: non-fragility. In other words, if there exists an error w 

in the implementation of the continuous-time PWA controller (6.1) as shown in the 

following 

u{t) = Kix{t) + kt + w{t) (6.54) 

and the norm of w is bounded, the norm of the state vector x(t) remains bounded. 

6.3 Numerical Example 

Example 6.1. A state space model was built for an experimental two degrees of 

freedom helicopter in [38]. In this example, a simplified version of the pitch model 

of the experimental helicopter (Fig. 6.1) is considered. This model is described by 
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Figure 6.1: Pitch model for the experimental helicopter [38] 

Table 6.1: Parameters of the helicopter model 
Parameter 

*yy 

ITlheli 

'•cgx 

'•cgz 

FkM 

FVM 

9 

Value 
0.0283 
0.9941 
0.0134 
0.0289 
0.0003 
0.0041 

9.81 

Unit 
kgm2 

kg 
m 
m 

Nm 
Nm/rad/s 

m/s2 

the following equations 

X\ =X2 

1 
x2 = — {-mheUlcgxgcos{xi) - mheUlcgzgsin(xi) - FkM sgn(x2) - FvMx2 + u) 

*yy 

(6.55) 

where x\ and x2 represent pitch angle and pitch rate, respectively. The values of the 

parameters are shown in Table 6.1. 

The PWA approximation of the following nonlinear function in (6.55) 

f(xi) = -mheHlcgxgcos(xi) - mheHlcgzgsin(xi] (6.56) 
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is then computed based on a uniform grid in x\. The resulting approximation is 

shown in Figure 6.1. A PWA model is obtained by replacing f(x\) by f(x\) in 

(6.55). The PWA model is described by the following equations 

x 

x = 

x = 

X 

X = 

X = 

X 

X = 

X = 

X = 

0 1 

5.3058 -0.1447 

0 1 

-8.1786 -0.1447 

0 1 

-10.5751 -0.1447 

0 1 

1.9210 -0.1447 

0 1 

10.7980 -0.1447 

0 1 

5.3058 +0.1447 

0 1 

-8.1786 +0.1447 

0 1 

-10.5751 +0.1447 

0 1 

1.9210 +0.1447 

0 1 

10.7980 +0.1447 

x + 

x + 

0 

22.2968 

0 

-3.1208 

+ 

+ 

0 

35.3012 

0 

35.3012 

u 

u 

for x G "72-1 

for x ETZ2 

x + 

X + 

X + 

x + 

X + 

0 

-4.6265 

0 

-12.4780 

0 

-29.2108 

+ 

+ 

+ 

0 

35.3012 

0 

35.3012 

0 

35.3012 

u for x £ 72-3 

u 

u 

for x G 72-4 

for x G TZ5 

0 

22.2968 

0 

-3.1208 

+ 

+ 

0 

35.3012 

0 

35.3012 

u for x G Tie 

u 

x + 

x + 

X + 

0 

-4.6265 

0 

-12.4780 

0 

-29.2108 

+ 

+ 

+ 

0 

35.3012 

0 

35.3012 

0 

35.3012 

u 

for x G 72-7 

for x G 72-8 

u for x G Kg 

u for x G 7t 10 
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where x = 
xt 

X2 

and 

3TT 
TZI ={x| — ix<x\< ——, X2 > 0} 

Kz={x\- ^ <xx < ^ , x 2 > 0 } 

37T 
Tlh ={x\— <x\ <ir,x2> 0} 

o 
T> r l 37T 7T , 

7c7 ={x\ — < xi < —-, x2 < 0) 
o o 

1l9 ={x\- < Xi < —, X2 < 0} 

n2 

K4 

nQ 

^ 8 

^ 1 0 

={*l 

={x\ 

={x\ 

~{x\ 

={x\ 

37T 7T , 

- ~r < xi < -~,x2 > 0} 
IT 37T . 

- < x i < — ,x2 > 0} 
37r m 

- 7T < Xi < — — , X2 < 0} 

o 

- - < Xi < -,X2 < 0 ) 

3-7T 

— < xi < ir,x2 < 0} (6.57) 
77ie following PWA controller is then designed to stabilize the origin (x\ = x2 = 0) 

for the PWA system (6.57) using the backstepping method in subsection 5.3.1. 

u = - 0.2919x1 - 0.109222 - 0.6313, for x e Kx 

u=0.0900xi-0.1092x2 +0.0887, forxeK2 

u =0.1579xi - 0.1092x2 + 0.1314, for x € TZ3 

u = - 0.1961xi - 0.1092x2 + 0.3538, for xeK4 

u = - 0.4475xi - 0.1092x2 + 0.8278, for x E 1Z5 

u = - 0.2919xi - 0.1092x2 - 0.6319, for xe1Z6 

u =0.0900xi - 0.1092x2 + 0.0881, for xeTZ7 

u =0.1579xi - 0.1092x2 + 0.1308, for x£ll8 

u = - 0.1961xi - 0.1092x2 + 0.3532, for x e1Z9 

u = - 0.4475xi - 0.1092x2 + 0.8272, for x e Hw 

Using Theorem 6.1, a sampling time for discrete time implementation of the pro­

posed PWA controller can be computed so that the closed loop sampled data system 

converges to a bounded invariant set. In this example, we consider n and 7 as opti­

mization parameters. However, to provide a larger upper bound on AK, we require 

that n > 7 and 7 > 1. Now, solving an optimization problem to maximize TM subject 
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-3.1416 -1.885 -0.6283 0.6283 1.885 3.1416 
Xl 

Figure 6.2: PWA function - Helicopter model 

to the constraints of Theorem 6.1 and n > 7 > 1, one has 

TM = 0.1465, 77 = 4.2403, 7 = 4.2403 

30.4829 2.4706 

2.4706 4.4771 
, R 

44.9622 9.0745 

9.0745 3.1994 

X = 

(6.58) 

(6.59) 

(6.60) 
499.9799 11.6429 

11.6429 24.1825 

Figure 6.1 shows the trajectories of the nonlinear model (6.55) in feedback connection 

with the continuous time PWA controller. The trajectories of a sampled data PWA 

controller with a sampling time of 0.1465 second is shown in Figure 6.1. 

6.4 Conclusions 

This chapter has presented stability results for closed-loop sampled-data PWA sys­

tems under state feedback. PWA sampled-data systems were considered as delay 
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Figure 6.3: Trajectories of the nonlinear Helicopter model - continuous time PWA 
controller 

Figure 6.4-' Trajectories of the nonlinear Helicopter model - sampled data PWA 
controller 
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systems with variable delay. The result for PWA systems is equivalent to the non-

fragility of the continuous-time PWA controller when the sampling time converges 

to zero. 
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Chapter 7 

Conclusions 

The contributions of this thesis are summarized in this chapter. Potential exten­

sions of the proposed methods are then discussed. Finally, open problems for future 

research are presented. The focus of this thesis has been to develop efficient compu­

tational controller synthesis methods for PWP/PWA systems. In the following, the 

fundamental questions raised in Chapter 1 are revisited considering the contributions 

of this work: 

• How can PWA controllers be designed to keep the performance of linear con­

trollers in a neighborhood of the equilibrium point, while guaranteeing a larger 

region of attraction? 

Chapter 3 proposed a two-step synthesis method to achieve both local per­

formance and global stability for nonlinear systems that can be bounded by 

PWA differential inclusions. In this method, a local robust linear controller 

is first designed for a neighborhood of the desired equilibrium point to satisfy 

a local performance requirement. The local linear controller is then extended 

to a PWA controller to globally stabilize the nonlinear system. The proposed 

method iscast as a set of BMIs and is not a convex problem. An open prob­

lem for future research is: Can the PWA extension of linear controllers be 
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formulated as a convex problem? 

• Is it possible to formulate the PWA/PWP controller synthesis as a convex 

optimization problem? 

There are two contributions in this work toward answering this question: PWA 

controller synthesis for PWA slab system in chapter 4 and PWP controller 

synthesis for PWP systems in strict feedback form in chapter 5. 

— In chapter 4, an interesting duality relation was revealed in the LMIs 

describing sufficient conditions for the stability of PWA slab differential 

inclusions. This concept was then employed to find a duality relation for 

the L2-gain design. As a result, the definition of the regions of a PWA 

slab system was extended, the L2-gain controller design was formulated as 

a set of LMIs and this design method was extended to PWA slab systems 

with an output that is also a PWA function of the state. The new method 

presented in chapter 4 enables stability and performance analysis, as well 

as controller synthesis, for PWA slab systems as a solution of convex 

optimization problems. The new concept of dual parameter set was the 

basis of the development of convex controller synthesis for PWA slab 

systems. However, the dual parameter set of PWA slab system does not 

necessarily define a PWA system. The open problem is: What is the dual 

of a PWA system? 

— In chapter 5, the strict feedback form for PWP systems was introduced. 

Backstepping controller synthesis for this large class of PWP systems was 

formulated as an SOS program, which is a convex optimization problem. 

The synthesis problem was addressed in two cases: SOS Lyapunov func­

tions for PWP systems with discontinuous vector fields and PWP Lya­

punov functions for PWP systems with continuous vector fields. One of 
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the main advantages of the proposed method is that it addresses PWP 

systems with discontinuous vector fields regardless of possible attractive 

sliding modes. A very useful extension of the proposed method is back-

stepping controller synthesis for PWP differential inclusions. 

• For a sampled-data implementation of a continuous-time PWA controller, how 

large can the sampling time be? 

Chapter 6 presented stability analysis results for closed-loop sampled-data 

PWA systems under state feedback. These results were obtained by consid­

ering PWA sampled-data systems as delay systems with a variable delay. In 

chapter 6, it is assumed that a PWA controller is given and then the maximum 

sampling time is computed as the solution of a convex problem. An interesting 

extension would be a convex PWA controller synthesis method to guarantee 

stability of the closed-loop sampled-data system for a given sampling time. 

Based on the previous observation, the proposed extensions of the current 

research are as follows: 

1. To develop a backstepping PWP controller synthesis method for PWP differ­

ential inclusions in strict feedback form 

2. To develop a convex PWA controller synthesis method to guarantee stability 

of the closed-loop sampled-data system for a given sampling time 
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Finally, two fundamental open problems to be solved are 

1. Can general PWP/PWA controller synthesis be converted to a convex prob­

lem? 

2. What is the dual of a PWA system? 

Analysis and synthesis of PWS systems thus seems to be a very rich field of study. 
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