Preventing Collusion Attacks on the One-Way
Function Tree (OFT) Scheme

Xuxin Xu

A Thesis
in
The Department
of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Information Systems Security) at
Concordia University

Montreal, Quebec, Canada

October 2007
©Xuxin Xu, 2007

A

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40904-6
Our file Notre référence
ISBN: 978-0-494-40904-6

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canadg

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Preventing Collusion Attacks on the One-Way Function
Tree (OFT) Scheme

Xuxin Xu

The group key management problem is an important research area in multicast
communication security field. The one-way function tree (OFT) scheme proposed by
Balenson et al. is widely regarded as an efficient key management solution for multicast
communication in large dynamic groups. Following Horng’s claim that the original OFT
scheme was vulnerable to a collusion attack, Ku ef al. proposed a solution to prevent the
attack. The solution, however, requires to broadcast about W+ h (h is the height of the
key tree) keys for every eviction operation, whereas the original OFT scheme only
requires about 4 keys. This modified OFT scheme thus loses a key advantage that the
original OFT has over the logical key hierarchy (LKH) scheme, that is a halving in

broadcast size.

In this thesis, we revisit collusion attacks on the OFT scheme. We generalize the
examples of attacks given by Horng and Ku et al. to a generic collusion attack on OFT,
and derive necessary and sufficient conditions for such an attack to exist. We then show a
solution for preventing collusion attacks while minimizing the average broadcast size.
Our simulation results show that the proposed solution outperforms LKH in many cases
and it has an improved performance over Ku and Chen’s scheme. This performance gain

is due to the fact that our method requires additional key updates only when attacks

become possible.

We also extend our analysis for the case where only the root (group) key needs to be
protected. Using this relaxed security assumption, a more efficient key updating scheme
is proposed and analyzed. Our simulation results confirm that if only the group key

needs to be protected, the proposed OFT-based scheme outperforms LKH in all cases.

Acknowledgements

First, I would like to express my deepest gratitude to advisors, Dr. Amr Youssef and Dr.
Lingyu Wang. They gave me their encouragement and advice without any reserve. This
thesis could not be completed without their help. Their scientific attitude and enthusiasm

to academic research work will always remain as my model.

I am also indebted to my friends, Xiaochun Yang and Zhao (Eric) Yin, who helped in

various ways in carrying the research discussed in this thesis.

Last but not least, my thanks go to my parents, my wife and my brothers. They provided
whole-hearted support, not only during my graduate study, but also throughout my entire
life. Their generous help allowed me to fully dedicate to work and made my study a

comfortable process.

Thank you all.

Table of Contents

List of Figures viii
LiST Of TADIES ceceiicrerirrcscirssanisennissencsianecssstssinniesenssssnsssssassosesssassrssonssssnssssssasnssssssssasesssssssnnasssnasssssassssnsossnsesse X
List of Notations xi
Chapter 1 1
Introduction 1
1.1 IMOLIVALIONorvevieereeeriete ettt te e e e e s b s et ba e resarasaseesessanessensesassnasasaesaasesensensansesensensensesen 1
1.2 Multicast SECUTItY PIODLEIMSco.evuecirvirrrierrenteririnrenieierestsnesecsseseesesseesestennssesreseeseesessnsneenesssseenens 2
1.3 The One-way Function Tree (OFT) SCREME........ccvivviviriiveieeteieecreeeeeeeetveeeee e re e e sreesraessnenns 4
1.4 TRESIS OULHNE «..c..coveeniieeiriciesri e trrtes et s rr et ae e astenaesnstessasbassassseseontesbensesbaensensessesasensesseeneeneesneres 6
Chapter 2 8
Literature Review 8
2.1 NAIVE REKEYINEeoviiirieeriiiieiereer ettt sree s e s se st sa e s b e s seara b e e esasseesesennsenen 9
2.2 JO0US ettt ettt et be et e b e st e b et b e st et besaanbeeba et arbeabaeRrenbeessenreereesaensrentenbeententen 11
2.3 Batch and Periodic REKEYINGccoeevirieiirreniniiiinicinictne e snenes 13
2301 KIONOS . cuttieiiiiiiineeteieietsi ettt stcstet et st et se st st e b e bbb e b et ekesees s et ne b e ke b ek ebe s et e ea b ene bk e ke A s ek e b e e ebesehemeberebeaen 15
2.32 MARKS ..ottt a bbbt e e ae b e bt e s b e b ae bbbt b en ettt r et en 16

24 Logical Key Hierarchy (LKH) ...cccoiirieirririsiecieieeeresisiesteietes s stesie e stessessesesaessensessessasessasssssenans 18

2.4.1 INTHAlZING LKHooiiiiiiciiiricieee ettt e erectess s ereebesrteanesbeensesseetsesasanteerssassessansseassansseassansesssansann
242 Join rekeying in LKH

2,43 Eviction rekeying il LKHcooooiiiiiiiiiiceeineiestiie et sr e aasessse e ase e ssrasasieeseesesaessasesseesaesesneennes 20
2414 LKH ettt ettt et ee et e e sttt eb et sh et ese skt te st sbebaa b ebe s et eaene e st b e s e b esa R et eaement st tr et st b a e e r s 21
2.5 OF T ettt et s e e e e e e e e st e e e e st e e e s e e s e s aea b e e s b ee b e aabe e be e sreameeeneneaee s beensentas 22
2.5.1 Structure of the Original OF T SChemE.........ccceeiiriiviriiriiieeeerie ettt este et sr e e besnens 23
2.5.2 AQQING @ MEIMDET.......coiiiiriiiricieeienrerre sttt se e st st st sereses e b oo sas e b e s sbe e b s bassan e s e assbeba st b abe s 24
2.53 EVICHNEZ 8 MEMDET ..uviiiiiiiiiiienitinienitinesiteneee e st esiee it estecereneeebesnesaesaeesbestatsunebesassenesstessenssnesaserasassaasanas 26
2.5.4 Broadcast Cost
2.6 SUIMMAIY ceoviieiiiictiiietnter ettt s b st sb s et b s sbebs st s s sbs et e sb s s e s ebaabasbasbesbanssnnarassans
Chapter 3 30

Vi

Preventing collusions in OF Tiiiiniciinnisnsinmmssaisiossimismsssmsssssssssssssssssssesssssssssssssssassass .30
3.1 Examples of Collusion Attack 0N OF Tccccvicieceriinicinierineireieestessessressesessssestessessennenessessens 30
3.2 Generic Collusion Attack 0n OF T.....ccccouiciiiireririerenririieereiis st ssesseesssnnnsseseesesessasessene 32

3.2.1 Collusion Between An Evicted Node and A Joining NOdecvccevvriireeriirnnnieirencrenesereseeseseeceseeseseeces 33
322 THE GENETAL CASE ...vviueeiirietreeieaeieiri et e et e e etsse e s tebes et eseasesessesasarasseseassasasarsenssasssasestesesennaseasesenas 37
3.3 A Solution for Preventing Collusion ATACKSccccerrirrererenirerereeeeiasransneeneeesesiresessseseessessnene 40
3.4 EXperimental RESUILS.......cvvviriiciiriiiereiere ettt st sttt a et s senee b enene 45

Chapter 4 52

Preventing Collusion Only for Group Key 52
4.1 MOBIVALION ..ottt bttt a e er et e r st re et b e b s re e s b st eseabesasessanesbesnenennes 52
4.2 THE SOLULION <.ttt ettt s ettt see s e b e sae e n e b e st s s enneanes 53
4.3 CSE STUAY..cccviiiiriccinieiiteiei ettt et b e e b e bbb e e s r e s r et saenes 56
4.4 EXperimental RESUILS.. ..ottt st sr et n e s e et nesaeassssnons 65

Chapter 5 70

Conclusion and Future Work 70

References 73

vii

List of Figures

Figure 1:

Figure 2 :

Figure 3 :

Figure 4 :

Figure 5 :

Figure 6 :

Figure 7 :

Figure 8 :

Figure 9 :

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14 :

Figure 15 :

Figure 16 :

Figure 17 :

An Example for a Naive Group Rekeying SChemecococvvvvrveiinrereninreineec e 9
The Iolus Secure Distribution TTee.........cccovvrreeiirecrrrererereieeceerreees et neeeressiesaeesene 12
Immediate, Periodic, and Batch Rekeying [16]......cccccvvererirvreirinenecriienreeeeneereseesseenennes 14
MARKS Binary Hash TTee.......cccccevereeeririrenirireeseerinntensiecrsreseesesestesisssssessesssssesssssssssaenes 17
LKH BINATY TIEE.......cuiceeireeeretetneeieeeren et sesesesseas ettt sa st s b ene e sestene 18
Join Rekeying in LKHcouooiioiiiiieiicieiicineeccniesr et sae e e et e e srassasaa st esaesnnens 19
Eviction Rekeying in LKHc..ccooiiiiiiiirinicinnecnnectieerereerctstsceeres e seseesessacesacnns 21
An Example for OFT KeY TTEEccecirerriiririeiiriirrienteieiesesteertereeseseeseessessessensessesenres 23
Adding @ Member i OF Tccocveiiioiriiieieiesieeeresiesssteeesesaesetesbessessasseaesssssssassesaesaassssans 24
» Evicting @ MemDber in OF T......couiouiiiiieieiieicrritcieiees e e se s sbesse e vessassessassesesansssnsnssesenns 27
: An Example for a Collusion Attack 0n OF Tcccocceviniiiirnieesneininiaeseseseseesesesesrencosenens 31
¢ A Generic Collusion AtaCK 0N OF Tc.cvveereineeurieieinininesssesesesesessiessessssssssssenesesssseees 34
: The Timeline of Collusion Atacks........coevierioiiiereiirece e 36

A Stateful Method for Preventing Collusion AttacK......c.cccvecviveeiireiieesiiincnieeenicensiecesenens 42
The Broadcast Size vs. Key Tree Size........coccevuivinriiininecinicniniiiicitnieiicer e 47
The Broadcast Size vs. the Number of Operations........c.ccceeererrcrerscrinreeneneenrennenineennes 48

The Broadcast Size vs. the Ratio of EViction (Case 1)cccccevievierecieniiecrenensenecsesecneenes 50

viii

Figure 18 : The Broadcast Size vs. the Ratio 0f Eviction (Case 2).........covevververieererrrcnenreecsenrenreesnnes 51
Figure 19 : Propagation of COLIUSIONcccveirieeeiieirieeresceieveeeensre e sesteresseresesassessesesssbensnssnneserens 54
Figure 20 : Time Stamp Update When Node 54 Joins the Group......cccececverveverrerrseererinieereerienersssoreens 57
Figure 21 : Adding Collusion Time Periods to NOde 3.......cccceuriercerciinrrnrnnnceiee e 59
Figure 22 : Time Stamp Update at Node 6 When Node 48 and 29 Are Evicted.......c.ccoocererrvrevrcnene. 61
Figure 23 : Adding Collusion Time Period t0 NOGE 6cocvcrrrirrienenrerniriereneeenneeseeseseeescreenne 63
Figure 24 : Broadcast Size vs. Key Tree Size ..o 66
Figure 25 : Broadcast Size vs. Number of OPerationscuevevevreivinierererenesiniesesrerenmeresesrsmsessessercanss 67
Figure 26 : Broadcast Size vs. Ratio of Eviction (Case 1) ...c..cccvvevieeieneinierienniereennerseeeeeseessssneeenes 68
Figure 27 : Broadcast Size vs. Ratio of EVICtION (CaSe 2)cveerreveenierieneeieerireeeeienieseennesacsaneeessens 69

List of Tables

Table 1 : Comparing Broadcast Size of Our Solution t0 LKH.......cccoceeerurrreererennerererieseseesesesnessssesenenns 47
Table 2 : Time Stamps in NOde 6 at Time 276 ...c..cocvvereiircerirnirireiriieienirsesessessesseeresssessessesssesseseneses 58
Table 3 : Log Of GIoup UPAALe.......c.eceervirririeiererieeesieresis e ssesisesesssassessssesssesesesessessesasessesesssssssssnns 61
Table 4 : Time Stamps in Node 12 at Time 285cvciieiiiiieieerecteeeieree st err vt sr e s v saesessesenes 62
Table 5 : Time Stamps for Node 6 at Time 285......cccovvieieeieeirerieieieirrrereseeresiesesseeseesesssnesessesseennes 64
Table 6 : Comparing Broadcast Size of Extended Solution to LKH.........ccccceirieiiiieneninnienenenrecnecnnes 66

List of Notations

ACL Access control lists

AKD Area key distributors

AMESP Application layer MESP
CCNT Cryptographic context negotiation template
ESP Encapsulating security payload
GKC Group key controller

GSA Group security association
GSI Group security intermediary
GSPT Group security policy token
IETF Internet engineering task force
LKH Logical key hierarchy

MESP Multicast ESP

NTP Network time protocol

OFT One-way function tree

Xi

Chapter 1

Introduction

1.1 Motivation

The past few years have witnessed the development of many applications which require
one-to-many or many-to-many group communications. Examples for these applications
include stock quote streaming, multimedia conferencing, video distribution, web caching,
and software distribution. Using multicast, the sender needs only to send one copy of data
to the intended multiple receivers instead of sending multiple almost identical copies as it
does in wunicast communications. Thus, the multicast dramatically reduces the

computational cost at the sender as well as the volume of the network traffic [16].

Despite the progress made in multicast research over the past few years, multicast
deployment is not as widely spread as one might have expected. One of the critical
obstacles for widespread deployment of multicast applications is the associated security

concerns in the multicast communication environment.

1.2 Multicast security Problems

Multicast security has three main problem areas: secure multicast data handing,
management of keying material, and multicast security policy [16]. In what follows, we

briefly review each one of the above problems.

Secure multicast data handing area covers the secure data transmission from the sender to
the receiver. Source authentication and data integrity are required to make sure that the
data comes from the claimed sender and it was not changed during the transit. The
simplest solution for source authentication is to digitally sign each packet but its
performance is unacceptable because it is computationally expensive and involves extra
communication overhead for each packet. The Internet engineering task force (IETF) has
proposed a few variants of Encapsulating Security Payload (ESP) called multicast ESP
(MESP) [5] and application layer MESP (AMESP) [6] to accommodate source
authentication schemes for multicasting. MESP works in the network layer, whereas
AMESP operates in the application layer. Group authentication can assure that the sender
is a group member but cannot guarantee that the data had never been modified since it

left the data sender [20].

Multicast security policy focuses on the following problems: policy creation, high-level
policy translation, secure group policy components, and policy representation. Multicast
security policies provide the rules of operation for the above two multicast security
problem areas: management of keying material and multicast data handling. In small

interactive groups, multicast security policies may be negotiated [12] but negotiation does

not converge in large groups. Alternatively, the group controller (owner) may distribute
and enforce policies. To create and translate unambiguous specification of group policies,
policy languages such as Ismene [30], cryptographic context negotiation template (CCNT)
[12], and group security policy token (GSPT) [18] have been proposed. Secure group
policy components include access control enforcement mechanisms such as access
control lists (ACL), encryption or authentication algorithms to use for rekeying as well as
secure data communications, selected group rekeying algorithms, and the expected

member behavior when a member does not have the latest group security association

(GSA) [9], [37].

The group key management problem can be classified to four parts [16]: architecture [2],
[13], [17], protocols, algorithm, and policies. Group key architecture focuses on the
relationship and placement of group keys, the effect of the change in the spread and
density of membership, dynamicity of memberships, and topology of the structure. Group
key protocols refer to the set of procedures, message exchanges, and message payloads
that govern the behavior of the entities involved in supporting a group. Group key
management algorithm refers to the method used to arrange and update the supporting
keys which manage the group key [4]. Group key management algorithm gives the
detailed description of when and how to update the group key. Group key management
policy gives some rules to be followed during the group initialization, the group key

distribution, membership changes, emergency situations, and so on [15], [42].

1.3 The One-way Function Tree (OFT) Scheme

Cryptographic key management schemes are required to ensure the confidentiality of a
multicast communication. More specifically, backward security requires that a joining
member cannot learn previous messages, and forward security requires that an evicted
member cannot learn future messages. The adjective perfect can be added to the two

properties if they can be satisfied against an arbitrary number of colluding members [41].

To satisfy perfect forward and backward security, the group key must be changed
whenever a member is added to or evicted from a group. The new key needs to be
conveyed to all members at the minimum communication cost since the group is usually
large and dynamically changing. The OFT scheme, originally proposed by Balenson et
al., is one of the most popular schemes for this purpose [6], [19], [20], [21]. A key
advantage of OFT over another popular method, the Logical Key Hierarchy (LKH) [40],
is that OFT halves the number of bits broadcasted upon adding or evicting a member.
Specifically, if a key has k& bits and the key tree used by OFT and LKH has a height 4,
then the broadcast size of OFT is sk + h bits, whereas that of LKH is 2hk + A bits. OFT
achieves such a halving in broadcast size by deriving its key tree in a bottom-up manner,
in contrast to LKH’s top-down approach. Consequently, unlike the independently chosen
keys in LKH, the keys in an OFT key tree are functionally dependent, and this functionél

dependency allows OFT to save half of the broadcasted bits.

Unfortunately, the same functional dependency among keys that brings OFT the reduced

communication cost also subjects it to collusion attacks. Although OFT was claimed to

achieve perfect forward and backward security [41], only the collusion among evicted
members was considered. A collusion that includes current members was claimed to be
uninteresting, because a (current) member knows the group key. However, the claim
implicitly assumes the colluding members are trying to learn the current group key,
which is not necessarily true. An evicted member may collude with a current member to
learn group keys that were used after the former was evicted but before the latter joins the

group. In this case, OFT will fail on both forward security and backward security.

In 2002, Horng first showed an example of collusion attacks on OFT [22]. In 2003, Ku
and Chen provided new attack examples to show that the two assumptions required by
Horng’s attack were actually not necessary conditions [14]. Ku and Chen also proposed a
modified OFT scheme that was immune to the collusion attack. The solution, however,
needs to broadcast (h’+h)k bits on every member eviction and Ak bits on each member
addition. Ku and Chen’s scheme thus loses a key advantage which OFT has over LKH,
that is a halving in broadcast size. Because their scheme requires a broadcast of quadratic
size on evicting any member, it is only suitable for applications where member eviction is

rarc.

In this thesis, we revisit collusion attacks on the OFT scheme. To better understand
collusion attécks on OFT, we first generalize the examples of attacks given by Horng and
Ku et al. to a generic attack. Instead of these examples of two or three members, we study
the collusion among arbitrary number of evicted and joining members with arbitrary
number of other, non-colluding members leaving or joining in between. Based on this

understanding of the general attack, we derive necessary and sufficient conditions for a

collusion attack on OFT to exist. These conditions reveal that the solution proposed by
Ku et al. is unnecessarily conservative. Their solution prevents potential collusion attacks
by invalidating any knowledge that is brought out of the group by evicted members.
However, our results show that such knowledge is not always useful to a joining member
in colluding. In particular, we study a different approach where such leaked knowledge is
not immediately invalidated but is recorded by a key manager who is responsible for
managing the group. When a member joins the group, the key manager then checks
whether it is possible for this new member to collude with previously evicted members. If
a potential collusion exists, the key manager will update keys as part of the joining
operation such that the collusion becomes impossible. Because additional re-keying is
performed only when a collusion is possible, this solution has the advantage of
minimizing broadcast size. Following the discussion of a straightforward stateful method
that has an unacceptable storage requirement, we present a modified version of the
method whose storage requirement is proportional to the size of the key tree. These
methods pose no additional communication cost on evicting a member but may require
more broadcasted bits when a member joins. We study the average performance of the
scheme and the simulation results show that our scheme is more efficient than LKH in

many cases.
1.4 Thesis Outline

The rest of the thesis is organized as follows. Some important group key algorithms are
reviewed in Chapter 2. In chapter 3, we revisit the examples of collusion attacks on OFT

given by Horng and Ku et al. and generalize it to a generic attack on OFT. We also derive

6

necessary and sufficient conditions for such an attack to exist. An algorithm that
minimizes broadcast size while preventing collusion attack is proposed after the generic
attack analysis. In chapter 4, we extend our analysis for the case where only the root
(group) key needs to be protected. Using this relaxed, yet practical in many applications,
security assumption, a more efficient key updating scheme is proposed and analyzed.

Chapter 5 concludes the thesis and gives future directions.

Chapter 2

Literature Review

Throughout this section, we briefly review few, albeit representative and important,
group key management algorithms. While some of these key management algorithms are
used in centralized group key management architectures, the others are used in

decentralized architectures.

To ensure the group privacy and control the access to the group, it is necessary to encrypt
the group data and distribute the group key to appropriate group members. Group keys
need to be changed in the following two cases. First, when the group key has been used
for a certain amount of time or used to encrypt a certain amount of data. In order to keep
the group key fresh, the group key has to be updated. Second, when the status of the
group member has been changed. Some new group members join the group or some
group members leave the group. In order to guarantee the backward security, i.e.,
disallowing joining members from decrypting past data, and the forward security, i.e.,
disallowing departing members from decrypting future data, the algorithm needs to

update the group key [16], [43].

In the rest of this chapter, we first discuss the naive rekeying scheme whose
communication and computational complexity is linear in group size, which is inefficient
and only suitable for small groups. Then, the hierarchical subgrouping efficient rekeying
scheme, Iolus, is introduced. Next, the batch and periodic rekeying algorithms, Kronos, is
reviewed. After that, MARKS algorithm is discussed as a representative example of an
efficient key distribution mechanism for a group in which GKC updates the group key at
fixed instances and the GKC knows each group member’s leaving time when it joins the

group. We then discuss LKH, LKH+ and OFT.
2.1 Naive Rekeying

GKC {Group Key Controller)

e?e ® O 6 6

Alice
Figure 1 : An Example for a Naive Group Rekeying Scheme

As showing in Figure 1, the naive rekeying scheme is a straightforward way to
implement the group key management which guarantees both the forward and backward
security. The structure of the naive rekeying scheme works like a star structure. The
Group Key Controller (GKC) communicates with each group member directly. Like

other centralized group key management schemes, the naive rekeying scheme has only

one GKC which makes it vulnerable to single point of failure. In the naive rekeying
scheme, the GKC stores n+1 keys: one pairwise key with each group member, plus a
shared group key. Each group member stores a constant number of keys. In general, each

group member stores two keys, a shared key with the GKC and the group key [35], [37].

As mentioned above, this naive solution provides both forward and backward security.
On each join or leave, the GKC changes the group key by securely unicasting the refresh
key to each group member. To keep the backward security, the GKC updates the group
key whenever a new member joins the group by sending the fresh key through multicast
package encrypted with the old group key. However, to keep the forward security when
group members leave the group, the GKC needs to send the fresh group key to each
remaining group member. In another words, the naive scheme requires a linear-cost key

update when group members leave the group.

To do the key update, the GKC needs to generate a new group key first, then encrypt and
sign n messages containing the new key. With the naive scheme, the collusion between
group members is impossible. No group member can collude with other group member to
get some knowledge of group key for certain time period which they are not supposed to
know. If a group member missed a key update message, it is easy to detect and correct it

because the naive scheme uses unicast to distribute keys to all group members.

The naive rekeying scheme is simple and easy to implement and if the GKC runs on a
powerful computer, the key storage requirements are reasonable. It can provide the
forward and backward security. It is also resistant to arbitrary collusion among group

members. The naive rekeying scheme does not need a specialized underlying

10

infrastructure like a reliable multicast. On the other hand, the naive rekeying scheme
scales poorly in terms of both group size and group dynamics. The network load
communication cost and GKC’s computation cost for updating the group key when group
member join or leave the group are both linearly proportional to the group size which

renders the naive rekeying scheme suitable only for small groups.

2.2 lolus

Iolus, proposed by Mittra [34] in 1997, is a framework with hierarchy agents which
separate the large group into small subgroup. As shown in Figure 2, the whole group
shares a Group Security Controller (GSC) and each subgroup has a Group Security
Intermediary (GSI). GSC and GSI are also called Group Security Agents (GSAs) which
are trusted by group members. Their main functions are handling the packages routing
and managing security (subgroup’s keys) for the group [35], [38]. There is no common
group key in Iolus, and each subgroup has its own independent key. This means that
membership changes in a subgroup only affects the subgroup key, i.e., other subgroups’

key don’t need to be changed [37].

Whenever a new group member joins a subgroup, the GSI, i.e., the key distributor of that
subgroup, sends the new group key to the new member via secure unicast and multicast
the new group key, which is encrypted by the old group key, to all existing group
members [23]. When a group member leave a subgroup, the GSI generates a new group
key and sends it to all remaining group member via secure unicast. Thus the

communication cost for leaving operation is linear with the subgroup’s size.

11

y // \\\»ww,_--—/”/{:i\
ff’f/ ‘\\\\
i »:.&._m\“\
e \M\%\\ ,,/’/W N
N
< Gsl) (GSlI >
e ‘ ,/ P « 'A\\\ » M«/
//’ ", 7 \‘
/ \\ \‘
/// \\\
TN TN T TN
{\ User)& User) < User)
[i \w/,//

GSC —Group Security Controller (One for the whole group)
GSI — Group Security Intermediary (One for each subgroup)

Figure 2 : The Iolus Secure Distribution Tree

Group security agents take the responsibility of the data transmission between different
subgroups. If a package needs to be sent from subgroup A to subgroup B, the package is
encrypted by the key of subgroup A first. After the GSI of subgroup A gets this package,
it decrypts the package and re-encrypts it with the key of the top level subgroup in which
the Group Security Controller (GSC) is the key distributor. Once the GSI of the subgroup
B gets the package via the top level subgroup communication, it decrypts it and then re-
encrypts it with the key of subgroup B. Then this package can be read by the members of

the subgroup B.

12

By separating the whole big group into many small subgroups, Iolus limits the key
updating caused by the membership change inside a small subgroup. Iolus has many GSIs,
so if one of them failed, only the corresponding subgroup goes down and all other
subgroups survive the failure. On the other hand, the inherent complexity of the Iolus
hierarchy brings substantial management overhead to the multicast group. In addition, the

whole group only has one GSI and it is vulnerable to single point of failure [35], [38].

2.3 Batch and Periodic Rekeying

To ensure the security of the group key, it needs to be updated whenever certain amount
of data is encrypted using this key or after certain time interval independent of the
amount of data encrypted using this group key. To ensure forward and backward security,

the group key may also need to be updated whenever a change occurs in the group

membership.

Depend on the application, the requirement for the forward and backward security might
be very strict as in military communication in which the group key has to be updated
immediately after each group membership change. The strict forward and backward
security requirement brings significant rekey communication cost and computation cost
to the group especially for the large and highly dynamic group. This drawback makes the
strict forward and backward security not very practical for many commercial applications
whose security requirement is not that high. To update the key efficiently, the batch
rekeying and periodic rekeying have been proposed to relax the forward and backward

security requirements. Some applications use batch or periodic rekeying for usual key

13

update and use immediate rekeying only for deleting misbehaving group members [36],

[50]. Figure 3 shows the immediate rekeying, batch rekeying and periodic rekeying.

Member leave

\' Member join
'
[Relkevying instance

Immediate keying

\T NN N\

L 2 v ¥ L Y

Batch rekeying

NN N NN N WY
IR v ! v

Periodic rekeying

NN N N N N MWW N N
R ! v v

Figure 3 : Immediate, Periodic, and Batch Rekeying [16]

Using batch or periodic rekeying degrades the security for the time period between two
key updates. During this time period, the leaving group member can still decrypt the
group communication. Also, the new joining group member will not be able to decrypt

the group communication until the next rekeying instance [16].

14

2.3.1 Kronos

Kronos [38], [39] is an example of group key management protocol with periodic key
updates. In this protocol, the change of the group membership doesn’t lead to an
immediate rekeying process. In fact, that is exactly the motivation of this approach is.
The authors of Kronos believe that with the increases of the group size and the rate at
which members join or leave the group, updating the group key on each membership
change is not practical because the frequent rekeying process will occupy most of the

communication and computation resource [37].

Kronos does not have a key manager for the whole group. On the other hand, the
subgroup group key managers (called area key distributors (AKD) in [39] and [13], have
the ability to generate the new keys and distribute them at the end of the predetermined
period independently. Kronos is categorized as decentralized architecture and hence

avoids the single point of failure problem.

Because the group key updated at certain time, all key managers must synchronize their
time and agree on some time period. Using the Network Time Protocol (NTP) [33] to
synchronize the time is a reasonable implementation in the real world. Besides the same
time, to generate new keys, the subgroup key managers also need to agree on two shared
secret factors, K, the master key and Ry, the initial value which is obtained from the group
key manager. The subgroup key use the following formula to generate the new key R;.; =

Ei(R,), i> 0 where E is an encryption algorithm. From this formula, it is clear that Kronos

15

uses the previous key to compute the new one. Thus, if one key gets compromised and

the attacker knows the master key, the attacker will be able to compute all the future keys.

2.3.2 MARKS

MARKS [3], [38], [52] divides the whole group’s life time into many same length time
periods. Each time period has its own group key. Each group number can join the group
at any time during the group’s life time but each group number’s leaving time is assumed
to be known at the time of join. The group key controller distributes the key to the new
join group member according to its life time period. MARKS uses a binary hash tree to
generate keys for all different time periods. Each leaf in the binary hash tree is the group
encryption key for a certain time. The root nodes and internal nodes of the binary hash
tree are called seeds. Seeds use a blinding function, such as MD5 [32], to generate the
whole tree. The height of the tree, 4, is predefined according the total number of time
periods, N. N different time periods need N = 2" different keys. Each key corresponds to
one leaf in the binary tree. MARKS randomly chooses Sy to be the root seed. It applies
the one-way function G, to Sypand get the left children of the root, key S; 90 = G1(So0).
So,0 1s shifted one bit to left before applying the blinding function G;. MARKS applies the
one-way function Gy to the Syp and get the right children of the root, key S; ;. Si; =
GRr(S0,0°). So, is shifted one bit to right before applying the blinding function Gz. MARKS
applies the one-way function G; and G to the following levels until the predefined

height 4 is reached. Figure 4 shows an example for a MARKS’ binary hash tree.

16

OIOIOIOIOIOIOIO
KO Kl K2 K3 K4 K5 K6 K7

Figure 4 : MARKS Binary Hash Tree

In MARKS, the key distribution process is done when a new member joins the group.
With the knowledge of a seed corresponding to a node in the hierarchy, the group
member can compute seeds of all descendant nodes. Only necessary and sufficient keys
are transported to the new joined member over unicast which is easy to ensure reliable
delivery. For example, if a new join member is authorized to know keys from time 2 to 7,
instead of transfer six keys (K, K3 K, Ks Kgs and K7), the group key controller only
sends two seeds, Sz 7 and S; ;, to the new member. Then the new group member computes
K and K3 from seed S, ; and computes Ky, Ks5, K5 and K7 from seed S; ;. If the group key
controller sends the root seed to the new group member, the new group member gets

authorization to know all keys for the whole group’s life time.

17

To eliminate a group member from the group, the entire group members need to update
their keys. In large groups, this character turns MARKS to be a non practical solution for

frequent leaving situations.
2.4 Logical Key Hierarchy (LKH)

LKH [8], [16], [19], [25], [29], [38], [40], [46], [51] uses a logical key tree to update the
keys of large group efficiently. Each group member is represented by a leaf node in the
key tree. The root node is associated with the key for the whole group. Each internal node
is associated with the key for corresponding subgroup. Each leaf node knows all keys for
the nodes in the path from itself to the root (Figure 5). The number of keys known by
each leaf node is log; n, the height of the tree. If a group member leaves the group, to

assure the forward security, all keys known by the leaving node need to be updated.

o ®
oll: RO
OOOOG®O®®E

Figure 5 : LKH Binary Tree

18

2.4.1 Initializing LKH

The Group Key Controller (GKC) generates a binary tree that has as many leaf nodes as
there are members. Then each leaf node shares a unique key with the GKC. Next, GKC
generates keys for all internal nodes, encrypts them with their two different children
nodes’ keys and sends them to the group. The alternative way of initializing a key tree is
to send each leaf node all the keys in its path to the root encrypted by the key shared

between the GKC and the leaf node.

2.4.2 Join rekeying in LKH

% : Key Updated For Join
Kol 7
& () (>

Ks'kkio
5 @@ ¢
O "“’f OI0CIOCIOIO

Allce

{x}x, means x has been encrypted with k

Figure 6 : Join Rekeying in LKH
19

As shown in Figure 6, after getting a join request from a new group member, the GKC
generates a new leaf node in the binary tree and assigns it to the new group member.
GKC also generates a key shared only between GKC and the new group member. To
assure the backward security, all keys along the path from the joining point to the root
node need to be changed. Each of these changed keys will be encrypted twice using its
two children nodes’ keys respectively and sent to the group via multicast. A new group
member will know log, n keys, so the GKC needs to send out 2/og, n messages to update

the keys for whenever a new member joins the group.

2.4.3 Eviction rekeying in LKH

After getting a leave request from a current group member, GKC deletes the
corresponding leaf node from the binary tree. The parent node of the corresponding
deleted leaf node is called the leaving point. To assure the forward security, all keys
known by the leaving member need to be updated. The GKC generates all these new keys
and send them to the remaining members securely, without being known by the leaving
member. To illustrate the above process, consider the example shown in Figure 7 where a
group member, Alice, leaves the group. Alice knows the keys for nodes 5, 2 and /. In
order to keep the forward security, the GKC will update those three keys securely without
being known by Alice. As shown in Figure 7, new key for node 5, Ks’, is encrypted by
K1, the key for node /1, and sent to the group. The new key for node 2, K’, is encrypted
by K, and K, the key for node 4 and the new key for node 5 respectively, and sent to the

group. The new key for node /, K;’, is encrypted by K; and K>’, the key for node 3 and

20

the new key for node 2 respectively, and sent to the group. After the above updating steps,

all group members except the leaving node (Alice) will get the new keys.

| //7/ {Kx',} K2
///// {KI }KB % : Key Updated For Leave
{K2"}x4

(K2 s %
OB L ONNO
O ’\E‘» (1) @

Alice
{x}x, means x has been encrypted with k

Figure 7 : Eviction Rekeying in LKH
2.44 LKH+

Several group key management algorithms, such as LKH+ [7], have been proposed in
order to improve the LKH. In LKH+, a one-way function is used to compute the new key.
It is different from LKH when a new group member joins the group. GKC doesn’t
generate and distribute the new keys to certain group members. In contrast, all keys that

need to be changed will be updated locally through applying the one-way function. If the
21

group member knows the old key, it can calculate the new one. Because of this, this
method cannot apply to the node leaving case. Otherwise, it will break the forward
security. The leaving node knows the old keys and it can compute the new key by using
the one-way function. Thus when a member leaves the group, LKH+ uses the same way

as LKH to handle the key updating process [10], [11].

2.5 OFT

The one-way function tree (OFT) scheme proposed by Balenson ef al. [1], [31], [52] is
widely regarded as an efficient key management solution for multicast communication in
large dynamic groups. Each group is associated with a one-way function tree, which is
also a binary tree, and is maintained by the group controller. The keys are computed up
the tree, from the leaves to the root. This approach reduces rekeying broadcasts to only

about Jog, n keys, where n is the number of group members.

The group manager maintains a binary tree, each node x of which is associated with two
cryptographic keys, a node key %, and a blinded node key &’y = g(k,). The blinded node
key is computed from the node key using a one-way function g; it is blinded in the sense
that a computationally limited adversary can know k’, and yet cannot find k.. The group
controller uses a symmetric encryption function E to communicate securely with subsets

of group members [1], [26], [27], [281, [29], [31], [41], [53].

Figure 8 shows that the member at the leaf labeled 7/ knows only the keys of the nodes
11,5, 2 and I (the root key, which is used as the group key) and the blinded keys of the

nodes /0, 4 and 3.

22

Group Key: Ki=f(g(Kz),a(Ks))

fx
f/ : Key Known by Node 11

: Blinded Key Known by Node 11

Ko=H{g(Ks).g(Ks))

1T

i1

Ks=f(g{Ko}.g(K11))

(o))
~

.

1

8 Ge 12) (13) (14) (15

K's=g(Ky4)

Figure 8 : An Example for OFT Key Tree

2.5.1 Structure of the Original OFT scheme

Every internal nodes of the tree has exactly two leaves. Every leaf of the tree is
associated with a group member. Each internal node key can be used as a
communications subgroup key for the subgroup of all descendent members. The group
controller assigns a randomly chosen key to each member, securely communicates this
key to the member using an external secure channel, and sets the node key of the

member's leaf to the member's key. The interior node keys are defined by the rule

ke = fg(kiepi), &hrighi)

23

where left(x) and right(x) denote the left and right children of the node x. The function g
is one-way, and the function fis a “mixing” function. For example, the key tree in the left

hand side of Figure 8 can be constructed as x; = f(g(xs), g(x9)), x2 = f(8(x4), g(x35)),x7 =

N(8(x14), 8(x15)), x3 = f(8(xq), &(x7)), and x; = flg(x2), g(x3)).

Each group member knows the unblinded node keys on the path from its node to the root,
including the root (computed from the blinded node key it knows), and the blinded node
keys that are siblings to its path to the root, and no other blinded or unblinded keys. If one
of the blinded node keys changes and it is told the new value, then it can recompute the
keys on the path and find the new group key [31], [41], [1]. For example, in the left side
of Figure 8, a member, Alice, who is associated with the node 8 will be given the blinded
keys g(xg), g(xs5), and g(x3). Alice can then compute the group key as: x;s = f(g(xs), ¥9),

x2 = f(g(xy), ys), and x; = flg(x2), y3).

2.5.2 Adding a Member

Before

Figure 9 : Adding a Member in OFT

24

In Figure 9, both members (x and y) are given new keys. The new values of the blinded
node keys that have changed are broadcast securely to the appropriate subgroups. The
number of blinded keys that must be broadcast to the group is equal to the distance from
x to the root plus two. In addition, the new member is given her set of blinded node keys,

in a unicast transmission.

When a new member joins the group, an existing leaf node x is split, the member
associated with x is now associated with lefi(x), and the new member is associated with
right(x). Both members are given new keys. The whole path from the interior node to the
root will be updated due to the two new keys, and the updated blinded keys must be

conveyed to those members who need them.

The new values of the blinded node keys that have changed are broadcasted securely to
the appropriate subgroups. For example, in Figure 9, the joining member y causes the
existing node 7 to be split into two nodes, with each assigned a new node key. The node
keys of node 7, node 3, and node / then need to be updated and their blinded version will
be broadcasted to the members who need them (for example node /2 and /3 will need the
updated g(x7)). A new member always joins at a leaf node closest to maintain the balance
of the key tree. The number of blinded keys that must be broadcast to the group is equal
to the distance from x to the root plus two. In addition, the new member is given her set
of blinded node keys, in a unicast transmission, using the external secure channel. In
order to keep the height h of the tree as low as possible, the leaf closest to the root is split

when a new member is added.

25

Each blinded node key must only be communicated to the appropriate subset of members
to maintain security. If the blinded key k’, changes, then its new value must be
communicated to all of the members who store it. These members are all associated with
the descendants of the sibling s of x, and they all know the unblinded node key 4;. The
manager encrypts &’y with k; before broadcasting it to the group, providing the new value
of the blinded key to the appropriate set of members, while keeping it from other

members.

2.5.3 Evicting a Member

When the member associated with the node y is evicted from the group, the member
assigned to the sibling of y is reassigned to the parent p of y and given a new leaf key
value. If the sibling s of y is the root of a subtree, then p becomes s, moving the subtree
closer to the root, and one of the leaves of this subtree is given a new key (so that the
evictee no longer knows the blinded key associated with the root of the subtree). The new
values of the blinded node keys that have changed are broadcast securely to the
appropriate subgroups, as described above. The number of keys that must be broadcast is

equal to the distance from y to the root.

The eviction of a member is similar to the addition with following differences. The
sibling of the node associated with the leaving member replaces its parent, and is
assigned a new node key. Keys on the path leading that node to the root are then updated
and their blinded versions are broadcasted, as in the case of addition. However, if the

sibling of the leaving member is an interior node, then we cannot directly change its node

26

key due to the functional dependency among keys. Instead, we need to change the node
key of a leaf node in the subtree whose root is that interior node. For example, in Figure
10, the evicted member associated with node /5 causes node /4 to replace node 7. The
node keys of nodes 7, node 3, and node / will then be updated, and their blinded version

will be broadcasted to those who need them [48], [49].

Figure 10 : Evicting a Member in OFT

2.5.4 Broadcast Cost

Let the height of a balanced key tree be 4. Then approximately % new blinded keys must
be broadcasted on each member addition or eviction. On the other hand, a unicast is used
to send the joining member its blinded keys. In addition, 4 bits are broadcasted to notify
members about the position of the joining or eviction. In contrast, the broadcast size of
LKH is 2h multiplied by the key size (plus the same # bits for the position of the addition
or eviction). The reason that OFT achieves a halving in broadcast size is that keys in an

OFT key tree are functionally dependent, but keys in a LKH key tree are all independent.
27

In OFT, an updated node key is propagated through the sibling of the node, whereas in
LKH the key is propagated through the children of the node. In other words, LKH
propagates through two children nodes but OFT propagates through only one sibling.

That is why the broadcast sizes of LKH and OFT are different [44], [45].

2.6 Summary

Group key management is one of the important components of a multicast security
solution. Different key management algorithms have been reviewed in this section.
Despite being a straightforward solution, the naive rekeying algorithm is inefficient for
most cases. lolus uses hierarchy agents to separate a large group into small subgroups;
therefore the rekeying process is limited in a corresponding subgroup. However, it brings
substantial management overheads to the multicast group. Kronos and Marks are
examples of periodic rekeying algorithm. In Kronos, the new keys are generated and
distributed by the subgroup group key managers in the end of the predetermined period
independently. MARKS algorithm is used in groups where member departure times are
known a priori. When a new group member joining the group, a seed is distributed to this
new member using a reliable one-to-one secure channel and is used to compute group
keys, thus no rekeying and reliable multicast channels are needed. Both LKH and OFT
use a hierarchy of keys to achieve scalability. In LKH, the Group Key Controller is
responsible for key generation and distribution; thus it has large communication overhead.
LKH+ uses key computation techniques to reduce communication overhead due to
rekeying. OFT uses group member’s keys to compute the group key. This reduces

communication overhead compared to LKH, but as we will mention in the next chapter, it

28

brings collusion attack to the algorithm. All these hierarchical keys-based algorithms

including LKH, LKH+, and OFT rely on reliable transmission of rekey messages.

29

Chapter 3

Preventing collusions in OFT

3.1 Examples of Collusion Attack on OFT

Horng [22] observed that the functional dependency among keys in an OFT key tree
subjects the OFT scheme to a special collusion attack and gave two conditions for such
an attack to exist. Referring to Figure 11, the attack example given by Horng can be
described as follows. Suppose Alice, associated with the node 8, is evicted at time #;, and
later Candy joins the group at time ¢, (ignore Bob’s joining for the time being). By the
OFT scheme, the node key of node 3 is not affected by the eviction of Alice, so Alice
knows the blinded version of this key between #; and #,. Moreover, the node key of node
2 is updated when Alice is evicted, and then remains the same even after Candy joins.
Candy can thus see the blinded version of this key between ¢; and #,. Knowing the blinded
node key of both node 3 and node 2 between ¢; and ¢,, Alice and Candy can collude to

compute the group key during that time interval. The OFT scheme thus fails to provide

30

forward security (Alice knows future group key) and backward security (Candy knows

previous group key).

Before

Figure 11 : An Example for a Collusion Attack on OFT

Intuitively, the above example is a result of the unchanging keys of the root’s children.
Horng thus stated two necessary conditions for such an attack to exist, that is the two
colluding nodes evicted and joining at different side of the root and no key update
happening between time ¢; and #; [22]. Later, Ku and Chen showed, through two more
attack examples, that Horng’s conditions are actually not necessary [24]. First, referring
to Figure 11, if Alice is evicted at time ¢; and Bob joins later at time #,, then they can
collude to compute the node key of node 2 between #; and ¢, due to a similar reason. In
addition, both Alice and Bob know the blinded node key of node 3 between ¢; and #,, so

they can compute the group key between the same time interval. Second, assume Alice is

evicted at time ¢;, and Bob and Candy join at time ¢, and #3, respectively, with #; <t; <t3.

By similar arguments, Alice knows the blinded node key of node 3 between ¢; and #3, and

31

Candy knows the blinded node key of node 2 between £, and ¢;. Thus, they can collude to
compute the group key between 7, and #3. The two examples show that Horng’s two

conditions are actually not necessary.

Ku and Chen [24] also provided a solution to prevent the collusion attack on OFT.
Intuitively, an evicted member brings out knowledge about some keys that will remain
the same for a certain time interval after the eviction. Ku and Chen modified the OFT
scheme to change all the keys known by an evicted member upon the eviction. For
example, when Alice is evicted in Figure 11, the node key of node 5 and node 3 will be
updated (in addition to that of node 4, node 2, and node I, as required by the original
OFT scheme). With this solution, no evicted member can bring out any knowledge about
future keys, so collusion with future joining members is prevented. However, the solution
updates the node key of all the % siblings on the path of an evicted node (node 5 and node
3 in above example). Each such update requires the broadcast of % keys (for ex-ample, to
update the node key of node 3, we must update one of the leaf nodes in the subtree rooted
as node 3). The broadcast size is thus 4#° multiplied by the key size plus /4 bits. Because
such a broadcast is required for every eviction, the modified OFT is less efficient than
LKH (which broadcast 24 keys on an eviction) in most cases, unless member eviction is

rare.

3.2 Generic Collusion Attack on OFT

The examples given by Horng, Ku and Chen are not sufficient for deriving the necessary

and sufficient conditions of collusion attacks on the OFT scheme. In this section, we

32

study such conditions by generalizing their examples into a generic collusion attack on
OFT. Section 3.4.1 first studies a special case where an evicted node colludes with
another node that joins later on. This turns out to be the only interesting case. Section
3.4.2 then discusses the general case where multiple evicted nodes and joining nodes may

collude.

3.2.1 Collusion Between An Evicted Node and A Joining Node

We first consider the collusion attack between a node A4 evicted at time 74 and a node C
joining the group at time #¢c (¢4 < t¢). Without loss of generality, we assume A is the
leftmost node in the key tree, as shown in Figure 12 (notice that this figure actually
combines two different key trees at ¢4 and #¢, which will be justified later in this section).
We also need following notations. For any node v, we use xv/t,,t,] and yv/t; t;] for its
node key and blinded node key between time #; and #,, respectively. We shall also
interchangeably refer to a node and the member who is associated with that node. I is the
node where the path of 4 to the root and that of C merges. Let L, R, I’, I" be the left child,
right child, parent of 7, and parent of I’, and let R’ and R" be the right child of I’ and /",
respectively. Let B, D, E, and F denote the subtree with the root L, R, right(I’), and
right(I"), respectively. Let tpagn, teaan, and trygy be the time of the first key update after
t4 that happens in D, E, and F, respectively. Let gpx temax trvax be the time of the last
key update before fc that happens in B, E, and F, respectively. We then have the

following result.

33

Root

e R Rew

®e s e CEN WG AW W "o wun

Figure 12 : A Generic Collusion Attack on OFT

Proposition 1: Referring to Figure 12, the only node keys that can be computed by A and

C when colluding are:

— X7 in the time interval [tgyax, tpyan/,

—xp in [teymax tovan] O ([t tesan] Y [tevax tcl),

—xrin [teyax tovan] N (s tesiv] Y [temax tc) O ([t trvan] Y [temax tcl),

and so on, up to the root. Notice that these intervals may be empty.

34

Proof: When the node 4 is evicted, it knows the blinded node key of each sibling on its
path to the root before the time #4. This includes yg,— t4; and yry— t4; (recall that the dash
means the time when each key is last updated before #4). By the OFT scheme, the node
key of R will not change until a new node joins a node in D (that is, the subtree with the
root R) or a node in D leaves, and similarly the node key of R’ will not change until a key
is updated in E. That is, yr/- t4j = yr/-tomvy and Yrr— tay = Yro/- tesany. Node A4 thus knows
these values even after it is evicted. On the other hand, when node C joins, it is given the
blinded node key of the siblings on its path to the root. Node C then knows the values
yitc-; and ygrdc - (recall that the dash here means the time of the next update of these
keys after 7). By the OFT scheme, the node key of L and R’ will not be updated when C
joins so they have remained the same since the last key update in B and E, respectively.

Then we have y;/c -7 = yitemax -7 and yroftc - = yrftemax —;, wWhich are both known by C.

When 4 and C colludes, what can be computed depends on the relationship between the
timestamps. As shown in Figure 13, 4 and C can first compute the subgroup key
xitBmax, tominy = fVr-toming, Yiftemax—). We notice that this statement assumes /4y <
fpmy. Under this assumption, nodes 4 and C can compute yidpmaxipmny =
g(xitemax tpmmvy)- This will enable them to further compute another subgroup key 7’ in
two different time intervals. Let tpgygy = MIN(tpyan, teaan) and tpeauxy = MAX(tppax,
temax). Then xptpyax toevnyy can be computed by 4 and C as f(yismax, toming, YR [(—tEMINY

and XpapEmax,IpmiNy €an be computed as f(yl[fBMAX,tDMIN], yR'[lEMA)g_]). In another word,

35

they can compute the node key of I in [tgyax, topn] N([t4, tesn] Y [temax tc]). Clearly,

this result can be easily extended to the parent of /” and so on, up to the root.

tA t:C

-

Yr'

\ 4
\ 4

temin temax
T

t
tamax ! tomin

v
v

Yr

v

YL

Figure 13 : The Timeline of Collusion Attacks

On the other hand, the above result also depicts all that 4 and C can compute by
colluding. By the OFT scheme, when A is evicted all the node keys along its path to the
root are updated, so 4 no longer knows them. Similarly, C cannot learn any node key on
its path to the root prior to its joining. Besides the blinded keys of nodes R, R’, and R"
(and all the sibling nodes on the path from / to the root), A may also know the blinded
node key of sibling nodes in the subtree B for a time interval after ¢4, and similarly C may
know about nodes in the subtree D for a time interval before ?-. However, such
knowledge does not help them in computing any keys. By the OFT scheme, a node key
can only be computed from the blinded key of its two children, but we can never pick a
node from the set B — {L} and another from D — {R} such that they are the children of the

same node.

One subtlety lies in the dynamics of the key tree. The key tree from which 4 is evicted is

different from the one that C joins. Although we show 4 and C in the same key tree in

36

Figure 12 for simplicity purpose, the tree structure may have been changed after 4 leaves
and before C joins. However, the key facts that our results depend on will not be affected
by such changes. First, 4 knows yg/— tpayany and yry— teauny regardless of any changes that
may happen to the subtree with root L, and the definition of 7pygy and gy excludes any
change in the subtree with root R and R’ to happen before #puv and tzun, respectively. It
is worth noting that the whole subtree with root L may disappear due to evictions, and
consequently the node R will replace its parent / (and the node R will be replaced by
right(R)) by the OFT scheme. In this case, it seems that 4 will no longer know yz even
when no key update happens in the set D, invalidating the result that A knows yz/— tpaan;.
However, this is not true. When the node R replaces 7, the OFT scheme also requires it to
be assigned a new node key, which means at least one of the leaf nodes in the set D must
change its node key. That is, a key update does happen in D in this operation, and our
result still holds. Similarly, C knows the value y;#zm4x - regardless of any change in the

key tree after the last key update in the set B.

3.2.2 The General Case

We first consider other cases of collusion between pairs of evicted and joining nodes and
show that the above eviction-joining scenario turns out to be the only interesting case, as
explained by Proposition 2. We then discuss the collusion among more than two nodes,
and we show that it is sufficient to only consider collusion between pairs of nodes, which

is stated in Proposition 3.

37

Proposition 2: 4 pair of colluding nodes A and C cannot compute any node key which

they are not supposed to know by the OFT scheme, if

— A is evicted after C joins.

— A and C both join.

— A4 and C are both evicted,

Proof: First, we consider the joining-eviction case. In Figure 12, suppose C first joins the
group and later 4 is evicted. If 4 and C collude, then they trivially know all node keys in
the intersection of their paths to the root (for example, node 7 and I’) and the siblings (for
example, node R’) before C joins and after 4 is evicted, because 4 is in the group before
C joins and C stays in the group after 4 is evicted. In addition, although 4 knows the
blinded node key of some siblings in the subtree B and C knows the blinded node key of
some siblings in the subtree D, these keys cannot be combined to compute any node key
since no two nodes share a parent. In summary, two nodes colluding in the joining-

eviction case cannot compute any node key besides what they already know.

Next consider the eviction-eviction case. Suppose in Figure 12 4 is first evicted at time #,
and later C is evicted at time f¢c. Because C stays in the group longer than 4 does, their
knowledge about the shared keys in the intersection of their paths (such as 7 and 7”) and
the siblings (such as R’) is the same as C’s knowledge. That is, colluding with 4 does not
help C with respect to these keys. Similar to the above cases, 4 ’s knowledge about nodes
in the subtree B cannot be combined with C’s knowledge about nodes in D to compute

any node key. The only exception is their knowledge about L and R, which can

38

potentially be combined to compute I (and consequently I’ and so on). However, the OFT
scheme updates the node key of R when C is evicted, so 4 can at best know yg/—ty =
Yriatcy (if no other key update happens between #4 and #¢), which is useless to C. In
summary, two evicted nodes colluding cannot compute any node key in addition to what
is already known by the later-evicted node. The joining-joining case is similar to the

eviction-eviction case and is omitted.

Proposition 3: An arbitrary collection of evicted nodes and joining nodes can collude to
compute some node key not already known, if and only if the same node key can be

computed by a pair of nodes in the collection.

Proof: The if part is trivial, and the only if part can be justified as follows. To compute
xv[t,t5], the colluding nodes must know both yiss) and Vg for some time intervals
that are supersets of [t;, t2]. Suppose Yis) is known by m nodes in time period [t /(1

<i<m), and Y,ign) is known in [t t4](1 <j <n).

Because (] U;”—l [tai thif) N (Uj . [t ty]) is a superset of the non-empty time interval

[t1, 15], it cannot be empty, either. Consequently, there must exist a pair of i and j such
that [t ts] N [t ty] #¢. The pair of nodes that has such knowledge (no single node
can possess this knowledge because we assume xyf; ¢ is not already known by the
colluding nodes) can thus collude to compute x, during the time interval [#,, &/ N [t

l‘dj].

We now show that the attack examples given by Ku et al., as described in Section 3.1.2,

are special cases of our generic attack. Referring to Figure 11, the first example says that

39

Alice evicted at #; colludes with Bob joining at ¢,, and Candy joins at ¢; (¢; < t; < t3). This
corresponds to the case where 4 =8, C =5, [= 2, I’ = [(referring to Figure 11), and
Candy joins at 73 in the set E. We thus have tziqx = 11, tpyay = to, and tepgn = tenax = 3. It
then follows that Alice and Bob can collude to compute x»/7;, 1] and x,/t,, t2] (notice that
[t1,] O ([t;, t5] U [t3, t5]) = [t;, t2]). The second example says that Alice evicted at ¢/
colludes with Candy joining at #3;, with Bob joining in between at ;. This corresponds to
the case where 4 = &, C = 6, I = 1 (I’ does not exist), and Bob joins in the set B. We thus
have tgp4x = 1> and tpygy = t3, and consequently Alice colluding with Candy can learn

X[t t3].

3.3 A Solution for Preventing Collusion Attacks

The previous section shows that a joining node may collude with previous evicted nodes
to compute node keys in certain time intervals, which none of them is supposed to know.
However, these results also show that such a collusion is not always possible, and
whether it is possible depends on the temporal relationship among joining and evicted
nodes. As discussed in Section 3.1.2, Ku and Chen’s solution prevents any evicted node
from bringing out knowledge about future node keys. Although it suffices to prevent any
collusion attack, this conservative approach has a quadratic broadcast size (in the height
of the key tree) on every member eviction and thus is less efficient than the LKH scheme

in most cases.

One apparent way to reduce the broadcast size is to update additional keys only when a

collusion attack is indeed possible. Unfortunately, this cannot be achieved with Ku and

40

Chen’s approach of updating the siblings along the path of an evicted node, because at
the time a node is evicted, we do not yet know with whom it may collude in the future.
On the other hand, our results in Section 3 make it possible to check whether a joining
node can collude with any previously evicted node. If a collusion is possible, we can
update a minimum number of additional keys to prevent the joining node from combining
its knowledge with the evicted node for that specific collusion. This approach minimizes
the communication cost for each joining operation (the eviction operation has no

additional communication cost) because a key is updated only when necessary.

We first describe a stateful method that explicitly records all the knowledge of evicted
nodes. This straightforward method simply applies the results in the previous section to
check for possible collusions. However, because the method needs to keep information
about all evicted nodes, the storage requirement is proportional to the number of all
evicted nodes, which is not acceptable in most applications. Later in this section, we
modify this method such that its storage requirement becomes proportional to the size of
the key tree. Both methods will eliminate collusion attacks while minimizing the

broadcast size.

A Stateful Method:

For the stateful method, the key manager tracks all evicted nodes and checks whether a
joining node can collude with any previously evicted node. If a collusion is possible,
additional key updates are performed to remove the joining node’s knowledge about past
node keys such that the collusion becomes impossible. The key manager needs to record

two kinds of knowledge. First, the knowledge about furure node keys that each evicted

41

node brings out of the group. Second, the knowledge about past node keys that a joining
member is given when it joins. For this purpose, the key manager stores a modified key
tree as follows. Each node in the OFT key tree is now associated with a pair < ¢,, L >,
where fu is a timestamp and L is a collection of timestamp pairs < ty, t; >,< to, 2

>) .. -)< txm tyn >'

“ s e SHE HBE B BES *aw avw

ta & tg ? tc

Figure 14 : A Stateful Method for Preventing Collusion Attack

The OFT scheme will be modified such that the timestamp ¢, records the time that the
current node was last updated, and each pair < ¢, f,; > records the time interval in which
some evicted node knows the blinded node key of the current node. For example, Figure
14 shows such a modified OFT tree. Due to space limitation, only the three nodes 1, L,
and R have part of their timestamps shown in the figure. In the example, nodes 4, B, and

D were evicted at time ¢4, 15, and ¢p, respectively. Another node C joined at time 7. Node

42

R was only updated once between #4 and 5, and the update happened at time #,. Node 1
was last updated at time ¢;, which is before 5 (¢, is equal to either £, or £3). In the table
attached to R, the timestamp ¢, records the time of its last update. The first pair < z4, £, >
records the fact that node 4 knows the value yg/t4 ;. The second pair < 75— > records
that B knows the value yg/fg—; (that is, the value of yx from 75 until now). In the table
attached to 7, ¢, is the last update time of I, and < #p,— > records that node D knows the

value yyfp ;. In the table of L, the timestamp 3 records the time of its last update.

The OFT scheme is modified as follows to update the timestamps and to stop collusions
when they become possible. When a node v is evicted at time ¢, the key manager will also
insert a pair < £,— > into each sibling node along the path of v to the root. For example, in
Figure 14 the pair < #5,— > is inserted to the table attached to node R when node B is
evicted at time 73 because R is a sibling of L and L is on the path of B to the root. After a
node v joins the group, the key manager will check if v can collude with any previously
evicted node to compute any node key along the path of v to the root. In Figure 14, after
the node C joins the group, for each node on the path of C to the root (excluding C), the
key manager needs to do the following. Taken R as an example, the key manager will
check whether the intersection [t3,—] N ([t4 t] U [tg —]) is empty. If the intersection is
not empty, then the node key x; will be updated, such that C can no longer collude with 4
and B to compute the node key x; (in applications where only the root’s key needs to be

secure, the key manager can ignore the collusion of a subgroup key here).

Whenever the key manager updates the node key of a node v, regardless of the reason of

this update, it will take following two additional actions. First, it will change the

43

corresponding timestamp #, associated with v to be the time of the current update. Second,
it will scan all pairs of timestamps associated with v and change every dash in these pairs
to the current time. The second action records the fact that the key update has invalidated
the evicted node’s knowledge about this node key. For example, in Figure 14 when the
node 4 leaves, a pair < #4,— > is inserted into the table attached to R. Later at time ¢, the
node key R is updated for some reason, and the dash in < #4,— > is replaced by the
current time #,, leading to the pair < z4, #, > shown in the figure. This reflects the fact that

A no longer knows the new node key of R after time #,.

An Improved Method With Linear Storage Requirement:

The stateful method keeps all necessary information for checking possible collusions.
This requires the key manager to build up an infinitely increasing list of evicted nodes,
which is not acceptable in most applications. A closer look at the method reveals that it is
not necessary to keep the whole list, if no collusion is to be tolerated. Actually for each
node, it suffices to only keep at most one pair of timestamps (plus the timestamp for its
last update). The storage requirement is thus linear in the size of the key tree, because for
each node at most three timestamps need to be stored. Following two observations jointly

lead to this result.

First, in Figure 14, if t4 < t3 < 1,, then after B is evicted the list of timestamps associated
with R will be < t4,— >,< t— >. However, the pair < f— > is redundant and can be
removed because [tz —] is a subset of [ty,—]. In another word, after the first pair of
timestamps with a dash appears in the list, no other pair of timestamps needs to be stored

until the next key up date happens to the current node. Second, suppose in Figure 14 14 <

44

t; < tgis true, so none of < #4,— > and < tz— > is redundant. We then have that ¢, < ¢ <
13 (tp < 13 holds, because #; is the time when x; is last updated and the eviction of B will
update x;). Now that we know #, < 13, the pair < ¢4, #, > can be safely removed, because

the interval /2,4 #,] will never have a non-empty intersection with /3, —/.

Based on these two observations, we modify the eviction operation and key update
operation of the stateful method as follows. First, when a node v is evicted at time ¢ and a
pair of timestamps < #,— > is to be inserted into each sibling node along the path of v to
the root, the key manager inserts this pair only if the pair of timestamps already
associated with v does not contain a dash. Second, whenever the node key of a node v is
updated, the key manager deletes any pair of timestamps associated with the sibling of v
that does not contain a dash. For example, in Figure 14 if another node in the subtree with
root R’ is evicted after 7, but before I is updated, then nothing will be inserted into the
table shown in the figure. If I is updated and the dash in < #p,— > is replaced, then this

new pair will stay until the next key update in the subtree with root R".

3.4 Experimental Results

This section compares the average communication overhead of our solution, the LKH
scheme, the original OFT scheme, and Ku and Chen’s modified OFT scheme. Among the
four schemes, the original OFT scheme is vulnerable to collusion attacks, and it is
included as a baseline to show the additional overhead for preventing collusion attacks.
Both our scheme and the modified OFT scheme by Ku and Chen can prevent collusion

attacks. The keys in an LKH key tree are independently chosen, so LKH is not vulnerable

45

to the collusion attack discussed in previous sections. We expect our scheme to
outperform Ku and Chen’s scheme in most cases, because the latter has a quadratic
broadcast size for every eviction operation. We also expect our scheme to have a smaller

average-case broadcast size than the LKH scheme in some cases.

The communication overhead is measured as the total number of keys broadcasted during
a random sequence of joining and eviction operations. We do not consider the unicast of
keys to a new member. As discussed in previous sections, collusions depend critically on
the order of joining and eviction operations (on the other hand, the specific time duration
between these operations is not significant). Starting from an initial key tree of G nodes, a
sequence of totally N operations are performed using each of the four schemes. The
probability that each operation is the eviction of a member is P (and that of a joining
operation /—P). As required by the OFT scheme, the position for each joining operation
is chosen to be a leaf node closest to the root. For each eviction operation, the node to be

evicted is randomly chosen among all existing leaf nodes.

Figure 15 shows the total broadcast size (the number of keys to be broadcasted) versus
the size of the key tree. Totally 20000 operations are performed (about half of them are
evictions). As expected, the communication overhead of our solution is much less than
that of Ku and Chen’s scheme (their scheme broadcasts about five times more keys).
Compared to the original OFT scheme, our scheme only has small additional overhead
until the key tree size increases over 20000 nodes. The broadcast size of our scheme is
also smaller than LKH when the key tree size is smaller than 40000. Table 1 shows a

more detailed comparison between the two schemes.

46

P=0.5, N=20000

—— LKH —#— OFT —&— KU&CHEN —#— Our Solution

1. E+Q7
]
-~
w2
iy
wn
<
[®]
= 1.E+06
o]
—~
(am]
—
(o]
o
Q
Sl

1. E+05

Q N
S S
S S S
v N D

Group Size (G)

Figure 15 : The Broadcast Size vs. Key Tree Size

Key Tree Size 2000 { 5000 | 8000 | 10000 | 20000 | 40000 | 60000 | 80000

100000
Our Solution/LKH | 0.59 | 0.60 | 0.62 | 0.70 0.84 1.08 1.61 2.19 2.24
No. of Collusion 242 | 1063 | 2113 | 5154 | 10385 | 18991 | 38417 | 54720 | 61799
Tree Height 10 12 12 13 14 15 15 16 16

Table 1 : Comparing Broadcast Size of Our Solution to LKH

For larger key trees, our scheme is less efficient than LKH. As shown in the second row

of Table 1, the broadcast size of our scheme is about double the size of LKH when the

key tree has 80000 or more nodes. This can be explained by the fact that more collusions

47

are possible in a larger tree as shown in Table 1, and the larger height of the tree also
increases the number of keys to be broadcasted upon each key update. Ku and Chen’s
scheme also has a similar trend as ours, which confirms that to prevent collusion attacks,
both modified OFT schemes are less scalable than LKH. However, because our scheme
only performs additional key updates when necessary, the broadcast size for each
operation is already minimal. This indicates an inherent disadvantage of using
functionally dependent keys in the face of collusion attacks. For large groups where

perfect forward and backward security is important, the LKH scheme will be a better

choice.
G=10000, P=0.5
—— [LKH = OFT —— KU&CHEN —-#NEW Solution
& 1. E+07
>
-
< 1.E+06
Q
S
<
3
& 1.E+05
=
+
< 1. E+04
Q Q Q Q Q Q Q Q
\) \) Q Q Q Q S \) \)
Number of Operations (N)

Figure 16 : The Broadcast Size vs. the Number of Operations

48

Figure 16 shows the total broadcast size versus the number of operations, with about half
of the operations being evictions, on a key tree with 70000 keys. Because collusion
attacks depend on the order of operations but not on the specific time durations, we can
also regard the number of operations as the intensity of operations, thus, Figure 15 and
Figure 16 also show the broadcast size versus the degree of group dynamics. The
broadcast size of all four schemes increases with the number (intensity) of operations.
The original OFT scheme, the LKH scheme, and our modified OFT scheme all scale in
roughly the same manner, whereas Ku and Chen’s scheme is less scalable. The column
chart inside Figure 15 and Figure 16 show the total number of collusions. Interestingly,
while the number of collusions remains roughly the same when the number of operations
goes over 6000, Ku and Chen’s scheme still shows a significant increase in the broadcast
size, because their scheme requires additional key updates for every eviction operation
even when such operation do not cause collusion (in contrast, our scheme scales in the

same way as the original OFT).

Figure 17 and Figure 18 show the total broadcast size versus the ratio of evictions among
all operations. The two experiments differ in the key tree size and in the total number of
performed operations. In both experiments, the original OFT scheme and the LKH
scheme have a constant broadcast size because in both schemes the joining and eviction
require the same amount of keys to be broadcasted. The broadcast size of Ku and Chen’s
scheme increases linearly in the ratio of eviction, because their scheme requires
additional key updates and hence additional broadcasted bits on every eviction operation
but not on the joining operation. Our scheme shows an interesting pattern. The broadcast

size first increases with the eviction ratio and then decreases after the ratio reaches about
49

40%. Because a collusion requires both joining nodes and evicted nodes, the total number
of collusions reaches a maximal value when about half of the operations are evictions.
The maximal broadcast size shifts a little to the left (40% instead of 50%) because our
scheme requires additional key updates for joining nodes, but not for evicted nodes. Each

joining node thus contributes to the overall broadcast size slightly more than an evicted

node does.
G=10000, N=10000
—— LKH —#— OFT —— KU&CHEN —# Qur Solution
o 1.E+07
N
ot,y—{)
+
9]
&
]
= 1.E+06
o
~
[aa)
e
-
o
&= 1.E+05
30% 40% 50% 60% 70%
Percentage of Eviction (P)

Figure 17 : The Broadcast Size vs. the Ratio of Eviction (Case 1)

50

G=5000, N=3000

—— LKH = OFT —— KU & Our Solution

1. E+06

1. E+05

Total Broadcast Size

1. E+04

10% 20% 30% 40% 50% 60% 70% 80% 90%

Percentage of Eviction (P)

Figure 18 : The Broadcast Size vs. the Ratio of Eviction (Case 2)

51

Chapter 4

Preventing Collusion Only for Group

Key

In this chapter, we consider the case where only the group key needs to be protected. We

show that better performance results can be obtained under this relaxed requirement.

4.1 Motivation

Last chapter proposes a method for preventing collusion attacks on the OFT scheme. The
method has an improved performance over Ku and Chen’s scheme. This performance
gain is due to the fact that our method causes additional key updates only when attacks
become possible. However, a closer look reveals that the method is still a conservative
approach because we prevent the disclosure of any node keys. To reéall the method in
Chapter 3, when a node joins, we follow its path to the root and check the intersection
between the node’s knowledge and leaving nodes’ knowledge. Upon observing a non-

empty intersection, we immediately invalidate the joining node’s knowledge through

52

additional key updates. While this approach can provably prevent any collusion from
ever becoming a reality, it is unnecessarily restrictive in some applications. As a matter of
fact, both the original LKH and OFT schemes focus on protecting the root’s key, i.e., the
group key. In some applications, some sub-groups may also be used for secure
communications and thus need to be protected. Our solution in Chapter 3 certainly can
handle these situations. However, for other cases where only the group key is relevant to
security, the previous solution becomes inefficient. Notice that in Chapter 3, the
performance overhead of our method is mainly due to additional key updates for
preventing collusions. If we choose to tolerate collusion attacks on irrelevant sub-group
keys (keys of non-root nodes) and only to protect the group key (key of the root node), it
is clear that the performance can be significantly improved. From this perspective, the
comparison between the efficiency of our solution and that of LKH and the original OFT
given in Chapter 3 is not fair since our solution protects all sub-group keys while the
other two only protect the group key. This motivates us to develop new methods to
protect only the group key. The rest of this chapter presents details of the solution, a

sample case analysis, and the experimental results on communication cost comparison.

4.2 The Solution

At first glance, it may seem trivial to keep the group key secure since we can just check
the time stamps saved in the root node’s two children nodes. If collusion is possible upon
the joining of a group member, we apply the same key updates introduced in the last
chapter to prevent the collusion. Unfortunately, the above solution is not valid. Figure 19

explains why this straightforward implementation is wrong.

53

P Fe--== - Y
(2. 7] [t5, t6]
? y [t} t8]
2 3 T]
|
ix | Y
[2.7] pF——rr—=SDcdl -1 1,0
2.7 [t3, t4]

\ >
/ \ / N / \
\ T
Alice

/ \ / N, /
Figure 19 : Propagation of Collusion

In Figure 19, when Alice joins the group at time Y, Alice will know the blinded key of
node 6 after time ¢, the last update time for node 6, denoted as /7,,-/; the blinded key of
node 2 after time £, denoted as /1,-/; the key of node /, 3 and 7 after the joining time Y.
Assume Alice will collude with other leaving nodes who possess the knowledge about
the blinded key of node 7 for some time periods [t;, 12/ and [t3 t,]. Then the collusion
will enable Alice to learn the key of node 3 for 77 = [t,,--] N~ ([t;, t2] U [t3, t4]). Such
collusion adds to the knowledge that leaving nodes under nodes 4 and 5 may already
possess for, say, time periods [ts, ts] and [t;, ts]. If we had only looked the tables attached
to node 2 and 3 for potential collusion, then we may miss the additional intersection
between 7" and [t,,-/ (that is, Alice’s knowledge about the blinded key of node 2), which

leads to the compromise of the key of node /, that is the group key. This example shows

54

that collusion may potentially propagate upwards and lead to the compromise of the

group key.

To make sure that we can identify all possible compromises of the group key and to take
actions for preventing them, we adopt the following approach. After a new member joins
the group, we will check for collusion for every node along the joining node’s path to the
root. If we find collusion for a certain time period in a sub-group key, we record this fact
as a pair of timestamps in the same way as we record the knowledge brought out by
leaving nodes. Indeed, the knowledge obtained through collusion has no difference from
the knowledge of leaving nodes from our point of view. If no collusion for a sub-group
key is found, we do not stop since collusion may become possible again at a higher level.
We repeat this process until reaching the root node. At this point, we will determine
whether the group key is compromised, and if so we will update the group key’s sibling
to prevent its compromises. In Figure 19, after Alice joins the group at time Y we first
check for collusion with knowledge about node 6 and 7 blinded keys. If we find collusion
for a non-empty time interval 7’ we then record 7’ as a pair of timestamps in the table
attached to node 3, which is the parent node of node 6 and 7. We then move one level up
and check for collusion between the knowledge about the blinded keys of node 2 and 3
(includi;lg that for 7). If T is not empty, we will need to update the key of node 2 to

prevent the compromise of the key of node /, that is the group key.

As mentioned in Chapter 3, each node in the binary key tree only needs to keep one pair
of time stamps to record the information disclosed to leaving group members. However,

due to the propagation of collusion, we shall need to record multiple time stamps in the

55

table attached to each node. The storage requirement will be similar to the stateful
method introduced in Chapter 3. We implement the tables using an array and resize it by

doubling the allocated space once it becomes full.

4.3 Case Study

To demonstrate the method introduced in the previous section, we describe a case study
of a group of 51 members with a random sequence of joins and leaves of members. The
following shows our program outputs in a few segments. For each segment, we illustrate
the outputs through figures and detailed explanations. This case study will clearly show

how our method deals with the propagation of collusion along the key tree.

In Figure 20, when node 54 joins to node 27 at time 276, the time stamps of all nodes
along the path from node 54 to the root node / will be updated. Specifically, the time

stamps of node 27, 13, 6, 3, and I are updated.

In our implementation, we use a 2 x N array to record the timestamps for each node. The
last updated time of the node is written to the first location of the array, represented as
info[0][0]. Every time, if the key of the node needs to be changed because of the group
membership chang, we update info/0][0] right away. Once a group member is evicted
from the group, the current time is written to the timestamps array of all its sibling nodes
on a specific location, info/x][0]. Once the key of the node is changed and the info/x][1]
in its timestamps table is empty, the current time is written to info/x][1]. For example, at

time 276, Table 2 shows the node 6 has following 26 pairs of timestamps.

56

276

276

7\

Alice [

Figure 20 : Time Stamp Update When Node 54 Joins the Group

In Table 2, line 25, Node 6--info[24][0]-[24][1] : 260 --> 262, means that in the
timestamps table of node 6, the 24™ time period record for the evicted node is from time

260 to time 262. This implies that an evicted node knows the key of node 6 between time

260 and time 262.

57

Time Stamps in Node 6 Time

1 Node 6--info[0][0]-[0][1] : 276 >0

2 Node 6--info[1][0]-[1][1] : 102 --> 109
3 Node 6--info[2][0]-[2][1] : 114 --> 115
4 Node 6--info[3][0]-[3][1] : 120 --> 125
5 Node 6--info[4][0]-[4](1] : 128 --> 132
6 Node 6--info[5][0]-[5][1] : 126 --> 132
7 Node 6--info[6][0]-[6][1] : 136 --> 137
8 Node 6--info[7)[0)-[7][1] : 140 --> 145
9 Node 6--info[8][0]-[8][1] : 137 --> 145
10 Node 6--info[9][0]-[9][1] : 156 --> 159
11 Node 6--info[10][0]-{10]{1] : | 160 > 163
12 Node 6--info[11][0)-[11][1] : | 167 --> 168
13 Node 6--info[12][0]-[12][1] : | 179 --> 180
14 Node 6--info[13][0]-[13][1] : | 181 > 183
15 Node 6--info[14][0]-[14][1]: | 187 --> 189
16 Node 6--info[15][0]-[15][1] : | 193 --> 194
17 Node 6--info[16][0]-{16][1] : | 196 --> 199
18 Node 6--info[17][0]-[17][1] : | 203 --> 205
19 Node 6--info[18][0]-{18][1] : | 206 --> 207
20 Node 6--info[19][0}-[19][1] : | 212 > 214
21 Node 6--info[20][0]-[20][1] : | 225 --> 226
22 Node 6--info[1][0]-[1][1] : 239 --> 240
23 Node 6--info[22][0]-[22][1] : | 245 --> 246
24 Node 6--info[23][0]-[23][1] : | 249 --> 254
25 Node 6--info[24][0]-[24][1] : | 260 --> 262
26 Node 6--info[25][0]-[25][1] : | 247 --> 254
27 Node 6--info[26][0]-[26][1] : | 273 --> 274

Table 2 : Time Stamps in Node 6 at Time 276

58

After node 54 joins node 27 at time 276, the key update algorithm will check for
collusion at each level along the path from node 54 to the root node /. Figure 21 shows
there are more than one collusion time periods when we compare all the timestamps
saved in node 6 and node 7, which represents the knowledge of node 54 after it joins the

group. Once the collusion time period has been calculated, it is copied to the timestamps

table of the parent node.
1
-
/f @
276
3
f
/(261, 262)
/ (273, 274)
276 261
6 /7 (7))«
260 262 /
247 254 VAN 2N
973 274 ﬁ“*{*“"'—;“““:
7 “ e N

Figure 21 : Adding Collusion Time Periods to Node 3

At time 276, the time of sibling node of node 54 (the last update time of the sibling node
7) is 261. As the original OFT scheme requires, the node 54 will have the knowledge of
the blinded key of node 7 because node 7 is one of its sibling nodes. Although node 54
joined at time 276, it has the key knowledge of node 7 since time 261, because the key of
node 7 has never been updated after time 26/. By comparing all timestamps in node 6 (in

Table 2), we find the time period 260 = 262 in line 25 of Table 2 and 273 274 in line
59

27 of Table 2 overlap the time period of the sibling, that is 26/ to now. The intersections
are 261 = 262 and 273 2 274. The time period 260 = 262 recorded in node 6 means the
key of node 6 between time 260 and 262 is known by leaving group members. If the
newly joined node 54 colludes with those leaving group members, it will be able to learn
the key of node 6 between time 260 and 262. Obviously, node 54 can combine his
knowledge about the blinded key of node 7 after time 261, and the blinded key of node 6
between 260 and 262 to get the key of node 3 between time 261 and 262, which node 54
is not supposed to know. Following the same reasoning, node 54 can collude with leaving
nodes to obtain the key of node 3 between time 273 and 274. Therefore, the two collusion
time periods for the key of node 3, 261 2 262 and 273 - 274 should be copied to the

time table of node 3, as shown in Figure 21.

Node 6 is one of the sibling nodes of node 29. At time 277 (line / in Table 3), when node
29 left the group, time period /277, -] (line 3 in Table 3) has been inserted to the time
table of node 6, which means that if the key of node 6 doesn’t change, node 29 always
knows the key of node 6 after time 277. At time 279 (line 7 in Table 3), node 48, which is
one of the subordinate nodes of node 6, left the group; the key of node 6 is updated. One
of the time period records in node 6, /277, -] (line 3 in Table 3) has been updated to be
[277, 279] (line &8 in Table 3). That means leaf node 29 can only know the key of node 6

from time 277 to 279 because node 6 changed its key at time 279 (Figure 22).

60

277/278/279

Pt
- - -
- 2777279
(3
276/279 277

260 262
247 254 6
273 274
277 0/279 :

279 '

FARY
A
24 25

Figure 22 : Time Stamp Update at Node 6 When Node 48 and 29 Are Evicted

Log of Group Update

1 At time 277, node 29 left.

2 Node 29 left; update all its path node 7 info[24][1] to: 277

When node 29 left, update its sibling node 6 info[27][0]--[1] to: 277--11

When node 29 left, update its sibling node 2 info[67][0]--[1] to: 277--11

At time 278, new node joins node 14.

At time 279, node 48 left.

0 |IN | (U |W

Node 48 left; update all its path node 6 info[27][1] to: 279

Table 3 : Log of Group Update

61

Time Stamps in Node 12 Time

1 At time 285, new node joins node 24.

2 Node 12--info[0][0]-[0][1] : 285 -->0
3 Node 12--info[1][0]-[1][1] : 115 --> 119
4 Node 12--info[2][0]-[2][1] : 132 --> 134
5 Node 12--info[3][0]-[3][1] : 145 --> 150
6 Node 12--info[4][0]-[4][1] : 160 --> 163
7 Node 12--info[5][0]-[5][1] : 155 --> 159
8 Node 12--info[6][0]-[6][1] : 167 --> 171
9 Node 12--info[7][0]-[7]1[1] : 187 --> 189
10 | Node 12--info[8][0]-[81[1] : 193 --> 194
11 Node 12--info[9][0]-[9][1] : 203 --> 205
12 Node 12--info[10][0]-[10][1] : 208 --> 220
13 | Node 12--info[11][0]-[11][1] : 222 --> 226
14 Node 12--info[12][0]-[12][1] : 228 --> 233
15 Node 12--info[13][0]-[13][1] : 246 --> 254
16 | Node 12--info[14][0]-[14][1] : 237 --> 238
17 Node 12--info[15][0]-[15][1] : 272 --> 274
18 | Node 12--info[16][0]-[16][1]: | 280 --> 282
19 Node 12--info[17][0]-[17][1] : | 283 --> 284

Table 4 shows all the timestamps in node /2 at time 285. Similar to the Table 2, there are
two collusion time periods in the time table of node /2. At time 285 (line / in Table 4), a
new member joined node 24, which is the child node of node /2. When the checking for
collusions arrives to the level of node 12, the sibling node is /3 (line 20 in Table 4). The

last updated time of the sibling node is 276 (line 20 in Table 4). By comparing timestamp

62

Table 4 : Time Stamps in Node 12 at Time 285

[276, -] and all timestamps in node /2, we obtain two collusions: /280, 282] (line 18 in
Table 4) and /283, 284] (line 19 in Table 4). That means the newly joined group member
can collude with other leaving members to obtain the key of node 6 between time /280,
282] and [283, 284]. We need to add two timestamps to the time table of node 6 and

update its sibling node /3 at the same time, as illustrated in Figure 23.

285
- - - ” |
- 285
3
285
'TE] anx \
260 262
247 254
273 274
277 279 6
280 282 [N\ / _
283 284 |yc T, I\
e - TN
v‘ * .
*
12 285 (13 276
L4 : - ' ann
! : aaw baw '
s 280 282 |/ !\
, Ny 283 284 /A
24 25
PN FERY
A
(55
Aliceﬂ

Figure 23 : Adding Collusion Time Period to Node 6

At this point, we can conclude that the collusion in /280, 282] (line /8 in Table 4) and

[283, 284] (line 19 in Table 4) in node 6 have been propagated from node /2.

63

Time Stamps in Node 6 Time

1 Node 6--info[0][0]-[01[1] : 285 -->0

2 Node 6--info[1][0]-[1][1] : 102 --> 109
3 Node 6--info[2][0]-[2][1] : 114 --> 115
4 Node 6--info[3][0]-[3][1] : 120 --> 125
5 Node 6--info[4][0]-[4][1] : 128 --> 132
6 Node 6--info[5][0]-[5][1] : 126 --> 132
7 Node 6--info[6][0]-[6][1] : 136 --> 137
8 Node 6--info[7][0]-[7][1] : 140 --> 145
9 Node 6--info[8][0]-[8][1] : 137 --> 145
10 Node 6--info[9][0]-[9]1[1] : 156 --> 159
11 Node 6--info[10]{0]-[10][1] : 160 --> 163
12 Node 6--info[11][0]-[11][1] : 167 --> 168
13 Node 6--info[12][0]-[12][1] : 179 --> 180
14 Node 6--info[13][0]-[13][1] : 181 --> 183
15 Node 6--info[14][0]-[14][1] : 187 --> 189
16 Node 6--info[15][0]-[15][1] : 193 --> 194
17 Node 6--info[16][0]-[16][1] : 196 --> 199
18 Node 6--info[17][0]-17][1] : 203 --> 205
19 Node 6--info[18][0]-[18][1] : 206 --> 207
20 Node 6--info[19][0]-[19][1] : 212 --> 214
21 Node 6--info[20][0]-[20][1] : 225 --> 226
22 Node 6--info[1][0]-[1][1] : 239 --> 240
23 Node 6--info[22][0]-[22][1] : 245 --> 246
24 Node 6--info[23][0]-[23][1] : 249 --> 254
25 Node 6--info[24][0]-[24][1] : 260 --> 262
26 Node 6--info[25][0]-[25]1[1] : 247 --> 254
27 Node 6--info[26][0]-[26]1[1] : 273 --> 274
28 Node 6--info[27][0]-[27][1] : 277 --> 279
29 Node 6--info[28][0]-[28][1] : | 280 --> 282
30 Node 6--info[29][0]1-[29][1] : | 283 --> 284

Table 5 : Time Stamps for Node 6 at Time 285

64

By comparing the Table 5 and Table 2, we find three more collusions in /277, 279] (line
28 in Table 5), [280, 282] (line 29 in Table 5), and /283, 284] (line 30 in Table 5). As we
explained above, the /277, 279] is due to the fact that node 29 left group at time 277 and
node 48 left at time 279. On the contrary, the time periods /280, 282], and [283, 284] are

inherited from node /2 when node 48 joins the group at time 2835.

4.4 Experimental Results

In this section, we compare the average communication overhead of our extended
solution to the LKH algorithm, the original OFT scheme, and the modified OFT scheme
proposed by Ku and Chen. It is clear that our extended solution will be more efficient
compared to the modified OFT scheme proposed by Ku and Chen in terms of
communication cost. We expect our method to be less efficient than the original OFT
scheme since we need to prevent collusion attacks. The solution proposed in Chapter 3
secures all subgroup keys and as a result, it is more efficient than LKH for small groups
but is less efficient for large groups. On the other hand, the solution introduced in this
chapter only secures the group key. Therefore, we expect this new solution to exhibit

better performance. Figure 24 shows the broadcast size versus the key tree size.

Compared to LKH, our solution is always more efficient in terms of communication cost,
regardless of the size of the group. Similar to the solution in Chapter 3, the extended
solution is slightly less efficient than the original OFT. That is obvious because the
extended solution is based on the original OFT algorithm but tries to fix the security

problem of original OFT; therefore, it will incur communication overhead.

65

1. E+07

1. E+06

Total Muticast Cost

1. E+05

1500

N = 20000

—o— LKH —— OFT —#— KU&CHEN — Our Solution

2000

4000

8000

10000

Binary Tree Size (G)

15000 20000 40000

Table 6 shows a more detailed

extended solution.

Figure 24 : Broadcast Size vs. Key Tree Size

comparison between the two schemes: LKH and the

Key Tree Size 1500 | 2000 | 4000 | 8000 | 10000 | 15000 | 20000 | 40000 | 50000
Extended

0.68 | 0.68 | 0.69 | 0.69 | 0.69 0.69 0.69 0.69 0.70
Solution/LKH
Collusion Times | 7125 | 7353 | 7584 | 7680 | 7605 | 7782 | 7676 | 7738 | 7895
Tree Height 11 11 12 13 14 14 15 16 16

Table 6 : Comparing Broadcast Size of Extended Solution to LKH

Even for large groups where forward and backward security is important, we still can use

the extended solution to replace LKH algorithm because it has lower rekeying

communication cost than LKH.

66

Figure 25 shows the total broadcast size versus the number of operations, with about half
of the operations being evictions, in a key tree with 70000 keys. The result is similar to
the solution in Chapter 3. The only difference is that in this extended solution, the total
broadcast size is always smaller than in the LKH. Figure 25 also shows the broadcast size
versus the degree of group dynamics. The broadcast size of all four schemes increases
along with the number (intensity) of operations. The original OFT scheme, the LKH
scheme, and the extended solution all scale in roughly the same manner, whereas the

scheme proposed by Ku and Chen is less scalable.

P=0.5, G=10000
—a— Extended Solution —e— LKH —=— OFT —m— KU&CHEN
1. E+07
N
=~ 1. E+06
)
0
®
Q
K
<)
<
m
®
E 1. E+05
1. E+04
1000 2000 3000 5000 6000 8000 10000 15000 20000
Number of Operations (N)

Figure 25 : Broadcast Size vs. Number of Operations

67

Figure 26 and Figure 27 show the total broadcast size versus the ratio of evictions among
all operations. The two experiments differ in the key tree size and the total number of
performed operations. In both experiments, the OFT scheme and the LKH scheme have a
constant broadcast size because in both schemes, the joining and eviction require the
same amount of keys to be broadcasted. The broadcast size of the scheme proposed by
Ku and Chen increases linearly in the ratio of eviction because their scheme requires
additional key updates, hence additional broadcasted bits on every eviction operation (but
not on the joining operation). Regarding the results, the only difference between these
two solutions (that is, securing group key or securing subgroup key) is that the extended

solution (securing group key) always has less communication cost than LKH, no matter

what the eviction ratio is.

G=10000, N=10000

—— LKH =— OFT =— KU = Extended Solution

1. E+07
(]
N
E;{)
+
n)
(4]
Q
2 1.E+06
O
g
aa]
—
®
+
Qo
S
1. E+05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Percentage of Eviction (P)

Figure 26 : Broadcast Size vs. Ratio of Eviction (Case 1)
68

G = 5000, N = 3000

t—o— LKH —=— OFT —— KU —m— Extended Solution

4. E+05

Total Broadcast Size

1. E+04

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage of Eviction (P)

Figure 27 : Broadcast Size vs. Ratio of Eviction (Case 2)

69

Chapter 5

Conclusion and Future Work

In this thesis, we studied collusion attacks on the one-way function tree (OFT) scheme.
The OFT scheme achieves a halving in broadcast size in comparison to the LKH scheme.
However, OFT’s approach of using functionally dependent keys in the key tree also
renders the scheme vulnerable to collusion attacks between evicted members and joining

members. Throughout this thesis,

e We have generalized previous observations made by Horng and Ku ef al. [46] into a
generic collusion attack on OFT. This generalization also gave a necessary and
sufficient condition for the collusion attack on OFT. The previous work by Horng
and Ku et al. have only described specific examples of collusion attacks involving
two or three colluding nodes but left the general case open [22]. Our results show

exactly what can be computed by an arbitrary collection of joining and evicted nodes.

e Based on this condition, we have proposed a modified OFT scheme. The scheme is

immune to the collusion among an arbitrary number of joining and evicted members.

70

It also minimizes the broadcast size for each operation. The scheme secures the
group key and all subgroup keys which can achieve perfect forward and backward
security. The scheme has a storage requirement proportional to the size of the key
tree. Experiments show that our scheme has smaller communication overhead than
the LKH scheme for small to medium groups. For large groups, the increasing

number of collusions renders the OFT scheme a less efficient choice than LKH.

e By relaxing the security requirement for our algorithm, we presented an extended
solution that secures only the group key. This solution is more efficient than LKH

algorithm in any case no matter how many members the groups have.

Some of the results presented in chapter 3 have been published in [47].

Based on the research elaborated in this thesis, further studies can be conducted in the

following directions:

e When the compromise of some sub-group or group keys happens, one may not only
update the compromised key, but also figure out who collude with whom, and during
which specific time period the key was compromised or exposed. After getting such

detailed information, we can twist our algorithm to achieve higher efficiency.

e We can apply OFT to key graph or N degrees key tree, study the general collusion
attack for OFT on key graph or N degrees key tree and propose a secure rekeying

algorithm based on OFT on key graph or N degrees key tree.

71

e The performance of the proposed solutions can be studied under different statistical

models of the eviction and joining operations.

e The proposed solution can be studied in the decentralized setup.

72

References

[6]

[7]

(8]

D. M. Balenson, D. A. McGrew, and A. T. Sherman, “Key Management for Large
Dynamic Groups: One-Way Function Trees and Amortized Initialization,”
InternetDraft (work in progress), Internet Engineering Task Force, draft-irtf-smug-
groupkeymgmt-oft-00.txt., August 2000.

M. Baugher, R. Canetti, L. Dondeti, and F. Lindholm, “Multicast Security (MSEC)
Group Key Management Architecture,” RFC 4046, Network Working Group,
IETF, April, 2005.

B. Briscoe, “MARKS: Zero Side Effect Multicast Key Management Using
Arbitrarily Revealed Key Sequences,” First International Workshop on Networked
Group Communication (NGC), Pisa, Italy, Pages 301-320, November 1999.

R. Canetti, J. Garey, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, “Multicast
Security: A Taxonomy and Efficient Constructions,” in proceedings of IEEE
InfoComm’99, Volume 2, Pages 708-716, March 1999.

R. Canetti, P. Rohatgi, and P. Cheng, “Multicast Data Security Transformations:
Requirements, Considerations, and Proposed Design,” draft-irtf-smugdata-
transforms-00.txt, IRTF, work in progress, June 2000.

R. Canetti and B. Pinkas, “A Taxonomy of Multicast Security Issues,” dracanetti-
securemulticast-taxonomy-00.txt, IETF Internet Draft (work in progress), 1998.

I. Chang, R. Engel,D. Kandlur, D. Pendarakis, and D. Saha, “Key Management for
Secure Internet Multicast Using Boolean Function Minimization Techniques,” in
proceedings of IEEE INFOCOM, New York, March 1999.

W. Chen, and L. R. Dondeti, “Recommendations In Using Group Key
Management Algorithms,” In Proceedings of DARPA Information Survivability
Conference and Exposition 2003, Volume 2, Pages 222-227, April 2003.

73

[%]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono, D. Kiwior, J. Kurose, D.
Towsley, S. Vasudevan, and C. Zhang, “Secure Group Communications For
Wireless Networks,” in proceedings of the MILCOM, June 2001.

W. H. Desmond Ng, M. Howarth, Z. Sun, and H. Cruickshank, “Dynamic
Balanced Key Tree Management for Secure Multicast Communications,” IEEE
Transactions on Computers, Volume 56, No.5, Pages 590-605, May 2007.

W. H. Desmond Ng, H. Cruickshank, and Z. Sun, “Scalable Balanced Batch
Rekeying for Secure Group Communication,” Computers & Security, 25(4), Pages
265-273, 2006.

P. T. Dinsmore, D. M. Balenson, M. Heyman, P. S. Kruus, C. D. Scace, and A. T.
Sherman, “Policy-Based Security Management for Large Dynamic Groups: An
Overview of the DCCM Project,” in proceedings of the DARPA Information
Survivability Conference & Exposition, Vol. I of II (DISCEX), Hilton Head, SC,
Pages 64-73, January 2000.

C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment
Issues for the IP Multicast Service and Architecture,” IEEE Network, Special Issue
on Multicasting, January/February 2000.

J. Fan, P. Judge, and M. Ammar, “HySOR: Group Key Management with
Collusion-Scalability Tradeoffs Using a Hybrid Structuring of Receivers,” in
proceedings of the IEEE International Conference on Computer Communications
Networks, Miami, 2002.

T. Hardjono, R. Canetti, M. Baugher, and P. Dinsmore, “Secure IP Multicast:
Problem areas, Framework, and Building Blocks,” draft-irtf-smug-framework-
01.txt, Secure Multicast Group (SMuG) of the IRTF, September, 2000

T. Hardjono and L. R. Dondeti, Multicast and Group Security, Artech House, 2003.

T. Hardjono and B. Weis, “The Multicast Group Security Architecture,” RFC 3740,
Network Working Group, IETF, March, 2004

H. Harney, A. Colegrove, E. Harder, U. Meth, and R. Fleischer, “Group Secure
Association Key Management Protocol,” draft-ietf-msec-gsakmp-sec-00.txt, IETF,
work in progress, March 2001.

H. Harney and E. Harder, “Logical Key Hierarchy Protocol,” Internet Draft (work

in progress), draft-harney-sparta-lkhp-sec-00.txt, Internet Engineering Task Force,
Mar. 1999.

74

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

H. Harney, C. Muckenhirn, and T. Rivers, “Group key management protocol
architecture,” IETF, RFC2093, 1997.

M. H. Heydari, L. Morales, and 1. H. Sudborough, “Efficient Algorithms for Batch
Re-Keying Operations in Secure Multicast,” in proceedings of the 39th Annual
Hawaii International Conference on System Sciences, HICSS 2006, Volume 9,
Pages 218b-218b, January 2006.

G. Horng, “Cryptanalysis of a Key Management Scheme for Secure Multicast
Communications,” IEICE Trans. Comm., Volume E85-B, No. 5, Pages 1050-1051,
2002.

H. Khurana, R. Bonilla, A. Slagell, R. Afandi, H. S. Hahm, and J. Basney,
“Scalable Group Key Management with Partially Trusted Controllers,” in
proceedings of International Conference on Networking, 2005.

W. C. Ku, and S. M. Chen, “An improved key management scheme for large
dynamic groups using one-way function trees,” in proceeding of 2003 International
Conference on Parallel Processing Workshops, 2003, Pages 391-396, Oct. 2003.

D. Kwak, S. Lee, J. Kim, and E. Jung, “An Efficient Key Tree Management
Algorithm for LKH Group Key Management,” The International conference on
Information Networking 2006 (ICOIN 2006), Springer-Verlag Lecture Notes in
Computer Science, Volume 3961, Pages 703-712, January 2006.

M. Li, R. Poovendran, and D. McGrew, “Minimizing center key storage in hybrid
one-way function based group key management with communication constraints,”
Information Processing Letters, Volume 93 , Issue 4, Pages 191-198, February
2005.

J. C. Lin, F. Lai, and H. C. Lee, “Efficient Group Key Management Protocol with
One-Way Key Derivation,” in proceedings of The 2005 IEEE Conference on Local
Computer Networks, Pages 336-343, 2005.

X. X. Liu, M. Yang, and X. K. Wang, “Key Management for Secure Multicast
Communication Using Secret Sharing-Based Revocation Scheme,” ISCIT 2005,
IEEE International Symposium on Communications and Information Technology,
Volume 2, Pages 1309-1313, October 2005.

D. Matthew, J. Moyer, J. R. Rao, and P. Rohatgi, “A Survey of Security Issues in
Multicast Communications,” IEEE Network Magazine, November/December 1999.

P. McDaniel, and A. Prakash, “Ismene: Provisioning and Policy Reconciliation in
Secure Group Communication,” Technical Report CSE-TR-438-00, Electrical
Engineering and Computer Science, University of Michigan, December 2000.

75

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

D. McGrew, A. David, T. Alan, and A. Sherman, “Key establishment in large
dynamic groups using one-way function trees,” TIS Report n0.0755, TIS Labs at
Network Associates, Inc., Glenwood, MD, 1998.

A. J. Menezes, P. C. Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1997.

D. L. Mills, “Network Time Protocol (Version 3) Specification, Implementation
and Analysis” RFC 1305, Network Working Group, IETF, March 1992.

S. Mittra, ‘‘Iolus: A Framework for Scalable Secure Multicasting,’’ in proceedings
of ACM SIGCOMM, Cannes, France, Pages 277-288, September 1997.

M. J. Moyer, J. R. Rao, and P. Rohatgi, “A Survey of Security Issues in Multicast
Communications,” IEEE Network, Pages 12-23, November/December 1999.

G. Noubir, F. Zhu, and A. H. Chan, “Key Management for Simultaneous
Join/Leave in Secure Multicast,” in proceedings of 2002 IEEE International
Symposium on Information Theory, Pages 325-, 2002.

K. Peter, “A Survey of Multicast Security Issues and Architectures,” in
proceedings of 21st National Information Systems Security Conference, Pages
408-420, Arlington, VA, October 1998.

S. Rafaeli and D. Hutchison, “A survey of key management for secure group
communication,” ACM Computing Surveys, Volume 35, No. 3, Pages 309-329,
September 2003.

S. Setia, S. Koussih, S. Jajodia, and E. Harder, ‘‘Kronos: A Scalable Rekeying
Approach for Secure Multicast,’” in proceedings of IEEE Symposium on Security
and Privacy, Oakland, CA, May 2000.

A. T. Sherman, “A proof of security for the LKH and OFC centralized group
keying algorithms,” NAI Labs Technical Report No. 02-043D, NAI Labs at
Network Associates Inc., 2002.

A. T. Sherman, and D. A. McGrew, “Key establishment in large dynamic groups
using one-way function trees,” IEEE Transactions on Software Engineering,
Volume 29, Issue 5, Pages 444-458, May 2003.

M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, ‘“The VersaKey
Framework: Versatile Group Key Management,”” IEEE JSAC Special Issue on
Service Enabling Platforms For Networked Multimedia Systems, Vol. 17, No. 9,
September 1999.

76

[43]

[44]

[45]

[48]

[49]

[50]

[51]

[52]

[53]

D. Wallner, E. Harder, and R. Agee, ‘‘Key Management for Multicast: Issues and
Architectures,’”” RFC 2627(informational), IETF, June 1999.

Y. Wang, J. Li, L. Tie, and Q. Li, “An Efficient Key Management for Large
Dynamic Groups,” CNSR, pp. 131-136, Second Annual Conference on
Communication Networks and Services Research (CNSR'04), 2004.

Y. Wang, J. Li, L. Tie, and H. Zhu, “An efficient method of group rekeying for
multicast communication,” in proceedings of the 6th IEEE Circuits and Systems
Symposium, Pages 273-276, June 2004.

C. K. Wong, M. Gouda, and S. S. Lam, ‘‘Secure Group Communications Using
Key Graphs,”” IEEE/ACM Trans. on Networking, Volume 8, No. 1, Pages 16-30,
February 2000.

X. X. Xu, L.Y. Wang, A. Youssef, B. Zhu, “Preventing collusion attacks on the
one-way function tree (OFT) scheme,” Proc. 5" International Conference on
Applied Cryptography and Network Security (ACNS 2007), Springer-Verlag
Lecture Notes in Computer Science, Vol. 4521, pages 177-193, June 5-8, 2007.

S. Xu, Z. Yang, Y. Tan, W. Liu, and S. Sesay, “An Efficient Batch Rekeying
Scheme Based On Oneway Function Tree,” in proceedings of The IEEE

International Symposium on Communications and Information Technology, Pages
490- 493, 2005.

Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam, ‘‘Reliable Group Rekeying:
Design and Performance Analysis,”” in proceedings of ACM SIGCOMM, San
Diego, CA, August 2001.

X.B. Zhang, S. S. Lam, D. Y. Lee, and Y. R. Yang, ‘‘Protocol Design for Scalable
and Reliable Group Rekeying,”” IEEE/ACM Transactions on Networking (TON),
Volume 11, Issue 6, Pages 908-922, 2003

J. Zhang, Y. Zhou, F. Ma, D. Gu, and Y. Bai, “An Extension of Secure Group
Communication Using Key Graph,” Information Sciences, Volume 176, Issue 20,
Pages 3060-3078, October 2006.

S. Zhu and S. Jajodia, “Scalable Group Rekeying for Secure Multicast: A Survey,”
in proceedings of 5th International Workshop on Distributed Computing, LNCS,
Volume 2918, Pages 1 — 10, 2004.

S. Zhu, S. Setia, and S. Jajodia, “Performance Optimizations for Group Key
Management Schemes,” in proceedings of 23rd International Conference on
Distributed Computing Systems, Pages 163 — 171, May 2003.

77

