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Abstract

A Bi-objective Multi-population Genetic Algorithm with

Applications to Function Optimization and Ellipse Detection

Jie Yao, Ph.D.
Concordia University, 2008

This dissertation presents a novel Bi-objective Multi-population Genetic Algorithm
(BMPGA) for multimodal optimization problems. BMPGA is distinguished by its use of
two separate but complementary fitness objectives designed to enhance the diversity of
the overall population and exploration of the search space. This is coupled with a multi-
population strategy and a clustering scheme, both of which together focus selection
pressure within sub-populations, resulting in improved exploitation of promising

optimum areas as well as effective identification and retention of potential optima.

The practical value of BMPGA is demonstrated in several applications. In
optimization of benchmark multimodal functions, it shows clear superiority over other
typical multimodal GAs: Multinational GA [1], Dynamic Niche Clustering [2] and

Clearing [3], with respect to overall effectiveness, general applicability and reliability.

In the application of imagery ellipses detection, BMPGA is compared with both
widely used Randomized Hough Transform (RHT) [4] and Sharing Genetic Algorithm
(SGA) [5]. In thorough and fair experimental tests, utilizing both synthetic and real-world

images, BMPGA exhibits solid advantages over RHT and SGA in terms of accuracy of
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recognition - even in the presence of noise or/and multiple imperfect ellipses in an image

- and speed of computation.

Finally, we successfully extend BMPGA to the segmentation of microscopic cells,
which is a necessary first step of many automated biomedical image processing

procedures.
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Chapter 1 Introduction

Multi-modality, as suggested by its name, indicates the existence of one or more local
optimum, besides the global optima, on a function’s surface. This property unavoidably
complicates the problem to be optimized. If the ultimate goal is the identification of a
global optimum, the existence of local optima, to a large extent, tends to affect the search
negatively, due to entrapment around local optima. There are situations, however, in
which the local optima are as important as, and sometimes even more important, than the
global optimum.

Multimodal optimization refers to the general problem of locating the local (and
global) optima on a function’s surface. It is a problem with practical significance in many
application domains. Some of them naturally necessitate search of local optima.

Pattern matching and recognition is a typical example [6-8]. Given a template
pattern and an image, all patterns that match the template perfectly or not so perfectly are
of interest. A perfect match corresponds to a global optimum, whereas imperfect matches
correspond to local optima. These local optima should not be dismissed, as they represent
target patterns, though imperfectly formed.

In some other applications, local extrema or sub-optimal solutions provide a

useful pool of candidates for further experimental investigation. In [9, 10], the problem

consists of determining the sequence of DNA clones from restriction-fragment data. The
molecular biologists aim to look for an exact sequence that is global optimum in their
mathematical formulation. The search for this global optimum, however, is tightly tied up

with the selection of the optimization criterion, which is fabricated by specific



approaches. With such criterion, the scientists cannot find the correct solution using
mathematical methods. Therefore, the authors proposed to search for the k-best sub-
optima.

Similarly, in the applications of path planning for mobile robots [11, 12], the
availability of alternative suboptimal paths is an important part of the solution. The
search maps of path planners are usually discretized approximations of actual
environments. An optimal path found in the search map may not be the best path in the
real workspace. Several important factors must be taken into consideration when deciding
on the optimization criteria, which are often very complex and subjective. Hence, locally
optimal and globally suboptimal paths provide a useful pool of candidates for further
investigation. This is of particular significance in dynamic environments, where one or
more of these paths may unexpectedly become infeasible. An alternative path must then
be chosen from the pool of feasible paths.

Job scheduling [13-15] is another typical example. The objective is to find
multiple solutions so that the human experts can choose the solution that better adapts to
the actual conditions, e.g. politics or unexpected happenings.

These are just a few examples that illustrate the considerable significance of
multi-modal optimization, for scientists and engineers, among others.

Fig. A-1 in Appendix A exhibits a typical multimodal surface of function D,. D,
has a finite set of discrete or independent optima. These optima represent a finite set of
potentially useful solutions to a multimodal problem. This type of multimodal function is
interesting to us in this study.

Hill climbing [16], [17], [18] is a classical optimization technique. Starting from a



random state, it always moves to a successor state that is better than the current one. The
direction and the length of each move between consecutive states may be adjusted
adaptively.

As a typical exploitation search method, a hill climber potentially ignores
exploration of other areas in the search space. Therefore, it works well on uni-modal
landscapes, but tends to get trapped in local optima on multi-modal landscapes.

An iterative hill climbing algorithm [16] may partially solve this dilemma, simply
by iteratively running the local hill climbing method starting from different random
points. However, a full exploration of all existing optima is not guaranteed. And it is
subject to a high risk of repeated visits within the same area, depending on the location of
the random initial points.

In recent years, many researchers have shed light on Genetic Algorithms (GA) for
multimodal optimizatioﬁ [1, 2, 11, 12, 19-30], which, as a major branch of evolutionary
computation, are promising for search in complex multimodal landscapes.

Several studies have compared various forms of hill climbing methods with GAs
[31-34]. They believe that an ideal GA has quicker and more thorough search than a hill
climber. In [18], Mahfoud implemented a parallel hill climber. It starts with a randomly
generated population and forces each individual to converge to its nearest local optimum.
By compaﬁng this hill climber with several other GA approaches, the author concluded
that the parallél hiH climbing is best for easy problems with less than ten peaks. It may
work reasonably well on problems of medium complexity with a moderate number of
peaks, however, it shows incapability on complex landscapes and displays both isolation

and misleadingness.



Similarly, Corne [35] suggested superiority of GA to the hill climbing technique
on multimodal landscapes, given the condition that the GA is adequately configured to
maintain multiple niches. The niches can be achieved via a large population size or a
good inherent diversity maintenance mechanism.

In [21], the Species Conserving Genetic Algorithm maintained a good diversity of
the population by conserving different species and outperformed the hill climbing method
on some benchmark multimodal landscapes.

Indeed, GA’s inherent properties make it theoretically advantageous for
multimodal optimization problems. However, how to make good use of these properties
remains a challenge. Existing GAs are known to suffer from various drawbacks, such as
an inferior performance on irregular multimodal surfaces [2], [3], inability to preserve
species [1], [2], [3] as well as limited applicability relying on landscapes and parameter
settings [1], [2], [3].

In this dissertation, a novel Bi-objective Multimodal Genetic Algorithm

(BMPGA) is proposed and studied. Its main features are:

e A bi-objective mechanism that enhances the diversity of the population and
expedites exploration of the search space;

e A novel clustering algorithm that forms subpopulations of individuals around
potenﬁal optima effectively and stably, without a priori knowledge of the
landscape;

e A multi-population scheme that consolidates diversity and speciation within the

population and intensifies exploitation of areas of potential optima.



BMPGA is applied to several applications including optimization of benchmark
multimodal functions, ellipse extraction and microscopic cell segmentation. With
augmented diversification and intensification, it achieves excellent results.

BMPGA is compared to a number of well known algorithms in these applications.
In multimodal function optimization, it is compared to Dynamic Niche Clustering [2],
Multinational GA [1] and Clearing [3]. It is also compared to its own sibling: the Multi-
population Genetic Algorithm (MPGA). It consistently returns better results than all of
these GAs in terms of its ability to find and maintain optima, as well as its generality and
consistency.

In ellipse extraction, BMPGA is compared to one of the most investigated
approaches — the Randomized Hough Transform [4] and another GA based method — the
Sharing GA [5]. BMPGA exhibits solid advantages over these two algorithms in terms of
accuracy - even in the presence of noise or/and multiple imperfect ellipses in an image,
and efficiency.

The dissertation is structured as follows:

Chapter 2 of this thesis introduces necessary background. It first presents a brief
overview of a classical GA and its basic flowchart. Typical evolutionary operators of a
GA are discussed. A fundamental theory describing the behavior of GAs — the Schema
Theorem is briefly presented. GA’s advantages are analyzed in five aspects. Limitations
of a classical GA on multimodal optimization are also pointed out.

Following the introduction of classical GAs, GAs for multimodal optimization are

hierarchically categorized and investigated. All multimodal GAs can be roughly divided



into two categories: sequential GAs and parallel GAs. The parallel GAs can be further
categorized into genetic operator based GAs and population based GAs. The
characteristics, the advantages and the disadvantages of each category and sub-category
of GAs are discussed. The chapter is concluded with comparison between major
categories (sub-categories) of multimodal GAs: sequential GAs versus parallel GAs and
genetic operator based GAs versus population based GAs.

Chapter 3 discusses clustering approaches adopted in multimodal GAs. Three
major categories of clustering methods existing in the literature are introduced. They are
distance based approaches, topology based approaches and hybrid approaches. Following
that, the methods to compute the center of each cluster are also described and compared.

After that, a new clustering algorithm - Recursive Middling (RM) is proposed.
Validity of RM is empirically tested in a Monte Carlo process and a typical multimodal
GA - Dynamic Niche Clustering [2]. RM is compared to other clustering techniques, i.e.
those based on Euclidean distance and Ursem’s HV function [1] and demonstrates clear
superiority over them.

The Bi-objective Multi-population GA (BMPGA) for multimodal function
optimization is studied in Chapter 4. After the overall framework of BMPGA is
introduced, major processes, including fitness evaluation, clustering and evolution within
this framework, are discussed in detail. Motivation and mechanism to use two objectives
(fitness terms) are interpreted. Three clustering behaviors — migration, splitting and
merging are presented. In evolution, concepts of full elitism and population control are
discussed. BMPGA is compared to several typical multi-modal GAs, including

Multinational GA [1], Dynamic Niche Clustering [2] and Clearing [3], and demonstrates



superiority over them.

Chapter 5 presents a real world application using BMPGA - geometric shape
extraction in images (so far we aim to extract ellipses). This application adopts the basic
framework of BMPGA in Chapter 4. However, it also has application-specific
implementations such as chromosome encoding, fitness evaluation, clustering and some
evolutionary operators, e.g. crossover and mutation. Implementation and experimental
results of this application are discussed in detail. BMPGA is compared to one of the most
popular and most investigated algorithms — Randomized Hough Transform [4] and
another multi-modal GA — Sharing GA [5]. BMPGA outperforms both algorithms in
terms of accuracy, tolerance to salt and pepper noise as well as efficiency.

Chapter 6 further presents a real world application based on Chapter 5 —
segmentation of microscopic cells. This application entails two stages. Stage 1, called
blob extraction, extracts contours of blobs of cells and outputs them to stage 2 - ellipses
detection, which then uses the approach in Chapter 5 to approximate the given contours
with ellipses. Both visual and statistical results are given and analyzed.

The thesis is concluded with potential future work as described in Chapter 7.



Chapter 2 Background

2.1 Classical Genetic Algorithms (GA)

2.1.1 A Classical GA

The Genetic Algorithm (GA) [36] is an optimization technique inspired by evolution and
Darwin’s natural selection theory. A GA performs a parallel beam search, which may be
viewed as a combination of hill climbing and random search. As a major branch of
evolutionary computation, it is a promising technique for optimization problems,
especially those with complex multimodal landscapes.

A classical GA encodes a potential solution to a specific problem as a
chromosome and evolves a population of chromosomes from generation to generation
until the termination condition is satisfied. It typically starts with a randomly generated
population, each individual (chromosome) of which is assigned a fitness value (indicating
the goodness of the potential solution). After ranking all the chromosomes with respect to
their fitness values, a proportion of the best candidates are kept for the new population
(elitism). Pairs of parents are selected within the current population in such a way that a
chromosome that is more fit has more reproductive opportunities. New offspring are
generated, by exchanging the genetic information of their parents, and put into thé new
population. This behavior is called reproduction, recombination or crossover. Mutation is
then applied to the population with a small rate. After that, the new population is passed
through to the next generation.

The overall flowchart of a classical GA is shown in Fig. 2-1. Essentially, it



contains the following genetic operations:

e Selection: selecting elites to be kept in the next population and parents to be

mated;
e Crossover: recombining parental chromosomes to generate offspring;

e Mutation: randomly changing some chromosomes.

spulation
tialization

Fithess computation - End
. andranking: :

/. New »
_ population

Fig. 2-1 The flowchart of a typical GA



2.1.2 Genetic Operations

As introduced above, a typical GA involves three major operations: selection, crossover

and mutation.

2.1.2.1 Selection

Selection is a process that selects individuals in the population to survive and reproduce.

A basic principle is that fitter individuals get more opportunities to be selected.

1.1.1.1.1 Elitism

Elitism was first introduced by De Jong [37]. It helps to preserve the best individuals in
the population and pass them through to the next generation without alteration. These
individuals, called elites, may otherwise be lost if they are not selected to reproduce or if

they are disrupted by crossover or mutation.

1.1.1.1.2 Fitness Proportionate Selection
Fitness proportionate selection is the most common selection method in GA. With this
scheme, the possibility (P;) of an individual i to be selected to reproduce is that

individual's fitness divided by the sum of the fitness of the population:

= @.1)

>,

1

where N is fhe size of the population, and f; is the fitness of the individual i.

The expected number of times i is selected (E;) is:

E=N-p=N--Ji - S _J 2.2)

WAL

j=1 j=1
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where f is the average fitness of the population. Therefore, the expected number of

times an individual to be selected to reproduce is its fitness divided by the average fitness
of the whole population.

Fitness proportionate selection can be implemented with the Roulette-wheel
algorithm. For a population of N individuals, a circular roulette wheel of N slices is
constructed. A slice represents an individual within this population. The size of the slice
is proportionate to the probability of selection. Selection of an individual is equivalent to
spin the wheel. The pointer of the wheel finally stops at the individual to be selected. To
select N individuals from the population, the wheel is spun for N independent runs.

Fig. 2-2 gives an example of a wheel made up of five individuals, A, B, C, D, and
E. The fitness values of these individuals and their sum are listed in the left lower bottom
of the picture. It can be seen that E has the largest fitness value, hence its slice
(possibility of selection) accounts for 33% (5/15) of the wheel; whereas A’s slice only

accounts for 7% (1/15) of the wheel.

B E

fa=1 fp=2
Je=3 fo=4 27%
J5=5 fam=15

Fig. 2-2 A example of a roulette wheel
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The roulette wheel selection can be implemented as follows:
I. Rank the fitness of all individuals from high to low;

2. Sum the total fitness of the population, denoted as S;

3. Repeat N times:

a) Choose a random number » between 0 and S.

b) Loop through the individuals in the population and sum their fitness
values until the sum is greater than or equal to ». The last individual
whose fitness puts the sum over 7 is selected.

Fig. 2-3 demonstrates 3 random trials of the roulette wheel selection based on the

data above. Selected individuals are A, C, and D, respectively.

Trial# »
1 4.65
2 10.5
3 14
Trial 1 Tri 2 Trial 3
A B C D E
5 9 12 14 15

Fig. 2-3 Roulette wheel selection

Statistically, the roulette wheel approach generates the expected number of
offspring for each individual. However, the actual number of offspring obtained may
often be far from its expected value, especially with a relatively small population. Baker
[38] proposed a Stochastic Universal Sampling (SUS) method to minimize this “spread”,
i.e. the range of possible actual values, given an expected value.

Unlike the roulette wheel algorithm that selects N individuals from the population

12



by repeated N random samplings, SUS adopts a random sampling once to select all of the
individuals at evenly spaced intervals. The implementation is:
1. Rank the fitness of all individuals from high to low;
2. Sum the total fitness of the population, denoted as S;
3. Choose a random number » between 0 and S/N;
4. Letsum = 0, for all individual i = [0...N-1] in the population, repeat N times:
If sum <r and sum + fitness of i > r
Select i;
r=r+S/N,
continue;
sum = sum + fitness of i;
Fig. 2-4 demonstrates 3 random trials of the roulette wheel selection based on the

data above. Selected individuals are A, B, and D, respectively.

interval = 15/3 =5
r =251 [0, interval]

Trial 1 Trial 2 Trial 3
F 5 > 5
. l‘— l "l
A B C D |E
5 9 12 14 15

Fig. 2-4 Stochastic Universal Sampling

SUS ensures to select individuals with quantity close to the expected number.

1.1.1.1.3 Fitness Rank-based Selection

With fitness proportionate selection, if the fitness variance of the population is high and a

I3



small number of individuals are much better than other individuals in the population,
those worse individuals will have very few chances to be selected. Consequently, the
group of highly fit individuals will generate an excessive number of offspring. The search
is narrowed down too quickly without exploration of other regions of the search space.
This phenomenon is called premature convergence. On the other hand, when the fitness
variance of the population is low, the evolution tends to stagnate since there is not enough
selection pressure to select highly fit individuals.

Fitness ranking selection overcomes these problems by assigning the expected
value of each individual based on its rank rather than its absolute fitness value. This is a
simple and effective way of controlling selection pressure. It avoids giving too much
emphasis to a small group of highly fit individuals, and thus reduces the selection
pressure when the fitness variance is high. It also keeps up selection pressure when the
fitness variance is low since absolute fitness differences are not taken into account. The
ratio of expected values of individuals ranked i and i + 1 is the same no matter how much
their absolute fitness differs.

Implementation of fitness ranking selection is simple. It first ranks the population
from the best to the worst individuals. Each individual then receives a fitness value from
N to 1, with the best having N, and the worst having 1. Similar to SUS, the probability of
each individual being selected for mating depends on its fitness normalized by the total
fitness of the population.

Fitness ranking selection may depress selection pressure and make GA slower in
finding highly fit individuals. However, it also results in increased preservation of

diversity in the population. When searching in a multi-modal space, this scheme is more

14



favorable to quick convergence resulting from fitness proportionate selection.

1.1.1.1.4 Tournament Selection
Fitness ranking selection is a potentially time-consuming procedure since it needs to sort
the entire population. As a noisy version of fitness ranking selection, tournament
selection dramatically decreases the computational cost. It runs a fournament among a
group of g (1<g<N) individuals chosen at random from the population and selects the
best one for mating.

Selection pressure can be easily adjusted by changing the tournament size. If the
tournament size is 1, the selection is completely random. If the tournament size is larger,

weak individuals have a smaller chance to be selected.

2.1.2.2 Crossover

Crossover, also termed reproduction or recombination, mimics biological recombination
between two single-chromosome organisms. In this process, pairs of parental
chromosomes exchange their genetie material and generate new offspring. Different
crossover techniques exist, depending on the structure of the chromosomes. In this

section, several popular crossover approaches are introduced.

1.1.1.1.5 Single Point Crossover

In single point crossover, a crossover point is selected at random. All genes beyond that

point in the parent strings are swapped between the two parents:

15



Parents

B IR |B|BI|B| |Q]QOs|COs

RP;PngQs AR ALE

Offspring

Fig. 2-5 Single point crossover

The single point crossover is conceptually simple. However, it has some
shortcomings. According to Eshelman, Caruana, and Schaffer [39], it suffers from
positional bias, that is, strong dependence of creation or destruction of schemas' on the
location of the crossover point. For example, it can not generally combine instances of
P;***Ps and **Q;** to generate P;*Q;*Ps. And it tends to destroy schemas with long

defining length.

1.1.1.1.6 Two Point Crossover

Two point crossover selects two crossover points at random and exchanges the segments
between them. Fig. 2-6 illustrates this process. Two point crossover reduces positional
bias to some extent in that it is less likely to disrupt schemas with large defining lengths

and can combine more schemas than single point crossover.

Parents

AV AV AP AV 2] lQ;kgz Q3IQ4 Qst

REIlefelr] [elelrlze]

Offspring

Fig. 2-6 Two point crossover

' For an explanation of the concept of schemas, please refer to Section 2.1.3.1 for details.
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Note that two point crossover does not completely remove positional bias since it

is still unable to combine some schemas.

1.1.1.1.7 Uniform Crossover

Uniform crossover makes every locus a potential crossover point. Each pair of individual
genes in both parents is swapped with a probability (e.g. 0.5). As demonstrated in Fig.
2-7, pairs of genes at the 1% and the 4™ locus are exchanged. All other genes remain

unaltered in their parents.

Parents

A AL AR Al

ala[Rla[R]  [B]2]o:]A]o

Offspring

Fig. 2-7 Uniform crossover

Uniform crossover does not have positional bias. However, it is highly disruptive

as it may destroy any schema.

2.1.2.3 Mutation

Resulting from copying errors, mutation is a phenomenon in which single genes of
parents change in offspring. Mutation can occur at each locus in a chromosome with a
small probability (e.g. 0.005). Implementation of mutation may vary, dépending on
different encoding schemes. For example, for a binary chromosome, mutation randomly

flips some of the bits in the chromosome. For a chromosome with real valued genes, the
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gene to be mutated is replaced by a value randomly selected between its given ranges.
Mutation promotes the diversity of the population by avoiding fixation of gene
values. Although crossover is the major source of power in GA, mutation can become

more productive than crossover when the population converges.

2.1.3 How GA Works

2.1.3.1 Schemas

Holland [36] introduced the concept of schemas in 1975. In principle, schemas are
building blocks that GA processes effectively under evolutionary operators, i.e. selection,
mutation, and single-point crossover. A schema is a set of bit strings that can be

“*5’

described by a template made up of “0”, “1”, and that represent "don't cares". All
strings fitting this template are called instances of this schema. For example, a schema §
= 1**] has four instances: 1001, 1011, 1101, and 1111.

The number of defined bits (non “*” bits) within a schema is called the order of
the schema. Its value is between [0, /], where / is the length of the string. For example, S
is a schema of order 2. Schemas with higher order are more specific.

The distance between the outermost defined bits of a schema is called the defining
length of the schema, in short, the length of the schema. For example, the length of S'is 3,
while the length of the schema ***1 is 0. The length of a schema falls between [0, /-1].

Note that it is different from the string length / since the latter is the number of bits in the

schema.

2.1.3.2 Schema Theorem

The GA's behavior can be described by the increase and the decrease in numbers of
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instances of given schemas in the population. The growth of the schema can be estimated
by the Fundamental theorem of the GA - the Schema Theorem [36], which gives a lower
bound on the effect of the genetic operators from one generation to the next in a classical
GA. As introduced in Section 2.1.2, a classical GA consists of such genetic operators as
selection, crossover, and mutation.

Let S be a schema with at least one instance present in the population at time .
Let n(S, 7) be the number of instances of .S at time ¢, and let (S, ¢) be the average fitness

of instances of S in the population at time 7. We have:

2. (%)

Assuming that the fitness proportionate selection is carried out, the number of
offspring of an individual x is equal to its fitness f{x) divided by the average of fitness in
the population f (t)  With selection only, the expected number of instances of S at time ¢
+ 1, E(n(S, ¢t + 1)), is given by:

E((S,t+1)=Y f((j)) _ S, })(rgs 1) (2.4)

Hence the increases or the decreases of schema instances in the population depend
on u(S, 7). Although the GA does not compute this quantity explicitly, it implicitly
evaluates it during the evolution process.

We now take into account the destructive effects of crossover and mutation. Let
P. be the probability that a single-point crossover will be applied to an individual.
Assuming that an instance of S is picked to be a parent, S is said to survive under single-
point crossover if one of the offspring is also an instance of S. Crossovers occurring

within the defining length of S may destroy S. Hence an upper bound on the probability
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that S will be destroyed is P %(-‘5112 where d(S) is the defining length of S, and / is the

length of S. The lower bound on the probability of survival P.(S) can then be obtained by

subtracting this value from 1:

d(S)

P(S)21-P
+(5) “ -1

2.5)

It can be seen that the probability of survival under crossover is higher for
schemas with shorter defining length.

Let P, be the probability of any bit being mutated. For each bit, the probability
that this bit will not be mutated is 1 - P,,. Then P,(S), the probability that a schema S will
survive under mutation, is equal to (1 - Pm)f’(s), where o(S) is the order of S. Obviously
P.(S) is higher for lower-order schemas.

The disruptive effects of both crossover and mutation are:

HS0n5.0 p5yp ()
10 20

B(S,0n(S,0) o A\ b s
2 S =R TR

E(n(S,t+1) =

This inequality gives an insight into how GA works and why it can sample big
search spaces very fast. Short, low-order schemas whose average fitness remains above
the mean fitness of the population will receive exponentially increasing numbers of
samples over time, since the number of samples of these schemas increases by a factor of
4(S,2)/ f(t) at each generation.

These schemas serve as building blocks that can be recombined, via crossover,
into instances with increasingly higher order and higher observed fitness. This process is

known as the Building Block Hypothesis [40], which describes the constructive effects of
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Crossover.

2.1.4 The Appeal of GA

GA'’s power lies in the following six aspects:

- It imitates the process of natural selection by conserving the instances of such
schemas — the stronger the individuals, the higher probabilities they are assigned
for survival, reproduction and propagation;

- It is not only able to conserve good candidates, but also to create even better
candidates by effectively recombining instances of good schemas;

- It allows mutation of individuals to explore new unvisited areas in the search
space. As a result of these genetic operators, it strikes a good balance between
exploration and exploitation of the search space by focusing its search on
promising regions, while still actively exploring other unvisited regions;

- GA’s inherent properties easily enable its implementation on distributed
processors so that super-linear speed up can be achieved [41];

- The implementation of a GA is conceptually simple: population evolves by means
of random variation (recombination, mutation, and other operators), followed by

natural selection, which picks up the fittest to survive and reproduce.

2.1.5 Limitation of a Classical GA

Despite its intrinsic merits, a classical GA has its own limitation on multimodal |
optimization problems. It typically manipulates one population, which, driven by
selection pressure, finally converges to one winner. If there is more than one equivalently

good optimum, a random winner is obtained. This phenomenon is obviously undesirable
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for multimodal optimization. There have been quite a few studies to address this problem.

In Section 2.2, we will discuss these GAs hierarchically and systematically.

2.2 Genetic Algorithms for Multimodal Search
As introduced in Section 0, a classic GA typically manipulates one population, which
tends to converge to a random winner if more than one optimum exists. This
phenomenon is obviously undesirable for multimodal problems. In the literature, there
have been many enhanced versions of GAs tackling this problem. In this Section, these
methodologies will be hierarchically categorized and studied.

Multimodal GAs can be broadly divided into two major categories: sequential
GAs and parallel GAs. The main sequential GA, called Sequential Niche Technique [19],
runs a simple GA iteratively and extracts the optima one at a time. The parallel GA, on
the other hand, manages explicit or implicit clusters of individuals in a parallel fashion,
with each cluster gathering around a potential optimum. More than one optimum may be

located simultaneously.
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Fig. 2-8 Hierarchy of multimodal GAs

As demonstrated in Fig. 2-8, the parallel GAs can be further divided into two sub-
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categories: the genetic operator based techniques and the population based techniques. In
essence, a genetic operator based technique uses specially designed genetic operators to
maintain implicit clusters, and the population is evolved as a whole. On the other hand, a
population based approach manipulates a number of explicit subpopulations, each of
which is evolved independently.

Crowding [37], Sharing GA [20, 22, 24, 30, 42-44], Species Conserving GA [21]
and Clearing [45] are typical genetic operator based GAs. On the other hand, GA with
Minimal Representation Size Clustering (GA-MRSC) [11, 12], Multipopulation Genetic
Algorithm (MPGA) [25], Roaming [23, 46] and Forking GA (FGA) [27] are population
based GAs. Ursem’s Multinational GA (MGA) [1] is a peculiar case. Although it is a
population based GA, it also bears some properties of a genetic operator based GA.
Hence as shown in Fig. 2-8, a dashed line links MGA to the genetic operator based GA.

All these GAs will be discussed in detail below.

2.2.1 Sequential GAs

The Sequential Niche Technique [19] is a typical sequential GA. It iterates a traditional
GA and searches for one optimum at each iteration. In order to avoid repeated search
within previously visited areas, individuals in the vicinity of a discovered optimum are
punished by a fitness derating function. The raw fitness of these individuals is multiplied
by the fitness dé_:rati'ng function, which results in a reduction of the fitness of these

individuals.

23



Fig. 2-9 The Sequential Niche Technique

Fig. 2-9 presents the basic framework of this algorithm. F(x) is the raw fitness
function. M(x) is the modified fitness function, obtained from F(x) multiplied by a series
of fitness derating functions G(x, s). Deciding when to stop a GA run and start a new
iteration is not a trivial task (marked by * in Fig. 2-9). The authors suggested several
techniques. They record the average fitness of the population over 4 generations. If, at
any generation, the average fitness of the population is not greater than that of the
population 4 generations earlier, the population is deemed to be uniform and cannot be
improved any more. Consequently, the run is terminated. A run is also terminated if the
raw fitness of the best individual s is greater than a solution threshold or a maximum

number of generations are reached.
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The first approach above may cause premature termination of a run. In this case,
no optimum will be found. If the termination of a run is judged by the goodness of the
best individual found, the underlying assumption is that the target or the solution is
approximately known, which, without a priori knowledge of the landscape, is usually
unavailable.

The Sequential Niche Technique assumes a known number of optima. The
algorithm terminates when all of them have been found. It also assumes that the optima
are evenly distributed throughout the search space in order to estimate a niche radius r.
Each optimum on the function’s landscape is hypothetically surrounded by a hyper-
sphere of radius r. Individuals falling in the hyper-sphere that is centered at a found
optimum are derated. Unfortunately, both these two assumptions do not normally hold.

Even worse, the fitness derating function itself does not guarantee the elimination
~ of redundant search. It may also cause loss of optima or phantom optima because it
arbitrarily alters thé landscape of the function. In [18], the author observed that the
sequential GA performed worse than a parallel hill climber; whereas the parallel niching
GA (Sharing GA [20]) outperformed the sequential GA and achieved the best stability on

problems of different complexity.

2.2.2 Parallel GAs

Most multimodal GAs adopt a parallel scheme [2, 9-11, 20, 22, 23, 30, 46-56]. They
strive to maintain diversity in the population by explicitly or implicitly managing
different sub-populations or species in paréllel. Each species explores the area of a
potential optimum. The availability of parallel and/or distributed computers makes such

implementations at least as efficient as sequential GAs.
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The crux of these approaches is diversity, that is, the population has to be
diversified enough to cover as many promising regions as possible. Based on the method
of maintaining diversity in the population, parallel GAs can be further divided into two
sub-categories: genetic operator based techniques and population based techniques.

In essence, a genetic operator based GA uses specially designed genetic operators
to promote diversity and prevent convergence to a single optimum. It typically evolves a
global population of fixed size, which may contain one or more variable sized species.
Mating and selection are applied globally to the whole population.

Unlike the genetic operator based approaches that maintain diversity via specific
genetic operators, a population based GA consolidates diversity explicitly with multiple
subpopulations. Each subpopulation is evolved independently toward its own potential
optimum. Evolutionary -operations (e.g. elitism, mating and mutation) are typically

applied locally within each subpopulation.

2.2.2.1 Genetic Operator Based Techniques

1.1.1.1.8 Crowding
Jong [37] proposed a crowding model that attempts to distribute individuals evenly
among niches. This model is motivated by a biological phenomenOn that similar
individuals within the same speciés compete for limited resource, whereas different
individuals in different species do not tendvto compete.

Crowding follows a standard’ GA except that only a fraction of the population dies
and is replaced by new offspring in each generation. A newly generated individual

replaces an individual that is most similar to it among a pool of individuals randomly

26



selected from the population. The size of this pool is called a crowding factor. When the
population reaches its equilibrium, the number of individuals within each niche is
expected to be stable.

Crowding is able to maintains existing diversity, but is unable to generate new
species [57]. It exhibits mediocre performance on multimodal problems due to its
replacement errors [57], [48], i.e. an individual is replaced by another individual that is
not the same species. Thomsen suggested that a higher crowding factor (e.g. one equals
to the population size) could avoid replacement errors [58]. However, when optima are
close to each other, the replacement errors may still occur since a new individual may
replace another similar individual that belongs to a different species.

Moreover, a higher crowding factor may degrade the performance [37, 57]. It was
demonstrated in [57] that Crowding with a crowding factor equal to the size of the
population exhibited little, if any, selection pressure on a simple unimodal function. That
is not unexpected since Crowding consistently replaces the closest individual in the
population, which is very likely to bear a similar fitness value too. The consequence is
little or no improvement for the population.

Such a high crowding factor also limits parallelism and adds an order of
complexity to the algorithm [57]. The complexity in this case is similar to that of the
standard Sharing, which also cycles through the whole population in order to compute the
shared fitness for each individual.

Mahfoud [57] improved standard Crowding by introducing a method called
Deterministic Crowding. In this algorithm, the population of size N is randomly paired

into N/2 pairs of individuals for crossover. Offspring generated then compete with
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parents for replacement. The offspring replace their closest parent if they are of greater
fitness. The closeness is computed based on the average distance between the pairs of

parent-child. As shown in Fig. 2-10, the procedure is repeated for N/2 times.
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Fig. 2-10 Deterministic Crowding
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Deterministic Crowding uses a distance measure to determine similarity between
individuals. But it does not require the use of a radius. This relaxes the requirement of a
priori domain knowledge. However, Deterministic Crowding always prefers higher
fitness individuals over lower fitness individuals. This finally leads to a loss of niches,

and hence decreased diversity of the population.

1.1.1.1.9 Sharing

Sharing GA (SGA) was first proposed by Goldberg and Richardson [20]. It attempts to
maintain the diversity of the population by altering the fitness of potential optima to
approximately the same level. Sharing proposed a concept of niches. A niche is a group
of individuals within the same potential optimum area. In each niche, the raw fitness f; of

an individual i is scaled in the following manner:

Sons = L 2.7
m .

i

where m; is a niche count. In standard Sharing, m; is given by summing the sharing

function sh(dj; ) of i:

m=Y. shd,) 2.8)

where dj; is the phenotypic or genotypic distance between two individuals i and j. N is the

- total number of individuals in the population. The sharing function, sh(dj; ), is defined as:

d, \
Sh(dy)z 1_(0_ 4 ) Mdy <o_share (29)

share

0 otherwise

Here o

share

is a niche radius used to separate niches, and o is a constant to

29



configure the shape of the sharing function (and is usually set to 1). o, is assigned a

share
value based on the estimated number of optima in the domain, which, unfortunately, is
usually unavailable.

As can be seen from equation (2.7), in SGA, the fitness is shared among similar
individuals. Since in GA, stronger individuals will have higher probabilities to survive
and hence tend to generate more offspring, the fitness of such individuals is decreased in
dense neighborhood. Thus, population diversity is maintained by encouraging exploration

of less crowded regions of the fitness surface.
The standard Sharing GA suffers from a high time complexity of O(N?),

incurred by the computation of the sharing function sA(dj;) (equation (2.8) and (2.9)). The
applicability and usefulness of the standard sharing scheme are hence severely restricted.

One of the major improvefnents of Sharing GAs is the introduction of cluster
analysis [2, 24, 28, 30, 59]. Individuals are clustered into different groups based on their
location in the search space. When computing the sharing function value of an individual,
the individual is compared to the centre of each cluster, rather than all other individuals in
the population. Hence the overall cost is reduced to O(NK), where K is the number of
clusters, ideally, the number of optima present.

Yin and Germay [30] used McQueen’s Adaptive KMEAN algorithm to perform
cluster analysis. The fitness of each individual i is computed using equation (2.7), with

the niche count m; given by:

mf=ni—n,~( il ) (2.10)

max

where a is a constant, n; is the number of individuals in the niche that individual i
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belongs to; d; is the distance between individual i and the center of the cluster; and dp,y is
the maximum radius of the cluster.

A new cluster is created around an individual i if the minimum distance between i
and the centers of all the existing clusters is greater than d,,.,. Two clusters are merged if
the distance between their centers is smaller than another threshold d,,;,.

Yin and Germay’s approach effectively reduces the computational cost.
Furthermore, it does not make any assumption about the number of optima. Although an
initial estimate of this number is required, it does not significantly influence formation of
actual clusters, as clusters are formed based on the distribution of individuals. Another
improvement worthy of note is that this method enhances the stability of existing niches
by implementing mating locally within each niche, rather than globally within the whole
population, as is the case in the standard Sharing GA.

Nevertheless, this approach requires estimates of two parameters: dy, and dpn,

which play similar roles to o

Jare 1N standard Sharing. These two parameters are vital
factors for success.

In some othver algorithms, the niche count is simply the size of the niche [2, 24,
28, 591, that is, »; in equation (2.10) above.

Miller and Shaw proposed a Dynamic Niche Sharing (DNS) technique [24]. It
identifies dynémic niches using a greedy approach, as presented in Fig. 2-11. The size of
the population is N. The dynamic niche set D contains the centers (up-to-date best
individuals) of the niches. An individual belongs to one of these niches if it is within

O e Of the niche’s center. Otherwise this individual belongs to a “non-peak™ category.

share

A “non-peak” individual still has a niche count, which is computed using equation (2.8)
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above as in standard Sharing. DNS assumes that the number of optima is known and that

any and all pairs of optima are at least 20, apart from each other. These two

hare

assumptions are also adopted by standard Sharing and are not always true.

Fig. 2-11 Dynamic niche identification

Zhang, Shao and Feng [59] used a similar algorithm. They first use a DBSCAN
clustering algorithm [60] to identify dynamic niches. After that, the fitness of the
members within a niche is scaled by the same scaling factor — the size of the niche. They

claimed that this scheme allows more thorough exploitation of the areas of potential
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optima than standard Sharing. That is because the standard Sharing GA adjusts the fitness
of an individual based on the distance to its neighbors, each individual has pressure to
maximize the distance between itself and its neighbors. As a result, individuals will be
dispersed and fewer individuals are able to populate and exploit areas of potential optima.

This algorithm also has “non-peak” individuals that do not belong to any niches.
Unlike Miller and Shaw’s work, which computes the niche count of the “non-peak”
individuals as in standard Sharing, this algorithm simply sets the niche count of these
individuals to 1. The authors explained that this scheme will give the “non-peak”
individuals more chances to be selected into the next generation than the niche members
that are scaled by their niche count. Consequently, it tends to attract more individuals to
explore such “non-peak” areas. Therefore, this scheme makes a good trade-off between
exploitation and exploration.

Song and Yu [61] proposed a hierarchical clustering based fitness sharing method.
They assume that the number of optima is given. With this information, they separate
individuals into niches via a hierarchical cluster tree and adapt fitness values of niche

members by:

fi= /. - (2.11)
( nicheNum - nichePop]

pop

where nicheNum is the number of clusters, nichePop is the size of the niche the
individual i belongs to, pop is the size of the overall population size, and o is a factor to
control the reduction level.

Unlike most Sharing methods that perform selection and crossover globally

within the whole population, this algorithm uses special designed inner-species selection
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as well as independent inner-species and inter-species crossover to improve the search
ability.

Gan and Warwick [2, 28] proposed a Dynamic Niche Clustering (DNC) approach.
Starting from N small niches (clusters) with given initial radii, it merges niches
approaching the same optimum and splits niches focusing on different optima. Each
niche has an independent radius, which is dynamically adjusted throughout the
evolutionary process.

DNC can be implemented as follows:

1. Calculate niche members;

Similar to other Sharing GAs, an individual belongs to a niche if it is within
the radius of this niche to the center of this niche. Unlike other Sharing GAs,
however, the radii of the niches are different.

The initial radius of each niche is given by:

AJd
Cinitial = -i/_.ﬁ—

(2.12)

where d is the dimensionality, and A is a constant (with a value of 1.0).
Initially, each individual is a niche, which is centeréd around the individual
itself.

2. Adjust the midpoint of each} niche according to its members;
Calculation of the midpoint of each niche is detailed in Section 3.2.

3. Calculate Euclidean distance between all niche pairs;

4. Sort these niche pairs with respect to their Euclidean di stancé;

5. Check niche pairs for merging;

34



Two niches i and j are merged into i if they satisfy:

N o .
mid, - mid | < 2 or  |mid,~mid)<~L (2.13)
2 2

where mid, is the center of niche x, and 0, is the radius of niche x. j is deleted
from the niche set and the niche pairs list. All niche pairs that contain i are
recalculated because the midpoint of i may have moved. The center of i is
updated using the method introduced in Section 3.2.

6. Check all large niches for splitting;

- A niche is split if its population size is greater than 10% of the total
population size and a valley is detected between a pair of randomly selected
individuals i and j from within the niche. Two new niches are created with
midpoints centered on these two individuals. The niche radius of each niche

is calculated by:

mid, —mid,

5 (2.14)

The members of each niche are recalculated by comparing all the individuals
within the original niche and the midpoint of each of the new niches.

7. Apply sharing function within each niche;

8. Evolve the population.

Steps 1 - 6 are clustering operations aiming to identify valid clusters. Merging and’
splitting of niches, together with sorting of the niche pairs list, induce a great amount of
extra cost to the algorithm. This negative effect manifests itself when the size of the niche
pair list is large.

DNC is able to identify niches of variable radii. It also allows some overlap

35



between niches. These innovative facts introduce a degree of flexibility when searching
complex multimodal landscapes. Additionally, unlike Yin and Germay’s approach, which
recalculates all clusters at every generation [30], DNC retains niches from generation to
generation. This strategy significantly reduces the computational overhead.

Dilettoso and Salerno [50] incorporated the niche radius as an additional variable
of the optimization problem. In this way, each individual has its own radius. The fitness
of an individual is derated only if there are individuals with higher fitness values in this
individual’s own niche. However, as the authors themselves observed, the radius of many
individuals tends to shorten quickly. The authors did propose to increase the radius of an
individual if there are not any fitter individuals within the niche. However, the
effectiveness of this tactic in counterbalancing the problem of shrinking radii remains an
open question. After all, selection pressure tends to favor smaller radius, since in that
case the fitness of an individual is shared by fewer individuals, resulting in a larger scaled

fitness value.

1.1.1.1.10 Clearing

Unlike Sharing GAs that share available resources within the same species, Clearing [45]
fully attributes these resources to dominant (best) individuals within the species. These .
individuals constitute the mating pool. The non-dominant individuals are simply removed
from the population and do not participate in evolution.

Clearing implements a full local elitist strategy by preserving the winners with
fitness values greater than the average fitness of the population before clearing. If the
preservation of all the wihners immobilizes a too great fraction of the population, the

author suggested an alternative by preserving only the best individual of each species, as
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demonstrated in Fig. 2-12.
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Fig. 2-12 Clearing
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Like the sharing method, the Clearing algorithm uses a dissimilarity measure
between individuals to determine if they belong to the same species or not. This value
could be geometric distance (e.g. Hamming or Euclidian) for either genotypes or

phenotypes. A threshold o

clear *

called the clearing radius, plays a similar role to o, in

the Sharing GA.

Since the mating pool is constituted by winners from all species, Clearing carries
out a global crossover scheme similar to Sharing GA. Compared to local restricted
mating within species, whether mating between different species plays more constructive
or destructive roles in convergence to optima is still in question.

The author theoretically analyzed advantages of Clearing over Sharing GA in
[45]. Its complexity is generally lower than that of the sharing method. Additionally, in
Sharing GA, if a species contains more individuals than expected due to the selection
noise, each of them will have an expected number of offspring less than one in order to
restore the equilibrium. When this happens with proportionate selection schemes such as
Roulette Wheel Selection (RWS) or Stochastic Universal Selection (SUS) [38], an
individual of such a species could not have offspring. If this is the case for all the
individuals of the species, unless there is a sufficiently large population so that
individuals for each desirable species have high survival probabilities, this species is
exposed to extinction. Therefore, the Sharing GA demands a large population. In

contrast, clearing with proportionate selection ensures that the number of offspring of the

dominant individuals is always greater or equal to one if their fitness is above the average
fitness of the population. Consequently, this species survives with certainty. The lower

bound of the overall population size required by clearing is smaller than that of Sharing
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GA. The superiority of Clearing over Sharing GA is also demonstrated in [49].

Dick [49] proposed an algorithm called Localized Clearing (LC). Rather than
applying the clearing procedure globally within the whole population, this algorithm
applies clearing to every deme at every location in the space. Mating is restricted between
individuals within the same deme. The author demonstrated that LC outperformed
globally-applied clearing on well-known and difficult multimodal problems.

LC adopts a particular spatial structure - the ring topology, on which N
individuals are placed at equidistant locations. The sizes of the demes are all the same
and given by a parameter. The demes overlap. An individual participates in multiple
demes and undergoes the clearing process for each deme. Obviously these demes do not
necessarily correspond to actual species/niches in the space. This mechanism is subject to
a high risk of mix-up of different species in one deme or dispersion of the same species in
multiple demes. The former will result in loss of species. The latter will induce extra cost
in manipulating and maintaining redundant demes.

Stoean, Preuss, Gorunescu and Dumitrescu also proposed localized mating in
[62]. Their methodology is based on a radii-based multimodal evolutionary framework -
Genetic Chromodynamics [51] (GC). Each individual, denoted as c¢ here, is only
recombined with its neighboring individuals within the same mating region. If the mating
region around ¢ is empty, it is mutated to produce one offspring in such a way that the
offspring is still kept in the mating region of c.

After recombination and mutation, the population is subject to a procedure similar
to Clearing. This procedure, called merging in [62], removes all but the best individual

within the same merging region. Merging always leads to decreasing population sizes.
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Species crowding in different basins of attraction become smaller and smaller. Finally
only one individual is left for each species and undergoes a hill climbing strategy via
mutation.

This method is similar to Clearing in that a winner dominates a species. However,
the authors also pointed out their differences:

¢ GC performs crossover only between individuals belonging to the same mating

region, whereas clearing performs global recombination;

o GC sets different radii for the identification and maintenance of niches in the

population, whereas Clearing utilizes a single radius;

e GC consistently decreases population size, whereas in Clearing the population

size remains constant.

GC, which can be deemed as a hybridization of genetic operator based GA and a
population based GA, is intriguing and potentially promising. However, this approach
entails radii for three regions - besides the mating region and the merging region
discussed above, there is also a replacement region, within which the worst individual is
replaced by a new offspring if it is even worse than this offspring. As the authors
themselves admitted, it is often difficult, or even impossible, to find these values,
especially when the sizes of basins of attraction have large variance.

Singh and Deb proposed another interesting algorithm that makes Clearing more
effective and reliable [3]. In original Clearing, inferior individuals are of no use since
they are cleared and do not participate in evolution. However, they still occupy
population slots. That is a waste of resources. Instead in [3], these individuals are

reallocated outside the range of their respective best individuals. After that Clearing is
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performed again. This action is equivalent to drastically mutating all bad individuals.
Despite an extra computational cost, this method introduces more diversity into the
population and leads to the exploration of more interesting areas in the search space.

The modified Clearing has all strengths of the original Clearing. However, it has
its drawback too, that is, the dissimilarity between individuals is measured by their inter-

distance, which is thresholded by a single global threshold.

1.1.1.1.11 Species Conservation

Li, Balazs, Parks and Clarkson introduced a Species Conserving GA (SCGA) [21]. This
method is based on a concept of distributed elitism. It divides the population into several
species according to their similarity. Each of these species is constructed around a

dominant individual, called the species seed.

* Identify species
seedsxs

 Identify globat
. optima

Fig. 2-13 Species Conserving GA
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Similar to Clearing in 1.1.1.1.10, species seeds found in each generation are
conserved and passed through to the next generation. A notable difference between these
two algorithms is that unlike Clearing, which excludes all individuals, except for winners
of each species, from evolution, SCGA evolves all individuals as a traditional GA.

As presented in Fig. 2-13, once the species have been found, the population is
evolved using usual genetic operators, i.e. selection, crossover and mutation. Since some
species may not survive following these operations, the authors used a species conserving
process to copy these species into the new population. Obviously, the difference between
SCGA and a classic GA is the introduction of two processes: the identification of seeds
and the conservation of species. The authors claimed that the additional overhead
associated with these two processes is no higher than that of standard fitness Sharing.

In SCGA, the process of identification of species seeds is similar to the process of
dynamic niche identification in Dynamic Niche Sharing [24] (Section 1.1.1.1.9). Readers
can refer to Fig. 2-11 for details.

Fig. 2-14, on the other hand, shows the process of the conservation of species. For

-each species seed x € x, (the list of species seeds), the population is searched for
individuals belonging to x. x then replaces the worst individual found, if x is better than
the latter. If, however, no individual belongs to x, x simply replaces the worst unmarked
individual in the population. With this method, all species are guaranteed to survive.

The laét step of SCGA (see Fig. 2-13) is to identify the global optima. Since
trivial but significantly different individuals could also be conserved, an individual x is

identified as an optimum if the following inequality is satisfied:

S )2 (Sfrax = frin )X/ (2.15)
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where £, is the fitness of the best species seed, fyi, is the fitness of the worst individual

in the final population, and 7; is a solution acceptance threshold (0 <7, <1). 7y needs to

be carefully set as its inappropriate value may cause false positive or negative results.

Fig. 2-14 Conserving species in SCGA
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SCGA relies on an important parameter o, called species distance, to separate

different species. An individual y belongs to a species seed x if distance between x and y

is less than o, /2. The role of o, is like that of o, ,, in sharing GA and clearing radius in

share

Clearing discussed above. Both of them are crucial global thresholds and are based on an
assumption that all optima are equidistant to each other. This assumption is unrealistic
and problematic.

In summary, SCGA is a typical genetic operator based GA. It enforces elitism on
the species level to preserve diversity. The only difference between this technique and a
classical GA is the introduction of two processes: the selection of seeds and the

conservation of species.

2.2.2.2 Population Based Techniques

1.1.1.1.12 Multinational GA
Multinational GA (MNGA) was proposed by Ursem [1]. It explicitly maintains and
evolves a number of nations. Each nation corresponds to a promising optimum area in the
search space. Mating is restricted locally within individual nations. Selection is
performed either globally (weighted selection) or locally (national selection).

As shown in Fig. 2-15, the algorithm starts from a single nation, which contains
all individuals in the population. Following that it enters a loop to separate individuals

into different nations and evolve the nations until termination.
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individuals belong
 the same nation

e
| individualsand
- merging of nations.

Fig. 2-15 Multinational GA

In MNGA, each individual belongs to exactly one nation. Individuals may,
however, migrate from one nation to another. Nations may be merged if they are evolved
toward the same optimum. The timing of these actions is determined by the relationship
between individuals, which is identified by a Hill-Valley function. This function is based
on the topology between concerned individuals, rather than the distance between them.
The Hill-Valley method has been proved to outperform traditional distance based
approaches [2, 58].

Thgre are two selection schemes in MNGA: weighted selection and national
selection. Weighted selection is performed globally, whereas national selection is
performed locally. In weighted selection, the fitness of each individual is scaled by the
number of individuals within its nation. This behavior resembles the fitness sharing

scheme in Sharing GA. Hence, MNGA with weighted selection is virtually a genetic

45



operator based GA. This is indicated by a dashed line in Fig. 2-8.

On the other hand, in MNGA with national selection, individuals only compete
with other individuals from the same nation. MNGA with national selection is therefore a
typical population based GA, which, as its name suggests, explicitly evolves a set of
nations independently, with evolutionary operations, such as selection and mating,
performed locally.

Whichever selection approach MNGA adopts, its mating is always restricted
between chromosomes of the same nation. This is an important characteristic of

population based GAs.

1.1.1.1.13 Minimal Representation Size Clustering
Hocaoglu and Sanderson [11, 12] developed a multiple-population GA to identify
different species (Fig. 2-16). A simple GA is used to evolve each species separately.

Mating is not always restricted within the same species. Rather, cross-species mating

occurs periodically at the 2* x CI 4, generation, where k is an incremental integer starting
from 1, and C7 is a constant called cluster interval. After evolution, all species are merged

into a pool for a Minimal Representation Size Cluster (MRSC) analysis, again, at the

28 CI generation. Individuals are then distributed into a new set of species, which are
passed into the new loop for evolution.
Hocaoglu and Sanderson’s approach has the following benefits:
e Mating between different species may be useful when the function’s landscape
has plateaus where pseudo species may be formed;
¢ Clustering analysis is performed occasionally with a decreasing frequency,

rather than at each generation in most other algorithms [20, 22, 24, 30, 42-44],
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hence the computational cost is dramatically decreased;
e Unlike many algorithms that assume a priori knowledge of the number of

potential optima [19, 20, 40], the MRSC analysis does not need this assumption.

Y

~ Cross species.
_recombination

Representat
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_individualsinto -

2+ Distribute
 different species

Fig. 2-16 GA with Minimal Representation Size Clustering
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A potential problem of MRSC is that it assumes a Gaussian distribution of species.
Although the authors claimed good performance even when the actual species are not

normally distributed, this assumption is still problematic and needs to be further justified.

1.1.1.1.14 Multipopulation GA

Siarry, Pétrowski and Bessaou [25] proposed a Multipopulation Genetic Algorithm
(MPGA) that divides a traditional GA into a sequence of two processes: exploration
(diversification) and exploitation (intensification). Exploration locates areas of potential
optima. A speciation method forms species (subpopulations) around potential optima.
After that, exploitation allows intensification in the detected areas by allocating a
separate portion of the search space and applying a simple GA to each species. The

processes of exploration and exploitation are repeated following a particular regime.
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Diversification Intensification

Fig. 2-17 Diversification and intensification in Multipopulation GA

As shown in Fig. 2-17, the diversification process consists of several procedures.
Firstly, random individuals migrate between different subpopulations. Individuals to be
migrated and individuals to be replaced are selected at random, excluding the best

individuals within each species. Following that, a simple GA is applied to each
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subpopulation for one generation. These two procedures together may prevent premature
convergence of species and generate new individuals belonging to unexplored areas.
Next, all subpopulations are merged and a speciation method forms species
(subpopulations) around each optimum in the exploration process.

The authors used a speciation tree [63] to form species because of the following
reasons:

o Its computational complexity is O(nlogn);

e It only needs two individuals to identify an optimum;

e It does not need to estimate the niche radius — a problem dependent parameter.

A normalized Euclidean distance is used to measure similarity between
individuals.

After diversification, intensification consists in applying a GA independently on

each species for a fixed number of generations.

1.1.1.1.15 Roaming

Roaming [23, 46] (Fig. 2-18) is based on the novel concept of subpopulation stability. It
identifies optima using isolated subpopulations, which are characterized as stable or
unstable using a stability measure SM. An unstable subpopulation evolves in isolation
until it becomes stable, that is, when a potential optimum is found within it. This
subpopulation then roams toward other regions of the search space by mutating all its

members with a probability 1.
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Fig. 2-18 Roaming
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SM of a subpopulation P; is defined as:

M =1 card(B(x;))

, card P (2.16)

where x; is the best individual in Pj;; B(x;) is the set of individuals in the offspring
subpopulation of P; that are better than x;; card(A) is cardinality of a set A.

The value of SM; is between [0, 1]. If it is 1, P; is called 1-stable and x; is a
potential optimum, which is stored into an external population called the archive. P; is
called o-stable if SM; 2 o.

As shown in Fig. 2-18, given a threshold RS, if SM; of a subpopulation P; is RS-
stable, P; is deemed a roaming subpopulation. It roams toward other regions of the search
space by mutating all its members with a probability 1. There is no interaction between
subpopulations at any stage.

One significant advantage of Roaming is that the number of subpopulations is not
dependent on the expected number of optima — a value which is usually unobtainable
without a priori information about the landscape. Instead, this number is a pre-defined
parameter of the algorithm. This scheme confers flexibility and robustness on the
algorithm.

Roaming of all RS-stable subpopulations is problematic too. As long as RS is less
than 1, the subpopulations that have not reached their 1-stability are forced to migrate and
deviate from their original directions. All previous efforts in evolving these
subpopulations are fruitless. This leads to a serious waste of computational resources.

It is also noticed that there is no clustering behavior in this algorithm. This may

reduce its cost. However, a subpopulation is very likely to cover different areas of
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interest. Since any stable subpopulation is subject to roaming with strong mutation of
100% probability, many promising individuals are also altered. As a result, all previous
efforts to evaluate and evolve these individuals are rendered fruitless.

Another problem comes from the addition of a solution x into the archive. This
happens when x is a new local optimum or is better than another optimum that is already
in the archive and in the same region. For each individual a in the archive, the global
minimum of the fitness function within x and a is calculated. If the minimum indicates
there is a valley between x and every a, x is added. Otherwise if x is better than a, x is
also added. This method does eliminate the need to evaluate the distance between
individuals. However, to compute the global minimum within a region in the search

space is hardly achievable.

1.1.1.1.16 Forking GA

Parent population

O Child population

A sub-space

Forking \

Search space

Fig. 2-19 Population forking
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Forking GA (FGA) [27] uses a multi-population scheme, which involves one parent
population that explores one subspace and one or more child populations that exploit
other subspaces. A population is forked into different subpopulations (a parent population
and child population(s)) if the diversity of the population collapses or if its fittest
individual remains unchanged for a pre-set number of generations. The whole search
space is then divided into non-overlapping subspaces, with each subpopulation

responsible for searching each of them independently.

2.2.3 Summary

2.2.3.1 Sequential GAs versus Parallel GAs

As discussed in Section 2.2.1, the largest advantages of a Sequential GA are its
conceptual simplicity and relative efficiency [19]. However, Mahfoud [ 18] observed that
the Sequential GA was not necessarily faster than a parallel GA. It failed to solve hard
problems with a vast number of peaks. A possible reason is that once the sequential GA
has found several peaks on the landscape, it is getting progressively harder to locate
remaining peaks because those peaks are isolated like needles in a huge haystack.

‘The disadvantages of the sequential approach are far more than that. Although it
has a derating function, the algorithm itself still could not guarantee to avoid repeated
search within visited areas and repeated convergence to the same optimum. Furthermore,
the derating function severely alteré the original landscape. It is subject to high risks of
loss of actual optima and generation of phantom optima.

Mahfoud empirically compared the sequential GA with two other parallel GAs:

the deterministic crowding and the fitness sharing. In general, the parallel methods
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outperform the sequential method because they are faster and their results are better. In
addition, the parallel method can be easily implemented on parallel machines.
Therefore, it is not surprising that most multimodal GAs adopt a parallel scheme

[1,2, 11, 12, 20-30].

2.2.3.2 Genetic Operator Based GAs versus Population Based GAs

Both the Genetic Operator Based GA and the Population Based GA strive to maintain
diversity in the population so that the search space can be explored widely. One or more
regions may be searched in parallel. However, they differ in the way of diversification

and various aspects of the evolutionary process, as listed in Table 2-1 below.

Table 2-1 Genetic Operator Based GA versus Population Based GA

Algorithms GOB PB
Diversity maintenance Genetic operators Explicit subpopulations
Object to be evolved | The overall population | Every independent subpopulation
~ Elitism Global Local
Selection Global Local
Mating and Mutation Global Local

Note that Table 2-1 only characterizes typical behavior of these two GA
categories. In some circumstances, exceptions may apply. For example, some genetic
operator based GAs adopt local elitism either partially [2, 28] or fully [21, 22]. Although
most population based GAs enforce a mating restriction, some variations allow more or
less inter-species exchange, such as Minimal Representation Size Clustering [11] and
Mﬁltipopulation GA [25].

In summary, an essential difference between a genetic operator based GA and a
population based GA is whether the species/subpopulations are evolved alone or the

population is evolved as a whole.
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Since most evolutionary operators of genetic operator based GAs act globally,
selection pressure is applied globally. As the authors pointed out in [2], individuals are
spread around the peaks, rather than clustered tightly at the apex. Local elitism may more
or less induce some local selection pressure, but convergence and accuracy are still in
question. Conversely, in population based GAs, each subpopulation is focused on a
particular region. Selection pressure is hence zeroed in on the exact apex. This

mechanism is more likely to ensure maximum exploitation of all regions.
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Chapter 3 Clustering in Multimodal GAs

Despite the multiformity of existing GA techniques on multimodal optimization
problems, all of them essentially involve a clustering-like behavior, that is, identification
of groups of individuals that lie within vicinities of potential optima.

In Sequential Niche GA [19], individuals sufficiently close to a discovered local
optimum are punished using a fitness derating function, in order to avoid repeated search
within previously explored areas.

The clustering actions are more manifest in parallel GAs. In sharing GA [2, 20,
24, 28, 30}, vicinal individuals are clustered together to form niches. Fitness is then
shared among the same niche. In [1, 21, 29], explicit clusters, called species [21], nations
[1], or sub-populations [29], are maintained and evolved independently toward different
potential optima.

Ideally, a parallel GA would eventually form a number of stable clusters, the
number of which is approximately equal'to the actual number of optima. Unfortunately,
without a priori knowledge of the function surface, this is hard (though not impossible)
to achieve. Effective identification of clusters is hence of key importance to GAs,
especially to those exploring a multimodal landscape.

Before digging into details of our Bi-objective Multi-population Genetic
Algorithm, we shall study variou.s clustering methodologies in this chapter, and propose a
novel clustering technique that effectively overcomes the shortcomings of other methods.
For the sake of clariﬁca;tion, unless otherw;se specified, such terms as niches,

subpopulations, nations, or species are all called clusters in the sequel.
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3.1 Clustering Algorithms
Based on the criterion to judge whether two individuals belong to the same cluster, there
are two major categories of clustering algorithms: approaches based on distance metrics

and approaches based on topology.

3.1.1 Distance Metrics Based Methods

Distance metrics are the most popularly used criteria for clustering in GAs. A basic
principle is that if the distance between two individuals is smaller than a given threshold,
these individuals are deemed to lie in one cluster. Typical distance metrics include

phenotypic Euclidean distance [19-21, 25, 26] and genotypic Hamming distance [48].
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Fig. 3-1 Distance based clustering approaches

(a) Clustering based on distance between all individuals;

(b) Clustering based on distance between the centers of the clusters and the individuals

There are two major categories of distance based approaches. One measures the
distance between all pair-wise individuals. Two individuals belong to the same cluster if
the distance between them is smaller than a threshold. As shown in Fig. 3-1 (a), a straight
line connects pairs of individuals, between which the distance satisfies the condition

above. All connected individuals beldng to the same cluster, represented with a circle in
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the figure.

The other measures distance between individuals and the centers of the clusters.
As shown in Fig. 3-1 (b), the centers of the clusters are marked in gray. All individuals,
whose distance to one of these centers is smaller than a threshold, are placed into the
same cluster.

The first category includes standard Sharing [20] and density based clustering
approaches [26, 59, 60, 64].

In standard Sharing [20], pair-wise distance between all individuals is computed.
If the distance is smaller than a threshold, the individuals belong to the same niche and
contribute to fitness sharing within this niche. It is assumed that each of the p optima is
surrounded by a hyper-sphere of radius r. These hyper-spheres do not overlap and
completely fill the d-dimensional space. If the parameter range for each dimension is

normalized to [0, 1], the radius » can be computed by:

r-.?% @3.1)

Streichert et al. used a density based clustering algorithm [26], which identifies
clusters by connecting individuals if the distance between them is smaller than a
threshold o, . Any interconnected groups of individuals with size greater than a
minimum value MinPts is recognized as a cluster. This algorithm allows clusters of
varying shape and does not need a priori knowledge of the number of clusters. Its

computational cost is O(NlogN) [60]. Nevertheless, its two parameters o, and MinPts

need to be carefully tuned. The density based approach is also used in [59, 64].

In another school of multimodal GAs, a cluster is a hyper-sphere, where all its
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members are within a certain distance (the radius of the hyper-sphere) to its center. To
judge whether an individual belongs to a cluster or not, its distance to the center of the
cluster d, rather than the distance to another individual in this cluster, is computed and
compared to the radius of the cluster r. If d is smaller than r, it belongs to the cluster,
otherwise not.

Yin and .Germay [30] proposed to use MacQueen’s K-means cluster analysis [65].
It starts with £ initial clusters with only one member. Vicinal clusters with their distance
less than a threshold d,,;, are merged and the center of the new cluster is updated. All
other individuals are assigned to the cluster with the nearest center. If the distance
between an individual and the nearest center is larger than d,,,,, a new cluster is created
around it. The computational cost of this approach reduces is O(NK), where K is the
number of clusters. However, it is hard to estimate the values of d,. and d,p,
appropriately.

In [21], Li et al. proposed to conserve seeds — the up-to-date best individuals for
each species (cluster). These seeds form the centers of the clusters. All unmarked
individuals are first ranked with respect to their fitness. Starting from the best unmarked
individual, if its distance to any existing seeds is smaller than a threshold, it belongs to
the corresponding cluster; otherwise it is a new seed. This threshold is empirically
determined.

[45] and [47] also adopt a similar approach to Li et al.’s Species Conserving GA
to identify the centers of clusters.

In many situations, for those algorithms that cluster individuals accérding to their

inter-distance, the distance between two individuals does not denote their relationship

59



correctly. For example, the distance between two individuals that belong to the same
cluster but lie on two extremities is not necessarily smaller than the given threshold.
Unless there happen to exist intermediate individuals that connect these extremities, they
will definitely be separated into different clusters. On the other hand, individuals on the
borders of adjoining clusters are very likely to be put in the same cluster since they are
sufficiently close. This may cause an undesired mix-up of clusters.

Therefore, it is plausible to favor those algorithms that treat each cluster as a
hyper-sphere, and categorize individuals according to their distance to the centers of the
clusters. However, a simple hyper-sphere may not always suffice, especially on highly
irregular landscapes. It is not easy to choose an appropriate radius without a priori
knowledge of the landscape.

In any case, all the approaches discussed above employ a single global radius,
based on an underlying assumption that all optima are of approximately the same hyper-
volume and are equidistant to each other. Most multimodal GAs adopt this scheme [19,
21, 24, 47-49, 52]. Obviously this assumption does not hold for all actual multimodal
landscapes.

Gan and Warwick [2, 28] proposed a dynamic niche clustering (DNC) approach.
The algorithm starts from N small niches with a given initial radius. Each niche has an
independent radius, which is then dynamically adjusted throughout the evolutionary
process.

The initial radius o,,,, is given by:

d

O iitial = W (3.2)

where d is the dimensionality, NV is the population size, and A is a constant typically set
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with a value of 1.0.

The value of o, .., directly affects the performance of this algorithm. As the

initial

authors themselves pointed out, if o,

initia

, is too small, a large number of niches are

manipulated with a high computational cost; whereas if o, is too big, niches will be

merged rapidly, resulting in inappropriately large niches that cover more than one actual
optimum [2, 28].
As seen from equation (3.2) above, for a specific problem, the dimensionality d is

fixed. Hence the value of o,,, is determined by the population size N. Generally

speaking, N would have to be quite large in order to guarantee a thorough exploration of
the search space. N is usually much larger than the actual number of the optima.
Therefore the first phenomenon discussed in the paragraph above is more frequently

observed. o,

i 18 Often considerably smaller than the average distance between the
optima, and as a consequence the initial niches take a long time to grow into their
effective size. Of course this phenomenon can be mitigated by increasing A or

decreasing N. However, as stated above, this may result in a o,, , that is too large.

initial
Therefore, the selection of N has to be a compromise between these two extremities.
Hence, although the dynamic niche scheme appears to be more interesting and

which is

initial >

more practical than a static global threshold. The initial niche radius o,

tightly tied to the population size N, continues to play a key role in the success or failure
of clustering.
It is conjectured that there may exist optimal values for both population size and

niche radius, with which the best possible sharing effects are achieved. Cioppa, Stefano
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and Marcelli [42] proposed a method to estimate these two parameters by characterizing
the dynamic behavior of the sharing GA as a function of both the niche radius and the
population size. However, the authors still adopted a global static niche radius value.
They admit that the optima of irregular fitness landscape may be indistinguishable if a
single global radius is utilized.

All the methods discussed above entail a concept of niche radius or threshold. In
the literature, there also exist distance based clustering methods that do not need this
concept. The hierarchical clustering method [61] is a typical example. The basic
procedure of this algorithm consists of three steps. Firstly, distance between every pair of
individuals in the data set is calculated. Secondly, these individuals are grouped into a
binary hierarchical cluster tree based on their mutual distance. Every time a pair of
samples (or.é pair olf sample sets consisting of several samples) that has the minimum
distance in the data set is selected, and joined into one set. This procedure is repeated
until all samples are joined together into one single set. Finally, the hierarchical tree is cut

into a preset number of clusters(]

toE

v

Fig. 3-2 Example of hierarchical clustering
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Fig. 3-2 shows an example of the clustering procedure. Initially, A and B are
selected to join into one set {A, B} since the distance between them is minimum. Next, C
and D are joined into {C, D} since their pair-wise distance is minimum among the pair-
wise distances of C, D, E and {A, B}. Following that, {A, B} and {C, D} are joined into
{A, B, C, D}. Finally, {A, B, C, D} and E are joined into one single set.

The binary cluster tree finally formed is shown in Fig. 3-3.

Distance

[ 1]
A B C D E

Fig. 3-3 Binary cluster tree

With the binary cluster tree, creating clusters from a specified arbitrary cluster
number is simple. For example, to divide the 5 samples into 3 clusters, just find where the
cluster tree has 3 branches, and cut it there, as the dashed line shows in Fig. 3-3. The
three clusters are {A, B}, {C, D} and E. The heights at which two branches join represent
the distances between two sample sets. But the actual cutting distances are not concerned
because clustering with a given number is based on the branch numbers rather than the
cutting distances. Hence this algorithm eliminates the need of a distance threshold.

Nevertheless, the hierarchical clustering approach has a fatal pitfall. That is, it
requires the knowledge of the number of clusters, which is usually unavailable in most

situations.
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3.1.2 Topology Based Methods

As an intuitive measure of closeness or similarity of individuals, the distance metrics is
simple to understand and easy to implement. However, the distance based approaches
have various limitations, as discussed in Section 3.1.1 above. Rather than using distance
between individuals, topology based methods employ the topological characteristics of
the function’s surface. An intuitive notion is that optima are separated by valleys, if the
function is to be maximized. Hence, one might suggest that two points belong to the same
cluster if there are no valleys separating them. It is vice versa if the function is to be
minimized.

In line with this arguments, Ursem [1] proposed a Hill-Valley (HV) function.
Given two points p and ¢, the HV function verifies the existence of the valley by
checking the fitness values of several interior sampling points inf[i] between p and q.
These interior samples are given by:

int[il= p+(q—p)-samples|i] (3.3)
where samples is an array of sampling constants between [0, 1], e.g. [0.25, 0.5, 0.75].

According to this technique, if none of these interior points has a lower fitness
value than either p or ¢, there is no valley between them. As a result, p and g belong to
the same cluster.

Ursem’s approach is more tolerant to irregularity of the landscape than distance
based methods. Gan and Warwick [2] adopted it in their algorithm and demonstrated
improvements over their previous version [28] that merely used a distance metrics for
clustering.

Nevertheless, the HV function still has serious limitations. Fig. 3-4 demonstrates
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two typical flaws of the HV algorithm. p and ¢ are two points on different peaks.

int2]

(a) (b)
Fig. 3-4 Two drawbacks of Ursem’s hill-valley algorithm

In Fig. 3-4 (a), the samples are too sparse or are not appropriately positioned for a
proper sampling of points between p and q. To avoid this problem, a properly designed
sampling vector is required. However, this is not possible without information about the
landscape. Moreover, a sampling vector perfectly fitting one type of landscape does not
necessarily fit other types.

In Fig. 3-4 (b), the fitness of g is larger than the fitness of all interior points.
Hence it is simply impossible to find an interior point with lower fitness than both p and
q due to the topology of the surface between them.

The two cases presented above are indeed encountered in many scenarios. As a
result, p and.q are mistakenly clustered together, and actual peaks are usually overlooked.

In [1], Ursem suggested an asymmetric interior sampling vector [0.02, 0.25, 0.5,
0.75, 0.98] for merging of nations, since, as the authors claimed, merging nations is a
more drastic operation than migration of individuals. Indeed, the latter is more helpful
than the symmetric vector when, given two end points, e.g. A and B in Fig. 3-5, one of

their vicinal interior samples (C) happens to lie on the descending direction of either end
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point (A) and has a lower fitness value than that of both A and B. Nevertheless, if the
vicinal interior points (F and G in Fig. 3-5) are on ascending directions of the end points
(D and E in Fig. 3-5), or if the topology is similar to that in Fig. 3-4 (b), the undesired

merging of distant clusters will still happen.
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Fig. 3-5 Vicinal interior samples
3.1.3 Hybrid Methods
Some algorithms use both distance and topology information to perform clustering.
Similar to algorithms discussed in Section 3.1.1 and 3.1.2, Lin and Wu’s algorithm [22]

also -assumes that a cluster is approximately hyper-spherical. The individual with the

highest fitness is the center of the first cluster. All other individuals are ranked with
respect to their distance to this center. Starting from the nearest individual, the algorithm
compares fitness between pairs of adjoining individuals (i and i+1) in sequence. If the

fitness of the (i+1), individual is larger than that of the iy individual, the latter is
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preliminarily qualified as a boundary between two clusters.

In order to tolerate small bumps on the landscape, a bump ratio is defined:

B _F(G+D)-F(@)
i Fmax_Fmin

(3.4)
where F(i) is the fitness of the i, individual, F,, and F;, are the maximum and
minimum fitness in the population, respectively.

If the bump ratio of an individual i is less than a given threshold, this trivial
fitness increment is ignored. i still belongs to current cluster. Conversely, if the bump

ratio exceeds the threshold, i is the boundary of the niche. The radius of this niche is the

distance between i and the center.

X1 X

X
X3 I y

l
I
|
X4

Fig. 3-6 Identification of a boundary individual and a trivial bump
Fig. 3-6 shows an example of a boundary individual and a trivial bump. It can be
seen that x, — x; pair is a small bump since the fitness increase from x, to x; is small;
whereas x4 is the boundary of the cluster centered at x; because the bump ratio between x,
and x; is larger than the threshold.
The individual with the highest fitness among the remaining individuals is used as
the center of a new cluster. The same process is iterated until all individuals are assigned

to a cluster. A cluster is discarded if its size is smaller than 10% of the population. The
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resulted clusters are then manipulated so that there is no overlapping between them. All
individuals are finally redistributed.

The problem of this algorithm is the same as those algorithms presuming hyper-
spherical clusters. Especially in high dimensional space, the distance between the center
of the cluster and the extremity on every dimension is not guaranteed to equal.
Additionally, this approach needs a sufficiently large number of samples on the
function’s surface, which naturally entails a large population. Finally, the bump ratio

threshold is an important parameter that significantly influences the final results.

° * . A
/ ‘o

@ (®) ©
Fig. 3-7 The relative ascending directions of two given individuals

(a) back to back; (b) face to face; (c) one-way

Leung and Liang proposed a method to determine the relationship between two
individuals based on their relative ascending direction and distance [66]. There are only
three types of relative ascending direction between two given individuals: back to back,
face to face, and one way, as demonstrated in Fig. 3-7 above.

If the relative ascending directions of two individuals are back to back, they must
lie on different peaks and hence belong to different clusters. Otherwise if the relative
ascending directions of two individuals are face to face or one-way, and the distance

between them is smaller than a threshold, these two individuals are located on the same
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peak and hence belong to the same cluster.

With this method, two close individuals in different clusters will never be put into
the same cluster because their relative ascending direction is considered first. But two
distant individuals within the same cluster may still be split because the distance between
them exceeds the threshold. This problem is common in most distance based clustering

techniques. A single global threshold does not suffice.

3.2 Centers of Clusters
The center of a cluster can be, but is not necessarily, the current fittest individual within
the cluster. Most clustering approaches use the up-do-date best individual as the center of
a cluster. Some other approaches take into account the fitness of the cluster members
when computing the center of the cluster.

For example, DNC [2, 28] starts from N (population size) one-member clusters
and as such has each member as the center of its own cluster.

After clustering, individuals are redistributed. The center of each niche is adjusted
using the formula:

S v, —mid)- £,

mid, = mid, + *=!

(3.5)

S
x=1
where n; is the size of the niche i, v, is the position of individual x in the parameter space,
fx is the fitness of x.

If two niches i and j are merged, the new center becomes:

S, —mid ) £+ (v, ~mid, ) f.
x=}

mid,,, =mid  +*!

new

- (3.6)

"

Zﬂ+2ﬁ

x=1
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where mid,, is given by:

id. + mid
mid, = % (3.7)

Unfortunately, this method may alter the original direction of the cluster. The
updated center strays from its own cluster since it is affected by the fitness values of all
members of this cluster.

Let us give a simple example. Fig. 3-8 is a one dimensional multimodal function
with uneven distribution of peaks. Now there are two niches A and B to be merged. Each
niche contains one member, which is also the center of the niche. The centers of these

niches are plotted in Fig. 3-8 and listed in Table 3-1.
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Fig. 3-8 Center deviation from weighted average of individuals

The new center C, as given by equation (3.6) and (3.7), is computed as:
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mid , + mid

mid, = 5
(3.8)

v,—mid))- f,+(vy—mid,) [,

mid. = mid, +

Ja+ s
Table 3-1 Original and updated centers after merging of niches
Niche Parameter Fitness
A 2.0000 0.4259
B 1.8000 -0.5902
C 1.2816 -0.2708

From Fig. 3-8 it can be seen that C has moved to a point that does not belong to
the original cluster. This straying behavior is unfavorable because it indicates that all
previous efforts in evolving the cluster of A and B may be fruitless. It may even cause
loss of mature clusters.

The center of a cluster can also be the average of all [30] or some [1] members of
the cluster. For example, in MNGA [1], each cluster has a government, which is
comprised of the best k individuals within this nation (k is a pre-defined constant). The
center of this cluster is an average of the government members. This method naturally
incurs extra computational cost. Even worse, if it is used in the Hill-Valley algorithm,
clusters are subject to an even higher risk of straying because their centers may be
obtained via mutual interactions of individuals that lie within different nations.

Fig. 3-9 demonstrates such an example. Suppose the government size is 2, that is,
‘the center of a cluster is an average of the best 2 individuals within a nation, and the
sampling vector is [0.25, 0.5, 0.75], as in [1]. P and Q are mistakenly placed within the
same cluster, since none of their three sampling points S-1, S-2, and S-3 has lower fitness
than both P and Q. The midpoint of this cluster is hence an average of P and Q - S-2 in

the picture. Obviously S-2 does not in any sense represent this cluster. The center of this
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cluster may continue to stray as pairs of P - S-2 and Q - S-2 are not within the same

clusters either.
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Fig. 3-9 Center deviation from an average of individuals

As a matter of fact, In MNGA, if the government size exceeds one, more alien
individuals may be involved in the calculation of the midpoint. And this cluster is
expected to be more uhstable. We further compared the performance of MNGA [1] with
different government size schemes. Two multimodal functions D, (Fig. A-1) and D,
(Fig. A-2) are used. The average number of clusters formed and peaks found are graphed

in Fig. 3-10 and Fig. 3-11 respectively.
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Fig. 3-10 Clusters formed and peaks found via hill-valley function in Muitinational GA — function D,

In both Fig. 3-10 and Fig. 3-11, G1 (in solid line) is the case of government size =
1 (that is, the up-do-date best individual is the center of the cluster), while G2 (in dotted
line) is the case of government size = 2. For both two schemes, the program was run 30
runs with the same amount of chromosome evaluations at each run (105 for function D,
and 10° for function D,, respectively). The number of clusters and peaks present in the
population were counted periodically (every 1000 evaluations for function D; and every
10000 evaluations for function D,, respectively). The overall population size for D; is 45.

The overall population size for D, is 125.

From Fig. 3-10, it can be seen that the hill-valley function identifies less clusters

with G2 scheme than with G1 scheme. The reason is that the arithmetic average of more
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than one individual induces more straying effects to the clusters. Seen globally, it causes
more chaotic mix-up of clusters - and hence decreased capacity of the population to hold
clusters. In Fig, 3-10, the number of peaks found with G2 is also less than that with G1.
From a local aspect of view, clusters stray away more frequently and become more
unstable. As a result, some clusters are not evolved consistently toward a fixed direction.
The consequence is slower convergence to the optimum and less peaks found.

It should also be noted that the number of peaks is less than the number of clusters
for both schemes. This is expected since, as discussed above, the hill-valley function
itself cannot completely avoid straying clusters due to its inherent limitations.
Furthermore, MNGA adopts a fixed sized population with a varied number of varied
sized nations. Not all nations are assigned the same amount of resources. Affected by
these factors, some clusters cannot be fully exploited and evolved.

In Fig. 3-10, we can also clearly see that the “Peaks — G1” curve is closer to the
“Clusters — G1” curve than the “Peaks — G2” curve to the “Clusters — G2” curve. That
means the G1 scheme locates more consistent and stable clusters than the G2 scheme so
~ that mature peaks can be identified within these clusters.

Another interesting phenomenon in Fig. 3-10 is that all curves fluctuate violently.
As stated in [1], migration of individuals is followed by merging of clusters approaching
the same peaks. Two reasons account for decrease of clusters. Firstly, false merging of
differént cluéters frequently occurs. Secondly, the selection pressure within each cluster
may also ejiminate immature alien individuals.

After distant clusters are merged, new alien individuals are generated via mating

of parents from different nations, which, in turn, causes new migrations and emergence of
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new nations. This behavior results in increase of clusters.
Therefore, the number of clusters and peaks oscillates around a certain level,

which is the capacity of the population to hold the clusters and the peaks.
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Fig. 3-11 Clusters formed and peaks found via hill-valley function in Multinational GA — function

Similarly in Fig. 3-11, G1 identifies more clusters and peaks than G2. Meanwhile,
the number of peaks is less than the number of clusters for both schemes. Note that both
the amplitude and the frequency of the oscillation are lower than those in Fig. 3-10. That
is because 25 narrow peaks are distributed evenly on a large plateau region (Fig. A-2).
The volume of these peaks is approximately the same. The possibilities of clustering
different species together and merging distant .clusters are decreased greatly. Hence

frequent and drastic alteration of number of clusters is lessened.
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In summary, in this section, we presented and compared different approaches to
obtain the center of a cluster. A weighted average of individuals may result in an alien
center, even if all these individuals belong to this cluster. A simple average of cluster
members may not generate alien centers. However, if it is used in the hill-valley method,
it worsens the algorithm by inducing more roaming unstable clusters. If it is used in other
algorithms, it only entails extra computations without any solid benefits. Therefore, we
will use the up-to-date best (dominating) individual as the center of a cluster, as in [21,

45].

3.3 Recursive Middling
From the discussion in Section 3.1.1, we can see that most distance based clustering
algorithms work under one or more following assumptions:

o All optima are distributed evenly in the search space, and the distance between

them can be empirically estimated; |

e The shape of a cluster js a hyper-sphere;

e The number of optima is known in priori.

Topology based approaches generally do not need these assumptions. However,
they still have their own limitations (Section 3.1.2).

Therefore, a more effective clustering algorithm is in demand. This algorithm
does not need any empirical threshold that is hard to estimate. It does not assume even
distribution of the optima or basic shapés of the clusters. And it does not need any a
priori information about landscape either.

Here we will propose a novel Recursive Middling (RM) algorithm that effectively

overcomes drawbacks of aforementioned approaches and completely fulfills the
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requirements above with an acceptable amount of overhead. Before presenting the details
of the RM algorithm, we first present some concepts and rules, based on which the

algorithm is developed.

3.3.1 Concepts and Rules

Concept 1: Given two points x; and x>, a point x is an interior point of them if:
x=ax,+(1-a)x,, a €[0,1] (3.9

It can be seen that an interior point with respect to two points is simply a linearly

interpolated point between them.
Concept 2: Given two points x; and x;, if there exists an interior point x with:

F(x)<F(x;) & F(x)<F(x,) (3.10)
where F(x) is the function to be studied, we say there is a valley between x; and x; on (x,
F(x)).

From Fig. 3-4 in Section 3.1.2, we can see that even there is no valley on any
sampled interior points of x; and x;, it does not necessarily mean there is no valley
between them. The missing of an actual valley may be due to sparse sampling, as in Fig.
3-4 (a), or the topology of the landscape, as in Fig. 3-4 (b). Therefore, the concept of a
valley is extended as follows:

Concept 3: Given two points x; and x;, if there exists an interior point x with:

F(x)<F(x;) & F(x)<F(x}) (3.11)
where F(x) is the function to be studied, x and x; are interior points of x; and x;, then
there is a valley between X and x; on (x, F(x)).

It should be noted that it is vice versa if minimization of the function is pursued.
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The roles of maximum and minimum as well as valley and peak are simply exchanged. All

smaller relations (“<”) are replaced with larger relations (“>").

3.3.2 The Algorithm

Based on the concepts above, the RM algorithm is proposed to detect a valley between
two given points. In a similar manner to the HV method, RM is also based on the
topology of the landscape. However, it effectively avoids the pitfalls of HV and returns
better clustering results.

The main idea of RM is to check the fitness values of a pair of points (x, y)
against the fitness value of the midpoint m between them. If the fitness of the midpoint m
is the lowest of the three, from the concepts and rules above, there is at least one valley
between x and y, and these two points are deemed to belong to different clusters.
Otherwise, RM is applied to both (x, m) and (m, y), recursively, until either a valley is
found or the endpoints finally converge. Convergence occurs when the distance between
the final set of points is less than a preset threshold o. In the latter case, x and y are
deemed to belong to the same cluster.

The distance between the points can be, but is not limited to, Euclidean, city block
or hamming distance. In this study, the Euclidean distance is used. The threshold o is
more or less problem dependent, but it is tied to specific problems less tightly than the
global fhreshold in [19-21]. This is because ¢ is used to decide whether two points are so
close that they are practically the same point, whereas a global radius is used to decide
whether two points belong to a single cluster with a pre-specified but not necessarily
correct radius.

Generally, ¢ should be very small to avoid mix up of adjacent optima so that in
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most fitness landscapes, no optima would co-exist within such a small interval. Of course

o could be even smaller, but that only incurs much more unnecessary computation.

RM(x, y)
If converge(x, y)
Return false;
m = (x+y)/2;
If (fitness(m)<fitness(x) and fitness(m)<fitness(y))
Return true;
Else
Return (RM(m, x) or RM(m, y));
Endif
End

Fig. 3-12 The Recursive Middling algorithm

Fig. 3-12 shows the pseudo code of the algorithm. The function RM returns true if
a valley is found between x and y. If these points finally converge, it returns false.

Note that this algorithm, by its nature, is able to identify all potential clusters
(optima) in most landscapes. Hence if there exist trivial local optima that may not be
interesting, a problem dependent threshold is required to filter them out. In this paper, we

assume that all local optima are of interest and aim to find all of them.

3.3.3 Validity Tests

3.3.3.1 Recursive Middling versus Hill-Valley

The validity of the RM algorithm is tested on two typical multi-modal functions D, (Fig.
A-1) and D, (Fig. A-2), respectively. Ursem’s HV function [1] is also implemented for
comparison. In both algorithms, the center of each cluster is the up-to-date beét individual
in the cluster. Each individual is randomly generated. After its fitness is evaluated, the
clustering algorithm is applied on it immediately. This individual is then put into either

one of the existing clusters or a new cluster, depending on the result of the clustering
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algorithm. This is a Monte Carlo process as we want to see the pure effects of the

clustering algorithms without the interference of any other factors such as evolution.
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Fig. 3-13 Comparison of RM and HV - D,
Table 3-2 Performance of RM and HV on D,
Algorithms Avera'ge Average number | Successful
evaluations of chromosomes runs
RM 1516.7 64.48 29
HV 1649.8 233.33 16

Fig. 3-13 and Fig. 3-14 show the average clustering effects of both algorithms
with respect to the number of evaluations after 30 runs. The desired number of clusters is
marked with an asterisk in both figures. A run is deemed to succeed if all clusters are
located. Both Table 3-2 and Table 3-3 list the number of successful runs as well as the
average number of evaluations and chromosomes assessed when the number of clusters

reaches the desired number in those successful runs. Note that the average number of
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evaluations far exceeds the average number of chromosomes since both algorithms
evaluate many extra interior samples between pairs of chromosomes.

From both Fig. 3-13 and Fig. 3-14, it can be seen that although HV initially forms
clusters faster than RM, it is slower than RM after a certain number of evaluations. This
phenomenon is more manifest in Fig. 3-14, in which HV tends to stabilize at a lower
number of clusters. On the other hand, RM locates slightly more than the desired number
(25) of clusters (25.66) in Fig. 3-14. This can be remedied by periodically merging
clusters that are surrounding the same peak.

RM successtully locates all clusters of function D; for 29 runs in a total of 30
runs, whereas HV successfully locates all clusters for only 16 runs (Table 3-2). The
average numbers of evaluations required to locate all clusters do not differ much for these
two algorithms. But the average number of chromosomes for RM (approximately 64) is
much less than that for HV (approximately 233). This is reasonable since for each pair of
chromosomes, RM evaluates, on average, more interior samples than HV.

HV fails to locate all clusters for function D, completely (0 successful runs in
Table 3-3). From Fig. 3-14 it can be seen that it reaches the equilibrium of approximately
16 clusters early. This is because of the symmetric nature of the landscape. As
demonstrated in Fig. A-2, 25 peaks of D; are distributed evenly in a 5 X 5 square. These
peaks are equidistant to each other and have approximately the same volume. Recall that
we use the sampling vector [0.25, 0.5, 0.75]. This vector is symmetric and the resulted
interior samples are equidistant to each other too. Hence no valley is found between
distant species when there are other species lying between them. These species may be

placed in one cluster, resulting loss of actual species. One possible solution is to use a
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different sampling vector other than [0.25, 0.5, 0.75]. However, this reveals a fact that the
sampling vector needs to be carefully designed and it is almost impossible to get an

appropriate vector without a priori knowledge of the landscape.
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Fig. 3-14 Comparison of RM and HV - D,
Table 3-3 Performance of RM and HV on D,
Algorithms Avera.ge Average number | Successful
evaluations of chromosomes runs
RM 12788 212.58 26
HV N/A “N/A 0

RM also has parameters that need to be tuned as well. It needs a threshold to
judge whether two points are sufficiently close so that they can be deemed to converge to
one point. Unlike HV’s sampling vector that is more tightly tied to specific landscapes,
this threshold can fit more different landscapes. Once set, it can be universally applied on

most multimodal landscapes. Furthermore, unlike the sampling vector that may cause
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inferior performances, this threshold does not generally affect the performance of the
algorithm. As long as it is within a reasonable range, RM is always guaranteed to find all
clusters before it reaches the equilibrium. Smaller threshold only incurs more fitness

evaluations since more interior samples are evaluated before their convergence.

3.3.3.2 Dynamic Niche Clustering

We further apply RM in Dynamic Niche Clustering (DNC) in contrast to its original
version without RM [2]. There are two main reasons to choose DNC for testing. First of
all, up to our knowledge, it is the only version of Sharing GA that manipulates niches of
variable radii. Secondly, DNC in [2] incorporated both Euclidean distance metrics and
Ursem’s HV function. Hence RM can be compared with both forms of clustering
techniques.

Initially, the DNC algorithm randomly generates a group of individuals. A new
niche, with an initial radius » computed using equation (3.2) in Section 3.1.1, is created
for each individual. Pairs of niches i and j are merged if certain conditions are satisfied.
For the original form of DNC, these conditions are:

e The HV function does not detect ény valley between i and j;

e The Euclidean distance d between the midpoints of i and j satisfies:

. O .
d<Zi or d<2i (3.12)
2 2

where o, is the radius of niche x.

For the sake of brevity, the implementation of DNC is not listed here. Interested
readers may refer to [2] or Section 1.1.1.1.9 for details.
For DNC that adopts our RM scheme, a group of niches are initiated in the same

way as the original DNC. However, these niches do not have initial radii. Two niches are
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merged as long as the RM function does not find any valley between them. The main
process is also slightly different to that of the original DNC:

1. Recalculate niche members;

2. Adjust the midpoint of each niche according to its members;

3. Check niche pairs for merging using the RM algorithm;

4. Apply sharing function within each niche.

It can be seen that DNC-RM does not need to sort and manipulate the niche pair
list. It does not check niches for splitting either, because a large niche is almost unlikely
to contain more than one niche, due to the nature of the RM algorithm.

We test three benchmark functions, all of which are typical multi-modal functions
taken from literature [1, 26, 37]. The number of clusters and optima found are tracked
along the generations. Because clustering is a major overhead of computation, the
average CPU running time as well as the proportion of clustering and evolution are also
demonstrated. The overall performance, averaged on 50 runs for each function, is gauged
by the following measurements:

e Success rate: percentage of successful runs;

¢ Oug / Omax / Onmin: the average/maximum/minimum number of optima found at

the end of a run;

® Cug / Cuax / Cpin: the average /maximum/minimum number of clusters at the

end of a run;

Note that a run is deemed to succeed if and only if all present optima are found.

Various parameters required by the evolutionary process are empirically given as

follows:
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e Population size: suppose each optimum is assigned 10 chromosomes, on
average. For each function, the total population size is 10 times the number of

actual optima, as listed in Table 3-4 below;

Table 3-4 Number of optima and population size for each function

Function Number of Optima Population Size
D, 9 90
D, 10 100
D, 125 1250

Elitism rate: 0.1;

Crossover rate: 0.8;

Mutation rate: 0.1;

Number of generations: 80.

In all figures (Fig. 3-15, Fig. 3-16, and’ Fig. 3-17), the solid line denotes DNC
-with RM, while the dashed line denotes the original version of DNC. Fig. 3-15, Fig. 3-16,
and Fig. 3-17 (a) are number of optima found, and Fig. 3-15, Fig. 3-16 and Fig. 3-17 (b)
are number of clusters formed, against generations, respectively. Table 3-5, Table 3-6 and
Table 3-7 list performance measurements of these functions.

Note that we do not plot the number of identified peaks/clusters against the
number of fitness evaluations, which unjustifiably assumes that the main cost of the
algorithm attributes to fitness calculation and neglects the cost of other processes, e.g.
evolutionary operations and manipulation of the niche pair list. Rather, as graphed in Fig.
3-15, Fig. 3-16 and Fig. 3-17, we compare the number of peaks/clusters found against the
number of generations. Further, in order to compare the efficiency of these algorithms,

their implementation time is listed in Table 3-8.
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All experiments were run on a Sun Fire 280R machine, with dual 1015-MHz

UltraSPARC III processors and 4.0 GB of RAM, running SunOS Release 5.8.

Function D;
Function D; is shown in Fig. A-1. From Fig. 3-15 and Table 3-5, it can be seen that DNC
forms much more clusters than DNC-RM, whereas its performance is slightly worse than

DNC-RM, in that it reaches the equilibrium later, with lower success rate and less optima

found.
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Table 3-5 Performance measurements on function D,
Measurements DNC-RM DNC
Success Rate (%) 100 92
Ouwvg / Omax / Oin 9/9/9 892/9/8
Cnvg/Cmn.r/Cmin 9/9/9 227 /30/15
Function D;

Djs is typical two-dimensional multi-modal function with irregular optima, as shown in

Fig. A-3. Still, DNC-RM outperforms DNC in all measurements shown in Table 3-6.
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Table 3-6 Performance measurements on function D;

Measurements DNC -RM DNC

Success Rate (%) 46 2

Ouwe/ Omgx/ Opin | 9.36/10/8 7.78/10/6

Covg/ Cpax/ Coin | 1022/ 11710 | 27.52/82/17
Function D,

The optima in function Dy are distributed evenly, but it can be easily extended in any n+1
dimensional space, with 5" peaks. Fig. A~4 shows the function in a three dimensional
space withn = 2.

To test the applicability of RM in a higher dimensional space, we set n = 3. There
are altogether 125 peaks in this four dimensional space. As illustrated in Fig. 3-17 (b),
DNC forms less clusters than DNC-RM from slightly earlier than the 20™ generation.
This is different from functions D; and D,, with which DNC forms more clusters than

DNC-RM.

87



125f —— 750
] - 2
- h
£ 100f [ - 8 625
8— = 500K
75} O A
© = 375p )"
5 50} . P
8 2 250"
—_— _ Al
g 25 DNC RM- §125f R T
Z ---DNC =2
0 i ri A " P
0 20 40 60 80 0 20 40 60 80
Generations Generations
(@ (b)
Fig. 3-17 Number of optima and clusters found for D,
Table 3-7 Performance measurements on function D,
Measurements DNC - RM DNC
Success Rate (%) 100 14
Oug/ Onax/ Omin | 125/125/125 | 123.02/125/120
Covg/ Crax/ Couin | 12571257125 96.3/248 /54

It is interesting to note that, with DNC, the average number of clusters is 96.3,

less than the average number of optima found - 123.02 (Table 3-7). This is because we

cumulate the number of optima throughout the process. The initial radius is large so that

some niches may cover more than one optimum. Hence different optima may co-exist

within one niche and emerge alternately. With RM scheme, however, niches are strictly

separated with each of them focusing on a single optimum. Hence the number of clusters

is always approximately equal to the number of actual peaks, as in Table 3-7 and Fig.

3-17 (b).

Finally, Table 3-8 lists CPU running time as well as the proportion of clustering

and evolution for each function (in both seconds and percentage), respectively.
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Table 3-8 CPU running time for functions D; - Dy

D (;)2?095;,) (;)&?67;’2) (gii.;gxs;,) (22".‘; 11*;,) ((())..(1)3*{2) ((()).';)(())‘;,) 12458 | 0.9994
AL A A AR
Mtz AT A T CT

As expected, for all three functions, RM helps DNC to form desired number of
clusters without a priori knowledge of the landscape. Furthermore, it does not rely on the
size of the population. In fact, this size only needs to be sufficiently large so that each
optimum can be allocated sufficient resources (chromosomes).

On the contrary, DNC with Euclidean distance metrics and HV function
demonstrates demands on an appropriate size of the population. As discussed in Section
3.1.1, if this size is too large or small, the clustering effect will be affected negatively.
This claim is supported by the facts observed in the experiments. It can be seen that, for
functions D; and D,, the average number of clusters formed (22.7 and 27.52,
respectively) is much larger than the actual number of optima (9 and 10, respectively),
because the population size for these‘ two functions (90 and 100, respectively) is too
large, resulting in many niches of small radii. On the other hand, however, the average
number of clusters for function D; (96.3) is much smaller than the desired number (125),
as the population size is too small for function D; and yields large niches that cover more
than one optima;

A possible criticism of the RM algorithm is its scalability to high dimensional
space due to its computational cost. It is true that clustering with RM accounts for most

of the implementation time for functions D; and D,. However, for higher dimensional
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functions with many optima, e.g. D;, the cost of evolution exceeds that of clustering
substantially (Table 3-7). This is because the main cost of RM is its recursive fitness
computation for midpoints. When the dimensionality increases, the cost of evolutionary
operators grows dramatically and exceeds the cost of fitness calculation, which is more or
less increased, but not as much as the former. As a matter of fact, as long as the cost of
fitness calculation remains feasible, the RM algorithm itself is applicable even in a high
dimensional space.

In terms of the total implementation cost, DNC-RM is generally higher than DNC
(functions D; and D), but it is still acceptable with the same magnitude as the latter.
However, for function D;, DNC-RM is faster than DNC. As discussed above, this is
because DNC entails sorting and manipulation of a large list of niche pairs. These two
actions unavoidably induce a non-trivial computational cost to the whole process.

From Table 3-8, we can also see that for all three functions, DNC-RM spends less
time in evolution than DNC, at the cost of clustering. It can be concluded that, with RM,
the algorithm is able to form correct clusters effectively and stably, at the cost of
acceptable overhead for clustering. When there are many optima in the landscape and the
evolution process accounts for the majority of the computational cost, the overall
algorithm is expected to be faster than those without RM.

Of course, the computational cost of RM is still a potential pitfall - especially
when two individuals are on the same peak, the algorithm does not terminate until they
finally converge, resulting in a much higher cost than the case when two individuals are
on different peaks. Even worse, if the cost of fitness calculation is too high, RM may not

be applicable.
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One possible solution is to reduce runs of RM. Since the population is partially
replaced with new chromosomes, RM can be applied on new individuals only. This is
another advantage of RM over the distance metrics based techniques. With RM, survived
old individuals are already clustered and will remain in their own clusters steadily. With
the distance based methods, however, alteration of the midpoint or the niche radius may
change the membership of the individuals within the cluster.

With a population of size N and P niches, suppose the number of new individuals
is O, the runs of RM are reduced from N*P times to Q*P times. Q is a proportion of N
and is dependent on various evolutionary rates (e.g. elitism, crossover, mutation). (V-
Q)*P runs of high cost RM (between two individuals on the same peak) are also avoided.

Another possible solution to reduce runs of RM is to gradually decrease the
frequency of clustering when the population tends to stabilize. Initially, clustering is
performed at each generation. It is then performed every 2, 4 or 8 generations until
termination.

In case the fitness calculation is prohibitively expensive, RM can still be applied
in the offline training, that is, to analyze the distribution of the potential optima
beforehand and provide a priori information about the topology of the landscape.

Finally, we note that although DNC-RM achieves better success rates than DNC,
its performance for some functions is still not satisfactory. For example, for function D,
the average number of optima found is 9.36 (desired: 10) and the success rate is 46%.
This is due to the liinitation of the DNC algorithm itself. Most evolutionary operators of
DNC act globally, and selection pressure is realized globally as well. As the authors

pointed out in [2], individuals are spread around the top of peaks, rather than clustered
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tightly at the apex. If RM is applied in a multi-population based GA [29], where
independent sub-populations (niches) are evolved separately and the selection pressure is
focused locally about the peaks and within each sub-population, the performance is

expected to be better.

3.3.3.3 Summary

Effective and efficient clustering plays a key role in evolution algorithms aiming for
multi-modal optimization. In this section, a novel clustering algorithm Recursive
Middling (RM) is proposed and compared to other clustering techniques, i.e. those based
on Euclidean distance and Ursem’s HV function [1], alone and within the framework of
an evolution algorithm — Dynamic Niche Clustering (DNC) [2].

Experiments on benchmark functions show that, with an acceptable overhead, RM
quickly forms stable clusters around actual optima, and considerably facilitates the
evolution of the population. It outperforms other clustering techniques in terms of the
correctness and stability of the clusters formed, as well as the number of optima found in

the evolutionary algorithm tested.
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Chapter 4 Bi-objective Multi-population
Genetic Algorithm for Multi-modal
Optimization

There are two major issues in multi-modal optimization: diversification and
intensification. From a global point of view, diversification aims to maintain sufficient
diversity within the population so that individuals are spread out widely within the search
space. On the other hand, intensification is seen localiy. It allows for congregation of
individuals around potential optima so that each optimum region is fully exploited. Both
diversification and intensification play key roles in the optimization process.

In BMPGA, diversification is realized via a novel bi-objective mechanism and a
multi-population scheme. Unlike most other GAs that evolve the population towards a
single fitness objective, BMPGA introduces a second complementary objective that is an
essential property of all sought optima. Hence, the subpopulations of BMPGA are
evolved toward both objectives, separately and simultaneously. This results in more
diverse subpopulations than ones which would have resulted from a focused search
guided by a single all-encompassing fitness objective.

In multimodal GAs, unjustified loss of species means loss of diversity. Inspired
by the island model of GAs [67], BMPGA explicitly maintains a set of subpopulations,
each clustered around one potential optimum. Hence, species are maintained consistently
through these subpopulations.

As for the intensification, each subpopulation is evolved separately toward its

optimum. This allows for focused exploitation of each optimum region.
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4.1 Methodology

4.1.1 Overall Framework

The Bi-objective Multi-population Genetic Algorithm adopts dual fitness terms to
enhance weaker optima and hence diversity of the population. Stable subpopulations
focusing on different potential optima are formed via an effective and robust clustering
algorithm. Each subpopulation is evolved independently so that the selection pressure is
zeroed in on the apex of each optimum.

The overall framework of BMPGA is presented in Fig. 4-1. This process is akin to
a standard GA, except that multiple subpopulations are evolved independently and are
manipulated by clustering operations that work hand-in-hand with the evolutionary

processes.

Fitness Evaluation

e Evolve
Subpopulatiom)——P

Subpopiatr e e (R
. \ i . N
—»(Subpopulationm \SprOpUlaﬁOnM Subpopulation,g\j‘—»

Fig. 4-1 The Bi-objective Multi-population Genetic Algorithm

As shown, the algorithm manipulates M subpopulations, with M = 1, initially.
After evaluating and ranking the fitnesses of the individuals, these subpopulations are
manipulated by a clustering process. Individuals around the same potential optimum are
placed and maintained in the same subpopulation; and subpopulations approaching the

same potential optimum are merged. After clustering, the number of subpopulations
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becomes N, where N may or may not equal M. Each of these N subpopulations is evolved

toward its own potential optimum. The algorithm is run repeatedly until the termination

criteria are satisfied.

The overall outline of BMPGA can also be presented as high-level pseudo code.

Initialization;
While (! terminate) do
Fitness evaluation & ranking;
Clustering;
For each sub-population do
Evolution,
End For
End While

Fig. 4-2 Pseudo code of BMPGA

BMPGA is divided into the following major processes:

1.

2.

Initialization (Section 4.1.4);

Fitness evaluation and ranking (Section 4.1.5): For each subpopulation: the
chromosomes are evaluated and ranked with respect to two fitness terms;
Clustering (Section 4.1.6): Subpopulations are manipulated so that each of
them is focused on a specific potential optimum area in the search space;

For each subpopulation do evolution (Section 4.1.7).

Steps 2-4 are repeated until the termination criterion is satisfied (Section

4.1.8).

4.1.2 Chromosome Encoding

In principle, BMPGA does not necessitate a specific chromosomal representation. Each

gene, which is a parameter of the object function, can adopt a binary or real-valued

format. One of the algorithms to be compared to BMPGA works in a normalized
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parameter space with 15-bit binary genes [2, 28]. For a fair comparison between these

algorithms, we adopt the same representational format.

4.1.3 Parameters

The parameters of BMPGA are:

N;: The size of subpopulations: all equal;

R.: Elitism percentage;

R.: Crossover possibility;

R.,: Mutation possibility;

R4 Percentage of least fit individuals discarded;

o: Convergence threshold — two individuals are deemed to converge to one if the

distance between them is smaller than o.

4.1.4 Initialization

The algorithm starts with a single subpopulation of size N;. Although N; is empirically
devised, it is problem-independent and can be applied to multimodal landscapes of
variable dimensionality and number of optima. Each gene of ‘each chromosome is

randomly assigned a value within [0, 1].

4.1.5 Fitness Evaluation and Ranking

In most GAs, the probability of | selection of an individual is proportional to its relative
fitness or ranking within the population [68]. Regardless of the specific selection scheme
used, a basic principle is that fitter individuals, on average, must have a greater
probability of survival than the rest.

While fully aware of that principle, we propose a bi-objective scheme in order to
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promote diversity in search without compromising the optimality of the ultimate goal.
This scheme does not make BMPGA a typical GA-based multi-objective optimizer,
which attempts to satisfy several conflicting objectives, resulting in a set of Pareto-
optimal solutions [69]. The two objectives used in BMPGA (say A and B) do not conflict
with each other. Rather, they represent different but complementary quality
considerations allowing for less focused search for the optima. Both fitness objectives
reach their optima concurrently at the each optimum.

A simple scenario will help to interpret this scheme. Suppose an individual 7 is
ranked low with respect to the fitness objective A, but high with respect to B within its
population. If, during the evolution, only A is used as the measure of fitness (as in most
traditional GAs), I has trivial likelihood of survival and will very likely be replaced by
better individuals soon. However, this does not necessarily mean that / was a bad
solution. / might be a promising candidate that leads to a much better solution after a
number of evolutionary cycles or even an optimal solution in another optimum area.
Therefore, preservation of promising candidates like 7 is important. If B is incorporated
as a second fitness term, 7 is much more likely to survive. Consequently, diversity of the
population is promoted.

A question that arises is why not use more than two objectives to further enhance
diversity. Generally speaking, too many objectives will induce more unnecessary costs
and slower convergence of the subpopulations since individuals are more divergent rather
than focused. Therefore, we believe that the bi-objective scheme is a reasonable
compromise between diversity and efficiency.

After fitness evaluation, individuals are sorted with respect to both fitness
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objectives, and as such two ranking lists are maintained.
Generally speaking, the design of the objectives should follow the following
criteria:

e They should be one of the intrinsic characteristics of the optimum we are seeking;

o The two objectives should not be completely independent, that is, their optima

usually occur concurrently.

Obviously the objectives are application-dependent. Details of specific objectives
for a different application will be discussed in Chapter 5.

BMPGA uses two fitness terms. One of the fitness terms, naturally, is the given
objective function itself, denoted as f{(x).

For a differentiable function, there usually is:
Vf(x)=0 (4.1)
where x* is a local maximum/minimum of f(x), and Vf(x") is its gradient. The gradient

of an n-dimensional function f{x) has a component for each direction. Hence we have:

n a )
>
g(x) =" (4.2)

n

as the second objective function, the minimum of which is to be sought.

Alternatively, g(x) can also be the norm of the vector

(1) 9f(x)
Foat

1 Ox,

%(le ]. We leave it for future work.

X5

Our current implementation handles functions for which a gradient can be
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estimated numerically. If the function is non-differentiable and badly-behaved, e.g. a
function with large discontinuities, the gradient may not be an appropriate measure.
There may still be ways to design the secondary fitness objectives, but this is beyond the

scope of this thesis.

4.1.6 Clustering

(a) | (b)
a
\\\\ .

e °*
f o N — /
N

(c)
Fig. 4-3 The Clustering Actions
(2) Migration; (b) Splitting; (c) Merging

The multi-population scheme of BMPGA demands effective and robust identification of
subpopulations. These subpopulations, also called élusters, are manipulated via three
major clustering operations: migration, splitting, and merging, as described below and
shown in Fig. 4-3.
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e Migration (Fig. 4-3 (a)): An individual that does not belong to its own cluster is
moved to an existing cluster more appropriate for it.

e Splitting (Fig. 4-3 (b)): An individual that does not belong to its own or any other
cluster is removed from its own cluster and placed in a newly created cluster.

e Merging (Fig. 4-3 (c)): Different clusters are merged into one cluster, if they are
deemed to be converging towards the same optimum. This is done by summing all

of their individuals, and then selecting the best N; (cluster size) for the new cluster.

SUB: set of current subpopulations

Migration & Splitting:
For each subpopulation s in SUB
For each new individual i in s
If i does not belong to s
For each subpopulation s inSUB (s" #5)
If'i belongs to s
i migrates fo s*;
Break;
End if
End for
If'i does not belong to all S'#s
Create a new subpopulation around i;
End if
Endif
End for
End for

Merging:
For subpopulation i = 1 to NumberOf(SUB)
For subpopulation j = i+1 to NumberOf(SUB)
Ifi and j are around the same optimum
Merge i and j;
Remove j from SUB;
End if
End for
End for

Fig. 4-4 Pseudo code of clustering
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Fig. 4-4 presents the pseudo code description of the three clustering operations.

Once an individual is correctly placed into an appropriate subpopulation s, it will
stay in s without straying to other subpopulations, unless s itself is merged with other
subpopulations. Hence, re-clustering of old individuals inherited from previous
generations is simply unnecessary. Only new individuals generated initially or through
evolution are examined to determine their appropriate subpopulations. This strategy
effectively lessens the cost of clustering without causing straying effects.

Merging does not occur in every generation. Rather, it is implemented
periodically to save computational cost. In addition, merging is not carried out during
earlier generations to allow for formation of stable subpopulations around potential
optima. If the number of individuals in a merged subpopulation exceeds N, the best N;
individuals are maintained in that subpopulation, while the rest are simply discarded.

It is worth noting that there are two relationships in cluétering: individual-cluster
and cluster-cluster. Since a cluster can be uniquely represented by its center (i.e. the up-
do-date fittest individual within the cluster), both relationships can be represented as
individual-individual relationships. This allows for the introduction of our own Recursive

Middling clustering algorithm, explained in full in Chapter 3.

4.1.7 Evolution

In BMPGA, each subpopulation is evolved independently towards its own optimum.
Evolution proceeds mainly via sélection and diversification. Selection tends to eliminate
those individuals in the population with lower than average fitness, focusing the search
on promising areas of the fitness surface. Diversification expands the search towards new

and potentially promising areas. In BMPGA, selection is realized using elitism and rank-
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based fitness proportionate selection [68]. Diversification is realized via recombination
and mutation.

The basic outline of evolution is shown in Fig. 4-5. Its basic steps are similar to
those of a standard GA, except that a proportion (R;) of the worst individuals are

discarded and replaced by newly generated individuals.

SUB: set of current subpopulations

For each s in SUB:
Create a new subpopulation s” = empty;
s = Elitism(s);
s" =s" ORecombination(s);
Mutation(s*);
While (Size(s )<Nj)
s =s [ randomly generated individual;
End while
End for

Fig. 4-5 The evolution process

If the size of a subpopulation is less than N, the gap is filled with randomly
generated individuals. Hence for a subpopulation of size N (where N< N;), the number of
new individuals generated by this action is

N_=N-R,+N —-N (4.3)

This action introduces new individuals into the subpopulation and enhances its

diversity.

4.1.7.1 Elitism

Full local elitism 1s adopted in the sense that a proportion (R,) of the fittest individuals in
both ranking lists are copied to the next generation without alteration. Since a new

emergent subpopulation may start from a couple of seeds, the computed number of elites
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may be less than 1. In such cases, the fittest individual is nevertheless maintained in the
subpopulation in order to preserve this subpopulation from extinction. As a result, all

existing species are maintained firmly and will not be subject to extinction.

s": new subpopulation

Elitism(subpopulation s)
Num_elite = Size(s) * R,;
If (Num_elite<1)
Num_elite = 1;
End if
Copy best Num_elite individuals from
[fx) ranking list of s to s
Copy best Num_elite individuals from
g(x) ranking list of s to s
End Elitism

Fig. 4-6 Elitism

4.1.7.2 Recombination and Mutation

Recombination only occurs between individuals in the same subpopulation. Two pairs of
parents are selected via rank based proportional selection from the two ranking lists,
respectively. With a given probability R,, these parents generate two pairs of offspring,
which are then put into the new subpopulation s°. This process is repeated until the size

of s” reaches (1-Rz)N (where N is the size of the original subpopulation s).

s": new subpopulation

Recombination(subpopulation s)
Lim = Size(s) * (1-Ry);
While (Size(s )y<Lim)
Select pairs of f-parents from fx) list of s;
J-offspring = recombine f-parents;
Select pairs of g-parents from g(x) list of s;
g-offspring = recombine g-parents,
Put f-offspring and g-offspring in s';
End while
End Recombination

Fig. 4-7 Recombination
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The default recombination is realized via 1-point crossover (Section 1.1.1.1.5). A
pivot is selected at random, and the parents’ genes on either side of the pivot are swapped
to create two offspring.

Mutation is carried out with probability R,,. It is generally higher than the normal
rate of 0.01-0.05, in order to enhance the diversity of the population. A gene to be
mutated is randomly selected from the chromosome, and then arbitrarily assigned a new
value from its valid range.

It should be noted that both crossover and mutation may vary, depending on

different applications.

4.1.7.3 Population Control

As discussed above, after recombination and mutation, the new population reaches (1-
Ry)N. The gap in the new subpopulation (R4N) 1s then filled with new individuals until the
size of s” finally reaches N, as shown in Fig. 4-5.

We have:

N, =N, +N,_ .+N,_  =(0-R)-N+N,, 4.4)

where N, is the number of elites in s, Nyecoms 18 the number of offspring; the sum of N,
and Nyecomp 18 (1-Rz)*N. The remaining vacancy is filled by Ny, new individuals, with
Nyew given by equation (4.3).

As a partial reshuffle of the population, the population control is a more drastic

action than regular mutation, and it further enhances the diversity.

4.1.8 Termination Criterion

In general, the termination criterion can be, but not limited to, a maximum number of
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fitness evaluations or a maximum number of generations.

4.2 Experiments

4.2.1 BMPGA versus Compared Algorithms

BMPGA is a population based parallel GA. It explicitly maintains a set of
subpopulations, each focused on a potential optimum. The main features of BMPGA are:
1. Bi-objective scheme: individuals are evaluated and manipulated relative to two
fitness terms;
2. Recursive middling: individuals are clustered based on topological
information;
3. Local evolution: each subpopulation is evolved independently toward its
potential optimum.

Multi-population GA (MPGA) is a variant version of BMPGA and also a typical
population based GA. The main difference between MPGA and BMPGA is that BMPGA
uses a bi-objective scheme instead of MPGA'’s single-term fitness. Hence, a comparison
between MPGA and BMPGA would demonstrate the impact of the bi-objective scheme
on GA based multi-modal optimization.

Multi-national GA (MNGA) [1] is another population based GA. MNGA uses the
Hill-Valley function for clustering. As such, MNGA's clustering technique belongs to the
familyiof topdlogy based clustering approaches. It is interesting to compare MNGA to
GAs s utilizing distance based clustering methods, as well as our own BMPGA, which uses
RM. Another interesting feature of MNGA is that, unlike other typical population based
GAs [11], [25], [23], which evolves a variable-sized population containing a number of

fixed-sized clusters, MNGA evolves an overall population of fixed size, containing a
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number of variable-sized clusters.

Dynamic Niche Clustering (DNC) [2] is a typical genetic operator based GA. It
belongs to the family of Sharing GAs [20], which are one of the most popular multimodal
GAs to date. Unlike population based GAs that evolve local subpopulations separately,
DNC evolves the whole population globally. It uses a hybrid clustering method that
makes use of both distance and topological information. It is interesting to compare this
method to RM, which only uses topological information. Finally, according to our
knowledge, DNC is the only version of Sharing GA that is able to identify clusters of
varied radii. That gives DNC a potential advantage over other multi-modal GAs in the
literature.

Clearing is another interesting genetic operator based GA [45]. It is similar to
most Sharing GAs in that it applies a single global threshold to all clusters. It is
interesting to compare this static distance based approach to other dynamic distance
based approaéh (such as DNC) and topology based approaches (such as those utilizing
RM or HV).

BMPGA, MPGA and MNGA adopt full local elitism in the sense that the elites of
every subpopulation, regardless of its size, are preserved. In contrast, both DNC and
Clearing implement partial local elitism. Their implementations are slightly different
though. In DNC, only elites within large niches (> 5% population size) are preserved. On
the other hand, Clearing preserves the winners of each species with fitness values greater
than the average fitness of the whole population.

In this study, we compare BMPGA to MPGA, MNGA [1], DNC [2] and an

enhanced Clearing [3] GA (denoted as CLEARING) that outperforms its original version.
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Table 4-1 presents the main features of the algorithms used in the empirical study
(to follow). These features are: the categories of the algorithms, their evolution style and
clustering approaches, the number of fitness objectives they use and population sizing,

which indicates whether the size of a subpopulation or that of the global population is

kept constant.

Table 4-1 BMPGA versus other multimodal GAs

Algorithms BMPGA MPGA MNGA [1] DNC|[2] CLEARING [3]
Category Population Population Population Genetic operator Genetic operator
. Global - partial local Global — partial local
Evolution Local Local Local elitism elitism
Fitness Two One One One One
Dynamic distance - Static distance -
Approach | Topology - RM | Topology - RM | Topology - HV Euclidean + Topology- HV Euclidean
Clustering Average of the Weighted average of
Center ] Up-to-date best | Up-to-date best s relative physical positions Up-to-date best
government
of all cluster members
Population Sizing | Subpopulation | Subpopulation Population Population Population

4.2.2 Benchmark Functions

Four diverse benchmark functions of different dimensionality (from 1 to 3) and
landscapes (evenly or unevenly distributed optima of equal or different heights and
volumes) are used. These functions, denoted as D;, D,, D; and D4 in Appendix A, have
been used by a number of researchers in assessing the quality of their respective

multimodal GAs [1, 2, 23, 26, 28, 50]. The aim is to locate the maxima of these functions

within a given range.

4.2.3 Configuration

We are interested in comparing the performance of BMPGA, MPGA, DNC, MNGA and

CLEARING with different population sizes. Suppose each potential optimum is assigned
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N; individuals, on average. For BMPGA and MPGA, the size of each subpopulation is N
(Ny is 5, 10, 15 and 20, respectively). For DNC, MNGA and CLEARING, on the other
hand, the total population size equals N; (average cluster size) times the number of actual

optima. All other parameters (described in Section 4.1.2) are given identical values:

- R.=0.1
- R, =038
- R,=0.1
- Ry=0.15

- 6=0.025 (D;, D3, Dy); 0.5 (D)

Note that ¢ is empirically devised and may well differ on different landscapes. o
is also used to verify the optimality of an individual. An individual is deemed to be an
optimum if the Euclidean distance between this individual and the actual optimum is less
than o.

For each function, all five GAs are run for the same number of fitness evaluations
E ux. The value of E,,,, for each function is:

- For Dy, Epg=10
- For D, Epec=10°
- For D, Epgy=10°
- For Dy, Epay=2%10°

There are also some algorithm specific parameters. CLEARING requires a global

threshold o,;s to separate species. oy is estimated using Deb and Goldberg’s method [48],

as equation (3.1) in Section 3.1.1. o4 for each function is given in Table 4-2.
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Table 4-2 Global threshold for CLEARING

Function | Dimensionality | Number of optima | Odis
D, 1 9 0.056
D, 2 25 0.1414
D; 2 10 0.2236
D, 3 125 0.2

In MNGA, the sampling vector for clustering is [0.25, 0.50, 0.75]. However,
when it is about to merge clusters, two extra samples are calculated. Hence, the sampling
vector becomes [0.02, 0.25, 0.50, 0.75, 0.98] because, as explained in [1], the merging of
clusters is a more drastic operation than the migration of individuals. The government

size 1s 2.

4.2.4 Performance Evaluation

The performance of the five GAs is evaluated with respect to the following measures:
- Percentage of successful runs: Suc;
- Average/maximum/minimum number of peaks found at the end of a run:
Ouvel Ol Omin
- Standard deviation of number of peaks found in all runs: Ocons;
- Average/maximum/minimum number of clusters found at the end of a run:
Cave! Cax! Crin
- Standard deviation of number of clusters found in all runs: C,ops;
- Average CPU running time.
Suc, Ouyel Omax/ Omin, and Og,ps reflect the capability of the algorithms of finding
and holding all optima. Ciye/Cax/Crmin and Ceops indi_cate the ability of the algorithms to

form stable clusters. O,,s and C,,,; measure the consistency of the algorithms in locating
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the optima and forming clusters, respectively. Finally, average CPU time reflects the

efficiency of the algorithms.

4.2.5 Results

For each population size, each algorithm was run 30 times. All the experiments were run
on an Intel Xeon 2.66 GHz with 512 KB of cache and 512 MB DDR RAM, running Red
Hat Linux 8.0.3.2-7.

For the sake of clarity, from now on, we use the term cluster in all algorithms
unless otherwise stated. As discussed above in Chapter 3, a cluster is a group of
chromosomes deemed to explore the same potential optimum area. It is equivalent to a
subpopulation in BMPGA and MPGA, a nation in MNGA, a niche in DNC and a species
in CLEARING.

We also use the term species to represent an actual optimum surrounded by a
neighborhood inferior to this optimum. Ideally, the number of clusters formed by various
algorithms is equal to the number of actual optima or species. However, depending on
specific algorithms, a cluster may contain one or more species, and a species may spread
in several clusters. A key to the success of an algorithm is its ability to form correct
clusters as well as to find and preserve species.

During eéch run, the population is checked periodically (every E,q/100
evaluations) for the number of optima found and the number of clusters formed. That
gives us 100 samples per run. Fig. 4-8, Fig. 4-0, Fig. 4-10 and Fig. 4-11 chart the results
for functions D, to Dy, respectively. Within each figure, sub-figures (a), (c), (e) and (g)
show the number of optima found against the number of evaluations; sub-figures (b), (d),

(f) and (h) show the number of clusters formed against the number of evaluations. The x
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axis of all sub-figures represents the number of evaluations, scaled to [0, 100]. The y axis
of all sub-figures has the actual number of optima marked by an asterisk.

In sub-figures (a), (c), (¢) and (g) of Fig. 4-8 - Fig. 4-11, each one of DNC,
MNGA and CLEARING has two curves named “algorithm” and “algorithm-R”,
respectively. “algorithm” counts all optima previously and currently found. It reflects an
algorithm’s ability to find the optima (but not necessarily preserve them). It is a
historically accumulated result and is non-decreasing. On the other hand, “algorithm-R”
only counts the optima that exist in the population at the point of sampling. It is a “real
time” result and its curve may vibrate. “algorithm-R” reflects an algorithm’s ability to
both find and preserve the optima.

A common approach to explore unknown landscapes sees the algorithm run for a
pre-set duration (e.g. number of fitness evaluations or generations) and obtain the results
at the end of the run. In this sense, “algorithm-R” is of more practical significance. As
described above, the samplings of “algorithm-R” are independent since the results of
each sampling are not influenced by the results of any previous samplings. This is
equivalent to run the algorithm for different duration (for example, E,,,/100 evaluations,
2*E,./100 evaluations ... 100*E,,,/100 evaluations, and so on) and then count the
optima at the end of the duration.

It is observed that both “algorithm” and “algorithm-R” curves of BMPGA and
MPGA overlap perfectly (possible reasons will be discussed later). Therefore, each of
these two algorithms only has one curve describing its performance.

Here we will compare the performance of BMPGA and MPGA against that of

DNC, MNGA, and CLEARING. Unless specifically stated, all results of DNC, MNGA
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and CLEARZNG are “algorithm-R” results.

At each sampling point, the number of clusters in the population is counted. This
gives us a “real-time” value. Hence sub-figures (b), (d), (f) and (h) do not have
“algorithm-R” curves.

Table 4-3 - Table 4-22 provide the results of various measurements described
above. “Real” represents real-time results. “Accu” represents accumulated results. All
results (including figures and tables) are for cluster sizes (Ns) 5, 10, 15 and 20.

Function D,

Function D; (Fig. A-1) is a typical 1-dimensional multimodal function with 9

optima. It features an uneven distribution of optima of varied heights and volumes.
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Fig. 4-8 Performance on Function D,
Number of optima found against number of evaluations: (a) N; = 5; (¢) N; = 10; (e) N, = 15; (g) N, = 20;
Number of clusters formed against number of evaluations: (b) N, = 5; (d) N, = 10; (f) N, = 15; (h) N, = 20.

As expected, all “algorithm-R” results of DNC, MNGA and CLEARING are

much worse and less consistent than their corresponding “algorithm™ results. Most
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“algorithm-R” curves also fluctuate more drastically than their corresponding
“algorithm” curves. These facts indicate that DNC, MNGA and CLEARING are unable
to preserve species, even though the species may have reached their optima.

Now we take a closer look at each of these algorithms. As discussed above, the
initial radius o;,; of DNC is calculated using equation (3.2). The value of o;,; is usually
very small because N (the total population size) >> P (the number of optima). Hence
DNC starts with a lot of small clusters, which decreases in number rapidly due to
merging (Fig. 4-8 (b), (d), (f), (h))). At a certain point in time, the population reaches
equilibrium. The number of the clusters remains roughly constant. It may still decrease,

but only slightly and insignificantly. The number of the clusters increases as N, increases.

Table 4-3 Measurements for function D;, N;= 5

Measurements | BMPGA | MPGA DNC MNGA CLEARING
Real Accu Real | Accu| Real Accu
Suc (%) 100 90 0 | 96.67 10 100 0 3.33
Ouve/ Omax/ Omin | 9/9/9 8.87/9/7 | 3/5/2 | 8.97/9/8 | 7.53/9/6 | 9/9/9 | 4.63/6/2 | 7.07/9/4
O.ons 0 0.4342 | 0.7878 | 0.1826 | 0.8193 0 0.7649 | 1.2847
Cave’ Crax/ Chin 9/9/9 | 9.03/10/9 11.50/24/7 8.93/11/7 7.0/8/6
Ceons 0 0.1826 3.2879 1.5742 0.5872
Table 4-4 Measurements for function D;, N, = 10
Measurements | BMPGA | MPGA DNC MNGA CLEARING
Real | Accu| Real | Accu| Real Accu
Suc (%) 100 100 0 100 20 100 0 96.67
Ome/ Omax/ Omin 9/9/9 9/9/9 | 4.87/6/3 | 9/9/9 | 8.1/9/7 | 9/9/9 | 6.50/8/5 | 8.97/9/8
Ovoms ) 0 0.8996 0 |05477| © 0.6823 | 0.1826
Coe/ Crax/ Coin | 9.10/10/9 | 9.43/11/9 |  22.13/30/14 9.03/11/8 8.07/11/6
Ceons 0.3051 0.6261 3.4614 0.8899 1.4368
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Table 4-5 Measurements for function D, N; = 15

DNC MNGA CLEARING
Measurements | BMPGA | MPGA Real | Accu | Real | Accu| Real Accu
Suc (%) 100 100 0 100 16.67 100 0 96.67
Ouwe/ Omax/ Omin | 9/9/9 9/9/9 5.23/8/3 | 9/9/9 | 7.90/9/7 | 9/9/9 | 6.63/8/6 | 8.97/9/8
O.ons 0 0 1.1651 0 0.6618 0 0.6687 | 0.1826
Cave/ Crax/ Ciin 9/9/9 19.17/10/9 34.87/42/24 9.60/11/9 11.23/14/7
Ceons 0 0.3790 4.0830 0.7701 1.5687
Table 4-6 Measurements for function D,;, N, = 20
Measurements | BMPGA | MPGA DNC MNGA CLEARING
Real | Accu | Real | Accu| Real | Accu
Suc (%) 100 100 0 100 20 100 0 100
Ouwe/ Opax/ Onin 9/9/9 9/9/9 4.9/6/4 | 9/9/9 | 7.97/9/7 | 9/9/9 | 6.97/8/6 | 9/9/9
Oons 0 0 0.8277 0 0.6687 0 0.7184 0
Cave’ Crax? Crin 9/9/9 9.10/10/9 | 46.50/59/31 9.73/11/9 11.90/13/8
Ceons 0 0.3051 5.9582 0.9072 1.0289
Table 4-7 Average CPU running time for function D,
Pop size | BMPGA | MPGA | DNC | MNGA | CLEARING
5 0.48 2.28 0.48 0.21 1.60
10 0.49 0.24 1.16 0.22 2.54
15 0.53 0.22 3.11 0.24 4.48
20 0.54 0.21 6.40 0.26 7.52

In CLEARING, oy; is 0.056. However, the actual minimum distance G,,;,, between
adjoining optima is 0.032 (All these distances are compﬁted in a normalized space). As a
matter of fact, D, has 9 peaks. Hence, there are altogether 8 pairs of neighboring optima.
The distance between 3 pairs of peaké is less than o,4;. Consequently, it is not unusual

that two adjacent species are mistakenly placed in the same cluster and the weaker one is
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cleared out. As can be seen from Fig. 4-8 and Table 4-3 - Table 4-7, CLEARING-R has 0
success rates for all N; values; the average number of optima found is only better than
DNC-R.

MNGA-R outperforms both DNC-R and CLEARING-R. Its success rates are all
below 20%. Although it forms approximately the correct number of clusters, the average
number of optima found starts from 7.53 at N; = 5 and increases slightly to about 8 at N;
2 10.

In contrast to DNC, MNGA and CLEARING, BMPGA and MPGA are able to
maintain species. Initially, both BMPGA and MPGA find less optima than DNC-R,
MNGA-R and CLEARING-R (this phenomenon is more manifest when N; 2 10).
However, BMPGA and MPGA quickly exceed them. It can be seen that BMPGA works
perfectly with 100% success rates for all N; values. MPGA, on the other hand, is slightly
inferior to BMPGA at N; = 5, where its success rate is 90%. However, the performance of
MPGA improves with increasing N; values. Its success rates reach 100% for N, 2 10. The
curves of BMPGA and MPGA almost overlap wﬁen N;=20.

Since DNC forms more than the required number of clusters, the average number
of individuals assigned to each species is less than N,. This can cause insufficient
exploitation of areas of potential optima. Therefore, DNC constantly fails in finding all
the optima. The performance of DNC-R is the worst among all GAs.

In térms of 0ver»a1>1 performance, the GAs can be listed from best to worst as:
BMPGA, MPGA, MNGA-R, CLEARING-R, DNC-R.

In terms of CPU running time (Table 4-7), MPGA is the slowest when N; = 5.

Nevertheless, its running time drops quickly from N; = 10. CPU time of MNGA is a
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fraction of CPU time of MPGA at N; = 5, whereas CPU times of both algorithms are
approximately the same at other N; values. So generally speaking, MNGA is faster than
MPGA. CLEARING is the slowest since it is only faster than MNGA at N; = 5 and
remains the slowest for all N, values. The CPU running times of DNC and CLEARING
have approximately identical orders of magnitude. The CPU running times of BMPGA,
MPGA and MNGA have approximately the same orders of magnitude. The CPU running
times of DNC and CLEARING are generally one order of magnitude greater than the
CPU running time of BMPGA, MPGA and MNGA. As N; increases, the differences
become more marked.

These algorithms can be listed from fastest to slowest as: MNGA, MPGA,

BMPGA, DNC, CLEARING.

Function D,

D; is a 2-dimensional multimodal function with 25 optima. Its optima are
distributed evenly in a 5%5 square but the differences between their magnitudes are large
(Fig. A-2).

All “algorithm-R” results of DNC, MNGA and CLEARING are worse than their
corresponding “algorithm” results.

Again, BMPGA achieves 100% success rates for all N; values. Similar to Dy,
BMPGA is better than MPGA in terms of success rates, average number of optima found
and consistency at N; = 5. MPGA achieves100% success rates starting from N; = 10.

For CLEARING, o4 = 0.141 and 6, = 0.122 (645 > Opmin). This is the same case

as that of D,. Unlike D;, however, which has an uneven distribution of optima, the
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optima of D, are distributed evenly in a 5x5 square and are equidistant to each other.

Therefore, the possibility of placing neighboring peaks in one cluster is much higher for
D..
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Fig. 4-9 Performance on Function D,
Number of optima found against number of evaluations: (a) N; = 5; (c) N, = 10; (e) N, = 15; (g) N, = 20;
Number of clusters formed against number of evaluations: (b) N, = 5; (d) N, = 10; (f) N, = 15; (h) N, = 20.

The success rates of MNGA-R are all equal to 0. On average, MNGA-R detects
17 out of 25 optima and forms about 17 clusters for all N, values. The loss of clusters
may be due to fhe Hill-Valley clustering function used and to the symmetric nature of the
landscape. Recall that we use the sampling vecfor [0.25, 0.5, 0.75] for the migration of
individuals. These interior samples are equidistant to each other. Since the optima of
function D; are also equidistant to each other and have approximately the same volume,
usually no valley is found between species. The resuit is that distant species, even though

there are other species lying between them, may be placed in one cluster. This is the case

in Fig. 3-4 (a).

Table 4-8 Measurements for function D,, N, = 5
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Measurements | BMPGA | MPGA bNE MrGA CLEARING
Real Accu Real Accu Real Accu
Suc (%) 100 30 0 33.33 0 73.33 0 93.33
Ouwe/ Opay/ Opiny | 25/25/25 | 21.70/25/7 | 6.17/9/4 | 23.9/25/21 | 17.33/20/16 | 24.7/25/23 | 12.47/20/8 | 24.87/25/23
Ocons 0 4.3004 1.2341 1.1250 0.8023 0.5350 3.0027 0.5074
Cue/ Cpax/ Coin | 25125725 25/25/25 47.20/122/16 17.30/19/16 11.97/16/10
Cooms 0 0 27.8201 0.5960 1.5862
Table 4-9 Measurements for function D;, N; =10
MEASUREMENTS | BMPGA | MPGA DNC MNGA CLEARING
Real Accu Real Accu Real Accu
Suc (%) 100 100 0 100 0 86.67 3.33 100
Ouve/ Omax/ Opin 25/25/25 | 25/25/25 | 13.60/17/9 | 25/25/25 | 17.40/20/15 | 24.87/25/24 | 16.23/25/13 | 25/25/25
Oeons 0 0 1.7734 0 0.9685 0.3457 4.0231 0
Cove’ Coae/ Coin | 25725125 | 25/25/25 42.97/56/35 17.03/20/16 18.77/23/15
Ceons 0 0 5.1960 0.8899 2.2542
Table 4-10 Measurements for function D, N, =15
MEASUREMENTS | BMPGA | MPGA DNC MNGA CLEARING
Real Accu Real Accu Real Accu
Suc (%) 100 100 0 100 0 96.6’/_’ 0 90
Owe/ Opax/ Opin 25/25/25 | 25/25/25 | 18.27/21/14 | 25/25/25 | 17.4/19/16 | 24.97/25/24 | 13.87/24/13 | 24.90/25/24
Ocons 0 0 2.0500 0 0.9322 0.1826 2.2397 0.3051
Cave/ _C,,,a,,/ Crin 2512525 | 25/25/25 57.30/64/50 17.53/21/16 21.90/25/17
Cons 0 0 3.7522 1.2794 1.8071
Table 4-11 Measurements for function D,, N; =20
MEASUREMENTS | BMPGA | MPGA DNC MNGA CLEARING
Real Accu Real Accu Real Accu
Suc rate (%) 100 100 0 100 0 100 0 93.33
Owe’ Onax/ Omin 25/25/25 | 25/25/25 19.47/22/16 25/25/25 | 17.73/20/16 | 25/25/25 | 14.50/23/13 | 24.93/25/24
Oeons 0 0 1.6554 -0 1.0483 0 3.0822 0.2537
Cuve’ Crax/ Ciin 25/25/25 | 25/25/25 69.87/76/63 17.33/19/16 22.87/25/20
Ceons 0 0 3.1594 0.9223 1 .3830

Table 4-12 Average CPU running time for function D,
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PorsizE | BMPGA | MPGA | DNC | MNGA | CLEARING
5 5235 2640 | 185.16 11.35 39.180
10 46.92 11.61 11779 | 12.60 99.116
15 - 46.91 11.52 | 243.01 14.55 183.434
20 46.30 1144 | 425.08 | 2032 302.985

The performance of BMPGA, MPGA, DNC-R, MNGA-R and CLEARING-R are
listed from best to worst as: BMPGA, MPGA, MNGA-R, CLEARING-R, DNC-R.

However, DNC exceeds both CLEARING and MNGA at N; values of 15 and 20.
At these values, the ordered list changes to: BMPGA, MPGA, DNC-R, MNGA-R,
CLEARING-R.

The GAs ranked from fastest to slowest (Table 4-12) are: MPGA, MNGA,

BMPGA, CLEARING, DNC.

Function Ds

Function D; (Fig. A-3) is similar to D; in that the optima are of different heights
and volumes and are non-equidistant to each other.

At N; =5, the success rate of BMPGA is 56.67%,; it detects an average of 9.43 out
of 10 peaks. The success rate of MPGA is 0 with an average of 4.49 out of 10 optima.
BMPGA still outperforms MPGA in success rates, average number of optima found and
consistency at most N, values.

In CLEARING, Gpin (0.320) > 64 (0.224). This is in contrast to the situation of
D; and D,. In D; and D,, pairs of adjacent optima may be put into one cluster. In Dj3,
however, even the closest optima should be safely separated because their distance

exceeds the threshold (64;). As a result, CLEARING-R is able to find more than 9 (of 10)
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peaks at all N; values. Although its success rates are still low (< 50%), its overall

performance far exceeds that of D; and D,.
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Fig. 4-10 Performance on Function D;
Number of optima found against number of evaluations: (a) N; = 5; (¢) N; = 10; (e) N; = 15; (g) N, = 20;
Number of clusters formed against number of evaluations: (b) N, = 5; (d) N; = 10; (f) N, = 15; (h) N, = 20.

The low success rates of CLEARING-R may be attributed to the irregularity of
the landscape. From Fig. A-3 it can be seen that some optimum regions are large and
malformed. Such regions may be partitioned into several clusters because of the small
o4;s. That means that one species may occupy more than one cluster. Since the overall
amount of resources (the total population size) is fixed, resources available to other
species are reduced. Hence, as shown in Table 4-13 - Table 4-16, although CLEARING
forms more clusters than the desired number of species, the actual number of species it

covers is less than that.
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MNGA is able to generate the desired number of clusters. Both the success rate

(63.33%) and the average number of optima found (9.57) by MNGA-R are the highest

among all algorithms at N; = 5. But MNGA is beaten by BMPGA and MPGA for all

other NV; values.

Table 4-13 Measurements for function D;, N; = §

MEASUREMENTS | BMPGA | MPGA DNC MNGA CLEARING
Real | Accu Real Accu Real Accu
Suc (%) 56.67 0 0 0 63.33 86.67 3.33 100
Ouve/ Onax/ Oy 9.43/10/7 4.49/8/0 | 0.6/2/0 | 7.07/9/6 | 9.57/10/8 | 9.87/10/9 | 9.03/10/9 | 10/10/10
Oeons 0.7739 22928 | 0.6747 | 0.9803 0.6261 0.3457 0.1826 0
Cove’ Cruas/ Criin 10.53/13/10 | 9.97/11/9 16.47/28/9 10.33/12/10 16.07/18/14
Ceons 0.7303 0.4901 4.4079 0.5467 0.9444
Table 4-14 Measurements for function D;, N, =10
MEASUREMENTS | BMPGA MPGA DINC MNGA CLEARING
Real Accu Real Accu Real Accu
Suc (%) 100 93.33 0 6.67 73.33 96.37 23.33 100
Ouve/ Opax/ Opin 10/10/10 9.93/10/9 | 2.10/4/0 | 8.07/10/6 | 9.70/10/8 | 9.97/10/9 | 9.23/10/9 | 10/10/10
Oions 0 0.2537 1.0939 1.0483 0.5350 0.1826 0.4302 0
Cove’ Conax/ Conin 11.80/15/10 | 11.03/13/10 23.63/38/14 10.23/12/9 17.33/19/16
Cons 1.3235 1.0334 6.3381 0.5683 0.8023
Table 4-15 Measurements for function D;, N, =15
MEASUREMENTS | BMPGA MPGA DINC MNGA CLEARING
Real Accu Real Accu Real Accu
Suc (%) 96.67 96.67 0 70 86.67 100 26.67 100
Ouve/ Onmax/ Onin 9.97/10/9 9.97/106/9 | 3.77/5/2 | 9.67/10/8 | 9.87/10/9 | 10/10/10 | 9.27/10/9 | 10/10/ lb
O ons 0.1826 0.1826 0.8976 0.5467 0.3457 0 . 0.4498 0
Cove’ Cnax/ Criin 11.63/15/10 | 11.07/12/10 36.37/68/25 10.73/12/10 17.77/20/17
Ceons 1.2452 0.8683 11.1710 0.6915 0.7739

124




Table 4-16 Measurements for function D;, N; =20

MEASUREMENTS | BMPGA MPGA DNC MNGA CLEARING
Real Accu Real Accu Real Accu
Suc (%) 100 93.33 0 66.67 83.33 100 43.33 100
O,ve/ Omax/ Onmin 10/10/10 9.93/10/9 | 5.97/8/4 | 9.67/10/9 | 9.80/10/8 | 10/10/10 | 9.43/10/9 | 10/10/10
Ocons 0 0.2537 1.0981 0.4795 0.4842 0 0.5040 0
Cave’ Crax/ Crin 11.43/14/10 | 11.60/14/10 43.97/105/29 10.53/12/10 18.10/19/17
Ceons 1.4065 1.0034 16.9309 0.7303 0.7120

Table 4-17 Time Measurements for function D;

PoPsizE | BMPGA | MPGA | DNC | MNGA | CLEARING
5 123 61.61 | 787 | 3.09 2041
10 9.23 265 | 2265 | 334 3133
15 8.92 264 | 4773 | 351 51.90
20 8.73 259 | 82.13 | 3.74 7838

DNC’s overall performance is the worst among all these algorithms. The success
rates of DNC-R are 0 for all N; values. It finds less than 60% of the actual optima.

The algorithms listed in order of their overall performance (best to worst) are:
BMPGA, MPGA, MNGA-R, CLEARING-R, DNC-R.

The algorithms listed from fastest to slowest give us (Table 4-17): MPGA,

MNGA, BMPGA, DNC, CLEARING.

Function Dy

iThe_ éptima of D, are equidistant to each other and have equal heights and
volumes. The dimensionality of D(n) is configurable.

Fig. A—4 shows a 2-dimensional D,. But we actually used a 3-dimensional D, in
order to demonstrate the extendibility of these algorithms to spaces of higher dimensions.

BMPGA fails to find all the optima at N, = 5. It achieves 100% success rates at N
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=10. At N; = 15 and N; = 20, the success rates drop to 43.33% and 56.67%, respectively.
Both cases find approximately 124 out of the 125 peaks.
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Number of optima found against number of evaluations: (a) N, = 5; (c) N; = 10; (e) N, = 15; (g) N, = 20;

Number of clusters formed against number of evaluations: (b) N, = 5; (d) N, = 10; (f) N;= 15; (h) N, = 20.

Performance of MPGA is worse than that of BMPGA. All of its success rates are

less than 10%. At N; =5, it only finds 78.3 out of 125 peaks. It finds up to 122 peaks for

N;> 5.
Table 4-18 Measurements for function D, N; = 5
DNC MNGA CLEARING
M t BMPGA MPGA
casurements Real Accu Real Accu Real Accu
Suc (%) 0 0 0 30 0 0 100 100

Ouve/ Omax/ Omin | 118.53/124/114 78.30/90/62 20.10/40/4 1 118.97/125/100 | 50.93/62/46 | 68.33/81/60 | 125/125/125 | 125/125/125

Ocons 27258 57063 77776 71558 33930 4.7149 0 0
Cuve? Coun/ Coin | 125.06/126/125 | 125.43/127/125 91.33/302/29 69.83/76/65 125.20/126/125

Ceons 0.2537 0.6261 78.5504 25875 0.4068
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Table 4-19 Measurements for function Dy, N, =10

DNC MNGA CLEARING
Measurements BMPGA MPGA
Real Accu Real Accu Real Accu
Suc (%) 100 3.33 0 100 0 0 100 100
Ouve/ Orax/ Omin 125/125/125 123/125/118 83.13/106/42 | 125/125/125 | 58.83/64/53 | 84.13/95/76 | 125/125/125 | 125/125/125
Ocons 0 1.2865 15.1856 0 3.0181 4.6737 0 0
Cave/ Conan/ Coin | 125.17/126/125 | 125.07/126/125 125.90/252/112 67.77/73/65 126.84/133/125
Ceons 0.3790 0.2537 24.2208 1.9061 2.9676
Table 4-20 Measurements for function Dy, N; =15
DNC MNGA CLEARING
Measurements BMPGA MPGA
Real Accu Real Accu Real Accu
Suc (%) 43.33 333 0 100 0 0 100 100
Ouve/ Omax/ Omin | 124.37/125/123 | 122.07/125/118 | 115.76/123/107 | 125/125/125 | 60.63/63/58 | 90/99/79 | 125/125/125 | 125/125/125
Ocons 0.6149 1.6174 3.9007 0 1.3257 43786 0 0
Cave/ Cax/ Coin | 125.23/128/125 | 125.13/126/125 128.78/137/124 66.90/71/64 131.87/134/127
Ceons 0.6261 0.3457 3.2994 1.9001 1.8889
Table 4-21 Measurements for function D,, N, =20
DNC MNGA CLEARING
Measurements BMPGA MPGA
Real Accu Real Accu Real Accu
Suc (%) 56.67 6.67 0 100 0 0 100 100
Ouve/ Omax/ Omin | 124.33/125/122 | 122.17/125/118 | 120.19/123/117 | 125/125/125 | 62/66/57 | 93.23/99/83 | 125/125/125 | 125/125/125
Ocons 0.9589 1.8020 1.8787 0 2.0844 2.6512 0 0
Cuve/ Cina/ Crin | 125.13/127/125 | 125.07/126/125 136.93/150/131 66.57/70/64 "131.65/134/127
Ceons 0.4342 0.2537 3.8431 1.5687 2.1992
Table 4-22 Time Measurements for function D,
Pop size | BMPGA | MPGA DNC MNGA | CLEARING
5 15.11 9.17 3073.167 8.63 2430.53
10 13.30 6.73 6504.74 16.62 3408.87
15 10.03 6.49 7874.34 33.91 4708.46
20 9.90 6.40 8792.01 57.91 5750.22

CLEARING gives excellent results. It has 100% success rates for all N; values.

This is because its G, (0.2) is greater than o4, (0.173). All the optima have the same
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volume and are evenly distributed, and as such are perfectly separable. From Table 4-18 -
Table 4-21, we can see that CLEARING forms approximately the desired number of
clusters at N; = 5 and N; = 10. Although the number of clusters for N; > 10 slightly
exceeds the desired number, the performance of CLEARING does not degrade. It appears
that the large size of the population ensures adequate exploration of all species.

It can also be seen from Fig. 4-11 (a), (c), (¢) and (g) that CLEARING finds all
optima from as early as the first sampling point. That is possibly because the clustering
approach in CLEARING does not evaluate fitness. Hence all fitness evaluations
contribute to evolution and all species are evolved for a large number of generations
before the first sampling point.

The topology of D, is similar to that of D,. On such symmetric landscapes,
MNGA forms less than 70 clusters, which is much less than the desired number - 125.
MNGA consistenﬂy fails to find all the optima. It is better than DNS at N; = 5 but
remains the worst performer for all other N; values.

At N; =5, o of DNC approximately equals 6,,, (equation (3.2)). After merging
and enlarging clusters, the number of clusters falls below the desiredv number (125).
However, starting from N; = 10, the number of clusters grows closer to the desired
number. As a result, the performance of DNC is enhanced considerably with increasing

,Ns.’ At N; = 20, the.results of DNC and those of DNC-R are very close. DNC gives its
best performance on function D,. It is expected to perform better at larger population
sizes.

The GAs are listed in decreasing order of their overall performance as:

CLEARING-R, BMPGA, MPGA, DNC-R, MNGA-R.
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The algorithms listed from fastest to slowest are (Table 4-22): MPGA, BMPGA,

MNGA, CLEARING, DNC.

4.2.6 Analysis

From the experiments we can see that although DNC, MNGA, and CLEARING have the
potential to find all optima, none of them is able to consistently retain those found optim.a
(except for CLEARING on function D,). Their real time results are worse and have more
fluctuations than their historically accumulated results.

Conversely, BMPGA and MPGA are able to preserve species consistently. Their
real time results match their accumulated results almost perfectly. The curves of BMPGA
and MPGA are generally smoother than those of DNC, MNGA and CLEARING.

Each algorithm is discussed in detail below.

4.2.6.1 DNC

DNC implements partial local elitism by only preserving elites in large clusters with sizes
exceeding 5% of the size of the overall population. However, DNC usually forms far
more than the desired number of clusters and the majority of those clusters are small. As
a result, only a small proportion of clusters, and hence species, are maintained.

In those small clusters, their members may or may not be sufficiently promoted to
ensure survival in the population. These species may be subject to extinction. Even if one
of the species reaches its optimum, the discovered optimum may not be retained.

Therefore, the elitism scheme, the clustering approach, and the sharing
mechanism, result in noticeable fluctuation of the DNC-R curves.

The sharing technique itself suffers from other problems. In DNC (and all Sharing
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GAs), fitnesses values are shared within the same cluster. Hence individuals are dispersed
within their clusters rather than focused on the optima. Sharing GAs force overall
diversity in the population, but lack local convergence [58]. They also implement global
evolution. This may improve the population as a whole, but each species may not be fully
evolved.

For the reasons given above, the overall performance of DNC is far from
satisfactory. It completely fails to find and preserve all optima of the tested benchmark
functions.

The performance of DNC is dependent on its initial radius o;y. If 6.y is greater
than or equal to the distance between actual optima, DNC will generate less than the
desired number of clusters because the clusters will be merged and enlarged, as is the
case with functi_on Dy at N; = 5. However, if 6, is slightly smaller thah the distance
between actual optima, DNC will form the correct number of clusters quickly, as in the
cases with function Dy at N; = 10. Of course, if 6,,; is too small, the number of clusters
will first drop quickly and then stagnate or decrease very slowly. The number of clusters
remains far above the desired number. This is the situation that is most frequently
observed in the experiments, because the overall population size is usually much larger
than the number of optima and c;,; is very small (equation (3.2)).

The performance of DNC also improves rapidly with population size. This result
matches the claim that Sharing GAs generally demand a sufficiently large population to
work properly [45], [47]. However, quickly increasing the population size raises the
computational cost dramatically, as can be seen from Table 4-7, Table 4-12, Table 4-17

and Table 4-22.
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In summary:
o DNC is unable to preserve species for the following reasons:
- The elitism scheme is unable to preserve small clusters;
- The sharing method does not guarantee preservation of promising clusters;
- The clustering method is unable to form stable clusters around potential
optima;
¢ DNC does not fully explore all promising areas due to its sharing and global
evolution mechanisms;
o The performance of DNC is dependent on its initiél radius o©;,;,. It works
properly if and only if it starts from an appropriate Gy,
o The performance of DNC also depends on the population size. Its performance
is improved with increasing population size, which in turn increases

computational cost.

4.2.6.2 MNGA

MNGA uses a Hill-Valley function for clustering. This method is generally better than
distance-based methods since it is more tolerable to uneven landscapes. Nevertheless, the
symptoms demonstrated in Fig. 3-4 and discussed in Section 3.1.2 above are frequently
observed. This results in unstable clusters with individuals from different species.
Consequently, the previously found optimum may be replaced by fitter individuals from
different species, and may appear again in other clusters later. Therefore, the number éf
optima present in a population may fluctﬁate si gni_ﬁcantly.

Performance is expected to worsen if the government size increases, because the

center, which is the average of government members, is more likely to misrepresent its
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cluster when more individuals are involved.

MNGA works better on uneven landscapes (functions D; and D;) than even
landscapes (functions D; and D). This is because the Hill-Valley function with the
symmetric sampling vector [0.25, 0.5, 0.75] generates a desired number of clusters on
uneven landscapes, but misses clusters on even landscapes. The situation may be
improved if an asymmetric or randomly generated sampling vector is used.

Although MNGA outperforms DNC and CLEARING for functions D; and Dj, it
is still inferior to BMPGA and MPGA. A possible reason is that MNGA runs an overall
population of fixed size, within which the size and number of clusters are flexible. This
does not guarantee an even distribution of individuals among species. As a result, small
species may not be fully evolved and could not reach the goal at the end of a run.
Conversely, BMPGA and MPGA have a varied number of subpopulations, the sizes of
which are constant. As a result, all subpopulations (species) are assigned equal resources
and are evolved in the same manner.

MNGA is characterized below:

e MNGA is unable to preserve species because of its clustering method, which
produces unstable clusters;

o The sampling vector plays an important role in MNGA. A sampling vector that
works appropriately on a certain type of landscape may not suit other types of
landscapes. Hence different types of landscapes may require different sampling
vectors;

e MNGA runs a population of fixed size, which may affect its performance

negatively even when it is able to form the desired number of stable clusters.
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4.2.6.3 CLEARING

CLEARING only preserves winners of clusters with fitness values greater than the
average fitness of the population. Promising individuals with relatively low fitness values
are unfortunately discarded.

Mating is carried out between individuals from different clusters. The offspring
may belong to a cluster other than their parents’. With such elitism and mating schemes,
frequent loss of species is expected.

The performance of CLEARING is dependent on its global threshold o4; and the
landscape of the function to be optimized. For functions D; and D,, o4;is greater than
Omin (the minimum distance between adjacent peaks). Different species will be put into
the same cluster if the distance between them is less than o4, Weaker species are then
cleared out. The number of species explored is less than the actual number of optima.
Hence, CLEARING fails to find all optima when it is applied to D; and D,.

For functions D; and D,, however, 64 1S less than 6,,;,. The likelihood of different
species clustering together is small. However, if o4 is too small, a large optimum region
will be occupied by more than one cluster. Resources assigned to other optimum regions
are hence limited. This is the case with function Dj;. Although CLEARING performs
better on Dj; than on functions D; and D; (in terms of success rates and average number
of optima found), its success rates on D3 still fall below 50%.

CLEARING works best for function Dy. The optima of Dy are evenly distributed.
The volumes of the peaks are equal and are not as large as those of function D;. Hence,
each species can be safely isolated within its own cluster.

In CLEARING, clustering only computes distances between given points without
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any fitness evaluations. That means that in CLEARING, all fitness evaluations contribute
to evolution. However, in other algorithms, a large proportion of fitness evaluations are
performed during clustering. Since the total number of fitness evaluations for all
algorithms is the same, the species in CLEARING are more likely to be fully evolved.
Hence, in function Dy, the performance of CLEARING exceeds that of all other
algorithms when they are compared against fitness evaluations.
The characteristics of CLEARING are summarized below:
o CLEARING is unable to preserve species because:
- It fails to preserve the elites of species with relatively low fitness values;
- Its global mating strategy does not guarantee the propagation of existing
species;
o The performance of CLEARING is dependent on its global threshold 64 - a 64
less than or equal to 6,,;, is generally required,;
o Even with 6,45<6,,,,, CLEARING does not necessarily work well on irregular
landscapes. It works best on landscapes with evenly distributed optima of the

same volume.

4.2.6.4 BMPGA and MPGA

BMPGA and MPGA implement full local elitism in the sense that at least one of the
fittest individuals is maintained in each subpopulation, regardless of the size of the
subpopulation. Once a species is found, it is never subject to extinction.

With Recursive Middling, BMPGA and MPGA always form the required number
of subpopulations. The possibility of a single subpopulation containing more than one

species is very small. The center of a subpopulation is its up-do-date fittest individual and
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is not influenced by other individuals as in DNC and MNGA. Hence, subpopulations in
BMPGA and MPGA are stable. They are able to maintain stable species and preserve all
found optima.

Initially, BMPGA and MPGA always find a smaller number of optima than other
algorithms. This is because they start with a single subpopulation of size N;, whereas
DNC, MNGA and CLEARING start with a population of size NP (P is the number of
optima). The initial differences are greater when N; increases.

The performance of BMPGA may be affected by N;. For example, for functions
D; and Dy, the results at N; = 5 are inferior to the results at N; 2 10. That is because the
subpopulations are too small to sufficiently explore promising areas.

For function Dy, on the other hand, the best results are obtained at N; = 10.
Performance worsens and equilibrium point delays at larger N, values. The average
number of fitness evaluations at each generation increases rapidly with N; because
Recursive Middling involves recursive evaluation. Given that the maximum number of
fitness evaluations is fixed, the number of generations for evolution drops with increasing
Ns. Hence at large N; values, the population is not evolved as thoroughly as with small N;
values. This phenomenon manifests itself when P is large, as in function Dy.

Nevertheless, BMPGA successfully finds all optima for all functions at N; = 10.
This fact indicates that there may exist an appropriate value of N; that can be applied to
multimodal landscapes of variable dimensionality and number of optima.

The influence of N; on MPGA is greater than its influence on BMPGA. At N; = 5,
MPGA shows inferior performance and its execution time is many times greater than that

of BMPGA. The performance gap between MPGA and BMPGA narrows down as the
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value of N; increases. This is because MPGA generates less diversity than BMPGA. At
low N; values, the subpopulations of MPGA are prone to stagnation about sub-optima. At
large N; values, however, those subpopulations may contain sufficient diversity. The
larger N; the more diversity the subpopulations of MPGA have. Therefore, the
performance of MPGA becomes closer to that of BMPGA when N, increases.
Characteristics of BMPGA and MPGA are:
« Both are able to preserve species because:
- Their clustering approach forms the desired number of stable
subpopulations;
- Their elitism strategy preserves species regardless of their sizes;
o The performance of BMPGA and MPGA may be affected by population size;
» BMPGA is generally a better performer and is less dependent on population

size than MPGA.

4.2.6.5 Comparison

In most optimization problems, the approximate location and the value of optima are
unknown. Hence optima are rarely extracted during a run, but rather at the end of the run.
No matter how many optima are found historically, only optima existing at the point of
termination are counted. Therefore, in this dissertation, we mainly observe and compare
the real time results of various algorithms. We believe that these results demonstrate an
algorithm’s capability to both find and preserve species.

Although DNC, MNGA and CLEARING can more or less promote some
diversity within a population, they are unable to preserve it. Even if some of the species

happen to find the optima, they are still subject to the risk of extinction. For DNC,
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MNGA and CLEARING, there is usually a large discrepancy between the “real-time”
results and the “historically accumulated” results. Most of the real-time results are not
satisfactory.

DNC finds less than 77% optima for all the tested functions. CLEARING
performs as badly as DNC on functions D; and D,. For function D3, it finds up to 94% of
the optima, but its success rate still falls below 44%. MNGA completely fails on function
D, and D,. It does however achieve reasonable success rates for functions D; (up to 20%)
and D; (up to 87%).

In contrast to DNC, MNGA and CLEARING, BMPGA and MPGA are able to
find and preserve species well. BMPGA successfully finds all optima for functions D;
and D;. For function D3, its success rates range from 57% at N; = 5 to 100% at N; = 20.
For all the tested functions, BMPGA finds at least 94% of the optima.

MPGA has lower success rates and average number of optima found than
BMPGA at N; = 5. It successfully finds all the optima at all other N; values when applied
to functions D; and D;. For function D3, its success rates range from 0 to 97%. For all the
functions, it finds a minimum of 0 and a maximum of 99% of the optima.

Obviously, both BMPGA and MPGA outperform DNC, MNGA and CLEARING
in terms of success rates and average number of optima found for functions D; to D;.
From Fig. 4-8 - Fig. 4-10 as well as Table 4-3 -Table 4-17, we can also see that the
results of ‘BMPGA and MPGA are more consistent than those of DNC, CLEARING and
MNGA.

The results for function Dy are slightly different. CLEARING achieves the best

results with 100% success rates for all N; values. BMPGA is worse than CLEARING
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since its success rate is 100% only at N; = 5. MPGA is worse than BMPGA with lower
success rates (6.7%) and a smaller number of optima found (122). Nevertheless, BMPGA
and MPGA are still superior to DNC and MNGA, whose success rates are all 0.

DNC, MNGA and CLEARING only work appropriately under certain conditions
or on specific landscapes. For example, MNGA suits irregular landscapes. On these
landscapes (e.g. D;, D3;), MNGA achieves acceptable results (>83% peaks found) and
outperforms both DNC and CLEARING. DNC demands an appropriate initial radius and
a sufficiently large population size. This is exactly the case with function D,, on which
DNC returns its best performance (up to 96% peaks found). CLEARING works best with
an appropriate global threshold 64, and on landscapes with an even distribution of
optima, such as function D,.

BMPGA and MPGA are more robust than DNC, MNGA and CLEARING
because they have satisfactory results (>99% peaks found with BMPGA, >97% peaks
found with MPGA) for all the functions, provided the size of the subpopulations is large
enough (Ne210). In fact, with an appropriate N vélue (Ns = 10), BMPGA successfully
finds all the optima of all the functions tcstecl. Wider applicability is a clear advantage
that BMPGA and MPGA have over DNC, MNGA and CLEARING.

A potential concern with BMPGA and MPGA is their computational cost, since
Recursive Middling involves recursion. However, as can be seen from Table 4-7, Table
4-12, Talble 4-17 and Table 4-22, the actual cost is much less than expected. The running
time of DNC and CLEARING is orders of magni.tude larger than that of BMPGA and
MPGA. That is because clustering in DNC and in CLEARING does not consume any

fitness evaluations, whereas clustering in BMPGA and MPGA is responsible for a large
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proportion of fitness evaluations. Since all the algorithms have the same overall
population size and the same parameter values, we can assume that all the algorithms use
approximately the same number of fitness evaluations for evolution. At each generation,
the average number of fitness evaluations of BMPGA and MPGA far exceeds that of
DNC and CLEARING. Hence given the same number of maximum fitness evaluations,
BMPGA and MPGA are expected to run much fewer generations than DNC and
CLEARING. Although clustering in DNC and CLEARING does not involve fitness
evaluations, it still has other non-negligible costs. For example, in DNC, the cost of
sorting and manipulating a large list of niche pairs is O(N,?%), where N,, is the number of
the niches; which is much larger than P, the actual number of optima. This cost, which
may even exceed that of evolution, grows greatly when the population size increases.

Similarly, MNGA is generally slower than MPGA (except for N, = 5) because its
HV function requires less fitness evaluations than RM in MPGA and its generations are
more than that of MPGA (but less than that of DNC and CLEARING). The average
running time of MNGA increases with population size.

For each function, the execution time of BMPGA and MPGA is the longest at N;
= 5. It then drops to a fraction at N; = 10. From then on, the running time either remains
approximately constant or decreases slowly when N, increases. BMPGA is generally
slower than MPGA because BMPGA evaluates more fitness values.

Based on the facts presented above, we concludé that the computational cost of a
GA should not be always attributed solely to fitness evaluation since many operations,
such as crossover, mutation and clustering, do not necessarily evaluate fitness but still

require computation. These costs, in some circumstances, should also be taken into
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account.

Hence, when the cost of fitness evaluation is not very high, the overall cost of a
GA involving a large amount of fitness evaluations may not be higher than the costs of a
GA with other costly operations. That is exactly the case of BMPGA and MPGA versus
DNC and CLEARING. The overhead induced by RM is thus practically acceptable.

It is also noted that DNC, CLEARING and MNGA run more generations than
BMPGA and MPGA, but end up with worse results, most of the time. If all of these
algorithms are run with the same number of generations, the performance gap between
DNC, CLEARING as well as MNGA and BMPGA as well as MPGA is expected to be

greater.

4.3 Algorithm Discussion

4.3.1 Fitness: Bi-objective versus Single Objective

The bi-objective scheme is a novel aspect of BMPGA in that all other multimodal GAs
adopt one fitness term.

In the optimization of multimodal functions, the second objective is
complem‘entary to the original objective. It is similar to add small perturbation to the
problem so that more diversity of the population is expected. Accordingly, we design a
Multi-population GA (MPGA). It is identical to BMPGA except that it only uses one
fitness term (the original objective) as its ﬁtn‘ess function.

From the expeﬂﬁents in this chapter, it can be seen that BMPAG outperforms
MPGA in overall success rates and average number of optima found. It is also less
dependent on varying population size than MPGA. This fact empirically demonstrates the

success of the bi-objective scheme.
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Although so far in the literature, it is not usual to see the usage of multi-objective
GAs for multi-modal optimization problems, a few researchers have shed light on this
interesting subject. Watanabe and Sakakibara [70] proposed to transform a single
objective optimization problem into a multi-objective one by adding noise as another
objective. Their experiments demonstrate that this approach effectively increases the
paths to the global optimum and the diversity of the population. As a result, it achieved
better solutions than the original single objective problem when the function to be
optimized is multimodal and separable. This is a good proof of the effectiveness of the bi-

objective scheme.

4.3.2 Evolution: Local versus Global

As a typical population based GA, BMPGA implements all these operations locally
within each subpopulation. Nevertheless, most evolutionary operations in a typical
genetic operator bésed GA are performed within the entire population. Local evolution of
separate subpopulations and global evolution of the whole population is the core
difference between a population based GA and a genetic operator based GA.

Basic elements of an evolutionary process include selection, recombination
(mating restriction), and mutation. In the litérature, some genetic operator based GAs
have adopted local selection and have demonstrated advantages. For example, DNC [2]
used partial local elitism to preserve diversity of the population. Top 10% individuals in a
niche that is greater than 5% of the overall population size are retained in the next
generation. CLEARING [45] also adopted partial local elitism by preserving species
winners with fitness greater than the average fitness Qf the overall population.

However, as already discussed in this chapter, these elitism schemes cannot fully
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preserve species. They are subject to unnecessary loss of species such as loss of small
niches in DNC or species whose winners bear low fitness values in CLEARING.
Therefore, we believe that a strong local elitism method, as used in BMPGA, is required.
That is, the best individual of any subpopulation, despite its size, is passed unaltered to
the next generation. This is of great significance to the preservation of species in a
multimodal space.

Besides partial local selection, mating restriction is used in some genetic operator
based GAs [48], [59], [61]. Zhang et al. [59] selected the first parent using binary
tournament selection in the whole population. If this parent is a niche member, another
parent is the corresponding niche seed in the same niche. Otherwise another parent is
selected using the binary tournament selection again in the whole population.

Song and Yu [61] adopt both inner-species and inter-species crossover in their
Sharing based approach. But the rate of the inter-species crossover is much lower than
the rate of the inner-species crossover in order to prevent the destructive effects of the
former to the niches already formed.

Although the genetic operator based GAs above use some local operations, they
are, in essence, still global methods that focus on evolving the whole population. Our
experiments have shown that these GAs are generally inferior to population based GAs.
That is because in the former, individuals are spread around the top of peaks, rather than
clustered tightly at the apex. On the contrary, subpopulations in the latter are relatively
independent and evolved separately. The selection pressure within each subpépulation is
focused locally about the peaks.

That does not mean local evolution is perfect. For example, it is generally
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believed that disallowing recombination between individuals from different species may
avoid destroying potentially good building blocks [48]. However, exchange of genetic
information between individuals from different species can help to promote the diversity
of the population, especially when stable species have been formed and inner-species
mating can only generate offspring within the same species. Hence, some population

based GAs [11, 12, 64] use cross-species mating in their framework.

4.3.3 Sizing: Fixed versus Variable Sized Population

Some methodologies [1, 2, 21, 28, 63] manipulate an overall population of fixed size.
The population contains a variable number of clusters, the size of which is also variable.
In contrast, BMPGA and another school of approaches [11, 12, 23, 25, 29] fix the size of
each cluster. The number of clusters and the size of the overall population are dynamic.

For those algorithms that adopt a fixed sized population, their performance is
tightly tied to the population size [42, 44], which hence ‘becomes an important parameter
to be carefully tuned. However, without a priori knowledge of the landscape, it is hard to
estimate an appropriate size of the population.

If the population size is too small, it may result in insufficient coverage and
exploration of the landscape. Therefore, a large population is generally required in order
to maintain the diversity. Nevertheless, a sufficiently large population does not guarantee
an even distribution of individuals around potential optima since resources
(chromosomes) are usually randomly allocated among species. A possible consequence is |
imbalanced exploration of the search space. Crowded areas are exploited until maturity,
whereas areas with sparse neighborhood are not fully explored due to limited resources.

Moreover, if the population is too large, it may also incur a lot of extra cost.
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If, instead, the size of each cluster is fixed, each optimum is assigned the same
amount of resources (chromosomes). The size of the entire population is dependent on
the landscape. Each promising area is guaranteed to be explored with the same amount of
resources. This scheme potentially eliminates the need to tune the overall population size.

The experiments empirically prove the advantages of fixed sized subpopulations
over fixed sized population. BMPGA, MPGA and MNGA are all population based GAs.
BMPGA and MPGA run a number of fixed sized subpopulations, whereas MNGA runs
an overall population of fixed size. In BMPGA and MPGA, the overall population size
starts from N, and gradually reaches the equilibrium of N, -k, where N, is the preset
size of each subpopulation, and £ is the number of optima. In MNGA, on the other hand,
the overall population size is N, -k from the beginning. It can be seen that MNGA is
generally worse than BMPGA and MPGA for all tested multimodal functions. This is the
case even when MNGA is able to form the desired number of stable clusters. That is
because, as discussed above, the sizing scheme of MNGA does not guarantee an even

distribution of individuals among species. As a result, small species may not be fully

evolved and could not reach their optimum at the end of a run.

4.3.4 To Share or Not to Share
Sharing GA [20] is one of the most popular multimodal GAs up-do-date. Since its
invention, to share or not to share remains a question of debate.

Standard Sharing suffers from a high complexity of O(N?), inc;urred by the

computation of the sharing function. Furthermore, in order to estimate the global radius,

standard Sharing requires a given number of expected optima, which is usually
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unavailable.

As discussed in Section 1.1.1.1.9, in the literature, there have been large quantities
of studies improving the drawbacks of the standard Sharing [2, 24, 28, 30, 50, 59]. Some
of them effectively reduce the computational cost [2, 24, 28, 30, 59]. Others adopt
various clustering approaches to eliminate the need of a priori information about the
number of optima [2, 28, 50].

Nevertheless, the core of all Sharing based GAs — the fitness sharing mechanism
itself is problematic. As seen from equation (2.7) in Section 1.1.1.1.9, the fitness of an
individual is shared with its neighbors in the same niche. It is assumed that weak
individuals will have a sparsely populated neighborhood, whereas highly fit individuals
will be seen within dense areas. Consequently, the fitness of the latter will be degraded to
approximately the same level as the fitness of the former. However, this assumption is
not always true (example can be seen in Fig. 5-6 and Section 5.1.2). Even if it does hold,
a weak individual may or may not be sufficiently enhanced for survival, since the shared
fitness of this individual is proportionate to its raw fitness. Less fit but promising
individuals in unvisited areas are at high risk of extinction, resulting in a general loss of
diversity. On the other hand, since fitness sharing arbitrarily alters the fitness landscape,
loss of potential optima or introduction of phantom optima may be caused.

Most Sharing GAs carry out global evolution. And selection pressure is applied
globally. Although some more recent versions of Sharing GAs adopt local evolutionary
operators, such as local elitism [2, 28] and restricted mating [48, 59, 61], most
evolutionary operators act globally. As discussed in Section 4.3.2, global evolution of the

entire population is inferior to local evolution of each promising area.
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Another problem of the Sharing GA is its population sizing. All Sharing GAs use
a population of fixed size. The number and the size of the niches within the population
are variable. As already discussed in Section 4.3.3, this scheme is inappropriate for
search in multimodal space. Researchers have found that the Sharing GA generally needs
a large population to work [42, 45, 56, 71].

In this chapter, a sharing based GA — Dynamic Niche Clustering [2, 28] is
compared to our BMPGA. With the same number of fitness evaluations, BMPGA
outperforms DNC considerably on all benchmark functions tested in terms of a
comprehensive coverage of optima in multi-modal landscapes as well as speed of
operation.

In summary, the sharing mechanism, the global evolution and the population
sizing constitute pitfalls of the Sharing GAs. We believe that, unless specific conditions
are satisfied, the Sharing GA is unsuitable for multimodal optimization problems due to

its inherent limitations.

4.4 Conclusions
This chapter applies BMPGA to the application of multimodal function optimization. As
its name suggests, BMPGA uses a bi-objective scheme - the subpopulations are evolved
toward two objectives. Individuals that are weak in one of the fitness terms but promising
in the other are given a chance at survival. The overall diversity of the population is
hence effectively enhanced.

BMPGA adopts a new clustering method, called Recursive Middling. This
method helps BMPGA form the desired number of clusters (subpopulations) around

potential optima and maintain stable species throughout the optimization process.
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BMPGA carries out local evolution of subpopulations. Each subpopulation is
evolved independently toward its optimum. The selection pressure is focused within the
subpopulations rather than dispersed in the whole population. Full local elitism of
BMPGA prevents extinction of small subpopulations.

In BMPGA, the size of each subpopulation is fixed. Hence each promising area is
explored using the same amount of computational resources.

BMPGA is compared to other multimodal GAs with distinguished features that
make them as interesting competitors: MNGA [1], DNC [2], CLEARING [3] and
MPGA. DNC and CLEARING are genetic operator based GAs. MNGA is a population
based GA. MPGA is a variant of BMPGA, which uses one fitness objective as opposed to -
BMPGA’s two.

These algorithms were tested on four benchmark multimodal functions of
different dimensionality and landscapes. For each function, each algorithm was run 30
times. The results were then averaged to produce the final results.

With an acceptable computational overhead (induced by Recursive Middling),

BMPGA and MPGA outperform DNC, MNGA and CLEARING in relation to:

e Effectiveness: BMPGA and MPGA not only find but also preserve species
consistently. DNC, MNGA and CLEARING are unable to fully preserve
species. BMPGA and MPGA achieve higher success rates and find more optima
than DNC, MNGA and CLEARING.

e Generality and dependence on parameters: DNC, MNGA and CLEARING can

only function effectively under specific parameter conditions and/or on certain

148



landscapes. BMPGA and MPGA are much less dependent on particular
parameter settings and are able to work on different types of landscapes.
e Consistency: The results of BMPGA and MPGA are more consistent than those
of DNC, MNGA and CLEARING.
The computational costs of BMPGA and MPGA are not necessarily higher than
those of DNC, MNGA and CLEARING.
BMPGA further outperforms MPGA in overall success rates and average number
of optima found. BMPGA is considerably less sensitive to population size than MPGA.
As such, we conclude that BMGA is arguably a better choice for those who aim to
use GAs for multi-modal function optimization than DNC, MNGA, CLEARING and
MPGA.
Finally, it is worth noting that we have successfully applied BMPGA to the
detection of elliptical curves [6] and the segmentation of microscopic cells [56], which

will be introduced in detail in Chapter 5 and Chapter 6, respectively.
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Chapter 5 Application I: Multiple
Ellipses Detection

A shape is a set of geometrically distributed visual points, together with their mutual
special relationship. The shape is one of the most important visual features in machine
vision. It denotes one of the essential and intrinsic characteristics of an imagery object
and remains perceptually similar and recognizable under affine transform such as
translation, rotation, and scaling. A user survey [72] on cognitive aspects of image
retrieval shows that people tend to show more interest in shape than color and texture in

the retrieval process.

It is true that human brain tends to process local simple features before global
complex features during its visual information retrieval. It is suggested that shape should
be described by a combination of local primitives, which can be computed relatively
efficiently and would not affect the overall shape even if some of them are changed
slightly [73]. It is hence intriguing to decompose an object into elementary shape
primitives and group them appropriately as higher level features that represent the object.

The decomposition process entails efficient and robust extraction of basic shape
primitives, including circles, ellipses, polygons, and straight lines. Extraction of these
primitives is an important image analysis technique with significant applicability in many
industrial applications, eépecia]ly those with manufactured objects or artificial
environments. Typical applications include motion tracking/recognition in video, roads

extraction from satellite images, engineering drawings analysis, robotics vision, and
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medical imaging.

An ellipse is the projection of a circle on a plane and is found frequently in real
world objects. It plays an important role in recognition of any objects with elliptical
curves as salient features, such as microscopic cells, optical characters, human faces, and
transportation signs.

An ellipse has five parameters — the center, the major/minor axes, and the
orientation. If the length of the major axis is equal to the length of the minor axis, the
ellipse becomes a circle. Hence the ellipse is a super set of the circle. Detection of any
elliptical features naturally involves detection of circular features as well. Since the
ellipse lies in a 5D search space, it is generally more complex than straight lines, the
dimensionality of which is only 2.

In this study, we aim to detect multiple elliptical curves within noisy images. It
can be easily extended to other lower order primitives. BMPGA are applied to this
application since it is a typical multi-modal optimization problem - all primitives beyond

acceptable levels of goodness are of interest.

5.1 Previous Work

In the literature, there have been a large amount of studies on detecting geometric
primitives. Among various techniques, Hough Transform and its variations are most
popularly used. A more recent technique utilizes the Genetic Algorithm and has yielded

promising results. In this section, these techniques are investigated. Some approaches that

are not popular but provide novel angles of view are also briefly introduced.

5.1.1 Hough Transform (HT)
The Hough Transform (HT) is one of the most widely used techniques for the detection

151



of various geometric shapes [74]. The basic idea of a standard Hough Transform is to
represent a geometric shape by a set of appropriate parameters. For example, a circle
could be represented by the coordinates of its centre and radius, hence three parameters.
An ellipse, on the other hand, could be represented by its centre, long axis, short axis, and
rotation angle, hence five parameters. Each foreground pixel is mapped into the space
formed by the parameters, which are quantized into a number of bins. These bins are then
accumulated. Peaks in the bins provide the best indication of where shapes may be.

In an HT, the intervals of the bins directly affect the accuracy of the results and
the computational effort, since the parameters are quantized into discrete bins. For fine
quantization of the space, the algorithm returns more accurate results, while suffering
from large memory loads and expensive computation - especially in high dimensional
spaces. Hence, the HT is most commonly used in two-dimensional or three-dimensional
feature spacés and is unsuitable for higher dimensional spaces.

One of the fastest and most widely used variant of the Hough transform is the
Randomized Hough Transform (RHT) proposed by Xu et al. [4]. The idea is to randomly
pick n pixels from the image (n is the dimensionality of the geometric shape to be
extracted), and then solve n parallel equations to get a set of parameters, with which, if a
potential object is present, a score is assigned to the bin corresponding to the candidate
shape. Hence in RHT, a bin represents a candidate shape, rather than a set of quantized
parameters in HT. However, like HT, RHT also goes through an accumulation process
for the bins. The bin With the highest score represents the best approximation of an actual
shape in the target image.

McLaughlin’s work [75] shows that RHT produces improvements in accuracy and
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computational complexity, as well as a reduction in the number of false positives (non-
existent ellipses), when compared with the original HT and a number of its improved
variants.

Many HT based methods have been developed. They improve on the efficiency of
the HT by exploiting geometric characteristics of the ellipses, such as edge gradient [76-
79] and symmetry [74, 80, 81], by using intelligent means of dimensionality reduction
[76, 77, 80, 82-84], or by image preprocessing to restrict the search space [78].

In [76] and [77], pairs of points on the ellipse are used to form lines that intersect
at the center of the ellipse. As illustrated in Fig. 5-1, P; and P, are two points on an ideal
ellipse, T, is the intersection of two tangent lines from P; and P, and M, is the middle
point of the segment line P;P;. It has been proved that for an ideal ellipse, M;; and T, are
on the line that crosses the center O [85]. Therefore, given another pair of points P; and
P4, the center of the ellipse can be located by intersecting lines M;;T1, and M34Tss.
Pairing points with unparallel gradients obtains a two dimensional accumulator of
intersections. Local maxima of this accumulator indicate promising candidates of the

centers of the ellipses.

Fig. 5-1 Location of ellipse center by edge gradient
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After the identification of ellipse centers, Guil ef al. [76] and Zhang et al. [77]
find the semi-axis ratio r (long axis/short axis) and the orientation of the ellipse 8 through

a polling process that employs another two-dimensional accumulator.

»_ (g~ tan(©))(g, — tan(6)
(1+ g, tan(6))(1 + g, tan(0))

(5.1)

where g, and g are slopes for lines PP, and T;,M);, respectively.

The parameters of the major and minor axes of the ellipse are finally computed,
using the set of four parémeters found previously.

Cheng and Liu [78] and Troter et al. [79] take three points from the image and
adopt the same principle in Fig. 5-1 to locate the center of the ellipse. They further
compute the other three parameters of the ellipse using the coordinate of the three points
and the center obtained. The candidate ellipses are then placed in an accumulator, like
that used in the RHT, with each bin representing a candidate ellipse.

Chen and Liu [78] improve the efficiency of the RHT by restricting the search
scope and neglecting invalid points (hence called Restricted RHT), including the
operations of image preprocessing, image thinning and converting images to graphs to
locate independent curves in the image. Each group of three points is randomly selected
from an independent curve, rather than globally from the whole image.

The combination of gradient information and mulﬁstage processing reduces the
computational complexity. However, evaluation of the tangents of the edge contours is
generally very sensitive to noisé. It is only suited for images containing less than 10% of
speckle noise [86]. Moreover, the efficiency of these algorithms greatly relies on the
number of candidate points.

Another school of researchers make use of the symmetry of the ellipses. Ho and
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Chen [74] and Sewisy and Lebert [81] proposed two closely related algorithms to find
lines of symmetry via a Hough transform applied to straight lines. They first scanned an
ellipse from left to right and top to bottom. If each horizontal scan line intersects the
ellipse at XL; and XR;, the midpoint of XL; and XR; - XM; lies on the same straight line
L, (Fig. 5-2 (a)). Similarly, if the ellipse is scanned from top to bottom and left to right,
each vertical scan line intersects the ellipse at YT; and YB;. The midpoint of YT; and YB;
- YM,; lies on the same straight line Ly, (Fig. 5-2 (b)). Ho and Chen proved that L, and Ly,

intersect at the center of this ellipse, as illustrated in Fig. 5-2 (c).

() (b) (c)
Fig. 5-2 Ellipse symmetry in Ho & Chen’s algorithm
(a) The middle point XM; of XM; and XM, lies on the straight line L,;
(b) The middle point YM; of YT; and YB, lies on the straight line Ly;
(c) The cross point of L, and Ly, is the center of the ellipse.

Hence this algorithm contains two phases. In phase 1, the image is scanned
horizontally and vertically. A Hough Transform is applie to all midpoints XM; and YM;
to extract candidates of L, and L. Intersections of L, and L then generate poSsible _
ellipse centers. For each ellipse center, all pairs of points relative tb L, or L are grouped
into the same subimage. In phase 2, an RHT is adoped in each subimage. Possible groups
of points on the ellipse are used to compute the remaining three parameters - the major

and the minor axes as well as the orientation of the ellipse. These parameters sets are then
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put into a three-dimensional accumulator, the peak of which is the candidate ellipse.

Lei and Wong [80] also proposed to detect symmetric axes of ellipses from
contours. As illustrated in Fig. 5-3, as long as pairs of points P; and P, are symmetric
about a symmetric axis (either major axis or minor axis) of the ellipse, their central line
CL will coincide with this axis (T, in Fig. 5-3). Obviously, all central lines of such pairs

of points have the same value of (s, 9).

B Coa T4

S
2

Fig. 5-3 Symmetric axes of an ellipse

This algorithm transforms a high-dimensional problem into two two-dimensional
ones. The authors first used a Hough-based approach to obtain candidates of (s, 0). As
such, all centers and orientations of ellipses can be found. After that, they used another
Hough transform to find out the lengths of the major and minor axes.

Following the use of the geometric properties, some researchers also decompose
the problem into multiple stages so that the dimensionality is effectively reduced. For
example, in [76], [77] and [80], the authors used two two-dimensional accumulators in
two polling processes.

In [82], Xie and Ji only used a one-dimensional accumulator to identify the most
likely length of the minor axis, based on the ellipse geometry in Fig. 5-4. Given two

endpoints (x;, y;) and (x,, y;) on the major axis of the ellipse, the center (xy, yy), the half-
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length of the major axis a and the orientation of the ellipse a can be computed:

_xtx

X, 5 (5.2)
y0=y1+y2 (53)

2
a= \/(xz —xl)z +(Y2"J’1)2 (5.4)

2
a= atan(u) (5.5)

X =%
Given another point (x, y) on the ellipse, it satisfies:

VE=£Y +0=£,) +JG=- £+~ £,) =2a (56)

where
S = X —coslaVa® - b (5.7)
fi, =y —sinjafVa® —b? (5.8)
fox =X, +cosjaVa® - b (5.9)
Sy, =y + Sinla[\/a2 -b’ (5.10)

where (f1., f1,) and (f2, f>,) are the coordinates of the foci of the ellipse f; and f>,
respectively.

The half-length of the minor axis b can be derived:

a’d*sin’ @
i 1D
where
2 2 2
cos? @ =2 +;;d f (5.12)
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and d and fare the distance between (x, y) and (xy, ¥) and the distance between (x,

y) and (x;, ), respectively. A one-dimensional accumulator collects votes for b.

(X, y)

d
(x1, Y[ / N\ (X2, Y2)

)
f,  (Xo,|Yo) f,

Fig. 5-4 Ellipse geometry: f; and f; are ellipses foci

[83] and [84] also used the same ellipse geometry and similar algorithms as

above.

9z q;

Fig. 5-5 Vector and tangent angle pair in generalized Hough Transform

Finally, HT can also be extended for arbitrary non-analytic curves, including
polygons [87]. The basic idea is to select a reference point p and a set of boundary points
g: on the template model. Pairs of vectors 7; between p and ¢; and tangent angles a; at g;
are recorded in a lookup table (Fig. 5-5), indexed by quantized a. A 2-D accumulator
array, which indicates possible x and y coordinates of p is created. For each edge point in

the scene, its tangent angle is computed and corresponding entry for its vector is found in
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the lookup table. The coordinates of p can thus be calculated and the corresponding bin in
the accumulator array is increased by 1. Finally, the highest score indicates the position
of the reference point. For rotated and scaled curves, a 4-D accumulator can be used, with

quantized tangent angle a, rotation angle §, and scale factor p.

5.1.2 Genetic Algorithms (GA)

As early as 1992, Roth er al. [88] proposed a way of extracting geometric shapes using
GAs. Since then, a number of GA-based techniques have been developed for the purpose
of detecting specific geometric shapes such as straight lines [89], ellipses [5, 86, 90, 91],
and polygons [5, 90].

Some GA-based methods extract shapes sequentially, as in [88, 89, 91]. This
method removes detected shapes from the image, one at a time, and iterates until there
are no more shapes in the image. It is clear that this approach involves a high degree of
redundancy and is computationally inefficient.

Lutton and Martinez [5] used a Sharing GA, first introduced by Goldberg et al.
[20], to detect geometric primitives. The fitness of an individual i is given by:

oldFitness(i)

newFitness(i) = (5.13)

i

where

N
p, =Y (oldFitness (k)*sh(d, ) (5.14)

k=1

newFitness reflects the relative fitness of i with respect to its own subpopulation.
N is the number of individuals in the subpopulation and sh(dy) is a sharing function
defined in the same manner as that in standard Sharing [20]. They claimed that this

scheme allows to “inhabit” more peaks than the classical Sharing techniques, which is a
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beneficial factor for a typical multi-modal problem.

Unfortunately, the implementation of the fitness sharing is based on an
assumption that the neighborhood of local optima is less crowded than the neighborhood
of the global optimum and therefore, the fitness of local optima will be enhanced by
sharing. This assumption is not valid in the application of geometric primitive detection,
because imperfect primitives may actually attract many neighbors with a high probability,
as long as they contain a sufficiently large number of pixels. This will deflect the search

from exploring potentially promising areas, and will, often, result in missed detection.

(@ (b)

Fig. 5-6 Global and local optima
(a) A large imperfect ellipse (left) and a much smaller perfect ellipse (right)

(b) Locally-optimum candidate ellipse overlaid on top of left ellipse

Fig. 5-6 provides a concrete example. Fig. 5-6 (a) shows an imperfect ellipse and
a perfect ellipse. The former, as a local optimum, is physically much larger than the latter,
the global optimum. In the GA process, the local optimum, marked in grey in Fig. 5-6 (b),
is at the centre of the densest subpopulation, because it attracts more samples around it.
Hence, if the sharing function is applied, the fitness of the sub-optimal individual will be

shared with the rest of its dense subpopulation, and on the other hand, the fitness of the
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optimal individual will be shared with the rest of its less dense subpopulation. The result
is in contrast to what is desired in the sharing scheme - the relative fitness of the global
optimum will be more pronounced, but the relative fitness of the sub-optimum will be
weakened. Indeed, our own experiments show that, when multiple primitives or/and high
speckle noise are present in a target image, the Sharing GA fails miserably (Section
5.3.5).

Smith et al. [16] further stated that the computation of the distance of an
individual to any/all other individuals in a population has a time complexity of O(N?),

where N is the size of the population. And since setting of o

Jare 15 dependent on a
uniform distribution of peaks in the search space, peaks that are distributed with less
uniformity may be overlooked.

Jiang et al. [92] proposed a parallel GA for cell image segmentation. Since most
of the cells in the human body have ellipse-like boundaries, the algorithm essentially
extracts ellipses. A multi-population GA is used. The number of the subpopulations and
the size of each subpopulation are both preset. Each subpopulation is evolved
independently. Migration occurs in a random number of subpopulations, which send their
best individuals to the neighboring subpopulations and replace the worst individuals
there.

Ayala-Ramirez et al. [93] used a GA to detect circles. The chromosome is
constituted by three edge points on the candidate circle. For each individual c, the fitness

function F(c) counts the number of ideal edge points that are actually present in the edge

image:
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ZE(xi’yi)

R

where (x;, y;) is obtained by uniform sampling of the circle boundary:

x,.=x0+r-cosg]$ (5.16)

s

y, =x0+r-sing]\—7’r—l (5.17)

s

N; is the number of samples on the circumference of the circle and r is the radius of the
circle. » can be computed from the three edge points in the chromosome.

The authors claimed that their approach detects circles with sub-pixel accuracy.

5.1.3 Tabu Search

Ke et al. [94] proposed to use a Tabu search technique. Tabu search uses a tabu list
(short-term memory) that- keeps track of recent solutions to prevent the search from
becoming trapped in a local minimum. At each iteration, a number of new solutions
around the current solution are generated. Among them, the best solution that is not tabu,
or that is tabu but sétisﬁes certain so-called aspiration conditions is set as the current

solution. The search stops when a certain termination criterion is satisfied.

5.1.4 Upwrite Method

The Upwrite method [95] uses a spot algorithm to compute local models of pixels within
a small resolution radius r. If r is small enough, the data in the neighborhood can be
modeled with a straight line. The set of local models positioned along the same geometric
bﬁmitive are then grouped together. Finally, each geometric feature is characterized by

Zernike moments as: lines, circles, ellipses or others.
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5.1.5 Hybrid Approaches

In the literature, there also exist some hybrid approaches that consist of different
algorithms. It is interesting to find that these approaches usually adopt a GA and another

algorithm. Examples are given below.

5.1.5.1 GA + Local Search

Yin [96] adopts a hybrid scheme consisting of a GA phase and a local search phase.
During the GA phase, a number of candidates with fitness values above a certain
threshold are fed into the next phase. During the local search phase, the neighborhood of
the candidates is explored, based on the observation that the fitness values of the true
candidates can be improved by adjusting the parameter values locally, whereas the false

ones are rarely improved by looking to their neighbors.

5.1.52 GA+HT

Kasemir and Betzler [86] proposed to combine a modified version of HT with a GA to
detect ellipses of limited eccentricity. Assuming that the orientation of the ellipse is fixed,

there is:
_ 2
(x-xp) + P T20) 2 (5.18)
e

where (xg, yy) is the center of the ellipse, e is the ratio of the vertical and the horizontal

semi axes of the ellipse:
r
e="L r=r (5.19)
rX

The GA searches a two-dimensional space {xy, yp}. For each chromosome of the

GA (xg, o), the HT searches a two-dimensional space {r, ¢} and finds the best candidate
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with the highest votes. Hence for a population of size N, each iteration of the GA’s main

loop requires N runs of the HT. This algorithm has very high computational demands.

5.1.5.3 GA + Tabu Search

In [97] and [98], a GA and a Tabu Search are incorporated into the proposed method.
Specifically, the idea of “the survival of the strongest” in the GA is adopted. The
algorithm has two level selections. The first level starts with a guess of N feasible
candidates called parents, chosen randomly in the search space. Each parent can generate
a number of children, which form a family. The Tabu Search is then used to select the
child as parent for the next generation.

The second-level selection is the competition between the families, in which the
number of children (N7S) that could be generated in the next generation is proportional to
their fitness values:

N,-NTS,-F

NTS = (5.20)

where N, is the initial number of the families, N7, is the initial number of children
generated for each family, S is the sum of the fitness values of all families, and F is the

average fitness value of the family.

5.2 HT versus GA
Procter et al. [91] made an interesting comparison between GA and RHT. These two
techniques have the following features in common:

— Representation of geometric shapes using minimal sets of parameters;

— Random sampling of image data;

- Sequential extraction of multiple shapes.
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Their experiments clearly demonstrate that GA based techniques return superior
results to those produced by RHT methods when a high level of salt and pepper noise is
present in the image, but RHT methods are more attractive for relatively noise-fee images.

Indeed, for an elliptical curve of L pixels long in an image with a total of A pixels,
the probability of locating this curve from a single sample is:

n
—_ CL

P="L
C;

(5.21)

where n is the dimensionality of the geometric shape and Cj is the unordered selection

of y pixels from the pixel set X.

With the same probability P, for each sampling and the same number of samples
(say N), RHT gets N independent chances of detection when exploring the search space
sequentially. In contrast, a GA explores the search space in parallel (using a population
with size M), while guiding the search towards promising 'areas within N/M generations.
Moreover, unlike the RHT, which locates peaks in the fitness surface after an exhaustive
search of the space, a GA generates new improved individuals from existing ones, mainly
through crossover and mutation. The RHT executes a blind sequential search, whereas a
GA is able to search the space iteratively with feedback and in parallel. Hence, GA based
algorithms have inherent strengths which, if properly used, can make them a better
approach than any RHT based algorithm.

Of course, if there is only a small amount of noise in the image (L=4 and P=1),
RHT will converge quickly, since each sampling has a high probability of locating the

target shape. However, in cases where there is a lot of noise, multiple ellipses, or partial

ellipses with some noise, RHT tends to overlook small elliptical curves, since C}
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decreases dramatically with a small L, which leads to an extremely small P. In this case, a
GA based algorithm is likely to converge faster, and exhibit more tolerance to noise as
well as accuracy than the RHT. This conclusion matches the experimental results of
Procter et al. [91] and is further supported by our own experiments

In summary, the core of an HT-based technique is a polling process, which is
equivalent to a blind sequential search of the search space. On the other hand, the core of
a GA based technique is a parallel semi-directed search of the search space. This inherent
disparity between these two approaches is at the root of their widely differing

performances, as exhibited in our own experiments in Section 5.3.5.

5.3 Methodology
When using GA in the framework of pattern recognition, there are several issues that

must be addressed [7]:
« The reformulation of typical pattern recognition problems as optimization ones;
» The encoding of the solution into the genotype;

« The definition of the fitness function on the attainable performance: in many cases
of interest, it leads to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>