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Abstract 

In the present work, the behavior of a combined bridge-vehicle system in which, the 

bridge is modeled as a Timoshenko beam and the vehicle is considered as a half car 

model has been investigated using the finite element method. Responses of the beam and 

the vehicle model have been obtained and then validated with those reported in literature. 

The limitation of considering the vehicle as a quarter car model and also the effect of 

taking into account the rotatory inertia and shear deformation i.e. using the Timoshenko 

beam model has also been investigated. 

The finite element formulation of the Timoshenko with the attached Tuned Mass 

Dampers (TMDs) has been derived. Then the general equation of motion of a 

Timoshenko beam element with the attached TMDs traversed by a moving half car model 

has been obtained by the combination of two previously derived finite element equations 

of motion; for the beam with attached TMDs and the beam under the moving vehicle. 

Finally, a design optimization algorithm has been developed in which the derived 

finite element analysis module has been combined with the optimization procedure. The 

algorithm is based on the Sequential Programming Technique (SQP), to determine the 

optimum values of the parameters (frequency and damping ratios) of one TMD, for 

minimization of the maximum frequency response of the beam midspan under the 

moving vehicle. 

The obtained results show that by adding an optimally tuned mass damper to the 

system a significant faster damping can be achieved. 
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Chapter 1: INTRODUCTION 

1.1 Motivation and Objectives 

In general, transportation infrastructure is a significant factor affecting the 

development of a national economy. The vibration of a bridge caused by passage of 

vehicles is one of the most imperative considerations in the design of a bridge as a 

common sort of transportation structure, and has been a topic of interest for over a 

century. The problem came up from the observations that as a bridge structure is 

subjected to moving vehicles and trains, the dynamic transversal deflection as well as the 

stresses could become considerably greater than those for the static loads. With the great 

increase in the proportion of heavy and articulated trucks and high-speed vehicles in 

highway and railway traffic, the study of interaction between vehicles and bridge 

structures has become extremely important. Large deflections and vibration induced by 

heavy and high-speed vehicles affect significantly the safety and efficiency of bridges. As 

a result, vibration control of the bridge is essential to enhance its structural assurance and 

sturdiness and also increase of passengers' comfort. 

While utilization of active vibration suppression techniques in structures is flexible 

and effective, they are complicated and cost greatly due to large power consumption. 

Instead, due to low expenditure of passive vibration damping treatments and their simple 

configuration, they are still widely applied in different sort of structures such as beams. 

One of the simplest and most economic passive methods to control the vibration of a 

beam structure is to make use of the tuned mass damper (TMD), which is a single mass 
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attached to the beam by viscoelastic material or other mechanisms of similar effect, and 

can be modeled as a simple mass-spring-dashpot system. The natural frequency of TMD 

is tuned in resonance with the one of the modes of the beam, so that a large amount of the 

structural vibrating energy is transferred to the TMD and then dissipated by the damping 

as the primary structure is subjected to external disturbances. 

Although extensive research has been conducted to formulate and study the behavior of 

beams under moving vehicles and control their vibration in this situation, the use of tuned 

mass dampers in vibration attenuation of these structures has not received appropriate 

attention. Furthermore, finite element method which is one of the most versatile 

numerical methods in engineering has not been intensely used in simulation of these 

types of problems. 

In this study, the finite element formulation for the dynamics of a bridge modeled as 

Timoshenko beam traversed by a half car model moving vehicle with six degrees of 

freedom is presented. The finite element formulation is then expanded to model the 

combined bridge-mass damper systems. Finally, optimization technique is utilized to find 

the appropriate parameters of the tuned mass damper, to minimize the vertical deflection 

of the bridge traversed by the moving vehicle. 

1.2 Overview and Literature Survey (State of the Art) 

As the present work includes three main aspects, this section is divided into three parts: 

In the first part an overview of the Timoshenko beam model and the finite element 

analysis of Timoshenko beam are presented. 
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The second part includes the review of the research done on the beams under moving 

vehicle. The survey starts from the primary simple models and subsequently, explores 

more complicated simulations. Moreover, the literature on the finite element analysis of 

beams under moving vehicles is represented latterly. 

The third and last part relates to the review of the vibration suppression of beams by 

tuned mass dampers. Finally, the research on vibration control of beams under moving 

vehicles by means of TMDs is presented. 

1.2.1 Finite Element Analysis of Timoshenko Beam 

There has always been a powerful connection between transportation infrastructure 

and the growth of economy in a society. Bridges are one of the most essential constructed 

structures in the field of transportation. Usually bridge structures are modeled in the form 

of beams. A beam is a structural member that resists forces applied laterally or 

transversely to its axes1. 

It was recognized by the early researchers that the bending effect is the single most 

important factor in a transversely vibrating beam. The Euler-Bernoulli beam theory, 

sometimes called the classical beam theory, is the most commonly used theory to 

formulate the differential equation of motion of a vibrating beam. It is simple to use and 

provides reasonable engineering approximations for many problems. This theory is based 

on the assumption that plane cross-sections remain plane and perpendicular to the neutral 

axis after bending, which implies that all transverse shear strains are zero. The 
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development of this model dates back to the 18th century and was developed by Jacob 

Bernoulli, Daniel Bernoulli, and Leonhard Euler2. 

Although this theory is the most straightforward and often used theory, it tends to 

slightly overestimate the natural frequencies. This problem is exacerbated for the natural 

frequencies of the higher modes. There were some improvements by presentation of the 

Rayleigh beam theory3 by including the effect of rotation of the cross-section and shear 

model4" which adds shear distortion to the Euler-Bernoulli model. Timoshenko6 proposed 

a beam theory which adds the effect of shear as well as the effect of rotation to the Euler-

Bernoulli beam. Whilst shear and rotary inertia lead to small corrections to the Euler-

Bernoulli theory for the lowest modes of long, thin beams, significant errors may occur if 

they are not taken into account for thick beams or for the higher modes of any beam. 

Sutherland and Goodman7,8 as well as Huang8,9 presented the solution of Timoshenko 

equations for a cantilever beam of rectangular cross section. Several methods of solution 

have been applied to this problem. Anderson10 and Dolph" provided a general solution 

and complete analysis of a simply supported uniform beam. Ritz and Galerkin methods 

were used by Huang to obtain the frequency and normal mode equations for flexural 

vibrations for common types of simple, finite beams. 

A significant number of Timoshenko beam finite elements for use in vibration 

problems have been proposed. They differ from each other in the preference of 

interpolation functions applied for the transverse deflection and rotation, or in the weak 

form utilized to form the finite element model. In an investigative review of many of the 

uniform straight beam elements13 it was shown that the elements could be categorized as 
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a simple, having two degrees of freedom at each two nodes, or complex, with additional 

degrees of freedom. Furthermore, It was concluded that the simple element1 l5' 6 is the 

most suitable for general purpose use. Despite its good performance, a complex 

element * ' ' can perform better if selected properly. On the other hand, choosing an 

incorrect complex element may result in poorer accuracy than using the simple element. 

Also, additional degrees of freedom can induce complications for the user in application 

in intricate situations'1. In this study the simple elements were used in simulation of the 

beam. 

However, a problem can arise in using the linear interpolation function for both 

deflection and rotation in Timoshenko beam finite element: If constant strain is assumed, 

the numerical solution based on the exact integration exhibits shear locking""'". 

Distinctively, this numerical scheme predicts the incorrect result that the beam becomes 

infinitely stiff as its thickness reduces to zero. In other words, in the thin beam element 

limit, i.e. as the length-to-thickness ratio becomes large (about 100), the numerical model 

severely overestimates the stiffness of the beam. This problem has been studied 

extensively. 

Using the reduced integration is the primitive and most prevalent method of 

overcoming shear locking. This has been justified by taking into account the number of 

constraints imposed by the integration scheme and showing that under reduced 

integration, unlike when using full integration, the number of imposed constraints is less 

than the number of degrees of freedom25. Another justification argues that the shear part 

of the stiffness matrix should be singular for a thin beam, and then shows that this is the 
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case when using reduced integration" . In this study, the reduced integration element is 

used for the structural finite element analysis. 

Aside from reduced integration, other solutions for shear locking have been proposed 

such as using the mode decomposition or projection technique27, changing the shear 

correction factor for thin beams28, or using B-Spline approximation29. The other common 

approach is using a consistent interpolation for the deflection and rotation so that the 

degree of the polynomial representing the rotation is one less than the degree of the 

deflection-polynomial23. In this way locking simply does not happen. 

1.2.2 Beam under Moving Vehicle 

The dynamic behavior of beam structures under moving loads or masses has been an 

area of interest for more than a century. Attentiveness to this problem initiated in civil 

engineering for the design of bridges and railway tracks, and in mechanical engineering, 

for machining processes and also trolleys of overhead cranes moving on their girders. It 

was observed that as vehicles or trains move on a bridge structure, the dynamic 

transversal deflection as well as the stresses in the bridge could become notably greater 

than those for the static loads, and this drew more consideration on the topic. 

Vehicle-Bridge interaction is an intricate dynamic phenomenon depending on many 

parameters, such as the type of the bridge and its natural frequencies of vibration, vehicle 

weight and velocity, number of vehicles on the bridge, the damping characteristics of 

vehicle and the bridge, etc. The research on this issue can be classified into three main 

models of simulation: 
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In early studies a constant moving load model was used in which the inertia of the 

vehicle was neglected, and the interaction between the vehicle and the bridge was 

ignored. 

Where the inertia of the vehicle can not be considered negligible, a moving-mass 

model can be adopted instead, which takes into account the inertia of the vehicle. 

However this model suffers from inability to consider the bouncing effect of the moving 

mass. 

In the last group of models, which are more inclusive, the vehicle is modeled as a 

series of mass-spring-damper dynamic system, providing detailed consideration of the 

vehicle-bridge dynamic interaction.30In this section a literature review on each of these 

simulation models is presented. 

Two early remarkable studies on bridge vibrations induced by moving load belong to 

Stokes" who investigated a pulsating load passing over a beam, and Willis ' who 

published a report discussing the reasons for the collapse of the Chester Railway Bridge. 

Willis was the first who formulated the equations of motion for a railway bridge vibration 

problem. Timoshenko33 examined a simply supported beam under a constant moving 

force using eigenfunctions. He later extended the problem with moving harmonic 

force.' 4An inclusive clarification of the problem of the dynamic response of a prismatic 

bar under a constant magnitude load moving with a constant velocity was revealed by 

Krylov'. Inglis' presented a comprehensive exposition on the dynamic response of 

railway bridges traversed by locomotives, using harmonic analysis. 
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In the case of vehicle-bridge interaction, the modeling ideas started from a single 

lumped load, moving along a beam at constant speed which were initiated by Fryba' 

rift 

and Timoshenko et al. who solved the case of a constant velocity concentrated force 

moving along a beam, neglecting damping forces, and presented an expression for the 

critical velocity. The same problem was investigated analytically by Warburton39. The 

models used in these studies generally obey the Euler-Bernoulli beam theory. On the 

other hand several studies have been done concerning Timoshenko beam under moving 

load. Crandall40 solved the steady-state response of the Timoshenko beam on an elastic 

foundation subjected to a moving concentrated load. Florence41 obtained the short time 

transit behavior for a semi-infinite Timoshenko beam under a concentrated moving force 

by Laplace transform method. Steele42 found the steady-state solution for a semi-infinite 

Timoshenko beam of an elastic foundation with a step load moving at a constant velocity. 

Huang solved the problem of moving load on an infinitely long viscoelastic 

Timoshenko beam with an elastic foundation using the Fourier transform technique, and 

Mackertich44 presented an expression for the deflection of a simply supported 

Timoshenko beam under a traveling concentrated load. 

Jeffcott45 was the first to consider the inertia effect of the vehicle and dealt with the 

problem of a beam carrying moving masses. Bolotin46 studied the "moving-force 

moving-mass" problem for a simply supported beam using Galerkin's variational method, 

and he considered just the first term of the series. Stanisic and Hardin47 presented a 

theory for a simply supported beam carrying arbitrary number of moving masses, based 

on Fourier technique. Leach and Tabarrok48 concerned the behavior of a Timoshenko 
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beam under a moving concentrated mass for different boundary conditions. Using series 

solutions implicating the Green function, Sadiku and Leipholz49 compared the solutions 

for both the "moving-force moving-mass" and the corresponding "moving force" 

problems and presented an iterative solution process converging to a unique continuous 

function of space and time. Akin and Mofid50 presented an analytical-numerical method 

for verification of the dynamic response of Euler-Bernoulli beams under a moving mass 

with different boundary conditions. Esmailzadeh and Ghorashi51 investigated the 

behavior of an Euler-Bernoulli beam carrying either uniform partially distributed moving 

masses or forces and evaluated the critical speeds considering the deflection of the 

midspan of the beam. They later further developed the scope of their study by analyzing 

the response of the Timoshenko beam traversed by uniform partially distributed moving 

mass using finite difference based algorithm.52 

With the considerable growth in the number of heavy and articulated trucks and high­

speed vehicle in highway and railway passage, more investigations has been focused on 

the dynamic interaction between vehicles and bridge structures during the last 60 years. 

The vehicle models have become more and more complicated which considered the 

elastic forces in the vehicle model as well as the inertia effect. Wen53 presented the 

solution of the problem of a two-axle moving load on a beam by assuming the bridge as a 

beam of uniform mass and the vehicle as a sprung mass with two axles. Sundara and 

Jagadish" idealize the bridge as an orthotropic plate carrying sprung mass vehicle model. 

Fryba" formulated in his monograph the differential equations of motion of moving one-

axle mass- spring-damper vehicle, two-axle mass-spring-damper vehicle, multi-axle 
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mass-spring-damper vehicle and beam by utilizing the d'Alembert's principle. Hwang et 

al.55 increased the number of vehicle's degrees of freedom and analyzed the dynamic 

loads in bridges. Yang et al s6 performed a parametric study for various simple and 

continuous beams traversed by five-axle trucks. Henchi et al57 proposed a 3D vehicle 

model for the simulation of the interaction between the bridge and vehicles. Esmailzadeh 

and Jalili have investigated the dynamics of the vehicle-structure interaction of a bridge 

traversed by moving vehicles taking into account the passenger dynamics for a more 

realistic simulation. The vehicle, containing the driver and the passenger, was modeled as 

a mobile half planer model traveling on a wide span uniform bridge modeled in the form 

of a simply supported Euler-Bernoulli beam. The response of the beam and the vehicles 

were studied by modal expansion (Galerkin approximation). 

From 1970s, with the expansion of computer technology and the innovation of analysis 

theory, discrete methods, especially the finite element method, were introduced in 

structural analysis and became a strong and principal technique for investigation of the 

bridge dynamics. Thus, it is proper to take a look at the research on the finite element 

analysis of beams under the moving load or vehicle. 

Yoshida and Weaver*9 applied the finite element method to study the problem of 

Euler-Bernoulli beam carrying moving loads. After that many researchers60,61,62'63*64 

applied this technique to study the dynamic response of a bridge structure under moving 

loads or vehicles. Lin and Trethewey K presented finite element formulation for beams 

under the arbitrary movement of a spring-mass-damper system. Fryba et al.66 presented a 
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stochastic finite element analysis for a beam resting on an elastic foundation, traversed by 

a constant force moving with constant velocity. 

Yang and Lin67 developed a procedure for the finite element simulation of dynamic 

response of vehicle-bridge systems using dynamic condensation method. They defined an 

interaction element consisted of a bridge element and the suspension units of vehicle 

placed on the element and then using the dynamic condensation method they eliminated 

all the degrees of freedom correlated with the vehicle bodies. The method was suitable 

for simulation of bridges with series of vehicle moving at different speeds and/or 

different directions. However, because of the approximation made in relating the vehicle 

to the bridge DOFs, this methodology was not capable of computing the vehicle 

response. This drawback was prevailed by Yang and Yau68 through the discretization of 

equations of motion of the vehicle by Newmark's time integration scheme and then 

condensing them to the bridge elements in contact. In other words, they solved the 

contact forces in terms of the wheel displacements and then related them to the bridge 

displacement at contact points. Later, Yang et al.69 extended the previous work by 

consideration the vehicle's pitching effect via modeling the vehicle as a rigid beam 

supported by two spring-damper units. Cheng et a/70studied the vibration problem of 

railway bridges under a moving train using finite element method. They took into 

consideration the elastic characteristics and the damping properties of track structures, 

and suggested a new element identified as the bridge-track-vehicle element, which 

consists of vehicles modeled as mass-spring-damper systems, an upper beam element to 

model the rails and a lower beam element to model the bridge deck. However, the 
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element did not consider the pitching effect on the vehicle front and rear wheel. Koh et 

al? described a group of finite elements for dynamic analysis of a train-track system, 

formulated in a relative co-ordinate system attached to the moving load or vehicle, 

instead of the fixed co-ordinate system. Hou et al.11 presented a finite element model to 

simulate an asymmetrical vehicle-track dynamic system. Young and Li73 investigated the 

vertical vibration of a vehicle moving on an imperfect track system utilizing the finite 

element technique. In their study, the car body and sleepers are modeled as Timoshenko 

beams with finite length and the rail is assumed as an infinite Timoshenko beam with 

discrete supports in which imperfection of the track system comes from a sleeper lost 

partial support by the ballast. Lou and Zeng74 presented an approach for formulating the 

equations of motion for the vehicle-track-bridge interaction system using the principle of 

a stationary value of total potential energy of dynamic system, in which the contact forces 

are considered as internal forces. All the relevant equations were derived for two cases 

involving different levels of complexity for the vehicle-track-bridge interaction system. 

They later proposed a finite element-based vehicle—track coupling element for analyzing 

the vertical dynamic response of the railway track under a moving train, derived by the 

energy method.75Ju et a/.76 developed a finite element method combining the moving 

wheel element, spring-damper element, lumped mass and rigid link effect to simulate 

complicated vehicles. They validated their model with the solution proposed by Fryba" 

for a simply supported beam under a moving two-axle system through different 

numerical examples and concluded that the model is accurate. 
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1.2.3 Vibration Suppression of the Beams Using Tuned Mass Dampers 

An efficient method to inaugurate supplementary damping into structures and 

machinery is via a combined mass-damper system that is tuned to one of the modes of the 

beam in resonance. This system is called a Tuned Mass Damper (TMD). The resonance 

generates a relative motion of the damped mass that is enough to enable the damper to 

extract the necessary vibrating energy from the primary structure. 

The idea of reducing dynamic motion by means of a resonating mass is due to Frahm 

who proposed the use of spring-mass system. The system proposed was without a 

damper, and it was proposed to just balance the external load exclusive of absorbing 

energy. Den Hartog and Ormondroyd78 showed that the introduction of the damper not 

only dissipated energy, but also increased the frequency interval over which the device is 

active. Brock proposed a more pragmatic argument for selecting the damping level of 

the tune mass damper. Den Hartog80 first proposed an optimal design theory for the TMD 

for an undamped single-degree-of-freedom structure. Some years earlier, Young 

investigated the prospect of utilizing TMDs for the continuous systems such as beams. 

Neubert2 and Snowdon83 employed two TMDs to suppress the first two resonances of a 

bar and a beam. Jacquot84 developed a technique that gives the optimal dynamic 

vibration absorber parameters for the elimination of the excessive vibration in sinusoidal 

forced Euler-Bernoulli beams. The methodology was based on the use of the optimum 

TMD parameters for an equivalent single-degree-of -freedom system to determine the 

ones for the beam. Candir and Ozguvens> determined the optimum parameters of an 

absorber tuned in the first and second resonance of a cantilever beam. Esmailzadeh and 
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Jalili ' studied the design procedure of the optimum vibration absorbers for a damped 

Timoshenko beam subjected to the distributed harmonic force excitation. They decoupled 

the differential equations of motions of the Timoshenko beam, and solved each equation, 

corresponding to one mode, as a single degree of freedom system with one TMD. The 

method provided flexibility of choosing number of TMDs upon the number of modes to 

be suppressed. Younesian, Esmailzadeh and Sedaghati87 used a similar decoupling 

method to suppress the vibration in a Timoshenko beam subjected to random excitation 

by evaluating the optimum values of the TMD system. 

In 1989, Kajikawa et al.m utilized a single TMD on highway bridges and concluded 

that this passive control device was not capable of complete suppression of the traffic 

induced vibrations since the dynamic responses of a bridge are frequency variant due to 

the vehicle motion. Later, Kwon et al. investigated the vibration control of a high­

speed railway continuous bridge modeled as an Euler Bernoulli beam under a simple 

moving load at constant speed using a single TMD. The parameters of the TMD used in 

their research were based on Den Hartog80 scheme. The TMD was tuned to the first 

dominant vertical mode and was installed in the middle of the beam. The numerical 

results showed the decrease of about 21% of the vertical free displacement response by 

using a TMD with mass ratio of 1%. Chen et al.n analyzed a Timoshenko beam system 

with TMDs under moving load excitation. A simplified two-degrees-of-freedom system 

based on the first mode of the Timoshenko beam is used for the design of TMDs. The 

modal expansion method was used for the beam and some design formulas were derived 

for identical TMDs for vibration control. 
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Wang et al. studied the applicability of tuned mass dampers in suppression of train-

induced vibration on bridge. A railway bridge was modeled as an Euler Bernoulli beam 

and the train was simulated as series of moving forces, moving masses or moving 

suspension masses with constant speed to investigate the effect of different vehicle 

models on the bridge attribute with or without TMD. The modal superposition was used 

in modeling the beam and the numerical results for a moderate long bridge showed the 

good performance of TMD in suppression of the vertical displacement and acceleration at 

the beam midspan, the right end rotation of the beam and also the vertical acceleration of 

the train. They later studied the applicability of multiple tuned mass dampers (MTMDs) 

to suppress train-induced vibration on bridges.92 It was concluded from the numerical 

results that for a high-speed railway train passing over a bridge with constant speed, its 

induced excitation frequency content has a narrow bandwidth and could be far away from 

the bridge's natural frequencies. Thus, an MTMD has good control efficiency only when 

the train travels at resonant speeds. 

1.3 Present Work 

As it can be realized, although some research works have been performed on the 

vibration suppression of Timoshenko beam subjected to a moving vehicle, not much 

study has been conducted on the use of tuned mass dampers in vibration suppression of 

these structures. Besides, in most previous works, the continuous beams (representing 

bridge type structures) were simplified as equivalent single degree of freedom systems 

and optimal TMD parameters were found based on these equivalent systems. Moreover, 

not much research has been focused on finite element analysis of a Timoshenko beam 
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under a moving vehicle with several degrees of freedom with the attached TMDs. 

Considering this, the main objective of this study is twofold: 

1. To develop an efficient finite element model for a Timoshenko beam under a half 

car model with six degrees of freedom with and without attached TMDs. 

2. To develop a design optimization methodology in which the developed finite 

element model is combined with the formal gradient based optimization technique to 

evaluate the optimal parameters of the TMD to efficiently suppress the vibration of the 

beam traversed by moving vehicle. 

1.4 Thesis Organization 

The present thesis contains five chapters. In the first chapter, an introduction explaining 

the general goals and important description along with literature survey are presented. 

The second chapter presents in detail the finite element formulation of a simply 

supported Timoshenko beam subjected to a half car model with six degrees of freedom. 

For the sake of comparison, the formulation of the Timoshenko beam element under a 

quarter car model with two degrees of freedom is obtained as well. The results based on 

this method are verified with the results in the literature through a numerical example. 

In the third chapter the previous formulation is extended for the situation that one or 

several TMDs are attached to the beam element. 

The optimization of the TMD parameters using the powerful Sequential Programming 

techniques implemented in MATLAB© environment is the main core of the chapter four. 

First, the design optimization problem is described and then the vibration of the beam 
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structure is controlled by minimizing the maximum vertical deflection of the beam as the 

objective function where the appropriate TMD parameters are found as the optimal 

design variables. 

Finally, chapter five concludes with most important findings and contributions of the 

present research work and some recommendations are presented for future studies. 
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Chapter 2: FINITE ELEMENT FORMULATION OF A 

TIMOSHENKO BEAM TRAVERSED BY A MOVING 

VEHICLE 

2.1 Introduction 

In this chapter the finite element formulation of a bridge modeled as simply supported 

Timoshenko beam traversed by a moving vehicle modeled as the quarter car model and 

also the half car planner model is presented. First, the governing differential equations of 

motion for the coupled beam-vehicle system are derived using Hamilton's principle. 

Then using Galerkin and weak formulation, the governing equations are cast into the 

finite element form. The mathematical and finite element formulations have been done on 

both beam-half car model and beam-quarter car model. In the finite Element modeling of 

the beam, linear beam elements with two degrees of freedom at each node were utilized 

to model the beam. The entire equations of motion for the system can be obtained by 

assembling the matrices of all conventional beam elements and the beam element with 

the moving vehicle on it. The governing finite element equations are solved by direct 

integration technique using powerful Newmark's method 3'94 to obtain the dynamic 

response of the Timoshenko beam and the vehicle components. Results are validated 

through a verification example. 
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2.2 Equations of Motion for Timoshenko Beam-Half Car Model 

System 

Figure 2-1 shows the suspension system of a 6-degree of freedom half car model 

moving on a bridge. It is assumed that the vehicle moves with the constant velocity u(t), 

where w(0is the location of the center of gravity (e.g.) of the vehicle body measured 

from the left end support of the bridge, and both the front and rear tires remain in contact 

with the bridge surface constantly. 

The vehicle is modeled as a 6 DOF system which consists of a body (sprung mass), 

two axles (unsprung masses), driver and a passenger. Each of the masses has only vertical 

oscillation except the body that is considered to have the angular motion (pitch) in 

addition. 

The compliance of the suspension system, the tires and the passenger seats are 

modeled by combination of linear springs and viscous dampers connected in parallel 

configurations. The bridge is contemplated initially free of any load or deflection and 

therefore at the equilibrium under its own weight. The steady state displacements of the 

vehicle are also measured from their static equilibrium position. 

In order to generate the governing equations of motion of the coupled system of beam-

half car model, the Hamilton's principle9^ is applied: 

I" S(T - U)dt + {" 5Wncdt = 0 (2.1) 
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Figure 2-1 Suspension System of a 6 D.O.F Half Car Model Moving on a Bridge 
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Where ST is the virtual total kinetic energy, SU is the virtual potential energy and SWnc is 

the virtual work of non-conservative forces of the system in the interval between 

t = tt and t - tu. 

The total kinetic energy of the system can be defined as: 

T = -{£py (x,t)dx+ lpI(x)y\x,t)dx + mj](t) + Jd\t) + mpXylx(t) + mply
2
p2(t) ^ 

+™nya(t) + mnyf2(t)} 

Thus the virtual kinetic energy of the system can be described as: 

dSO 
ST = f py(x, t) — - dx + f pl(x)y/(x, t) —— dx + msy(t) —¥*- + J0{t) 

. dSy , . dSy 2 , dSy., . . . dSyn 

(2.3) 

dt p"p^' dt ' " " v / dt ,l"1 dt 

Consequently, 

[" STdt = - [ " { [ Py(x> t)dxSy + [ ply/(x, t)dxSy/ + msysSys + J686 + mpXypXSy 

+m
P2yP2syP2 +mt\yt\

syt +m,iy,2sy,i}dt 

" (2.4) 

The total potential energy of the system can be written as: 

Kp2 [y, -d26-yp2]
2 +KX [ys +bx6-yn]

2
+K2 [ys -b26-yl2f + (2.5) 

Kn[yn-y(^,t)]2 H(x-Q + Kl2[yt2-y^2,t)]
2 H(x-^2)} 

where EI represents the flexural rigidity of the beam, and H(x) is the Heaviside function. 

The locations of the contact point of the front and rear tires with the bridge surface are 

given by the expressions: 
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%2{t) = u(t)-b2 (2.6) 

It should be noted that the axial strain energy, which contains only the terms of higher 

order than quadratic in the elastic variables y and y/ has not been included in the 

potential energy for the consistency of the formulation. 

The virtual potential energy of the system can be represented as: 

dy/ dSy/ 
5U= fEI——^-dx + fkAGy/Sy/dx + f k AG-^Sy/dx + f k AG—^y/dx + 

dx dx 

,dSy 

dx 

£ksAG^^dx + KpXSxSSx + Kp2S2SS2 + KXS3SS3 + K2S4SS4+KnS5SS5H(x-^) + (2.7) 

Kl2S6SS6H(x-{2) 

where 

s2=ys~d20-yP2 

Si=y,+bfi-ya 

sA=ys-b20-yt2 

s5=y,i-y(M 
s6=ya-y(%2>t) 

(2.8) 

Therefore, 

$;sudt=t'(£-Ei^dx+£k*AG dy 
ox 

dx 
J ) 

Sy/- £k,AG 
( « 2 S> "\ ^ 

d y + dy/ dx 
dx2 dx __ 

+ ^ , 5 , ^ , + KpldlS1S0-KplSlSypX + Kp2S2Sys -Kp2d2S2S0 + Kp2S2Syp2+KxS3Sys + 

+ KxbxS3S6 -KxS3Syn + K2S4Sys -K2b2S4S0 - K2S4Syl2 + KlXSs8ytXH(x-Q + 

KtXS5Sy^x,t)H(x-^x) + Kl2S6Syl2H(x-^2) + Kl2S6Sy^2,t)H(x-42)}dt 

Sy 

(2.9) 
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The non-conservative virtual work of the system can be written as: 

|"5Wmdt = |" {- £ cy{x,t)dx8y- CpXSxSSx - Cp2S2SS2 - CXS3SS3 - C2S4SS4 

CtlS55S5H(x-&)-Cl2S6SS6H(x-Z2)+ £ fg{x,t)dxSy)dt 

in which, 

L(x,t) = - mn+ms bx+b2 

», b^ +d, bn — d~, 
P1 u , u P2 

( 

ml2+ms 

k+b2 

h -d. 

b\ + b2 j 
gH(x-$(()) 

bx+b2 

/, i*, h + d1 

PX u , u P2 
bx+b2 bx+b2j 

gH(x-%2(t)) 

-(fgXH(x-%x(t)) + fg2H{x-{2(t))) 

is the vehicle weight acting on the bridge. 

Now, substituting Eqs. (2.4), (2.9) and (2.10) into Eq. (2.1) yields: 

0 = _[" {-J[ py(x,t)dxSy - J[ pIy/{x,t)dxSy/ -msysSys - J9S0-mpXypX Sy 
/>! 

m
P2yP25yP2 mt\yasyt

 maya5ya + J , E I X dx ( Sy 
V dx 

^ N\ 
dx 

J 
Sy/ + 

IKAG 
rd2y + dy/^ ^ 

dx dx 
dx Sy -KpXSxSys - K.dxSx89+ KpXSxSypX - Kp2S2dys + 

(2.10) 

(2.11) 

(2.12) Kp2d2S2S0 + K2S4Syt2 + KxS3SylX -KxbxS3S0~KtXS5SylX H{x-Q 

Kp2S2Syp2 -KxS,Sys - K2S4Sys + K2b2S4S0 -Kt2S6Syl2H(x-^2) 

KtXS5Sy(^)H(x-tx)-KaS6Sy(%2J)H(x-{2)-£cy(x,t)dxSy 

-CpXSxSSx - Cp2S2SS2 - C&SSj -C2S4SS4-CtXS5SS5H(x-<^x) 

-Ct2S6SS6H(x - £ ) + lfg (x, t)dx8y}dt 

As Sy,Sy/,Sys,S0,SypX,Syp2,Sytx andSyt2 are arbitrary virtual variations, their 

coefficient should be set to zero in order to satisfy Eq. (2.12). This will subsequently 

leads up to governing equations of motions. The passenger-vehicle model is governed by 
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mnyn (t) + Cx [ytX (t) - ys (t) - bx0{t)} + CtX [yn (t) - y({x (0, t)]H{& (t) - x) 

+ Kx [ytX (t) - ys (0 - bx0(t)] + Kn [yn (t) - y^x (t), t)] H& (t) - x) = 0 

and the vertical motion (bounce) of the rear axle is governed by 

mt2yt2 (0 + C2 [yt2 (t) - ys (t) + b20(t)] + Cl2 [yl2 (t) - y(£2 (t), t)] / / (£ (0 - x) 

+ K2 [yl2 (0 - y, (0+b20(t)] + Kt2 [yl2 (t) - y{^2 (t),0] # (& (0 - *) = 0 

- 2 4 -

(2.13) 

six coupled linear second order differential equations of motion, which can be derived in 

the general form. The equation of the vertical motion (bounce) for the sprung mass 

(vehicle body) can be written as: 

<y\ (0+c, [ys (t)+bx0(t) - yn (0]+c„ [y, (0+<W) - ypi (0] 

+ C2[ys (t) - 620(O - yl2 (0] + Cp2 [*, (0 - d20(t) - yp2 (t)] 

+ Kx[ys (t) + bx0{t) - yn (t)] + KpX [ys (t) + dx0(t) - ypX (t)] 

+ K2[ys (0 - b20(t) - ya (*)] + Kp2 [ys (t) - d20(t) - yp2 (/)] = 0 

The equation of the angular motion (pitch) of the sprung mass has the form of: 

J0(t) + Cxbx [y,(t) + bx0(t) -yn(0] + CpXdx [ys(t) + dx0(t) -ypX(t)] 

- C2b2 [ys (0 - b20(t) - yt2 (0] -Cp2d2 [ys (t) - d20(t) - yp2 (t)] 

+ Kxbx [ys (t) + bx0(t) - ya (t)] + KpXdx [y, (0 + dx0(t) - ypX (t)] 

+ K2b2 [ys(0 -b20(t)-yl2(t)] + Kp2d2[ys(t)-d20(t)-yp2(*)] = 0 

(2.14) 

The equation of the vertical motion (bounce) of the driver is described as: 

v „ i (0+c„> [yPx (0 - ys (0 - dM] + KPX [ypX (o - y, (0 - <w) ] = o (2.15) 

whereas the vertical motion (bounce) of the passenger is governed by: 

mp2yp2 (0 + Cp2 [yp2 it) - ys (t) + d26>(t)] + Kp2 [yp2 (t) - ys (t) + d20(t)] = 0 (2.16) 

The equation of the vertical motion (bounce) for the front axle is: 

(2.17) 

(2.18) 



The dynamics of the bridge is described by two coupled equations. The first equation 

governs the traversed deflection of the beam(y) as: 

f . r *> ^ \ \ I f ->2 ^ \ \ 

^ py\x,t)dx - ^ ksAG\ _ £ + _£- <fc + [ Kn(yn -y(^,t))S {x-Qdx 

+ [ ca(ya -y(^t))^(x-<^2)dx+ _[ cy(x,t)dx- | fg(x,t)dx = 0 

(2.19) 

and the second equation describes the orientation of the beam cross-section (y/) around z 

axis as: 

cL cL d w ^ ( dy 
I ply/(x,t)dx- I EI—~dx+ I k.AG y/ + -+-
* * & * I fit 

dx = 0 (2.20) 

2.3 Finite Element Formulation for the Timoshenko Beam-Half 

Car Model System 

In this section the finite element formulation is developed using the Galerkin weak 

formulation for the coupled beam-vehicle system in which the vehicle is modeled as the 

half car model. 

The weak form is first applied to Eqs. (2-19) and (2-20) for a beam element with 

length /. Multiplying Eq. (2-19) with a weight function -w/ and integrating over the 

element will result: 
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JS x< 

py(x,t)Sy- k.AG 
rd2y + dy/^ 

dx dx 
+ Kn(yn-y(tvt))S\x-&) 

J) 

+Kt2(yt2-y^2,t))S\x-^2) + Cn(ylX-y^x,t))S\x-Q + 

DxfgXd\x-Q 
Ca(y>2 ~Mvt))d*(*-£) + cy(x,t) + 

+D2fz2S\x-Z2) 

} dx = 0 (2.21) 

where coefficients D, and D2 depend on the interval of the motion defined by the 

following four stages: 

0<t<tx , Dx =l,D2=0, 

tx <t<t2, Dx =l,D2 =1, 

t2<t<t^ Dx =0,D2 =1, 

^<t, Dx=0,D2=0 

(2.22) 

in which the parameters tx,t2 and t^ are the respective times when the second tire enters 

the bridge, the first tire leaves the bridge, and the second tire departs from the bridge. 

Now, multiplying Eq. (2-20) with a weighting function -w>2 and integrating over the 

element will result: 

{ -w2 x < ply/(x, t) - EI—y- + ksAG 
dx 

dy 
y/+— 

dx 
>dx = Q (2.23) 

Using the integration by parts for each integral in Eq. (2-21) yields: 
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i 
-p 

d2y 
.2 'v\ vw + — - k A G 

dy 
— + y/ 
dx dt2 ' dx "s"~ j~'T rwiK«(yn-y(&>t))s*(x-&) 

wxKa(y,2 -y^))5\x-^2)-wxCn(yn -y{^,t))d\x-Q 

'DJg,d\x-Q 
-w\ ca (y,2 ~ Mi > 0)£* ( * - & ) - W\CKX> 0 - w\ \ 

+D2fg2S*(x-{2) 

•dx 

(2.24) 

M\k,AG 
dy_ 
dx + Y = 0 

and for Eq. (2-23), we obtain: 

1 dx dx dx 
W- w2EI 

dy/ 

dx 
= 0 (2.25) 

The coefficient of the weighting functions w/ and M>2 in the boundary integrals are 

described as: 

KgAG$- + 9)SV 
dx 

dx 

(2.26) 

where F i s the shear force and M i s the bending moment. 

Here a linear beam element with two nodes has been used. Using similar linear shape 

function for both vertical deflection y and the rotation about z axis (i/s), one can relate the 

displacement functions (deflection and rotation) to their associated nodal displacement 

vectors as: 

y = Y.9M)Yjit) 

2 
(2.27) 

^ = ^(Pj(xy¥j(t) 
7=1 
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which <px and q>2 are the linear Lagrange interpolation functions: 

<pl(x) = 

(p2(x) = 

l-x 

(2.28) 

/ 

Using Eqs. (2.27), the discretized form of the Eq. (2-24) can be written as: 

f 5 2 fv v) 
ol \J=\ J 

wxdx + Jo dx s [dx [^ ') {jf> Jj 
\\ \ 

dx 
J J 

5y 

( 2 \ (2 

d( 2 ^ J * ( 2 ^ 

-i^Cn{ya-- Z<PJYJ )d\x-Qdx-{WxCt2{yt2-- J>,y, 
Ul v J=] J 

d ( 2 ^ 

d_ 

dt 

)5*{x-^2)dx 

)S*(x-£2)dx (2.29) 
W=> J 

f w i c ^7 YjP}Yi dxdy-{w\{D\fg\
5*(x-Z\) + Difg2

5*(x-Z2)}dx 

+wx(0)V0-wl(l)Vl=0 

similarly for Eq. (2-25), we can write: 

i EJ
dw2 d 

KM dx dx 

+w2(0)M0-w2(l)M,=0 

+ KsAGw2 +-dx W=> J 
tix 

(2.30) 

According to the Galrekin formulation, the weighting functions w, and w2 are replaced 

by the shape functions. Thus, in Eq. (2. 29), w,is replaced first by <px and then by#>2. 

Similarly, in Eq. (2.30), w2 is replaced once by <px and once by <p2. This will result in the 

following governing finite element equations: 
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|>»] [o] • 
[0] [ j /»] .{*}J 

>+ 
[ C ] [0] 
[o] [ C ] 

'[if"] [JC"]' 
[je!'] [JCE] hf 

(2.31) 

where 

C" = \0
c(Pi<Pjdx 

K» = ?KsAG^^x 
11 J° ' dx dx 

(2.32) 

KsAG(piq)j+EI 
d<p, d<pj 

dx dx 
\dx 

J) 

in which, i = 1,2 and j = \,2. After integration, the sub mass matrices can be written as: 

pAl 2 1 

1 2 

2 1" 

1 2 

(2.33) 

And 

[c"]4 
2 1 

1 2 
(2.34) 

The element coefficient matrices \KU\ and \Kn\ as well as the first part of \K22\ are 

evaluated exactly, but for the evaluation of the second part of \K22 J, the reduced 

-29-



integration was utilized in order to avoid shear locking 22,2i. For constant values of 

KAG and EI, the stiffness sub matrices are evaluated as: 

[*»]. KAG 
I 

[KU] = [K21]: 

1 -1 
-1 1 

KAG 

EI M-f 
/ 

1 -f 
-1 1 + -

-1 -1 
1 1 

KAGl 

(2.35) 

where one-point integration is used to evaluate the second part of \K22 |. 

JF1] and JF2]in Eq. (2-31) include all the forces which act on the first and second 

node of the beam element, respectively. These forces involve the spring forces, damping 

forces and the gravitational forces. 

If the nodal variables are listed node by node and the equations of motion for the 

degrees of freedom of vehicle are added to the above equations of motion of the beam 

element, the total equations of motion in the coupled beam-vehicle system will become: 

[Mv]{e(o}+[cv(o]{e(o}+K(o]{2(o}={^v(o} (2.36) 

where 
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{0(0} 
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ys 
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yP\ 

yP2 

yt\ 

yya) 

Also, the general mass matrix of a beam element carrying a vehicle can be written as: 

(2.37) 

M = 

pAl 
0 

pll 

Sym. 

pAl 

6 

0 

pAl 

0 

pll 
6 

0 

pll 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 0 0 

ms 0 
J 

0 

0 

mpi 

0 

0 

0 

m
P2 

0 
0 

0 

0 

0 
0 

0 

0 

0 

m, •12 

(2.38) 

The stiffness and damping matrixes of the system have also the following forms: 
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where in Eq. (2.39), 

«! = \QDxKatf8\x-Qdx 

f' * — 

ai = J 0 A^iW2^ (x-£)dx 

a, = lDxKncpl5\x-Qdx (2.41) 

el , — 

as = )0
D\Ka(P2S (x-Qdx 

are the parameters related to the first tire, and 

aax = I D2Kt2(pxS*{x-i;2)dx 
Jo 
f' * — 

aa2 — D2Kt2(px(p2d (x-^2)dx 
JO 

aa3= f D2Kt2(p2S*(x-g2)dx (2.42) 
JO 

r' * — 
aa4 = J D2Ka(px8 (x-^2)dx 
aa5 = \a

D2Ka<p2S\x-%2)dx 

represent the parameters associated with the second tire. 

Similarly, in Eq. (2.40), 

*i = \QDxCn(p
2
x5\x-Qdx 

r' * — 
£2 = }0

DiCn<Pi^2S (x-Qdx 

s, = lDxCn(p
2
28\x-l)dx (2.43) 

r' * -
*4 = iQ

DiCn<PiS (x~^)dx 

r> * — 
ss = )0

D£n<P2S (x-^)dx 

correspond to the items related to the first tire and also, 
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ss, = ^D2Ct2(pfS*(x-Qdx 

££i = \0D2Cn(p
2
25\x-^2)dx 

f/ » — 
ee* = l ^ n ^ {x-^2)dx 

J -i , — 

D2Ct2<p2S (x-^2)dx 
0 

signify the parameters correlated to the second tire. 

Finally, the force vector {Fv} can be described as: 

F = 

wx + wwx 

0 

w2 + ww2 

0 

0 

0 

0 

0 

0 

0 10x1 

(2.44) 

(2.45) 

where mx and xu2 are the portions of the vehicle weight applied from the first tire, on the 

first and second nodes of the beam element respectively which can be defined as: 

mi = \0fgm
s\x-Qdx 

mi = \afgx<p28\x-Qdx 
(2.46) 

Correspondingly, wmx and VJTD2 represent the allocation of vehicle weight applied from 

the second tire, on the first and second nodes of the beam, respectively: 
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J'' * — 

f . - < 2 ' 4 7 ) 

WWl = V ? 2 ^ (x~&)dx 

Eq. (2.36) and the associated Eqs. (2.37-2.40) and Eq. (2-45) provide the finite element 

equations of motion for one beam element subjected to the both tires of the moving 

vehicle. It is clear that the matrix components described by Eqs. (2.41-2.47) are not 

constant, but changing with respect to the position of the first and second tire (£, and £2 

respectively) along the beam element. 

Typically, a beam is consisted of more than one element; hence, the general equations 

of motion for the entire system can be obtained by assembling the matrices of all 

conventional beam elements and the beam element with the moving vehicle on it. It 

should be noted that the position of the time variable components mentioned in the 

previous paragraph is not fixed in damping, stiffness and force matrices of the system 

([C(0],[-ST(0]and[F(0]), but changes depending on which element the first and the 

second tire is located at the time. 

2.4 Solution of the Finite Element Equations of Motion 

Eq. (2.36) has been solved using direct time integration technique based on 

unconditionally stable Newmark's f3 method 9VM<96. Direct time integration involves the 

attempt to satisfy dynamic equilibrium at discrete points in time, after defining the 

solution at time zero. In Newmark J3 method, the following equations have been used: 

Q'+&,=Q' +[(1-J3)Q1 +/3Q'+M]At (2.48) 
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Q'+At =Q'+QfAt + At1 (2.49) 

In addition to these two equations, for solution of the displacements, velocities and 

accelerations at timet + At, the equation of motion (2.36) at time t + Atis also 

considered: 

[MV]Q'+At +[C/+A ']g'+A ' + [KV
,+A,]Q'+A' = {FV'+AI} (2.50) 

Solving for Q'+Al in terms of Q'+At in Eq. (2.49) and substituting for g'+A'into Eq. (2.48), 

one can obtain the equations for Q'+At and Q'+At in terms of the unknown displacements 

Q'+Al only. By substitution these two relations for Qt+At and Q'+At into the Eq. (2.50), the 

unknown displacements can be calculated. Subsequently, Q'+Al and Q'+Al can be obtained 

by using Eqs. (2.48) and (2.49). The complete algorithm using the Newmark integration 

scheme is described here: 

/. Initial Calculations: 

1. Initialization of Q'=\Q'"0 mdQ<=°. (fi° =[M v ] - , ({F ¥
0 }-[C ¥

0 ] f i 0 - [^°] f i 0 ) ) 

2. Selecting time step A^and parameters /?and;e. (Here, /? =—,/ =—has been 

selected so that the equation becomes unconditionally stable.) 

3. Calculation of the integration constants: 
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1 
/At 

1 
a, = 

2 ^ 

a6 = A?(l -

3 

5 

5 

-/»), 

1 ?A/ 

1 
a, = — 

2/ 

At( 
a5= 

a7 = fiAt 
u ) 

4. Establishing the effective matrix K : 

//. For Each Time Step: 

1. Forming the effective load at time t + At: 

{Fv'
+&'} ={Fr} + [Mv](aQQ< +a2Q> +a3Q<) + [cr<](alQ< +a4Q< +a5Q<) 

2. Obtaining the displacement at time t +At: 

Q ,!+&! k! "{f-r} 

3. Calculation of acceleration and velocity at time t +At: 

Q'+A'=a0(Q<+A<-Q>)-a2Q'-a3Q' 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 
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2.5 Numerical Results for Half Car Model 

2.5.1 Model Verification 

The developed finite element model for the coupled beam-vehicle has been used to 

find the response of the beam and vehicle. The results are compared with those 

available in literature to validate the methodology. As mentioned in Chapter 1, 

Esmailzadeh and Jalili58 addressed similar problem in which an Euler-Bernoulli beam 

traversed by a vehicle (half car model) has been studied. They used analytical 

approach based on mode expansion to solve the governing differential equations. 

Thus, this reference has been used as benchmark to validate the developed finite 

element formulation. In order to compare the results with those in Ref. [58] similar 

parameters for both beam and vehicle are used. It should be noted that in order to 

have fair comparison with those in Ref. [58], Euler-Bernoulli beam model has been 

used in the finite element formulation. The properties of the beam and the vehicle 

have been presented in Table 2-1 and Table 2-2, respectively. A summery of Euler-

Bernoulli Finite Element formulation has been represented in Appendix A. 

Table 2-1 Properties of the Euler Bernoulli Beam [58] 

Elastic Modulus 

Mass per Unit Length (p) 

Cross Sectional Area 

207 GPa 

20000 Kg/m 

4.94 m2 

Second Moment of Inertia (/) 

Beam Structural Damping (c) 

Beam Length (L) 

0.174 m4 

1750 Ns/m 

100 m 
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Table 2-2 Properties of the Vehicle [58] 

Body mass (ms) 

Body Rotational Mass Moment of Inertia (J) 

First axle mass (mn ) 

Second axle mass (ml2) 

Driver mass (mpl) 

Passenger Mass (mp2) 

First Axle Damping Ratio (C{) 

Second Axle Damping Ratio (C2) 

First Tire Damping Ratio (Cn ) 

Second Tire Damping Ratio (Cl2) 

Driver Damping Ratio (Cpl) 

Passenger Damping Ratio (C 2) 

First Axle Stiffness (£ , ) 

Second Axle Stiffness (K2) 

First Tire Stiffness (Kn) 

Second Tire Stiffness (Kl2) 

Driver Stiffness (K .) 

Passenger Stiffness (Kp2) 

h 

b2 

dx 

d2 

1794 Akg 

443.05kgm2 

S7.\5kg 

140.4kg 

75kg 

75kg 

\\9QNslm 

lOOONs/m 

\4.6Nslm 

\4.6Nslm 

62ANs/m 

62.\Ns/m 

66824.4N/m 

18615.(W/m 

0\U5.0N/m 

0ll\5.0N/m 

\4000.0N/m 

14000.0N fm 

1.271m 

1.716w 

0.481m 

1.313m 
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It should be noted that the first natural frequency of the beam is equal to 1.32 rad/s. The 

relation between the damping coefficient and damping ratio of the beam can be defined 

as:97 

where £,k represents the damping ratio due to kth mode of the beam, c is the damping 

coefficient of the beam, p is the linear density of the beam and cok is the kth natural 

frequency of the beam. Accordingly, the damping ratio of the beam for this situation is 

equal to 3.3%. 

The time history for the transversal dynamic deflection of the midspan of the bridge for 

two different values of the vehicle speed (72 and 88 Km/h) has been shown in Figure 2-2 

and Figure 2-3. 
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It can be realized from the figures that as the number of beam elements increases, the 

obtained results converge more to the analytical results. Also, the time history for the 

vehicle body bounce (y s) , the driver bounce (y x), the passenger bounce (yp2), the front 

tire bounce (yn) and the rear tire bounce (yl2) for V=88 km/h have been shown in 

Figure 2-4,Figure 2-5, Figure 2-6, Figure 2-7 and Figure 2-8, respectively. It can be seen 

that the results obtained from the developed finite element formulation are in very good 

agreement with analytical results in Ref. [58]. Also by increasing the number of elements, 

the finite element solution approaches the exact solution. Hereafter, considering 

accuracy and computational time, all the simulations will be performed using 40 beam 

elements. 

0.5 

<D -0.5 

3 
O 
m 

E 
CO 
<j> 

o 

> 

-1.5-

-2 

-2.5 

\ / 

1$ 
Ref. 58 
10 Elments 

4 5 6 
time(s) 

8 9 10 

Figure 2-4 Time History of the Vehicle Body Bounce for V=88 Km/h 
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2.5.2 Numerical Results on the Behavior of the Timoshenko beam under 

Half Car Model 

Here, the same parameters provided in previous section for the beam and vehicles 

have been utilized except that instead of Euler-Bernoulli beam theory, Timoshenko beam 

theory has been employed. It should be mentioned that the Poisson's ratio and the shear 

factor of the Timoshenko beam are equal to 0.3 and 5/6 respectively. Also the damping 

coefficient of the beam is equal to 5500 Ns/m, and according to Eq. (2.57) the damping 

ratio for the first mode is about 10%. 

The variation of the maximum value of the transversal dynamic deflection of the 

Timoshenko beam, and its location along the beam with respect to the vehicle speed, has 

been shown in Figure 2-9 (a) and (b). It can be seen that when the vehicle travels at 

around the speed of 90 Km/h, the deflection of the beam attains its maximum value. This 

speed is referred to as the critical speed of the vehicle corresponding to the maximum 

transversal deflection. It is interesting to note that the maximum value of the dynamic 

deflection occurs around the midspan of beam (at the location of 53 m) as shown in 

Figure 2-9 (b). 
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Figure 2-9 (a) Maximum Dynamic Deflection, and (b) Location versus Vehicle Velocity for 

the Beam 100 m Long 
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Similar investigation has been done on the beam with length of 70 m as shown in 

Figure 2-10 (a) and (b). As expected the maximum deflection for the beam with 70 m 

long is much less than that of 100 m long. It is interesting to note that for this case, the 

critical vehicle speed is 130 Km/h in which the maximum deflection of the beam reaches 

at its greatest value. Similarly, it can be seen that the maximum transversal deflection of 

the beam occurs around the midspan, at the length of 37 m. 

In Figure 2-11, the configuration of the 100 m beam under the half car model moving 

at V=72 Km/h for the first 5 seconds has been shown. It can be observed that as the 

vehicle enters the beam, the deflection in the beam increases and the position of the 

maximum deflection moves from the left to the middle. The vehicle leaves the beam after 

5 seconds. The configuration of the beam during the 5 seconds after the vehicle leaves the 

beam has also been illustrated in Figure 2-12. It can be seen that after the vehicle leaves 

the beam, the beam vibration continues and gradually dissipates due to the damping 

effect in the beam. 
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Figure 2-11 The Configuration of the Beam with L=100m under the Half Car Model 
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2.5.3 Comparison between Euler-Bernoulli and Timoshenko Beam Models 

In order to show the accuracy of the Timoshenko beam model, the maximum beam 

deflection versus the vehicle velocity has been plotted for both Timoshenko and Euler-

Bernoulli beams at the length of 100 m in Figure 2-13. It can be observed from the 

diagram that the maximum beam deflection has been underestimated in Euler-Bernoulli 

beam model. This difference is slight in lower velocities, but as the vehicle velocity 

increases, the disparity between the two beam models becomes more significant. In Table 

2-3 the maximum deflection for the beams obeying Timoshenko and Euler Bernoulli 

theories and their percentage difference have been illustrated for a few vehicle velocities. 

Table 2-3 Comparison between Maximum Deflections in Timoshenko and Euler-Bernoulli 

Beams 

Vehicle Velocity (Km/h) 

Max beam deflection for 
Euler Bernoulli beam (cm) 

Max beam deflection for 
Timoshenko beam (cm) 

Percentage difference 

35 

1.5163 

1.5939 

5.11 

50 

1.8180 

2.001 

10.06 

70 

1.9808 

2.2421 

13.19 

90 

1.9788 

2.2677 

14.60 

120 

1.8508 

2.1380 

15.51 

150 

1.6761 

1.9372 

15.57 

For more clarification, in Figure 2-14 the percentage difference between maximum 

deflections in Timoshenko and Euler-Bernoulli beams versus vehicle velocity has been 

plotted in the velocity range of 35-150 Km/h. It can be observed that the percentage 

difference increases by the rise of vehicle velocity and adopts an almost constant value 

with slight fluctuations after about V=l 10 Km/h. 
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2.6 Finite Element Formulation for the Timoshenko Beam-

Quarter Car Model system 

In this section, the finite element formulation of the coupled bridge- moving vehicle 

system in which the vehicle is represented as Simple Quarter-Car (SQC) planner model 

as shown in Figure 2-15 is briefly described and the results are compared with those of 

half car model. The moving SQC model is considered as a dynamic system, with two 

degrees of freedom, in which M, and M2 are the unsprung mass and the sprung mass of 

the moving vehicle respectively. 

y2 cot 

y,(t) t 

J>% 

Sprung Miiss 

A/-

I ]isprim<z M:is\ 

u 

y{t) 
x 

n-> 

Figure 2-15 Schematic of a Bridge Traversed by a Moving Quarter Car 
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Similar to the half car model, the tire is assumed to be in contact with the surface of 

the beam at all times, and therefore the vertical displacement of the moving tire and the 

bridge will be the same. The vertical displacements of the unsprung mass M, and sprung 

mass M2, related to their respective vertical equilibrium position, are 

>>, (t) and y2 (t) correspondingly. The horizontal location of the center of the mass of the 

moving vehicle measured from the fixed reference point, such as the left end of the 

bridge, is denoted by xv(t) .The vehicle is moving at a constant speed v along the beam. 

The governing equations of motion of the present model are obtained using the similar 

procedure explained in section 2.2 by utilizing Hamilton principle. The vertical motion 

for the unsprung mass (M,) is governed by: 

Mxyx + kx(yx -y(xv)) + cx(yx -y(xv)) + k2{yx - y 2 ) + c2(y] -y2) = 0 (2.58) 

The equation of motion for the sprung mass (M2) can be written as: 

M2y2 + k2 (y2 - yx) + c2 (y2 - y,) = 0 (2.59) 

The first equation for the beam, governs the traversed deflection of the beam(y): 

£ py(x,t)dx - _ [ ksAG —T + ^~ \dx + ( cy(x,t)dx+ J[ kl(yl -y(x,t))d\x-xv)dx 

+ [ q(yx -y(x,t))<5*(x-xv)dx + [ {Mx + M2)gS*(x-xv)dx - 0 

and the orientation of the beam cross-section (y/) around z axis can be defined as: 

^ply/(x,t)dx- ^EI^-dx+ ^KAG[J/+—W = 0 (2.61) 
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Derivation of the finite element formulation of the governing equations is similar to the 

procedure described in section 2.3. The total equations of motion of the system of one 

beam element under the quarter car model can be described as: 

[Aff]{Z(0} + [C,(0]{Z(0} + [^,(0]{Z(0}=[^(0] (2-62) 

in which 

{Z(t)} = 
V2 

U2J 

and the total mass, stiffness and damping matrices can be written as: 

M = 

pAl 
0 

pll 

pAl 

6 

0 

pAl 

0 

pll 

6 

0 

pll 

0 

0 

0 

0 

M, 

0 

0 

0 

0 

0 

Sym. M0 

(2.63) 

(2.64) 
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* , = 

KAG 1 
+ *:, — K A G 

I x 2 s 

-KAGI+— 
4 s I 

Sym. 

KAG 

I - + *:, 

KAG 

I 
- + K", 

--KsAG 
2 s 

1 1 FT 
-KAG -KAGl 
2 s 4 s I 

1 
KAG 

l-KsAGU — 
4 * / 

-K. 

~K. 

0 

0 

0 

/Ci -t~ K j K"j 

(2.65) 

c , = 

cl 
—+rl\ 
3 ' 

A Cl 

0 — + 77, 
6 /2 

0 0 

c/ 
— + 77, 
3 3 

0 

0 

0 

0 

"74 

0 

-7 5 

0 

0 

0 

0 

0 

-c2 

Sym. 

(2.66) 

where in Eqs. (2-65) and (2-66) 

K\ - [kx(px
28*{x-~xv)dx 

K2 = f kx(px(p2S* (x - xv )dx 

AT3 = [ A:, ̂  <^* ( * _ *v ) ^ 

A:5 = [kl<p25*(x — xY)dx 

(2.67) 
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7i = \)cl(p
1
l8\x-xv)dx 

V2 = {cx(p{(p2d\x-xv)dx 

rj3 - [ cxq>\8*(x - xv)<ix 

/74 = |cj^*(x-xv)c&f 

75 = [cx<p2S*(x-xv)dx 

The general force vector in right hand side of Eq. (2.62) can also be written as: 

| (M, + M2 )g<pxS* (x - xv )dx 

0 

| (M, + M2)g<p2S* (x - xv )dx 

0 
0 
0 

(2.68) 

* ; = (2.69) 

The general equations of motion for the entire system can be obtained by assembling the 

matrices of all conventional beam elements and the beam element on which the moving 

vehicle is attached. Eq. (2.62) can be solved by the direct time integration Newmark /? 

method as explained in section 2.4 

2.6.1 Comparison between the Half Car Model and Quarter Car Model 

Here the midspan deflection of the Timoshenko beam at length 100 m with the 

properties mentioned in section 2.5.2 traversed by a moving vehicle simulated as half car 

and quarter car models have been compared for the critical car velocity (V=90 Km/h). 

The properties of the half car model are the same as mentioned in Table 2-2. For the sake 
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of comparison, the equivalent properties for the quarter car model have been selected as 

follows: 

Afj = mn + ma ,M2=ms+ mpX + mp2 , fg = -(M, + M2 )H(x - g(t)) 

/Ci = -/v<i T" J^-tl 5 *^2 ~~ 1 2 ? ^1 ~~ / l f 2 5 ^ 2 = 1 2 

Figure 2-16 shows the midspan deflection for both car models at velocity of 90 Km/h. 

0 1 2 3 4 5 6 7 8 9 10 
Time(s) 

Figure 2-16 Time History of Midspan Deflection at V=90 Km/h for Half and Quarter Car 

Model 

The beam midspan deflections for three consecutive peaks of the response have been 

shown in Table 2-4. It can be realized that generally the quarter car model underestimates 

-59-



the deflection. Although at the first peak the difference is not significant (3.74%), as the 

time passes, the difference become more considerable. 

Table 2-4 Beam Midspan Deflection Comparison between Half car and Quarter car model 

Time (s) I 3A5 5/75 JU5 

Maximum deflection for half car model (cm) -1.968 1.204 -0.7927 

Maximum deflection for quarter car model (cm) -1.897 1.061 -.06372 

Percentage difference 3.74 13.48 24.4 
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2.7 Conclusion 

The finite element formulation of a bridge type structure, modeled as a simply 

supported Timoshenko beam, under a moving vehicle considered either as a half car 

or a quarter car model, have been presented. The problem is solved by direct time 

integration technique based on the Newmark's P method. The obtained results for the 

half car model have been validated with those reported in literature. The maximum 

deflections of the beam based on the Euler-Bernoulli and the Timoshenko models 

were compared and it was observed that, as the vehicle velocity increases, the 

difference between the results in the two models becomes more significant. The beam 

midspan defections for the beam under a quarter car model and a half car model have 

been compared. 
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Chapter 3: FINITE ELEMENT FORMULATION OF THE 

TIMOSHENKO BEAM WITH ATTACHED TMDs 

TRAVERSED BY A MOVING VEHICLE 

3.1 Introduction 

In this chapter the finite element formulation of a simply supported Timoshenko beam 

with n attached TMDs under a half car model is presented. Initially, the finite element 

formulation for a Timoshenko beam with the attached TMDs is obtained, and then by 

superposition the derived equations are combined with the equations of the beam under 

the moving vehicle presented in Chapter 2 in order to obtain the governing equations of 

motion for the total system. 

3.2 Formulation of the Timoshenko Beam with Attached TMDs 

A simply supported beam with n TMDs as shown in Figure 3-1 is utilized to set up the 

equations of motion for the general case. xh,MTMD ,CTMD and KTMD are defined as the 

position, mass, damping and stiffness of the /zth TMD respectively. 

Further to Chapter 2, the Hamilton's principle is employed to obtain the governing 

equations of motion of the model. 

The total kinetic energy of the system can be defined as: 

^ = - { | Pi» (x,t)dx+ I pI(x)y/2(x,t)dx + MTMDjzx
2+... + MmDiiz„2} (3.1) 
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Figure 3-1 Simply Supported Beam with n Attached TMDs 

Therefore, the virtual kinetic energy of the system is described as: 

ST= £py(x,t)^dx + £ pl(x)^(x,t)^-dx 

. . . dSz, , _ . . . dSzn 
+MmDzx{t)—± + ... + MmDnZn(t)--f 1 dt dt 

Consequently, one can write: 

f STdt = - \ { \ py(x,t)dxSy + | ply/{x,t)dxdy/+MTMDz\5zx 

+... + MTUDnZnSzn}dt 

The total potential energy of the system can also be written as: 

2 

dx + KTMDx(y(TMDx,t)-zx)
2 U=l-{\LEl(^)dx+\LksAG 

KTMDn{y(TMDn,t)-zn)
2} 

\dx J 

(3.2) 

(3.3) 

(3.4) 

Thus, the virtual potential energy of the system is given by: 
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dy 6U= fEI——^-dx + \LkAGwSu/dx+ fk AG^dy/dx + f k AG—y-u/dx + 
Jo dx dx Jo Jo dx Jo dx Jo dx dx 

,dy dSy 

dx 

rt oy ody i \ 

KTMD„ (yTMD„ -ZnYSyTMDn ~ §Zr) 

Intergrading from both sides of Eq. (3.5) will yield: 

+ ...+ 

tsm" r<(f-£ /S i & +I'MCU!)*]* dx) 

(Pi2 A \ \ 

f ksAG[~dS+~dx~)dx Sy+K™*(y™D> ~zM5y™* ~5z^ 

+- + KTMD„ [yTMDn -Zn)(5yTMDn ~8Zn)}dt 

Also, the non conservative virtual work in the system can be expressed as 

f SWncdt = f* {-1 cydxSy - CTm (yTm - i, )S(yTMDi - z,) 

-... - CTMDn (yTMDn - zn )8{yTMDn - zn )}dt 

Substituting Eqs. (3.3), (3.6) and (3.7) in the Hamilton principle will yield: 

0 = J n ~ I PKx,t)dxSy - £ pIy/(x,t)dxSi^-MTMD]z\Szl -...-MTMDzn5zn 

f"&*-Mr4>K4fMG(0+£ + EI dx Sy 
dx2 *> y dx) ) ^ * ^dx1 dx y 

~ I KTMDx(y-z\)s*(<y-yTMD,)dxSy+ [ ^r^iy-z^iy-y^dxSz^ -... 

+•••- [ KTMD„(y-zn)s*(y-yTMDn)
dxSy+ [ KTMD„(y-zn)s\y-yTMD„)dxSzn 

- [ CTMD, (y ~zx)s\y- yTMDl )
dx5y + [ CTMD, (y -zi)#*(y- yTMD, ) d x S z \ -••• 

+• • • - [ CTMD„ (y ~ z„ ) s * (y - yTMD„ )dxSy + J[ CTMD^ (y - zn )S* (y - yTMDn )dx8zn }dt 

(3 

(3 

(3 

(3 
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Subsequently, the dynamics of the system can be described by n+2 second order 

differential equations obtained by setting the coefficients of deltas (Sy,Sy/,SyTMD ,...and 

Sy-ruD, ) t 0 z e r 0 -

The vertical deflection of the beam is given by: 

( 

%py(x,t)dx - £KAG TT+Y~ \dx \+£cy(x,t)dx 
V 

•L 
+ [ CTMDi(y-zi)S\x-xi)dx + ...+ £ CTUDn(y-zn)S\x-xn)dx (3.9) 

+ [ KTMDi(y-zi)s\x-^)dx + ...+ | KTMDn(y-zn)5\x-xn)dx = 0 

The orientation of the beam cross-section (y/) around Z axis is defined by: 

2.., ., { a . A 

dx = 0 (3.10) 
rl eL d W fi ( dv 
\pIy/(x,t)dx-\EI—^~dx+ \ksAG y/+-^-dx _ 

and finally the equation of motion for the Ath attached TMD is given as: 

MTMD^h + I CTMD„(Zh -y)S\x-xh)dx+ | KTMDh(zh -y)5*(x-xh)dx = 0 (3.11) 

3.3 Finite Element Formulation of the Timoshenko Beam with 

Attached TMDs 

In order to derive the finite element formulation of the system, the same procedure as 

described in section 2.3 will be implemented. The Galerkin weak form of Eqs. (3.10) and 

(3.11) over an element of the length / can be applied to develop the finite element 

formulation. The same linear interpolation given in Eqs. (2.27) and (2.28) for the vertical 

deflection of the beam (y) and the rotation of it about Z axis (y/) is considered. 
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Since the properties of the beam and the interpolation functions are the same as those 

used in Chapter 2, the equations of motion and the basic matrices for the beam element 

will be the same as those presented in Eqs. (2.31) to (2.35). 

Identifying the nodal variables and combining the equations of motion for the vertical 

position of the connected TMDs, the total equations of motion for a beam element with n 

attached TMDs can be described into the following finite element form: 

[Mr]{A(t)} + [CT]{k(t)} + [KT]{A(t)} = [FT] 

where A(t) is the nodal displacement vector written as: 

(3.12) 

{A(0}: 

Y, 

Y, (3.13) 

and [MT ] , [KT ] and [KT ] are the mass, the stiffness and the damping matrices of the 

beam element with n attached TMDs and have the following forms: 
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MT 

pAl 
0 

pll 

Sym. 

pAl 

6 

0 

pAl 

0 

pll 

6 

0 

pll 

M. 

0 

0 

0 

0 

TAsfn. 

0 

0 

0 

0 

0 

M. 

(3.14) 

TMD, 

KSAG 
I 

+... + &. 

+ &,. 

K.T 

--K.AG 

^-KsAGl + ^-
4 s / 

K.AG 
I 

+... + S. 

+ S, 

-KSAG 
2 s 

KSAG 
I 

+... + S. 

+ 9 

--KSAG -&, 
2 

l-KsAGl-* 
4 J / 

1 K.AG S, 

4 ' / 
K 

-9. 

-<9„ 
(3.15) 

TMD, 

Sym. K TMDn 
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cl 

Sym. 

c/ 

0 6 " 2 0 - ^ 

+•» + £,, 

0 0 0 0 

cl 

T+c- o -, , 
+••• + £,3 

0 0 

c rM3, 

0 

-£., 

0 

0 

c, 

(3.16) 

7MD„ 

where for the /?th TMD, 

&h, = \0
KTMDh<P\5\x-Xh)dx 

rl * _ 
$h5 = ]0

KTMDh<P2S (X-Xh)dx 

(3.17) 

and 
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Sh2 = l CTMDh <P\ Vi5* ( * - x„ )dx 

£*, = J0
 CTMDh<P22<$*(X-Xh)dx (3.18) 

£*« = lCTMDh<PlS\x-Xh)dx 

Sh$ = \0
CTMDh<P25\x-Xh)dx 

Since there are no external forces, the force vector is zero: 

FT = 

0 

(3.19) 

i+2xl 

Assembling the matrices of all conventional beam elements and the beam elements with 

the attached TMDs will result in the general equations of motion for the entire system. 

3.4 Finite Element Formulation of the Timoshenko Beam with 

Attached TMDs under the Half Car Model 

In order to obtain the finite element formulation of a beam element with n attached 

TMDs under a half car model, the superposition principle has been used where the 

equations of motion of a beam element under the half car model developed in Chapter 2 

are combined with the equations of motion related to a beam element with n attached 

TMDs derived in the previous section. The final equations of motion for the system of 
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beam with the attached TMDs under moving vehicle can be described the by following 

finite element form: 

[M]{z(t)} + [C(t)]{x(t)} + [K(t)]{z(t)} = {F(t)} 

where x(f) is the nodal displacement vector described as: 

Y, 

Y , 

{*(')} = 

y, 
j 

yP\ 

yP2 

yt\ 

y<2 

« ) n+KM 

(3.20) 

(3.21) 

and [M], [K] and [K] are the mass, the stiffness and the damping matrices of the beam 

element with n attached TMDs traversed by a moving half car model and have the 

following forms: 
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where ax_5, aax_5, sx_5, se^5, Sh and gh have been introduced before in Eqs. (2.41)-

(2.44), (3.17) and (3.18), respectively. 

Finally, the force vector can be written as: 

F = 

wx + wxux 

W2 + t!JGJ2 

0 

0 

0 

0 

0 

0 

0 

0 

(3.25) 

J H+10xl 

where tu1 and tu2 as well as mmx and wm2 are the portions of vehicle weight applied from 

the first and second tire on the first and second nodes of the beam respectively, which are 

defined in Eqs. (2.46) and (2.47), correspondingly. 

The general equations of motion for the entire beam-TMD-vehicle system can be 

obtained by assembling the matrices of all conventional beam elements, beam elements 

with attached TMDs, and the beam element with the moving vehicle and attached TMDs. 

Eq. (3.20) can be solved by utilizing direct time integration using the Newmark's /? 

method. Similar to the procedure described in section 2.3, after the solution is defined at 

time zero, the dynamic equilibrium at discrete points in time should be satisfied. 
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3.5 Conclusion 

The governing equations of motion of a system of Timoshenko beam with n attached 

TMDs have been derived and then transformed into the finite element form using the 

Galerkin weak form approximation. Subsequently, using the superposition principle, the 

derived finite element equations of motion for the beam element with the attached TMDs 

are combined with the finite element equations of motion for the beam element under the 

moving half car model derived in Chapter 2. This is to obtain the total governing 

equations of motion of a Timoshenko beam element with n attached TMDs subjected to a 

moving half car model. 

-75-



Chapter 4: OPTIMAL DESIGN OF TUNED MASS DAMPER 

4.1 Introduction 

In this chapter an optimal design strategy has been presented to obtain the optimal 

parameters (frequency and damping ratios) of a single TMD for which, the deflection at 

the mid-span of the Timoshenko beam traversed by a moving vehicle (half car model) is 

minimized. The design optimization methodology combines the developed finite element 

analysis with the optimization algorithm based on the Sequential Quadratic Programming 

(SQP) technique. 

4.1.1 Optimization 

Optimization is one of the most significant aspects of design in almost all disciplines. 

In today's competitive market the importance of increasing the performance in every 

product, through design and manufacturing process, has been accentuated since it can 

serve directly to make more efficient, accurate, environmental-friendly products with 

lower costs and a reduction of energy consumption. Due to the revolution in computer 

technology and numerical computations in the recent past, today's computers can 

perform complex calculations and process large amounts of data rapidly. The engineering 

design and optimization processes benefit greatly from this revolution because they 

require a large number of calculations. Better systems can now be designed by analyzing 

and optimizing various options in a short time with less cost and more capability. 

Structural Optimization is one of the necessary features in the structural design 

procedures to improve the behavior of a mechanical structure while keeping its structural 
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properties. This aspect has matured to the point that it can be routinely applied to a wide 

range of real design tasks. 

As mentioned earlier, by implementing a tuned mass damper on a primary structure, a 

large reduction in its dynamic responses can be achieved. Although the basic design 

concept of the TMD is simple, the parameters of the TMD system must be obtained 

through optimal design procedures to attain the best performance of the tuned mass 

damper. In this regard, this section is allocated to acquisition of the optimal parameters of 

a TMD to control the vibration of the Timoshenko beam subjected to a moving vehicle, 

which its finite element formulation was developed in the previous chapter. 

4.1.2 Optimization Fundamentals 

Generally, the most important terminologies in optimization can be represented as 

followed: 

Design variables: Design variables are entities that identify a particular design. These 

entities will change over a prescribed range in the search for the optimal design. In 

applied mathematical terminology, design variables are the unknown of the problem 

being solved. The set of design variables is identified as the design vector. 

Objective function: Design optimization problem is defined by an objective function 

which usually has to be minimized or maximized. The objective function must depend, 

explicitly or implicitly, on the design variables. 

Constraint functions: As design functions, these will be influenced by the design 

variables. The format of these functions requires them to be compared to some 

-77-



numerically limiting values set up by the design requirements, or the designer. These 

limiting values stay constant during the optimization. The constraint functions can be 

classified as equality constraints or inequality constraints. 

Problems without constraints are called unconstrained problems. If constraints present, 

then meeting them is more necessary than the optimum. Constraint satisfaction is crucial 

before the design established by the current value of the design variables is considered 

valid and acceptable. If constraints are not satisfied, also called "Violated", then there is 

no solution. 

Side constraints: The range for the design variables are expressed by side constraints. 

Each design variable must be bounded by numerical values for its lower and upper limit. 

The standard format for an optimization problem can be expressed as: 

Minimize /(x,,x2,...,x„) (Objective function) 

Subjectto gi(xl,x2,...,xn) = 0 , i = \,2,...,me (Equality constraints) 

gt(x,,x2,...,xn) < 0 , i-me+\,...,m (Inequality constraints) 

x'j < Xj < x" , j = l,2,...,n (Side constraints) 

Based on the above mentioned definition, an optimal solution is one that has met the 

design objective while it remains in the feasible domain (satisfies all the constraints). 
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4.1.3 Optimization Technique 

no 

Here, the Sequential Quadratic Programming (SQP) , which is one of the most 

powerful methods among the mathematical nonlinear programming techniques, has been 

employed to solve the design optimization problem regarding TMD. The computer 

implementation of the algorithm has been performed in MATLAB© environment. This 

method allows Newton's method for the constrained optimization to be closely mimicked 

just like that of unconstrained optimization. Using the quasi-Newton updating method, 

the Hessian of the Lagrangian function has to be approximated for every iteration to 

create a Quadratic Programming (QP) sub-problem. The solution of the QP sub-problem 

is used to form a search direction for a line search procedure. 

The general problem can be written as: 

Minimize f(x) with respect to x e Q , 

Where Q = [xe R*tSi(x) = Q,i e [\...,me), gj (x) <0,i e{me+\,...,m)} 

The main idea is to generate a QP problem based on a quadratic approximation of the 

Lagrangian function described as: 
m 

L(x,A)=:f(x) + YjAigi(x) (4.1) 
1=1 

where f(x) denotes the objective function and the equality and inequality constraints 

are given byg,(x) = 0 andg((;c) < 0respectively, i is an index for variables and functions 

associated with a particular constraint, i . For X without a subscript indicates the vector 

with elements Xt, which are taken to be independent variables. 

The SQP implementation in MATLAB© consists of three main stages: 
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(I) Quadratic programming problem solution 

(II) Line search and calculation of the merit function 

(III) Update the Hessian matrix of the Lagrangian function 

At each major iteration, a QP sub-problem of the following form is solved: 

Minimize Jk (with respect to d): 

Jk=-dTHgd + Vf(xk)
Td deRK 

Vgi(xJd+gi(x)=Q ie{\ me) 

Vgi(xk)
rd + gi(x)<0 ie{me + \,...,m) 

where / / i s the Hessian of the Lagrangian, denoted by 

//(x,2):=V^L(x,A) 

Hk indicates the approximate Hessian of L at the current iteration xk. 

The solution is used to form a new iterate: 

Xk+l =Xk^ ak®k 

The step length parameter ak should be determined by using an appropriate line search 

technique (one-dimensional minimizations) in order to produce a sufficient decrease in 

the merit function. At the end of the one-dimensional minimization, the Hessian of the 

Lagrangian, required for the solution of the next positive definitive quadratic 

programming problem, is updated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

updating formula as: 
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(4.3) 

(4.4) 



rr _rr , <3W[ HlSkSlHk 
Hk+\ ~Hk+— 

<lkSk dk Hkdk 

where 

: Xk+\ Xk 

(4.5) 

(4.6) 

Ik = V/C^O + Z^.VftC^,)- V/(^) + £A,.Vgl.(xt) 
1=1 i=i 

and ift+1 is the approximated Hessian off at xl * + i • 

(4.7) 

.98 A complete overview of the SQP can be found in the work by Nocedal and Wright , 

Arora" and Fletcher100 

4.2 Optimization Procedure 

4.2.1 Preliminaries 

The formulation of a Timoshenko beam traversed by a moving vehicle with n 

attached TMDs has been presented in Chapter 2. Here, the aim is to suppress the 

vibration of this beam by optimal designing of the attached single TMD. As stated earlier, 

the natural frequency of TMD is usually tuned in resonance with the one of the modes of 

the beam, so that a large amount of the structural vibrating energy is transferred to the 

TMD and then dispersed by the damping as the primary structure is subjected to external 

disturbances. 
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In order to attain the best performance of the TMD, it is necessary to optimize the 

parameters of the TMD system to make the beam vibration as small as possible. The 

TMD parameters include its number, mass, stiffness, damping and its location on the 

beam. In this thesis, the optimization is performed using one TMD and since the 

fundamental vibration mode of the beam is dominant in the dynamic behavior of the 

beam (since the maximum deflection of the beam typically takes place around the 

midspan, as shown in Figures 2-9 and 2-10) the TMD system is designed to be tuned at 

the first mode of the beam and therefore, it is placed at the beam mid-point. Due to 

practical implementation, the mass of the TMD is usually assumed to be a known 

parameter. As a result, the stiffness and damping of the TMD are considered as the 

design variables to be optimized. 

For the sake of numerical simplicity, all the design variables and the mass of TMD are 

transformed into dimensionless parameters as: 

J-'l T*/n r TMD £ r 

'TMD ~ ' S f M D 
lTMD 

II — ™D f — TMD e _ T M ? (A Q\ 
r1 ~ * r >JTMD~ >hTMD~ » m T7 V + - C V . - - 'J TMD •'STMD rZZ Z~T 

^structure ^ n ^ V ™ ® ' 

lTMD where con is the nth natural frequency of the beam without TMD, coTUD = <JKTMD IMT 

and Mstructure is the total mass of the beam. It should be noted that in practice, the mass 

ratio of the TMD to the beam is greater than 10%. 

Now, the optimization problem for the Timoshenko beam with the attached TMD and 

known mass ratio (//), under the moving half car model can be described as: 
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Find the design variables: {X} = {t,TMD, fTMD} 

to minimize: Max Amplitude in frequency response of midspan (4.9) 

with the constraints: 0 < E,TMD < 1,0 < fTMD < 2.5 

The SQP method, as described in Section 4.1.3, has been used to solve the above design 

optimization problem. The computer implementation of the algorithm has been 

performed in MATLAB© environment. As mentioned before, due to the fact that the 

dynamic responses of a beam system without a TMD are mostly dominated by the first 

mode, the design of the TMD is based on this mode, and the maximum displacement at 

the beam mid-point is considered as the vibration control criterion. 

4.2.2 Numerical Results 

The properties of the beam are presented in Table 4-1. The finite element formulation, 

developed in Chapter 2, is used to find the response of the beam. 

Table 4-1 Properties of the Timoshenko Beam 

Mass 

Beam Length 

Elastic Modulus 

Poisson's Ratio 

per Unit Length (p) 

70 (m) 

207 (GPa) 

0.3 

20000 (Kg/m) 

Shear Coefficient (Ks) 0.83 

Beam Structural Damping 7000 (Ns/m) 

Cross Sectional Area 4.94 (m2) 

Second Moment of Inertia 0.174 (m4) 

It should be noted that, according to Eq. 2.57, the damping ratio for the first mode of 

the beam is 6.5%. The first 3 natural frequencies of the beam obtained by the finite 

element method are compiled in Table 4-2. 

-83-



Table 4-2 The First Three Natural Frequencies of the Tmishenko Beam by FEM Method 

o\ (Hz) co2 (Hz) a>3 (Hz) 

0.4304 1.7251 3.8936 

The properties of the half car model are the same as described in Table 2-2. As the 

maximum displacement of the beam midspan is the decisive factor, it has been plotted 

versus different vehicle speeds in Figure 4-1. The result shows that when the vehicle 

travels at 130 Km/h, the maximum traversal deflection at the midspan attains its highest 

value. Thus it can be considered as the critical speed of the vehicle. Here, the parameters 

of TMD are optimally designed for this critical speed. 

As pointed out in Eq. 4.9, the objective function is the response due to the first 

vibration mode in the midspan. For this purpose, it is required to convert the 

displacement from the time domain to the frequency domain. This conversion can be 

performed by the Fast Fourier Transform (FFT)!0! of the response at the beam 

midspan . 
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Figure 4-1 Max Beam Midspan Deflection versus Vehicle Velocity 

As the Fast Fourier Transform is discrete, the number of sampling has been increased (2 

points in the frequency range of 0-10 Hz), so that the transform becomes almost close to 

the continuous Fourier transform. In other words, the objective can now be defined as the 

minimization of the maximum point in the FFT of the beam mid-point response versus 

frequency diagram, which actually is located close to the first natural frequency of the 

beam. 

The variation of the optimum frequency ratio of the TMD (fTMD ) with respect to the 

TMD mass ratio (ju ) is illustrated in Figure 4-2. It can be observed that as the mass ratio 

increases, the optimum frequency ratio will decrease. 
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Figure 4-2 The Optimum TMD Frequency Ratio versus TMD Mass Ratio for V=130 Km/h 
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Figure 4-3 The Optimum TMD Damping Ratio versus TMD Mass Ratio for V=130 km/h 

The optimal damping factor of the TMD (E,mD) versus the TMD mass ratio is plotted in 

Figure 4-3. It can be noticed that by increasing the mass ratio, the optimum damping ratio 

of the TMD levitates. However, after the mass ratio reaches to around 7%, the optimum 

damping ratio adopts an almost constant amount with small decrease. 

The minimized objective function versus the TMD mass ratio has been plotted in 

Figure 4-4. The results indicate that the increase of the mass ratio enhances the aptitude 

of minimization of the objective function. However, it should be noted that although the 

increase of TMD mass ratio can achieve higher vibration control efficiency, it brings 

about much more static deflections at the same time. Therefore, the mass ratio should be 

such chosen by considering all aspects of the bridge design. 
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Figure 4-4 TMD Minimized Objective Function versus the TMD Mass Ratio for V=130 

Km/h 

The optimum design parameters of a TMD with the mass ratio of 5% have been 

presented in Table 4-3. The FFT diagram of the beam midspan response versus the 

frequency has been presented in Figure 4-5 for this optimum configuration. 

Table 4-3 Optimal Results for the Mass Ratio of 5% 

TMD Mass Ratio 

0.05 

TMD Optimal Frequency 

Ratio 

0.747553 

TMD Optimal Damping Ratio 

0.141695 
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It can be observe that in the case of no TMD, the peak value of the graph is located 

around the fundamental frequency of the beam which represents the first resonant 

frequency. The effect of the tuned damping induced by the optimal TMD is noticeable in 

the diagram. The combined system in this case encounters two resonant frequencies 

around the relative tuned frequency with significantly minor responses due to the optimal 

TMD. 

0.12 

0.1 

0.08 

E 

"§ 0.06 

"E. 
E 
< 

0.04 

0.02 

• Without Optimal TMD 
- With Optmial TMD 

Figure 4-5 FFT for Beam midspan response with and without TMD 
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Moreover, to exemplify the efficiency of the optimal frequency ratio of the TMD, the 

robustness test has been carried out. The FFT of the beam mid-point response with 

respect to 20% deviation of the optimal TMD frequency is illustrated in Figure 4-6. The 

consequence of the deviation of the frequency ratio from its optimal value is found to be 

remarkable. That is to say that a small deviation of the frequency ratio may cause off-

tuning and hence, results into large changes in the system performance. 

0.12 

Without Optimal TMD 

•With OptmialTMD 

• +20% Optimal Frequency Ratio 

-20% Optimal Frequency Ratio 

0.3 0.4 0.5 
Frequncy (Hz) 

0.7 0.8 

Figure 4-6 The Robustness Test for Optimal Frequency Ratio of TMD 

A similar diagram has been plotted in Figure 4-7, where the robustness test has been 

performed for the optimal TMD damping ratio. The effect of divergence from the optimal 

value of the damping ratio can be observed from the diagram. It can be seen that the 
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effect of deviations from the optimal value of damping ratio is smaller than the effect of 

the variation in the optimal frequency ratio. However, this deviation is also capable of 

changing the maximum amplitude of the frequency response. 
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Figure 4-7 The Robustness Test for Optimal Damping ratio of TMD 

After acquisition of the optimal TMD parameters, the effect of the optimal TMD should 

be studied on the beam response in the time domain. Figure 4-8 shows the beam mid­

point deflection both before and after attaching the optimal TMD to the system. The 

beam midspan deflections, for four consecutive peaks of the response have been 

compiled in Table 4-4. It is interesting to see that by adding the optimal TMD a 

significant faster damping can be achieved. This is to say, as time passes, the effect of the 
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optimal TMD in the vibration dissipation becomes more significant, and hence, the 

difference from 3.28% at the first peak (t = 1.5 s) will become 77.81% at the fourth peak 

(t = 5.1 s). 

Table 4-4 Beam Midspan Deflection with and without Optimal TMD 

Time(s) 

Midspan deflection without TMD (cm) 

Midspan deflection with TMD (cm) 

Percentage difference (%) 

1.5 

-0.6858 

-0.6633 

3.28 

2.8 

0.5165 

0.4179 

19.09 

4 

-0.4198 

-0.2228 

46.92 

5.1 

0.3443 

0.0764 

77.81 

In order to investigate the effectiveness of TMD to suppress vibration more inclusively, 

an energy performance index evaluated at the beam mid-point can be defines as ": 

midspan MG1 imidspan (4.10) 

where [Q] is the midspan response vector and \K~\ can be an arbitrary weighting 

matrix, here chosen as an identity matrix. The values of this index for the case with and 

without TMD are provided in Table 4-5. It can be observed that the optimal TMD was 

capable of reducing the midspan response energy by 87.91% during 20 seconds. 

Table 4-5 Beam midspan energy with and without Optimal TMD 

Energy without optimal TMD 

21.3891 

Energy with optimal TMD 

2.5860 

Percentage difference (%) 

87.91 
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These results show that by adding the optimal TMD one can effectively reduce the 

vibration of the beam due to passage of the vehicle. 

4.3 Conclusion 

A design optimization method has been developed in which, the previously derived 

finite element model of a Timoshenko beam, with an attached TMD at its mid-point, 

traversed by moving vehicle has been combined with the Sequential Quadratic 

Programming (SQP) technique in order to obtain the optimal design parameters of the 

TMD to efficiently attenuate the vibration amplitude of the beam caused by the passage 

of vehicle. 

Subsequently, the effect of the mass ratio of the TMD on the optimal frequency and 

damping ratio of the TMD and the minimization of the objective function has been 

studied. Finally, the effect of adding an optimal TMD with the mass ratio of 5% on the 

beam midspan deflection has been investigated. 
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Chapter 5: CONCLUSIONS AND FUTURE WORKS 

5.1 Introduction 

In this study a comprehensive finite element model has been developed to investigate 

the dynamic behavior of a Timoshenko beam subjected to a moving vehicle in the form 

of a half car model. The model has been validated by comparing the results with those 

reported in literature. The results for the beam deflections obeying the Euler-Bernoulli 

beam and the Timoshenko beam theories have been compared. Moreover, further 

comparison was performed between the results obtained for the systems including the 

half car model and a simple quarter car model. 

The finite element formulation for a Timoshenko beam with n attached TMDs has 

been derived, and then combined with the governing equations of the beam vibration 

traversed by the moving half car model in the finite element form, in order to obtain the 

total finite element equations of motion for the combined system of Beam-Vehicle-TMD. 

Finally, the developed formulations have been utilized to conduct the design 

optimization procedure using the Sequential Quadratic Programming (SQP) technique. 

The optimization has been performed to suppress the vibration of the beam under moving 

vehicle by attaching a single TMD to the beam midspan. The maximum amplitude of the 

frequency response of the beam has been minimized while the mass and the location of 

the TMD have been considered as the known parameters and the TMD frequency and 

damping ratios have been chosen as the design variables. 
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5.2 Contributions and Conclusions 

The most important contributions of the current work can be described as: 

• Development of a comprehensive finite element model in order to simulate the 

behavior of a Timoshenko beam traversed by a half car model having six degree-of-

freedom, with and without the attached TMDs. 

• Establishment of a design optimization scheme in which, the developed finite 

element model is combined with the formal gradient based optimization technique to 

determine the optimal parameters of the TMD with the purpose of efficiently 

suppressing the vibration of the beam traversed by moving vehicle. 

The most significant conclusions of this study can be summarized as: 

• The Euler-Bernoulli beam theory generally underestimates the beam response due to 

moving vehicles. Although the difference is not much in the nominal vehicle 

velocities, the error becomes more significant as the vehicle velocity increases. 

• The half car model provides a more exact model when compared to the quarter car 

model. As time passes, the difference in the beam response becomes more 

considerable. However, the quarter car model is capable of predicting the beam 

response to some extent. 

• By utilizing the design optimization method the optimal parameters of a TMD can 

be determined from which, the vibration of the beam due to the moving vehicle is 

suppressed. The results show that by increasing the mass ratio of the TMD the 

optimal frequency ratio decreases; however the optimal damping ratio has an 

escalating pattern. 

-96-



• Results obtained for the optimal tuned mass dampers also show that as the mass of 

the TMD increases, higher vibration control efficiency can be achieved. However, 

as the enhancement of the TMD mass causes more static deflection and also can 

change the dynamic properties of the main system, the value of the TMD mass ratio 

should be chosen considering all aspects of the structure design and should not be 

greater than 10%. 

• The results illustrate that compared with the uncontrolled structure the optimal TMD 

can considerably decrease the structural frequency response at its tuned frequency. 

The combined system in this case exhibit two natural frequencies around the tuned 

frequency with notably smaller responses owing to the optimal TMD. 

• Based on the obtained results, the effect of the deviation in the optimal frequency 

ratio in the system behavior is much more substantial than the optimal damping 

factor for a designed optimal TMD. 

• The results indicate that adding an optimal TMD to the system will lead to a faster 

vibration suppression of the system and can effectively reduce the amplitude in the 

time domain. 

5.3 Future works 

Although important contributions towards the finite element analysis of a Timoshenko 

beam subjected to a moving vehicle and the design optimization of a TMD to passively 

control the vibration have been accomplished in this thesis, other important and 

interesting subjects for future works are identified as: 
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• The vehicle in this study has been considered as a half car model with six degrees of 

freedom. The three-dimensional car model can be considered to present a more 

inclusive model. 

• The analysis has been performed for a single vehicle traveling on the bridge. It would 

be interesting to increase the number of moving vehicles to provide a more realistic 

case study. 

• In this work, the vehicle velocity is assumed to be constant. The natural extension to 

this work is to obtain the response and optimal parameters of TMD due to variable 

vehicle speed. 

• The surface of the bridge has been assumed to be completely smooth and without 

irregularities. It would be more practical to consider the surface roughness and study its 

effect on the vehicle-bridge interaction. 

• It would be interesting to utilize several tuned mass dampers attached at different beam 

locations to be tuned to different vibration modes and study their performance. 

• The developed finite element equations can easily be extended to plate-type structures 

under moving vehicles. 
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Appendix A 

The Euler-Bernoulli Beam Finite Element Formulation n 

In the Euler-Bernoulli beam theory, it is assumed that plane cross-sections perpendicular 

to the axis of the beam remain plane and perpendicular to the axis after deformation. The 

equation of motion of the Euler-Bernoulli beam can be defined as: 

pA 
d2y d2 f 

- + -df dx1 EI 
dx2 = F(x) for 0 < x < L (A.l) 

Where p denotes the linear density, A shows the cross-sectional area, EI is the modulus 

of elasticity E and the moment of inertial / of the beam, F is the transversely load, and y 

is the traversed deflection of the beam. The beam damping effect has been neglected. 

Using the Galerkin weak formulation, in order to derive of the form of a linear Euler-

Bernoulli element including two nodes with two degrees of freedom, yields 

ye(x) = u\(p[ +ue
2<pe

2 + u\<p\ +ue
4<pe

4 = ^YjUej(pej (A.2) 
/=i 

where «f are the nodal variables of a typical beam element defined as: 

uf=y(xe) 

<=y(xe+i) ul = 

_dy_ 

dx 

' d£ 
\ dx j 

(A.3) 

and <p? denote the Hermite cubic interpolation functions as: 
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tf=l-3 
\2 c 

+ 2 
V * J 

(• 

\ 

<pe
2=-(x-xe) 1 

V ' J 

\2 

\ 
(A.4) 

#=3 x - x , x-x„ 

<pl=-(x-xe) x — x„ x-x„ 

in which xe and xe+] represent the global coordinate of first and second nodes 

respectively. The cubic interpolation functions in Eq. (A.4) are derived by interpolating y 

and its derivatives at the nodes. 

The equation of motion of a beam element can be generally defined as: 

lM]{0}+[K]{U}.{Q} + {/} 

where 

M°j = £* pAtftfdx 

Ki=rEi^-%dx 
,J Jx. Fir2 P v 2 

{U) denotes the nodal variable vector as: 

{u} = 

LM4J 

and {0} and {/} are the nodal and distributed force vectors respectively. 

(A.5) 

(A.6) 

(A.7) 
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