Passive Observation-Based
Architectures for Management of Web

Services

Abdelghani Benharref

A thesis
In
the Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada
November 2007

© Abdelghani Benharref, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-37750-5
Our file Notre référence
ISBN: 978-0-494-37750-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Passive Observation-Based Architectures for Management of

Web Services

Abdelghani Benharref, Ph.D.
Concordia University, 2007

Web Services technologies are emerging as the standard paradigm for program-to-program
interactions over the Internet. A Web Service is any application that offers its functionalities
through the Internet by publishing a description of its interfaces. Web Services are gaining
more and more momentum and their utilization is being spread and even standardized in
many areas including e-Government, e-Telecomm, e-Health, and digital imaging.

The management of Web Services will play an important role for the success of this
emerging technology and its adoption by both providers and consumers. As the technology
matures and spreads, consumers are likely to be very picky and restrictive with regards to the
quality of the offered Web Services. Another challenging factor for the management of Web
Services is related to the diversity of platforms on which Web Services are developed and

deployed.

iii

In this thesis, the focus is on the management of Web Services using passive observation
with the intent to have open and platform-independent management architectures capable of
assessing both functional and non-functional aspects of Web Services. The bulk of the ob-
servation process is carried out by model-based entities known as observers. These observers
make use of formal model such as Finite State Machines, Communicating Finite State Ma-
chines, and Extended Finite State Machines.

The proposed architectures include observers developed and deployed as Web Services:
mono-observer architecture and multi-observer architectures. A single observer is enough
for observation of a non-composite Web Service while a network of observers is preferred
when observing a composite Web Service. Passive observation requires traces’ collection
mechanisms which are thoroughly studied and their performance compared for all architec-
tures.

A new approach for online observation based on Extended Finite State Machine is pro-
posed to accelerate misbehaviors® detection. This approach proposes backward and forward
walks in the model to reduce possible sets of states and values of variables.

I adopted a pragmatic evaluation approach to assess each of my contributions: analytical
analysis and proof, implementation, and real case studies. All components of management
architectures have been studied, their complexities determined, developed, and deployed.
The use cases used for the evaluation of the effectiveness of the architecture, including sim-

ple and composite Web Services, are also fully implemented and deployed.

iv

Acknowledgments

I no doubt deserved my enemies, but [
don't believe I deserved my friends -
Walt Whitman

This thesis, as simple as it is, could not be accomplished without contributions of a nice co-
hort of lovely partners. I will not be able to name all of them since this would require dozens
of pages; I start by thanking all those that I will not explicitly name hereafter.

Since the early beginning, Rachida', my supervisor, provided an invaluable and unforget-
table support: scientific, moral, and financial. Her encouragements and motivations during
those (multiple) toughest moments were crucial and of prime importance. I hereby thank her
for all what she did for me, even though I will never be able to express enough thanks and
gratefulness. I will also take this opportunity to think my co-supervisor, Dr. Roch Glitho.

I thank my colleagues at Concordia for their help and long-running discussions. I have
been very fortunate to be surrounded by a group of nice and careful ladies: Rabeb, May, Fat-
na, Syrine, and Yosr and their families. Dish-parties we organized at some occasions pre-
sented a nice shift from boring research to funny life. I thank as well Mohamed Adel Ser-
hani, Abdeslam En-Nouaary, Mohamed Vall Ould Zein, Jamal Bentahar, and Mohamed El

Hachimi for the priceless support, discussions, and experiences we have shared.

1 Since the first time we met for my master, I used to call her “Rachida” rather than the official name “Dr.
Dssouli”. I prefer to stick to that even in formal thesis acknowledgments. That looks friendlier and reflects the
kind of relationship we had, have, and will have in the future,

\%

Acknowledgments

Thanks are extended to my food-oriented friends: Sanaa and Omar Daoudi, Hicham
Achir, Myriam and Chakib Azizi, Kirsten and Mustapha Labiz, Saaida and Hamza, and to
their respective families.

These acknowledgments will neither be complete, fair, nor honest without expressing my
deepest thanks and gratitude to Dalia Radwan. She has been very attentive, supportive, and

exceptionally helpful during the long-lasting years of this Ph.D.

Abdelghani Benharref
November, 2007

vi

KTy

Slons pay Jpandl) g alall bl (o 8 a) 6la) Caald 8 el haa Camaia g 28 CuS o ilalSl) 02a A0S U8

| iee 41D 6] g (g 40l 2 tlgale Juanall Cila gladdl 335 5 A0S 53)5 pually (38153 ¥ 5ol J o Adline
ZU g eeld ol s o 00) oda 5 yuall 138 paai oAl (ye Laguad! O J OIS Le B e
JS Sl Uia aa il Leiliaial (e Al g dunddall o yaty Alile 3 il (e Lo il Y de sanal 3 jillata 3 gean
PR

Wllyg caaibaly ¥ 5485 Y g ddle lag e dayal A 50edl #1108 deae o AT ey 53 (534

238 Allia) gemal e i e (A UG o LD bV Dl juay o (J U0 S Sy 3m0 e) ke
Jraally Gl e Y 5 Gaeall KA Jlaa (ye Wiany Ll 38 ik o a2 o sa) s gk

Lsine s Lok @l 359 uiall Ciea LS aclue o Tals s #l Gilas o Al S8 4a

3 ¢3S jle D el DU (ki DU sl AYY 9353 Bl g e sa il ae 6 aliadly Al Jla Sl
el Jana o g caludil cdana o epDal ol ¢ ¢ e da) Aagad s ogalel)

@ 3yl celiagdl Hall ol il 3 jlal cdaly)l e IS5 elBaa¥ g Aliladl ol 3 JS) S G
Boasall 565

et s Sl e A Le UK ae eBlaall o3 (50 5m 5 om0 0B palla S ol

vii

r3 /.MI/

Akl A jae Jraall g aladl il ety

e O gte O) 2

*~~ch3m\o:l‘)£ﬁ

viii

A8 eli sy paa (5 8 linnd ipud SlElL G o S el @l Lo sl Ll b

'SUJ\6C_:L‘JcJLL§3Y|3J}u

O homme ! Qu’est-ce qui t’a trompé au sujet de ton Seigneur, le Noble, qui t’a créé puis mo-
delé et constitué harmonieusement? Il t’a fagonné dans la forme qu’ll a voulue.

Sourate Al-Infitar (La rupture), versets 6 a 8.

O you human being! What diverted you from your Lord Most Honourable? The One who
created you, designed you, and perfected you. In whatever design He chose, He constructed

1t.

Sura Al-Infitar (The Shattering), verses 6 to 8.

Table of Contents

TABLE OF CONTENTS ..uiiiuiiieiitenisennicrnctsserinesssessssssssssrsesssassssssssnssansssessestsssssssessstsesssssssnsssesssrssssssssenssres X
LIST OF TABLES....ccccueicrrnerrermnessrrennsioresnrsannesssassssessssssessstsssastssssssssensssssensssssrnsssssnsssssnssssassssssssssssssnsssses XV
LIST OF FIGURES.ccoucietueerreruererrrersserrnsrassransssassnsssresnessrennssssestssssssersssssssesssnssesssssssssnesssnsasssnsassssrsassassns Xv
LIST OF ACRONYIMIS .. .ouitriieeirmaiirenissneierncrasssanesseesstnrsssnesnnesssnestsssssnssstossssssssssssssstssssossssnssssestnsssnsssanss Xvil
LIST OF ALGORITHIMScuiiiiciiieniieenirannctnncitorsisessressesssssnsssterssasssanssansssssnssssessossansessosssssstasssensssnssnsessensss XX
CHAPTER 1 INTRODUCGTION.....ccuieertencerranrccrmnesirenesssiesssstesmessisorsessmenmessessesssssesssrnssssrensssssasssnsnssssssnssssss 1
1.1 MOTIVATIONS AND OBJECTIVES OF THE THESIS 1evevtrerererererererererereseserersrerserenereresreresmsiosssssesensssssssssssssssssssssarsines 3
1.2 THESIS CONTRIBUTIONS ..eevvuuuusrreeereruransreseesrersmsseresesartnnensssssssnersnsonesssnessnerassersnsnransssesenensssstssseesssresssantnssssses 5
1.3 THESIS ORGANIZATION tvveeerreereeererreerererererererersesesesesessseserernessesssesersresesessenenensesesesissssssssrsssstersssssssasssessossiorens 6
CHAPTER 2 BACKGROUND INFORMATION ...icvititiiieniesencrserinnesrseissnsersressassennassorsssesssosssnsansasssesssnssanssssens 8
2.1 SERVICE ORIENTED ARCHITECTURE vvvvvuvvvvverevssessessssesssssrsrsrnrnssresnrerssasssssrenenensessnesssssssnssssssssssssssssassasssssrosaransn 9
2.0, T ROIES cooooietiveiiei i ieeetiees et vertctreesveres s eb s eeeses bt e s et e ee s e s et e eea s st enea e et eaeaae e bartteatasesassnntarrnes 9
2.1.2 OPCIALIONS c.vvvveveeirereiriecitireeeeeeasiresastsesssesistetosatssstassssnesentssssessnsessrsnessannessaesssstssarteessanssarnssrannss 10

2.2 PROGRAMMING STACK .uuuuieerrrenrnnerererereresnsereressressssererseernssnssssessssasisnsinessssssnmssrereranssnerssesnenassessessorassssssssars 11
2.3 EXAMPLE OF WEB SERVICES .. uuueurerersserersasssesssesessssssserosersrsrersssnsrsrsressssenssesiorsiossstssasssssasarorenssssnsnenessetssorsns 14
2.4 IMANAGEMENT AREAS ...uuiitiieiittiueeeettaseettunresssanssetsonsessessrsrssstenssstemansteeemassetonsttonstetensessnnessnnsserareessrsneronanies 17
3 20 TV1 1 1 To 1 Te 1o [=d 12 T=1 4 TR 17
2.4.2 Configuration MANAGEMENTccceeverririiivmrinieiiieiercnerasriaseeraretessansssrssisseresssesssrressisnesoresrasees 18
2.4.3 ACCOUNLING MANGGEMENT ...c..rrevereeaeeeieereieeerereiitvtsss e sesisteastessssssesssssran st essssssesssansntseretossorores 18

Table of Contents

2.4.4 Performance MANGGEMENL...........ccceereeeierverererressreseeassasesotsessesssessesssaressesassssesanessessseresssearesssenes 18
2.4.5 SECUTITY MANAGEMENTeeieeerieiecrir et e cenietessberesessietecsseasssatenasesssteseessastesssssserenssaseseraranes 18
2.5 TESTING FOR FAULT DETECTION ...cttiutesiuetimenssstssiiressietesotesssessobessssessomsessessanssasssessssesssnssssannssnrasssnansssnassanas 19
2.5, 0 ACEIVE ESLING ..evvvevererereetiieeeereeererteeet s seersteretes s svsssssasseesssasantnsssesssnassnantansacstesssassasssnntnnsessssesansnnen 20
2.5.1.1 Test CaseSs EXEMACION....cccvii i e b s s er s s sa b s bbb bn e srae 20
2.5.1.2 TSt CASES EXECULIONcovvieiiiiiiiiiiiei ittt bbb e e b e s st e s b s e e s sbe s bassnesbesobas 20
2.5.1.1 RESUIS QN @NAIYSIS cuvevvreirrrererreeireorierirneireeneessesesaresessserssnessessssssssssssressosessessassnsssnenssnsesssnenosessssessans 21
2.5.2 POSSIVE EOSTING .cocvvviiiririiiiiniieiiiciririniitesitt s esnts e sietessesreb e sansasesasiabasesantassssasstasesiranasesantssssonintes 22
2.5 2.1 FSM ottt e e st e s e E e s Re s e s e s R rar s SR anbe s b aese st beaes 24

2.5 2.2 CFSM ittt e bbb e e s R e s a eSS e s e b e st ae R s b b s e e bea s 25
BT T3 Y | PP 26

2.6 EXAMPLE OF FAULT DETECTION BY PASSIVE OBSERVATION ...utvivieirinieiinnisnnissneesnnisssnnessntesassesssmnesnsnessssanesmssssnens 27
2.7 SUMMARY 11eeiiiiurirersisreneneanestrstresentetssesaress sananesssnstonssonssessioneresssasssionssesssioanessssastenseesssnessssorasenssioanessons 29
CHAPTER 3 RELATED WORK.....coiiiiiieriiirieniiintenicsstenisssuseniessasnsnessesiessssssesrssssssessssssssassssssssnsesssssannesses 31
3.1 WEB SERVICES MANAGEMENToteitiiecitenineteasteseretessresesesesanesasesssaseesstesaneesanesssssnes ssesennesssanessarasssenesansersnne 31
3.1.1 FUNCLIONA] MANAGEMENTcvvviivivirieiciiieiiteiiiterissecreeeiasestesirsesstssesissesastasassesssssesarsesasnsesarseesees 34
3.1.2 QOWS MANAGEMENLoueeeveecreerieiriesersseieensiranirasiseasaesssessesssessesssesssesssseesnesssessstsnrosssessrsessuossessns 35
3.1.3 DiSCUSSION c..cvevoneeeieieierctei s st e snes et sessesst s srtssatasssnessaresentsssnestsnnnessanesesnasesanessorerssantesorasenreses 37
3.2 PASSIVE TESTING..eeeourteinrrensueeinrressnteirassiatsinreesintssansesostssssasssntsssnnssntatnsesssnesssssessnnassssetssstessntesssseesisrnsssnes 38
B3 SUMMARY Lottt st b s ae b1k st 1ot s et s bt sk S SR E s b b e e R e e R e b e s e et e ae s b e e e b e 41
CHAPTER 4 EXTENDING SOA WITH OBSERVATION CAPABILITIESccccovtmmmuericrrereencssinrinnenessesssnencssssens 43
.1 EXTENDED SOA ..ottt sr e (b e bb e R s bR e s b b b e bR e s Re s b e b s e R b e e sns s bR e e 44
L O O Y0 T T £ {7 = PO 44
4.1.2 Procedure Gnd COMPONENLScevvcviveeieirieieieiseteiiiiesisisisessesssesinisessessssiesesesssessssassesssssssassssssnnes 46
4.1.3 Number of observers and location of points of 0bServationccceneivvrisciiinniisiinns 47
G.1.4 REQUITEIMENTS....ccceveiiriiirrieieiinitirererer sttt seee s e s s rasssn e s sas s ssat e s saaesnessssatssanaesasatssantesanaes 50
Z.2 SUMMARY ..ceiuiriiimiiinnrteiteisttssetesnntcsseessnr e saessaressnneesabessanes st e assbasssheesaaessannaesnentssbnts s b aesae e s sabas s beeesbbaeors 51
CHAPTER 5 WEB SERVICES’ BEHAVIOR DESCRIPTIONccccoiiiimiicimieisnisssssmsernossannenmenmensesssssesssossessssssssses 52
S L WSDLaiiiiiiiiiiieniminiiiiiiessietesssiseteseites s sibete e sabes s s aans e s s ia b e s s e b e b s b s s s e e e s e s RN eSS bR R e s s e be b et s aree e st raneseas 54
5.2 DESCRIPTION OF THE FUNCTIONAL ASPECTS ...vtutiuterereeeserieensestensesiiesersuesteresssanesessnesessssenessasasesssensessssnessasans 57
L2 T FSM ..ottt ettt et ae st te e e e e e et e n et ae s es s raeneee et e aeae s nrnraneeeaeeeenenaen 58

X1

Table of Contents

BL2.2 EFSM...ouoeeeeeerivuieressiosessecsessse st ssasere st san et asnesss bt sas st saas s e ses it s s sa bt et s bt s st st s ne s b e s b sa s s e s nesE e e 58
N 3 1o = PO 60
5.3 QUOWS ASPECTS ..vtierreimeeintsirereeee s reeses e st e se st s sabaeeae s sanassaes s bes b e s s a e s b e e s o an e s se b e e sabe s saneesabaeobasssabansatres 64
5.3.1 QOWS GLEIIDULES ...cvvvveverreeverieariresieesresreseteeeseee s s e casecresasiesaras st e satesaasestesnasnessnsonsssasessnsssasasns 64
5.3.2 QoWS attributes in a dedicated documentcccovvevvinnirinnnn, Fererr it e eer e s eran s 67
5.3.3 Qo WS specification embedded with functional beRAVIOr............ccccocvvvivviivviririviniieniericnerininees 69
5.3.4 QOWS GULribUutes in WSDL.......couvcoiiriiiiriiiiriiiicriincntnt sttt ssssss st sae s s sssssnsnas e 69
B4 SUMMARY L.oeereitii ittt e s et bbb e s et st e s bR e bR Lo E e s R b R e b sh e e s b e s b e e s anesabe s 71
CHAPTER 6 MANAGEMENT ARCHITECTURE FOR SIMPLE WEB SERVICES.....ccccocorterenmmesiertinnnensessinsenannnes 73
6.1 COMMUNICATION BETWEEN COMPONENTS c.o.uviuiirirernisreiisiesnestsasesteessanssessasesasntsneessssnssnsssnessssansnsonssssesanen 73
6.1.1 Client/Web Service inStrumentation............cccccoeerreeernienicrinsissesisiesisie s snisesessiesssesesasssesae 74
6.1.2 MIUILICAST.....coiririveiriririreeriririrsstrcriteestr it isee st s sae st s s e s eas s be s ees e sbas s ranessanessamassrasssarassarasssnases 75

B. 1.3 DiSPALCREE ..ottt ettt setee ettt st setes s saresebasesresasansstssasansesanesassessssnnessnrasesensssanessarenssrenes 76
B.LLASNMP ..ottt ettt ettt s h sttt b e bt b s s et s s b e s a e s be bbb e st sn e res 77
6.1.5 MODIIE COUR ...ttt st ssab st s s st shaesae s aassatssarasans 79
6.2.6 DISCUSSION «evevviveviiiriniiireniniissiiiesesrirercsissst sttt is st siabe s s asa e as s ras e s seaan s s s baness e ananessesaraessanbaresens 80
5.2 CASE STUDY .uetiirunririnsmnnessiarerersistssesesanessiaresesosanssesessnesssasssesessstsssionensssstensstornsessssnsstessssstaseosssanasesssuntessens 81
6.2.1 WD SEIVICE ODSEIVENc...eeueateecterreretese et erce st ane s s es e b s aas e ssassras st s saessasassssntssnes snes 84
LI 01 1 OO 85
6.2.3 DeteCtion COPADINILIOSccrviriveeivrsreeirersrsinrsoressssissenssesarerasssssesressnessnesenessesossrssnsssnssiasarasarsssnsssses 86
6.2.4 Quantitative evaluation Of the QrchiteCtUre.........ccivvceeceivireieirs st scresereressanererevessere s 88
6.2.4.1 Pre-observation CONFIGUIAtioNS ... st sts e ssnesseesbrsens 88
6.2.4.2 Processing CPU and memory ULIHIZALIONcciiiceiieenirercieincrrioreeencrcreneserernnesressonessnensssnressnes sassorasns 93
6.2.4.3 NEtWOrk OVErhEad ... ccciemiiiiiieiiiii sttt s e s be b s s e e b sone 94
6.2.5 DiSCUSSION c.vvvvioveviririniriiiinneisiieieienitisisinecssiatesesrttesesarests s sacesasrasessesare s s ranabaesesarastesonntesssotnesosens 96
6.3 SUMMARY 1uviiiiimuieiiimrineirinetsirere i isre e serete s st beb s e iabe e torabesssababseseara e s bbb e s st i ba b e e s esab b et s boanresobaban s e s e banenieans 97
CHAPTER 7 OBSERVATION ARCHITECTURES FOR COMPOSITE WEB SERVICES.cccccccoiirimmnnniisiennennaessss 99
7.1 PROCEDURE ...cveiveeirereiseeseneeesmeeseneeesreesnesesatesaretesmeesarenssmnesananesentsansssbtssnntssebassosstsesnbesossanssrrnssanesssunssns 100
7.2 NUMBER AND LOCATIONS OF MOBILE OBSERVERS ...uvvteieiureieisinressissieseisinsioisienesiessreeseissnenssessiasesesssnsssssssnnass 101
7.2.1 Composite Web Service provider’s partiCipation............c.cccuvivmiriveimmeioninnnieneniecan 103
7.2.2 Basic Web Services providers’ partiCipation.............ccceecvereinieerinenesienenrerenncreeresincssnnvecseeees 105
7.2.3 Hybrid PArtiCiDQtioN........c.ooereieirirererrenerirerenesirenssesnseessiresssssiaresssinsessssasssessesistenesessaressvasransssns 106

Table of Contents

7.2.8 DlSCUSSION ...c..vveneercriintiriris s rsein st screnesen e st s s snas s asssnaessanessenesamesenesesasaesanessenenssannssanaressnnesane 108

7.3 EXAMPLES OF OBSERVERS” ALGORITHMS......ootieieriietiinisitnineeenresesesesstesasesatsnesessssesessasssesstsssessesnsenesssessessaes 109
B O X o O 114
7.4.1 CaS€ StUAY AESCIIDUIONc..covvvrreeieeeeieire et itereertvnseessesesertesateesneesreesressartsinssassnneesenarerareesses 115

7.4.2 WED SEIVICES.ccuvouiiiriiiniieieeieneiieriteis ittt st sttt sb et s st sae st s eatssbesaneresan s 116
7.4.3 IMPIEMENLALION ISSUES........vveceierieirireeeiteecseeestersisessteseseressstessessateasssensrasssratessssnessassassrerssssesnane 117

7.4.4 Single 0bservation MILALIONScceivirivieeiiiiisieieseesiseresieisnessistassstsssstesssenssrsessstassssessseesases 119

7.4.5 Example of multi-observer observation ProCeUreccovveeivvieevieeiesiierisieresivessiressssesssnenas 121
746 NELWOTK IOQU......c..ooecriiiiieiiree ittt ettt s e ses bt e esrene e re s et ematssbanasesaneensnesatssbe 125

B BP0 B 0= o1 LotV 1Yy (o Y- T I SRR 125

7.4.6.2 Traces’ COHECHION [0Acovivreiieimirieiiiertiiieiinniesirrcre st esessresresnes e seressnteses sesesstonsessnenansnrersnanassnseses 126

7.8.7 RESUILS QNA QNIGIYSIS...c..oooceeriveiriie e ireeircestrsttsssvesssessessaesseseearssssessssanssesnessssessntanssnsrassneensesns 127

T 5 SUMMARY Lottt it sine bt ese e st sabe s be s s s e s eses et masente s s bb e b s s sob g e seb e b e s abes s s R ke s s bbb e s nne s rReseRaee s 130
CHAPTER 8 EFSM-BASED OBSERVATIONccccutiiiinreiisicrieesisunesssssatsssssnersssssssarssssssastessessassassessassesss 132
8.1 EFSM-BASED OBSERVERS: FORWARD AND BACKWARD WALKScoiutiritinisiinintimsiveemesnessnesssmiississmeesiassnnesnes 133
8.1.1 Homing CoNtroller PrOCEAUIEc.vvvvcveverieiiiiisiiessrieeicreeerresiet s ssrresistesesene s eresssssesssseessenessnnens 135
8.1.2 ProOCESSING FEGQUESESceererrieeeeeeeeasiereesitiesesatasesisaeasesatarernttaeasssaneasasstssesssastessesssssasesasssnanens 137
8.1.3 PrOCESSING FESPONSES ...ceveerervirerinrreerereressirresessssssssssnssssssisnsestesssssasssssssiseseresssesssassssssssnssnssssnes 139
8.1.1 Performing BACKWAIrd WAIKSccoivvirievvieieiiieinieieiieiseessssionsessanssssssesssssessoresssssnessssssssssssssseses 141

8.2 DISCUSSION .evvieeiiimirisnrteiintesnrisinss e ssee s e e ssas s bae s sabe s et e s s et e sare s s ane b et e santeseraeaenetssmneesabanasaneesebenssneess 144
B3 EXAMPLE ..eiiriiirei ittt sttt st s e s bt s s e e e s st Rt esbe e R e s e senes s e e s b et e s 147
8.3.1 Observation without BaCkWard WIScoceoveereeriiecirciiniinnienene i seeserenereenses 148
8.3.2 Observation with BAckward WalKsccccecvrinvniinioniiiiiniesni e sessesanennes 148

B4 SUMMARY ...eimiitiiiiniri it s st a st st b bbb b e b e s absshes e ba Lo R e o bR s e e s e s R e S he s SRS SRR ek ssba e s et s e s erne s 149
CHAPTER 9 CONCLUSION AND FUTURE WORK..........eveiriiiieiiiisnenicsrnisientesisssssessissssseeriesssaresssssassenss 151
O.1 SUMMARY OF THESIS ..ceeiutiiiinieinrsisinteireiesatsssnessiaeesattessnsesnsssstessssessntssmsssssnessssnssssssssnsasssssesssssssasssnesons 151
9.2 THESIS CONTRIBUTIONSeivetinrerteresteseretesinesesereasnessanesssaneseressneesentesaneesatessnnetesnessarnessssssssnsesennaessnneras 152
.3 FUTURE WORK-. e 1eteieiemiresssimeresaistateseneresesesttesesastsssiosnnesssatesesasssesesassass sassunesessasesssesiantessisisssesssnssessiosnnens 155
BIBLIOGRAPHY ...iiiiimieeiiiniiinieannesiisniieimmseisiiisenisssuessisssanimsansissssstsssssrsssssssssssssessssssstsnssssssssassossessessesne 157

Xiil

List of Tables

TABLE 6.1. EXPOSED FUNCTIONALITIES AND THEIR CORRESPONDING PUBLISHED INTERFACES ..evvvvvieisivssismrnrirenesninarosnennens 82
TABLE 6.2 EXECUTED SCENARIOS AND THEIR CORRESPONDING VERDICTS...0vveereinrnreranes TSP e 87
TABLE 6.3. CHARACTERISTICS OF TRACES' COLLECTION MECHANISMS ...vevurerurerseeerersneesrssesasesssnessnessessrensseseessusenereneess 97
TABLE 7.1 SOME OF THE EXECUTED SCENARIODSceeeieriierumrenererereraereneaereseeeensereeeseessnasnenanassssesssesiosssurssseassssssosases 128
TABLE 8.1 CONTENT OF SPS, SPVV, SKV, SUV, AND TPPS...ccciiiiiiiierriereinreorrerereerssessnsronnrreiessenesansssinenssesssssssosans 149

X1V

List of Figures

FIGURE 2.1. SERVICE ORIENTED ARCHITECTURE ...vvveiereieserersrerenereraressanntsmssesennmsnntssienssissessstnesssnesssnssssrassssanssnnnesssnnss 10
FIGURE 2.2 SOA PROGRAMMING STACK .vvveieeiersesrrersssssorenesssssoresssensssssasssssssensssssessaressssesseseresasaesetenssssessonessanss 12
FIGURE 2.3 INVOKING A WEB SERVICE TO COMPUTE N ...uviiiiiienireiiininissnieinreesneesseneesresesnessensnessmesssinsssuessninessseses 14
FIGURE 2.4 XIML-BASED MESSAGING IN SOA.eeeriiiieeeiererereier e e rcrmrer e s e re e e re s e s sesissbaar b st aaes s s sesaabararesaesesenes 16
FIGURE 2.5 STANDARD ACTIVE TESTING ARCHITECTURES ...vutetiisrerersisreneresnesisssrsnsssnieneiesinnessssssesessssnssssssansessssiassossnns 21
FIGURE 2.6 PASSIVE TESTING ARCHITECTURE ..evvvvvverrerererererererererererntesesessseseserssstsessorsresessssssnssssesssiossssssessssareserecssannne 22
FIGURE 2.7 SPECIFICATION AND IMPLEMENTATION FSIM MACHINES ..e.eivierunerrecenirinrrereeeeeereeaesenmmreneneesessesesennmmmrennnee 28
FIGURE 4.1 ESOA WITH PASSIVE OBSERVATION ...ectiiiuvrerisiintsisisressisistssesssesssssnssssasessessnnssssssnssesssisanessonsnessssananeses 46
FIGURE 4.2. MONO-OBSERVER ARCHITECTURE ..vevuveesrerrersraenseorsioresenessserssesasesaressemeseesnesessnssmnsesases tousssesssasssssssnesne 48
FIGURE 4.3. MULTI-OBSERVER ARCHITECTURE . ..veeevureseveresenessreerssessseesresssnneseserasmensnesssnnesssensssanssansasssanessnsssonaasanses 49
FIGURE 5.1 EXTENDING THE USE OF FORMAL MODELS BY/FOR OBSERVATION ...e.vveuiiiereeersersenesaessenassesssersessassasssessesnene 53
FIGURE 5.2 PARTIAL WSDL OF THE CALL CONTROL WEB SERVICE .ccvvvverereirereieneressrenessesintesesisrnnesessnnenesesnnssssssnanessns 56
FIGURE 5.3 XML REPRESENTATION OF AN FSIM MACHINE ...eeeeiimiieiniiririsiinieinimeresintsesionmssesssisienesssnsmens nsnsssssnenesens 59
FIGURE 5.4 XML REPRESENTATION OF AN EFSIM MACHINEeeiiiiiiriiiiiriieieneccrirtictens e niisiissieneces s e s sesisaninneaes e s sonas 60
FIGURE 5.5 STRUCTURE OF BPEL PROCESScevevererreierennerirereeessrrnrssesanenssesessssamenessessnsansssmnnesssnresesiosanesssiarsnesson 61
FIGURE 5.6 BPEL PROCESS WITH PARTNERLINKS. ... uuvrererereenrerurrrerreesseesonsrnnerenesmnereneenesresstessenssnseanersssssssosssssrasssseses 62
FIGURE 5.7 EXAMPLE OF BPEL ACTIVITIES TAG 1eteieuunrererereerraonrunrnererrsaesanerennnesesannentreentssssesisssmssresssesssssiossssnrnnsrassss 63
FIGURE 5.8 QOWS SPECIFICATION IN DEDICATED DOCUMENTvvveriiiuentsiorniesesiniimssnnersissmenesssismeessssnnessssonsneessssranssses 68
FIGURE 5.9 FSIM+ SPECIFICATION 1 veveresiretereiunessioesesesiststsematsssisissessssnesssessasssssssne sesianssssionasnesssstssesionnsessisissassns 70
FIGURE 5.10 QOWS IN WSDL DOCUMENT ...c.cverersicrererenrertiesinesesimenesssiasesssosensssnsessesossnesssasnenesssastonssssnannnsssnanssses 71
FIGURE 6.1 CLIENT'S INSTRUMENTATION FOR TRACES' COLLECTION ...vevvveverereesransrensaseseessnesneresessnsessnesensesesasesareesseesons 75
FIGURE 6.2 MULTICAST FOR TRACES' COLLECTION 1.vuuuuurenuranansvasnenssnnssnrsrenensnersssransssssssssressssssssssssssoraronesssrantsrstorsrassns 76
FIGURE 6.3 SNIFFERS-DISPATCHERS FOR TRACES' COLLECTION w.vvevuveerareersereesnerererioresensnsessunssonseranensonsnassssssssnsesssesennes 77
FIGURE 6.4 SNIMP AGENTS FOR TRACES' COLLECTION ..c.vveurerurermeerseesnesssenarerresermareraseeseesneresrssarssssessssessssssassnsesnnesans 78
FIGURE 6.5 XML DESCRIPTION OF THE CALL CONTROL FSM MACHINE......coioriririiniiimieie it ineieenssrnesscsnnenessssnenseoss 83

XV

List of Figures

FIGURE 6.6 GRAPHICAL REPRESENTATION OF THE CALL CONTROL FSM MACHINEvverrereeerseeerennnmrereerererereesanmmeneenerenesss 84
FIGURE 6.7 CLIENT APPLICATION GUI..cciiiiiiiiiiiiiiiiiciiiiiicniinennninincssnnnsn s nsnensss s sssenee s sesnenesssssaes s sssanne s s snnanessons 86
FIGURE 6.8 TCP-DISPATCHER CONFIGURATION. ...eeeiterereriniierieseessisssesesssnesssossassssresssessansssssosssnessssntesssssnnessinsranesesas 90
FIGURE 6.9 TCP-BASED DISPATCHINGuvvrerereaererrmrerereresersnsmemnrerssesasasemensesesssasmnenesessssenasssssmeesstssssesiossssnrassessessssas 91
FIGURE 6.10 SNIMP AGENT TRACES' COLLECTOR .uveviuvererurerarsesssnsessersssnessssensssnsresassnsssssessssasassnessoneenssenssassesssssssannes 92
FIGURE 6.11 MOBILE OBSERVER GUl..coiiuiiiiiniiiiiiiininiiiiinicniiiieisnnesssiennessssnnsssissesssssnssessssseneesssanensssenanaesssnanessen 93
FIGURE 6.12 NETWORK LOAD MEASURES FOR TRACES' COLLECTION MECHANISMSuvvervreereeesrericesiasessossrassseossesssesssesssees 96
FIGURE 7.1 COMPOSITE WEB SERVICE'S PROVIDER PARTICIPATION.vvteivrererueerannsreneesorerassersraneessrenssensssneesesensssesersne 104
FIGURE 7.2 ALL PROVIDERS’ PARTICIPATION ..cccvvtrierivnesisrensenenoreassansins heheee e b s e s e b s e s e e s b nre s 106
FIGURE 7.3 HYBRID PARTICIPATION ..eevevterreresuesserenssenssssessssnssssessssassssssssratssonessanssonsasenssssssnessssessssnssssneossressssessnne 107
FIGURE 7.4 COMPOSITE/BASIC WEB SERVICES 1vveeveerueeverveeeriesenrernessesisesssesssrssessnnessessssesssssasssssanssnsnsessssssanensassss 117
FIGURE 7.5 SINGLE-OBSERVER CONFIGURATION ..cetvcuereresimureresntaesisinesisissssesoranessssasessossneses sossnessasansessresnnesssarsanessss 120
FIGURE 7.6 SINGLE-OBSERVER DEPLOYMENTcveiviureiriaisrerererereessareneressmenesensenessntesesessasasessaresessssaresessoranssssisssasesss 121
FIGURE 7.7 MULTI-OBSERVER CONFIGURATION ...evtiiuureriaiumiierssinessiorurenesienesesiasssisisessessanssssssssnsesssaianesessasssssssonsnes 123
FIGURE 7.8 MULTI-OBSERVER DEPLOYMENT ..occouueuetecereresaruunranerarssesanaseseeeresaeroneemeeessens sasaansseneereresssassansanenennerenees 124
FIGURE 7.9 MULTI-OBSERVER ARCHITECTURES ASSOCIATED NETWORK OVERHEADcvtrerivinsiorisinienensnins e 127
FIGURE 7.10 TRACE LOST BEFORE GETTING TO LOCAL OBSERVER ...ccererrerererirererersnteranenessesissnsssassnnenssisanesessnrasessosssans 129
FIGURE 7.11 TRACE OR FAULT NOTIFICATION LOST BEFORE GETTING TO GLOBAL OBSERVER.....ccorcrrnmremrererersecerennnas TR 130
FIGURE 8.1 CONSTRAINTS PROPAGATION ...ceereuurererarereresarrnerensunersssereeressreresensarssanenessasanestsssnsnasssantasenessssesssensasases 143
FIGURE 8.2 SPVV AND CONSTRAINTS PROPAGATION ..vveiesurersisnruesssssestscsssnassiossessisrenessessnessssassnnesssastnesserssessssarneesses 146
FIGURE 8.3 EFSIM EXAMPLE ...vviiiiiitieiiiiiiniinniesinesesssness oenesssemenesessnustssessnes ibesesesssnesss sorasnessssstanersssstssssossneesss 147
FIGURE 8.4 TPPS ...uitiereeererreenreisneiseesseesseesessrersersrsssssessasssasstasssessesonsseresascosssonesssrssannesaesssesssasssresssesnsesnarsnsoses 150
FIGURE 9.1 CHRONOLOGY OF THESIS CONTRIBUTIONS ..ceevveerarerssnnerssesssnnesesosaseninsessssnssssnessssassssenssasesssserssnrnssane e 153

XVl

List of Acronyms

AMD ADVANCED MIcRO DEVICE

API APPLICATION PROGRAMMING INTERFACES

ASP ACTIVE SERVER PAGES

BPEL BUSINESS PROCESS EXECUTION LANGUAGE

cC CaLL CONTROL

CFSMm COMMUNICATING FINITE STATE MACHINES

cal COMMON GATEWAY INFORMATION

CMIP CoMMON MANAGEMENT INFORMATION PROTOCOL
CMOT CMIP Over TCP/IP

CcPU CENTRAL PROCESSING UNIT

CPXe COMMON PICTURE EXCHANGE ENVIRONMENT

CWS CONFERENCING WEB SERVICE

EFSM EXTENDED FINITE STATE MACHINE

ESOA EXTENDED SERVICE ORIENTED ARCHITECTURE
FCAPS FAULT, CONFIGURATION, ACCOUNTING, PERFORMANCE, AND SECURITY
FIFO FIRST IN FIRST OUT

FSM FINITE STATE MACHINE

FSM+ QOS-ANNOTATED FSM

FTP FILE TRANSFER PROTOCOL

GUI GRAPHICAL USER INTERFACE

HTTP HYPERTEXT TRANSFER PROTOCOL

ID IDENTIFIER

IF INPUT FAULTS

P INTERNET PROTOCOL

ISO INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

Xvii

List of Acronyms

ITF
T
JADE
ISP

LT
MiB
MNPT
MNRT
MxPT
MXRT
OF
oSl
OTF
PCO
PO

PT
QoS
Qows
RAM
RT

SC
SKV
SLA
SMTP
SNMP
SOA
SOAP
SPS
SPVV
SUo
SUV
TCP
TLTS

INPUT TYPE FAULT
IMPLEMENTATION UNDER TEST
JAVA AGENT DEVELOPMENT FRAMEWORK
JAVA SERVER PAGES

LOWER TESTER

MANAGEMENT INFORMATION BASE
MINIMUM PROCESSING TIME
MINIMUM RESPONSE TIME
MAXIMUM PROCESSING TIME
MaAXimMumM RESPONSE TIME
OUTPUT FAULTS

OPEN SYSTEM INTERCONNECTION
OuTPUT TYPE FAULT

POINT OF CONTROL AND OBSERVATION
POINT OF OBSERVATION
PROCESSING TIME

QUALITY OF SERVICE

QUALITY OF WEB SERVICE
RANDOM ACCESS MEMORY
RESPONSE TIME

SERVICE CHARGE

SET OF KNOWN VARIABLES

SERVICE LEVEL AGREEMENT
SIMPLE MAIL TRANSFER PROTOCOL
SIMPLE NETWORK MANAGEMENT PROTOCOL
SERVICE ORIENTED ARCHITECTURE
SiMPLE OBJECT ACCESS PROTOCOL
SET OF POSSIBLE STATES

SET OF POSSIBLE VARIABLE VALUES
SYSTEM UNDER OBSERVATION

SET OF UNKNOWN VARIABLES
TRANSFER CONTROL PROTOCOL

TIMED LABELED TRANSITION SYSTEMS

Xviil

List of Acronyms

TPG
TPPS
uDD!
uDP
uT
VPN
WS
WSCl
WSCL
WSDL
WSFL
WSO
WSUOo
WSUT
WSUT
XML
XsD

TASK PRECEDENCE GRAPH

TREE OF POSSIBLE PREVIOUS STATES

UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION
SER DATAGRAM PROTOCOL

UPPER TESTER

VIRTUAL PRIVATE NETWORK

WEB SERVICE(S)

WEB SERVICES CHOREOGRAPHY INTERFACE

WEB SERVICES CONVERSATION LANGUAGE

WEB SERVICE DESCRIPTION LANGUAGE DOCUMENT
WEB SERVICES FLOW LANGUAGE

WEB SERVICE OBSERVER

WEB SERVICE UNDER OBSERVATION

WEB SERVICE UNDER TEST

WEB SERVICE UNDER TEST

EXTENSIBLE MARKUP LANGUAGE

XML SCHEMA DATATYPES

XIX

List of Algorithms

ALGORITHM 7.1 MISBEHAVIOR DETECTION 1. euumeerieirensiomiereeeressiosssteestesssssiasmessessssesssssransnnsnessers osssnsansnsesesssosans 110
ALGORITHM 7.2 GLOBAL PURGE 1.uvrereereeessaureeraaaartessssntersiseresesssets sosssssssesessssnsessssosassassssstenesesastenssesanenssstansosts 111
ALGORITHM 7.3 LOCAL NOTIFICATION AND PURGE ..veeevecrirnrvrersrersiessssiessiesesssssinessessssessssnrantnessssessssssasantnnenessssssesans 112
ALGORITHM 7.4 CORRELATION ...e.eeeuunrurereessssennreseerenesssosmenerereresersseneretesssaemsssssssssssssasssransesssssssssiosssnrnntneereserosess 113
ALGORITHM 8.1 HOMING CONTROLLER teuvveeiiveersueeioreeesseeersrenererersesesesssssesesenersessssnsesonsssssesessasessnsessssasenenesosnesosne 136
ALGORITHM 8.2 PROCESSING OBSERVED REQUESTS ..ceviieriiuueuniieiessisiiisieesissssssisnmneresssssiosssrsresseneneeserosssssssnssnssssssssons 138
ALGORITHM 8.3 PROCESSING OBSERVED RESPONSES ...ceunnuererereriaermrerereresesinetieresesssiorsmsniensrsssessssssssssssstansssesesess 140
ALGORITHM 8.4 PERFORMING BACKWARD WALKS.....eitiiruueitsiunteisnrereiisnessssmenesineresesmniessioniatesssinssesssssnasssssnnneses 142

XX

Chapter 1

Introduction

Perfection is achieved, not when there is
nothing more to add, but when there is
nothing left to take away -

Antoine de Saint-Exupery.

The past decade saw a dramatic change in the nature of communication and interactions
over the Internet. In the early days of Internet, interactions were simply based on basic Hy-
perText Transfer Protocol (HT'TP) functionalities and were limited to the exchange of static
documents between clients and servers. Later on, dynamic content became available through
the introduction of many scripting languages which enhanced the capabilities of web servers.
Plug-ins such as Common Gateway Information (CGI), Java Server Pages (JSP), and Active
Server Pages (ASP) enabled dynamic contents provisioning through gateways between cli-
ents, web servers, and backend database servers. While this kind of interactions is still widely
used by industry, a new approach for communication and access to content over the Inter-
net, known as W24 Serceces, is nowadays emerging.

The concept of Web Services stands for a new generation of Web applications. It is a
collection of mechanisms that allows automatic communication between applications
through the Internet. Web Services operations are structurally described and published for
eventual use by interested applications. This new paradigm of communication puts more
emphasize on business-to-business interactions while still supporting the business-to-

consumer transactions mode] that the Internet is largely providing. Another attracting fea-

Introduction

ture in the new paradigm is the composition of Web Services as opposed to the build-from-
scratch approach for developing Web Services; existing Web Services are used by aggregat-
ing their functionalities to provide a richer and complete composite Web Services with wider
functionalities.

A considerable effort is undergoing to promote and spread the use of Web Services. In-
deed, both the industry and academia were, and still, are working extensively to provide au-
tomated processes for the development, use, and management of Web Services. The major
concerns are the expressiveness of Web Services descriptions, Web Services’ languages, pro-
tocols and architectures.

The management of Web Services is of prime importance for all entities involved in
Web Services industry. The management is quite different from the traditional management
of distributed systems in the new environments where interacting components may not be
known a priori, may be on different operating systems and platforms and often implemented
using different programming languages. The management functions handle issues such as
fault, configuration, accounting, performance, and security. The fault management function
in particular includes sub-functionalities for the detection, localization, isolation and repair of
faults (faulty behaviors).

When I started the research for my thesis, the emphasis in Web Services technology was
on their development rather than on management, except for basic key features (deploy, un-
deploy, etc.), which were naturally included within hosting Web Services platforms. Ad-
vanced fault and performance management operations such as monitoring and third party

testing/ certification for instance, were not considered. Although, it was only a matter of time

Motivations and objectives of the thesis

as it 1s evident that clients/users will favor only the use of Web Services known to behave
correctly and which provide good performance. Consequently, fault and performance man-
agement will play a key role in selecting and using Web Services.

This thesis presents a series of contributions on management of synchronous Web Ser-
vices. It focuses more on fault and performance management but provides also hints for ac-
counting. Accounting management is supported by defining Service Charge (SO for each
invoked operation and selected profiles. For fault and performance management, functional
and non-functional violations are detected, failed Web Services are identified and located.
Isolation and repair are left for future work.

The main objective of these contributions is to move management operations away from
the platforms on which Web Services are deployed. This goal is achieved through the design
of platform-independent and open architectures suitable to tackle the different management

issues. The contributions of this thesis are discussed in more details further in section 1.2.

1.1 Motivations and objectives of the thesis

Nowadays, management of Web Services is highly platform-dependent. Most Web Services
hosting platforms, in addition to their server capabilities, offer features to manage Web Ser-
vices. For example, WebSphere [1], BEA WebLogic [2] and Microsoft .Net [3] all come with
a set of management utilities that must be installed in addition to the core Web Services’
hosting platform.

Incorporating management tools into the hosting platforms restricts their use to provid-

ers of Web Services. Clients (i.e. users) as well may need access to these management fea-

Introduction

tures for various reasons. A client for example might need to check the correctness of a Web
Service she/he is actually using or planning to use in the future.

There are actually very few management tools that operate outside hosting platforms.
Examples of such tools include SOATest [4], .Test [5], and Webking [6]. However, these
tools are based on active testing which include the generation of test cases, their execution,
and the analysis of responses received from a Web Service. Such an approach does not allow
online verification of the interactions between a Web Service and its client since it requires
the generation of a set of appropriate test cases and their application.

The review and analysis of the existing solutions for management of Web Services led to
the belief that one needs first to consider the following main questions before defining a
suitable Web Services management approach:

* How to manage a Web Service in its final environment without disturbing its normal

operation?

* How to conduct this “non-disturbing” management online and in an automatic

manner?

* How to make the management system available to all involved entities (client, pro-

vider, and any potential third party)?

* How to minimize required resources to use the management system?

The detection of misbehaviors without disturbing an already deployed Web Service re-
quires the so-called passzze sesting. In this kind of testing, an o4sereer checks passively
exchanged messages (traces) between a Web Service and its client and assesses their compli-

ance with an expected behavior. A key concern in passive testing is the collection of traces

Thesis contributions

and how to convey passively traces to an observer. The number and location of observers
are also important issues to be considered in passive testing especially in the case of compos-
ite Web Service.

The next section presents the contributions of the thesis, which address the above raised

issues.

1.2 Thesis contributions

The central idea behind my research is the conception, design, and development of new
(passive) observation architectures dedicated to management of synchronous Web Services.
A wider range of other research issues related to these architectures and testing in general
were identified, investigated, and solutions are proposed and evaluated. The need for new
architectures for management is motivated by the emergence and the maturity of Web Ser-
vices technologies and their appealing benefits. The following sections present a high level
overview of my contributions; the details of each contribution will be presented in the sub-
sequent chapters of the thesis.

The first contribution consists of a proposal for the extension of the Service Oriented
Architecture (SOA) with observation capabilities by designing observers in the form of Web
Services achieving thus, an open, platform-independent and loosely coupled management
approach.

The second contribution consists of an observation architecture for functional manage-
ment of a non-composite Web Service. The effectiveness of this architecture is evaluated as

well as the performance of a set of mechanisms for traces’ collection.

Introduction

The third contribution consists of an extension and enhancement of the previous archi-
tecture for the observation of composite Web Services where networks of observers are
used to improve misbehaviors detection capabilities. Quality of Service's aspects are also
considered as well as functional aspects. The number of observers, their locations, and loca-
tion of points of observation affects the effectiveness and the overhead of the architecture.
Based on these factors, three multi-observer architectures are proposed and studied.

Finite State Machine (FSM) models do not support data flow, which is considered in the
EFSM models. The last contribution of this thesis proposes new algorithms to enhance
EFSM-based observers. This enhancement is made possible by performing backward walks
whenever the observer is waiting for exchanged messages.

The new EFSM observer-based approach can be used for the observation of any distrib-
uted system. Other non EFSM-based approaches described in the thesis are however, lim-
ited to the observation of Web Services as they are based on Web Services-specific protocols

and technologies not necessarily available outside SOA.

1.3 Thesis organization

This thesis is organized as follows:

Chapter 2 gives the reader background information to follow and understand the flow of
ideas in the upcoming chapters. The background is mainly focused on the two main con-
cepts of this thesis namely #24 Servoces ’management and passisze testing.

Related work on Web Services’ management is described in Chapter 3. This chapter pre-
sents and discusses different existing approaches for management of Web Services. The

chapter also includes a summary of related work on passive testing,

6

Thesis organization

The rest of the thesis (from Chapter 4 to Chapter 8), describes my contributions. Exten-
sion of the SOA with passive observation capabilities is described in Chapter 4. This exten-
sion proposes two novel architectures for management of Web Services: mono-observer ar-
chitecture for basic Web Services and a multi-observer architecture for composite Web Ser-
vices.

As a requirement of these architectures, the expected behavior of the Web Service Under
Observation (WSUO) must be handed to the observer before any observation activities can
take place. In Chapter 5, I discuss how the expected behaviors could be specified including
both functional and non-functional aspects.

Chapter 6 outlines our first experimentation with the mono-observer architecture. First,
a set of mechanisms for traces’ collection and communication between entities of the archi-
tecture is discussed. The effectiveness and the overhead of the architecture are then evalu-
ated through a case study.

Chapter 7 illustrates the use of multi-observer architectures to observe a composite Web
Service.

Chapter 8 presents new efficient algorithms for EFSM-based observers by combining
both observed traces and backward walks of the Web Service’s EFSM.

Chapter 9 concludes this dissertation and recall briefly its contributions. It elaborates

also on guidelines for future work.

Chapter 2

Background Information

The ability to simplify means to eliminate
the unnecessary so that the necessary
may speak -

Hans Hofmann

This chapter provides essential background information on Web Services and passive testing
required for a complete understanding of upcoming chapters.

Web Services are a new variant of web applications. It is a new paradigm that allows
making various applications communicate with each other automatically over the Internet.
They are self-contained, self-describing, modular applications that can be published, located,
and invoked across the Internet[7]. The goal is to allow applications to be delivered over the
Internet and run across all kinds of computers and platforms.

A Web Service is any application that can be published, located, and invoked through the
Internet. Each Web Service has a Web Service Description Language document (WSDL)[8],
which is an XML [9] document providing all the required knowledge to communicate with
the Web Service including its location, supported transport protocols, messages formats, and
list and signatures of published operations.

A Web Service can perform any kind of transactions that may range from getting a city’s
temperature to a more complicated transaction like for instance searching and/or building
the best travel packages from specific travel agencies. The main objective of Web Services is

to allow, at a high level of abstraction, applications to be accessible over the Internet. They

Background Information

can be of great use, for example, for 3G networks operators to expose their core network
functionalities to third parties [10]. Digital imaging is another field where Web Services can
make an important benefit to the digital photography industry. The Common Picture eX-
change environment (CPXe) [11], a Web Service business framework, will allow transfer and

printing of digital images as suitable as using films.

2.1 Service Oriented Architecture

The Service Oriented Architecture [12] defines three roles (service provider, service re-
quester, and service registry) and three operations (publish, find, and bind). The relationship
between the roles and the operations are illustrated in Figure 2.1. Additional information on

the Web Services architecture can be found in [13].

2.1.1 Roles

» Service Provider: is the owner of the Web Service and its hosting platform

* Service Requestor: represents the client, ie., the entity which makes use of the
Web Service provided by the Web Service’s provider

» Service Registry: this is a yellow pages-like database of Web Services’ descrip-
tions. A client interested in some kind of Web Services can query this database to
get a list of potential Web Services satisfying its request. Each record in this data-

base contains all the required information to use the target Web Service.

Service Oriented Architecture

~

Service Registry

Web Service
Description

Service Provider
Web Service
Description

Figure 2.1. Service Oriented Architecture

Service Requestor

2.1.2 Operations

= Publish: in order to be known by Web Services’ requestors, the WSDL docu-
ment of a Web Service must be published. Publication can be any action that
makes the Web Service description document available for requestors. It ranges
from static publication using email or File Transfer Protocol (FTP) to dynamic
using Universal Description, Discovery, and Integration (UDDI) registry{14].

* Find: the nature of this operation depends on the publication method used to
publish the desired Web Service’s description. The find operation may be as sim-
ple as a quick search in an email inbox if the Web Service is published using

emails. It may however be more complex and necessitates the use of a UDDI reg-

10

Background Information

istry to deal with dynamic publication. The find operation is used to locate and re-
turn the Web Service’s description to a requestor. It is executed in two steps in
the Web Service life cycle: during design of the Web Service’s client to retrieve the
Web Service interfaces’ description and during runtime to retrieve the Web Ser-
vice’s binding and location information.

* Bind: this operation is used to invoke operations from the desired Web Service.

2.2 Programming stack

The Web Services programming stack (Figure 2.2) is a collection of standardized protocols
and Application Programming Interfaces (API) allowing Web Services’ location and utiliza-
tion. The stack consists of 6 layers and 3 towers. At each layer, open protocols are already
standardized or work is in progress towards their standardization. The towers define features
that should be present in all layers: Secar22y, managemernt, and Qualiry of Servece. The
three lower layers are required for Web Services interoperability while the 3 higher layers are
optional and used if needed.

* Network: The Network Layer is the basis of the Web Services programming
stack. A Web Service must be available over a network. This layer is often based
on HTTP due to its widespread utilization although other protocols might be
used.

» XML-Based Messaging: On the top of the network layer, this layer uses Simple
Object Access Protocol (SOAP) to permit communications between Web Ser-

vices and their clients.

11

Programming stack

Service Description: The description of the interfaces and supported protocols
for Web Services’ interactions are the minimal requirements for Web Services
communication. Other requirements can also be specified including Quality of

Service or security constraints. This description consists of WSDL documents.

WSFL Web Service Flow

Direct = UDDI Web Service Discovery
Direct > UDDI Web Service Publication = g
2 g [
5 8 2
2 & ;

f =4

WSDL Web Service Description @ s T:—‘;
: &

SOAP XML-Based messaging

HTTP, FTP, | Network
Email, etc.

Figure 2.2 SOA programming stack

Service Publication: For a Web Service to be known by clients, its description
should be published. Service publication can be any action that lets clients know
about the Web Service. E-mail and UDDI registries are examples of possible me-
chanism for Web Services publication.

Service Discovery: Depending on how Web Services publication has been per-
formed, Web Services discovery is any action that returns the WSDL service de-

scription to a Web Service requestor.

12

Background Information

» Service Flow: This layer facilitates the composition of Web Services into work-
flows and the representation of this aggregation to a higher-level Web Service.

The starting point in Web Services interactions is the development, deployment, and
publication of Web Services. When a client needs a specific Web Service, she/he probes the
UDDI registry for a list of potential providers. The returned list contains matching records;
each record contains required information to connect to the corresponding Web Service.
Based on some criteria (location, availability, etc), the client selects the suitable Web Service
and invokes it. Section 2.3 presents an example of invocation of a Web Service to compute
the factorial of an integer.

Web Services can be developed either from scratch or by composition. Composition of
Web Services is the process of aggregating a set of Web Services to create a more complete
Web Service with a wider range of functionalities. This composition has a considerable po-
tential of reducing development time and effort for new applications by reusing already
available Web Services.

Currently, there are standards or languages that help building composite Web Services
such as: Web Services Flow Language (WSFL)[15], DAML-S [16], Web Services Conversa-
tion Language (WSCL) [17], Web Services Choreography Interface (WSC) [18], and Business
Process Execution Language (BPEL) [19]. These languages make easier Web Services com-
position process by providing concepts to represent partners and orchestrate their interac-
tions. BPEL, which represents the merging of IBM's WSFL and Microsoft’s XLANG, is
gaining a lot of interest and is positioned to become the primer standard for Web Service

composition.

13

Example of Web Services

2.3 Example of Web Services

A client has to compute the n! (n factoral), but does not have the required processing capa-
bilities. Fortunately, she/he has been told that some Web Services providers are offering this
Web Service through the Internet. In Figure 2.3.a, three providers are publishing their Web
Services that calculate the factorial of an integer to a UDDI registry. The client looks in the
UDDI registry for potential Web Services, and gets a list containing the descriptions of the 3
Web Services published earlier (Figure 2.3.b). For the client, Web Service’s provider 2 seems

to satisfy her/his needs so she/he decides to use it (Figure 2.3.c).

(Find N \
Requestor ! P Find ’| Registry
Y
Provider 1 I
Location

Protocols

Provider 1

Publish

Service Registry

a. Web Service Publication b. Web Service Discovery
31=? N
(Requestor P 31=6 71 service Reg@
_ ¢. Web Service Invocation)

Figure 2.3 Invoking a Web Service to compute n!

All communications between Web Services entities are based on XML and use SOAP.
SOAP is basically an HI'TP POST with an XML envelope as a payload. It defines a simple

mechanism for expressing application semantics by providing a modular packaging model

14

Background Information

and mechanisms for encoding data within modules [20]. It can be used with a variety of pro-
tocols such as HTTP, Simple Mail Transfer Protocol (SMTP), and FIP. Figure 2.4 shows
how XML messaging based on SOAP and network protocols form the basis of the SOA. It
is to be noted that the statement “network protocols” in Web Services context is different
from the one used within the Open System Interconnection (OSI) ([21]) and the Internet
Protocol (IP) ([22]) architectures. Network protocols in Web Services architectures stand for
application protocols capable of enveloping and transporting SOAP messages exchanged by
Web Services. Protocols such as SMTP and FTP may be used but HTTP is the most consid-
ered because it is now the only protocol for which a standard binding for SOAP exists.

The ability to build and/ or parse SOAP messages and to communicate over a network is
the basic requirements for a network node to play the role of Web Service requester or pro-
vider in XML messaging-based distributed computing [13]). The chronology of these interac-
tions, numbered 1, 2, 3 and 4 in Figure 2.4, between a Web Service and a requester, is as fol-
lows:

1. The first step in the interaction between a requestor and a Web Service is the
formulation of the request. The requestor must know the message format to use
to correctly communicate with the Web Service. All information required for
communication between the requestor and the Web Service is contained within
the WSDL document. The requestor builds a SOAP message containing the re-
quest. The SOAP message is presented, with the network address of the Web

Service provider, to the SOAP infrastructure (for example, a SOAP client run-

15

Example of Web Services

time). The SOAP infrastructure interacts with the underlying network protocol to

send the request out over the networl

(~ Web Service Web Service)
Requestor Provider

Web Service)
Client Web Service
3 2
SOAP SOAF’F
Netpvork Prot*ol ‘Nefgvork Prdtocol

=

\ Response J E
]

Request (Web Service Invocation))

Figure 2.4 XML-based messaging in SOA

When this request is received by the Web Service provider’s infrastructure, the
SOAP message (the request) is forwarded by the network to the Web Service
provider’s SOAP runtime (for example, a SOAP server) who routes it to the Web
Service. Eventually, a conversion into programming language-specific objects is

performed based on the conversion schemes contained within the message.

16

Background Information

3. The Web Service processes the request and builds a response, which is also a
SOAP message. The SOAP infrastructure of the provider sends this response to
the requestor over the network.

4. 'The reception of the response by the requestor is the last step. The network infra-
structure routes the message through the SOAP. The response message is then

presented to the requestor’s application.

2.4 Management areas

For the convenience of standardization, management activities in distributed systems are
subdivided into five functional areas [23]: Fault management, Configuration management,
Accounting management, Performance management, and Security management. The acro-

nym FCAPS is usually used to refer to these functional areas.

2.4.1 Fault management

A fault is triggered when a component of the system behaves incorrectly. A fault can be ei-
ther persistent or transient and measures taken to correct this fault depend largely on this
property. While logging for eventual analysis is suitable for most transient faults, persistent
faults may have to be corrected. Fault management includes fault detection, fault location,
fault isolation, and fault repair. Fault detection is the first step in fault management and con-
sists of concluding that misbehavior occurred in one (or more) component(s). Once a fault is
detected, the faulty component should be identified and located during fault location. The
sooner a faulty component is isolated, the less will be the related cost. If the fault is consid-

ered as fatal, fault isolation aims to remove the faulty component in such a way that the fault

17

Management areas

will not propagate to non-faulty components. The information gathered from previous steps

can be used later during fault repair.

2.4.2 Configuration management

Configuration management is used to collect information on available resources. All the re-
sources, including the failed ones, are listed and their details are stored and kept up-to-date.

This information is collected on a regular basis or whenever a change is made.

2.4.3 Accounting management

Accounting management deals with the usage of available resources and probably the billing.
Relevant users and managers are informed on a regular basis of the amount of resources
they are using. Accounting management is very crucial if the available resources are limited

with regards to potential users.

2.4.4 Performance management

Performance management consists of gathering information and statistics on system per-
formance during both heavy and low system load. The resources that affect the performance
of the system should provide mechanisms for data collection, both solicited and unsolicited.

Response time and throughput are basic criteria for performance management.

2.4.5 Security management

Security management deals with traditional security issues: legitimate use, confidentiality, and

data integrity. Based on the access rights defined for different resources, it should enable or
18

Background Information

disable the access to system functionalities especially those functionalities used for system
control. It should continuously monitor the system for security rules violations and take cor-
rective action whenever needed.

Misbehavior detection is a quite hard task. Testing is a widely used mechanism to per-
form this task. In the next section, I present testing activities and show the difference be-

tween active and passive testers.

2.5 Testing for fault detection

Detecting misbehaviors during the development of a Web Service is mainly based on apply-
ing certain number of carefully generated test cases. A tester applies these test cases to the
Web Service Under Test (WSUT) and checks its responses. If the received response is dif-
ferent from what is expected, then a fault has occurred. This process is known as zczzze
testing and is usually conducted before deployment or whenever a user reports a fault.

If a Web Service is already deployed, another kind of testing, known as pusssze seszing,
is more suitable. Passive testing consists of the observation of messages exchanged between
a Web Service and its environment and the verification of the correctness of these messages.
Compared to active testing, the input is not assumed to be correct (or non faulty). The main
component in a passive testing system is the passsze zeszer known also as o4server. The
number of passive testers and their locations are a key issue for fault location, fault isolation,

and fault repair in passive testing activities.

19

Testing for fault detection

2.5.1 Active testing

Active testing refers to the process of applying a set of inputs to an Implementation Under
Test (IUT) and the verification of its reactions. In this configuration [24], the tester has
complete control over the inputs and uses selected test sequences to reveal possible faults in
the tested system. Active testing comprises three main tasks: test cases extraction, test cases

execution, and result analysis.

2.5.1.1 Test cases extraction

In this first step, gpzz724/test cases are extracted from the initial requirements of the TUT.
An optimal test case is one that provides high fault coverage while generating the lowest
cost. Many generation methods have been studied ([24], [25], [26], [27], [28]), and most of
them are based on formal methods ([29], [30]). The efficiency of a generation method is ba-

sically measured with regards to its fault coverage.

2.5.1.2 Test cases execution

This step consists of the application of the test cases resulted from the previous step to the
IUT. A testing architecture should be used for this purpose. ISO 9646 ([31]) defines four
types of test architectures for conformance testing: local architecture, distributed architec-
ture, coordinated architecture, and remote architecture (Figure 2.5). The architectures differ
in their capacity of observation which affects its fault detection capabilities. From the con-

figuration point of view, they differ in the arrangement and communication between the
Upper Tester (UT), Lower Tester (L'T), IUT, and the Point of Control and Observation

(PCO). PCO are the points where testers have access to the IUT.

20

Background Information

()

ur ut
" A
o
3
g PCO
&
S T LT T
®
£
©
)
Q
LT Communication medium
a. Local architecture b. Distributed architecture
uT
LT T LT T
Communication.medium Communication medium
\ c. Coordinated architecture d. Remote architecture /

Figure 2.5 Standard active testing architectures

2.5.1.1 Results and analysis

During this step, observed responses (from the IUT) and the expected ones are compared
and a verdict is issued. If the expected and observed responses are similar, the verdict is
“Pass”. If they are different, the verdict is “Fail”; “Inconclusive” if no final verdict can be

reached.

21

Testing for fault detection

2.5.2 Passive testing

Even though active testing is performed on all systems before deployment, it is not practical

once a system is operating in its final environment. Under normal conditions, we have no

control over the inputs and outputs exchanged between components of a system and can

only observe these interactions pzsssze/y (Figure 2.6). This passive observation is the basis

of passive testing and is performed by an observer. In fact, an observer observes the in-

put/output (behavior) of a component during normal operations for the purpose of detect-

ing misbehaviors without disturbing the System Under Observation (SUO). Disturbing here

should mean no injection of input/output messages for testing purposes. If the observed

input/output is different from what's expected, the component is then declared faulty.

-

~

Other components of the { PO Co{?ﬁg:rem
system Observation
Observer

PO: Point of Observation
_

Figure 2.6 Passive testing architecture

In order to be able to conclude that a fault has occurred, the observer must have enough

knowledge on how the components being observed should react to a set of visible events.

22

Background Information

This set of events depends on what events should be inspected. Comparing observed behav-
iors requires one of the following two concepts [32]:

* Redundancy. In this approach, there are several (redundant) copies of the SUO
and the detection relies on the assertion that a fault occurring in one copy is un-
likely to be observed at the same time in other copies. The observer compares the
reaction of all the copies and declares faulty the component that reacts differently.

* Reference: the behavior of the component being observed is known, defined,
and available to the observer before the observation starts.

Redundant copies approach has several major drawbacks. The most inconvenience is
that all these copies should be developed by different teams and must be running in parallel
requiring different hosting systems or degrading the performance if running on the same sys-
tem. The reference approach seems to be more efficient but a new problem arises: how to
represent the required knowledge?

There are two interesting ways to design an observer based on the reference approach:
expert systems or model-based[33]. Expert systems depend on human experience and are
applicable only to systems that have been encountered previously. Model-based observers
use the reference model of a system and can detect all faults expressed in this model. The
number and types of faults detected by the latter approach depend on the expressiveness of
the used model.

The model-based passive testing procedure is generally divided into two steps:

1. Passiwe boming (or siate recognition): in this step, the observer’s specification

(the model of the observer) is brought to a state equivalent to the one that the

23

Testing for fault detection

implementation’s specification (the model of the implementation) might be in. If
no such state is found, a fault is immediately reported. The set of inputs leading to
this state is known as the homing sequence.

Fanly detectzor. starting from the state identified in the previous step, the ob-
server checks the observed behavior against the system’s specification. If an ob-

served event is not expected then a fault is immediately reported.

FSM, Communicating Finite State Machines (CFSM), and EFSM have been used as

models for passive observation. The next paragraphs will define these models and the asso-

ciated faults models.

2.5.2.1 FSM

A Finite State Machine M is defined as a tuple (S, s, X, Y; D;, 6, A) [24], where:

S is a set of states,

s, € § is the initial state,

X is a finite set of inputs,

Y'is a finite set of outputs,

D; c§ x X is the specification domain,
&: D 2 S is the transfer function, and

A: Dg 2 Yis the output function

The machine starts at s,. Whenever an input is received, 4 computes the corresponding

output and & returns the corresponding next state(s).

24

Background Information

The fault model associated to an FSM is related to the transfer function and the output
function in such a way that the following faults can be detected:

* Qutput fault: a transition has an output fault if, for the corresponding state and
input, it produces an output different from what’s computed by 4

* Transfer fault: a transition has a transfer fault if for the corresponding state and
input, the next state is different from what’s returned by &

» Transfer fault with additional states: this fault is similar to the previous fault ex-
cept that the next state does not exist in §

* Additional or missing transitions: this fault occurs when extra transitions are add-
ed to the initial machine.

2.5.2.2 CFSM

A communicating FSM consists of a set of FSM machines (M) that communicate through a
set of channels (C). A CFSM N can be denoted by N = (M, O) [34] where:
= M={m,..,m} is aset of n machines
= C={G /4 <ni=j}isaset of channels, where each element C; denotes a
communication channel from 7 to 7. It behaves like a First In First Out (FIFO)
queue with 7 taking inputs from the head of the queue and m placing output to
the tail of this queue for messages generated by 73 and intended to 7.
Starting from its initial state, a machine can consume an input that is in its associated

channel or produce an output and put it at the queue of another machine’s channel.

25

Testing for fault detection

Modeling a system as a CFSM allows the detection of numerous faults. Deadlocks, live-

locks, and unspecified receptions are examples. Faults related to behaviors of channels (loss,

duplication, overflow ...) can also be detected.

2.5.2.3 EFSM
EFSM is an extension of FSM models by the following:

Interactions have certain parameters, which are typed.

The machine has a certain number of local variables, which are typed.

Each transition is associated with an enabling predicate. The predicate can be any
expression that evaluates to a Boolean (TRUE or FALSE). It depends on parame-
ters of the received input and/ or the current values of the local variable.
Whenever a transition is fired, local variables can be updated accordingly and pa-

rameters of the output are computed.

Formally, an EFSM is described by a tuple M = (S, 5, , O, 7, V) ([24]) where:

S is a set of states,

s, € S is the initial state,

I 'is a finite set of parameterized inputs,
Ois a finite set of parameterized outputs,
T is a finite set of transitions

0§ x(IUQ 2§ is a transition relation

In an EFSM, each transition of T can be represented as t: S| 7| P| A | O| S, where:

t: label/ID of the transition,

S.: starting state of the transition,

26

Background Information

= [: the input that triggers the transition,

P: the enabling predicate (data conditions),

A variables assignments

O the output produced by the transition
» S, ending state of the transition

From state s,, the machine fires transitions as it receives inputs and its predicate is evalu-
ated to TRUE. When firing a transition, local variables are updated, parameters of output
message are computed, and the next state is identified.

The faults that can be detected when using EFSM models include wrong initial values,
wrong specification of data type, wrong specification of data representation, referencing an
undefined variable or a wrong variable, and arithmetic and manipulative faults.

After giving an overview of the most used models in passive testing, the next section will
illustrate, through an example, how faults can be detected where the behaviour of the

WSUO is specified as an FSM machine.

2.6 Example of fault detection by passive observation

Let’s consider the example depicted in Figure 2.7 where § and 7 are the FSM machines of the
specification and an implementation of a system, respectively. If I has an observed behaviour

that is different from that of S, then I is /z#/zy. Formally, this can be expressed as:

» if we observe x/%, an I/Osequence of I from a state s (Le. Is €8,/ 4, (s,%) = Yy

if 735'€ 85/ As(shx) =y then 7 is faulty

27

Example of fault detection by passive observation

In Figure 2.7, the dashed line represents a fault in the implementation. If both the ob-
server (using machine §) and the implementation (machine J) are in state S2, the generated
output for 0 as input is 0. While this is correct for both machines, reception of another input
0 will lead to a fault since S will expect 0 as output and 7 will produce 1. The specification §
is assumed to be correct and discrepancies between the expected and the observed behav-

iours are due to a faulty implementation.

4)

1/0 0/1 110 0/1

0/0

K S. Specification FSM I. Implementation FSM)

Figure 2.7 Specification and implementation FSM machines

The observer takes as input the model of the component to be observed, compares the
input/output sequence to the sequence expressed in the model. In case of discrepancy, a

fault is detected. If no fault was detected within a certain interval of time, the observer con-

28

Background Information

cludes that the component is fault-free with regards to the set of observed events. The ob-
server can be either on/ine or off/ine: an online observer checks in real time the exchanged
input/output while an offline observer uses the log files that might be generated by the ob-
served component itself. Unlike the offline observer, an online observer has the advantage
of detecting faults when they occur but has the disadvantage of being more complex and
resource demanding.

Active testing provides a better fault coverage if an efficient generation method is used
since gprun2al test cases are used and most of possible scenarios will be investigated. The
test cases generation process is also the main weakness of active testing. In fact, the use of a
generation method requires additional overhead and skills. Moreover, the execution of the
test cases may affect considerably the performance. In passive testing, no test cases are gen-
erated and testing activities can be completely transparent to the implementation under test.
The main weakness with this kind of testing is that there is no guarantee on fault coverage

during observation periods.

2.7 Summary

This chapter gave background information on concepts that will be used in upcoming chap-
ters. I first introduced the Service-Oriented Architecture, its roles and operations, and its
programming stack. Section 2.3 presented an example of a Web Service and different steps
to invoke it. Since Web Services are being more and more used and standardized in many IT
sectors, their management is becoming crucial for their success. I presented different man-

agement areas that have to be considered while developing management solutions of Web

29

Summary

Services. I also showed how testing, both active and passive, can be used for misbehavior’s
detection and gave an example of fault detection with passive testing.

In the next chapter, I will present state of the art of the concepts presented in this chap-
ter. This will include management of Web Services (both functional and non-functional) and
passive testing which will be used as the basis for my contributions to management of Web

Services.

30

Chapter 3
Related Work

The purpose of analysis is not to com-
pel belief but rather to suggest doubt -
Imre Lakatos

The contributions of this thesis are related to management of Web Services namely func-
tional and QoS management using passive observation. The next section discusses the state
of the art on management of Web Services. This will include proposals from both academia

and involved industries. In section 3.2, related works on passive testing are presented and

their limitations are highlighted.

3.1 Web Services management

Most of the work on Web Services focus on their development and deployment. Manage-
ment of Web Services [35], and in particular, fault and performance management, is not yet a
well-studied area. However, some interesting works have to be cited.

Existing approaches for management of Web Services include approaches from network
management and those that have been developed specifically for Web Services. The ap-
proaches that have been used for network management for a long time seem to be a candi-
date for the management of Web Services. However, their main drawbacks are due to the
major differences between Web Services and network components, and the need for the par-
ticipation of a component in its management. In fact, most network components (devices)

run standardized protocols that have specific and known attributes to be managed. If run-

Related Work

ning proprietary/ non-standard protocols and/or applications, the manufacturer of the com-
ponent usually provides specific management agents/applications or well defined sets of
APIs.

In network oriented approaches, Simple Network Management Protocol (SNMP) ([36])
is based on TCP/IP and the client/server communication mode. An agent, associated to a
Management Information Base (MIB) [37], communicates with a management station by
processing gez (send the value of an attribute) and se# (modify the value of an attribute)
messages and generating £y messages (unsolicited notifications). Thus, SNMP manage-
ment system requires an SNMP agent, a MIB, and a management station (manager).

Common Management Information Protocol (CMIP) [38] fulfills in the OSI reference
model protocol stack [21] a role similar to that of SNMP in TCP/IP. CMIP has many advan-
tages compared to SNMP including the number of available commands and the possibility
to operate over TCP/IP. However, complexity and long development time, especially CMIP
Over TCP/IP (CMOT) [39], have kept its adoption pervasively.

Web Services community is still trying to determine the requirements and define specific
approaches for Web Services management. These approaches can be divided into two main
groups: approaches based on active testing and approaches requiring the Web Service (archi-
tecture) to support management interfaces. The World Wide Web Consortium presents
some of the requirements that Web Services management architectures should satisfy to
provide management features [40]. It includes the definition of standard metrics, manage-
ment operations, and methodologies for accessing management capabilities. The expected

architecture must provide a manageable, accountable and organized environment for Web

32

Web Services management

Services operations. At least, resource accounting, usage auditing and tracking, performance
monitoring, availability, configuration, control, security auditing and administration, and ser-
vice level agreements should be supported. An approach where the Web Service provides
specific interfaces for managemennt is presented in [41]. The developer is supposed to supply
commands and APIs for operations that are invoked by the management system.

In [42], the authors classify the management of Web Services into three levels: infrastruc-
ture-level, application-level and business-level. The infrastructure-level deals with the Web
Service platform while the application-level focuses on the Web Services themselves. The
business-level takes into consideration the conversations between a Web Service and its cli-
ent; a framework and a tool (collectively known as Web Service Manager) to perform man-
agement at this level have been developed.

Management approaches presented in [40], [41], and [42] suppose that the Web Service
will provide management operations that one can invoke. Developers of Web Services have
to develop and deploy these operations in addition to the business operations the Web Ser-
vice is offering.

A couple of management tools to be integrated into Web Services’ environments are al-
ready available. Hewlett Packard’s Web Service Management Engine ([43]) is a collection of
software components that enables some management features including the definition and
the enforcement of Service Level Agreement (SLA). Parasoft ([4]) provides a set of tools
(SOAPTest, .TEST, WebKing) to assist during the life cycle of a Web Service. SOAPTest,
for example, helps preventing errors by performing server functional testing, load testing,

and client testing. It parses the WSDL of the target Web Service and generates test suites to

33

Related Work

test each of the exposed operations. These tools have to be installed and configured, thus
requiring extra resources and introducing new cost for Web Services providers.

There have been a considerable amount of works on testing of Web Services in the last
couple of years. They can be divided into two main groups: works targeting functional as-
pects of Web Services, and works tackling non-functional aspects. The first group deals with
the correctness of interactions between Web Services and their clients. The second group is
concerned with performance and Quality of Service of Web Services management. Related

work on both groups is presented in the following two sub-sections.

3.1.1 Functional management

For functional management, the majority of works is based on active testing. For this kind of
testers and as introduced in section 2.5.1, appropriate test cases have to be carefully gener-
ated, executed, and their results analyzed. Even if this task is mandatory, there are limitations
to active testing, First of all, exhaustive testing is impractical for quite large Web Services. In
fact, test cases can not cover all possible execution scenarios that a Web Service will have to
handle while serving clients’ requests. The size of test cases is bounded by the cost a Web
Service provider is willing to spend on testing activities. Usually, active testing stops when-
ever developers are confident that the Web Service is good enough to be put into the mar-
ket.

Few works describing test cases generation methods for Web Services have been pub-
lished recently; most of them are based mainly on static analysis of WSDL documents.

Xiaoying et al. [44] present a method for test data generation and test operation generation

34

Web Services management

based on three types of dependencies: input, output, and input/output. In [45], the authors
propose a method for test data generation. A set of tests is randomly generated based on the
WSDL document. Mutation techniques are then used to improve the quality of the test suite.
Mutations based on WSDL documents are also presented in [46]. In [47], the authors com-
bine both EFSM models and WSDL documents to generate test cases. For composite Web
Services, methods for generating test cases are proposed in [48] and [49]. In the first paper,
the authors use WSDL documents, Task Precedence Graph (TPG), and Timed Labeled
Transition Systems (TLTS), while in the second model, a model checking tool (SPIN) is
used.

Approaches in [44], [45], [46], [47], [48], and [49] are based on active testing and thus

cannot be used for management of already deployed Web Services.

3.1.2 QoWS management

Quality of Web Services (QoWS) management includes definition of QoWS attributes,
QoWS publication, discovery, validation, and monitoring. Existing approaches for QoWS
management can be classified into two groups:
1. Extending related technologies including WSDL and UDDI to support QoWS.
2. Mandating independent entities to perform some or all of QoWS management
tasks.
In the first category, [50] extends SOAP header to include QoWS information. WSDL is
also extended to describe QoWS parameters, their associated values, computation units (e.g.

millisecond, request/second), etc. UDDI extension consists of extending the current UDDI

35

Related Work

data structure with QoWS information [51]. The aim of these extensions is to allow QoWS-

based publication and discovery of Web Services.

In the second group, works present solutions for one or more of the following QoWS

management operations:

QoWS attributes’ definition: the first step in QoWS management is the definition
of evaluation’s criteria and attributes. A set of attributes have been defined, stud-
ted and used in software engineering for a long time ([52], [53], [54]). However,
the dynamic nature (e.g. composition) of most of Web Services requires consid-
eration of new attributes such as availability, thrust, and reputation ([55], [56]).
QoWS publication and discovery ([57], [58], [59]): this operation allows providers
to include QoWS information in WSDL. This information is then used by re-
questors when finding Web Services to select the appropriate Web Service in
terms of functional and QoWS requirements.

QoWS verification ([58], [59], [60]): this operation allows the provider to certify
that the QoWS claimed by the Web Service is accurate before invocation and dur-
Ing interactions.

QoWS negotiation [58]: if the available published QoWS requirement do not sat-
isfy client’s needs, negotiation operations’ strategies can be followed to reach an
agreement on different QoWS attributes.

QoWS monitoring ([61], [62], [63],): performs monitoring of the Web Service dur-
ing interactions with clients to assess if the QoWS attributes agreed upon in pre-

vious points are delivered.

36

Web Services management

3.1.3 Discussion

All the solutions presented above fit in one or more of the following categories:
1. Platform-dependent
2. Assume that a Web Service will participate in its management by providing spe-
cific interfaces (e.g. W3C architecture),
3. Are based on active testers.

Utilization of platform-dependent management approaches is restricted to the targeted
platform. When management features are embedded to the hosting platform, they are only
available to the provider and cannot be used by clients or third party certification entities.
The client is forced to rely on management information made available by the Web Service’s
provider and has no mean of verifying it. Moreover, information used in assessing the be-
havior is taken from one location: at the provider’s side. There are many situations, in com-
posite Web Service for example, where this information should be gathered from different
sources and locations. This requires an additional property of management solutions: inter-
operability between heterogeneous involved management entities.

The Web Services architecture becomes more complex if it has to support management
aspects in addition to its basic functions. The performance of the Web Service and its host-
ing platform is also degraded due to these additional features. Moreover, developers of Web
Services have to implement also the needed interfaces and APIs to support management.
Since these features will be used somehow sporadically, the return on investment of their

development and deployment might be relatively low.

37

Related Work

Once a Web Service is deployed, active testing cannot be used to test, on the fly, the cor-
rectness of interactions of the Web Service with its clients. Moreover, application of gener-
ated test cases consumes resources and may disturb the Web Service.

Since management of Web Services is somehow at its earlier stages, related work usually
concentrates more on provision of management features without evaluating the overhead
they generate. In order to select the appropriate management approaches, a potential user
must be able to assess it in terms of usefulness and associated cost.

To solve some of the limitations of related work cited in this section, I propose novel ar-
chitectures for management of Web Services. These architectures are rooted in passive test-
ing to perform online and transparent observation of Web Services.

While the above section gave a literature review of management of Web Services, the
next section will provide an overview of related work on passive testing; a concept that will
constitute the core of the contributions of this thesis as will be shown in forthcoming chap-

ters (Chapter 4 to Chapter 8).

3.2 Passive testing

Many models have been used for model-based observers but most of the published works
on passive testing are on control part of systems and use the FSM model. This model has
been specially used for fault management in networks. The authors in [64] present tech-
niques and algorithms for fault detection for network management based on FSM.

In [65], an approach based on causality invariants expressing the set of critical properties
of the system is proposed. An invariant expresses that each time the SUO performs a given

sequence of input/output actions, it must show behaviour reflected in the invariant. The in-

38

Passive testing

variants of a system can be explicitly (manually) extracted from an FSM specification. The
authors in [65] use a pattern matching algorithm that supposes that the whole trace is avail-
able and thus there is no need for the homing procedure.

In previously cited works, the whole network is represented by a single machine with in-
puts and outputs on transitions. This machine might be huge even for a relatively small net-
work due to the szzze exp/los 07 problem. Moreover, fault location or fault isolation is diffi-
cult if only one FSM is used to specify the whole network.

In an attempt to resolve some of these problems, Miller et al. proposed in [66] a CFSM
specification of network components. Fault location and isolation are enhanced in this case
if observers are placed in appropriate locations ([67], [68], [69]). Even though this model is
more realistic than single FSM, it considers only the control part of observed systems with
no consideration of the data flows.

Data flow using EFSM has been studied in trace analysis ([70], [71], [72], [73]) and diag-
nosis ([74], [75}, [76], [77]) where the authors assume there exist a complete trace. Conse-
quently, there is no need for the passive homing procedure. In some cases, the analyzer in
diagnosis and trace analysis is part of an active tester. In other cases, the whole traces are
handed to the traces’ analyzer.

When using FSM models with incomplete traces as input, the homing procedure is nec-
essary and consists of finding the state where the implementation is actually located. The
state is in fact a label. The usage of EFSM adds more complexity to the homing procedure

since variables have to be correctly initialized in addition to state’s label recognition. If the

39

Related Work

EFSM is extended with timing properties, the clocks should be initialized with the correct
values before going forward to the fault detection.

Very few works consider the homing procedure in EFSM-based passive testers. In [78]
and [79], the concept of invariants studied in [65] is extended to support EFSM. However,
there is no consideration of homing procedure since it addresses a complete trace. Even for
fault detection, the authors do not verify if the values of variables are correct, but rather
check if they are compatible with the data type signatures of corresponding parameterized
messages.

In ([80], [81]), an event-driven EFSM approach is introduced to deal with variables ini-
tialization in passive testing. An event is either an input to SUO or an output from it, but not
both. Variables are initialized using information from the predicates on transitions and rela-
tions between variables.

The homing procedure in an EFSM-based observer consists of recognizing the actual
state of the SUO in addition to assigning appropriate values to different variables. At start-
up of homing, all states are possible and variables can have any value in their definition do-
mains. The objective is to determine the actual state’s label and a unique value for each vari-
able.

In the few published papers on EFSM-based passive testing, the homing procedure is ei-
ther ignored or it depends fully on the upcoming observed input/output traces. In the first
case ([78], [79], [82], [83]), the observer must get all the traces to be able to initiate the fault
detection process. In the second case ([80], [81]), the observer waits for exchanged messages

before moving forward in the homing procedure.

40

Summary

Ignoring the homing phase is based on the assumption that the passive tester has access
to a complete trace. When the observer has access to an incomplete trace, it cannot assess
the correctness of the trace.

Even if the homing procedure is considered, fault detection may be delayed (even for-
ever) if the observer waits for exchanged messages to continue on the homing procedure.
Moreover, if there is a significant time gap between inputs and their corresponding outputs,
the observer spends most of its time waiting.

Observers can benefit from this time gap to find pertinent information in the EFSM
model. In fact, analysis of possible previous paths can help reduce the number of possible

states and possible values of variables as will be proposed and demonstrated in Chapter 8.

3.3 Summary

This chapter presented the state of the art of management of Web Services and passive test-
ing. It started by discussing proposed management approaches including those derived from
network management. Management is then divided into two categories: functional and non-
functional. Functional management relates to the correctness of request/responses in terms
of their occurrences and contents. Non-functional management deals mainly with QoWS.
Related works of both categories have been presented and their limitations have been high-
lighted.

The chapter also presented and discussed related work on passive testing. Most of previ-
ous works in passive observation consider FSM models which do not support data flow. The
approaches supporting data flow using EFSM models are not always inefficient. The major-

ity of these works supposes complete traces and do not consider the homing procedure.
41

Related Work

Works where the homing procedure is considered are based on observed events which may
delay fault detection especially if time gap between events (requests and responses) is some-
how high.

In the next chapter, I will present core ideas of my contributions to management of Web
Services. Contributions presented in following chapters will be based on extension and de-

velopment of these ideas.

42

Chapter 4
Extending SOA with Observation Capabilities

If you want to succeed, double your
Jailure rate -
Thomas J. Watson

This chapter presents an extension to the Service Oriented Architecture with observation
capabilities. The objective is to design a new management approach with a set of interesting
properties. It is highly desirable that the management architecture can be made available to
Web Services’ providers, their clients, and third party entities depending on who is interested
in management of a specific Web Service. A Web Service’s provider can use the architecture
to make sure that the Web Service she/he is offering is operating correctly with regards to
both functional and non-functional (such as QoWS) aspects. The client can make use of the
architecture in order to verify that the Web Service she/he is using is operating as agreed on
with the Web Service’s provider. Furthermore, a third party mandated by the client and/or
the provider, can use the architecture to provide an independent certification stating if the
Web Service is conforming 1o its specification.

The transparency of online management activities is of prime importance during Web
Service offering. Neither the Web Service nor the client should notice that such activities are
taking place. This implies that no additional messages related to management purposes will

be sent and/or received to/from the client/Web Service. The network load generated by

* Results from this chapter have been published in [84].

Extending SOA with Observation Capabilities

management activities should also be minimized to keep the service performance at an ac-
ceptable level.

Online detection is another important property of management architecture. The design
of the architecture should allow detection of misbehaviors as soon as they appear or within a
reasonable delay.

In the next section, we will develop further the key ideas of the proposed approach for
management of Web Services and the extension of the SOA with respect to the require-

ments discussed above.

4.1 Extended SOA

To fulfill the requirements discussed in the previous section, mainly the online property, pas-
sive observation 1s the proposed approach. Moreover, the SOA is extended with observation
capabilities by developing a specific Web Service observer. The proposed architecture is
based on two concepts namely passzze testing and Web Serveces. Detecting misbehaviors
without application of specific test cases necessitates the use of passive testers (observers)
(section 2.5.2). Moreover, making this observer available to providers, clients, and third par-
ties can easily be achieved by designing the observer itself using the same paradigm: Web
Services. These two design concepts give the architecture a set of interesting features to per-

form management of Web Services as it will be presented in the next sub-section.

4.1.1 ESOA Features

The following are interesting features that characterize the proposed architecture:

44

Extended SOA

Online detection: the observer should be able to detect misbehaviors as soon as
they are generated by the observed Web Service. This implies that the observer(s)
must receive, using appropriate mechanisms, all messages exchanged between the
client and the Web Service. A thorough study of possible mechanisms to collect
these traces will be presented in section 6.1.

Minimal overhead: even if management activities will induce some extra load
(extra packets in the network, performance degradation, etc), the idea within the
proposed approach is to keep this load as low as possible. Consequently, the de-
signed observer should never generate messages just for the sake of management
except when reporting the result of the observation.

Transparency: in a completely distributed architecture, the design and the im-
plementation of the observer(s) should guarantee the transparency property. Nei-
ther the Web Service nor the client should notice that management activities are
taking place, and the overhead will not require abusive additional resources at the
client and/ or the Web Service’s side.

Platform-independency: interacting with a Web Service is always independent
from its hosting platform. The design of the observer in the proposed approach
as a Web Service will allow this independency. The interaction with this observer

is not tied to its platform, does not require additional software, and needs only

limited knowledge and resources.

45

Extending SOA with Observation Capabilities

4.1.2 Procedure and Components

Management of Web Services using the proposed architecture can be performed following
the SOA paradigm and observation functionalities. The steps are listed hereafter and illus-

trated in Figure 4.1

e A

Observer
5. Report 4 O
Seq/
3. Invoke 9
Web ,
Service
1. Publish
v‘)
T A
/’)o'
UDDI
Registry

Figure 4.1 ESOA with passive observation

1. Publish: once the Web Service Observer (WSO) is developed and deployed, its
WSDL document is then published. This can be done by Email, FIP, HTTP,
UDD], etc. Figure 4.1 shows publication using UDDI registries.

2. Find: this action depends on how the publication process had been performed. It
can consist of opening an email inbox, connecting to a FTP server, issuing a get

request to HT'IP server, or a request to a UDDI registry.

46

Extended SOA

3. Invoke: The WSO is first invoked by a manager. The manager can be the client,
the provider of the Web Service, or an authorized third party. In all cases, the
manager should provide specific information during invocation. This information
includes the location of the Web Service to be observed, specification of the ex-
pected behavior (model), when to start observation, when to end observation, etc.

4. Observe: Once the WSO is invoked, it waits for exchanged messages between
the Web Service and the client. The observation starts and ends at the time speci-
fied during invocation of the WSO.

5. Report: When the observer stops observation (misbehavior detected or observa-
tion period expired), it returns the result to the manager. Based on these results,
fault location, isolation and correction processes are initiated if a fault occurred.

The architecture requires a set of information/resources to be able to passively observe a

Web Service. These requirements are discussed in the next sub-section.

4.1.3 Number of observers and location of points of observation

The observation in distributed architectures requires the selection of a number of observers
and the best locations for points of observation where traces are collected. The number of
observers and location of the points of observation affect significantly the detection capabili-
ties of the architecture. For example, if the WSUO is a composite Web Service, it might be
more interesting (in terms of misbehavior’s detection) to consider a network of observers: an
observer for each Web Service rather than a unique observer for the composite Web Service.

In such architecture, the cooperation of all observers can generate pertinent information for

47

Extending SOA with Observation Capabilities

Web Services management. The consideration of a global observer (for the composite Web
Service) and local observers (for composing Web Services) presents a framework where this
cooperation can be orchestrated for the benefit of better fault detection.

ESOA allows two different architectures: a mono-observer architecture and a multi-
observer architecture. The first architecture, depicted in Figure 4.2, is useful when the
WSUO is a simple (non-composite) Web Service. Traces collected by observing the interac-
tions between WSUO and its client are sufficient enough to analyze and decide on the cor-

rectness of the observed behavior.

-

Web Service Under PO

Observation Client

Observer

Figure 4.2. Mono-observer architecture

When the WSUO is a composite Web Service, the mono-observer architecture might
not provide enough information for management. In fact, a misbehavior detected within the
composite Web Service can originate from basic Web Services. Furthermore, some faults
may occur due to the composition itself, these faults are known as feature interaction. Figure
4.3 shows multi-observer architecture where a composite Web Service is being observed as

well as its two basic Web Services. The global observer and the two local observers cooper-

48

Extended SOA

ate in detecting and locating misbehaviors. This architecture can also be used for mass usage
testing where many clients are invoking the same Web Services to assess, for example, its
scalability. However, in this thesis, the multi-observer architecture is mainly used for com-

posite Web Services.

Web Service Local
1 Observer 1
\
\
\
Composite .
Local Web Service \ 4 Cient
Observer 2 \
-) * \ L] ..
L] ‘ .
L] s . \
. - ..
L] \ .
L] \ . \
Web Service ‘e, °,
2 '~ v Y
. \ .
N OGbIsc:etl"sler
Web Services CoOmmMunICation g
Observers communication - mm s -
Traces’ collection —_—)

Figure 4.3. Multi-observer architecture

Three types of interactions are illustrated in Figure 4.3. Web Services’ communication re-
fers to the SOAP-based communication between Web Services and their clients. Traces’ col-
lection consists of forwarding messages exchanged between a WSUO and its client to local
observers. Observers’ communication conveys information between observers. The latter

information is divided into three categories:

49

Extending SOA with Observation Capabilities

1.

Configuration information: during configuration of different observers, local ob-
servers must indicate to the global observer which Web Service they are observing
and where they are located. The global observer needs this information to identify
observers and associate the traces it will receive to appropriate observer/ WSUO.
Traces from local observers to the global observer: whenever a local observer gets
a trace, it sends it to the global observer.

Notifications of faults: if the global observer detects a fault, it informs other local
observers. In the case where a local observer detects a fault, it informs the global
observer. The latter informs remaining local observers that misbehavior has been

observed elsewhere and they should be aware of some specific traffic/actions.

4.1.4 Requirements

In order to observe a Web Service, the architecture bases its misbehavior’s detection on two

types of information: specsfication of the expected bebavorand exchanged traces:

Once the observation starts, all exchanged traces between WSUO and its client
must be forwarded to observers. Messages exchanged before initiating the obser-
vation are not available to the observers, which necessitate the use of a homing
procedure.

The observer must have unambiguous information about the expected behavior
of the WSUO. This information should cover both functional and non-functional
(QoWS) behaviors.

50

Summary

In the next chapter, I will discuss different ways to represent expected behaviors of
WSUO and present in details the ones I will be using in the remaining chapters of this thesis.

Possible traces’ collection mechanisms are discussed in Chapter 6.

4.2 Summary

This chapter presented an extension to the SOA to allow management of Web Services us-
ing Web Services-based passive observation. The core component of the architecture, name-
ly the observer, is itself designed as a Web Service to make it available to all interested enti-
ties. Moreover, by reusing the Web Services paradigm, we minimize the required knowledge
and skills to interact with it. I presented the two possible architectures: mono-observer archi-
tecture and the multi-observer architecture. The first one is used if the WSUO is a non-
composite Web Service, while the multi-observer architecture is suitable for composite Web
Services.

In the next chapter, I will tackle the first requirement of the architecture namely how to

specify the expected behavior of Web Services. The second requirement, traces’ collection,

will be thoroughly studied in Chapter 6.

51

Chapter 5

Web Services’ Behavior Description

I hear and [forget; I see and I remember;
I do and I understand -
Confucius

In order to issue a verdict (correct/faulty) regarding the correctness of an observed trace, a
passive observer must have unambiguous description of the expected behavior of the
WSUO. This behaviors’ information can be of concern to three facets: 1) structure of re-
quests and responses, 2) content and sequence of requests and responses, and 3) QoWS at-
tributes of the WSUO.

In Web Services’ interactions, the structure of requests and responses is highly typed and
precisely defined in WSDL documents. For the content and sequence of requests, this can
be represented by a knowledge base (expert systems-based observers) or a formal model of
the WSUO (model-based observers).

Formal models have many advantages over knowledge bases [33]. First of all, expert sys-
tems rely on human expertise and are more appropriate for systems that have been encoun-
tered previously. Second, formal models can be useful during different phases of the Web
Service development life cycle: specification, design, validation, automatic generation of
source code and executable test cases... In fact, during the life cycle of a Web Service [90],

the initial requirements go through certain steps conducting to a (hopefully) well designed

* Results from this chapter have been published in [85], [86], [87], [88], [89], [90], and [91].

Web Services’ Behavior Description

and developed Web Service. During some of these steps, the use of formal methods can al-
low automation of many activities in the development lifecycle and some methods provide
even proofing engines.

Once constructed, a formal model of WSUO can be used in many tasks: automatic
source code generation, automatic test cases generation, and passive observation as illus-
trated by Figure 5.1. For these reasons, model-based observers will be considered in remain-

ing parts of this thesis.

Requirements
v
Formal model
4
Source code Test case generator Observer
generator g
A 4 A 4 A 4
Source Code Test cases Observation

2 ~/

Figure 5.1 Extending the use of formal models by/for observation

Formal methods offer different levels of abstraction which help in coping with the com-
plexity of systems’ requirements and descriptions. Different levels of abstraction of formal

methods imply different complexities: the more a model is expressive, the higher is its com-

53

WSDL
plexity, and the less this model is studied in the literature and related work. As will be dis-

cussed in following chapters, existing approaches have to be improved.

Description of QoWS attributes can be provided to a passive observer in many different
ways. This information can be described in a separate document, embedded within the de-
scription of functional behavior, or as an extension to WSDL document.

In this chapter, I will present models for describing Web Services’ behaviors that will be
used in following chapters. The next section presents information that is already provided by
the programming stack of SOA, namely WSDL documents, which are available for all Web
Services. Section 5.2 discusses specification models for functional aspects while section 5.3

discusses specification of QoWS properties.

5.1 WSDL

The SOA requires that each Web Service be described by a WSDL document. This docu-
ment contains the list of available operations, their signatures, supported protocol, and end
points. Roughly speaking, it holds all the information that a client needs to bind to the asso-
ciated Web Service. A WSDL document basically defines the following elements:

» Types: this is a container to define additional complex data types using some type
system (such as XML Schema Datatypes (XSD)).

» Message: it consists of an abstract-typed definition of the data being communi-
cated. It specifies which XML data types constitute various parts of a message,
both input and output parameters of operations.

= Operation: it states, for each operation, the input and output data and the order

in which they should be used in an invocation.

54

Web Services’ Behavior Description

Port Type: this element defines the operations actually supported by the Web
Service and specifies the XML messages that can appear on input and output data
flows. It can be seen as method signature/ prototype in programming languages.
Binding: it describes the protocols, data format, and other issues for binding to
the Web Service.

Port: this element, also known as endpoint, is defined as a combination of a bind-
ing and a network address.

Service: this is a collection of related Ports/endpoints.

Figure 5.2 shows how these elements fit in the structure of a Web Service description.

This figure is a partial view of the WSDL description of the Call Control Web Service that

will be used in the case study of section 6.2.

The information brought by the WSDL document of the WSUO allows the detections

of two types of faults:

L.

Input Type Fault (ITF): an input type fault is observed when a method is invoked
with a wrong number and/ or wrong types of parameters with regards to its signa-
ture published in the WSDL.

Output Type Fault (OTF): this fault occurs if the type of the returned result is dif-

ferent from the type expected in the WSDL document.

55

WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:message name="initiateConfRequest">

<wsdl:part name="addresses" type="intf:ArrayOf xsd_string"/>

<wsdl:part name="mediatype" type="xsd:string"/>

<wsdl:part name="conftype" type="xsd:string"/>

<wsdl:part name="duration" type="xsd:int"/>

<wsdl:part name="expectedUsers" type="xsd:int"/>

<wsdl:part name="callID" type="intf: ArrayOf xsd_string"/>
</wsdl:message>

<wsdl:portType name="ConferenceService">
<wsdl:operation name="addUser" parameterOrder="userAddresse callID">
<wsdl:input message="intf:addUserRequest" name="addUserRequest"/>
<wsdl:output message="intf:addUserResponse" name="addUserResponse"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="ConferenceServiceSoapBinding" type="intf:ConferenceService">
<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="addUser">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="addUserRequest">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" name-
space="http://142.133.72.116:7777/axis/services/ConferenceService" use="encoded"/>
</wsdl:input>
<wsdl:output name="addUserResponse">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" name-
space="http://142.133.72.116:7777/axis/services/ConferenceService" use="encoded"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="ConferenceServiceService">
<wsdl:port binding="intf:ConferenceServiceSoapBinding" name="ConferenceService">
<wsdlsoap:address location=
"http://142.133.72.116:7777/axis/services/ConferenceService"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Figure 5.2 Partial WSDL of the Call Control Web Service

56

Web Services’ Behavior Description

These types of faults are likely to happen when the WSDL document is not up-to-date.
This might be the case in two situations:

1. The provider modifies the data type signature of published operations without
publishing the new WSDL.

2. 'The client does not look periodically for updated WSDL documents in the UDDI
registry and uses outdated documents.

Even though some programming languages (e.g. C++) have the ability to cast between
specific types (e.g. int to/from integer), the SOAP infrastructure, at the client’s side or the
Web Service’s side, does not have the mentioned capability. Proper conversion has to be ac-
curately performed by Web Services and their calling clients.

The next section will present three models that can be used in a model-based observer to

detect functional faults.

5.2 Description of the functional aspects

In model-based observers, the types of functional faults that can be detected depend on the
used model. Among all formal models that have been used for testing, in this thesis, we are
going to focus on two of them with different levels of abstractions: FSM and EFSM. These
models need first to be described in the same description languages used in the SOA para-
digm. The following two subsections propose how these two models can be represented in
XML documents that a Web Service observer can process to detect functional misbehaviors.
Subsection 5.2.3 discusses the functional behavior’s specifications for composite Web Ser-

vices using BPEL.

57

Description of the functional aspects

5.2.1 FSM

The FSM model has been used for many decades for modeling the behavior of communica-
tion protocols [24]. As mentioned earlier in Section 2.5.2, it is an appropriate concept to
formally represent control part of systems which leads to the detection of classes of faults. In
our case, we will address the following classes of faults: input faults (IF) and output faults
(OF).

An FSM can be represented as an XML document as illustrated in Figure 5.3. The root
of the document (/4772) has an attribute (72272¢) and a set of children which represents states.
The name is a textual description of the machine or its associated Web Service. Each child
has a name, the attribute (77222224, and a set of 27275127075, The name is a textual description
of the state while the attribute (initial), if set to YES, specifies that this is the initial state of
the machine. A transition has four attributes: /2D, smpns, ontput, and rexs. The first attrib-
ute is a textual description of the transition; the second attribute identifies the event that
triggers this transition if the machine is in the associated state; the third attribute is the out-
put generated by firing that transition; and the last attribute specifies the state that the ma-

chine will reach after firing the transition.

5.2.2 EFSM

EFSM is a richer model than FSM since it allows the expression of data such as variables
and parameters. In an EFSM model, input and output events are parameterized and carry
data that transitions manipulate in addition to local variables. Since an EFSM model is an

extended version of FSM models, the XML representation of an EFSM model extends the

58

Web Services’ Behavior Description

XML representation of an FSM model (Figure 5.3) with two attributes: pre@zcate and s-

szgnmenss. The first attribute indicates a Boolean expression that should evaluate to TRUE

in order to fire this transition. The second attribute represents the set of data manipulation

to be performed while firing the transition.

<fsm name="Name of FSM/Web Service">
<state name="Statel" initial="YES">
<transition ID="t1” inpur="Inputl"” output="Outputl" next="State2"/>
<transition ID="t2" inpur="Input2" outpur="Output2" next="State3"/>
</state>
<state name="State2" initial="NQO">
<transition [D="t3" inpur="Input3" outpur="Output3" nexr="State3"/>
</state>
<state name="State3" initial="NO">

<transition ID="t4" inpur="Inputd"output="0utputd" nexr="State2"/>

</state>

</fsm>

Figure 5.3 XML representation of an FSM machine

FSM and EFSM machines are generally manually generated from initial specifications.
However, there have been many works to help in automatic generation from certain specifi-

cation languages. While this generation is out of the scope of this thesis, the reader can refer

to some of these methods in ([92], [93], [94], [95], [96], and [97]).

59

Description of the functional aspects

<efsm name="Name of EFSM/Web Service">
<state name="Statel" initial="YES">
<transition ID="t1"
input="Inputl"
predicate="true"
assignments="x:=0;y:=0;z:=0"
output="Outputl”
next="State2"/>
</transition>
<transition ID="t2"
input="Input2"
predicate="X<3"
assignments="x:=2;y:=7"
output="Output2"
next="State3"/>
</transition>
</state>

</efsm>

Figure 5.4 XML representation of an EFSM machine

5.2.3 BPEL

When the WSUO is a composite Web Service, its BPEL description provides complete in-
formation on how the WSUO is supposed to behave. BPEL, based on XML, can be used to
specify business processes and business interaction protocols. A BPEL process defines clear-
ly its interactions with its partners: its client and its basic Web Services. In general, a BPEL

process defines the following tags as depicted in Figure 5.5.

60

Web Services’ Behavior Description

<process ...>

<partners>

</partners>

<containers>

</containers>

<correlationSets>

</correlationSets>

<faultHandlers>

</faultHandlers>

<compensationHandlers>

</compensationHandlers>
<l!-- Activities -->

</process>

Figure 5.5 Structure of BPEL process

= Partner: this element defines partners of the BPEL process. These include the
client and basic Web Services this process interacts with.

* containers: this defines the data used by the process for internal computations,
to pass information to partners, etc

= correlationSets: this tag is used to support asynchronous interactions so that re-

quests and responses can be correlated.

61

Description of the functional aspects

* Fault Handlers: this defines a fault tolerant capability of BPEL in which a proc-

ess can specify the code to execute when, for example, undoing an action that

failed or whenever asked to rollback.

Activities: this is the main element in a BPEL process. It specifies what the process ac-

tually does, both internal behavior and interactions with partners. An activity can be one of

the following actions: invoke, receive, reply, assign, wait, throw, compensate, terminate, flow,

switch, while, sequence, and pick.

Figure 5.6 shows a BPEL process and four partners and Figure 5.7 shows a scenario

where this process receives a request from partnerLink client. It has to invoke partnerLink

“Basic1” to satisfy this request, assign appropriate variables, and then return a response to

the client.

[

Basic Web Service 1
(partnerLink=Basic1)

Basic Web Service 2
(partnerLink=Basic2)

BPEL Process

Basic Web Service 3
(partnerLink=Basic3)

Client
(partnerLink=client)

/

Figure 5.6 BPEL process with partnerLinks

62

Web Services’ Behavior Description

<sequence name="main">
<!-- Receive input from requester -->
<receive name="receivelnput" partnerLink="client"
portType="tns:Composed BPEL" operation="process"
variable="input" createlnstance="yes"/>
<!-- Assign appropriate variables -->
<assign name="assign-1">
<copy>
<from expresion="concat(bpws:getVariableData(
"input’,'payload’,
'/tns:Composed BPELRequest/tns:input'), ' ')">
</from>
<to variable="output" part="payload"
query="/tns:Composed_BPELResponse/tns:result"/>
</copy>
</assign>
<!-- Invoke basic Web Service -->
<invoke name="invoke-1" operation="process 0"
inputVariable="in"
outputVariable="out"
partnerLink="Basicl"
portType="ns0:Basic_Soap"/>
<l-- Return result to requester -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Composed BPEL"
operation="process"

variable="output"/>

</sequence>

Figure 5.7 Example of BPEL activities tag

63

QoWS aspects
A BPEL process defines behavior of the WSUO with the client and its behavior with its

basic Web Services. Operations receive and reply defines invocation of the composite Web
Service by the client and the operation invoke defines its interactions with its basic Web Ser-
vices. FSM and EFSM models can be derived from a BPEL process for both sides of inter-
actions (basic Web Services and client).

Once the functional aspect of Web Services’ behaviors have been specified as FSM or
EFSM machines, the non-functional aspects (QoWS) must be specified too. The next sec-
tion discusses how this information can be defined and represented in such a way it can be

handed to an observer.

5.3 QoWS aspects

QoWS consists of a set of factors or attributes such as processing time, response time, reli-
ability, availability, accessibility, etc. In SOA, a lot of work is taking place to allow both Web
Services’ providers and their clients to define and concisely use QoWS description to enable

publication, discovery, and usage of QoWS attributes.

5.3.1 QoWS attributes

The first step in extending SOA with QoWS is the definition of its attributes. In this thess,
we will focus on the following attributes:

* Processing Time (PT): this is a measure of the time a Web Service takes between

the time it gets a request and the moment it sends back the corresponding re-

sponse. PT is computed at the Web Service’s provider side.

64

Web Services’ Behavior Description

Maximum Processing Time (MxPT): this is the maximum time the Web Service
should take to respond to a request.

Minimum Processing Time (MnPT): this is the minimum time the Web Service
should take before responding to a request. Unlike PT which is a dynamically
computed attribute, MnPT and MxPT are statically defined and: MnPT < PT <
MxPT.

Response Time (RT): it consists of the time needed between issuing a request and
getting its response. It is measured at the client’s side to include the propagation
time of requests and responses.

Maximum Response Time (MxRT): this is the maximum accepted time, for the
client, between issuing a request and getting its response.

Minimum Response Time (MnRT): this is the minimum time, for the client, be-
tween issuing a request and getting its response. This attribute in unlikely to be
used since the client is usually more interested in MxRT. For the client: RT <
MxRT must always be satisfied.

Availability: this is a probability measure that indicates how much the Web Ser-
vice is available for use by clients. It can also consist of the percentage of time
that the Web Service is operating,

Service Charge (SO): for accounting management purposes, this attribute defines
the cost a client will be charged for the Web Service’s utilization. SC can be esti-

mated by operation, type of requests, period of utilization, session, or by volume

of data.

65

QoWS aspects

Reputation: this is a measure of Web Services’ credibility. It depends basically on
previous end users’ experiences while using the Web Service. Different users may
have different opinions on the same Web Service. The reputation value can be

given by the average ranking given to the service by several users.

MnPT, MxPT, availability, and SC are related to profiles of users of the Web Service.

This profiling is based on the type of subscriptions of users and/or the QoWS they are pay-

ing for. For example, a gold-subscribed (MnRT = 0) user must be served quicker than a

bronze-subscribed user (MnRT > 1ms).

Specification of the QoWS attributes discussed above allows the detection of the follow-

ing misbehaviors:

MxPT violation: if the Web Service does not respond before this duration expires,
it’s considered as a violation.

MnPT violation: if the Web Service responds before MnPT duration expires, it’s
considered as a violation.

MxRT violation: if the client is still waiting for a response after MxRT time unit,
this is considered as a violation.

MnRT violation: if the response arrives before MnRT expires, it’s considered as a
violation.

RT violation: whenever RT becomes higher than MxRT, a QoWS violation is de-
tected.

SC violation: the client should pay for the used Web Service and the associated

profile; otherwise, the manager should be notified about this violation.

66

Web Services’ Behavior Description

In order to detect QoWS violations, an observer must have detailed information on dif-
ferent attributes defined above. This information can be handed to the observer in different
ways: in a dedicated document, embedded with functional behavior specification, or as part

of the WSDL document. These possibilities are discussed in the following sub-sections.

5.3.2 QoWS attributes in a dedicated document

When the manager of the Web Service is only interested in QoWS management, it is appro-

priate to hand this information in a dedicated document. The size of this document will be

as minimal as possible and the time required by the observer to process it will be reduced.
Figure 5.8 shows and example of specification of some QoWS attributes in a dedicated

XML-based document. For each operation and profile, QoWS attributes are defined.

67

Qo WS aspects

<QoWS name= “Name of Web Service”>
<Profile name="GOLD"”>

<operation name= “opl”

MnPT = NULL
MxPT = [0ms
SC= “310”

</operation>

<operation name= “op2”

MnPT = NULL
MxPT = 50ms
SC= “360”
</operation>
</Profile>

<Profile name="SILVER”>

<operation name= “opl”

MnPT = [0ms
MxPT = 30ms
SC= “85”

</operation>

<operation name= “op2”

MnPT = 20ms
MxPT = 80ms
SC= “340”
</operation>
</Profile>

</QoWS>

Figure 5.8 QoWS specification in dedicated document

68

Web Services’ Behavior Description

5.3.3 QoWS specification embedded with functional behavior

Incorporating the specification of QoWS attributes into the specification of the functional
behavior of the Web Service is practically efficient when the manager is targeting both func-
tional and QoWS monitoring. In fact, the observer will get one document from which it
builds a complete view of the expected behavior of the Web Service, regarding both func-
tional and QoWS aspects.

Figure 5.9 shows how an FSM model can be extended to reflect QoWS attributes. We
will designate the new model by FSM+. For each transition, different QoWS are specified
for different profiles. The same approach can be used to incorporate QoWS attributes into

EFSM models.

5.3.4 QoWS attributes in WSDL

Discovery and selection of Web Services might be based on QoWS offered by providers and
required by clients. Many providers are likely to offer Web Services providing similar func-
tionalities; however, with quite different QoWS attributes (how much time is it available?
How cheap/ expensive it is? What are its PT, MnPT, and MxPT?).

To allow QoWS-aware discovery and selection of Web Services, QoWS attributes should
be available within the WSDL document. The client indicates preferences in terms of Qual-
ity of Service when issuing a FIND inquiry to the registry. The registry returns as a result a

list of available Web Services providing functional operations with required QoWS.

69

QoWS aspects

<fsm+ name="Name of FSM/Web Service">
<state name="Statel" initial="YES">
<transition input="Inputl"
output="Output1"”
<Profile name="GOLD ">

MnPT = NULL
MxPT = 10ms
SC= “8§10”
</Profile>
<Profile name="SILVER”>
MnPT = [0ms
MxPT = 30ms
SC= “8§5”
</Profile>

</transition>

</state>

</fsm+>

Figure 5.9 FSM+ specification

WSDL documents are required for observation of their associated Web Services (section
5.1). Additionally, the observer can get QoWS attributes’ values from the WSDL document
whenever QoWS-aware Web Services are being observed.

Figure 5.10 illustrates embedded QoWS attributes in the definition of the operation tag

within the WSDL document initially presented in section 5.1.

70

Web Services’ Behavior Description

<7xml version="1.0" encoding="UTF-8"7>
<wsdl:portType name="ConferenceService">
<wsdl:operation name="addUser" parameterOrder="userAddresse callID">
<wsdl:input message="intf:addUserRequest" name="addUserRequest"/>
<wsdl:output message="intf:addUserResponse" name="addUserResponse"/>

<Profile name="GOLD">

MnPT = NULL
MxPT = 10ms
SC= “$10”
</Profile>
<Profile name="SILVER">
MnPT = 10ms
MxPT = 30ms
SC= “§5”
</Profile>

</wsdl:operation>

</wsdl:portType>

Figure 5.10 QoWS in WSDL document

5.4 Summary

Misbehavior detections are based on information available to the observer. This information

must define, unambiguously, the expected behavior of the observed Web Service. Expected

behavior covers both functional and QoWS aspects.

In this chapter, we proposed a set of possible descriptions that can be used to offer the

needed information on Web Services’ expected behaviors to observers. First, we demon-

strated that we can obtain information from WSDL on available operations within a Web

71

Summary

Service and their precise data type signatures. Second, we presented XML representations of
FSM and EFSM models for specification of functional behavior. Finally, we showed how
QoWS attributes can be specified as an extension FSM/EFSM machines, as a dedicated
document, or embedded to WSDL.

In the next chapter, we will study different mechanisms for traces’ collection. We will al-
so discuss the overhead introduced by different components of the management architec-

ture.

72

Chapter 6

Management Architecture for Simple Web Services

The difference between practice and theory
is a lot bigger in practice than in theory -
Peter van der Linden

The main objective of passive observation is misbehavior’s detection. To do so, we need to
collect traces at appropriate points of observation and analyze them with respect to the spe-
cified behavior. This chapter is dedicated to the study and comparison of mechanisms that
allow efficient collection of traces. The comparison is based on some criteria such as net-
work load, availability of resources, and required participation from different actors. In this
chapter, we will also evaluate the effectiveness of the management architecture in terms of

misbehavior’s detection through a real case study of a non-composite Web Service.

6.1 Communication between components

One of the design keys to investigate in a passive observation context is how to provide the
observer with all exchanged request/response sequences. The mechanisms that can be used
depend essentially on who is interested in the observation: the client, the provider of the
Web Service, or a third party; and also on the location of the client, the Web Service, points
of observation, and/or the observer. What might be the overhead of the proposed mecha-

nism and the feasibility of such mechanism in that particular context?

* Results from this chapter have been published in [85] and [86].

Management Architecture for Simple Web Services

Potential solutions range from multicast addresses to sniffer-like dispatcher, and can be
divided into two main groups: fired code and mobie code. Fixed code mechanisms in-
clude instrumentation of the client and/or the Web Service, multicast, SNMP
agents/ managers, and dispatchers. Mobile agents are an example of mobile code approaches
that can be used for traces’ collection. These mechanisms differ in their specific require-

ments (resources, configuration...) and generated overhead (CPU and network load).

6.1.1 Client/Web Service instrumentation

The easiest way to forward exchanged traces to the observer is through participation of the
Web Service, its client, or both of them. For example, if the observation is requested by the
client and the source code of the client application is available, few lines of code can be add-
ed to duplicate all sent requests and received responses and send them to the observer
(Figure 6.1). This approach, however, supposes that the source code of the Web Service or
the client application is available and the provider or the client is willing to instrument 1t in
order to participate in the observation. Such types of Web Services are designed with test
and observation capability that can be enabled/disabled when needed. This technique is

known as Design for Testability.

74

Communication between components

~

Web Service Under
Observation

Client

10
es covect
(3C

Observer

Figure 6.1 Client’s instrumentation for traces' collection

6.1.2 Multicast

Multicast communication is another possibility wherever multicast routing features are sup-
ported. In this type of communication, hosts can join or leave a multicast address and those
who joined will receive the traffic related to that multicast address.

When the communication between a Web Service and a client is monitored, they can
send their packets to a multicast addresses rather than unicast addresses. The observer, Web
Service, and its client can subscribe to the same multicast address. Using this multicast ad-
dress, the observer will get a copy of all exchanged request/response pairs (Figure 6.2). The
observer leaves the multicast addresses once the observation period ends. This solution sup-

poses that the network infrastructure supports multicast traffic.

75

Management Architecture for Simple Web Services

-

Web Service Under
Observation

Multicaét Client

“Router

Observer

Figure 6.2 Multicast for traces' collection

6.1.3 Dispatcher

This solution is quite similar to the multicast approach and makes use of sniffers-dispatchers
(spy or man-in-the-middle) (Figure 6.3). Such dispatchers sniff the traffic on the network,
duplicate and then forward to the observer all messages to/from a specific host (Web Ser-
vice and/ or client).

Dispatchers can operate at two different levels: IP level and TCP level. Even if a stand-
alone application can be developed for IP-based dispatcher, most of actual routers and fire-
walls can be easily configured to perform this task. Traces retrieved by an IP-based dis-
patcher will be quite big since they are sniffed at a low level. Moreover, the observer must

process these traces (IP packets) to figure out invocations’ information (SOAP messages).

76

Communication between components

~

Web Service Under
Observation

Dispatcher Client

Y

Observer

Figure 6.3 Sniffers-Dispatchers for traces' collection

To use a TCP-based dispatcher, the client should address requests to the dispatcher and
not to the Web Service. The dispatcher forwards the request to the Web Service and a copy
to the observer. When responses are received, they are sent to the client and copied also to
the observer. Since TCP is a connection oriented transport protocol, a TCP-based dispatcher
cannot be used for communication already in progress between the Web Service and the cli-
ent. It can only be used for new invocations of Web Services.

It should be noted that operations of both IP-based and TCP-based dispatcher are
transparent to the Web Service and the client. In fact, SOAP messages are carried by HT'TP
which is based on TCP. SOAP infrastructure does not deal with establishment/termination
of connections. However, TCP-dispatcher introduces a delay that is usually very small com-

pared to processing time and response time.

6.1.4 SNMP

SNMP can be used as a way to collect traces. This mechanism makes use of the Management

Information Base (MIB) located at the client and/or the Web Service side. Whenever a new

77

Management Architecture for Simple Web Services

event is added to the MIB?, an SNMP agent sends it in an unsolicited trap to the observer.
The observer acts exactly as an SNMP manager in this configuration. Figure 6.4 shows an
MIB and SNMP agent located at the client’s side.

The SNMP mechanism requires a complete MIB and an agent. Usually, the MIB con-
tains information on actual status of the managed application and, in the best case, a subset
of exchanged information. For SNMP-based traces’ collection, the MIB must hold all invo-

cations with their parameters.

@ —)

Web Service Under
Observation

Bind Client

Observer

Figure 6.4 SNMP agents for traces' collection

2 There is a language misuse when we say that the agent or the application writes/ reads to/from the MIB. The
MIB describes, in ASN.1 notation, information on managed objects. Effective values and log entries are how-
ever written/ read to/from a dedicated file/ database.

78

Communication between components

6.1.5 Mobile code

In the mechanisms presented above (sections 6.1.1 to 6.1.4), management capabilities are all
put in the Web Service observer provider’s side, and the problem to solve was to collect and
move traces to the observer. If the WSO is located far away from the point where the traces
are being collected, the effectiveness of these mechanisms might be affected by the perform-
ance of the overall network. Congestions and network links’ failures can stall management
procedures of the management architecture.

A completely different approach is to move the observer itself to the Web Service/client
side instead of forwarding traces. This is made possible by using mobile agent technologies
[98]. The WSO, when invoked, can generate and send a mobile agent to the calling mobile
platform. For example, if the Web Service’s provider invokes the WSO, a mobile agent will
be sent back. This agent observer will reside on the same local network, but not necessarily
on the same node as the Web Service. The agent observer can then get traces Lcz/y using
one of the previously presented mechanisms (Subsections 6.1.1 through 6.1.4).

This approach requires a mobile agent platform to be available but the Web Service itself
does not have to be running on a mobile platform. The mobile platform can reside on an-
other node within the network as long as it can access exchanged traces. The network load in
this case is low and is limited to the mobility of the mobile agent (independent from the size

of traces).

79

Management Architecture for Simple Web Services

6.1.6 Discussion

Deciding on what traces’ collection mechanism, from previously presented, to use depends
on many factors. First of all, the availability of a specific mechanism is necessary for its utili-
zation.

Dispatchers can be provided by the provider of the Web Service observer. The manager
will then deploy and configure 1t in an appropniate location in the network. Client or Web
Service instrumentation cannot be used unless the source code is available and can be modi-
fied, re-compiled, and re-deployed or designed from the beginning with the desired capabil-
ity. The multicast approach is possible if the network infrastructure supports multicast rout-
ing and the observer, as well as the client, the Web Service can join and leave multicast ad-
dresses. The SNMP mechanism requires a complete MIB and an SNMP agent. While SNMP
agents are more or less easy to develop and deploy, a complete MIB must be designed and
deployed. A complete MIB holds all and every interactions and its parameters between the
Web Service and its client. For example, if the invocation returns a huge file, the MIB should
keep trace of this file. Mobile code requires a mobile platform which can be downloaded and
configured offline.

In the case where all mechanisms are available, their comparison can be based on five
criteria: CPU and memory utilization, level of participation of client and/or Web Service’s
provider, required changes to client and/or Web Service source code, generated network
load, and additional delay. Section 6.2.4 gives an experimental evaluation of each of these

criteria for all mechanisms.

80

Case study

The next section presents an implemented case study where our management architec-
ture has been used. It will also discuss the overhead introduced by management operations
and the effectiveness of the management architecture in detecting misbehaviors. In this first
prototype, we focus only on functional behavior; QoWS issues will be considered in the case

study presented in the next chapter (Chapter 7).

6.2 Case study

To illustrate the applicability of our management approach, a Call Control Web Service [99]
exposing some of the functionalities of Parlay/Call Control [100], has been observed using
FSM models. This Web Service provides mainly the conferencing parts of the parlay specifi-
cation. For the sake of this experimentation, all traces’ collection mechanisms are imple-
mented and evaluated except multicast and IP-based dispatchers. Multicast routing is not
widely supported in networks; which reduces the possibility of its utilization for traces’ col-
lection. As explained above, IP-dispatchers are more complex and generate bigger traces
since they operate at a low level.

Table 6.1 presents the functionalities that the Call Control Web Service, deployed on
Ericsson Application Server, exposes at a high level of abstraction [99]. The first column
shows a description of the Web Service functionalities and the second column shows the

corresponding published interface:

81

Management Architecture for Simple Web Services

Table 6.1. Exposed functionalities and their corresponding published interfaces

Functionality Published interface
Initiate a dial-out conference with n users initiateConf
Add users to an ongoing conference addUser
Move users from a conference to its sub- moveUser

conferences or from a sub-conference to another

sub-conference

Remove users from an ongoing conference removeUser
Initiate sub-conferences initiateSubConf
End sub-conferences endSubConf
End conferences endConf

The XML document describing the FSM machine is illustrated in Figure 6.5 and its

graphical representation in Figure 6.6.

82

Case study

<fsm name="Call Control">

<state name="Config" initial="YES">
<tranmsition inpur="config Invalid"
<tramsition inpur="config_Valid"

</state>

<state name="1dle" initial="NQO">
<tramsition inpur="initiateConf Invalid"
<transition input="initiateConf Valid"

</state>

<state name="Ready" initial="NO">
<transition input="endConf_Valid"
<transition input="endConf Invalid"
<transition input="addUser_Valid"
<transition inpur="addUser_Invalid"
<transition input="removeUser_Valid"
<transition inpur="removeUser_Invalid"
<transition inpur="moveUser_Valid"
<transition inpur="moveUser Invalid"
<transition inpur="initiateSubConf Valid"
<transition inpur="initiateSubConf Invalid"
<transition inpur="endSubConf Valid"
<transition input="endSubConf Invalid"

</state>

</fsm>

output="FALSE" next="Config"/>
output="TRUE" next="Idle"/>

output="FALSE" next="Idle"/>

output="TRUE" next="Ready"/>

output="TRUE" next="1dle"/>

output="FALSE"

next="Ready"/>

output="TRUE" next="Ready"/>

output="FALSE"
output="TRUE"
output="FALSE"
output="TRUE"
output="FALSE"
output="TRUE"
output="FALSE"
output="TRUE"
output="FALSE"

next="Ready"/>
next="Ready"/>
next="Ready"/>
next="Ready"/>
next="Ready"/>
next="Ready"/>
next="Ready"/>
next="Ready"/>

next="Ready"/>

Figure 6.5 XML description of the Call Control FSM machine

83

Management Architecture for Simple Web Services

4)

config_Vatid / True
config_Invalid / False Config > Idle

initiateConf_Invalid / False

@
&
) N
% 8
>
Cg Q AN
3 < “/
\% £ S
A > g
z. el s
2 2 §
2 !
© ‘€
S
Q
B
i =
-
! e
sev ywatd ! Fals

i Ise gdy
bConf_nvalid / Fal a
Gnds:—f Ready

Figure 6.6 Graphical representation of the Call Control FSM machine

6.2.1 Web Service Observer

The Web Service Observer, developed on BEA WebLogic Server [2], offers 4 operations to
the manager: “initObserver”, “sendRequestToObserver”, “sendResponseToObserver”, and
“sendRequestResponse ToObserver”. The invocation is performed using the “initObserver”

interface by providing the observer with the FSM of the Call Control Web Service, time to

84

Case study

start observation, and time to stop observation. The observer then parses the XML docu-

ment and uses a special data structure to store the FSM. If the parsing succeeds, the observer

is then ready to process requests and responses messages. In our architecture, requests

stands for messages from the client to the Web Service and response for messages sent back
by the Web Service to the client. The trace’s collection entity has two options:

1. Send observed requests and responses separately to the observer using “sendRe-
questToObserver” and “sendResponseToObserver” interfaces, or

2. Combine a request and its response and send them using the interface “sendIn-

putOutput ToObserver”.
The observer checks the validity of each trace and returns a decision to the manager

whenever a functional fault is detected.

6.2.2 Client

A client application offers, through its graphical interface (Figure 6.7), the possibility to in-
voke any operation from those offered by the Call Control Web Service. For each operation,
the client can decide between a valid and invalid invocation. This selection is imposed by the
FSM-based observers, which do not consider data and are then unable to process parameters
of invoked operation and decide between valid and invalid parameters. As indicated by the
FSM machine in Figure 6.6, the Web Service should return the output “true” if the operation

is valid or “false” if the operation is invalid, otherwise a fault is detected.

85

Management Architecture for Simple Web Services

[adduser [F ndSubConf ']1{ EndConf |

;~Conferences

~ Allusers
. Simulate a conference faully

. Conference [w] Assign latter - or | Simmisiate 3 copferénte fauit VI

(o)

‘Observer's Decision t - =~

Input to Gbserver

Figure 6.7 Client application GUI

The client application is instrumented and can be used as a mean of traces’ collection. In
this case, the three text zones at the bottom of the GUI show requests, responses, and the

decision of the observer.

6.2.3 Detection capabilities

The following table reports some of the scenarios that have been executed with their ob-

served verdicts.

86

Case study

Table 6.2 Executed scenarios and their corresponding verdicts

Targeted op- Scenario (Valid/Invalid) Verdict Comments
eration
initiateConf Valid (With initial users) Pass
initiateConf Valid (List of initial users empty) | Fail No response and no
decision received from
the observer
initiateConf Invalid (wrong conference type Fail A dial out conference is
dial out/dial in) initiated, a fault is de-
tected
initiateSubConf | Valid Pass
initiateSubConf | Invalid (initiate a sub-conference | Pass The observer detects an
before initiating a conference) INPUT fault
addUser Valid Pass
addUser Invalid (add a user before initiat- | Pass The observer detects an
ing a conference) INPUT fault
moveUser Valid Pass
moveUser Invalid (move a user that does not | Pass
exist)
removeUser Valid Pass
removeUser Invalid (remove a user that does | Pass
not exist)
endSubConf Valid Pass
endSubConf Invalid (end a non-existent con- Pass The observer detects an
ference) INPUT fault
endConf Valid Pass
endConf Invalid (end a non-existent con- Pass The observer detects an

ference)

INPUT fault

87

Management Architecture for Simple Web Services

The “initiateConf” fails twice during observation. The first fault occurs when it’s in-
voked with an empty list of initial users, no response is received. The second fault occurs
when giving a conference type different than “dial out” (dial in for example) which has no
effect and a dial out conference is initiated in all cases. The first fault cannot be detected by
the FSM-based observer since the request was valid and no response is received even when
waiting for a long time. The second fault, to the contrary, is detected. In the scenarios when
the observer detects an INPUT fault, the FSM machine was in the “Idle” state. At this state,
the client can only initiate a conference. An INPUT fault states that the client requests an
operation from an invalid state. The Web Service passes all tests when an INPUT fault was
observed. After observing the Call Control Web Service, it seems that the Web Service, and
the Parlay gateway behind, is more or less well tested (with regards to the executed scenarios)

except for the two cases for which the Web Service fails.

6.2.4 Quantitative evaluation of the architecture

Our management architecture can be quantitatively evaluated using three criteria: pre-

observation configurations, processing CPU and memory utilization, and generated network

load.

6.2.4.1 Pre-observation configurations

The traces’ collection mechanisms presented in section 6.1 are more or less easily configur-
able. To instrument the client (or the Web Service), 4 basic java statements, in a try/catch
block have to be added to the code to initialize the observer. Moreover, to forward each

trace, 2 java statements, also in a try/catch bloc, are appended to the source code.

88

Case study

The TCP-dispatcher approach requires a light modification to the WSDL document of
the Web Service. The IP address/host name and the port number of the port tag (wsdl:port
tag in Figure 5.2) in this document should be replaced by the IP address and port number on
which the dispatcher is listening. The TCP-dispatcher is then configured as shown in Figure
6.8:

= Listen port #: this is the port on which the dispatcher is listening for requests
from the client. It should be the same as the port number in the updated WSDL
document.

* Web Service options: these are the IP address/host name and port number of
the Web Service; that is, the initial value from the WSDL document.

* Observer option: the IP address/hostname and port number of the Web Service
Observer. This information can be obtained from the WSDL document of the

WSO.

89

Management Architecture for Simple Web Services

stcher ...

" Create a hew TCP!IE Disp
Listen Poﬁ ¥ {__1__—2—5;1_::
| [Web Service Options ;
Hoﬁﬁérﬁe 132.205.100.102

Pot# - |7171 o

' _ [Observer Ogptions
" Hostname | 132.205.100.29
 Port# 8080 |-

[spater]

Figure 6.8 TCP-dispatcher configuration

Once configuration is finished, pressing the “Dispatch” button activates the dispatching

operations as illustrated in Figure 6.9.

90

Case study
- BX]

Dispatcher
| Contig! Port 1234

~Web Service = - g : e g B
: : o o , R U T Butestothe servics '+ 6932
m‘:;ﬁqu.mmz ; E Lo Bytestothe clent * 27488
. ; Bytes to the observer: 15358

~Requests from Client -
Accept: text/html, spplication/xml:q=0.9, application/xhtml+xml, image/png, image/jpeg, image/gif, image/x-xbitmap, */¥;qs0.l1
'Accept-Language: en-Ci,en;q=0.9

Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1

lAccept-Encoding: detlace, gzip, x-gzip, identity, *;q=0

Referex: http://132.205.100,102:1234/CallControlWeb/CallControl.jus?.EXPLORE=.TEST
Cookie: JSESSIONID=GyVMzhLLDXTKILTLZ24Mv1hugWOJrIf11g2CRSX0dLRNOb3QnDV3J!-1611635653
Cookie2: ¢Version=l
Connection: ALivi

~Responsas from WS ey
| EXpitesi Thu, 01 Jan 1970 000000 GHT

- Transfer-Encoding: chunked

Connection: Close

| 015b
<html><head><title>CallControlWeb</title></head>
<body bgcolor="#FFFFFF"> i
' Kp>It's now at http: //127.0.0.1:808(

3

| X/body></htal> .
< : ¥
Forwarded to the Observer

‘Accepc-tncodinq: deflate, gzip, x-gzip, identity, *;q=0 o

Referer: http://132.205.100,102:1234/CallControlUeb/CallControl. jus?.EXPLORE=, TEST
Cookie: JSESSIONID=GYVMzhLLDXTKILTL24MvlhwqWSJrJ£11lg2CRSx0dLRNCh3QnDY3J!-1611635653
Cookie2: §Version=l

Connection: Keep-Alive, TE

TE: deflate, gzip, chunked, identity, trailers

HTTP/1.1 Get Ok
Date: Fri, 15 Jun 2007 18:11:56 GMT
"Location: http://132.205.100,102:7171/TestWeb/CallControl.jws?.EXPLORE=,. TEST&. LOGENTRY=1

Figure 6.9 TCP-based dispatching

When using SNMP for traces’ collection, a complete MIB and an SNMP agent are re-
quired. The agent generates traps from a log file (MIB) and sends them to the Web Service
Observer (Figure 6.10). The log file should be maintained by the client or the Web Service

and the agent must be running on a node having access to this file.

91

Management Architecture for Simple Web Services

2 SNMP Agent

1

pot - [1234 I

Log tile: - 1xingF'roject\TrepGenerator\log.txt !r&mwsa .]

i { Sendtrap |. ergingtraps |
Sent traps;
Sent trap to 127.0.0.1:
enterprise 0ID: 1.3
agent address: 127.0.0.1
generic trap: 6
specific trap: 0
timestamp: 1181842195187
supplementary vars: (1.3 RequestlinitiateConfluserl@locationl|user2@location2|user3@location3|user4@locationd)

Sent trap to 127.0.0.1:

enterprise 0ID: 1.3

agent address: 127.9.0.1
generic trap: 6

gpecific trap: a

timestanmp: 1181842195281

supplenentary vars: {(1.3 ResponselinitiateConf|True }

No trap to send ...

SNMP Trap generator Verion 1.0, Abde!; Jully 2004

Figure 6.10 SNMP agent traces' collector

Designing the observer as a mobile agent requires a flexible mobile agent platform. The
Java Agent Development Framework [101] has been used. In addition to its open source
feature, its flexibility, ease of configuration and use justify its utilization in the design of our
mobile observers. The platform consists of a set of libraries (8 Java archive —jar- files) that
can be downloaded offline and executed. A mobile observer is illustrated in Figure 6.11
where the GUI shows received requests with their invocations parameters’ names, types, and
values (upper rows) and the output type of the corresponding response (lower rows). The

verdict of the observation is shown in the status bar (bottom of the window).

92

Case study

(Operationmme . NParametername.. INParametertype NPorametervake . . .1
New invocation 1:
initisteCont useri String user1@loceationt
user2 String user2@locetion2
I user3 String user3@location3
user4 String userd@locationd
Output ;
Operstionname.. . ..ol oo OUT Parameter type oot OMT Parametervalue . .ot ad
: Output of invocation 1:
Boolean True

| initisteConf
i

§
!
g
¥
|
!
|

Verdict : Valid RequestfRésponse sequence, Actual state: Ready

Figure 6.11 Mobile observer GUI

6.2.4.2 Processing CPU and memory utilization

Computer resources used by traces’ collection entities are somehow insignificant with re-

gards to the minimal standard configuration of actual personal desktops and laptops. Except

for the mobile agent approach, CPU and memory utilization are so low that they are even

difficult to evaluate.

For mobile observers, CPU and memory utilization on a laptop equipped with an AMD

Athlon 64/3000+ processor and 512MB RAM, CPU and memory utilization are as follows:

93

Management Architecture for Simple Web Services

Hosting a mobile platform: if the mobile agent administration interface is lo-
cated on the laptop, the CPU usage varies between 2% and 4%. For memory, it

uses around 30 Megabytes.

* Joining a mobile platform: if the mobile agent platform is running on a remote

computer, joining it requires 12 MBytes memory at the laptop and around 2
MBytes on the host running the administration interface. For CPU, there is al-
most no impact at both sides. A node can host a mobile observer if it is running a
mobile agent platform administration interface or is joining a running remote
platform.

Receiving a mobile observer: when a mobile observer is received, it requires
around 27 MBytes of memory. For CPU, there is a high utilization during 1 to 2
seconds while initializing and displaying the graphical interface of the mobile ob-
server, then the CPU utilization goes back to previous level.

Processing traces: even in the worst case, where traces are received with a very
small delay, the CPU used by the mobile observer for analyzing them is around

2%. However, there is no additional memory utilization.

6.2.4.3 Network overhead

For each request or response, a message is generated to the observer by invoking respec-

tively “sendRequestToObserver” or “sendResponseToObserver”. Except when using mo-

bile observers, passive observation doubles the traffic on the network due to traces’ collec-

tion. The two interfaces have one parameter each which is the event (request or response).

Due to its structure, a SOAP message carrying one parameter has almost the same size (from

94

Case study

a complexity point of view) as a SOAP message carrying two parameters. Combining the
two traces (a request and its response) using “sendRequestResponseToObserver” reduces
the overhead by almost 50%.

For client instrumentation and the dispatcher, each forwarded SOAP message has a size
of 2 Kbytes. If # denotes the number of requests/responses pairs, the overhead using “sen-
dRequestToObserver” and “sendResponseToObserver” is around 27 Kbytes. However, the
overhead is 7 Kbytes if the trace collection entity uses “sendRequestResponse ToObserver”.

In the SNMP mechanism, the size of each packet is between 150 and 200 bytes. If each
entry in the MIB (request or response) is sent in a separate packet, the overhead is between
0.15nand 0.2n Kbytes and half of it if using “sendRequestResponse ToObserver”.

The overhead associated with the mobile code mechanism is generated by moving the
mobile observer to the client or Web Service side. This operation generates a 600 Kbytes
overhead: the size of the mobile observer.

Figure 6.12 illustrates measures of the network load introduced by the observation using
the communication mechanisms presented above. Even with more or less big size of the
mobile agent, the mobile agent approach presents the lowest network overhead. This is due

to the fact that the observation traffic over the network is constant and independent from 7.

95

Management Architecture for Simple Web Services

12000 P
S 10000 —e— Client Instrumentation Option 1 |
>
S 8000 L —a— Client Instrumentation Option 2
£ SNMP
©
o 6000 -y Dispatcher Option 1
|
x 4000 —x— Dispatcher Option 2
E .
= 2000 —e— Mobile Agent
= 3
0 ‘
0 500 1000 1500 2000 2500 3000
Number of request/response

Figure 6.12 Network load measures for traces’ collection mechanisms

If the number of request/response pairs is less than 2000 request/response, only the
SNMP mechanism generates less or similar overhead as the mobile code approach. For re-
quest/ response pairs exceeding 2000, the load generated by the SNMP mechanism contin-

ues to grow while the load introduced by the mobile code mechanism remains constant.

6.2.5 Discussion

Comparison of traces’ collection mechanisms discussed in previous sub-sections can be
based on 5 criteria: CPU and memory utilization, participation of client and/or Web Ser-
vice’s provider, required changes to client and/or Web Service source code, generated net-
work load, and possible introduced delay. The first criteria can be neglected since CPU and
memory required resources are somehow low for all mechanisms. Remaining criteria are

shown in Table 6.3:

96

Summary

Table 6.3. Characteristics of Traces' collection mechanisms

Criteria| Client/Web Ser- Changes re- Network Time Delay
vice’s provider quired to cli- Load
) participation ent/service
Mechanism
Client In- High High High None
strumentation
SNMP Low or None Low or None Medium None
Dispatcher Low None High Low
Mobile ob- Low None Low None
server

The mobile observer approach seems to be a good strategy for passive observation. First
of all, participation of the client/Web Service’s provider is limited to hosting a mobile plat-
form. The latter can be downloaded offline and easily configured. Second, it generates the
lowest network load for more than 2000 pairs of request/response. Since the number of re-
quest/ response pairs for a Web Service will be higher than 2000, we can conclude that mo-
bile agents, whenever their utilization is possible, are the most suitable mechanism for com-
munication between different components of the observation architecture. For this reason,

mobile observers will be used in the remaining chapters of this thesis.

6.3 Summary

In this chapter, we studied potential traces’ collection mechanisms. We proposed and com-
pared different approaches through a real case study. This comparison leads to the consid-

eration of mobile observers as the best mechanism for traces’ collection. This experimenta-

97

Management Architecture for Simple Web Services

tion allowed also an evaluation of the effectiveness of the management architecture in terms
of misbehaviors’ detection.

The study performed in this chapter covers all aspects for passive observation of a basic
Web Service. However, it does not support management of composed Web Services. This

will be thoroughly studied in the next chapter.

98

Chapter 7

Observation Architectures for Composite Web Services

The whole is often more than the sum of its parts -
Aristotle

Web Services can be developed following two directions: built from scratch or based on
composition using already available Web Services. The second approach aggregates existing
Web Services to create a more complex Web Service providing a richer range of functional-
ities. As discussed in section 2.2, few description languages are used for Web Services com-
position. Among them, BPEL is gaining a lot of interest and becoming a standard for com-
position of Web Services.

Management of composite Web Services may require a multi-observer architecture as
discussed in section 4.1.3 and illustrated in Figure 4.3. This type of architectures offers to
manage, in addition to the composite Web Service, the basic Web Services participating in
the composition.

The study and experimentation conducted and exposed in the previous chapter showed
that mobile observers generate the lowest overhead. When managing a composite Web Ser-
vice and its basic Web Services, the number of observers and location of points of observa-
tion affect the effectiveness of the architectures in terms of misbehaviour detection and net-

work load. Locations of observers have an impact on the generated overhead. For example,

* Results from this chapter have been published in [86], [87], [88], [89], [102], and [103].

Observation Architectures for Composite Web Services

network load is different if all observers are located within the same network or scattered at
many locations.

This chapter is dedicated to management of composite Web Services. The chapter is di-
vided into four sections: the following section presents the required procedure to make use
of the management architectures. The second section studies different locations where mo-
bile observers can be hosted and how these locations affect its effectiveness. It gives also a
set of heuristics to decide on the number of observers. Section 7.3 presents examples of al-
gorithms that observers must implement. Section 7.4 uses a case study of a composite Web
Service to assess the multi-observer architectures. Some QoWS aspects will be observed in

addition to functional behaviour.

7.1 Procedure

Observation of composite Web Services is performed in two main steps. The first step con-
sists of the configuration of observation components (global and local observers), and the
second step is misbehaviours’ detection.

Observation is initiated by invocation of the WSO. After a successful invocation, the
WSO generates a set of mobile agents and sends them to the location(s) specified during in-
vocation. The number of generated mobile observers depends on a set of parameters as will
be discussed in section 7.2. Once the mobile observers reach their target locations, one of
them becomes the global observer, others are local observers.

The local observers must inform the global observer of their locations and which Web
Services they are observing. At that point, all the components of the architecture are ready to

start observation at the time specified during the invocation. This observation will last at the

100

Number and locations of mobile observers

time specified, also, during invocation. Whenever misbehaviours are observed, local ob-

server(s) report to the global observer who reports to the WSO.

7.2 Number and locations of mobile observers

Observing composite Web Services necessitates additional information compared to obser-
vation of simple Web Services. First of all, the global observer must have access to the
BPEL document of the composite Web Service. Second, since observation of composite
Web Services requires also the observation of all or a subset of basic Web Services, the list
of these should be handed to the WSO at invocation.

One of the design keys to be studied is the number of observers. In some cases, observ-
ing all basic Web Services might be costly and useless. A complete observation might gener-
ate redundant information which is overwhelming observers and network. In partial obser-
vation, the observation of a sub-set of Web Services, for example those that represent the
core of the composition can be sufficient from misbehaviours’ detection point of view.
However, 1n partial observation, not all misbehaviours can be detected since some of them
can be tolerated or even compensated by interacting Web Services. Thus, before initiating
observation, the list of Web Services to observe is built.

An important criterion in selecting Web Services to observe is the number of interac-
tions between the composite Web Service and a specific basic Web Service. This information
can be drawn from the BPEL document. If a Web Service has few published interfaces and
is invoked few times while others are invoked very often, observing the latter Web Services
can be more appropriate than observing others. Another criterion is the complexity of a ba-

sic Web Service which can be derived from its behaviour’s specification. More behaviour’s

101

Observation Architectures for Composite Web Services

specification of a Web Service is complex (number of states, number of transitions ...),
higher is (or might be) the necessity for its observation.

Statistics on previous detected misbehaviours is another criterion. If faults occurred in a
Web Service a certain number of times, a periodic observation of this Web Service might be
a wise decision.

Selection of Web Services to observe can be implied by preferences of the composite
Web Service’s provider. These preferences might depend on the importance a basic Web
Service is playing in the composition and/or the tolerance of the composite Web Service to
some specific faults generated by some specific Web Services. The preferences can be trig-
gered also after modification and/or maintenance operations performed on one of the basic
Web Services or the composite Web Service itself.

Generally, observation of composite Web Services requires then the following informa-
tion and resources:

» List of Web Services to observe

= Behaviours’ specifications of these Web Services (BPEL, FSM, FSM+, EFSM...)
* Their WSDL documents

* Hosts of mobile observers

The information and resources required for observation can be gathered through par-
ticipation of involved Web Services’ providers: the composite Web Service provider, provid-
ers of basic Web Services, or from both. We designate these types of participation, respec-
tively, as composite Web Service providers partaipation, basw Web Serveces proved-

o5 partwpation, and bybrd particpation.

102

Number and locations of mobile observers

These three types of participations imply three variants of the multi-observer architec-

ture as will be shown in sections 7.2.1,7.2.2, and 7.2.3.

7.2.1 Composite Web Service provider’s participation

In this participation, the provider of the composite Web Service provides all required infor-
mation and resources necessary for the observation. This kind of participation is completely
transparent to basic Web Services and their providers. All observation activities are per-
formed within the composite Web Service provider’s side and basic Web Services’ providers
never notice that such observation is actually taking place. All mobile observers (local and
global) are located in the same domain or even the same node as illustrated by Figure 7.1.
Moreover, this participation has a multitude of strengths. Due to the cloning nature of
mobile agents, the WSO sends only one mobile observer to the composite Web Service pro-
vider’s side instead of a separate mobile observer for each Web Service to be observed. This
mobile observer will clone itself once it gets into its hosting location. Doing so reduces sig-
nificantly the traffic generated by moving mobile observers. If 7 is the number of Web Ser-

vices to be observed, the complexity of the introduced load goes down from ©(mj o ©/(1).

103

Observation Architectures for Composite Web Services

(" e A

Service 2
Observer
2
mposite .
Obsgrver Web Client
Service
Observer
1
Web
Service 3
Web Services communication *——*
Observers communication an o ¢ amp o ¢ e

\Traces’ collection - J

Figure 7.1 Composite Web Service’s provider participation

The network load that will be introduced by the cooperation of observers to detect and
locate misbehaviour is limited to in-site load, that is, within the provider’s domain where all
observers are located. Nowadays, local networks (e.g. switched Ethernet) offer huge band-
width and the complexity of this load can be considered as (7). Synchronization of observ-
ers is also easier than if observers were scattered between many sites.

The weakness of the composite Web Service’s provider participation is that all informa-

tion and resources should be within one Web Service provider. This provider also hosts all
104

Number and locations of mobile observers

the mobile observers, thus requiring more resources. This weakness can be ignored due to
the limited resources a mobile observer is consuming (see sections 6.2.4.2 and6.2.4.3), except
the need for a mobile platform which is required regardless of the number of mobile observ-

€rs.

7.2.2 Basic Web Services providers’ participation

Unlike the centralized participation presented in the previous sub-section, the basic Web
Services’ participation requires the participation of all providers of Web Services that have to
be observed, including the composite Web Service. Each provider supplies the WSDL doc-
ument and the behavior specification document of its Web Service and hosts the associated
mobile observer (Figure 7.2).

The monitoring activities are distributed among all observed Web Services as repre-
sented by the dashed areas in Figure 7.2, This distribution reduces the needed resources for
the observation between Web Services’ providers rather than centralizing them in one side.

The network load, in terms of extra packets, is the major weakness of this type of par-
ticipation. First, a mobile observer is generated and sent to each Web Service in the list of
Web Services to be observed. The complexity of the load in this is ©(m. The cooperation of
the observers introduces also another () network load since observers are in different lo-

cations.

105

Observation Architectures for Composite Web Services

Q& Service 3

7.

Web Services communication <__>

Observers communication D o o ume ¢ ¢ am

\ Traces’ collection > /

Figure 7.2 All providers’ participation

7.2.3 Hybrid participation

The hybrid participation is a compromise between the two kinds of participation presented
above. The participation is neither completely distributed over many sites nor centralized in

one site. The composite Web Service provider supplies a portion of the required information

106

Number and locations of mobile observers

and resources while a subset of the list of basic Web Services to be observed supplies re-

maining portions (Figure 7.3).

Web
Service 2 =

70y y /,//////////‘///I
"

L

Observer

"'l ,,/(/ 1

Web Services communication *——*

Observers communication -m ¢ o amp ¢ ¢ e

kl’races’ collection > /

Q

Figure 7.3 Hybrid participation

The above architecture can be a possible alternative when the provider of the composite
Web Service cannot provide all the information and resources and only a subset of basic
Web Services’ providers is willing to participate in the observation. Those basic Web Ser-

vices providers’ who accept to participate in the observation will supply information related

107

Observation Architectures for Composite Web Services

to their Web Services and host associated mobile observers. The provider of composite Web
Service supplies information for other basic Web Services.

The configuration of the hybrid participation ranges between the centralized and the dis-
tributed architectures, depending on how many basic Web Services providers’ are participat-
ing in the observation and how much. Thus, the complexity of the load generated by moving
the mobile observers ranges from ©(1) to ©(m) and for the cooperation of observers from

in-site load to ©(n. In the average, these complexities are around O(log 7.

7.2.4 Discussion

Architectures presented in 7.2.1,7.2.2, and 7.2.3 can be compared with regards to misbehav-
iors’ detection capabilities and generated network overhead.

In terms of misbehaviors’ detection, the three architectures presented above are equiva-
lent if traces’ collection mechanisms use a reliable communication mode (TCP or acknowl-
edgments for example). This equivalence is due to the fact that the points of observation are
unrelated to the location of observers (Figure 2.6, Figure 7.1, Figure 7.2, and Figure 7.3). In
such configuration, an observer of a specific Web Service has access to the same traces whe-
rever it is located. In Figure 7.3 for example, even if observer 2 is located at the composite
Web Service’s provider, it gets the trace collected at the provider of Web Service 2. More-
over, this trace is checked against the model of Web Service 2 no matter where it is collected
and analyzed.

Misbehaviors” detection can be impaired when using a non-reliable communication me-

chanism for traces’ collection. If a trace carrying a faulty interaction is lost and cannot be

108

Examples of Observers’ algorithms

recovered, the fault in this interaction will never be detected. In environments where lost
packet cannot be recovered (by forward error correction or retransmission for example), the
architecture in 7.2.1 is suitable. An approach where sequence numbers are used to detect
message loss is presented in section 7.4.

For network overhead, composite Web Service’s provider participation has the lowest,
basic Web Services’ providers participation has the worst, and the hybrid participation ranges
between them. This is basically implied by the number of mobile observers and traces that
have to transit over the network to their final destinations. More experimental network
overhead analysis is provided in section 7.4.6.

The next section gives examples of algorithms that must be implemented in observers.

These algorithms will be used in the case study of section 7.4.

7.3 Examples of Observers’ algorithms®

An overview of the algorithm for misbehavior detection is depicted in Algorithm 7.1. Both
global and local observers must implement this algorithm. Every observed event (request or
response) is checked against the expected behavior. Whenever a trace is not valid, the fault
should be purged and/or correlated to previous notifications. Otherwise, a fault notification

is generated.

3 Algorithms presented in this section are not exhaustive. They have been designed for the case study of section

7.4. Further development might be required for other situations.

109

Observation Architectures for Composite Web Services

Input : event e
Data : I Set of Input
Data : O Set of Qutput

// Event does not exist

if (e ¢ (I UO)) then

L return “UIF Fault detected”

// event is a Request

if (e € I) then

if (e not ezpected) then

L return “UIF Fault detected
if (signature of e is invalid) then

L return “ITF Fault detected®

else

// event is a Respomnse

if (e € O) then

if (e not expected) then

L return “UOF Fault detected

if (return type of e is invalid) then
L return “OTF Fault detected“

if (RT > MzRT) then
L return “MxRT Fault*

if (RT < MnRT) then
L return “MnRT Fault®

return ”Valid trace” /* if no fault detected before, the trace

is then valid *

Algorithm 7.1 Misbehavior detection

Whenever a fault is detected by a local observer, a notification is sent to the global ob-
server. Notifications must be purged before correlation. This is done through two methods:
purgeFinalNotification implemented by the global observer (Algorithm 7.2) and purgeLo-

calNotification implemented by local observers (Algorithm 7.3).

110

Examples of Observers’ algorithms

Input : fault f
Data : Fault Record (FR)

if (f e (UIF, TF, ITF)) then
wait for a response from the composite WS

if (fault detected by composite WS) then
| add f to FR

else
| correlate(f)

else

if (f is a OTF') then
wait for the reaction of the client

if (fault detected by client) then
| add f to FR

else
| correlate(f)

else

// f is a RT fault

| correlate(f)

Algorithm 7.2 Global purge

The main purging role is the ability of a receiver (client, composite Web Service, or basic
Web Service) to detect a faulty received request or response. When a local observer detects
an output fault, it notifies the global observer. It waits then for the reaction of the receiving
entity. If the response of the latter contains a fault indication (in the SOAP message), the
local observer informs the global observer. Otherwise, it sends a second notification to the

global observer requesting fault correlation and location (Algorithm 7.4).

111

Observation Architectures for Composite Web Services

Input : fault {
Data : Fault Record (FR)

// inform global observer about the fault
notify GO(ObserverID, f)

if (f e (UIF, TF, ITF)) then
wait for a response from the WS

if (fault detected by the WS) then
/* inform global observer that the WS detected the
fault */
notifyGO(ObserverID, “last Fault detected by WS”)
add f to FR

else
| notifyGO(ObserverID, “last fault pending for solve/correlation”)

else

// the fault is a OTF

wait for the reaction of the composite WS

if (fault detected by composite WS) then
/* inform global observer that the composite WS

detected the fault */

notifyGO(ObserverID, “last Fault detected by composite WS”)
add f to FR

else
| notifyGO(ObserverID, “last fault pending for solve/correlation”)

Algorithm 7.3 Local notification and purge

112

Examples of Observers’ algorithms

Input : fault
Data : Fault Record (FR)
Data : Resolved Faults RF

if (f can be associated to an element of FR) then
update FR

notify the Web Service Observer

return “fault correlated”

wait for a 27¢ notification // Fault pending or not from LO

if (f is pending) then
update FR

if (f € RF) then
listOfSuspects = associatedFaultyServices // previous f from

FR

else
L listOfSuspects = preceeding WS in BPEL

repeat
check traces and notifications regarding all WS in listOfSuspects

remove items from listOfSuspects whenever possible

until ((|listOfSuspects| == 1) || (remaining WS € listOfSuspects are
not Observed) || (no decision can be made))

update RF

update FR

notify the Web Service Observer

Algorithm 7.4 Correlation

A faulty response generated by a Web Service will be detected as an output fault by its
associated observer. It can also be detected as an input fault by the observer attached to the
receiving Web Service unless the latter is fault-tolerant. Both observers will generate fault
notification. The two notifications must be correlated since they refer to the same fault.

After receiving a notification from a local observer, the global observer associates it, if

possible, to a previous fault or notification and updates the fault records accordingly. It waits

Observation Architectures for Composite Web Services

then for a second notification for a specific period of time before initiating the search for
possible correlations. This starts by checking the fault records for previously detected faul.
If the same fault has been detected before, the list of suspected Web Services is updated with
the faulty Web Service(s) in the fault record. The list of suspects is then augmented by all
basic Web Services invoked before the notification. This list is derived from the “activities”
section of the BPEL document. Traces observed by the local observers of the Web Services
in this list are checked to find the faulty Web Service. This process is repeated until a faulty
Web Service is identified, remaining Web Services are not observed, or no decision can be
made due to a lack of information on behaviors.

In the next section, we illustrate the applicability and the effectiveness of the multi-
observer architecture through a motivating example of a composite Web Service for confer-
encing. The detailed requirements and steps for observation are depicted all along this ex-

ample.

7.4 Case study

In this section, we present our experiments using multi-observer architectures to observe a
composite Web Service. We experimented the three multi-observer architectures proposed
above; but in this section, we show scenarios from the experimentation of the hybrid Web
Service’s provider participation. However, a comparison of the network overhead caused by
the three architectures is given.

This section first introduces the case study, a composite Web Service and its basic Web
Services. Then it shows a situation where the observation of basic Web Services gives more

insights for misbehavior detection and identification. Finally, it presents implementations of
114

Case study

different components of the architecture and discusses results of experimentation with anal-

ysIS.

7.4.1 Case study description

For the end of year meetings, a general manager has to meet with managers from different
departments (e.g. Sales, R&D...). Managers are located in different locations and due to
their busy timetables, they cannot meet in a single location. A practical alternative is to per-
form these meetings in a series of teleconferences. Only managers are concerned and only
those of them that are in their offices can join a conference. This is implied by security issues
since confidential information will be exchanged during the meetings and communication
between different locations is secured (Virtual Private Network, VPN, for example). At the
end of each meeting, meetings’ reports must be printed and distributed among all partici-
pants.

The manager decides to use a “Conferencing Web Service” (CWS), a composite Web
Service, who performs all of the required tasks. In fact, it allows creation of conferences, add
and remove participants to conferences depending on their profiles and physical locations.
At the end of each meeting, the CWS submits the produced reports for printing. Once
printed and finalized, the paper version is distributed to appropriate locations.

The general manager is highly concerned with the environment in which meetings will be

carried out using CWS. He decides to make use of the management architecture to assess the

behavior of the CWS.

115

Observation Architectures for Composite Web Services

7.4.2 Web Services

To perform all these tasks, the CWS is a composition of the following basic Web Services:

Presence: this Web Service contains information on users’ profiles (name, ad-
dress, location, status, position, availability).

Sensors: this Web Service detects the physical presence of users.

Call Control: this Web Service creates and manages a multiparty conference (initi-
ates the conference, adds/removes participants, and ends conferences).

Printing; at some points during the conferences or later on, managers may want to
print documents (meeting reports ...). The printing Web Service will print these
documents and keeps them for shipping.

Shipping: documents printed during and after the conference should be distrib-
uted among participants located in different locations. The CWS informs the
shipping Web Service of the location of the documents to be shipped and their

final destinations.

Figure 7.4 shows the composite CWS and its interactions with the basic Web Services.

116

Case study

\

Sensors Network

General
Manager

Sensors Network

Sales
Manager

R&D
Manager

Figure 7.4 Composite/basic Web Services

7.4.3 Implementation issues

All Web Services, including the WSO, are implemented in BEA WebLogic. In fact, CWS is
implemented in BEA even if it has a BPEL description. This is due to some limitations of
the BPEL language and the available (non-commercial) application servers. Implementing
the CWS in BEA does not affect the observation process since the latter deals only with the
exchanged SOAP messages which are independent from the adopted platform (BPEL En-
gine or BEA).

Mobile observers get traces using SOAP Handlers available within the BEA platform. A

SOAP Handler, a specific-purpose Java class, intercepts a request/ response to/from a Web

117

Observation Architectures for Composite Web Services

Service before it gets to the core Web Service or the client respectively, and can also perform
operations on it. In our case, the SOAP handler sends each intercepted request or response
in a User Datagram Protocol (UDP) datagram to the concerned mobile observer.

The date of occurrence of each event is also sent in the corresponding datagram so that
the observer can assess QoWS arttributes. Appending occurrence date to each event raises a
much known and complicated issue of synchronization of distributed systems. In this thesis,
I do not propose new solutions to this synchronization matter; I however, use two available
and widely used mechanisms:

1. Network Time Protocol (NIP): deploying and configuring an NTP in a local
network where observers are located seems to solve the problem. Nevertheless,
when mobile observers are located at different locations, this solution might show
limitations.

2. Mobile platform clock: mobile observers/agents can request an accurate clock
value from their hosting platform. Here gain, if locations of mobile observers are
quite far from each other, sharp accuracy of such synchronization cannot be

guaranteed.

The mobile observer checks each received trace and forwards it to the global observer,
also in a UDP packet. Since the behavior/operation of SOAP handlers within all observed
Web Services is similar, a unique (generic) SOAP Handler is developed and then distributed
to all providers participating in the observation.

Although UDP is an unreliable protocol, lost of UDP datagrams is not very frequent

when the sender and the receiver are located on the same local network (this is the case of

118

Case study

the composite Web Service participation). In fact, the data link layer supporting UDP has its
own flow control and recovery mechanisms. However, when communicating entities resides
on different networks (this is the case with the basic Web Services’ providers and hybrid par-
ticipation), a UDP packet might have to go through many public networks where probability
of packet loss is somehow high.

To be able to detect lost UDP datagrams, a sequence number field is used. When a mo-
bile observer detects a lost datagram (wrong/not expected sequence number), it suspends
the misbehavior detection and re-perform the homing procedure. After all, this is another
situation where an observer does not have access to the full set of traces. It restarts the de-

tection once this procedure is achieved correctly.

7.4.4 Single observation limitations

When using the single-observer architecture presented in 4.1.3, the observer will check only
the traffic between the manager and the CWS. Figure 7.5 shows the overall configuration
and the information (traces) available to the observer where it is not aware of the interac-
tions (request/response pairs) between CWS and basic Web Services. By doing so, if the
CWS fails to provide the requested service or if the QoWS degrades, the observer might not
designate the faulty Web Service. For example, if the “Sensors” Web Service (Basic WS) fails
to check the actual physical location of a manager, the CWS cannot add a manager to a con-
ference. From the observer’s point of view (and then the manager’s point of view), the CWS

failed to add the manager to the conference. No more indication on the failure is available.

119

Observation Architectures for Composite Web Services

(BEA WeblLogic \ \

®

BEA Weblogic BEA Webl ogic

Presence

J
/BEA WebLogic \ BEA WebLogic *
& & SOAP .
< > @ Handler |
\ J N
~ ~ Jade
——— A AN
BEA Weblogic * Mobile
Observer
o _J
(e Weblogic) Web Services communication ey
Observers communication -csmm s mm
. /

Traces’ collection -—— - -)

Figure 7.5 Single-observer configuration

Figure 7.6 shows a typical observation scenario from invocation of the observer (WSO) to

the delivery of the verdict of observation.

120

Case study

(- =
Manager Ws0 CWS$ Basic WS
[l [l i T

[}
! Observe | ! '
T gl] [}
[} I I]
I 1 | 1
| 1 [} i
[} | [} :
' igenerate and send ' '
' - Observer i]
! imobile observer ; !
1 [} 1 [} I
1 [} | I 1
| I | [} 3
1 [} | [} 1
| ! request | \ ! !
o ' * - > request N
: i :| < trace collection —_ response |
[} t d
~ 1
i | i i request N
1 I I 4
! ! : P response 4
by ! response ! Pt ,
[y T T . : :
| ! I trace collection ! |
] 3 [y 1 [}
[} [} 1 1 b
' | result of observation | | i
1 g [}
1 result of observation | | : E
1N | : : 1
] 3]] [}
] 3 I I I
N — — E— —] ——/

Figure 7.6 Single-observer deployment

7.4.5 Example of multi-observer observation procedure

In multi-observer architectures, in addition to the observation of the CWS, the manager
needs to assure that all the steps are performed according to the agreed on contract and
QoWS. Fortunately, all the providers accept to participate, to some extent, in the observa-
tion. The provider of the CWS will host all the mobile observers. It will also provide the
BPEL document, WSDLs documents, and FSM+ models of each of the basic Web Services.
Basic Web Services’ providers will configure SOAP handlers for traces forward.

Once deployed and configured, mobile observers start their observation by performing
the homing procedure. When this procedure is carried out correctly, misbehaviors detection

starts. Each local observer is listening to a UDP port to receive events from SOAP handlers.

121

Observation Architectures for Composite Web Services

The global observer is listening to two different UDP ports: one to receive events (request
or response) from local observers and another port to receive information on detected mis-
behaviors by local observers. Each event between a client and its Web Service is sent by the
SOAP handler to the attached local observer. The latter forwards this event to the global
observer and checks the validity of this event with regards to the model of the observed
Web Service. If misbehavior is detected, the local observer notifies the global observer
through a UDP datagram. The global observer tries to associate the new received fault with a
previous fault. If the correlation fails, the global observer notifies the manager, otherwise,
the misbehavior is logged and detection operations continue.

For the purpose of this case study, I extended the client application in section 6.2.2
(Figure 6.7) to allow the user to select one of the operations to invoke and provide valid or
invalid parameters. Figure 7.7 shows the overall configuration of interacting client, Web Ser-

vices, mobile observers, and communication between these entities.

122

Case study

_ Traces’ collection

(BEA WeblLogic \
»{ Manager
BEA WebLogic SOAP Jade BEA Weblogic
Observer . 7
\ .
BEA WebLogic Jade K4
SOAP N, .
Observer [I'*. " .
., N Jade
-~ . .
™~
((BEA WebLogic SoAP Jade B OC;'C)bal
Lo’ server
Handler A| Loca [L..="T
\ Observer s
Y
/ Jade s /-'
BEA WeblLogic
SOAP] - 7 .
Handler N ocal b /
K Observer .
Jade ,'
BEA Weblogic .
SOAP N Local) .
Handler Observer
Jade
A Local
Observer
Web Services communiCation)y
Observers communication

Figure 7.7 Multi-observer configuration

The observation procedure of CWS is performed following the detailed steps below and

illustrated in Figure 7.8. To keep the figure simple, just one Web Service handler and one

Web Service client* are depicted in the figure.

+ When the composite Web Service invokes a basic Web Service, it is said to be a client of that basic Web Ser-

vice.

123

Observation Architectures for Composite Web Services

-)\
Manager WSO Ha\%%er Client

i Observe | ! E |

a ” E :

! ‘generate and send] giopa : E

| = : '

| imobile observer’ | Qbsever ! i

! i : Observer i !

| | | : |, request :

i : | i trace collection | ™ !

: | i, Observers H———‘, response |

i i A ccgr:)munlcatnon | trace collection ! 7

, : | servers ! — request |

I . < Communcaton 1, frace collection i :

: ! ! ——— !

! l | Observers | : response !

| 1 (i | : \ .

| | - communication :4______.“303 collection : 4

! ! | Observers | ! |

! 1 _result of observation i< T T | :

| _tesult of observation |~ : | ! i

A ! i i : =

\[—) 1 —1])
Figure 7.8 Multi-observer deployment

1. The manager invokes the WSO, providing BPEL, FSM+, and WSDL documents.

2. The WSO generates a mobile agent and sends it to appropriate destination sub-
mitted during invocation in step 1.

3. Once the mobile agent gets into its destination, it clones itself as many as required
to observe all the Web Services.

4. 'The mobile agent with the BPEL document becomes the global observer; other
mobile observers are local.

5. SOAP handlers forward traces to appropriate mobile observers.

6. Local observers observe the exchanged messages between a Web Service and its

client and forward them to the global observer.

124

Case study

7. Whenever a misbehavior is detected (by global or local observers), correlation
then fault location are initiated by the global observer to find the faulty Web Ser-
vice.

8. The global observer reports to the WSO.

9. The WSO reports to the manager

7.4.6 Network load

The network load introduced by the observation is classified into two classes:
1. load due to the deployment of mobile agents and

2. load due to the trace collection process.

7.4.6.1 Deployment load

In composite Web Service’s provider participation, since all observers are located at this
provider’s domain, only one mobile agent is generated by the Web Service Observer and
sent to the hosting platform. The size of the traffic to move a mobile agent from the WSO
to the composite Web Service provider is around 600 Kilobytes (600 Kb).

In basic Web Services’ providers’ participation, for each Web Service, a separate mobile
observer will transit over the network, from the WSO to the provider of the Web Service.
This represents a network load of 6 * 600 Kb (there are 6 Web Services to observe, one
composite and 5 basic Web Services).

In hybrid participation, the deployment overhead depends on the number and extent of
participating providers. From the configuration depicted in Figure 7.7:

» All observers are located at the provider of the composite Web Service.

125

Observation Architectures for Composite Web Services

* Al providers deploy and configure SOAP handlers

This configuration requires moving a unique mobile observer to composite Web Ser-

vice’s provider. The associated overall load is again 600 Kb.

7.4.6.2 Traces' collection load

Generally, for each interaction between a Web Service and its client, 2 UDP datagrams are
generated: a first datagram from the SOAP handler to a local observer, and a second data-
gram from this local observer to the global observer. Whenever misbehavior is detected by a
local observer, a third datagram is sent (fault notification). The average size of a datagram is
150 bytes. So, each response/request pair introduces 4 datagrams if everything goes fine, 5
datagrams if one of the events is faulty, or 6 datagrams if both are faulty. We suppose that
faults will not occur often, and then few fault notifications will be generated. This assump-
tion is realistic since all Web Services are supposed to undergo an acceptable active testing
process before their deployment. The trace collection load then is reduced to the forward of
events, that is, 4 datagrams for a request/response pair. This represents a load of 600 bytes.
Where points of observation and mobile observers are located within the provider of the
composite Web Service, traces’ collection traffic is in-site’. If points of observation and local
observers are located at basic Web Services’ providers’ domains, traffic from SOAP handlers
to local observers is in-site and the bulk of network overhead is due to the traffic from local
observers to the global observer. If points of observation are located at basic Web Services’
domains and local observers are located within the provider of the composite Web Service

(hybrid participation as in Figure 7.7), the overhead is associated with the traffic from SOAP

5 As discussed above, in-site traffic is not considered in network overhead.

126

Case study

handlers to local observers. Messages from local observers to the global observer are in-site.

Figure 7.9 shows different network overhead of different architectures when observing 2000

pairs of request/response to/from the CWS.

Network overhead (Kbytes)

4000 =

3500
3000
2500
2000
1500
1000

500

B Deployment |

#l Traces' collection

Composite Web Basic Web Hybrid
Service' Services' participation
provider's providers'

participation participation

Figure 7.9 Multi-observer architectures associated network overhead

7.4.7 Results and analysis

To illustrate the detection capabilities of our architecture, we injected faults to some Web

Services and or in the network and monitored the behavior of the observers. Most of the

injected faults have been detected by the observers. The global observer was also able to link

related notifications that are originated by the same faulty event. From the BPEL document,

127

Observation Architectures for Composite Web Services

the global observer builds the list of partners and the order in which they are invoked. Cor-

relation is based on this information and the event sent within the fault notification message.

Table 7.1 shows brief descriptions of some of the executed scenarios and the reactions

of observers (both local and global) to the fault.

Table 7.1 Some of the executed scenarios

Target Web Ser- Fault description Comments
vice

CWS Submit a printDocument Fault detected by local and global
request before creating a observer
conference

Call Control Add a user before creating a | Fault detected by local and global
conference observer

Presence Tryto add a user to the Fault detected by local and global
conference that is not rec- | observer
ognized by the Presence
service

Shipping Request shipping of a doc- | Fault detected by local and global
ument that has not been observer
submitted for printing

Shipping A trace collection event Neither the local observer nor the
(shipDocument response) | global observer will detect the fault.
from a handler to the local
observer is lost (Figure
7.10)

Shipping A trace collection event The global observer will not be able
(shipDocument response) | to detect the fault or process the

128

Case study

or a fault notification from a | notification (correlation)
local observer to the global
observer is lost (Figure

7.11)

A fault that cannot be detected occurs when the last event in a communication between
a Web Service and its client is lost. As discussed before, traces are sent as UDP packets. To
be able to detect lost packets and recover the observation, a sequence number attribute is
used. An observer detects a lost packet if the sequence number of the following received
packet is different than expected. When a lost packet carries the last event in a communica-

tion, observers will not be able to detect this incident since no future packets will arrive.

(?-{halﬁzllgg Local Observer Global Qbserver

| Trace collection

\Z

\:] l::}J

Figure 7.10 trace lost before getting to local observer

129

Observation Architectures for Composite Web Services

-)

Shipping
Handler

Local Observer Global Observer

Trace collection S
>

\ Z

and fault notification

I
I
I
I
| Trace collection
I
I
I

\i — i)

Figure 7.11 trace or fault notification lost before getting to global observer

7.5 Summary

In passive observation, the unique observation of a composite Web Service might not give
insights on the behaviors of basic Web Services. Many events observed between a composite
Web Service and its client cannot be studied and explained without information on the ex-
changed events between the composite Web Service and its basic Web Services. Thus, ob-
servation of all basic Web Services or at least a subset of these Web Services is needed.

This chapter presented multi-observer architectures for the observation of composite
Web Services. The architectures propose to observe the composite Web Service and a set of
basic Web Services. Heuristics to select the basic Web Services to be observed are also dis-
cussed since observation of all basic Web Services might be impractical. To reduce the net-
work load generated by the observation, the architecture considers mobile observers. The

chapter discussed also the network load in terms of mathematical complexity for each type

130

Summary

of participation of Web Services’” providers: composite Web Service provider’s participation,
basic Web Services providers’ participation, and hybrid participation.

As a proof of concept, I developed a composite Web Service and its basic Web Services
for conferencing management. I also evaluated the network load introduced by observation
and misbehaviors detection capabilities of different observers.

After dealing with control and QoWS aspects of Web Services in observation, the next

chapter will tackle observation of data flows using EFSM models.

131

Chapter 8
EFSM-Based Observation

Originality does not consist in saying what no
one else has ever said before, but in saying
exactly what you think yourself -

James Stephens

As indicated in Chapter 3, few models have been used for model-based observers but most
of published works on passive testing use FSM models. Although this model is appropriate
for control parts of WSUO, it does not support data flow where EFSM is more appropriate
for the handling of variables.

In the state of the art on EFSM-based observers, the homing procedure is either ignored
or depends fully on observed messages. The first case supposes that the observation will
start sharply with the interactions between the WSUO and its client. A passive observer
based on this assumption will not be able to detect misbehaviors if it does not get whole
traces. For the second case, the observer must wait for exchange of messages before moving
forward in the homing procedure.

Since we are interested in online observation of Web Services, ignoring the homing pro-
cedure is not an option. We suppose that an EFSM-based online observer can initiate its ob-
servation at any time without having access to previously exchanged requests/responses.
Such observers use actually exchanged messages for state and variables homing. This ap-

proach is efficient when the time gap between requests and responses is too short so the ob-

* Results from this chapter have been published in [104] and [105].

EFSM-Based Observation

server will be processing traces most of its time. If this time gap is relatively high, the ob-
server spends a significant amount of time waiting for events while valuable information can
be gathered by analyzing the EFSM model of the WSUO. The example presented in section
8.3 shows a case where traces analysis alone fails to detect a fault that would have been de-
tected if the observer was performing appropriate backward analysis of the EFSM machine
of the WSUO.

This chapter presents a new approach for homing online EFSM-based observers. In this
approach, the observer performs forward walks in the EFSM model whenever a new event
is observed. It performs backward walks if no events show up. The backward walk is moti-
vated by the possible valuable knowledge the observer can get by guessing what different
paths could bring the WSUT to its actual position. If we suppose that the client makes
sometime between requests (think time) and that the WSUT takes some time to respond (re-

sponse time), the backward walk will not delay the homing,.

8.1 EFSM-based observers: forward and backward walks

In client-server communication as in Web Services, it is reasonable to assume that there will
be a delay between requests and responses. In one hand, the client takes time to formulate
and send its request. Once a response is received, the client takes again some time to process
the response and decide what to do next. At the other hand, the Web Service requires time
10 process a request, generate, and send its response.

To speed up the homing procedure, the observer should make a concise use of the in-
formation contained within the EFSM model in addition to the information carried by ob-

served events. The homing algorithm can perform backward walks in the EFSM model to
133

EFSM-based observers: forward and backward walks

guess what transitions the WSUO fired before getting into its actual state. By analyzing the

set of predicates and variable definitions on these transitions, the observer can reduce the set

of possible states and/or the set of possible values of variables. Performing both backward

and forward walks provides a set of possible execution trees: the forward process adds exe-

cution sequences to the root of trees, and the backward process adds execution sequences to

the leaf states of trees.

During the homing procedure, the observer manipulates the following entities:

Set of Possible States (S25): this is the set of possible states with regards to what
has been observed and processed up to now. At the beginning, all states are pos-
sible.

Tree of Possible Previous States for state s (7225/5/): this tree contains possible
paths that could lead to state s in the SPS. During the homing procedure, there is
a TPPS for each state in the SPS.

Set of Possible Variable Values for varable v ($2F77%)): this is the set of all pos-
sible values that variable v can have with regards to what has been received and
processed before. It consists of a list of specific values or ranges. At the begin-
ning, all values in the definition’s domain of variable vare possible.

Set of Known Variables (SA7/: the set of known variables. A variable is said to be
known if it is assigned a specific value. In this case, SPVV(v) contains one ele-
ment, i.e. |SPVV(v)| == 1.

Set of Unknown Variables (SZ/7/: the set of variables not yet known.

134

EFSM-Based Observation

The next three sub-sections present in detail the processes of analyzing observed re-
quests and responses and performing backward walks within an EFSM-based observer using
backward walks.

8.1.1 Homing controller procedure

While the observer is going through the homing procedure (Algorithm 8.1), it has 3 possible
options:
1. process a request that has been received by the WSUO (line 11),
2. process a response that has been sent by the WSUO (line 17), or
3. perform a one-step backward walk (line 20). In this case, the algorithm considers
the event e that triggers the loop as empty.
Processing observed events has priority and the backward walk is performed if and only
if there are no observed events waiting for processing, This procedure is repeated until:
* afaultis detected (unexpected input/output which results in an empty set of pos-
sible states and/ or contradictory values of variables), or
= the set of possible states has one item (|SPS| == 1) and the set of unknown vari-

ables is empty (SUV ==).

135

EFSM-based observers: forward and backward walks

SPS := S // At startup, all states are possible
SUV :=V // At startup, all variables are unknown
Expected_Event «— “Any”
Data: event e

4 repeat

e «— observed event

switch (e) do

case (e is an input)

if (Ezpected_Event == ”Qutput”) then
| return “Fault: Output expected not Input”

else
11 processInput(e); // Complexity: O(BF_PI)
Expected_Event — “Output”;

ase (e is an output)

if (Ezpected_Event == ”"Input”) then
| return “Fault: Input expected not Output”

[¢]

else
17 processOutput(e) ; // Complexity: O(BF_PO)
Expected_Event <+ “Input”;
otherwise
20 performBackWalk ; // Complexity: O(BF_BW)
until (|SPS| == 1)AND(|SUV| == 0)

Algorithm 8.1 Homing controller

The complexity of Algorithm 8.1 depends on the number of cycles required to success-
fully achieve the homing procedure (line 4) and the complexity of processInput (line 11),

processOutput (line 17), and performBackWalk (line 20). Let us denote the number of cycles

136

EFSM-Based Observation

to achieve the homing by n, and the complexities of processInput, processOutput and per-
formBackWalk by O(BF_PI), O(BF PO), and O(BF_BW) respectively. The complexity
O(H) of the homing algorithm is given in Equation 1 and will be developed through the fol-
lowing sb-sections when individual complexities will be computed.

O(H) = nO(BF _PI) + n.O(BF _PO) + nO(BF _BW) Equation 1

8.1.2 Processing requests

When the observer witnesses an input, if the observer was expecting an output, a fault
(“Output expected rather than Input”) is generated. Otherwise, it removes all the states in
the set of possible states that don’t accept the input, and the states that accept the input but
the predicate of the corresponding transition is evaluated to FALSE. For each of the remain-
ing possible transitions, the input parameters are assigned (if applicable) to appropriate state
variables. Then, the predicate condition is decomposed into elementary expressions (oper-
ands of AND/OR/XOR combinations). For each state variable, the set of possible val-
ues/ranges is updated using the elementary conditions. If this set contains a unique value,
this latter is assigned to the corresponding variable; this variable is then removed from the
set of unknown variables and added to the set of known variables. The transition’s assign-
ments part is processed, then updating the sets of known/unknown variables accordingly

(Algorithm 8.2). The observer expects now the next observable event to be an output.

137

EFSM-based observers: forward and backward walks

=

Input: event e
Data: boolean possibleState
foreach (S € SPS) do

possibleState = false
foreach Transition t so that ((t.Ss == S) AND (t.] ==e) AND

(t.P # FALSE)) do
possibleState = true

assign appropriate variables the values of the parameters of e
update SPVV, SKV, and SUV
decompose the predicate into elementary conditions

foreach (elementary condition) do
update the SPVV, SKV, and SUV

if (contradictory values/ranges) then
| return “Contradictory values/ranges”

if (possibleState == false) then
remove S from SPS

if (SPS ==10) then
|_ return “Fault detected before homing is complete”

Algorithm 8.2 Processing observed requests

The complexity of Algorithm 8.2 is affected by the maximum number of states in the
SPS (line 1), maximum number of transitions at each state in the SPS (line 3), and the com-
plexity of updating the SPVV, SKV, and SUV. In fact, we can assume that a predicate will
have very few elementary conditions, then decomposing the predicate (line 7) and using the

elementary conditions to update the variables (line 8) does not affect the complexity of the

138

EFSM-Based Observation
whole algorithm. If the number of variables is V, the complexity of updating the SPVV,

SKV, and SUV is in the order of O(V) since the procedure should go through all the vari-
ables. The complexity of Algorithm 8.2 is depicted in Equation 2 where S_, is the maximum
number of states in the SPS, and T, is the maximum number of transitions that a state in
the SPS can have.

O(BF _Py=0(S,, T...V) Equation 2

max " max

8.1.3 Processing responses

In case the event is a response (output), if the observer was expecting an input, a fault (“In-
put expected rather than Output”) is generated. Otherwise, the observer removes all the
states in the set of possible states that don’t have transitions that produce the output. If a
state has two (or more) possible transitions, the TPPS is cloned as many as possible (number
of possible transitions) so that each clone represents a possible transition. The assignment
part of the transition is processed and variables are updated. The set of possible states holds
the ending states of all the possible transitions. In the context of SOAP communication be-
tween a Web Service and its client, the response (message) holds basically one parameter.
Whenever an output message is observed, a variable becomes known, or at least a new con-
dition on variable values is augmented unless the message carries no parameter or the vari-

able is already known. The observer expects now the next observable event to be an input.

139

EFSM-based observers: forward and backward walks

[

10

13

14

16

19

Data: event e
Data: boolean possibleState

foreach (S € SPS) do
possibleState = false

foreach Transition t so that ((t.Ss == S) AND (t.I ==e) AND

(t.P # FALSE) AND (t can produce ¢)) do
possibleState = true

clone the corresponding TPPS

t.S. becomes the root of the cloned TPPS

S becomes its child

process the transition’s assignment part

assign appropriate variables values of the parameter (if any) of e
update the SPVV, SKV and SUV

if (contradictory values/ranges) then
| return “Contradictory values/ranges”

rf;move S from the SPS

remove the original TPPS; /* no longer useful, cloned (and

updated) trees will be used */

f (possibleState == false) then
remove S from SPS

if (SPS ==0) then
| return “Fault detected before homing is complete”
| remove the corresponding TPPS

e

Algorithm 8.3 Processing observed responses

Let’s now determine the complexity of Algorithm 8.3. If we denote the maximum num-

ber of nodes (e states) in a TPPS tree by P, cloning a TPPS tree (line 5) is in the order of

140

EFSM-Based Observation
O(P,..). Moreover, the complexity of removing a TPPS tree (lines 14 and 19) is also in the

order of O(P,,.). Lines 8 and 9 do not affect the complexity since the number of assign-
ments in a transition is somehow low compared, for instance, to P_,. The complexity of
Algorithm 8.3 then can be written as:

O(BF _PO) = O(S, T (P, +V) Equation3

max = max

8.1.1 Performing backward walks

While the observer is waiting for a new event (either request or response), it can perform a
1-step backward walk in the EFSM model to guess the path that could bring the Web Ser-
vice to its actual state (Algorithm 8.4). From each state in the set of possible states, the ob-
server builds a tree of probable-previously visited states and fired transitions.

Whenever a state is added to a leaf state in a TPPS, the variables constraints on the cor-
responding transition propagates toward the parent states (higher level states in the tree) up
to the root of the tree. Two constraints on two different children of a state will propagate as
operands of an o7 logic operator at their parent. While two constraints appearing in two
transitions between states in successive levels of the tree (child = parent > upper parent)

propagate as operands of an #7#logic operator at the upper parent.

141

EFSM-based observers: forward and backward walks

=

Input: EFSM

foreach (TPPS) do

foreach (Leaf state S of TPPS) do

foreach (state St in the EFSM that leads to S) do

Propagate the constraints of the corresponding transition
toward the root of TPPS;
/* Lets consider that propagation cannot go beyound
state Sp */
if (S, is the root of TPPS) then
/* this path is possible— consider it in the
TPPS */
add St as child of S;
update SPVV, SKV, and SUV;

if (contradictory values/ranges) then
| return “Contradictory values/ranges”;

Algorithm 8.4 Performing backward walks

For example, in Figure 8.1 where the labels on transition are simplified to illustrate only

the variables constraints (A, B, and C), S4 is the root of a TPPS. The first back walk step

leads to state S3, the variables constraints C will propagate to S4, and state S3 becomes a leaf

child of S4. During the second step of the back walk, all states preceding S3 are explored;

two possible transitions: to S1 and to S2 propagating vanables constraints A or B to S3.

These constraints will propagate to S4 by and operator. Variables constraints at S4 after two

backward steps are: ((A or B) and O).

142

EFSM-Based Observation

f

Figure 8.1 Constraints propagation

Algorithm 8.4 has three embedded loops. The first loop (line 1) is bounded by the num-
ber of TPPS trees; that is, the number of states in the SPS (S,.). The second loop (line 2)
goes through all leaf states of a TPPS, which is, in the worst case, P,,.. The third loop (line
3) explores all the states in the EFSM that can lead to a particular state in a TPPS. Let’s de-
note the number of states in an EFSM by S;r\. Propagating a constraint through the root of
a TPPS (line 4) is in the order of O(P,,,,.V) since the procedure has to process all states and

update the SPVV at each state. The complexity of Algorithm 8.4 can be written as:
P(BF _BW) = O(S o -Sgrsss P o V) Equation 4
From Equation 1, Equation 2, Equation 3, and Equation 4, the overall complexity for

homing an observer using Algorithm 8.1 can be developed as follows:

143

Discussion

OH) =0mnS_ T . V +nS_ T (P, +V)+
n'Smax ‘SEFSM 'P2 V) Equaﬁon 5
O(H) = max max (max + V)+ nSmax SEFSM V)

The complexity of the EFSM homing algorithm with backward walks is linear as shown
in Equation 5. Moreover, since backward walks are performed during absence of traces, the
cost of combining backward and forward walks is minimal when compared to the detection

power it adds to an EFSM-based passive observer.

8.2 Discussion

Although backward walks-based observers require a little bit more resources than an ob-
server without backward walks, this overhead is acceptable. First of all, backward walks are
performed whenever there is no trace to analyze so the observer does not use additional
processing time. It just uses the slots initially allocated to trace analysis. Second, limiting the
backward to a unique step at a time reduces the duration of cycles of Algorithm 8.4 and does
not delay processing of eventual available traces.

As for convergence of Algorithm 8.1, it is not possible to decide if the observer will
converge or not. This is the case for both brands of observers: with backward and without
backward walks. This limitation is out of the scope of the homing approach used but fully
tied to the fact that the observer has no control on exchanged events. The Web Service and

its client can continuously exchange messages that do not bring useful information to reduce

the SPS and the SUV.

144

EFSM-Based Observation

However, the backward approach can be compared to the approach without backward,
for the same WSUO and observed traces, as follows:

» Theorem 1: if an observer without backward walks converges, an observer with
backward walks converges too.

* Theorem 2: if an observer without backward walks requires n cycles to converge,
and an observer with backward walks requires m cycles to converge, then m<n.

The next paragraphs present a proof of theorem 2 which can be considered also as proof
for theorem 1.

Proof

The homing algorithm converges when the SPS has one element and the SUV is empty.
The SUV is empty when, for each variable v in V, SPVV(v) contains a unique element.

As discussed above, analysis of traces adds states as roots of TPPS and backward walks
adds states as leaves of TPPS. Whenever a trace can generate two different execution paths,
the corresponding TPPS is cloned. This will build TPPS trees where the root has a unique
child. In such trees, all constraints propagation from backward walks will propagate using
AND operator between the root and its child. This propagation tries to reduce the SPVV; in
the worst case the SPVV is neither reduced nor extended.

In Figure 8.2, at cycle i, a TPPS has S; as root, S, is its child, and SPVV(v) is the set of
possible values of variable v at S; as computed from a previously observed trace. Suppose
that during cycle i+1, the backward walk adds two leaves to S;: S; and S,. In Figure 8.2, the

labels on transitions represent the SPVV that result from the predicate of the transitions.

145

Discussion

\
Sp
I/% 0%

O
a d

:
(s

Cycle i
_

Cyclei+ 1

/

Figure 8.2 SPVV and constraints propagation

Propagation of constraints from S, and S, to S; and then to S; modifies SPVV(v) as fol-
lows: SPVV,,,(v) = SPVV(v) N ((SPVV,(v) U SPVV(v)). There are three cases:

1. SPVV{(v) c (SPVV|(v) U SPVV,(v)): in this case, the SPVV,,,(v) is equal to
SPVV|(v). The backward walks do not bring useful information to reduce
SPVV{(v). If subsequent backward walks do the same, the number of required cy-
cles for homing remains unchanged: m=n.

2. SPVV,,(v) = &: this indicates that variable v, at S; after cycle i+1, cannot have
any value from its definition domain. The observer detects a fault immediately
without waiting for the next observed event which results in 7 strictly less than »
(m<n).

3. SPVV,,(v) € SPVV|(v): in this case, the SPVV(v) is reduced. If following back-

ward walks, associated to trace analysis, reduce further the SPVV(v), the homing

with backward is likely to require less than 7 cycles (m<#) or at most 7 cycles

146

EFSM-Based Observation

End of proof
The following example illustrates the third case where backward walks reduce the num-

ber of required cycles (m<t) and allows detection of faults that cannot be detected without
backward walks. The execution of the homing procedure is detailed hereafter in a step by

step scenario.

8.3 Example

Let’s consider the portion of an EFSM of a Web Service illustrated in Figure 8.3 where van-
ables u, x, y, and z are integers. Events 11(15), O(13), and 12(0) are observed respectively.
Each transition is represented as t:I|P| A| O where t is the label of the transition, I its input,
P its predicate, A is the set of assignments, and O is the output. A predicate of a transition is
evaluated to TRUE/FALSE if its condition is true/false; otherwise it is said INCONCLU-
SIVE if the predicate cannot be evaluated. The latter case occurs if some of the variables in

the predicate are not yet known.

4 t5:12(x)|x>0|u:=15|02(u))
”:”(X)/ky/z":*y/o
' t3:12(x)x>ujz:=x"y|02(2)
= -Z\O‘\(X
PRTT\ ia
_ t4:11(x)|x<0|u:=10|O7(0))

Figure 8.3 EFSM example

147

Example

8.3.1 Observation without backward walks

After observing 11(15), transitions t1, t2, and t4 can be fired but not t3 or t5. However, since
the input parameter is bigger than 0, the predicate of t4 is evaluated to FALSE. Only transi-
tions t1 and 2 should be considered since the variables y and z are, up to now, unknown
and the predicates are evaluated to INCONCLUSIVE. This reduces the set of possible
states to S1 and S2. If t1 is executed then x := 15,y >15, and z := 15 -y, if 12 is executed
theny:=15,2z <15,x:=15 — 2.

When O1(13) is observed, the value of the output parameter (13) indicates that transition
t2 has been executed. Later on, when event 12(0) is observed, since the variable u is un-
known, the predicate (x >u) is evaluated to INCONCLUSIVE, which enables the transi-
tiorL. So, the sequence I1(15), O1(13), 12(0) executes properly.

However, the sequence 11(15), O1(13), 12(0) is a faulty sequence and the fault would be

detected if backward walks have been considered as discussed in the next sub-section.

8.3.2 Observation with backward walks

The delay after each event (I1, O1, and 12) gives the observer opportunities to perform
backward walks. The observer executes the following operations: processInput(I1(15)), per-
formBackWalk, processOutput(O1(13)), performBackWalk, processInput(I2(0)).

As illustrated in Table 8.1, after executing the first three operations, SPS contains S3. In
TPPS, S2 is the child of S3. To get to S2, the only previous transition is t4 which assigns 10
to variable u. From this point forward, the homing procedure is completed since SPS has

one state and SUV is empty. Later on when receiving 12(0), transition t3 can not be fired

148

EFSM-Based Observation
since its predicate (x >u) is evaluated to FALSE. The observer notifies the WSO that a fault

just occurred.

Table 8.1 Content of SPS, SPVV, SKV, SUV, and TPPS

I1(15) Backward walk | O1(13)
SPS S1,82 S1,82 S3
tl:x:=15, y>15, z2=xy t4:u:=10
SPVV or or x:=13, yi=15, =2, w:=10
t2: =15,z <15, x:=y-2 t5:u:=15
SKV tl:x, u, X
or or XY, Z U
2:y u,y
SUv tl:y,z,u Y, Z
or or %)
t2:%,z,u XZ
TPPS Figure 8.4.a Figure 8.4.b

TPPS trees after each operation are illustrated in Figure 8.4.

8.4 Summary

The homing procedure in EFSM-based observers consists of recognizing the actual state of
the WSUO i1n addition to assigning appropriate values to different variables. Common ap-
proaches either ignore this phase of passive testing or base it on upcoming observed re-
quest/responses. In online observers, the first option represents a serious limitation and the

second option is not always efficient.

149

Summary

AN
@ t5:12(x)|x>0]u:=15|02(u) @
@ Q4I1)|x<0|u: 10|O1(u_>@
— /)

- Y,

Figure 8.4 TPPS

This chapter presented a novel approach for homing EFSM-based observers. This ap-
proach is based on observed events and on backward walks in the EFSM model of the
WSUO. Whenever a trace is observed, it’s immediately processed by the observer. Other-
wise, the observer analyzes the possible paths that could bring the WSUO to its actual state.
Analyzing the set of constraints on different paths could reduce the set of possible values

variables can have at a specific state.

150

Chapter 9
Conclusion and Future Work

There will come a time when you believe eve-
rything is finished. That will be the beginning -
Louis L'Amour

9.1 Summary of thesis

The emergence of Web Services concepts changed the way businesses interact over the In-
ternet. The low level of coupling in Web Services allows easier and straightforward interop-
erability between Web Services and their clients. Composition of Web Services offers a new
trend for code reusability by using available Web Services to provide new Web Services with
richer functionalities.

The wide spread utilization of Web Services implied an urgent need for their manage-
ment. Web Services providers and their clients appealed for management architectures from
the earlier days of Web Services paradigm. However, actors in the industry were more inter-
ested in specification languages and development and deployment platforms. Later on, when
they started developing management approaches, they designed them to be integrated into
hosting platforms. There are three major limitations to such approaches:

1. Since they are integral parts of hosting architectures, their utilization is reserved to
Web Services’ providers and cannot be used by clients, and/or
2. They are based on active testers; so they cannot be used online to assess the cor-

rectness of interactions between a Web Service and a client, and/or

Conclusion and Future Work

3. Using such approaches requires buying appropriates tools/ licenses, installing, and
configuring them on dedicated hosts; hence, increasing providers’ costs and in-
vestments.

In this thesis, we are interested in management of synchronous Web Services. We first
started by investigating the state of the art of management of Web Services. Our study
showed that there is a need for management architecture that allows on-the-fly transparent
detection of misbehaviors, low cost, platform-independent, and open to providers, clients,
and third party certification entities. We proposed and experimented then novel manage-

ment architectures that solve some of these limitations as summarized in the next section.

9.2 Thesis contributions

In this thesis, I presented an incremental series of contributions to the management of Web
Services as pointed out by Figure 9.1. Since early beginning of this thesis, the concern of
successful management of Web Services as a key condition for their success has been made
clear and of prime importance. From that point forward, we studied available existing ap-
proaches for management of Web Services and identified their limitations.

The first contribution proposes to extend the Service Oriented Architecture (SOA) with
observation capabilities by developing the observer as a Web Service. First, this will simplify
interactions between the observer and entities interested in observation. The interactions use
standardized technologies, and interoperability problems are unlikely to happen. Moreover,
since the observer is a Web Service, the observation system is not tied to the calling entity or
the platform hosting the Web Service to be observed. Second, since monitoring is more or

less a temporary activity, there is no need to develop its own tester: the entity interested in

152

Thesis contributions

testing can invoke the Web Service observer whenever required instead of developing it, or

buying a full license of a commercial testing system that will be used intermittently.

()

Web Services-based Passive Observation

L

Traces’ collection evaluation

iy

FSM based observation of non-composite Web Services

iy

FSM+ based observation of composite Web Services

J

EFSM based observation of Web Services

\< 4

Figure 9.1 Chronology of thesis contributions

The second contribution is an observation architecture that allows observation of basic
(non composite) Web Services and evaluation of the effectiveness and overhead of the pro-
posed architecture. A thorough study of potential traces’ collections mechanisms is con-
ducted. This study, where observers are modeled by Finite State Machine (FSM), showed
that mobile agents present the lowest overhead. A case study where different valid and inva-
lid scenarios have been executed showed promising results in terms of detection capacities

of the architecture.

153

Conclusion and Future Work

Another contribution allows observation of composite Web Services. When it comes to
observation of a composite Web Service, a single observer cannot appropriately handle ob-
servation of different Web Services. Several architectures are proposed to observe a compos-
ite Web Service. The main differences between these architectures are related to the location
of observers, location of points of observation, and participation of involved Web Services’
providers and clients. We extended the FSM model by a set of QoWS properties of Web
Services so the observer will be able to detect performance violations as well as functional
correctness. We designated the new model by FSM+. The overhead of each of the architec-
tures is analytically discussed and then illustrated through a case study where a composite
Web Service is observed.

Even if FSM and FSM+ models can represent appropriately the control part and per-
formance properties of a Web Service, they do not support data flows. Since data flows are
an important aspect in XML-based communication as in Web Services, we propose EFSM-
based observation. However, the homing of an EFSM-based observer is far harder than
FSM-based observer. In fact, state variables in the EFSM model have to be correctly initial-
ized before any detection can take place. The approaches in the state of the art are not al-
ways efficient especially if the time gap between requests and responses is somehow signifi-
cant. I proposed a new homing approach to make use of this time gap to speed up the hom-
ing by performing backward walks in the EFSM models. With this approach, the detection
of faults is enhanced.

An observer should have enough knowledge on the expected behavior of a Web Service

and a client in order to detect misbehaviors. Behaviors’ descriptions should cover both func-

154

Future work

tional and non-functional (QoWS) aspects. For the first element, we studied different mod-

els including FSM and EFSM. For QoWS, potential options comprise specifying QoWS at-

tributes in dedicated documents, adding them to WSDL, FSM/EFSM, or to the BPEL of a

composite Web Service.

9.3 Future work

There are still improvements and extensions to be done in the field of management of Web

Services. In the upcoming future work, I am planning to tackle the following research issues:

Enhance the detection capabilities of the observers using hybrid observers. In-
stead of using a model-based observer, I am planning to develop a new brand of
passive observers based on combination of models and knowledge
bases/inference engines.

Fault isolation is very vital to business-to-business communication. In fact, a faul-
ty Web Service should be isolated as soon as possible to prevent affecting other
Web Services. The propagation of a fault can damage all interacting entities, re-
sulting in big business loss. The architecture proposed above already locates a
faulty Web Service, and I am looking at developing techniques to isolate a faulty
Web Service without disturbing overall transactions

Once a faulty Web Service is isolated, it should be replaced if possible by an
equivalent/ duplicate Web Service. This is mainly useful for composite Web Ser-
vices. I will extend the initial Web Service architecture by adding operations to

switch from a faulty Web Service to a replacement Web Service.

155

Conclusion and Future Work

The isolated Web Service should be repaired. I am planning to integrate the in-
formation provided by management architectures into the new Web Services De-
velopment Life Cycle so the faulty module (within the faulty Web Service) can be
located and corrected accurately.

During the last two years, I concentrated on the utilization of mobile agents as a
mechanism of traces collection when observing a composite Web Service. I will
consider other traces collection mechanisms to suit different clients’ needs. For
example, a client without a mobile agent platform, but with instrumented Web
Services or SNMP agents, can also make use of the management architecture.

The information gathered from management of Web Services (both functional
and non-functional) must be used to advice clients to select the appropriate Web
Service from an available list. This will bring competition between Web Services
providers and benefits the clients. For example, a client can decide which criteria
are important during the find operation (e.g. good reputation, previous failures,
QoWS, low cost...). I will propose a representation model of this information
and how it can be compiled and latter on used by clients.

A research issue that I intend to study in the future is related to the consideration
of security when observing Web Services. A communication between a client and

a Web Service should not be spied without the consent of at least one of them.

156

Bibliography

[1]

(2]
[3]
[4]

(5]

(6]

[7]

(8]
(%]
[10]
[11]
[12]

(13]

IBM, "WebSphere", at hup://www-306.ibm.com/ software/websphere/, Visited
on 2007.

BEA, "WebLogic plateform”, at http://www.bea.com, Visited on 2004.
Microsoft, ".Net", at http://www.microsoft.com/net/, Visited on 2007.

Parasoft, "SOATest", at
http://www.parasoft.conV/ jsp/ products/home.jsp?product =SOAP, Visited on
2006.

Parasoft, ".Test", at
http://www.parasoft.com/jsp/ products/article.jsp?label =product_info TestNet,
Visited on 2007.

Parasoft, "WebKing", at
hutp:/ /www.parasoft.com/jsp/ products/ home.jsp?product=WebKing&, Visited on
2007.

U. Wahl, "Self-study guide: WebSphere Studio Application Developer and web ser-
vices", IBM Corp., International Technical Support Organization, San Jose, Calif.,
Text. at http://www.books24x7.com/ marc.asp?isbn=0738424196

WSDL, "Web Services Description Language”, at http://www.w3c.org/ TR/ wsd],
Visited on 2003.

XML, "eXtensible Markup Language", at http://www.w3c.org/ XML, Visited on
2006.

3GPP, "Open Service Architecture WorkGroup”, at
hutp://www.3gpp.org/ TB/CN/CN5/CN5.htm, Visited on 2003.

CPXe, "I3A Standards - Initiatives - CPXe", at http://www.i3a.0org/i _cpxe.html,
Visited on 2003.

SOA, "Service Oriented Architecture”, at http://www.w3.org/ TR/2004/NOTE-
ws-arch-20040211/, Visited on 2004.

H. Kreger, "Web Services Conceptual Architectures (WSCA 1.0)", While Paper, /BM
Softwnre Group, 2001.

Bibliography

[14]
[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]
[23]

[24]

(25]

[26]

(27]

OASIS, "Universal Description, Discovery, and Integration", at
http://www.uddi.org/, Visited on 2007.

F. Leymann, "Web service flow language (WSFL) 1.0", at hup://www-
4.ibm.com/ software/ solutions/ webservices/ pdf/WSFL.pdf, Visited on 2007.

A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. McDermott, and S.
A. Mcllraith, "DAML-S: Web Service description for the Semantic Web", Firt Inter
national Web Conference, Lecture Notes in Computer Science, pub: Springer Verlag. Sardinia,
Ttaly, 2002, pp. 348-63.

A. Banerji, C Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp, H. Ku-
no, M. Lemon, G. Pogossiants, S. Sharma, and S. Williams, "WSCL: The Web Ser-
vices conversation language", at http://www.w3.org/ TR/ wscl10/, Visited on 2007.

A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani, K.
Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek, "Web Service Cho-
reography Interface (WSCI)", at http://www.w3.org/ TR/ wsc/, Visited on 2007.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.
Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, "BPEL4WS Version
1.1 specification”, at
ftp:/ /wwwé.software.ibm.com/ software/ developer/ library/ ws-bpel.pdf, Visited on
2007.

SOAP, "Simple Object Access Protocol”, at http://www.w3c.org/ TR/soap, Vis-
ited on 2004.

ISO/IEC, "7498, Information processing systems -- Open Systems Interconnection
- Basic Reference Model", 1989.

IETF, "Internet Protocol”, at www.ietf.org, Visited on 2007.

ISO/IEC, "7498-4 Information processing systems -- Open Systems Interconnec-
tion - Basic Reference Model -- Part 4: Management framework", 1989.

R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir, "Test devel-
opment for communication protocols: towards automation," Conputer Neruorks, vol.
31, pp. 1835-72, 1999,

S. Naito and M. Tsunoyama, "Fault detection for sequential machines by Transition-
Tours", 11th Anmal International Symposium on Fault- Tolerart Computing, pub: IEEE.
Portland, ME, USA, 1981, pp. 238-43.

G. Gonenc, "A method for the design of fault detection experiments," IEEE Trars-
actiors on Computers, vol. C-19, pp. 551-8, 1970.

T. S. Chow, "Testing software design modeled by finite-state machines," IEEE
Trarsactions on Softunre E ngineering, vol. SE-4, pp. 178-87, 1978.

158

Bibliography

(28]

[29]
[30]
[31]
[32]
[33]
[34]
[33]
[36]
[37]
(38]

(39]

[40]

[41]

[42]

[43]
[44]

A. Benharref, Z. Berbich, R. Dssouli, and I. Chrisment, "Formal Specification,
TTCN and executable test cases for main IPvé protocols”, IEEE 2nd Intermational
Sympasium on Signal Processing and Information Tedmology. Marrakech, Morocco, 2002.

J. M. Wing, "A specifier's introduction to formal methods," IEEE Computer, vol. 23,
pp. 8-10, 1990.

K. J. Turner, Using formal description tedhmiques : an introduction to E stelle, L OTCS, and
SDL. Chichester; New York: Wiley, 1993.

ISO/IEC, "9646, Conformance Testing Methodology and Framework", 1996.

M. Diaz, G. Juanole, and J. P. Courtiat, "Observer-a concept for formal on-line vali-
dation of distributed systems," I[EEE Trnsacions on Softuare E ngineering, vol. 20, pp.
900-13, 1994.

K. Vijayananda and P. Raja, "Models of Communication Protocols for Fault Diagno-
sis", Swiss Federal Institte of Tedmology November 1994.

D. Brand and P. Zafiropulo, "On Communicating Finite-State Machines," /. ACM,
vol. 30, pp. 323-342, 1983.

W3C, "Web Services Management Concern", W3C Corsortiurm, White Paper Novem-
ber 2002.

J. Case, M. Fedor, M. Schoffstall, and J. Davin, "RFC 1157 - Simple Network Man-
agement Protocol (SNMP)", IETF, Ed., 1990.

D. Perkins and E. McGinnis, Understanding SNMP MIBs. Upper Saddle River, N.J.:
Prentice Hall PTR, 1997.

ISO/IEC, "9596, Information technology -- Open Systems Interconnection --
Common management information protocol”, 1998.

U. Warrier, L. Besaw, L. LaBarre, and B. Handspicker, "RFC 1189 - The Common
Management Information Services and Protocols for the Internet (CMOT and
CMIP)", IETF, Ed., 1990.

W3, "Web Services Endpoint Management Architecture Requirements”, at
http://dev.w3.org/ cvsweb/2002/ws/ arch/ management/ ws-arch-management-
requirements.html?rev=1.7.

J. A. Farrell and H. Kreger, "Web services management approaches,” IBM Systerrs
Journdl, vol. 41, pp. 212-27, 2002.

F. Casati, E. Shan, U. Dayal, and M.-C. Shan, "Business - Oriented management of
Web Services," Commumications of the A CM, vol. 46, pp. 55-60, 2003.

HP, "Open View", at http://www.managementsoftware.hp.com, Visited on 2007.

B. Xiaoying, D. Wenli, T. Wei-Tek, and C. Yinong, "WSDL-based automatic test
case generation for Web services testing", Intermational Workshop on Seruce-Onientted Sys-
tem E ngineering, pub: IEEE Computer Society. Bejjing, China, 2005, pp. 207-12.

159

Bibliography

[45]

[46]

(47]

(48]

(49]

(501
[51]

[52]

[53]

[54]
[55]

[56]

[57]

(58]

Y. Jiang, G-M. Xin, J-H. Shan, L. Zhang, B. Xie, and F.-Q. Yang, "A method of
automated test data generation for Web services," Chinese Journal of Computers, vol. 28,
pp. 568-77, 2005.

R. Siblini and N. Mansour, "Testing web services", Intermational Conference on Computer
Systens and A pplications, pub: IEEE. Cairo, Egypt, 2005, pp. 763-770.

K. ChangSup, K. Sungwon, K. In-Young, B. Jongmoon, and C. Young-Il, "Generat-
ing test cases for Web services using extended finite state machine", IFIP Itera-
tional Corference on Testing of Commuracating Systens (TestCor), Lecture Notes in Computer
Sdience, pub: Springer Verlag. New York, NY, USA, 2006, pp. 103-17.

A. Tarhini, H. Fouchal, and N. Mansour, "A simple approach for testing Web service
based applications", Irmowutiwe Internet Commumity Systens. Sth International Workshap,
IICS 2005. Reused Papers (Lecture Notes in Computer Scence Vol.3908), pub: Springer-
Verlag. Paris, France, 2006, pp. 134-46.

J. Garcia-Fanjul, C. de la Riva, and J. Tuya, "Generation of conformance test suites
for compositions of Web services using model checking", Proceedings. Testing: A caderric
and Industrial Corference - Practice and Researdh Tedmiques, pub: IEEE Computer Society.
Windsor, UK, 2006, pp. 4 pp.

W3C, "QoS for Web Services: Requirements and Possible Approaches”, at.

A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker, "UDDlIe: an extended regis-
try for Web services", Symposium on Applications and the Itermet Workshops (SAINT),
pub: IEEE Computer Society. Orlando, FL, USA, 2003, pp. 85-9.

N. E. Fenton and S. L. Pfleeger, Softuare metrics : a vigorous and practical approach, 2nd
ed. Boston: PWS Pub., 1997.

A. R Gray and S. G. MacDonell, "Comparison of techniques for developing predic-
tive models of software metrics," Information and Softunre Tedmology, vol. 39, pp. 425-
437, 1997.

W. J. Salamon and D. R. Wallace, "Quality Characteristics and Metrics for reusable
Software", National Institute of Standards and Tedmology, May 1994.

B. Hailpern and P. L. Tarr, "Software Engineering for Web Services: A Focus on
Separation of Concerns", IBM Researdh Report, September 2001.

A. Mani and A. Nagarajan, "Understanding quality of service for Web services", at
hup://www-106.ibm.com/ developerworks/library/ws-quality.html, ~ Visited on
2002.

S. Ran, "A Framework for Discovering Web Services with Desired Quality of Ser-
vices Attributes”, International Conference on Web Seruces, pub: CSREA Press. Las Ve-
gas, Nevada, United States, 2003, pp. 208-213.

M. A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, "A QoS broker based architec-
ture for efficient web services selection", International Conference on Web Seruces(ICWS),

160

Bibliography

[59]

[60]

(61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

(69]

vol. 2005, pub: IEEE Computer Society. Orlando, FL, United States, 2005, pp. 113-
120.

S. Kalepu, S. Krishnaswamy, and S. W. Loke, "Verity: a QoS metric for selecting
Web services and providers", Fourth International Conference on Web Information. Systerrs
E ngineering Workshops, pub: IEEE Computer Society. Rome, Italy, 2004, pp. 131-9.

W. T. Tsai, R. Paul, Z. Cao, L. Yu, and A. Saimi, "Verification of Web services using
an enhanced UDDI server", Eighth IEEE Intermational Workshop on Object-Oriented
Real-Time Deperdable Systerrs, pub: IEEE. Guadalajara, Mexico, 2003, pp. 131-8.

S. Ho, W. M. Loucks, and A. Singh, "Monitoring the performance of a Web service",
IEEE Canadian Corference on Eleavical and Computer E nigineering, vol. 1, pub: IEEE
press. Waterloo, Ontario, Canada, 1998, pp. 109-12.

J. Yuming, T. Chen-Khong, and K. Chi-Chung, "Challenges and approaches in pro-
viding QoS monitoring," Interational Jouwrnal of Neruork Maragenent, vol. 10, pp. 323-
34, 2000.

A. Schmietendorf, R. Dumke, and D. Reitz, "SLA management - Challenges in the
context of Web-service-based infrastructures", IEEE International Corference on Web
Seruces (ICWS), pub: IEEE Computer Society. San Diego, CA, United States, 2004,
pp- 606-613.

D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John, "Passive testing and
applications to network management", Intermational Conference on Netuork Protocols,
pub: IEEE Computer Society. Atlanta, GA, USA, 1997, pp. 113-22.

J. A. Amedo, A. Cavalli, and M. Nunez, "Fast testing of critical properties through
passive testing", 15th IFIP International Conference on Testing of Comrmumicating Systens,
Leanre Notes in Computer Scence (LNCS), pub: Springer Verlag. Sophia Antipolis,
France, 2003, pp. 295-310.

R E. Miller, "Passive testing of networks using a CFSM specification", Irternational
Performance, Computing and Cormmurications Corference, pub: IEEE. Tempe/Phoenix, AZ,
USA, 1998, pp. 111-16.

R. E. Miller and K. A. Arisha, "On fault location in networks by passive testing”,
International Performance, Computing, and Comrmurications Conference, pub: IEEE. Phoenix,
AZ, USA, 2000, pp. 281-7.

J. A. Jones, M. J. Harrold, and]. Stasko, "Visualization of test information to assist
fault localization", Irternational Corference on Sqftuare E ngineering (ICSE), pub: IEEE
Computer Society. Orlando, FL, United States, 2002, pp. 467-477.

R. E. Miller and K. A. Arisha, "Fault identification in networks by passive testing",
34th Armwal Sirdation Symposiwm, pub: IEEE Computer Society. Seattle, WA, USA,
2001, pp. 277-84.

161

Bibliography

[70]

[71]

(72]

(73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

(82]

(83]

B. Sarikaya, "Protocol test generation, trace analysis and verification techniques”,
2nd Workshop on Softunre Testing, Venification, and A nakysis, pub: IEEE Computer Soci-
ety. Banff, Alberta., Canada, 1988, pp. 123-3.

G. V. Bochmann, R. Dssouli, and J. R. Zhao, "Trace analysis for conformance and
arbitration testing," IEEE Trarsactiors on Softunre E ngineering, vol. 15, pp. 1347-56,
1989.

R. Borgeest and C. Rodel, "Trace analysis with a relational database system", 4th Eu-
romicro Waorkshop on Parallel and Distributed Processing, pub: IEEE Computer Society.
Braga, Portugal, 1996, pp. 243-50.

K. C. Tai, "Race analysis of traces of asynchronous message-passing programs”, Iz
termational Conference on Distributed Cormputing Systens, pub: IEEE. Baltimore, MD, USA,
1997, pp. 261-268.

A. b. N. Ghedamsi, Diagnostic tests for protocol implementations modeled by firite state ma-
hines. Montréal: Ph.D Thesis, Université de Montréal, 1992.

S. Boumaraf, Diagnostic des protocles de commurication fondé sur les autornates a états firis
étendus: Master Thesis, Université de Montréal, 2000.

N 7 7

Y. Penncolé, Diagnostic Déertralisé de Systérmes a édnenent discrets : Application anwc Ré-
seavx de Tdécommunications: Ph.D Thesis, University of Rennes 1, 2002.

L. Rozé and M.-O. Cordier, "Diagnosing Discrete-Event Systems: Extending the
“Diagnoser Approach” to Deal with Telecommunication Networks," Discrete E wnt
Dyranic Systerrs, vol. 12, pp. 43-81, 2002.

A. Cavalli, C. Gervy, and S. Prokopenko, "New Approaches for Passive Testing us-
ing an Extended Finite State Machine Specification”, Conoondia Prestigious Workshop on
Cormmuracation S oftunre E ngineering. Montreal, 2001, pp. 225-250.

A. Cavalli, C. Gervy, and S. Prokopenko, "New approaches for passive testing using
an Extended Finite State Machine specification," Inforrmation and Softuare Tedmology,
vol. 45, pp. 837-852, 2003.

D. Lee, C. Dongluo, H. Ruibing, R. E. Miller, W. Jianping, and Y. Xia, "A formal
approach for passive testing of protocol data portions", 10th International Conference on
Netuork Protocdls, pub: IEEE Computer Society. Paris, France, 2002, pp. 122-31.

D. Lee, C. Dongluo, H. Ruibing, R. E. Miller, W. Jianping, and Y. Xia, "Network
protocol system monitoring-a formal approach with passive testing," IEEE/ACM
Trarsactions on Netuorking, vol. 14, pp. 424-37, 2006.

B. Alcalde, A. Cavalli, D. Chen, D. Khuu, and D. Lee, "Network protocol system
passive testing for fault management: a backward checking approach", Formmul Ted>
riques for Netuorked and Distributed Systers (FM), Leanre Notes in Computer Scence
(LNCS), pub: Springer Verlag. Madrid, Spain, 2004, pp. 150-66.

B. T. Ladani, B. Alcalde, and A. Cavalli, "Passive testing - a constrained invariant
checking approach", 17th International Corference on Testing of commuwacating systenrs

162

Bibliography

[84]

[85]

[86]

(87]

(88]

[89]

[50]

1]

[92]

[93]

[94]

(TestCor), Leture Notes in Computer Scence (LNCS), pub: Springer Verlag. Montreal,
Que., Canada, 2005, pp. 9-22.

A. Benharref, R. Glitho, and R. Dssouli, "A Web Service Based- Architecture for De-
tecting Faults in Web Services", Integrated Marnagement, pub: IEEE Press. Nice,
France, 2005.

A. Benharref, R. Glitho, and R. Dssouli, "Mobile agents for testing Web services in
Next Generation Networks", MATA 2005, Leaure Notes in Computer Science, vol.
3744, pub: Springer Verlag. Montreal, Canada, 2005, pp. 182-191.

A. Benharref, M. A. Serhani, R. Dssouli, and R. Glitho, "Les Agents Mobiles pour la
Veérification de la QdS des Services Web", 6éme Conférence Intermationale sur les NOwd-
les TE dmologies de la RE pantition (NOTE RE), pub: Lavoisier. Toulouse, France, 2006,
pp- 339-350.

M. A. Serhani, R. Dssouli, A. Benharref, H. Sahraoui, and M. E. Badidi, "Toward
integration of Quality of Web services (QoWS) Management operations in SOA:
Case of basic and composite Web services", selected as Book Chapter in A dunced Topics

in Inelligernt Information Tedmologies. 2007 .
M. A. Serhani, R. Dssouli, H. Sahraoui, A. Benharref, and M. E. Badidi, "VAQoS:
architecture for end-to-end QoS management of value added Web services," Interma-

tional Jowrnal of Irwelligent Information Tedmologies, vol. 2, pp. 37-56, 2006.

M. A. Serhani, A. Benharref, R. Dssouli, and H. Sahraoui, "CompQoS: Towards an
Architecture for QoS composition and monitoring (validation) of composite web
services", [nternational Corference on Web Tedmologies, Application, and Seruces “WTAS”.
Calgary, Canada, 2006, pp. 78-83.

M. A. Serhani, R. Dssouli, H. Sahraoui, A. Hafid, and A. Benharref, "Toward a new
web services development life cycle”, Irtemational Multi- Conferences in Computer Science
& Computer E ngineering, International Symposinm on Web Services and A pplicatiors. Las Ve-
gas, Nevada, USA, 2005, pp. 94-103.

M. A. Serhani, R. Dssouli, H. Sahraoui, A. Benharref, and M. E. Badidi, "QoS Inte-
gration in Value Added Web Services", 2nd international conference on Innowtions in In
formation Tedmology. Dubai, U.A.E, 2005.

S. Some, R. Dssouli, and J. Vaucher, "From scenarios to timed automata: building
specifications from users requirements", Asiz Padfic Softunre E ngineerning Conference,
pub: IEEE Comput. Soc. Brisbane, Qld., Australia, 1995, pp. 48-57.

P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen, "Formal approach
to scenario analysis," IEEE Soffware, vol. 11, pp. 33-41, 1994,

Y. He, D. Amyot, and A. W. Williams, "Synthesizing SDL from Use Case Maps:An
Experiment", SDL 2003: System Design, Leature Notes in Computer Sdence, vol. 2708,
pub: Springer Verlag. 2003, pp. 117-136.

163

Bibliography

[95]

[96]

[97]

(98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

D. Harel and H. Kugler, "Synthesizing state-based object systems from LSC specifi-
cations," Irternational Journal of Fourdations of Computer Science, vol. 13, pp. 5-51, 2002.

R. Mizouni, A. Salah, S. Kolahi, and R. Dssouli, "Composition of use cases using
synchronization and model checking", Leaure Notes in Computer Science, vol. 4229, pub:
Springer Verlag. Paris, France, 2006, pp. 292-306.

A. Salah, R. Mizouni, R. Dssouli, and B. Parreaux, "Formal composition of distrib-
uted scenarios", Formil Tedmiques for Netuorked and Distribused Systerrs (FORTE) Lec:
ture Notes in Computer Saence, vol. 3235, pub: Springer- Verlag. Madrid, Spain, 2004, pp.
213-28.

A. Fuggetta, G. P. Picco, and G. Vigna, "Understanding code mobility," IEEE
Trarsactiors on Software E ngineering, vol. 24, pp. 342-61, 1998.

Joana Da Silva, Khalid Hassan, Roch Glitho, and F. Khendek, "WEB Services for
Conferencing in 3G Networks: A Parlay Based Implementation”, Proceding of the In-
termational Conference on serdce deliwery in Neruorks (ICIN’04). Bordeaux, France, 2004,
pp. 245-250.

Parlay, "Parlay 4.1 Specification”, at www.parlay.org, Visited on 2004.

Jade, "Java Agent DEvelopment Framework", at http://jade.tilab.com, Visited on
2007.

A. Benharref, R. Dssouli, R. Glitho, and M. A. Serhani, "Towards the testing of
composed web services in 3rd generation networks", IFIP International Conference on
Testing of Conmuricating Systens (TestCom), Lecture Notes in Computer Science, vol. 3964,
pub: Springer Verlag. New York, NY, United States, 2006, pp. 118-133.

A. Benharref, M. A. Serhani, R. Glitho, and R. Dssouli, "Une architecture Multi-
Observateur pour I'Observation des Services Web Composés", Séme Conférence Iter-
rationale sur les NOwwlles TE dmologies de la RE partition (NOTE RE). Gatineau, Quebec,
Canada, 2005, pp. 153-162.

A. Benharref, M. A. Serhani, R. Dssouli, A. En-Nouaary, and R. Glitho, "Traversée
Parallele pour 'Accélération du Test Passif des Services Web Basé sur les MEFE",
7éme Conférence Internationale sur les NOvwdlles TE dmologies de la RE partition (NOTE RE),
pub: Hermés. Marrakech, Maroc, 2007, pp. 329-340.

A. Benharref, R. Dssouli, M. A. Serhani, A. En-Nouaary, and R. Glitho, "New ap-
proach for EFSM-based Passive Testing of Web Services", 19th IFIP International
Corference on Testing of Conmumicating Systerrs (TestCorn), Leaure Notes in Computer Scence,
pub: Springer Verlag. Tallin, Estonia, 2007, pp. 13-27.

164

Publications Related to This Thesis

[1]

(2]

[6]

A. Benharref, R. Dssouli, M.A. Serhani, et R. Glitho, “Passive Testing of Web Services”.
Submitted to Information and Software Technology, Elsevier.

A. Benharref, M. A. Serhani, M. Salem, et R. Dssouli, “Multi-tier Framework for Man-
agement of Web Services’ Quality”. Proposal accepted as book chapter in Managing Web
Service Quality: Measuring Outcomes and Effectiveness.

A. Benharref, R. Dssouli, M. A. Serhani, A. En-Nouaary, and R. Glitho, "New approach for
EFSM-based Passive Testing of Web Services", 19th IFIP International Conference on
Testing of Communicating Systems (TestCom), Lecture Notes in Computer Science, pub:
Springer Verlag. Tallin, Estonia, 2007, pp. 13-27.

A. Benharref, M. A. Serhani, R. Dssouli, A. En-Nouaary, and R. Glitho, "Traversée Paral-
léle pour I’ Accélération du Test Passif des Services Web Basé sur les MEFE", 7éme Con-
Sférence Internationale sur les NOuvelles TEchnologies de la REpartition (NOTERE), pub:
Hermés. Marrakech, Maroc, 2007, pp. 329-340.

A. Benharref, M. A. Serhani, R. Dssouli, and R. Glitho, "Les Agents Mobiles pour la Véri-
fication de la QdS des Services Web", 6éme Conférence Internationale sur les NOuvelles
TEchnologies de la REpartition (NOTERE), pub: Lavoisier. Toulouse, France, 2006, pp.
339-350.

A. Benharref, R. Dssouli, R. Glitho, and M. A. Serhani, "Towards the testing of composed
Web Services in 3rd generation networks", IFIP International Conference on Testing of

Communicating Systems (TestCom), Lecture Notes in Computer Science, vol. 3964, pub:
Springer Verlag. New York, NY, United States, 2006, pp. 118-133.

A. Benharref, M. A. Serhani, R. Glitho, and R. Dssouli, "Une architecture Multi-
Observateur pour I’Observation des Services Web Composés", Séme Conférence Interna-
tionale sur les NOuvelles TEchnologies de la REpartition (NOTERE). Gatineau, Quebec,
Canada, 2005, pp. 153-162,

A. Benharref, R. Glitho, and R. Dssouli, "A Web Service Based-Architecture for Detecting
Faults in Web Services", Integrated Management, pub: IEEE Press. Nice, France, 2005.

A. Benharref, R. Glitho, and R. Dssouli, "Mobile agents for testing Web Services in Next
Generation Networks", MATA 2005, Lecture Notes in Computer Science, vol. 3744, pub:
Springer Verlag. Montreal, Canada, 2005, pp. 182-191.

Publications Related to This Thesis

[10]

[11]

M. A. Serhani, R. Dssouli, H. Sahraoui, A. Benharref, and M. E. Badidi, "VAQoS: archi-
tecture for end-to-end QoS management of value added Web Services," International Jour-
nal of Intelligent Information Technologies, vol. 2, pp. 37-56, 2006.

M.A. Serhani, R. Dssouli, A. Benharef, H. Sahraoui, E. Badidi “Toward integration of
Quality of Web services (QoWS) Management operations in SOA: Case of basic and com-
posite Web services,” selected as a Book Chapter in Advanced Topics in Intelligent Infor-
mation Technologies.

[12] M. A. Serhani, A. Benharref, R. Dssouli, and H. Sahraoui, "CompQoS: Towards an Archi-

[14]

[15]

tecture for QoS composition and monitoring (validation) of composite Web Services", In-
ternational Conference on Web Technologies, Application, and Services “WTAS”. Calgary,
Canada, 2006, pp. 78-83.

M. A. Serhani, R. Dssouli, H. Sahraoui, A. Hafid, and A. Benharref, "Toward a new Web
Services development life cycle", International Multi-Conferences in Computer Science &
Computer Engineering, International Symposium on Web Services and Applications. Las
Vegas, Nevada, USA, 2005, pp. 94-103.

M. A. Serhani, R. Dssouli, H. Sahraoui, A. Benharref, and M. E. Badidi, "QoS Integration
in Value Added Web Services", 2nd international conference on Innovations in Informa-
tion Technology. Dubai, U.A.E, 2005.

M. A. Serhani, A. Hafid, S. Houari, and A. Benharref, "QoS Broker- Based Architecture for
Web Services," NOuvelles TEchnologies de la REpartition (NOTERE)", Saidia, Morocco,
2004, pp. 68-81.

M.A. Serhani, M. V. Salem, R. Dssouli, A. Benharref, E. Badidi , “A Multi-Broker based
Architecture for QoS-aware Web services Selection and QoS Management,” In preparation.

166

We live on an island surrounded by a sea of ignorance.
As our island of knowledge grows, so does the shore of

our ignorance.

John A. Wheeler

