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ABSTRACT 

The Stochastic Dominance Valuation of Options under Transaction Costs. Extensions, 

Implementation and Empirical Tests. 

Michal Czerwonko, Ph. D. 

Concordia University, 2008 

In the first essay American call and put options on the S&P 500 index futures that 

violate the stochastic dominance bounds of Constantinides and Perrakis (CP, 2007) over 

1983-2006 are identified as potentially profitable investment opportunities. Call bid prices 

more frequently violate their upper bound than put bid prices do, while evidence of 

underpriced calls and puts over this period is scant. In out-of-sample tests, the inclusion of 

short positions in such overpriced calls, puts, and, particularly, straddles in the market 

portfolio is shown to increase the expected utility of any risk averse investor and also 

increase the Sharpe ratio, net of transaction costs and bid-ask spreads. The results are 

strongly supportive of mispricing and also strongly supportive of the CP bounds as 

screening mechanisms for mispriced options. 

The second essay introduces a result for call lower bound more powerful that the one 

applied in the first part of this thesis. The Proposition 5 call lower bound in Constantinides 

and Perrakis (2002) is shown to have a non-trivial limit as the time interval tends to zero. 

This establishes the bound as the first call lower bound known in the literature on derivative 

pricing in the presence of transaction costs with a non-trivial limit. The bound is shown to 

be tight even for a low number of time subdivisions. Novel numerical methods to derive 

recursive expectations under a Markovian but non-identically distributed stochastic process 

are presented. 

The third essay relaxes an assumption in the first part of this thesis on the optimal 

trading policy in the presence of transaction costs. We derive the boundaries of the region 

of no transaction when the risky asset follows a mixed jump-diffusion instead of a simple 

diffusion process. These boundaries are shown to differ from their diffusion counterparts in 

relation to the jump intensity for lognormally distributed jump size. A general numerical 

m 



approach is presented for iid risky asset returns in discrete time. An error in an earlier 

published work on the region of no transaction for discretized diffusions is demonstrated 

and corrected results are presented. Comparative results with a recent study on the same 

topic are presented and it is shown that the numerical algorithm has equally attractive 

approximation properties to the unknown continuous time limit. 
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Introduction 

The three essays of this dissertation cover three distinct aspects of the design and 

implementation of stochastic dominance (SD)1 option pricing under realistic trading 

conditions. All three fill gaps into existing theory and practice as it has evolved slowly over 

the almost quarter of a century since it first appeared in the literature. The order of their 

presentation has more to do with the timing of their writing than with the organization of 

their material, and all three stand on their own as independent pieces. The purpose of this 

short introduction is to relate stochastic dominance option pricing to the arbitrage-based 

approach to contingent claims valuation that has dominated both theory and practice since 

the seminal Black-Scholes-Merton (BSM, 1973) studies, and to identify the gaps in existing 

knowledge that the three essays fill within the stochastic dominance literature. 

Stochastic dominance was originally developed in economics as a generalization of 

expected utility decision-making under risk.2 In its original form it developed rules for 

pairwise rankings of two risky prospects. These rules were applicable to all risk averse 

investors and to all discrete or continuous distributions. Its early applications in finance were 

in identifying efficient (undominated) portfolios and mutual funds out of a finite set of 

alternatives, which were identified by testing all possible pairs of alternatives. Needless to 

say, this constitutes a severe limit to its applicability, since it has not been extended to the 

identification of the efficient set of feasible portfolios out of a given set of assets.4 

Stochastic dominance was also applied to option pricing, although it was not initially 

identified as such. The two prospects whose distributions were compared consisted of a 

portfolio containing the underlying asset and the riskless asset,5 and another portfolio that 

had a long or short position in an option. This allowed the derivation of upper and lower 

bounds on the prices of the options that depended on the entire distribution of the underlying 

asset's returns. The bounds were applicable to any distribution and were by construction 

independent of investor preferences. They initially assumed no intermediate trading till 

Hereafter whenever we refer to stochastic dominance we imply second degree dominance. 
2 See Hadar and Russell (1969), Hanoch and Levy (1969) and Rothschild and Stiglitz (1970). 
3 See the survey article by Levy (1992). 
4 See Post (2003) for an interesting attempt to bypass this difficulty. 

In fact the requirement that the option holder's portfolio contain no other risky asset save the underlying 
and the option is only a sufficient condition. The bounds are valid as long as the pricing kernel is monotone 
with respect to the underlying asset's return, a property that holds in most equilibrium models. 
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option expiration but were eventually extended to multiperiod trading under independent 

and identically distributed (iid) returns.6 

The relationship between the option bounds and the arbitrage-based option prices, 

especially the BSM price, was not clear at the outset. The BSM model was derived under 

complete markets assumptions, under lognormal diffusion asset dynamics in continuous 

time and as the limit of a two-state discrete time model. Extensions that combine the 

arbitrage approach with market equilibrium considerations allowed the derivation of option 

prices under more complex assumptions about asset dynamics that incorporate jumps and/or 

stochastic volatility. Such extensions were based on rather restrictive assumptions, which 

were necessary in order to derive a unique option price. On the other hand the extension of 

the stochastic dominance option bounds to continuous time under suitable limit conditions 

did not take place till recently, in spite of some earlier partial results.7 These extensions 

showed that the stochastic dominance bounds did tend both at the limit to the same unique 

option price that was derived under arbitrage in the complete markets case; for lognormal 

diffusion this was the BSM model. In the more interesting cases of jumps and stochastic 

volatility the limit forms of the bounds were expressions that generalized the corresponding 

arbitrage-market equilibrium option models that derived a unique option price. 

An entirely different extension of the stochastic dominance approach was the 

incorporation of proportional transaction costs in the market equilibrium conditions under 

which the option prices were derived. Such costs cannot be included in the arbitrage-based 

models, since these models are based on continuous trading to eliminate possible arbitrage 

opportunities. As Merton (1989) first pointed out, even a small trading cost parameter would 

result in infinite transactions costs over the life of the option. The theoretical failure of 

arbitrage to accommodate this realistic feature of financial markets is common to both 

continuous time and the binomial-based discrete time models. Attempts to bypass this 

difficulty have resulted at best in approximations with unknown accuracy and in expressions 

that converge to the trivial arbitrage bounds originally derived by Merton (1973). 

6 See Perrakis and Ryan (1984), Rithcken (1985), Levy (1985), Perrakis (1986) and Ritchken and Kuo 
(1988). 
7 See Oancea and Perrakis (2007), as well as Perrakis (1988, 1993). 
8 See Leland (1985), Boyle and Vorst (1992), Bensaid et al (1992) and Perrakis and Lefoll (1997, 2000). 
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Under stochastic dominance the starting point for option pricing is the investor holding 

the underlying and the riskless asset. This investor maximizes an unspecified risk averse 

expected utility of terminal wealth over a finite horizon, or a similarly unspecified time-

additive expected utility of consumption in an infinite horizon. In the presence of 

proportional transaction costs it was shown by Constantinides (1979) that for any asset 

dynamics the optimal portfolio policy of the investor consists of a no trading zone in which 

she does not rebalance her portfolio, while she restructures to the nearest limit of that zone 

whenever the portfolio composition goes outside the limits. In the specific case of an 

investor with a constant proportional risk aversion (CPRA) utility Constantinides (1979) 

also showed that the no trading zone was a cone with possibly time-varying edges. This 

model was applied to diffusion asset dynamics for the risky asset in an infinite time by 

Constantinides (1986) and Davis and Norman (1990). In finite time it was estimated 

numerically in a discrete time model tending to diffusion by Genotte and Jung (1994), and 

extended theoretically to continuous time diffusion by an approximate method by Liu and 

Lowenstein (2002). More recently Liu and Lowenstein (2008) extended their earlier model 

to mixed jump-diffusion asset dynamics.9 

In such models it was shown by Constantinides and Perrakis (CP, 2002) that an investor 

who introduces a long or short European option into her portfolio may increase her utility if 

the option price satisfies a given bound that is independent of the investor utility. This bound 

constitutes a reservation write or a reservation purchase price for the option, allowing any 

risk averse holder or writer to increase her expected utility by taking the corresponding zero 

net cost position in the option. These bounds are functions of the hypothesized probability 

distribution of the underlying asset returns and are valid for any type of asset dynamics that 

results in iid returns per period, even though they may be extended to non-iid returns in 

several important cases at some computational cost. Constantinides and Perrakis (2007) 

extended some of the European bounds to American options and American futures options. 

The CP (2002, 2007) bounds, unlike the earlier arbitrage ones, are reasonably tight and 

exact and based on relatively innocuous assumptions. They are linear descendants of the 

There have been attempts to derive exact option prices from such models, by introducing an option in an 
investor's portfolio that is liquidated at option expiration. Unfortunately the resulting option reservation 
prices are functions of investor characteristics such as wealth and attitude towards risk. See Davis et al 
(1993). 
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earlier multiperiod stochastic dominance bounds, in which the transaction cost parameter 

has been introduced in every instance of intermediate trading of the underlying asset. Their 

main limitation stems from the fact that the bounds require the existence of a class of 

investors holding only the underlying asset and the riskless asset, as well as the option. 

While this raises questions about the validity of the bounds for stock options, their 

applicability to index options and index futures options cannot be denied, given widespread 

evidence that indexing is a popular policy followed by many US investors. The bounds 

also result in closed form expressions for the reservation purchase and write prices of the 

options only for cases where the payoff is convex, which makes them suited primarily for 

plain vanilla call and put options. 

Thus, the stochastic dominance approach to option pricing emerges as an alternative 

paradigm to arbitrage, able to fill important gaps in both theory and practice. There are, 

nonetheless, several questions that are raised with respect to their usefulness. The first one is 

the paucity of the available bounds results for the transaction cost case. CP (2002) derived 

only two bounds, a reservation write (upper bound) for the call option and a reservation 

purchase (lower bound) for the put option, that were independent of the partition of the time 

to option expiration into trading intervals. These were also the results that were extended to 

American options in CP (2007). Several other results were also derived in CP (2002), but 

they were complex time-recursive expressions that had never been evaluated, let alone 

applied to real data. There are, therefore, legitimate questions about their usefulness, since a 

distinct possibility exists that they may suffer the fate of the arbitrage-based results and 

collapse to trivial values as the time partition becomes progressively more dense. 

It is in this context, of the stochastic dominance option bounds under proportional 

transaction costs, that the three essays of this dissertation must be viewed. Essay 2 extends 

the available results for European options in the all-important case of the lognormal 

diffusion process for the dynamics of the risky asset, by examining the limiting process of 

one of the time partition-dependent results of CP (2002) that develops a lower bound for a 

call option. The convergence of this limiting process is confirmed by a novel numerical 

algorithm that can also be used for other cases. It thus provides, in combination with another 

one of the results of CP (2002) a reasonably tight interval of admissible values for call 

10 See Bogle (2005). 

4 



options under conditions identical to BSM but with realistic trading assumptions. This, to 

our knowledge, is the only generalization of the BSM model under transaction costs able to 

provide empirically useful results. 

While the SD bounds do provide theoretical benchmarks for option values in important 

cases where the arbitrage methods fail, there is an almost total lack of empirical results that 

may validate their use. In Constantinides, Jackwerth and Perrakis (2008) the European 

version of the CP bounds was examined in the context of S&P 500 index options and 

several violations were noted. Nonetheless, these bounds were estimated with a variety of 

in-sample estimation techniques, and there was no indication on whether these violations 

gave indeed rise to superior trading opportunities or were simply the result of improper 

estimation techniques. 

Essay 1 of this dissertation addresses these problems, by applying the CP (2007) bounds 

to S&P 500 index futures options data from the Chicago Mercantile Exchange. A set of 

option prices with approximately equal times to expiration over the 1983-2006 period are 

selected, and for each one of them the corresponding bound is evaluated using a distribution 

drawn from observable returns of the S&P 500 index and its futures options till that time. 

Market bid or ask prices violating these bounds are identified. These violating options are 

then introduced into the portfolio of an investor who holds only the index and the riskless 

asset. At option expiration the returns of the liquidated investor portfolio with and without 

the option are noted. The time series of these pairs of returns are then compared in 

econometric tests of second degree SD. 

The econometric techniques are applications of the SD tests developed by Davidson and 

Duclos (2000,2007). They test for dominance of the populations from which the samples of 

the two time series originate. Of particular interest is the Davidson-Duclos (2007) test, 

which tests the null of absence of dominance; rejection of the null implies dominance of one 

series over another with a very high probability. The results of these out-of-sample tests are 

strongly supportive of the hypothesis that the returns series with the option stochastically 

dominates the series without the option. Dominance is confirmed with two alternative SD 

tests, with several alternative methods of estimating the bounds, and with several risk 

aversion coefficients of the investor. 
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Although the CP bounds are independent of investor preferences and of asset dynamics, 

their implementation can only be investor- and distribution-specific. In the tests carried out 

in Essay 1 the investor was assumed to have CPRA time-additive utility of consumption and 

the asset dynamics were diffusion, resulting in an adaptation of the Constantinides (1986) 

model. This is a limit on the generality of the SD tests, which cannot be extended easily, 

given the lack of available models of investor portfolio selection in the presence of 

transaction costs. As noted above, these models are limited to diffusion asset dynamics, with 

a very recent extension to jump-diffusion. Accordingly, Essay 3 of this thesis is a 

contribution to this topic, by developing a numerical method for the computation of the 

optimal portfolio for an investor holding a portfolio of a risky and a riskless asset, who 

maximizes the expected CPRA utility of terminal wealth. The model is formulated in 

discrete time, but the asset dynamics tend to a mixed jump-diffusion process at the 

continuous time limit. The results show that the jump component has a relatively small 

effect on the no transaction region, provided the total volatility of the mixed process is kept 

equal to that of the diffusion. The essay also examines the Genotte-Jung (1994) numerical 

results and identifies an error in that paper's derivations that can seriously bias the results. 

Last, the numerical algorithm presented in this third essay can be easily adapted to any 

empirical distribution with iid returns. 

In summary, the three essays of this thesis extend the stochastic dominance approach to 

option pricing under transaction costs in three important ways. They provide an additional 

useful result in the form of a lower bound for a call option in the fundamental lognormal 

diffusion case. They provide an empirical verification of the bounds as screening devices in 

order to identify mispriced options and show that trading on these options generates superior 

results. Last, they extend the portfolio selection literature for investors in the presence of 

transaction costs, which can then be used to verify the stochastic dominance of trading 

strategies involving mispriced options under alternative asset dynamics specifications. 
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Essay I: The Stochastic Dominance Efficiency of the S&P 500 

Index Futures Options Market 

Abstract 

American call and put options on the S&P 500 index futures that violate the stochastic dominance bounds of 

Constantinides and Perrakis (2007) over 1983-2006 are identified as potentially profitable investment 

opportunities. Call bid prices more frequently violate their upper bound than put bid prices do, while evidence 

of underpriced calls and puts over this period is scant. In out-of-sample tests, the inclusion of short positions in 

such overpriced calls, puts, and, particularly, straddles in the market portfolio is shown to increase the expected 

utility of any risk averse investor and also increase the Sharpe ratio, net of transaction costs and bid-ask spreads. 

The results are strongly supportive of mispricing. 
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A large body of finance literature addresses the mispricing of options. Rubinstein (1994), 

Jackwerth and Rubinstein (1996), and Jackwerth (2000), among others, observed a steep 

index smile in the implied volatility of S&P 500 index options that suggests that out-of-the-

money (OTM) puts are too expensive. Indeed, a common hedge-fund policy is to sell OTM 

puts. Coval and Shumway (2001) found that buying zero-beta at-the-money (ATM) 

straddles loses money. Constantinides, Jackwerth, and Perrakis (2007) provided empirical 

evidence that both OTM puts and calls on the S&P 500 index are mispriced by showing that 

they violate stochastic dominance bounds put forth by Constantinides and Perrakis (2002). 

In this essay, we provide out-of-sample tests of option mispricing, net of transaction 

costs and bid-ask spreads. Specifically, we identity American call and put options on the 

S&P 500 index futures that violate the stochastic dominance bounds of Constantinides and 

Perrakis (2007) as potentially profitable investment opportunities. In out-of-sample tests 

over 1983-2006, we show that trading policies that exploit these violations provide higher 

Sharpe ratios than policies without option trading. We also show that the expected utility of 

any risk averse investor, net of transaction costs and bid-ask spreads, increases when 

exploiting such option trading. Below we highlight novel features of our approach. 

First, we use the Chicago Mercantile Exchange (CME) data base on S&P 500 

futures options, 1983-2006, which is clean and spans a long period. Much of the earlier 

empirical work on the mispricing of index options is based on data on the S&P 500 index 

options that comes from two principal sources: the Berkeley Options Database (1986-1995) 

that provides relatively clean transaction prices, but misses important events over the past 12 

years, such as the 1998 liquidity crisis, the dot-com bubble, and its 2001 burst; and the 

OptionMetrics (1996-2006) data base which, however, is of uneven quality and only 

contains end-of-day quotes. 

Second, we identify mispriced options with a screening mechanism that uses 

minimal assumptions about market equilibrium. This mechanism is based on the stochastic 

dominance bounds of Constantinides and Perrakis (2007). These bounds identify 

reservation purchase and reservation write prices such that any risk averse investor may 

increase her expected utility by including the option that violates these bounds in her 

portfolio. The bounds are valid for any distribution of the underlying asset and 

11 



accommodate jumps. They also recognize the possibility of early exercise of American 

options. 

The only necessary assumption about the market for the validity of these bounds is 

that there exists a class of traders holding portfolios containing only the S&P 500 index and 

the riskless asset.11 Ample evidence exists that this assumption holds for US markets. 

Numerous surveys have shown that a large number of US investors follow indexing policies 

in their investments. Bogle (2005) reports that in 2004 index funds accounted for about one 

third of equity fund cash inflows since 2000 and represented about one seventh of equity 

fund assets. The S&P 500 index is not only the most widely quoted market index, but has 

also been available to investors through exchange traded funds for several years. We find 

that any such investor would improve her utility by including in her portfolio an option 

identified as mispriced by the stochastic dominance bounds. 

Third, we assess the profitability of our trading policy by employing the powerful 

statistical tests of stochastic dominance by Davidson and Duclos (2000 and 2006) which can 

deal with option returns even in a setting where we do not make assumptions about the 

preferences of the investors. These tests compare the profitability of the optimal trading 

policies of a generic S&P 500 index investor with and without the option in a setting that 

recognizes the possibility of early exercise of the futures option. These profitability 

comparisons are valid from the perspective of any risk averse investor. By contrast, the 

ubiquitous Sharpe ratio measure of portfolio performance is valid only from the perspective 

of a mean-variance investor and suffers from well known problems when used to assess 

non-normal returns such as those encountered in portfolios that include options. 

Finally, both the bounds employed in detecting mispriced options and the portfolio 

returns explicitly take into consideration bid-ask spreads and trading costs. Once a trading 

opportunity is detected, we execute the trade by buying at the next ask price or selling at the 

next bid price. 

We use historical data on the underlying S&P 500 index returns in order to estimate 

the bounds. We use several empirical estimates of the underlying return distribution, all of 

them observable at the time the trading policy is implemented. For each one of these 

The mean-variance portfolio theory that gives rise to the Sharpe ratio measure of portfolio performance is 
based on the stronger assumption that every investor holds the market portfolio (and the risk free asset). 
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estimates we evaluate the corresponding bounds over the period 1983-2006, and then 

identify the observed S&P 500 futures options prices that violate them. For each violation, 

we identify the optimal trading policy of a generic investor with and without the mispriced 

option, using the observed path of the underlying asset till option expiration and recognizing 

realistic trading conditions such as possible early exercise and transaction costs. We 

identify the profitability of the pair of policies for each observed violation, and then conduct 

stochastic dominance comparison tests over the entire sample of violations. We find a 

substantial number of violations of the upper bounds, but relatively few violations of the 

lower bounds. Since the frequency of violations of the lower bounds is too low for 

statistical inference, we focus on violations of the upper bounds. The results are strongly 

supportive of mispricing. 

The essay is organized as follows. In Section 1, we present the restrictions on 

futures option prices imposed by stochastic dominance and discuss the underlying 

assumptions. In Section 2, we present the empirical design and, in Section 3, the present the 

empirical results. We conclude in Section 4. 
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1 Restrictions on Futures Option Prices Imposed by Stochastic Dominance 

We assume that market agents are heterogeneous and investigate the restrictions on option 

prices imposed by one particular class of agents that we simply refer to as "traders". We 

allow for other agents to participate in the market but this allowance does not invalidate the 

restrictions on option prices imposed on traders. 

We consider a market with several types of financial assets. First, we assume that 

traders invest only in two of them, a bond and a stock with natural interpretation as a market 

index.12 Subsequently, we assume that traders can invest in a third asset as well, an 

American call or put option on the index futures. The bond is risk free and has total return 

R. The stock has ex dividend stock price S, at time t and pays cash dividend ySt , where 

the dividend yield ^is deterministic. The total return on the stock, (l + y)(Sl+l/Sl), is 

assumed i.i.d. with mean Rs. The call or put option on the index futures has strike K and 

expiration date T. The underlying futures contract is cash-settled and has 

maturity TF, TF >T. We assume that the futures price Ft is linked to the stock price by the 

IjF A F 

approximate cost-of-carry relation F, =(1 + ^) lRT~'Sl+£l, t<TF, \et\<£, where 

the basis risk variables {et) are distributed independently of each other and of the stock 

price series { S,}. 

Transfers to and from the cash account (bond trades) do not incur transaction costs. 

Stock trades decrease the bond account by transaction costs equal to the absolute value of 

the dollar transaction, times the proportional transaction costs rate, k, 0 < k < 1. Option 

trades incur transaction costs, exchange fees, and price impact which are incorporated in 

what we refer to as their bid and ask prices. 

We assume that traders maximize generally heterogeneous, state-independent, 

increasing, and concave utility functions. We further assume that each trader's wealth at the 

Essentially, we model buy-and-hold investors who trade infrequently and incur low transaction costs. At 
least for large investors who earn a fair return on their margin, transaction costs are even lower in the index 
futures market than the stock market. In practice, however, buy-and-hold investors invest in the stock and 
bond markets because of the inconvenience and cost of the frequent rolling over of short-term futures 
contracts and the illiquidity of long-term futures and forward contracts. Note that we do not restrict other 
market agents from trading futures contracts and other financial assets. 
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end of each period is monotone increasing in the stock return over the period. For example, 

a trader who holds 100 shares of stock and a net short position in 200 call options violates 

the monotonicity condition, while a trader who holds 200 shares of stock and a net short 

position in 200 call options satisfies the condition. Essentially, we assume that the traders 

have a sufficiently large investment in the stock, relative to their net short position in call 

options, such that the monotonicity condition is satisfied. 

We do not make the restrictive assumption that all market agents belong to the class 

of utility-maximizing traders. Thus, our results are robust and unaffected by the presence in 

the market of agents with beliefs, endowments, preferences, trading restrictions, and 

transaction costs schedules that differ from those of the utility-maximizing traders modeled 

in this essay. 

A trader enters the market at time zero with x0 dollars in bonds and y0 dollars in ex 

dividend shares of stock. We consider two scenarios. In the first scenario, the trader may 

trade the bond and stock but not the options. The trader makes sequential investment 

decisions at discrete trading dates t (t = 0, \...,T'), where7',T'>TF >T, is the finite 

terminal date. The trader's objective is to maximize expected utility, E[ur(WT,)], where 

Wr is the trader's net worth at date T. Utility is assumed to be concave and increasing and 

defined for both positive and negative terminal worth, but is otherwise left unspecified. We 

refer to this trader as the index (and bond) trader, IT, and denote her maximized expected 

utility by V0
,T{x0,y0)

M 

In the second scenario, the trader enters the market at time zero with x0 dollars in 

bonds and >>0 dollars in ex dividend shares of stock, but immediately writes an American 

futures call option with maturity T,T<TF, where C are the net cash proceeds from 

Alternatively, the objective may be the maximization of the discounted sum of the utility of consumption 
w,(c() at each trading date, including the terminal date. In this case, the terminal date may be finite or 
infinite. Although the Constantinides and Perrakis (2007) bounds are derived under the terminal wealth 
objective, they remain valid without any reformulation under the alternative objective. 

In Essay 2, we provide more details on the investor's investment problem and also define the value 
function. 
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writing the call.15 We assume that the trader may not trade the call option thereafter.16 At 

each trading date t (t = 0, 1... ,T) the trader is informed whether or not she has been 

assigned (that is, assigned to act as the counterparty of the holder of a call who exercises the 

call at that time). If the trader has been assigned, the call position is closed out, the trader 

pays Ft -K in cash, and the value of the cash account decreases from x, to xl-(Fl-K). 

The trader makes sequential investment decisions with the objective to maximize expected 

utility, E[ur(Wr)]. We refer to this trader as the option (plus index and bond) trader, OT, 

and denote her maximized expected utility by V°T (x0 + C, y0). 

For a given pair (x0,y0), we define the reservation write price of a call as the value 

of C such that V°T (JC0 + C, y0) - VjT (x0,y0). The interpretation of C is the write price of 

the call at which the trader with initial endowment (x0,y0) is indifferent between writing 

the call or not. Constantinides and Perrakis (2007) stated a tight upper bound on the 

reservation write price of an American futures call option that is independent of the trader's 

utility function and initial endowment and independent of the early exercise policy on the 

calls: 

C(Fl,S„t) = ^max[N(St,t), F,-K], t<T. (1) 

where k\ and ki are respectively proportional transaction costs on stock purchase and sale. 

In what follows, we set kx=k2=k . The continuation value, the function N(S,t) is defined 

as follows: 

15 The reservation write price of a call is derived from the perspective of a trader who is marginal in the 
index, the bond, and only one type of call or put option at a time. Therefore, these bounds allow for the 
possibility that the options market is segmented. 
16 The reservation write price of a call is derived under this constrained policy. Under this policy, the 

investor increases her expected utility by writing a call at price C and refraining from trading the call 
thereafter. If the constraint on trading the call is relaxed, the policy which the investor follows under the 

constraint policy remains feasible and increases her expected utility by writing a call at price C . 

Therefore, C remains an upper bound on the reservation write price of a call. Whereas the upper bound 
may be tightened when the constraint on trading the call is relaxed, there is no known tighter bound that is 
preference free. For further discussion on this point, see Constantinides and Perrakis (2007). 
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N(S,t) = (Rsr
}E[max{(l + rY[T "'RT -,Sl+£-K,N(SM,t + l)}\Sl=Sr\, t<T-\ 

= 0, t = T. 

(2) 

The interpretation of the call upper bound is as follows. If we observe a call bid price above 

the reservation write price C, then any trader (as defined in this essay) can increase her 

expected utility by writing the call. 

If we further assume that the trader can buy a call at a price C(Ft,St,t) or less and 

1 7 

trade the futures and do so costlessly, we obtain the following put upper bound: 

^{FnSt,t) = C{Ft,St,t)-R-(T-']Ft+K, t<T. (3) 

The interpretation of the put upper bound is as follows. If we observe a put bid price above 

the reservation write price P, then any trader can increase her expected utility by writing 

the put. 

Constantinides and Perrakis (2007) also stated a tight lower bound on the reservation 

purchase price of an American futures put option. The cash payoff of the put exercised at 

time t is K - Ft, t < T. As in the case of a call option, we define the reservation purchase 

price of a put as the value of P such that the trader with initial endowment (x0,y0) *s 

indifferent between purchasing the put or not. The following is a tight lower bound on the 

reservation purchase price of an American futures put option that is independent of the 

trader's utility function and initial endowment: 

P(F„S„t) = max 

The function M (S, t) is defined as follows: 

K-Fn ±±M(St,t) 
l + k 

, t<T. (4) 

17 We prove equation (3) by noting that an investor achieves an arbitrage profit by buying a call 

atC(Fl,Sl,t), writing a put at P,P>T(Ft,S,,t), selling one futures, and lending K-FC^F,. In the 

proof, we ignore the daily marking-to-market on the futures until the exercise of the put or the options' 
maturity, whichever comes first. 
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M(S,t) = (Rsy E 

= 0, t = T 

max K-(l + rYV ]RT -'S,-e, M(Sl+vt + l) s, = s , t<T-\ 

(5) 

If we observe a put ask price below the reservation purchase price P, then any trader can 

increase her expected utility by buying the put. 

If we further assume that the trader can write a put at price P(Ft,St,i) or more, and 

trade the futures and do so costlessly, then we obtain the following call lower bound, with 

corresponding interpretation: 18 

C{Ft,St,t) = P{F„St,t) + R-( l"]F,-K, t<T. (6) 

If we observe a call ask price below the reservation purchase price C, then any trader can 

increase her expected utility by buying the call. 

We prove equation (6) by noting that an investor achieves an arbitrage profit by writing a put at 

P{F„S„t), buying a call at C,C <C(Ft,S„t), selling one futures, and lending K-R'lT-']Ft. 
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2 Empirical Design 

We describe our empirical design, starting with a description of the data, the calibration of a 

tree of the daily index return, and the construction of the portfolio of the index trader (who 

does not trade in the option) and of the option trader. This allows us to introduce the well-

known Sharpe ratio test and we discuss the problems associated with using this test. To 

address problems with the Sharpe ratio test, we introduce tests based on second order 

stochastic dominance. 

2.1 Data and estimation 

We obtain the time-stamped quotes of the 30-calendar-day S&P 500 futures options and the 

underlying 1-month futures for the period February 1983-July 2006 from the Chicago 

Mercantile Exchange (CME) tapes. This results in 247 sampling dates. We obtain the 

interest rate as the three-month T-bill rate from the Federal Reserve Statistical Release. The 

data sources are described in further detail in Appendix A. 

We set the mean index return at 4% plus the observed 3-month T-bill rate instead of 

estimating the mean index return from the data in order to mitigate statistical problems in 

estimating the mean.19 We implement this by adding a constant to the observed logarithmic 

index returns so that their sample mean equals the above target. We estimate the 3rd and 4th 

moments of the index return as their sample counterparts over the preceding 90 days. 

Finally, we estimate both the unconditional and conditional volatility of the index 

return as follows. We estimate the unconditional volatility as the sample standard deviation 

over the period January 1928 to January 1983. We estimate the conditional volatility in 

three different ways: (1) the sample standard deviation over the preceding 90 trading days; 

(2) the at-the money (ATM) implied volatility (IV) on the preceding day, adjusted by the 

mean prediction error for all dates preceding the given date (typically some 3%), where we 

drop from the preceding days all 21 pre-crash observations; and (3) the E G A R C H of Nelson 

(1991) volatility using EGARCH coefficients estimated for S&P 500 daily returns over 

19 Short-horizon forecasts of the conditional mean equity premium are notoriously unreliable. Fama and 
French (2002), Constantinides (2002), and Dimson, Marsh and Staunton (2006) estimated the adjusted 
unconditional mean equity premium to be 4-6% per year. For our main results, we set the mean return at 
4% plus the observed 3-month T-bill rate. We also report results when we set the mean return at 6% plus 
the observed 3-month T-bill rate. 
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January 1928 to January 1983 applied to residuals observed over the 90 days preceding each 

sample date to form projections of the volatility realized till the option expiry date.20 In 

Table 1, we report statistics of the prediction error of the above volatility estimates. The 

best overall predictors are the adjusted ATM IV and the 90-day historical volatility. 

2.2 Calibration of the index return tree and calculation of the option bounds 

We model the path of the daily index return till the option expiration on a T-step tree, where 

T is the number of trading days in that particular month. l The tree is recombining with m 

branches emanating from each node. Every month we calibrate the tree by choosing the 

number of branches and the return at each node to match the first four moments of the daily 

index return distribution, as described in Appendix B, which also details numerical 

techniques applied to deal with multibranching. 

The upper and lower bounds on the call and put prices are given in equations (l)-(6). 

We numerically calculate the bounds by iterating backwards on the calibrated tree. 

2.3 Portfolio construction and trading 

For each path drawn from the estimated return distribution, we employ the following trading 

policies. For the index trader (who manages a portfolio of the index and the risk free asset 

in the presence of transaction costs), we employ the optimal trading policy, as derived in 

Constantinides (1986) and extended in Perrakis and Czerwonko (2007) to allow for dividend 

yield on the stock. Essentially, this policy consists of trading only to confine the ratio of the 

index value to the bond value, yt/xt, within a no-transactions region, defined by lower and 

upper boundaries. We derive these boundaries for the following parameter values: one-way 

transaction cost rate on the index of 0.5%; annual return volatility of the index of 0.1856, the 

sample volatility over 1928-1983; interest rate equal to the observed 3-month T-bill date; 

To derive the GARCH coefficients we apply the approach of Nelson (1991) with the (1,1) structure. 
Applying GARCH (1,1) model did not resulted in significant changes in our results. 

For example, if the 3rd Friday of July is on July 27, we record the price of the July option on June 27, 
which is 30 calendar days earlier. (If June 27 is a holiday, we record the price on June 26.) If there are 21 
trading days between June 27 and July 27, we model the path of the daily index return till the option 
expiration on a 21-step tree. 
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risk premium 4%; and constant relative risk aversion coefficient of 2. For this set of 

parameters, the lower and upper boundaries are y0/x0 =1.2026 and 1.5259, respectively. 

At the beginning of each month and before the trader trades in options, we set x0 =73,300 

and >>0 = 100,000, which corresponds to the midpoint of the no-transactions region, 

j>0/x0 = 1.3642. 

For the option trader (who manages a portfolio of the option, index, and the risk free 

asset in the presence of transaction costs), we employ the trading policy which is optimal for 

the index trader but is generally suboptimal for the option trader. Recall that the goal is to 

demonstrate that there exist profitable investment opportunities for the option trader. Given 

this goal, it suffices to show that there exist profitable investment opportunities for the 

option trader even if the option trader follows a generally suboptimal policy. We set x0 and 

y0 to the same values as for the index trader. However, this portfolio composition changes, 

depending on the assumed position in futures options, as explained in Appendix C. 

We focus on the cases where the basis risk bound, £, is 0.5% of the index price. 

Over the years 1990-2002, 95% of all observations have basis risk less than 0.5% of the 

index price. For reference purposes, we also consider the case e = 0. As to be expected, 

when we suppress the basis risk, the bounds are tighter and there appear to be more 

violations. 

2.4 Description of the empirical tests 

For each one of our methods of estimating the bounds, we obtain 247 monthly portfolio 

returns for the index trader and the option trader, respectively. Our goal is to test whether 

the portfolio profitability of the index and option traders are statistically different in the 

months in which we observe violations of the bounds. 

In our first set of tests, we compare the Sharpe ratios of the two portfolios. Despite 

the well-known limitations of the Sharpe ratio, we report these results because the Sharpe 

We clarify that the upper and lower stochastic dominance bounds on option prices apply to any risk 
averse trader, independent of her particular degree of risk aversion. In our empirical work, we make an 
assumption about the relative risk aversion coefficient in order to calculate the boundaries of the no-
transactions region for a specific trader. We present results for the value of 2 and 10 for the relative risk 
aversion coefficient. 
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ratio is one of the most popular measures of portfolio performance. We use the approach 

of Jobson and Korkie (1981) with the Memmel (2003) correction that accounts for different 

variances of the two portfolios. Details of the test are described in Appendix D. 

In our second set of tests, we compare the returns of the two portfolios in terms of 

the criterion of stochastic dominance, which states that the dominating portfolio is preferred 

by any risk-averse trader, independent of distributional assumptions such as normality and 

preference assumptions such as quadratic utility. Specifically, we test the null hypothesis 

H0: OT >f-2 IT , which states the option trader's portfolio return does not stochastically 

dominate the index trader's portfolio return, against the alternative hypothesis 

HA : OT >-2 IT, which states the option trader's portfolio return stochastically dominates the 

index trader's portfolio return. We report the results of tests proposed by Davidson and 

Duclos (2006), using the algorithm developed by Davidson (2007). 

An earlier test, proposed by Davidson and Duclos (2000), tests the null hypothesis 

H0: OT >-2 IT against the alternative, which is that either IT >~2 OT or that neither one of 

the two distributions dominates the other. Hence, rejection of the null hypothesis fails to 

rank the two distributions in the absence of information on the power of the test, which is 

generally not available. We report results of this test as well because it has certain statistical 

advantages over the Davidson and Duclos (2006) test. Appendix D provides details on both 

tests; here we provide only a short discussion of the difference between the population and 

sample stochastic dominance. 

Second order stochastic dominance in a population is defined by a classic integral 

condition on two distribution functions, i.e. in our notation J [FIT(x)-FOT(x)\ix>0, >0 

for some z, with z denoting the lower not necessarily finite limit of the joint support of the 

two distributions. For a sample of observations, this integral criterion is not a sufficient 

statistic to determine stochastic dominance; however, its discrete sample equivalent forms 

the numerator of J-statistics for both Davidson and Duclos (2000 and 2006) tests. 

The Sharpe ratio ignores moments of the return distribution beyond the mean and variance and this is 
theoretically justified only the special cases where either investors have quadratic utility or the portfolio 
returns are normally distributed. The latter assumption is obviously violated in portfolios that include 
options. 
24 See, for instance, Hanoch and Levy (1969). 

22 



3 Empirical Results 

In Section 3.1, we describe the empirical results. We compare the portfolio return of an 

option trader who writes overpriced calls, or puts, or straddles at their bid price with the 

portfolio return of an index trader who does not trade in the options over the period 1983-

2006. In out-of-sample tests, we find that the return of an option writer stochastically 

dominates the index trader's return, net of transaction costs and the bid-ask spread. We also 

find that the Sharpe ratio of the index trader's return is higher than the Sharpe ratio of the 

index trader's return and is often statistically significant. In Section 3.2, we establish that 

the empirical results are robust. 

In what follows, for trading in options we consider the quote directly following the 

one violating a given bound (market order).25 

3.1 Results 

In Figure 1, we plot the four bounds for one-month options, expressed in terms of the 

implied volatility26, as a function of the moneyness, K/F0. We set the underlying volatility 

<T = 20% and the error from the cost of carry e - 0 . The figure also displays the 95% and 

5% confidence intervals, derived by bootstrapping the 90-day distribution. Regarding the 

upper bounds, we observe that the call upper bound is tighter than the put upper bound. 

Also, the call and put upper bounds are tighter when the (K/F) ratio is high, that is when the 

calls are OTM or the puts are ITM. Regarding the lower bounds, we observe that the put 

lower bound is tighter than the call lower bound. Also, the call and put lower bounds are 

tighter when the (K/F) ratio is low, that is when the calls are ITM or the puts are OTM. 

We also considered trading at the following quote given it violates a given bound (limit order); however, 
we don't report the results for this approach since they were not significantly different. 
26 To derive the implied volatility, we used the Kamrad and Ritchken (1991) trinomial model. 
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Table 1 

Prediction Error of Monthly Volatility, 1983-2006 

Prediction mode 
Unconditional 

90-day 
Adjusted IV 

GARCH 

Mean 
0.0429 
0.0095 
-0.0005 
0.0177 

Median 
0.0649 
0.0076 
0.0002 
0.0185 

St. dev. 
0.0680 
0.0595 
0.0496 
0.0531 

Skew. 
-1.7300 
0.2687 
-0.2625 
0.0936 

Ex. Kurt. 
3.8296 
5.2490 
3.4680 
7.8302 

The unconditional volatility is the sample standard deviation over the period January 1928 to January 1983. 
The 90-day volatility is the sample standard deviation over the preceding 90 trading days. The adjusted IV is 
the ATM IV on the preceding day, adjusted by the mean prediction error for all dates preceding the given date, 
where we drop from the preceding days all 21 pre-crash observations. The GARCH volatility is the volatility 
using GARCH coefficients estimated for S&P 500 daily returns over January 1928 to January 1983 and applied 
to residuals observed over the 90 days preceding each sample date to form projections of the volatility realized 
till the option expiry date. 

Figure 1: Illustration of Upper and Lower Bounds on Call and Put Options 

Bound were derived for a = 0.20 imposed on a 90-day distribution for a date in our sample. 95% and 5% CI 
were derived by bootstrapping the 90-day distribution and exemplify the bounds dependence on the third and 
fourth distribution moments. 
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In Figure 2, for every sample month, we plot the frequency of actual violations of 

the upper call bound.27 We may observe in Figure 2 that the violations persist in time 

relatively consistently for all volatility estimation modes and that all these modes coincide at 

indicating violations after significant decreases in the index, i.e. when we may expect the 

implied volatility of the market option prices to be high. 

Figure 2: Time Distribution of Observed Violations 

T i i i r 

j | | | L 

1980 1985 1990 1995 2000 2005 2010 
Year 

The figure displays the violations of the call upper bound against 247 dates with app. monthly periodicity for 
the period of February 1983-July 2006. For the adjusted rV volatility estimation mode, the first 21 dates are not 
in the sample. The line across the plot is the natural logarithm of the S&P 500 index. 

In Table 2, we present the cases of call and put bid prices violating their upper 

bound, when we set the basis risk bound at 0.5% of the index price. We do not present the 

cases of call and put ask prices violating their lower bound because we do not have a 

sufficient number of such violations to be able to draw statistical inference, as we observed 

in Figure 2. We observe that we have a higher frequency of violations of the upper call 

We don't display similar frequencies for the three remaining bounds since for these bounds we observed 
few violations. 

GARCH 

Adjusted IV 

90-day 

Historical 
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bound than of the upper put bound. This may be partly explained by the fact that the upper 

call bound is tighter than the upper put bound, as we observed in Figure 1. 

Table 2 

Returns of Options Trader and Index Trader 

Volatility 
prediction 

mode 

# months 
with viol. 
(# months) 

DD (2000) Rvalue 

HB : OT >-., IT HQ • IT >2 OT 

DD (2006) 
/(-value 

HQ -. OT *2 IT 

A: Call Upper Bound 
Unconditional 

90-day 
Adjusted IV 

GARCH 

Unconditional 
90-day 

Adjusted IV 
GARCH 

44 (247) 
101 (247) 
120(226) 
65 (247) 

23 (247) 
15 (247) 
4 (226) 
8 (247) 

0.074 
0.060 
0.090* 
0.096* 

B: Put Upper 
0.122* 
0.011 
n/a 
n/a 

>0.1 
>0.1 
>0.1 
>0.1 

Bound 
>0.1 
>0.1 
n/a 
n/a 

<0.01 
<0.01 
<0.01 
<0.01 

>0.1 
>0.1 
n/a 
n/a 

0 
0 
0 
0 

0 
0.239 
n/a 
n/a 

Equally weighted average of all violating options equivalent to one option per share is traded at each date. The 
approach of Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the difference in 
Sharpe ratios of the OT and IT traders. The symbol * denotes a difference in the Sharpe ratios significant at the 
10% level in a one-sided test. P-values for the Davidson-Duclos (2006) test are based on 999 bootstrap trials. 
The p-values of H0 •. IT +2 or are equal to one and are not reported here. Maximal ^-statistics for Davidson-
Duclos (DD, 2000) test are compared to critical values of Studentized Maximum Modulus Distribution 
tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% with k = 20 and V set to the 
number of dates for which violations are observed. 

The Sharpe ratio of the call trader's return is uniformly higher than the Sharpe ratio 

of the index trader's return, irrespective of the mode of predicting the volatility as an input 

to the call upper bound. When the call upper bound is calculated using the adjusted IV or 

the GARCH volatility, the difference in Sharpe ratios exceeds 9% annually and is 

statistically significant at the 10% level. There are far fewer violations of the put upper 

bound and, therefore, the results are statistically weaker. Nevertheless, when using the 

unconditional prediction of volatility as an input to the put upper bound, we find 23 

violations of the put upper bound and the put trader's portfolio has a Sharpe ratio that 

exceeds the index trader's portfolio by 12.2%, statistically significant at the 10% level. 
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These Sharpe ratio preliminary results motivate and reinforce our main results on stochastic 

dominance which are discussed next. 

The DD (2000) test does not reject the hypothesis H0: OT >-2 IT, which states that 

the option trader's return dominates the index trader's return; and rejects the hypothesis 

H0 :IT>2 OT, which states that the index trader's return dominates the option trader's 

return. The DD (2006) test strongly rejects the null hypothesis H0: OT >t2 IT, which states 

that either the index trader's return dominates the option trader's return or that neither 

distribution dominates the other. The p-values of the hypothesis H0: IT y-2 OT are equal to 

one and are not reported here. 

Table 3 

Returns of Straddles Trader and Index Trader 

Volatility 
prediction 

mode 

# months 
with viol. 
(# months) 

Straddle Call Put 

DD (2000)/>-value 

H0 : OT y2 IT H0 : IT >2 OT 

DD (2006) 
p- value 

H0 : OT +2 IT 

Unconditional 34(247) 0.264*" 0.180** 0.203** >0.1 >0.1 0.033 
90-day 67(247) 0.160** 0.075 0.102* >0.1 >0.1 0.003 

Adjusted IV 71(226) 0.361*** 0.206** 0.224*** >0.1 <0.05 0.002 
GARCH 40(247) 0.401"* 0.188** 0.230*" >0.1 >01 0.010 

Equally weighted average of all violating options equivalent to one call and one put per share was traded at 
each date. Trades were executed whenever there was a call violating the upper bound and a put traded at the 
same strike for the same date. Equally weighted average of all violating options equivalent to one option per 
share is traded at each date. The approach of Jobson and Korkie (1981) with the Memmel (2003) correction is 
used to test the difference in Sharpe ratios of the OT and IT traders. The symbols , and denote a 
difference in the Sharpe ratios significant at the 10%, 5% and 1% level, respectively. P-values for the 

Davidson-Duclos (2006) test are based on 999 bootstrap trials. The p-values of H0 •. IT *2 or are equal to one 

and are not reported here. Maximal f-statistics for Davidson-Duclos ODD, 2000) test are compared to critical 
values of Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal 
levels of 1, 5, and 10% with k = 20 and v set to the number of dates for which violations are observed. 

Next, we explore the performance of the policy of writing overpriced calls through 

the policy of writing straddles. Straddles are popular trading policies and have been 

investigated in the literature. For example, Coval and Shumway (2001) show that a long 

ATM straddle on the S&P 500 index or the S&P 100 index produces substantial negative 
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returns. Each month, we look for call bid prices that lie above the upper call bound. If we 

find at least one call bid prices that lie above the upper call bound and if we find at least one 

put bid price (irrespective of whether the put bid price violates the put upper bound or not) 

we proceed as follows. We short equal fractions of the calls that violate the call upper 

bound, such that the fractions add up to one; we short equal fractions of the puts for which 

we have bid prices, such that the fractions add up to one; and we sell one futures on the 

index. The results are reported in Table 3. The annualized Sharpe ratio differentials are 

large and significant at the 5% or 1% level. These results are consistent with the results of 

Coval and Shumway (2001). The DD (2000) test does not reject the hypothesis 

H0:OT>2 IT. It often rejects the hypothesis H0:IT>2 OT, but not consistently so. 

Finally, the DD (2006) test strongly rejects the hypothesis H0: OT >f-2 IT. We conclude 

that the results in Table 3 are consistent with those in Table 2. 

3.2 Robustness tests 

In Tables 4-9, we demonstrate that the results of Tables 2 and 3 are robust. Table 4 differs 

from Table 2 only in that the basis risk is set at zero, e = 0, instead of bounding the basis 

risk by e = 0.5%. There are now more options across the board violating the bounds 

because all the bounds become tighter: the upper bounds are lowered and the lower bounds 

are raised. We present the cases of call and put bid prices violating their upper bound. We 

do not present results for the cases when the call and put ask prices violate their lower bound 

because we still do not have a sufficient number of such violations to be able to make 

statistical inference. 

Since the upper call and put bounds are lower, the options trader is less selective 

than before in writing options that violate their upper bounds and we find that the 

differences of the Sharpe ratios are smaller in Table 4 than in Table 2. However, since there 

are more observations in Table 4, the differences of the Sharpe ratios are statistically more 

significant than in Table 2. The DD (2000) test does not reject the hypothesis 

H0: OT y2 IT and rejects the hypothesis H0: IT >2 OT. Finally, the DD (2006) test 

28 The paper of Coval and Shumway (2001)) focuses on the relation between the CAPM beta and the return 
of straddles and, as such, differs from our goal of measuring the performance of straddles, net of bid-ask 
spreads and through the broader criterion of stochastic dominance. 
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strongly rejects the hypothesis H0: OT y-2 IT. We conclude that the results in Table 4 are 

consistent with those in Table 2. 

Table 5 differs from Table 3 on straddles only in that the basis risk is set at zero, 

£ - 0 , instead of bounding the basis risk by e - 0.5%. Again, we conclude that the results 

in Table 5 are consistent with those in Table 3. 

Table 4 

Returns of Options Trader and Index Trader—without Futures Basis Risk 

Volatility 
prediction 

mode 

# months 
with viol. 
(# months) 

DD (2000)£>-value 

H0 : OT >-2 IT H0 : IT y2 OT 

DD (2006) 
p- value 

H0 : OT * 2 IT 

A: Call Upper Bound 
Unconditional 71(247) 0.061 >0.1 <0.01 0 

90-day 159(247) 0.079* >0.1 <0.01 0 
Adjusted IV 197(226) 0.086** >0.1 <0.01 0 

GARCH 114(247) 0.100* >0J <0.01 0 

B: Put Upper Bound 
Unconditional 37(247) 0.049 >0.1 <0.05 0 

90-day 50(247) 0.057 >0.1 <0.01 0 
Adjusted IV 65(226) 0.092 >0.1 <0.01 0 

GARCH 39(247) 0.135* >0A <0.01 0 

The table differs from Table 2 only in that the basis risk is set at zero, £ = 0 , instead of bounding the risk by 

£ = 0.5. Equally weighted average of all violating options equivalent to one option per share is traded at each 
date. The approach of Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the 
difference in Sharpe ratios of the OT and IT traders. The symbols and denote a difference in the Sharpe 
ratios significant at the 10% and 5% level, respectively, in a one-sided test. P-values for the Davidson-Duclos 

(2006) test are based on 999 bootstrap trials. The p-values of H0 •. IT +2 OT are equal to one and are not reported 

here. Maximal /-statistics for Davidson-Duclos (DD, 2000) test are compared to critical values of Studentized 
Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% 
with k = 20 and v set to the number of dates for which violations are observed. 

Table 6 differs from Table 2 only in that the relative risk aversion coefficient is set at 

10 instead of 2. Since the upper and lower stochastic dominance bounds on option prices 

are independent of the trader's utility, we observe the same number of violations in Table 6 

as we do in Table 2. The change in the risk aversion coefficient does change the boundaries 

of the no-transactions region and, therefore, the trading policy of the index trader and the 

option trader. The Sharpe ratio differences are substantially higher in Table 6 but these 
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differences are not statistically significant. The stochastic dominance results in writing calls 

are as strong in writing calls and stronger in writing puts. 

Table 7 differs from Table 2 only in that the expected premium on the index is set at 

6% instead of 4%. For an increase in the risk premium, the bounds become looser, i.e. the 

upper bounds increase and the lower bounds decrease; therefore, we observe fewer 

violations in Table 7 than in Table 2. The Sharpe ratio differences are comparable to those 

in Table 2 but these differences are not statistically significant. The stochastic dominance 

results in writing calls are as strong in writing calls and stronger in writing puts. We 

conclude that the results in the main Table 2 are robust to the assumption that the expected 

premium on the index is 4%. 

Table 5 

Returns of Straddles Trader and Index Trader—without Futures Basis Risk 

Volatility 
prediction 

mode 

# months 
with viol. 
(# months) 

Mo, 

a, 

Straddle Call Put 

DD (2000)p-value 

Hn : OT K IT 

DD (2006) 
p-vahie 

/ / „ : OT UK, IT 

Unconditional 
90-day 

Adjusted IV 
GARCH 

52 (247) 
132 (247) 
167 (226) 
101 (247) 

0.174" 
0.208*" 
0.240*" 
0.315*" 

0.099 
0.104* 

0.181"* 
0.194"* 

0.118 
0.128** 
0.203*** 
0.237*** 

>0.1 
>0.1 
>0.1 
>0.1 

>0.1 
<0.01 
<0.01 
<0.05 

0.019 
0 
0 
0 

The table differs from Table 3 only in that the basis risk is set at zero, E = 0 , instead of bounding the risk by 

£ = 0.5. Equally weighted average of all violating options equivalent to one call and one put per share was 
traded at each date. Trades were executed whenever there was a call violating the upper bound and a put traded 
at the same strike for the same date. Equally weighted average of all violating options equivalent to one option 
per share is traded at each date. The approach of Jobson and Korkie (1981) with the Memmel (2003) correction 
is used to test the difference in Sharpe ratios of the OT and IT traders. The symbols * ,** and *** denote a 
difference in the Sharpe ratios significant at the 10%, 5% and 1% level, respectively. P-values for the 

Davidson-Duclos (2006) test are based on 999 bootstrap trials. The p-values of H0 -. IT 2̂ OT are equal to one 

and are not reported here. Maximal ^-statistics for Davidson-Duclos (DD, 2000) test are compared to critical 
values of Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal 
levels of 1,5, and 10% with k = 20 and v set to the number of dates for which violations are observed. 

Table 8 differs from Table 2 only in that the seven observations which include the 

date of the October crash and the following six months are excluded. The Sharpe ratio 

differences are comparable to those in Table 2 but these differences are not statistically 

significant. The stochastic dominance results in writing calls and puts are the same as in 
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Table 2. These results are quite natural. Unless one has exactly the day of the crash (-20% 

and the day thereafter with a lot of recovery), one does see much over the month of October 

(October as a whole was quite flat). The same seems to hold for the subsequent month. 

While prices were rather high (high IV for entering positions), the market was already 

somewhat calmer. This would mean a slight tendency options which could be sold at high 

prices. But then again, all this is on 7 out of 247 dates. Thus any effect is really small. All 

this is borne out in the table. 

Table 6 

Returns of Options Trader and Index Trader—with Risk Aversion Coefficient 10 

Volatility 
prediction 

mode 

# months 
with viol. 
(# months) 

DD (2000)p-value 

H0 : OT y2 IT H0 : IT >-2 OT 

DD (2006) 
/7-value 

H0 : OT +2 IT 

A: Call Upper Bound 
Unconditional 44(247) 0.155 >0.1 <0.01 0 

90-day 101(247) 0.161 >0.1 <0.01 0 
Adjusted IV 120(226) 0.227 >0.1 <0.01 0 

GARCH 65(247) 0.183 >01 <0.01 0 

B: Put Upper Bound 
Unconditional 23(247) 0.226 >0.1 >0.1 

90-day 15(247) 0.066 >0.1 >0.1 
Adjusted IV 4(226) n/a n/a n/a 

GARCH 8 (247) n/a n/a n/a 

The table differs from Table 2 only in that the risk aversion coefficient is set to 10, instead of 2. Equally 
weighted average of all violating options equivalent to one option per share is traded at each date. The 
approach of Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the difference in 
Sharpe ratios of the OT and IT traders. The symbol denotes a difference in the Sharpe ratios significant at the 
10% level in a one-sided test. P-values for the Davidson-Duclos (2006) test are based on 999 bootstrap trials. 
The p-values of HQ •. IT *2 OT are equal to one and are not reported here. Maximal ^-statistics for Davidson-
Duclos (DD, 2000) test are compared to critical values of Studentized Maximum Modulus Distribution 
tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% with k = 20 and v set to the 
number of dates for which violations are observed. 

The bounds that are used in identifying mispriced options in our empirical work are 

calculated with parameter inputs which are point estimates and vary for each time point of 

our sample for all but the historical method of estimating the bounds. These varying 

parameters imply that the screening rules for mispriced options become conditional on the 

0.005 
0.069 
n/a 
n/a 
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time point of our sample. Since the earlier tests do not recognize this conditionality, we 

develop in Appendix E an alternative set of tests that explicitly take into account the time 

varying nature of our sample and conclude that conditional and unconditional tests lead to 

same conclusions. The results are reported in Table 9 and discussed in Appendix E. They 

are also consistent with the main results of Table 2 and supportive of the mispricing 

hypothesis, even though they are derived with a different method. 

Table 7 

Returns of Options Trader and Index Trader—with Equity Risk Premium 6% 

Volatility 
prediction 

mode 

# months 
with viol. 
(# months) 

DD (2000)/?-value 

Hg : OT s-2 IT H0 : IT >-2 OT 

DD (2006) 
p- value 

Ha : OT +2 IT 

A: Call Upper Bound 
Unconditional 37(247) 0.094 >0.1 <0.01 0 

90-day 85(247) 0.039 >0.1 <0.01 0 
Adjusted IV 97(226) 0.081 >0.1 <0.01 0 

GARCH 58 (247) 0.084 >01 <0.01 0 

B: Put Upper Bound 
>0.1 >0.1 0 
>0.1 >0.1 0.094 
n/a n/a n/a 
n/a n/a n/a 

The table differs from Table 2 only in that the risk premium is set to 6%, instead of 4%. Equally weighted 
average of all violating options equivalent to one option per share is traded at each date. The approach of 
Jobson and Korkie (1981) with the Memmel (2003) correction is used to test the difference in Sharpe ratios of 
the CT and IT traders. The symbol denotes a difference in the Sharpe ratios significant at the 10% level in a 
one-sided test. P-values for the Davidson-Duclos (2006) test are based on 999 bootstrap trials. The p-values of 

//0 : IT *• OT are equal to one and are not reported here. Maximal ^-statistics for Davidson-Duclos (DD, 2000) 

test are compared to critical values of Studentized Maximum Modulus Distribution tabulated in Stoline and Ury 
(1979) for three nominal levels of 1, 5, and 10% with k = 20 and v set to the number of dates for which 
violations are observed. 

Unconditional 23(247) 0.118 
90-day 10(247) 0.040 

Adjusted IV 3 (226) n/a 
GARCH 5 (247) n/a 
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Table 8 

Returns of Options Trader and Index Trader—without the Crash Period 

Volatility 
prediction 

mode 

# months 
with viol. 
(# months) 

DD(2000)/?-value 

//„ : IT )-, OT 

DD (2006) 
p-value 

//„ : OT *, IT 

A: Call Upper Bound 
Unconditional 

90-day 
Adjusted IV 

GARCH 

Unconditional 
90-day 

Adjusted IV 
GARCH 

39 (241) 
100 (241) 
118(220) 
60 (241) 

19 (241) 
15 (241) 
4 (220) 
8 (241) 

0.051 
0.072 
0.081 
0.081 

B:Put 
0.080 
0.011 
n/a 
n/a 

Upper 

>0.1 
>0.1 
>0.1 
>0.1 

Bound 
>0.1 
>0.1 
n/a 
n/a 

<0.01 
<0.01 
<0.01 
<0.01 

>0.1 
>0.1 
n/a 
n/a 

0 
0 
0 
0 

0.100 
0.239 
n/a 
n/a 

This table differs from Table 2 only in that the seven observations which include the date of the October crash 
and the following six months were excluded. Equally weighted average of all violating options equivalent to 
one option per share is traded at each date. The approach of Jobson and Korkie (1981) with the Memmel 
(2003) correction is used to test the difference in Sharpe ratios of the OTand IT traders. The symbol denotes a 
difference in the Sharpe ratios significant at the 10% level in a one-sided test. P-values for the Davidson-

Duclos (2006) test are based on 999 bootstrap trials. The p-values of Hg •. IT ^ or are equal to one and are not 

reported here. Maximal ^-statistics for Davidson-Duclos (DD, 2000) test are compared to critical values of 
Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 
5, and 10% with k = 20 and v set to the number of dates for which violations are observed. 
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Table 9 

Returns of Options Trader and Index Trader—Non-Stationary Distribution 

Volatility prediction 
mode 

Panel A: Observed Option Prices 

Call Upper Bound 

# months with 
viol. (# months) 

Proportion 

OT >-2 IT 

Put Upper Bound 

# months with 
viol. (# months) 

Proportion 

OT y1 IT 

Unconditional 
90-day 

Adjusted IV 
GARCH 

44 (247) 
101 (247) 
120 (226) 
65 (247) 

0.614 
0.614"* 
0.633*" 
0.600** 

23 (247) 
15 (247) 
4 (226) 
8 (247) 

0.870 
0.800' 

n/a 
n/a 

Panel B: Option Prices on the Bounds 

Volatility prediction 
mode 

Call Upper Bound 

Proportion or >• IT 

Put Upper Bound 

Proportion OT > IT 

Unconditional 
90-day 

Adjusted IV 
GARCH 

0.859"* 
0.819"* 
0.789*** 
0.855*** 

0.952 
0.964*** 
0.960*** 
0.976*" 

This table shows the proportion of stochastic dominance tests in which the conditional bootstrapped distribution 
of the option trader's wealth dominated that of the index trader, as described in Appendix E. In panel A, the set 
of mispriced options is the same as in Table 2. In Panel B, the options are written with a price equal to the 
corresponding bound. The significance levels are for a binomial sign test that the indicated proportion exceeds 
50%. The symbols " and *** indicate significance respectively at 5% or better and 1% or better. 
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4 Concluding Remarks 

We search for mispriced American call and put options on the S&P 500 index futures by 

employing stochastic dominance upper and lower bounds on the prices of options. We 

identify call and put bid prices on index futures that violate the upper bounds and call and 

put ask prices that violate the lower bounds. We find a substantial number of violations of 

the upper bounds, but relatively few violations of the lower bounds. Since the frequency of 

violations of the lower bounds is too low for statistical inference, we focus on violations of 

the upper bounds. 

We compare the portfolio return of an option trader who writes overpriced calls or 

puts at their bid price with the portfolio return of an index trader who does not trade in the 

options over the period 1983-2006. In out-of-sample tests, our main result is that the return 

of a call or put writer stochastically dominates (in second order) the index trader's return, net 

of transaction costs and the bid-ask spread. The dominance holds under a variety of 

methods in estimating the underlying return distribution. It also holds with or without the 

assumption that the portfolio returns are drawn from the same distribution each period. 

We also find that the Sharpe ratio of the call trader's return is uniformly higher than 

the Sharpe ratio of the index trader's return and is often statistically significant. The Sharpe 

ratio of the put trader's return is uniformly higher than the Sharpe ratio of the index trader's 

return but the results are less statistically significant. Finally, the policy of writing straddles 

produces returns that strongly stochastically dominate the index trader's return and have 

substantially higher Sharpe ratios. The results are supportive of the hypothesis that the 

options identified by violations of the CP (2007) bounds are mispriced. 
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Appendix A: Data 

We obtain the time-stamped quotes of the one-month S&P 500 futures options and the 

underlying one-month futures for the period February 1983-July 2006 from the CME tapes. 

From the futures prices, we calculate the implied S&P 500 index prices by applying the 

cost-of-carry relation Ft - (l + y) RTF~'St + et, assuming away basis risk, e, = 0.29 We 

obtain the daily dividend record of the S&P 500 index over the period 1928-2006 from the 

S&P 500 Information Bulletin and convert it to a constant dividend yield for each 30-day 

period. Before April 1982, dividends are estimated from monthly dividend yields. We 

obtain the interest rate as the three-month T-bill rate from the Federal Reserve Statistical 

Release. We estimate the variance of the basis risk, var(£,), from the observed futures 

prices and the intraday time-stamped S&P 500 record obtained from the CME. 

We rescale the index price St by the multiplicative factor 100,000/5'0 so that the 

index price at the beginning of each 30-day period is 100,000. Accordingly, we rescale the 

futures price, index futures option price, and strike by the same multiplicative factor. 

We consider options maturing in 30 calendar days, which results in 247 sampling 

dates.30 Since the first maturity of serial options was in August 1987, the first 19 periods 

occur with quarterly periodicity. Overall, we record 36,921 raw call quotes and 42,881 raw 

put quotes. After eliminating obvious data errors, we apply the following filters: minimum 

15 cents for a bid quote and 25 cents for an ask quote; KJF ratio within 0.96-1.08 for calls 

and within 0.92-1.04 for puts; and matching the underlying futures quote within 15 seconds. 

Part of the data is lost due to the CME rule of flagging quotes, i.e. bids (asks) are flagged 

only if a bid (ask) is higher (lower) than the preceding bid (ask); in addition, no transaction 

data is flagged. We recover a large part of the data by analyzing the sequence between 

consecutive bid-ask flags; however, this recovery is not possible in all cases. As a result of 

the applied filters, we obtain 29,822 quotes for calls and 30,281 quotes for puts in our final 

Recall that our goal is to compare the investment policies, of the index trader and the option trader. 
Since both policies stipulate approximately the same stock component, the effect of this component cancel 
each other out. Also, it is a common empirical approach to derive the index value from the index futures; 
see, for example, Jackwerth and Rubinstein (1996). 
30 The 30-day rule eliminates the occurrence of the October crash from our sample. Therefore, we use one 
40-day period to have the crash (the 248th observation) and verified that the inclusion of the crash does not 
alter our results. 
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sample. These quantities translate into roughly 60 data points for all strikes for either bid or 

ask prices for an average day. 

Appendix B: Calibration of the index return tree and numerical approach 

Estimation of the Constantinides-Perrakis (2007) bounds requires a numerical method that is 

flexible enough to mirror several data characteristics. In this section we present the 

derivation of a recombining multinomial lattice method that is flexible enough to meet the 

above requirement, which we detail in the following paragraphs. 

The data whose distribution is to be mirrored in the estimation method consists of 

S&P 500 daily returns. Since it is known that the estimation of the expected return from the 

stock market entails well known difficulties since the work of Merton (1980), the first 

requirement for our method is that a lattice should assume a given mean return. The second 

requirement is that a lattice should assume a given second moment, which may or may not 

to be estimated from a given sample of the S&P daily returns. The last two requirements are 

that a lattice should assume the third and fourth moment of a given sample of the S&P daily 

returns. Here we propose a solution that results in the exact match of the first three 

moments, with only small errors in kurtosis. We demonstrate the size of those errors by 

calibrating the lattice derived by our method to a large set of the S&P daily returns. 

Besides the use of physical distributions, the task at hand differs from the lattice 

methods commonly used in option pricing in other important aspects. In risk-neutral pricing 

the limiting distribution is known, which implies that any errors on the moments of the one-

period distribution are of little importance as long as the time partition is sufficiently fine so 

as to ensure a weak convergence to the risk-neutral lognormal distribution. In our approach 

we do not adopt any specific limiting distribution. We also wish to keep a sufficiently coarse 

time partition in order to avoid market microstructure issues. We choose a partition of one 

(trading) day and we focus on matching the distribution moments for this specific partition. 

The scope of our method is potentially wider than the estimation of the 

Constantinides-Perrakis (2007) bounds. It may be applied whenever recursive discrete-time 

expectations under an empirical distribution need to be taken, provided that the first four 

moments are sufficient in order to characterize a given distribution. An alternative to the 

presented method would be to use Edgeworth binomial tree (Rubinstein, 1998). However, 
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this last approach may result in negative probabilities outside relatively narrow ranges for 

the third and fourth moment. 

The number of branches in a recombining lattice M must satisfy M -2m + l, where 

m is a positive integer. Thanks to the recombination property, at each time t there is 2mt +1 

nodes in a given lattice. The odd number of branches is not sufficient for the lattice to 

recombine, which occurs when the nodes are equally spaced in a log scale; or, equivalently, 

the ratio of any two adjacent returns is constant. 

In the first step of our algorithm we pick a value for the number of branches M and 

group the observed returns in a histogram with M bins of equal length (on the log scale) 

such that the extreme bins are centered on the extreme observed returns. The center of each 

bin then becomes a state in the equally spaced tree, with the ordered states and the 

corresponding probabilities denoted respectively as JC, and pt, i-\...M . Note that, given 

our data set we end up with states in our lattice that have zero probabilities since S&P 

returns clearly have outliers. We don't investigate here the precise recombination pattern 

of a lattice with zero-probability states; we observe, however, that the number of zero-

probability states remains relatively constant as the number of convolutions of the lattice 

with itself increases, resulting in a decreasing proportion of such states as the time period 

increases. 

Instead of a histogram, we could build our lattice by discretizing a kernel-smoothed 

distribution. However, since the kernel smoothing would involve more parameter choices,32 

we retain a preference for the histogram approximation. 

We denote the target logarithmic return by ft with the corresponding target return 

exp(ft), the target return variance by a1, and the sample skewness and kurtosis 

respectively by ft^ and ft4. We wish to adjust the lattice derived by the histogram so that 

the exponent of it will match the desired four moments, exp [ft), d2, ft^, and ft4. In the 

following paragraphs, we present an approach that will match the first three moments 

exactly by analytical means, with the fourth moment matched approximately by varying M, 

31 In order to have positive probabilities for all states in the lattice the lattice should have at times distances 
between states that preclude the goal of precise matching of the four moments. 

A critical parameter in the kernel density estimation is the kernel bandwidth. In addition, since the 
density estimate of the log-returns covers the real line, the scope of the discretized distribution would need 
to be chosen. 

38 



the number of branches in the lattice. First, consider an affine transformation of the log-

returns x, into axt + b. It can be easily shown that the transformed log-returns remain 

equidistant. We may use this transformation to impose any desired first two moments 

exp (fi) and <J2 by simply solving two moment conditions: 

Z " i Pi e xP (ax> +b)-exp{fi) = 0 

(B.l) 

E " A [exp (ax,. + b)] - exp (fif - <72 = 0 

These two non-linear equations in (B.l) may be easily solved numerically for the 'stretch' 

and 'shift' parameters a and b. For instance, if we wish to keep the sample variance in our 

lattice, the parameter a will simply correct for a rounding error on the variance from the 

histogram while b will set the mean at its target. Note that in the second condition we 

don't need to write the expectations in the second term since the first condition ensures the 

target value for these expectations. 

The third moment condition is more difficult to achieve since we have exhausted the 

means for transforming thex(. 's without discarding the equidistant property. We reach the 

equality of the third moment by suitably varying the probabilities pt. If, for instance, the 

third moment of the*,, 's is too low relative to the target //jwe may try to solve our problem 

by adding a positive constant c to the right-tail probabilities and then normalizing all the 

probabilities to 1, while deriving this constant c jointly with a and b from a system of three 

equations. However, since at the same time we also need to solve for the parameters a and 

b, 4 it will not be necessarily the case that a positive c will provide a feasible solution to the 

system. Conversely, we may end up with an acceptable solution for c by subtracting a 

positive constant from the left-tail probabilities, provided we perform this operation only on 

It is clear that changing the mean has no effect on the variance. 
It is apparent that adjusting to the desired mean will change the third moment. 
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positive probabilities.35 To cater for all contingencies, we search for a solution both in the 

right and left tails of the x, 's and we verify which solution results in positive probabilities. 

If both solutions conform to this condition, we take the one which results in a lower error on 

the fourth moment. 

We define two transformed distributions p* and pt as follows: 

Pi+C\{i>n)\{p,*0) 
Pi =• 

T:,(P, + Cl(i>n)l(pi*0)i 

and , (B.2) 

Pi + Cl{i<n.)l(Pi*0) 
P*i=-

E^(A+*W (,,*O)) 

where 1() is the indicator function, n (nt) is the index to this x, which brackets from 

above (below) the target expected log-return ft. The first indicator function ensures that the 

constant c is added only to the probabilities in the chosen tail of the distribution; the second 

one ensures that the constant c is added only to the positive probabilities. The denominator 

in either line in (B.2) standardizes a given transformed distribution to 1. 

We defined in (B.2) the distributions under which we may set the third moment 

equal to the sample moment fa. This operation will simply correct for a rounding error 

arising from the use of the histogram. For an adjustment in the right tail of the distribution 

we solve the following three moment conditions: 

Our numerical work indicated that adjusting only positive probabilities yields superior solutions in term 
of errors on the fourth moment. 

40 



£ l = 1 p* exp (ax,. + b) - exp (//) = 0 

£ " ^ [exp (ax,. + fe)]2 - exp {fif - d1 = 0 , (B.3) 

Z " , P* [exP ( ^ + *) - exP (£) ] - A<5"3 = o 

where the/?* 's are as defined in (B.2), which definition will explicitly introduce the third 

variable c into the set of three non-linear equations above. These three equations may be 

solved numerically. For an adjustment in the left tail, substitute pti for p*, as defined in 

(B.2). 

An exact match to the fourth moment by adding a fourth equation to the system 

(B.3) would be a difficult task. For instance, a four-parameter solution might pose 

numerical difficulties, or finding all non-negative probabilities might be not feasible in some 

cases. To avoid these problems, we resort to varying M, the number of nodes in the lattice. 

With each new M the initial distribution derived from a histogram changes providing some 

variability in the fourth moment after the adjustments resulting from solving (B.3). After a 

search over a range of AT s we pick this distribution which has the lowest absolute difference 

between its kurtosis and the sample kurtosis//4. It turns out that this search procedure ends 

up with acceptably small errors in matching ju4 for the data that we use. 

In the following paragraphs we present the performance of our lattice construction 

method. At each of 248 dates we sample past returns over 30, 90 and 365 calendar days and 

measure relative errors on the target moments of the lattice. In our results, at each date we 

impose an annualized expected return of 1.08.36 We present the results separately for second 

moments equal to 0.15 and 0.25 . The third and fourth moments we attempt to match are 

the sample moments. The last parameter we vary is the maximum number of branches, 

which bounds the search for the lattice which provides the best match for the sample fourth 

moment. 

36 Varying the first moment has no distinguishable effect on the performance. 
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Table 10 

Proportional Errors on the Fourth Moment (<r = 0.15) 

#of 
Calendar 
Days in 
Sample 

Mean 
#of 

Branches 

100 M*-M* 

& 

Mean Median 
w 90' 

Percent. 
Max 

Panel A: M< 101 
30 68.1 
90 66.4 
365 62.6 

0.083 
0.035 
0.019 

0.010 
0.012 
0.009 

0.035 
0.048 
0.038 

13.077 
1.043 
0.264 

Panel B: M < 201 
30 124.6 
90 122.4 
365 100.0 

0.069 
0.016 
0.013 

0.002 
0.003 
0.004 

0.014 
0.021 
0.020 

13.077 
0.611 
0.264 

Panel C :M< 1001 
30 415.7 
90 420.3 
365 379.9 

0.067 
0.010 
0.009 

0.000 
0.001 
0.001 

0.007 
0.011 
0.013 

13.077 
0.611 
0.264 

Table 11 

Proportional Errors on the Fourth Moment (a = 0.25) 

#of 
Calendar 
Days in 
Sample 

Mean 
#of 

Branches 

mn 

Mean 

^4 " A 

A 
Median 

90* 
Percent. 

Max 

PanelA:Af< 101 
30 63.5 
90 59.8 
365 60.6 

0.048 
0.055 
0.103 

0.012 
0.018 
0.018 

0.067 
0.146 
0.202 

2.577 
0.721 
1.651 

Panel B: M < 201 
30 105.3 
90 108.3 
365 91.9 

0.036 
0.029 
0.073 

0.005 
0.007 
0.009 

0.052 
0.078 
0.112 

2.577 
0.615 
1.224 

Panel C: M < 1001 
30 
90 

365 

275.7 
330.1 
340.3 

0.033 
0.016 
0.018 

0.002 
0.002 
0.003 

0.048 
0.045 
0.037 

2.577 
0.315 
0.586 

Tables 10 and 11 display the absolute proportional errors on the fourth moment for 

the second moments 0.15 and 0.25 , respectively. We don't present similar errors on the 

first three moments since we could always solve the system of equations (3) within a 
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numerical accuracy, which translates to the highest recorded absolute proportional error of 

an order of le-8, with 90% of these errors within of le-9. 

The results in Tables 10 and 11 demonstrate the excellent performance of our 

method. In Table 10 we don't find any 90th percentile error above 0.05%. Except for the 

30-day sampling interval, the maximum error in Table 10 is around 1%. In Table 11 we can 

observe that imposing a higher second moment causes a decrease in the performance; 

however, the errors on the fourth moment remain low. Last, note that gains from increasing 

the lattice size are limited since the performance changes only marginally for a five-fold 

increase in the maximum number of branches in panels B and C of Tables 10 and 11. 

The method proposed in this essay may result in a large number of branches, which 

is not attractive from the point of view of recursive algorithms applied in option pricing, 

especially if the exercise style is American. In the following paragraphs we introduce the 

(discrete) Fast Fourier Transform (FFT), a computational tool suitable to deal with the 

problem of the lattice size. First, we define two distinct terms: a discrete Fourier transform 

is an operation which results, for instance, in the probability characteristic function if 

applied to a discrete density; a discrete fast Fourier transform is an efficient numerical 

algorithm used to derive discrete Fourier transforms. We will not concern ourselves with 

the latter while applying it in numerical work since it is a standard tool in a number of 

matrix algebra packages; we present applications of the former to taking recursive 

conditional expectations. In what follows, we denote the (fast) discrete Fourier transform as 

FFT. 

An application of FFT to option pricing may be found in Cerny (2004). This paper, 

however, is entirely focused on European options, which doesn't require taking recursive 

conditional expectations. We introduce below a simple generalization of this application. 

For any two TV-dimensional vectors x = [xl,...,xN]' and y = [yx,—,yNY we define a 

circular convolution, an operation that results in a new TV-dimensional vector z: 
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The indexing of the elements of x ensures that N is added whenever i - k is non-positive, 

which results in proper indices to the elements of x. As we demonstrate below, the number 

of computations necessary to derive the vector z may be greatly reduced with the use of 

FFT. First, however, we present an example demonstrating that (B.4) may be applied to 

derive recursive expectations. Consider, for instance, a trinomial model with two time 

partitions with the probabilities of one-period increasingly ordered states denoted as p\, p2 

and/?3. After two periods, we have five terminal payoffs y = [yl,—,y5Y, which can be any 

function of the underlying, where the states of the underlying were set in the increasing 

order. Consider the following vector x - [0,0, pi, p2, px ] ' . It is easy to show that applying 

(B.4) to x andy will result in the vector z whose top three entries are one-period conditional 

expectations of the terminal payoffs. If we now apply (B4) to x and z, we obtain a five-

element vector whose top entry is the expectations of the terminal payoffs as of time zero. 

Note that at the middle date nothing prevents us from discounting the entries to z or 

comparing them with any function of the states of the underlying at this date. This simple 

example demonstrates two important aspects of the use of the circular convolution to 

recursively derive conditional expectations at the initial date: first, we may use constant size 

vectors; second, our final result is the top entry to a vector that results from multiple circular 

convolutions of the constant vector containing properly ordered probabilities with time-

varying one-step ahead vector function of the underlying. 

The above example easily generalizes to an algorithm for any number of periods and 

any lattice size. All we need to do is to reverse the order of the one-period probabilities and 

to pad them from above with zeros to the size of the vector of terminal payoffs. Then we 

may proceed blindly with backward recursion, knowing that the top entry in the vector z is 

the desired quantity after T circular convolutions, with T denoting the number of periods to 

maturity. Discounting or comparing one-period conditional expectations with the present-

time payoffs may be easily handled. 

The circular convolution would not be of much use in numerical work without FFT 

since it needs even more computations that solving a multi-period lattice by 'standard' 

vector operations. Let F (Fl) denote FFT (inverse FFT). We have: 
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xoy = F-1(jNF'1(x)xF(yj), (B.5) 

where x denotes a vector element-by-element multiplication. FFT can be executed very 

fast by a number of matrix algebra packages. Note that since the vector x will remain 

constant, F~l (x) needs to be derived only once. Therefore, at any time we need to perform 

just three algebraic operations: one vector element-by-element multiplication, one FFT and 

one inverse FFT. 

For completeness sake, we present below two important properties of FFT: 

i. Inversion: F~lF(x) = FF~l(x) = x, (B.6) 

ii. Linearity: F(ax + /?) = aF{x) + J3. (B.7) 

Appendix C: Trading policy 

We consider calls with moneyness (K/S) within the range 0.96-1.08 and puts within the 

range 0.92-1.04. If we observe n call bid prices violating the call upper bound, each with 

different strike price, the option trader writes \ln calls of each type with the underlying 

futures corresponding to the index value of y0. The trader transfers the proceeds to the 

bond account: x - x0 + ̂ " C; / n and y = y0. 

If we observe n put ask prices violating the put lower bound, each with different 

strike price, the option trader buys \ln puts of each type and finances the purchase out of 

the bond account: x = x0 - V " Pt In and y - y0. 

However, when there is a violation of the upper put bound and the option trader 

writes puts, the trader also sells one futures contract for each written put. The intuition for 

this policy may be gleaned from the observation that the combination of a written put and a 

short futures amounts to a synthetic short call. In fact, the upper put bound in equation (3) is 

derived from the upper call bound in equation (2) through the observation that if we can 

The proof of this result may be found in Cerny (2004). 
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write a put at a sufficiently high price we violate the upper call bound by writing a synthetic 

call.38 

Finally, when there is a violation of the lower call bound and the option trader buys 

calls, the trader also sells one futures contract for each purchased call. The intuition is the 

same as above. 

The early exercise policy of a call is based on the function N in equation (2). The 

early exercise policy of a put is based on the function M in equation (5). However, 

whenever the option trader is short an option, each period we derive the functions N and M 

based on the forward-looking distribution of daily returns, i.e. these functions are derived 

under the empirical distribution of the daily index returns between the option trade and the 

option maturity. Effectively, we endow the counterparty of the option trader with 

information on the 2nd, 3rd, and 4th moments of the forward distribution, while imposing the 

first moment. The early exercise policy of a call or put is simplified by the observation that 

the decision is a function only of time and the ratio of the strike price to the index level. 

Appendix D: The Sharpe ratio and the Davidson-Duclos (2000, 2006) tests 

For the Sharpe ratio tests, we use the approach of Jobson and Korkie (1981) with the 

Memmel (2003) correction that accounts for different variances of the two portfolios. 

Specifically, given the sample of N realizations of the index trader's (IT) and option trader's 

(OT) portfolio outcomes with juOT, jUJT, &2
OT, a2^, dITOT as their estimated excess means, 

variances, and covariances, we test the hypothesis H0: fiOT&IT - (iIT60T ^ 0 with the test 

statistic z, which is asymptotically standard normal: 

£ _ Mor&ir ~Mirror (D 1) 

s 
where 

In implementing the trading policy of either writing puts or buying calls, the option trader buys or sells a 
futures contract as well and this violates the assumption made in Section 1 that the option trader does not 
trade in futures. Even when we relax the assumption on trading in futures, in practice, traders manage their 
portfolio by trading in the index because of the inconvenience and cost of the frequent rolling over of short-
term futures contracts and the illiquidity of long-term futures and forward contracts. 
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N 
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0 ~2 ~2 _<•).£. i i- 4-_L/>2 / T 2 - I - — / / 2 /T2 J^ITMOT A2 

AOIToOT AO [To 0To IT 0T -i- iiOTu IT-r uITu OT v 
2 2 <y,T<J, 

IT.OT 
lT^OT J 

(D.2) 

DD (2000) provide a test of the null hypothesis H0: OT >^ IT in terms of the 

maximal and minimal values of the extremal test statistic, T(z). The null is not rejected, if 

the maximal value of the statistic is positive and statistically significant and the minimal 

value of the statistic is either positive or negative and statistically not significant. 

The variable z denotes the logarithm of end-of-the-month wealth of a trader, where 

the subscripts IT and OT distinguish between the index trader and the option trader. The 

statistic T(z) is defined as follows: 

where 

T(z) = 
_DJT(z)-D2

OT(z) 

A / ^ 0 0 

A2(^i>-^,)+ 

(D.3) 

(D.4) 

V\z) = F£(z) + j £ ( z ) - 2 F * (z) (D.5) 

and 

~9 1 

r/(z)=— 
7 N 

jfiiz-^t-Dhz? , I = IT,OT 

"2 _ 1 
' OT,IT \Z) ~ T 7 ^JL{z-Wm)+?[{z-WOTj-DJT(z)D2

OT(z) 

(D.6) 

(D.7) 

The maximal and minimal values of the statistic are calculated as a maximum and minimum 

of (D.3) over a set of points of z as explained below. Stoline and Ury (1979) provide tables 

for the distribution of the maximal and minimal value of T(z), which is not standard at the 

levels 1, 5 and 10%. In principle, the number of points in this joint support over which the 

test may be performed needs to be restricted since a 'large' number of these points violates 
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the independence assumption between the T(z)s. Therefore, we compute these statistics for 

20 points equally spaced in the log-transformed joint support of WIT and W0T, which 

corresponds to k - 20 in the Stoline and Ury (1979) tables. 

DD (2006) provide a test of the null hypothesis H0: OT ^ IT • The t e s t statistic is 

the same as in DD (2000), except that instead of the extremal ^-statistic we are now 

interested in the minimal ^-statistic. This statistic is computed for the values of z that are 

sample points within the restricted interval, i.e. in this interval we have coupled log-

transformed observations of WIT and WOT. As opposed to the DD (2000) test, there is no 

restriction on the number of these points and we compute the minimal value of T(z) in the 

restricted interval.39 If the minimal value is negative, the null of non-dominance is accepted. 

Otherwise, there exists a bootstrap approach for the derivation of the /^-values for the null 

hypothesis, which is described in detail in DD (2006) and Davidson (2007). In our tests, we 

use 999 bootstrap replications in order to derive the/?-values in the tables. 

There is a cost in adopting the DD (2006) null, because, as it can be analytically 

shown, this null cannot be rejected over the entire support of the sample distribution. DD 

(2006) overcame this problem by restricting the interval over which the null may be rejected 

to the interior of the support, excluding points at the edges. They then showed by simulation 

that inferences on the basis of this restricted interval constitute the most powerful available 

inference on the existence of stochastic dominance. We follow their suggestion on the 

method for restricting the interval, which we also test on simulated data.40 

Appendix E: Conditional versus unconditional tests 

For each time point of our sample we generate artificially samples of stock return paths 

drawn from a bootstrapped distribution constructed from the (approximately 22) observed 

daily stock returns till option expiration^br each one of the 247 dates t=l,..., 247 in our data 

period. Such a distribution represents the information that the trader would have used to 

estimate the bounds had she been able to observe it. For each stock return path of the 

It may be shown that T{z) is monotonic between the sample points; therefore the minimal value of T(z) 
may be found only at a sample point. 
40 Details on the restrictions of the test interval are available from the authors on request. 
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bootstrap we then compute the wealth indices for OT and IT, W0T and W]T, and generate 

two distributions of these quantities at each date in our period and for each method of 

estimating the bounds; recall that all these estimation methods use only quantities that can 

be observed by the trader before adopting her option position. Hence, evidence that the 

returns of the option trader dominate the returns of the index trader for "most" of the time 

points of our sample validates the use of the observable distribution for estimating the 

bounds in lieu of the unobservable distribution of the actual stock return paths. 

Since these bootstrapped samples are large, we can treat the samples as the entire 

populations, applying a direct stochastic dominance test based on the integral condition that 

defines stochastic dominance.41 This integral condition takes the following form, for 

J - OT, IT and for z denoting the lower limit of the joint support of the two distributions 

DJT(z)-D2
OT(z)>0, whereDj(z) = f{z-x)dFj(x) (E.l) 

In the particular case in which we observe the paired wealth levels W0T and WlT from a 

sample of size TV with values WM, i = \,...,N, J-OTJT the test statistic D) (Z) becomes 

D2A^) = ~t(z-WM)+ (E-2) 

For the bootstrapped distribution, we calculate the SD2 test statistic from (E.1)-(E.2) 

for the hypothesis H0: OTt > ITt t=\,..., 247 as above and decide on acceptance/rejection 

at a chosen significance level a (say 5%). Next, we set the variable Z, to equal one if 

Prob{/fQ false} < a , and zero otherwise. The hypothesis Prob{07J >- ITt} > 0.5 for any 

t, against the alternative Vrob{OTt >2 IT,} < 0.5 for any /, is accepted if ^ 2 4 ? Z , > /?, 

See, for instance, Hanoch and Levy (1969). Condition (9) can be easily shown, through integration by 
parts, to be equivalent to the better-known form of the integral condition used in most SD studies. 
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where /? is chosen according to the desired significance level from the binomial distribution 

with probability^ = Vi. 

In Table 9, panel A, we present the results of these conditional tests. The upper 

panel tests the hypothesis Prob{07} >- 77̂ } > 0.5 for the observed option bid prices that 

violate the call and put upper bounds in equations (l)-(4) under the same conditions as Table 

2. The results are strongly supportive of the null hypothesis in all but one case for which 

there are too few observations, and are in full agreement with the results of the 

unconditional test of Table 2. Similar results also hold for the options that violate the option 

upper bounds under the conditions of Table 3, with the basis risk set equal to 0.42 

In Table 9, panel B, we present the results of tests of the hypothesis 

Pr ob{07^ >- ITt) > 0.5 for the artificial set of options written at the upper bounds of the call 

and put options, as in the upper panel of Table 6. Again, the results are strongly supportive 

of the null hypothesis in all cases, with the observed probabilities Prob{07] > ITt) greater 

than 65% in all but one case and always significantly greater than 50%.43 Hence, 

conditional and unconditional tests agree here as well. Similar results (available upon 

request) establish the validity of the hypothesis Prob{07^ y ITt} > 0.5 for call options 

purchased at the lower bound of equation (6), while for put options purchased at the lower 

bound of equations (4) and (5) the hypothesis is verified in all cases except for K/F < 0.98, 

again as in the unconditional tests. 

4 The results are available from the authors on request. 
Similar, although slightly weaker, results also hold for the option upper bounds for the case where there 

is no basis risk in computing the bounds. 

50 



References 

Black, F. and M. S. Scholes, 1973, "The Pricing of Options and Corporate Liabilities," 

Journal of Political Economy 81, 637-654. 

Bogle, J. C, 2005, "The Mutual Fund Industry 60 Years Later: For Better or Worse?" 

Financial Analyst Journal 61, 15-24. 

Bollerslev, T., 1986, "Generalized Autoregressive Conditional Heteroskedasticity," Journal 

of Econometrics, 31, 307-327. 

Cerny, A., 2004, "Introduction to Fast Fourier Transform in Finance," Journal of 

Derivatives 12, 73-88. 

Constantinides, G. M., 1986, "Capital Market Equilibrium with Transaction Costs," Journal 

of Political Economy 94, 842-862. 

Constantinides, G. M., 2002, "Rational Asset Prices," Journal of Finance 57,1567-1591. 

Constantinides, G. M., J. C. Jackwerth, and S. Perrakis, 2007, "Mispricing of S&P 500 

Index Options," Review of Financial Studies, forthcoming. 

Constantinides, G. M. and S. Perrakis, 2002, "Stochastic Dominance Bounds on Derivatives 

Prices in a Multiperiod Economy with Proportional Transaction Costs," Journal of 

Economic Dynamics and Control 26, 1323-1352. 

Constantinides, G. M. and S. Perrakis, 2007, "Stochastic Dominance Bounds on American 

Option Prices in Markets with Frictions," Review of Finance 11,71-115. 

Coval J. D. and T. Shumway, 2001, "Expected Option Returns," Journal of Finance 56, 

983-1009. 

Davidson, R., 2007, "Testing for Restricted Stochastic Dominance: Some Further Results," 

Working Paper, McGill University. 

Davidson, R. and J.-Y. Duclos, 2000, "Statistical Inference for Stochastic Dominance and 

for the Measurement of Poverty and Inequality," Econometrica 68,1435-1464. 

Davidson, R. and J.-Y. Duclos, 2006, "Testing for Restricted Stochastic Dominance," 

Working Paper, McGill University. 

Dimson, E., P. Marsh, and M. Staunton, 2006, "The Worldwide Equity Premium: A Smaller 

Puzzle," Working paper, London Business School. 

51 



Fama, E. F., and K. R. French, 2002, "The Equity Premium," Journal of Finance 57, 637-

660. 

Hull, J. C , 2006, Options, Futures, and Other Derivatives, Prentice Hall. 

Jackwerth, J. C , 2000, "Recovering Risk Aversion from Option Prices and Realized 

Returns," Review of Financial Studies 13, 433-451. 

Jackwerth, J. C, 2004, "Option-Implied Risk-Neutral Distributions and Risk Aversion," 

ISBN 0-943205-66-2, Research Foundation of AIMR, Charlottesville, USA. 

Jackwerth, J. C. and M. Rubinstein, 1996, "Recovering Probability Distributions from 

Option Prices," Journal of Finance 51,1611-1631. 

Jobson J. D. and B. M. Korkie, 1981, "Performance Hypothesis Testing with the Sharpe and 

Treynor Measures," Journal of Finance 4, 889-908. 

Kamrad, B. and P. Ritchken, 1991, "Multinomial Approximating Models for Options with k 

State Variables," Management Science 37,1640-1652. 

McDonald, R. L., 2006, Derivatives Markets, Addison-Wesley. 

Memmel, C, 2003, "Performance Hypothesis Testing with the Sharpe Ratio," Finance 

Letters 1, 21-23. 

Merton, R. C , 1973, "Theory of Rational Option Pricing," Bell Journal of Economics and 

Management Science 4, 141-183. 

Merton, R. C, 1980, "On Estimating the Expected Return on the Market: An Exploratory 

Investigation," Journal of Financial Economics 8, 323-361. 

Nelson, D. B., 1991, "Conditional Heteroskedasticity in Asset Returns: A New Approach," 

Econometrica 59, 347-370. 

Perrakis, S. and M. Czerwonko, 2006, "Transaction Costs and Stochastic Dominance 

Efficiency in the Index Futures Options Market," Working paper, Concordia 

University. 

Rubinstein, M., 1994, "Implied Binomial Trees," Journal of Finance 49, 771-818. 

Rubinstein, M., 1998, "Edgeworth Binomial Trees," Journal of Derivatives 5, 20-27. 

Stoline, M. R. and H. K. Ury, 1979, "Tables of the Studentized Maximum Modulus 

Distribution and an Application to Multiple Comparisons among Means," 

Technometrics 21, 87-93. 

52 



Essay II: The Black-Scholes-Merton Model under Proportional 
Transaction Costs 

Abstract 

Proposition 5 call lower bound in Constantinides and Perrakis (2002) is shown to have a non-trivial limit as the 
time interval tends to zero. This establishes the bound as the first call lower bound known in the literature on 
derivative pricing in the presence of transaction costs with a non-trivial limit. The bound is shown to be tight 
even for a low number of time subdivisions. Novel numerical methods to derive recursive expectations under 
non-identically distributed stochastic process are presented. 
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1 Introduction 

Stochastic dominance bounds on European and American option prices in the presence of 

proportional transaction costs were derived by Constantinides and Perrakis (CP, 2002, 

2007). These bounds were derived for a general distribution of underlying stock returns in a 

discrete time context. Hence, their relationship to well-known continuous time models of 

option pricing is unknown. In this essay we redefine the CP 2002 European call option 

lower bound in a discrete time model of the underlying asset distribution that converges to a 

lognormal diffusion as the time partition tends to zero. We then show that the corresponding 

lower bound converges to tight and non-trivial Black-Scholes type expression as the 

partition of trading time tends to zero, even if the transaction cost parameter remains 

constant. Further, this bound converges to the conventional Black-Scholes value when that 

parameter is set equal to zero. 

The CP bounds defined a range of prices, such that any utility-maximizing trader 

would be able to exploit a mispricing, net of transaction costs, if the price of the option were 

to fall outside this range; the frictionless no arbitrage option price lies within the range. The 

reservation purchase price of an option was defined as the maximum price gross of 

transaction costs below which a given trader in this class increases her expected utility by 

purchasing the option. The reservation write price of an option is similarly defined as the 

minimum price net of transaction costs above which a given trader in this class increases her 

expected utility by writing the option. For the European call options CP (2002) defined a 

relatively tight reservation write price that was independent of the time partition, and a 

similarly partition-independent reservation purchase price that was, however, very loose and 

not particularly useful.44 For the American call options CP (2007) derived similarly a tight 

reservation write price and a very loose reservation purchase price. In all cases the derived 

CP reservation prices did not converge to the prices that would prevail in a complete and 

fiictionless market if the transaction cost parameters were set equal to zero. Their 

relationship, therefore, to the Black-Scholes price remained unclear. 

These bounds were empirically applied in Constantinides, Jackwerth and Perrakis (2008) to the market of 
S&P 500 index options. 
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CP (2002) derived also several partition-dependent call option prices, one 

reservation write and three reservation purchase ones. Neither the convergence properties of 

these prices, nor their discrete time values for any given time partition were provided, given 

the complexity of the resulting expressions. Although the discrete time distribution of the 

underlying stock price was assumed to have independent and identically distributed (iid) 

returns, the stochastic process under which the bounds were evaluated as risk neutral 

expectations was Markovian but with state-dependent returns that were not iid. This 

presented serious problems in the numerical work for their estimation. This essay presents a 

novel numerical approach to the estimation of expectations under such state-dependent 

distributions that may be used in other applications beyond the CP bounds. 

In this essay we focus on one of the call option reservation purchase prices, the 

prices given by Proposition 5 in CP (2002).45 This price is basically a generalization of the 

call option lower bounds derived originally by Levy (1985) and Ritchken (1985), and 

extended to a multiperiod context by Perrakis (1988) and Ritchken and Kuo (1988), in a 

trading model that includes proportional transaction costs. We reformulate the CP results, 

applying them to a case where the iid returns tend to a lognormal distribution as trading 

becomes progressively more dense, as in Oancea-Perrakis (2007). We then show in our 

main result that the CP bound of Proposition 5 tends at the limit to a Black-Scholes type 

expression in which the current stock price has been multiplied by the roundtrip transaction 

costs, and becomes exactly equal to the BSM model when the transaction cost parameter is 

set to zero. We also show that the numerical algorithm that we developed converges to this 

limit in a reasonably small number of iterations, thus making the call option lower bound 

applicable to real life trading under realistic market conditions. 

In the remainder of this section we complete the literature review of the option 

pricing models under proportional transaction costs when the underlying asset dynamics 

follow a diffusion process. Proportional transaction costs were first introduced in the BSM 

model by Leland (1985), in a continuous time setup. The Leland model was based on 

imperfect replication of the option in an arbitrarily chosen discretization of the time to 

option expiration. The accuracy of the approximation of the option payoff and the width of 

It can be shown that the other partition-dependent prices are either inferior to the partition-independent 
ones, or tend to trivial values as the density of trading increases. 
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the resulting option bounds were both dependent on the time partition, implying the 

necessity of a tradeoff between accuracy and costs of replication. Several papers explored 

this tradeoff, including Grannan and Swindle (1996) and Toft (1996). 

The replication approach was also attempted in the binomial model by Merton 

(1989) and Boyle and Vorst (1992). Bensaid et al (1992) introduced the more general notion 

of super replication in the binomial model and examined the optimality of the exact 

replication policy, which holds only for options with physical delivery of the underlying 

asset. Their results were extended by Perrakis and Lefoll (2000, 2004) to American options. 

Unfortunately the binomial approach ended up with the same dilemma as the continuous 

time discretization, insofar as the width of the option bounds increased with the time 

partition defining the size of the binomial tree. 

An alternative to replication is the expected utility approach, pioneered by Hodges 

and Neuberger (1989). In this approach a given investor introduces an option to a portfolio 

of the riskless bond and the underlying asset and derives a reservation price as the price of 

the option that makes the investor indifferent between as to including or not the option in her 

portfolio. This approach was developed rigorously by Davis et al (1993), who solved 

numerically the problem for an investor with an exponential utility and a given risk aversion 

coefficient. Related contributions to this approach were made by Davis and Panas (1994), 

Constantinides and Zariphopoulou (1999, 2001), Martellini and Priaulet (2002), and 

Zakamouline (2006). The major drawback of this approach is the dependence of the derived 

reservation option prices on the investor risk aversion coefficient. Given the uncertainty 

prevailing as to the size of that coefficient for the "average" investor,46 the reservation prices 

derived by the expected utility approach cannot be generalized to the entire market. 

See Kocherlakota (1996). 
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2 Stochastic Dominance Restrictions on European Call Price 

We adopt the same general setup as in CP (2007), with a few important differences. 

Although we consider a market with several assets, we focus on a group of investors who 

hold portfolios composed of only two of them, a riskless bond and a stock. The stock has the 

natural interpretation of a stock index.47 We refer to these investors as utility-maximizing 

traders or simply as "traders". We do not make the restrictive assumption that all investors 

participating in the market belong to the class of utility-maximizing traders. Thus our results 

are unaffected by the presence of traders with different objectives and preferences and 

facing a different transaction costs schedule than that of the utility-maximizing traders. Into 

this setup we introduce a long European call option. 

We assume that each trader makes sequential investment decisions in the primary 

assets at the discrete trading dates t = 0,1,..., T', where 7"is the terminal date and is finite. 

A trader may hold long or short positions in these assets. A bond with price one at the initial 

date has price R, R > 1 at the end of the first trading period, where R is a constant. The bond 

trades do not incur transaction costs. 

At date t, the cum dividend stock price is (1 + yt )St, the cash dividend is ytSt, and 

the ex dividend stock price is St, where the dividend yield parameters {/,}t=l _• are 

assumed to satisfy the condition 0 < yt < 1 and be deterministic and known to the trader at 

time zero. We assume that SQ > 0 and that the support of the rate of return on the stock, 

(l + Yt+i)~~ ^s m e compact subset [zmin, zmax ] of the positive real line.49 To simplify the 

notation we also assume that y, = y, constant for all t. We also assume that the rates of 

return are independently distributed with conditional mean return 

There is ample evidence that many US investors follow such an indexing strategy. See Bogle (2005). 
The assumption that the time interval At between trading dates is one is innocuous: the unit of time is 

chosen to be such that the time interval between trading dates is one. The continuous time case will be 
derived as the limit of the discrete time as At —-> 0 . 

In CP (2007) the support is the entire positive real line. The limits on the support here are necessary 
because of technical conditions in considering the convergence to continuous time. 
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zx=E ( i + r ) ^ (2.1) 

known to the trader at time zero. We also assume that z,>E 
jt+\ >R. 

Stock trades incur proportional transaction costs charged to the bond account. At 

each date t, the trader pays (l + kx)S, out of the bond account to purchase one ex dividend 

share of stock and is credited (l - k2) St in the bond account to sell (or, sell short) one share 

of stock. We assume that 0 < kx < 1 and 0 < k2 < 1. We also define the mean return with the 

dividend reinvested in the stock, net of transaction costs, long and short as 

z2=E 1 + - r 
l + k, 

j
t+i 

\J 

,z,=E 
( 

1 + - 7 
\-k. 

jt+\ 

2 7 

(2.2) 

In practice, the distinction between zx and z2 or z3 is negligible, given that both the 

dividend yield (y) and the transaction costs rates (kx, k2) are small. 

We consider a trader who enters the market at date t with dollar holdings xt in the 

bond account and yt I St ex dividend shares of stock. The endowments are stated net of any 

dividend payable on the stock at time t.50 The trader increases (or, decreases) the dollar 

holdings in the stock account from yt to y,} = y,+ vt by decreasing (or, increasing) the bond 

account from xt to xl' = xl-vl- max [kxvt, - k2v\ ] . The decision variable vt is constrained 

to be measurable with respect to the information up to date t. The bond account dynamics is 

J f /+ i=h-^-max[*iV / , -*2w /]}i« + (3 ' /+u,)-^± L , t<T'-\ (2.3) 

50 We elaborate on the precise sequence of events. The trader enters the market at date / with dollar 
holdings xt — ytyt in the bond account and yt I St cum dividend shares of stock. Then the stock pays cash 
dividend ytyt and the dollar holdings in the bond account become xt. Thus, the trader has dollar holdings 
xt in the bond account and y, / St ex dividend shares of stock. 
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and the stock account dynamics is 

y,+My,+vt)^ ^r-\. (2.4) 

At the teraiinal date, the stock account is liquidated, VT, = -yT., and the net worth is 

xr+yr-md&\-klyr,k2yr]. At each date t, the trader chooses investment vt to 

maximize the expected utility of net worth, E \u{xT,+yr -max[-A:]>'7„,^277.,])|1S'J. 

We make the plausible assumption that the utility function,u (.), is increasing and concave, 

and is defined for both positive and negative terminal net worth. 

We define the value function recursively as 

v{x„yt,t) 

= max is 
V 

V 
f yS S ^ 
[xl-v-max[klv,-k2v]}R + (yt + v)J-fL,(yl + v)-^,t + l 

\ 

(2.5) 

for t<T'-\ and 

V(xr„yr,T') = u(xr+yT,-max[-k}yr,k2yr]). (2.6) 

We assume that the parameters satisfy appropriate technical conditions such that the value 

function exists and is once differentiable with respect to xt and yt. We denote by v* the 

optimal investment decision at date t corresponding to the portfolio (xt, yt). The value 

51 The results extend routinely to the case that consumption occurs at each trading date and utility is defined 
over consumption at each of the trading dates and over the net worth at the terminal date. See, 
Constantinides (1979) for details. 

If utility is defined only for non-negative net worth, then the decision variable is constrained to be a 
member of a convex set, A, that ensures the non-negativity of the net worth. See, Constantinides (1979) for 
details. This case is studied in Constantinides and Zariphopoulou (1999, 2001). The CP (2002, 2007) 
bounds apply to this case as well. 
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function V(x,y,t) is increasing and concave in (x,y), properties inherited from the 

monotonicity and concavity of the utility function u(.), given that the transaction costs are 

quasi-linear. 

We define xt' and yt' as 

x/ = xl-v* -max[A,i>*,-£2v*] (2.7) 

and 

y,'=y,+v;. (2.8) 

Portfolio (x,', yt') represents the new holdings at t following optimal restructuring of the 

portfolio (xt,yt). Equations (2.5), (2.7) and (2.8) and the definition of v* imply 

V{xt,yt,t) = V(xt\yt\t) (2.9) 

Relations (2.1)-(2.9) are sufficient for the CP (2002, 2007) derivations of the bounds. For a 

given pair (xt, yt), we define the reservation purchase price of a call as the value of C such 

that 

V{xt+{\-k2)gtSt-C,yt-gtSl,t) = V{xt,yt,t), (2.10) 

where gt < 1 is the number of shares of the stock sold. The interpretation of C is the 

purchase price of the call at which the trader with initial endowment (xt,yt) is indifferent 

between purchasing the call or not. CP (2002) in Proposition 5 stated a partition-dependent 

bound54 on the reservation purchase price of a European call option that is independent of 

See Constantinides (1979) for details. 
54 The interpretation of this bound is that when an investor observes a call price below the bound, she 

increases her expected utility by purchasing the call financed by shorting g: shares, with the remainder of 

proceeds invested in the riskless bond. 
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the trader's utility function and initial endowment. A key ingredient to this result is 

optimizing the number of sold shares gt which we elaborate in later sections. 

Many of the results for the option bounds in incomplete markets without transaction 

costs, however, have been derived in a framework first developed by Ritchken (1985), 

which relies on the pricing kernel and the first order utility maximization conditions of the 

trader. The two approaches are equivalent. This approach relies on the partial derivatives of 

the value function V[x,y,t), which by marginal analysis satisfy the following conditions, if 

we set V{t) = V [xt, yt, t) to simplify the notation: 

^(0>o, v(t)>o, f = 0,...,7\..J" (2.11) 

0-W(0£F v (0£0 + W ( 0 , t = 0,...,T,...T' (2.12) 

vx(t) = RE[vx(t+i)], t = 0,...,T,...T'-l (2.13) 

VM) = E ^(t+D+r.^Kit+i) t = 0,...,T,...T'-\ (2.14) 

Vx (x, v, t), Vy (x,y, t) are nonincreasing in x and y respectively. (2.15) 

(2.11) and (2.15) stem from the monotonicity and concavity of the value function. (2.12) 

reflects the ability of the trader to transfer funds between the bond and stock accounts by 

incurring transaction costs. (2.13) and (2.14) are conditions on the marginal rates of 

substitution, respectively between the bond accounts and between the stock and the bond 

and stock accounts, at dates t and t +1. 
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3 Proposition 5 Call Lower Bound 

In this section, we introduce the CP Proposition 5 call lower bound and present a general 

idea for the numerical solution. We set k - kx = k2, a one-way transaction costs rate, 

Are [0,1). To simplify the notation, we define the following constants: 

(p[k) = {\-k)j{\ + k) and a(k) = 2k/(l + k). We also define the following function: 

i{zy 
[1/(1 +it), z < 0 

11/(1-*), z > 0 ' 
(3.1) 

We define the Proposition 5 lower bound for the following discrete-time stock process: 

• = zl+Al =\+juAt + (T£^At , (3.2) 

where e ~ F(0,1) and F is a general distribution with zero mean and unit variance with 

density / ( . ) . We further assume that e is bounded with compact support, i.e. 

£ e [ f min' ̂ max ] • The returns are iid, which implies that the time subscript can be omitted 

and the limit of the distribution is a diffusion, which we demonstrate in the following 

section. We also define Zt as the time-/ state variable, be it the stock price or, if we define the 

bound for the stock price S0=l and K' - KIS0, be it the time-/ stock return. 

One period prior to option expiration the lower bound is defined as: 

C5(ZT_l,T-\)-E (ZT_]z-K)+\ZT_l,z<zT_l R, (3-3) 

where zT_, is implied by: 

E\z\z<zT_x\ = (p(k)R (3.4) 

62 



and the number of shorted shares gr_, (Zr_,) is equal to 

(7 ,_{ZTJT_,-K)+-RC5{ZT_x,T-\) 

(zT_J(p(k)-R) ZT JT-\ 

Note that as At gets small, (3.4) may not have a solution since R will approach 1 while 

q>{k) remains constant. We address this problem in the section below. 

At any time t<T-\ we have: 

A_E[C5{Z!z,t + l)I{z-x)\Zt,z<z] + a{k)ZtE[Gl+l{x)l{z-x)z\Zl,z<z] 

-d " j i ^ [ / ( z - x ) | Z ( , z < z ] 

(3-6) 

where f is implied by the equation: 

E[z\z<z] 

{\-k)E[i{z-x)\z<zyR' (3-7) 

where we suppressed the dependence of £ on x to simplify the notation. gt{Zt) is given 

by: 

, , CAZ,z,t + \)-RCAZ„t) g^)= mi-R)i ' (3-8) 

f p- {Z\ Z ^ X 
. The value of x is implied by the equation: 

0, z>x 

R[<p{k)glZl-C5{Zl,t)] = <p(k)gl+]{x)Ztx-C5(Zlx,t + l), (3.9) 
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where from the proof of Proposition 5 in CP 2002 we know that x < R . 

We state now a generic program solving for C5(Z,,t) in numerical work by noting 

that once we have derived C5(Zl+i,t + \), the only quantity of interest is x. Select a 

candidate value for x, which implies a value for £ by (3.7) and therefore generates a 

candidate solution for C5(Zt,t) by (3.6), which in turn generates a candidate solution for 

g,. Verify whether the condition (3.9) holds for the quadruple of candidate values for x, z , 

C5(Znt) and gt since all other quantities in (3.9) are known at time t. Search for x till the 

condition (3.9) is satisfied. 
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4 Limiting Results 

For the stock return process defined in (3.2), we examine the limiting form of the lower 

bounds derived in Propositions 5 of CP (2002) as At —> 0. 

In the presence of proportional transaction costs Proposition 5 of CP (2002) shows 

that the call lower bound C_5(St,t) is a discounted recursive expectation of its payoff under 

a transformed process. Define the density 

/ ,(z) = / ( z - x ) / ( z ) / £ [ / ( z - x ) ] , (4.1) 

where I(z-x) is defined in (3.1), and x belongs to the support of the distribution of z. In 

Proposition 5 the stock returns are still given by (3.2) and equation (3.1) still defines the 

function I(z) from the associated value of x, but now the distribution of e is truncated at 

a value £~ < £max. The truncated support for e ( = ex), therefore, has ex e [emiB, e]. It is 

known that x < R -1 + rAt, from which we get 

X = l + JUAt + (T£xy[At <\ + rAt=>£x <-Z—^y[A~t. 

(4.2) 

We also define here the following expression 

E(I) = -L-F(£x) + (F(e)-F(ex))^ y^-)-E[l{z)\e<e'\ (4.3) 

Equation (4.1) still defines a transformation of the original density / ( . ) , with the 

difference that the denominator is now replaced by (4.3) and the support of the 

distribution is now [fmin, e]. Let 
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F{e) 

and 

i ^ - = dF(e;e), (4.4a) 

—-^-^dF^e-e). (4.4b) 

We shall examine the weak convergence of the stock return process given by (3.1) when 

the error term is distributed according to the distribution described in (4.1) with the 

distribution of e truncated at a value e < fmax; this is the return process described by the 

term Xt+Al below. Note that here the returns are Markovian but not iid because of the 

dependence of the distribution on x, implying that the time subscript cannot be omitted. 

The convergence criterion is the Lindeberg condition, which is a necessary and sufficient 

condition for the convergence to a diffusion. According to this condition, the limit of the 

expectation of any bounded continuous function is equal to the expectation of the 

function with the limiting distribution. 

The Lindeberg condition stipulates that, if Xt denotes a discrete 

multidimensional stochastic process then a necessary and sufficient condition that Xt 

converges weakly to a diffusion, is that for any fixed 8 > 0 we must have 

lim —f OAt(X,dY) = 0, (4.5) 

where Q^ (X, dY) is the transition probability from Xt - X to Xl+At - Y during the 

time interval At . Intuitively, it requires that Xt does not change very much when the 

time interval At goes to zero. When the Lindeberg condition is satisfied the following 

limits define the instantaneous means and covariances of the limiting process 
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fan — f (Y-Xi)QAl(X,dY) = {ii(X) (4.6) 
A/^0 At J W-W 

fan—f (Y.-Xi)(Y.-Xi)QAt(X,dY) = aii(X), (4.7) 

where the symbol ||| denotes the Euclidean norm of a vector. In our case 

Xt =1, Z,+A/ =—— = z/+4/, and (4.5) can be demonstrated very simply, by the same 

proof as in Lemma 1 of Oancea-Perrakis (2007), itself an adaptation of Merton (1982). 

Denote Qt (S) the conditional probability that | Xt+At —Xt\>S, given the information 

available at time t, namely given X(St,t). Since e is bounded, define 

i = max \e|=max(|fmin \,\£ |). For any S>0, define h{5) as the solution of the 

equation 

S = jUh + (T£yfh. (4.8) 

This equation admits a positive solution 

For any At < h(S) and for any possible Xt+&t , 

|X,+ A /-X, \=\juAt + <T£.jAl\<juh + (y£*Jh=S (4.10) 

so that for any £x{St,t) we have 

0,(<5) = Pr (| Xl+Al -Xt\)>S = 0 whenever At<h (4.11) 
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and hence Km — OAS) = 0 . Hence, the limit of the stock return process forf distributed 

according to (4.1), with e truncated at £ is a diffusion of the form 

Q- = fi(Sl)dt + <r(S,)dW. (4.12) 

We use the subscript x to denote expectations under (4.4b), with the absence of a 

subscript denoting expectation under (4.4a). The value of x is given by equation (5.24) of 

CP (2002). The successive returns under which expectations are taken and which are 

defined in (4.13abc) below are Markovian but not iid. 

We set Xt = 1, Xt+Al - —— and we use the following definition of the return 

xt+ht 

X^=X)+^X^ -{l
Z_k)E{jy (4-13a> 

X)+Al = Z ' g £ for £ < £x, = Z ' g £ for £x < £ < e, (4.13b) 
(! + * ) * ( / ) " ** (l-k)E(I) 

^ = ^ ) h £ n f o r f < f „ 0for£>ex. (4.13c) 

The call lower bound C5 (St, t) in the presence of transaction costs is greater than 

or equal to55 the following recursive expression for t < T -1 

^Ex[c5(sX+Al,t + \)\£<e] 2k Ex[cs{StXl^t + \)\ei£\£<£ 
C5{St,t)>^^ '- ^ + 

R l-k R 

(4.14) 

55 The extra term in (5.19) of CP (2002) over and above the first term in the RHS of (4.14) can be easily 
shown to be smaller than or equal to the second term in the RHS of (4.14). 
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where the indicator function 1£S.£ denotes a quantity that is equal to 0 when e > £x. The 

RHS of (4.14) can be easily shown to be equal to 

C5(S„t)> 

C< 
'(l-k)E(l) 

,t + \ \£<£ 

R 

_E[c5{StXl+&i,t + l)\£<e] 

R 
(4.15) 

for any t<T-2. Further, the truncation of the return distribution is defined by the equation 

^ f ^ f ] \+jUAt + (TE[£\£<£~\jAt 

0 - w r (i-k)E(n =R=l+ rAt (4.16) 

We rewrite (4.16) as follows 

A(At) 
GE[£\£ <£~]y[At 

r — -
M 

(l-k)E(l) 
At, where A[At) = 

(l-k)E(I) 
-1 

(4.16a) 

It is easy to see that A(At) is at mostO(\jAt). Further, we note from (4.3) and (4.16) that 

for any given At the relation (4.16) defines a range of values for £ as a decreasing function 

£~{£x) of the values that £x takes within its own range,56ex e [£min,£). For ex =frainwe 

havef (£mia) = £*(At) and for £x-£ we have £(£x) = £t(At), where f*and £„ are, defined 

from the relations: 

56 Note that the function £~(£x) may not exist for the upper limit of the range of £x: (4.17b) may have no 

solution £„ e [£min,£*max] for sufficiently small At. By contrast, (4.17a) has a solution 

and £ (At) always exists for A^ in an open neighborhood of 0+ . 
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l+juAt + dElele< £* (At)]^ = \ + rAt , (4.17a) 

l + juAt + aE[e\e<et(At)~\yfAt=^(k)(l + rAt). (4.17b) 

From (4.16) we also get that 

lim 
x,^-x,\<s 
A/->0 

At 

l+{iAt + crE\_£\£<£~\jAl 
= r (4.18) 

implying that the process governing the stock return Xl+Al given by (4.13a) that enters into 

the recursive relation defining the lower bound (4.15) is risk neutral by construction for any 

t <T-2. AtT-iwehave 

Cs(Zr_1,r-l) = -
(ZT_xz-K)+\e <e 

R 
(4.19) 

where now the truncation of the return is defined by the equation 

E[z\£<ZT_lz-K] = l+fAt + crE[£\£<ZT_lz-K]y[At=<p(k)R, (4.20) 

which is the same as (4.17b). Observe that by Jensen's inequality we have 

C,{ZT_XJ-X)>{<p{k)ZT_x-^ (4.21) 

This last result is important for numerical derivation of the bound since using it eliminates 

the necessity of solving for (4.20). Also, using the RHS of (4.21) as the lower bound at 

70 



T-\ implies gT_x [ZTA) equal to 1 for the RHS of (4.21) greater than 0, 0 otherwise. This 

result may be demonstrated very simply by substituting the RHS of (4.21) for 

C5 (Zr_j, T -1) in (3.5) and taking the resulting expression to the limit. 

For Xl+Al given by (4.13abc) and for the distribution of £ given by (4.4a) it can be 

shown by applying the Lindeberg condition as in Proposition 3 that Xt converges weakly 

to a diffusion as At —> 0. The diffusion is of the form (4.12), with time- and state-dependent 

parameters. We wish to establish bounds on these parameters of the limiting process by 

applying (4.6) and (4.7). Since by (4.18) the mean of the process is the riskless rate by 

construction, it suffices to apply (4.7) to the process given by (4.13abc) to find the variance. 

We have, if E(Xt+Al) denotes the expectation given by (4.16) and we neglect the terms 

o(At), 

^lv^iyl-E(xH^)+E(xMt)-xlfQatixtdr) 

(4.22) 

a2 H m E[£
2\£<ey(E[s\e<e]f 

To evaluate the limit in the RHS of (4.22) we first prove the following result. 

Lemma 1: We have 

aE[£\e<£~\ r i _. i 
limlr x.s

 L- ! =L = limly „, . oE \e \e < £ (At) \. (4.23) 

Proof: Since (4.16a) shows that A(At) is at mostO(VA^), we have, using the definition of 

A(At) 
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lim ,„ „, xA(At) = \im,Y v. , 
2& G(ex2 

) 
= 0. (4.24) 

Since f (ex) is a decreasing function (4.24) implies that liny _x,<^— * 

possible only if 

= 0 is 

in which case 

Af->0 

(4.25a) 

liml^,-*,i<* e{ex) = lim,, , , e *(A/). 
A/->0 Ar-»0 

(4.25b) 

Dividing now both sides of (4.16a) by VAT and passing to the limit, we observe that 

A(At) crE[e\e<£~\ 
lim. x,^-x,\<s 

A/->0 

= 0. Since the second term within the limit is 
VA7 (i-*)£(/) 

bounded the first must be bounded as well, and the limit of the sum is equal to the sum of 

A(At) 
the limits, implying that lim. 

AAT'r" VA7 K^-x.ks 
= A > 0 and by (4.24) and (4.25ab) the 

denominator in the LHS of (4.23) becomes equal to 1 and the limit satisfies (4.23), QED. 

To find the limit in the RHS of (4.23) we consider the definition of £*(At) in (4.19). 

We have the following result, whose proof is an alternative to the one of Proposition 2 in 

Oancea-Perrakis (2007). 

Lemma 2: We have 

lim x,^-x,\<s • 
Af->0 

"e|e^f"(A/)] = £[e] = 0. (4.26) 
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Proof: From (4.17a) we have Ele\e<e*(At)\ = -— -VA^, implying that for any 

At > 0 we have 

d(E[e\e<e\At)']) d(E[e\e <e\At)~\) d(£*(At)) 

~d{At) d(?(At)) d(At) 

The first derivative in the RHS of (4.27) is clearly positive, which implies that the second 

one must be negative, in which case 

l i m | M J < ^ > 0 = ^ , (4-28) 

thus proving (4.26), QED. 

Applying now (4.23) and (4.28) to the RHS of (4.22) we see that the limit becomes 

equal to 1, implying that the variance of the limiting process of Xl+Al tends to <72, the 

variance of the limit of the original process (4.1). We have thus shown that the 

process Xt entering into the option lower bound (4.15) converges weakly to a diffusion as 

At —> Owith time- and state-independent parameters for all t < T — \. Applying (4.15) and 

using (4.21) as well as the law of iterated expectations, we get 

C5{Snt)>^E[((p{k)ST_x-K)+\St (4.29) 

Since we showed that the paths generated by the transformed stock returns Xt+At given by 

(4.13a) tend to a risk neutral diffusion with volatility o, it follows that by the definition of 

weak convergence the expectation in the RHS of (33),limC5(St,t), becomes a Black-

At—>0 

Scholes expression, with volatility equal to that of the original process, but with the stock 

l-k price multiplied by the factor 
l + k 
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Figure 3 displays the limiting values of the Proposition 5 lower bound for the 

following parameters: K = 100, a = 20%, fi = 8%, r = 4%, T = 30, k = 0.5%, stock 

price range 90-110. Combined with a CP (2002) Proposition 1 upper bound57, this figure 

presents as tight a spread as it may be feasible to achieve. In the following section we 

present our numerical approach which will be used to demonstrate the convergence of the 

bound to its continuous-time limit. 

Figure 3: Continuous-time Limit Results for Proposition 5 

The figure displays the continuous-time limit of the CP (2002) Proposition 5 call lower bound (4.19). These 
results are compared to the CP (2002) Proposition 1 call upper bound and to the Black-Scholes price. The 
parameter are as follows: K = 100, a = 20%, fi = 8% , r = 4%, T = 30 days, k = 0.5%. 

57 This upper bound is derived by taking expectations of the terminal payoff under the physical measure 
l + k 

and multiplying them by a factor . 
\-k 
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5 Numerical Approach 

Before presenting our numerical approach, we establish several preliminary results. In this 

section, we also specialize the distribution of stock returns (3.2) to the uniform one. Last, 

we present a special case of the bound with the transaction costs rate k set equal to 0, in 

which case the bound converges to the Black-Scholes price. 

The generic numerical solution for the bound presented in Section 3 may be 

simplified by noting that (3.9) is the first order condition (FOC) for maximizing the lower 

bound (3.6), which we demonstrate below. Therefore, in the numerical work we may skip 

altogether the step of deriving (3.8) and (3.9) for candidate values of x and search instead for 

the maximum of (3.6) inx. Once this maximum is found, we have all the ingredients for the 

determination of the g-function by (3.8). It is apparent that we need to discretize the 

candidate x's even for this simplified program, since C5[Zt,t) can only be derived 

numerically. We detail this discretization later on in this section. 

It will convenient to represent (3.6)-(3.7) in integral form. By applying the 

definition of the /-function (3.1) to (3.7), taking expectations in integral form and 

simplifying we have: 

(l + k)Vzf(z)dz 
• = R , (5.1) 

(\ + k)\ZJ(z)dz-2k\XJ{z)dz 

where z is the lower support of the one-period distribution and / ( z ) is the density of the 

one-period stock return distribution. By differentiating (5.1) with respect to x, we have: 

2k / ( * ) R ( 5 2 ) 

1 + k f(z)z-R 

Notice that since z>R the sign of the derivative in (5.2) is strictly negative, which is 

consistent with the results of Section 4. 
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We may now prove the following result: 

Lemma 3: Equation (3.9) denotes the FOC for the maximization of (3.6) with respect to x. 

Proof: By applying the definition of the /-function (3.1) to (3.6), taking expectations in the 

integral form and simplifying we get: 

Q5{Z„t) = 
(\ + k)fzC5(Zlz)f{z)dz-2kfzC5{Zlz)f(z)dz + 2k<p(k)Ztl

X
zg(z)zf{z)dz 

R (l + £) j Z f(z)dz-2k$X f(z)dz 

(5.3) 

where we suppressed the time arguments in the RHS of (5.3) to simplify the notation. With 

the use of (5.1), the denominator of (5.3) may be simplified to (1 + &) j zf(z)dz. By 

denoting by N and D respectively the numerator and denominator of (5.3), it follows: 

dC5(Z„t) = N'D-ND' = N' C5(Z„t)D' 

dx ~ D2 ~ D D 
(5.4) 

By equating (5.4) to zero and rearranging, we have the FOC as C5 (Znt) = N'/D'. From 

(5.3) we get: 

N' = {\ + k)z'C5{Zlz)f{z)-2kC5{Zlx)f{x) + 2k<p{k)Ztxg{X)f{x), (5.5) 

and 

£>' = (l + £)z '£ / (z) , (5.6) 

By substituting for z' from (5.2) and simplifying, we arrive at the following FOC: 
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QW) l 1 
C,(Z„0 = ̂ ? ^ - ±-n<p(k)g(x)Z,x-C5(ZlX)l (5.7) 

The same condition as (5.7) may be derived by substituting for gt (Z,) from (3.8) into (3.9) 

and rearranging, which demonstrates that (3.9) is the FOC for maximizing (3.6) or (5.3), 

QED. 

Now we present the limiting result for the g-function (3.8). The proof can be found 

directly from (3.8). Replacing for £ and R from (3.2) we have 

C5 f Z, (l+juAt + credit) ,t + At) - (1 + rAt + o(At)) C5 (Z, ,t) 
limg,(Z,) = lim —LJ ' (5.8) 
A/-^0 x ' A<->0 <p(k)UjU-r)At + (j£\[At + o(At) 

Since both numerator and denominator tend to 0, we take their derivative with respect 

10 7X7. It is then easy to see that (5.8) tends to JV~(d*), where d*x =dx[<p[k)S,^ since the 

stochastic process for the underlying tends to the risk-neutral diffusion with <p(k)S 

replacing the stock price by the results of Section 4. Recall that in our notation Zt 

represents time-f price of the underlying. 

The numerical evaluation of equation (3.6) or (5.3) presents major challenges as the 

time step At becomes progressively smaller. Although the limit of (3.6) as At —» 0 is, of 

course, trivial to find as demonstrated in Section 4, the values of the option and g,(Zt) for 

any discrete partition of the time interval to option expiration can only be found by recursive 

numerical methods. These values are of interest, not only for the evaluation of European 

options, but also for the verification of the speed of convergence, given that continuous 

trading may in fact be infeasible in practice. The numerical methods that we develop in the 

following section address the problems of accuracy, in the integration in evaluating (5.3) 

and in the solution of equations (3.8) and (3.9) or (5.7), as the number of time steps 

increases and the sizes of the returns for integration and numerical solutions become 

progressively smaller. 
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Having shown that the condition (4) is the FOC maximizing (5.3), we may describe 

in general terms how to derive the bound in numerical work. Our general setup implied by 

the compact-support process for the underlying return is a discrete-time continuous-state 

framework. For notational convenience we use the symbol t to denote the epoch counter, 

t = 0,l..T-l,T, with the corresponding physical time equal to tAt with At = T/N, where 

vV is the time partition and the symbol T is used here to denote the physical time to maturity. 

It follows that the underlying return Z, spans [z_', z'] at the epoch t. A natural method to 
C O 

work our computations backward in time is to use recursive numerical integration . To 

apply this approach we first need to discretize the problem along the state-variable 

dimension, by equally spacing Z, in each epoch since recursive numerical integration by the 

Newton-Cotes rules that we use requires equidistant abscissas. A caveat in this step is that 

the transition to an earlier epoch with the same equidistant spacing as in the present epoch is 

a difficult task. We solve this problem by a log-transformation of the state variable. We 

elaborate below on this transformation once we specialize the distribution for the error term 

£. 

The recursive numerical integration is analogous to lattice methods used in the 

discrete-time discrete-state framework where the expectations are one-step forward 

realizations of a function of the random variable weighted by the probabilities. In the 

present setup weights are defined instead as the densities evaluated at equidistant points 

multiplied by the integration weights, times the integration step. We denote this approach 

by a 'generalized lattice' or simply 'lattice'. Denote by /„ [hM (>>)) the tirne-^ integral of 

the t + l function h of a random variable 3; with the one-period support [y, y]. It follows: 

h (hM {y)) = t *£xf(l+J^K (y + JAy) = £ > ,̂+1 (y + JAy), (5.9) 
y=0 j=0 

where w. is the weight for a given integration rule, Ay is the integration step, / ( . ) is the 

density function, L is a positive integer satisfying LAy + y<y, and w. is the redefined 

For instance, Andricopoulos at al (2003) used recursive numerical integration to price path-dependent 
derivatives for the lognormal distribution. 

78 



weight. It is clear that functions similar to I0(hl+](y)) will approximate the truncated 

expectations we need to derive in (5.3). Notice that for Imax defined byLmaxAy + _y = y in 

(5.9) we approximate expectations over the full support of y, which makes clear the analogy 

between the recursive numerical integration and discrete-time discrete-state lattice methods 

with points y + jAy replacing the nodes. 

The discretized (in log-scale) process of the return of the underlying may be thought 

of as a recombining lattice method. We space the one-period log-return of the underlying 

(= y ) by Ay into m increments, where m is an odd number , with the lowest (highest) 

increment y (y ) satisfying y = log (z_) (y = log (J)). It follows that at the epoch t the log-

return is spaced by Ay over a segment [ty, fy] with t(m-l) + l increments; conversely, 

every state Yt we consider belongs to the discretized set in this segment. From every Yt, 

which, in our notation plays the role of a node60 in the lattice, m states (nodes) spaced by Ay 

over [Yt + y, Yt+y] may be reached in the subsequent epoch, and while going backward in 

the lattice we may easily compute integrals as in (5.9). 

We are not ready yet to numerically derive the lower bound (5.3). Even if we limit 

ourselves to maximizing (5.3) over a set of values of x whose logarithms fall exactly on the 

increments of y, the corresponding set of z 's will in general fall between the nodes. Our 

preliminary work indicates that approximating thef 's with the points in the grid closest to 

the true value of z would not yield satisfactory results. To circumvent this problem, we 

use a non-linear interpolating function, the piece-wise Hermite polynomials.61 This function, 

as opposed to the perhaps more widely used splines, has the desirable property of preserving 

the monotonicity of the data. Our preliminary work shows that the Hermite polynomials 

yield indeed excellent results when applied to the smooth functions we expect in our work. 

With the exception of the binomial model, an odd number of nodes for the one-period return process of 
the underlying is necessary for the lattice to recombine. 
60 In principle, we should index 7 since we use this symbol to also denote the log-transformed 

(continuous) state variable at time t. However, to simplify the notation we skip this indexing while, in what 

follows, making clear to the reader whenever Y is used to denote a typical node for the discretized state 

variable. 
61 See Fritsch and Carlson (1980). 
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To delineate the search domain, let xmax denote the maximum feasible x, i.e. the one 

corresponding to z-R in (5.1) and let £max denote the maximum feasible z , i.e. the one 

corresponding to x = zin (5.1). Before presenting the critical steps in our algorithm, we 

define two numerical integrals for a given node characterized by the log-return Yt: 

Il{Li) = ZwJC5(y + jAy),Li=l...L2 
7=0 

and , (5.10) 

I2{Li) = ^wj[(p{k)^(Yt+y + jAy)g(l + jAy)-C5(l + jAy)\,Li=\...Lx 
7=0 

where the weights wy are like in (5.9), we suppressed the time-f state argument Yt from 

C5 (.) and g (.) to simplify the notation, LsAy + y> log (z max) and LxAy + y> log (xmax). 

These two last conditions ensure that the integrals are computed over sufficiently wide range 

to interpolate them later on for the variables of interest x or £ . It is also apparent that since 

the minimum value of z is greater than or equal to the maximum value of x, we need to use 

Li +1 weights w. in our numerical work. 

The following are the critical steps of our algorithm: 

1) Fix a set of pairs (xs, zs), s - \...n linked by (5.1) and spanning the feasible region 

for x, which is [z, xmaji ]. For practical reasons, we consider equal increments for x 

in the log scale in this set (=Alog(x)) and to gain on precision we ensure 

Alog(x) < Ay. It is apparent that, in general the corresponding points zs will not 

be equally spaced even in the log-scale. 

2) Derive the denominator (= Ds) of (5.3) for every pair (xs, zs). 
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3) For a given node at time t characterized by the log-return Yt derive the 7, (L,) and 

I2 (L,) from (5.10) for every applicable Lr Use these values as the inputs for the 

interpolating function. Interpolate for every pair (xs, zs); denote the interpolated 

results by Jls and Ils, s-\...n. Now, for a given node we have candidate 

solutions (= Cs) that we write as: Cs = [(1 + k)Ils + 2kl2s~\/Ds, s = l...n . 

4) The maximal Cs (=CS,) becomes the lower bound for a given node. The 

estimation of the g-function follows from (3.8) with C5(Zlz,t + \) interpolated in 

log-scale as C5{Yt + log(zs,),t + \). 

5) Repeat 3 and 4 for every node at time /. 

6) Proceed to the previous epoch till t = 0 is reached. 

We use the above algorithm for any epoch t<T-2 while we use the lower bound (4.21) on 

Cs(YT_vT-l) at t = T-l with the corresponding result at this time epoch for the g-

function, i.e. we set gT_x = 1 for the nodes with C5 (YT^, T -1) > 0, 0 otherwise. 

In our numerical work we use the tree size m = 251 with n = 250 candidate values 

for x located in [z, xmsji ]. Observe, however, that for a time partition ./V of, say 100 it will 

be a formidable task to deal with the resulting number of nodes, given also the fact that for 

each node we need to compute 2« integrals. A numerical technique suitable for the task at 

hand is the (discrete) Fast Fourier Transform (FFT).62 Here we exemplify the technique by 

presenting a formula which yields integrals of the type 7, for all nodes at the epoch t for a 

given L.: 

7,M (Z,.) = IFFTTFFT(C5
M (/+ l))xFFT(MW7^) (5.11) 

Appendix B of the first essay of this thesis details applications of FFT to recursive computations 
applicable to option pricing. 
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where M denotes the number of nodes at the epoch t + \, M = (t + l)(m-\) + \, FFT 

denotes a Fast Fourier Transform, EFFT denotes the inverse of FFT, 7,M (Z,.) and 

Cf (t +1) are vectors of length M with the latter vector representing the lower bound values 

at all nodes at the epoch t + 1, x denotes a vector element-by-element multiplication, W™ 

is a vector [ w0.. .wL ]' padded down with zeros to the length M. The first and last (m -1) / 2 

entries to the vector 7,M (Z,,) should be discarded since FFT (IFFT) applied to a vector 

yields a vector of the same length. / f (L,) easily follows by an appropriate substitution in 

(5.11). 

To derive the integration weights w. as in equation (5.9), we apply the Newton-

Cotes composite rules . As the base, we use the five-point rule; however, whenever an 

integer L. may not fit to this rule, we pad the shortest possible lower-point rule to our base. 

Setting abscissas at equally spaced points without regard to the true zero of the 

integrand may cause an integration error. On the other hand, relating the abscissas to this 

zero point may destroy our integration scheme. Consider a state for which the zero of the 

integrand may be reached in one period. To avoid the integration error, we might set 

equidistant abscissas from this zero point till the upper integration limit. Unfortunately, the 

implied integration step in general will not result in an integer number of abscissas 

whenever the integrand does not cross zero in one period. In a later section we demonstrate 

that disregarding the above problem results in only insignificant numerical errors. 

In our numerical work, we use the uniform distribution as the compact support 

process for the return of the underlying. For the one-period stock return process z 

( s Z f / Z ^ w e s e t : 

z = l + juAt + ea-yfAt, (5.12) 

For Newton-Cotes integration see, for instance, Davis and Rabinowitz (1966). 
This error may arise since in general the true zero remains between abscissas while the Newton-Cotes 

integration assumes that the zero is placed exactly one abscissa below the first non-zero value of the 
integrand. 
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where the error terms e are iid uniformly distributed with zero mean and unit variance. 

These last two conditions imply the following error density: 

f{£) 
1/2V3, fe[-V3,V3] 

0 otherwise 
(5.13) 

which implies the following density for the one-period return of the underlying: 

/ w = | l / 2^V5 , r 6 U,? ] > (514) 

0 otherwise 

where z, (z) = 1 + fjAt-(+) -V/3<T>/A7 . 

For the uniformly distributed disturbances, there exists a closed-form solution for z 

in the equation (5.1) for a given x. Integrating (5.1) under the uniform density and 

rearranging yields the following second-order polynomial in z : 

z2-2Rz + c(x) = 0, (5.15) 

where c(x) = 2R(<p(k)z^ + a(k)x>)-z?. The solution for z is given by the higher of the 

two roots of (5.15): 

z = R + ̂ R2-c(x). (5.16) 

Another quantity of interest is the value x^ for which z attains its minimum in the search 

grid, which is R. Inverting (5.15) fortius minimum z yields: 

^ax = [ * - ( 2 p ( * ) - z / * ) z ] / 2 a ( * ) . (5.17) 
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To demonstrate the dependence of z on x we display (5.16) in Figure 4 for At of 

1/10 and 1/20 days. To have the two graphs comparable, we scale both dependent and 

independent variable by dividing them by R. Note a lower range of both x and f in terms of 

R for the greater time partition. 

Figure 4: Behaviour of x and z in Time Partition 
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The figure displays the time-partition behaviour of the quantities x and z as defined by equation (5.1) and 
derived by equation (5.15) for the uniformly distributed disturbances in (5.12). The displayed quantities were 
normalized by the riskless return respective to each time partition. The parameter are as follows: a = 20%, 
ft = 8% , r = 4% , k = 0.5% . 

As noted above, for our generalized lattice we need to perform a log-transformation 

of the state variable, which necessitates adjusting the form of the density function. We 

derive the density of the logarithm of the one-period return by standard statistical arguments 

for a monotonic transformation of a random variable. For y = log(z), with z distributed 

uniformly as in (5.14), we have the following density function: 

f(y) = 
expO/)/2VWAJ, yG [log(z),log(z)] 

0 otherwise 
(5.18) 
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Under the log-transformation, we have an additive process for the logarithmic return for 

which a grid with equal increments suitable for the Newton-Cotes numerical integration can 

be easily constructed. Now the weights we use to approximate truncated expectations in our 

lattice become: 

Wj = WjAyexp[y + jAy)/2y/3(7yfAt, j = O...Zf. (5.19) 

Special case: k = 0. By the definition of the /-function (3.1), it may be easily shown 

that for the transaction costs parameter k set equal to 0 equations (3.6) and (3.7) for t < T -1 

respectively collapse to: 

C5{Zt,t) = E[C5{Z,z,t + l)\Zt,z<z]/R 

and . (5.20) 

E[z\z<z] = R 

It may be shown that for the compact support for z the option value in (5.20) weakly 

converges to the Black-Scholes price since the process for the underlying converges to the 

risk-neutral diffusion, with the usual terminal condition at t = T.65 For the uniform 

distribution, the solution to the second line in (5.20) is: 

z =l + (2r-//)A/ + V3WA7. (5.21) 

This quantity falls close and immediately below the upper support for the distribution 'z . 

To derive the price at any node at any epoch t, we apply (5.9) to the first line in (5.20) for 

several t +1 nodes below z up to the upper support of the distribution and interpolate for 

the value of C5 (Y,,t) at Yt +log(f*) as explained above. 

65 See Proposition 2 in Oancea-Perrakis (2007). 

85 



6 Results 

First, we compare the numerical results for the convergence of the expression in (5.20) with 

the similar results for the Black-Scholes price derived recursively under the risk-neutral 

distribution for the uniform support, i.e. z = R + eery/At. For clarity's sake, in this section 

we refer to the distribution implied by the second line of (5.20) as 'conditionally risk-

neutral'. Our base case uses 5 = 100, K = \00, a = 20%, // = 8%, r = 4% and 

T - 30 days and the one-period lattice size of 251. Figure 5 displays the convergence under 

the risk-neutral and conditionally risk-neutral distributions. It is clear from the graph that 

for the latter distribution the convergence occurs uniformly from below and at a slower pace 

than for the former distribution. These findings indicate that for the lower bound the 

convergence will occur from below and will be substantially slower than the convergence to 

the Black-Scholes price under the risk-neutral distribution. 

Figure 5: Convergence of the Proposition 5 Lower Bound to the Black-Scholes Price for k = 0 
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The figure compares the convergence behaviour of the Proposition 5 lower bound (3.6) (Conditionally Risk 
Neutral) to the convergence of recursive expectations of the terminal payoff under risk-neutral measure (Risk 
Neutral). Both quantities were derived for the uniform distribution of the stock returns (5.12). The parameter 
are as follows: K = 100, a = 20%, ju = 8% , r = 4%, T = 30 days, k = 0. 
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Now we turn to the presentation of our results for the convergence of the lower 

bound to its continuous time limit, which is the Black-Scholes price with (p{k)S replacing 

the underlying price S. We use a one-way proportional transaction cost rate k = 0.5%. 

Other parameters are as above except the stock price S. Figure 6 shows the convergence 

behaviour for three different stock prices 98, 100 and 102 with the time partition ranging 

from 10 to 150. In Figure 6 the numerically derived bounds clearly approach the limiting 

price. 

Figure 6: Convergence of the Proposition 5 Lower Bound to Continuous-time Limit 
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The figure displays the convergence behaviour of the Proposition 5 lower bound (3.6) to its continuous-time 
limit (4.19) derived for the uniform distribution of the stock returns (5.12). The parameter are as follows: 
K = 100, (T = 20%, ju = 8% , r = 4% , T = 30 days, k = 0.5% . 

Given that continuous trading may in fact be infeasible in practice, it is of interest 

how close the lower bound falls to its limit for a 'realistic' time partition. For instance, for 

daily trading, i.e. 30 subdivisions for the stock prices 98, 100 and 102 we have the 

respective lower bounds 1.127, 1.909 and 2.967. The corresponding continuous-time limits 

respectively are 1.169, 1.954 and 3.011, with differences from the discrete-time values 

approximately equal to five cents. 
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We also derive relative errors of the convergence to the limit, defined as 

1 - C5lBSi(p{k)S,.). In Figure 7, we display these errors for the stock price range from 90 

to 110 and for the time partitions of 30, 70, 110 and 150. It is apparent from Figure 7 that 

the relative errors tend to zero as the time partition becomes more dense at a decreasing 

speed. It is also clear that the convergence speed in terms of relative errors is increasing in 

the degree of moneyness S/K . 

Figure 7: Relative Convergence Errors of the Proposition 5 Lower Bound from Continuous-time Limit 

0.9 0.95 1 1.05 1.1 
S/K 

The figure displays the relative convergence errors l-Q5/BS(q>(k)S,.) of the Proposition 5 lower bound 
(3.6) from its continuous-time limit (4.19) derived for the uniform distribution of the stock returns (5.12). The 
parameter are as follows: K = 100, a = 20%, ju - 8% , r = 4%, T = 30 days, k = 0.5%. 

Although systematic results on dollar errors are not shown, we note that the dollar 

errors decrease as the density of time partition increases, as we may expect. These errors 

peak approximately for at-the-money options. For instance, for the time partition 150 and S 

- 90, 100 and 110, we find respective errors of 0.002, 0.012 and 0.003, with the respective 

limiting results for the bound of 0.052,1.954 and 9.391. For comparison's sake, we provide 

the respective Black-Scholes prices for k = 0, which are: 0.081,2.451 and 10.433. 
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Besides the convergence in time partition for a fixed size of the lattice, the 

convergence in the lattice size itself is of interest. It appears that the lattice size does not 

significantly influence the convergence of the bound. For instance, for the lattice size of 11 

we noted the following results for 150 time subdivisions: 1.1581, 1.9421 and 2.9991 

respectively for the stock prices of 98, 100 and 102. For the lattice size of 251, the 

equivalent results were 1.1577, 1.9417 and 2.9987. There is a theoretical reason for the 

proximity of the results for highly different lattice sizes. Recall the result (4.25a) stipulating 

that the value of x tends to its lower bound as the time partition gets more dense. If this is 

the case, the results across different lattice sizes should be similar given that the value of x is 

constant at 1 + //At - y/^a-jAt for the majority of nodes.66 Recall also that our algorithm 

relatively precisely derives integrals by interpolating for the value of £ . Finding that even 

that small lattices as the one with 11 nodes produces the correct results for the bound, 

strengthens the applicability of the bound in empirical research. 

The last problem is the numerical verification of our result about the convergence of 

the g-function converges to N(d*), where d\ = dx[(p[k)S,^. Recall that the bound is 

derived by adopting the policy, whenever the call price is below the lower limit, of selling 

g < 1 shares, purchasing the call option and investing the remainder of the proceeds in the 

riskless asset, which leads to an increase in the investor's expected utility. Figure 8 displays 

N(d\ J and the g-function for the stock price range from 90 to 110 for the time partitions 30 

and 150. It is clear that the g-function approaches its conjectured limit from above as the 

time partition increases. To show the convergence of the g-function more systematically, 

we present relative errors from the limit, l-g/N(d*) for the time partitions of 30, 70, 110 

and 150 in Figure 9. These errors clearly decrease at the partition increases, with the 

convergence speed increasing in the S/K ratio. 

We verified this fact by checking which value of x maximizes the bound at each time subdivision. 
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Figure 8: Convergence of the g-fiinction to Continuous-time Limit 
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The figure displays the convergence behaviour of the g-function (3.8) to its continuous-time limit Nl dt ) , 

where d\ = d1 ((p(k)S,.) derived for the uniform distribution of the stock returns (5.12). The parameter are 

as follows: K = 100 , a = 20%, fi = 8%,r = 4% , T = 30 days, k = 0.5% . 

Last in this section, we demonstrate that possible integration errors due to setting the 

lower integration limit not at the true zero of an integrand are small. All the results 

presented in this section were derived by setting the lower integration limit at the first non­

zero value in our grid of the integrands in (5.10). It is clear that this setting results in 

undervaluing of the bound. It is also clear that setting the lower integration limit one 

integration step below the first non-zero value of integrands could overvalue the bound. The 

difference between the two approaches will tell the size of the integration error due to the 

absence of the true zero of integrands in our integration scheme. For several time partitions 

and lattice sizes we found this difference to be no greater than of the order of le-14 in dollar 

terms for the range of moneyness 0.9-1.1, which lets us conclude that this integration error 

does not affect significantly our numerical results. 
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Figure 9: Relative Convergence Errors of the g-function from Continuous-time Limit 
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The figure displays the relative convergence errors of the g-function (3.8) from its continuous-time limit 

N(rf* J , where d\ - dt ((p(k)S,.) derived for the uniform distribution of the stock returns (5.12). The 

parameter are as follows: K = 100, a = 20%, ju = 8% , r = 4% , T = 30 days, k = 0.5%. 
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7 Concluding Remarks 

In this essay we have derived a non-trivial continuous-time limit for a call lower bound in 

the presence of transaction costs, the only such convergence result available in the literature. 

We also showed that the discrete-time counterpart of this result converges relatively fast, 

which stipulates that the Proposition 5 lower bound may be applied in realistic trading 

conditions, i.e. when the trading frequency is relatively low. To show the convergence, we 

applied novel numerical methods which deal with the problem of the deriving recursive 

expectations under a Markovian but non-iid distribution. 

Since this essay clearly demonstrated that the Proposition 5 lower bound may be 

applied to market data, future research may use the bound to test for the stochastic 

dominance efficiency of index options markets in the spirit of the empirical methodology 

presented in the first essay of this thesis. Future research may also extend the results of this 

essay to American options and options on futures contracts. 
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Essay III: Portfolio Selection with Transaction Costs and Jump-

Diffusion Asset Dynamics 

Abstract 

We derive the boundaries of the region of no transaction when the risky asset follows a mixed jump-diffusion 
process in the presence of proportional transaction costs. These boundaries are shown to differ from their 
diffusion counterparts in relation to the jump intensity for lognormally distributed jump size. A general 
numerical approach is presented for iid risky asset returns in discrete time. An error in earlier work on the 
region of no transaction for discretized diffusions is demonstrated and corrected results are presented. 
Comparative results with a recent study on the same topic are presented and it is shown that the numerical 
algorithm has equally attractive approximation properties to the unknown continuous time limit. 
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1 Introduction 

In this essay we seek a twofold objective: first, we extend the portfolio selection model 

under transaction costs to a jump-diffusion process with a lognormally distributed jump 

component; second, we correct an error in earlier work and present corrected results for the 

no transaction (NT) region for diffusion in a discrete time-finite horizon framework. The 

derivation of the NT region obtained for diffusive processes was studied extensively in the 

literature. On the other hand, numerical results for jump-diffusion were only derived 

recently and concurrently with this work in Liu and Loewenstein (2008). This essay 

complements the Liu and Loewenstein (2008) continuous time results with a discrete time 

equivalent. We present evidence that our numerical algorithm reaches almost identical 

results with this latter study. 

First, we introduce our problem in general terms. The investor maximizes her 

derived utility of consumption, be it the consumption of the entire wealth at the terminal 

finite date T or the consumption at all dates including the terminal date. The investor is 

constrained to hold two assets, a riskless bond and a risky stock, with the natural 

interpretation of an index. We denote the dollar holdings in the riskless bond as JC and the 

dollar holdings in the stock as y. The investor faces proportional transaction costs at the rate 

k on transferring money from the stock account to the bound account and vice versa but not 

on liquidating her bond holdings. The choice variable of the investor at each discrete date t 

is the proportion of risky to riskless asset (At =yt/xt), which is a control maximizing the 

derived utility of consumption. When we allow for consumption at intermediate dates, the 

investor's problem necessitates in additional control (=ct), which is the optimal 

consumption at each discrete date /. In the discrete time setup we consider it a natural 

extension of our model to allow for time but not for state dependent consumption, as we 

explain in a later section. Such an extension will not be attempted in this paper. 

Section 2 introduces our model and corrects an error in an earlier work of related 

scope. Section 3 presents the numerical algorithm; Section 4 presents numerical results. 

Section 5 summarizes and closes. In the remainder of this section we complete a literature 

review of the portfolio selection rules in the presence of proportional transaction costs. 
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Constantinides (1979) proved an earlier conjecture in Magill and Constantinides 

(1976) that the NT region is a cone composed of two boundaries and the optimal investment 

policy is simple, i.e. it consists of trading to the closest boundary of this region if the risky to 

riskless asset proportion falls outside the cone formed by the two boundaries.67 

Constantinides (1986) was the first to present numerical results for the NT region. This 

work considered an infinite horizon problem for a diffusion process. Under a simplifying 

assumption of state and time independent consumption, Constantinides (1986) derived the 

value function in a closed form; however, as the solution was composed of the value 

function and two first order conditions, the derivation of the NT region required numerical 

methods. Norman and Davies (1990) relaxed the simplifying assumption on consumption 

policy by considering both time and state dependent consumption and obtained a closed 

form solution composed of two ordinary differential equations. Their numerical results were 

not qualitatively different from the ones in Constantinides (1986). As opposed to 

Constantinides (1986) and Norman and Davies (1990), Dumas and Luciano (1991) 

considered a portfolio choice of an investor who maximizes the derived utility of 

consumption taking place upon the liquidation of the portfolio holdings at some future time 

T. Dumas and Luciano (1991) considered a limiting case as the liquidation time T tends to 

infinity. They assumed the discount factor to be endogenous to the problem, i.e. they solved 

for the discount factor for which the partial derivative of the value function with respect to 

time is zero. The results in this work differed from those of Constantinides (1986) first, in 

that the NT region was found to be considerably wider; second, no shift towards the riskless 

asset was found for increases in the transaction cost rate. 

For frictionless markets, Liu at al (2003) considered portfolio rules for a wide class 

of jump processes. This work provided numerical results in a special case of jump-

diffusion, for a fixed jump size. The portfolio rule was far apart from its diffusion 

counterpart, which is the Merton (1971) line.68 However, this result was obtained under the 

This result was proven in fairly general settings: not necessarily Markovian risky asset returns, additively 
or multiplicatively separable utility, transaction costs function positively homogenous of degree one in the 
investment decision, possibly adapted process for the bond account, the presence of dividends, finite or 
infinite investment horizon. See Propositions 5 and 7 in Constantinides (1979). 

The Merton line is an optimal risky to riskless asset proportion equal to a /(l — a ) , with 

a = {/I — r) /(l — &)(T , the ratio of the risk premium to variance of the risky asset, for an infinite horizon 

and frictionless trading for an agent with power utility and relative risk aversion S. 
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condition that in the presence of a jump component the total volatility of the risky asset 

increases by the volatility of this component. This is a less realistic setup than when the total 

volatility is decomposed into the diffusion and jump components, the case that we consider 

in our work. Similarly to Liu at al (2003), we also compensate the mean of the diffusion 

component by the negative of the mean of the jump counterpart. 

Liu and Loewenstein (2002, 2008) considered a finite horizon problem in 

continuous time in the presence of transaction costs with a random terminal date, which 

occurs with the n-th passage of a Poisson process. Since their later work provided a 

solution for a jump-diffusion process, we present the Liu-Loewenstein methodology in some 

detail. There are two serious technical problems with solving the Bellman equation in the 

presence of transaction costs:70 first, there are two free boundaries varying through time; 

second, the time partial of the value function remains part of the equation for a fixed 

investment horizon. The Liu-Loewenstein methodology explores a randomization idea 

originally presented by Carr (1998) to produce an iterative sequence of ordinary differential 

equations whose successive solutions converge to yield the solutions for the value function 

and the boundaries of the no transaction region. Moreover, it was shown that the solution 

for a random terminal date converges to the solution for a fixed horizon equal to the 

expectation of this random quantity. In a later section we demonstrate that the numerical 

results derived by the methods applied in this essay mirror the numerical results in Liu and 

Loewenstein (2008). 

Under this stipulation, the horizon is Erlang distributed. Liu and Loewenstein (2002, 2008) also 
considered an exponentially distributed finite horizon, a case that is not relevant for the results of tiiis essay. 

The Bellman equation is a natural representation for the partial differential equation of the value function 
for the optimal investment problem. 
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2 Optimal Portfolio Policy under Proportional Transaction Costs 

We present the dynamics of the assets that we consider. This allows us to formulate the 

dynamic problem that an agent faces while undertaking investment decisions in the presence 

of proportional transaction costs. Last, we demonstrate an error in earlier work in the 

dynamic formulation for a discretized diffusion process and present correct results. 

2.1 

First, we present the continuous time counterparts whose discretization we consider. The 

bond holdings xt follow: 

dxt=rxt, (2.1) 

where r is the continuously compounded riskless rate. Our first case is the diffusion process 

for the stock holdings yt: 

dy,=juytdt + (jytdWt , (2.2) 

where Wt is a standard Gauss-Wiener process and / / , c are its instantaneous mean and 

volatility parameters. In the second case we consider a mixed jump-diffusion process: 

dyt={ii-r\HK)yAt + ayAWt+KytdNt , (2.3) 

where the last term is the jump component added to the diffusion. It is assumed that the 

jump and diffusion components are independent. The variable K represents the logarithm of 

the jump size and Nt is a Poisson counting process with intensity TJ . The volatility of the 

diffusion component of the stock process o is set so that the total volatility of the stock 

process is equal to the volatility in the pure diffusion case, which implies 
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<r = Jcr2 -Tjicrl + / 4 ) . In our numerical work we assume, in line with earlier work and 

without loss of generality, that the jump size is distributed as TV [fiK, o\). 

In our work we consider a discrete approximation that converges weakly to (2.3). 

Lemma 2 in Oancea and Perrakis (2007) demonstrates that the following return process 

y 71 
(n±^- = z,+A/) is a valid approximation of (2.3): 

y, 

zl+Al=l + (it-r}juK)At + d£y[At+KAN, (2.4) 

where £ is a random variable with a given distribution of mean 0 and variance 1 that can be 

anything; for instance, the trinomial distribution that we consider in a later section. The 

return process can be conveniently represented as a mixture of the diffusion and jump 

components with corresponding probabilities 1 - rjAt and TjAt: 

11 + (ju - TJJUK ) At + asy/Xt with probability 1 - rjAt 

[l + K with probability T]At 
(2.5) 

We lay out the details of our discretization in Section 3. 

We present our problem for the case where there is no consumption at intermediate 

dates. Up to a certain point, our exposition mirrors the one in Genotte and Jung (GJ, 1994). 

We find an error in GJ and develop our own dynamic formulation of the problem, leading to 

an exact numerical solution given the approximation of the discretization of the state 

dynamics. 

Under proportional transaction cost, the bond and stock accounts dynamics are: 

The approximation (2.4) converges weakly to (2.3), in the sense that the expectation of any continuous 
function of the random stock return at some future time taken with respect to the discrete process 
converges to the expectation of that same function taken with the continuous time limit of the process. This 
is the appropriate convergence criterion for our problem. 
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* ,+ i=(* / -v, -* |v, | ) i? 

(2.6) 

where vt denotes the time-/ investment decision, the dollar amount net of transaction costs 

by which the investor changes her risky asset account. The investor solves the following 

problem of maximizing the expected utility of the terminal wealth net of transaction costs: 

(2.7) 

s. t. xt + yt (1 - k) > 0 and xt + yt (1 + k) > 0 (solvency constraints), where vT is the time- T 

investment decision. The solution to the investor's problem is a pair of boundaries of the 

NT region. We denote the lower and upper boundaries by A, and At, respectively and by Zt 

the time-/ risky to riskless asset proportion. Note that the NT region is a convex subset of 
79 

the solvency region characterized by the above two boundaries. This effectively precludes 

borrowing in the case of the mixed process that we use in our numerical work, since under 

lognormally distributed jumps the investor will face a positive likelihood of ruin. 

The most frequently used approach to solve for (2.7) is the dynamic programming 

formulation: 

x / + i ' y<+i' * + 

1)] (2.8) 
v f 

with the boundary conditions: 

V(xT,yT,T) = U{xT + {l-k)yT,T). (2.9) 

When both x and y are positive, the solvency constraints are trivially satisfied due to limited liability. 
The first constraint ensures the positive net worth for borrowing, the second for selling the stock short. 
Under a positive risk premium and risk aversion, it is never optimal to sell short the risky asset. 
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The isoelastic utility function (WT)" la, where a = 1 - S, with 5 denoting the relative risk 

aversion (RRA) coefficient, results in a concave and homogenous of degree a in its 

arguments value function (2.8)-(2.9), as was shown in Constantinides (1979). 

We use the dynamic programming approach to formulate the problem at hand. 

However, as we argue later, for the applied risky asset discrete-time dynamics and the 

resulting state dynamics for the problem (2.8), applying the formulation (2.6) will yield an 

easy to apply and precise numerical solution. 

A central role in our analysis will be played by two functions deriving the indirect 

(not necessarily maximized) utility for purchase and sale of the risky asset, respectively 

J_ (.) and J (.), which we define as: 

l{xny»v„t) = Et[v{(xt-{\ + k)vt)R,{yt+vt)zM,t + \}\ 

and (2.10) 

Hx
t>yt^t) = Et[v{(xt-{\-k)vt)R,(yt+v,)zM,t + \}\ 

To increase the proportion of the risky to riskless asset to some new proportion A,t (v, > 0), 

the investment decision is: 

=_Wzli_ 
1 4(i+*)+r 

V. = (2.11) 

Substituting this last quantity into the first line of (2.10) yields: 

J(x„y„Al,t) = {xt+(l + k)yl)
a E, R ktzt_ 

4(l + £) + r/l((l + A:) + r 
t+\ , (2.12) 

where we used the homothetic property of the value function to take the term outside the 

expectations operator. A similar argument for the stock sale yields: 
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j(x!,ynA!,t) = (xl+(\-k)yl)
aEt V< 

R A'Z<* t + l\ 
4(i-*)+r4(i-jfc)+i 

(2.13) 

It can be shown that maximizing (2.12) and (2.13) with respect to A, yields, 

respectively the lower and the upper boundary of the NT region Xt and Xt. Since it is 

apparent that the terms in powers a are inconsequential positive quantities, we have the 

following program solving for ^ and Xt: 

At=argmax[v(At,t)] 

and (2.14) 

where: 

2, =arg max [>(/!.,, f)] 

r{^,t) = EAv 
R 

4Z'+1 ,/ + l 
1, (! + £) + !'2r(l + £) + l 

J 

and (2.15) 

V(Zl,t) = El\V 
R •43a—, /+ i 

_4(1-Jt) + 1 A,(l-k) + \ 

If the NT region exists, the program (2.14)-(2.15) will always yield a solution since the 

value function is strictly concave. 

73 
An induction proof is in the Appendix to GJ, itself an application of the general result in Constantinides 

(1979) to the CRRA utility function. 
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We may now formulate compactly the investor's dynamic problem with the 

inclusion of the optimal investment policy: 

v(*t,yt,t)=\ 

{xl+(l + k)yi)
aV{l,t) for4<4, 

Et[V(xtR,ytzt+i,t + \)] fo rA,<4<I , 

(xt+(\-k)yt)
av(lt,t) for 4 > I , 

(2.16) 

2.2 

Before turning to the solution of the problem, we demonstrate that the formulation for the 

state dynamics outside the NT region in GJ (Genotte and Jung, 1994) contains an error. 

First, define the value function for $1 worth of portfolio:74 

i,W = v 
\ 

v i + 4 1+4 j 
(2.17) 

Here we reproduce the GJ dynamic formulation in our notation, originally equation 

(6) in GJ: 

m)= 

4(l + ft) + l 
4 + 1 

4,(l + £) + l 

4,+l 

4(1-AQ + 1 

4 + 1 

X( i -* )+ i 
X + i 

\ a 

V(A,,t) for 4 < ^ 

(2.18) 

V(At,t) f o r 4 > ^ 

p. 388 in GJ. 
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where V_(Xt,t) and V(At,t) through which the maximized expectations enter the dynamic 

formulation are as in (2.15).75 We will show that (2.18) is incorrect; specifically, both 

factors within the braces are incorrectly specified. We demonstrate the error for the upper 

factor multiplying V_ (A,, t), the proof for the other being symmetric. 

By the definition of /,(At) we may dynamically formulate V^(Ant) in the 

following way:76 

F(/l,,f) = max 
4 

Ra 

4(1+Jfc)+1 
-f/+l(4+l) (2.19) 

Now assume that we have maximized the RHS of (2.19), which implies Anl =Al-
LtL.17 

R 

Then 

V(Ant) = Ra 
4 ^ - + i 
-1 R 

4(i+*)+i 
Ll+l 

1 
1^-
-1 R 

V R R 

J + l 

= EAV 
R "t+i 

4(l + *) + l ' 4 ( l + Jfc) + l 
,t + l 

(2.20) 

where in the first line we used the definition (2.17) and the assumption that the value 

function is maximized; in the second line we used the homogeneity and definition of the 

value function. The final result demonstrates that the formulation in the first line is 

consistent with the formulation (2.15). 

75Equation (2.15) which defines V_(.)corresponds to equation (2) in GJ. 
76Equation (5) in GJ. 

The maximizing asset ratio is A^, which under the asset dynamics in equation (2.6) becomes in one 

period equal to the above quantity. 
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By substituting the second line of (2.20) into the first line of (2.18), using the 

homogeneity of the value function and simplifying we get: 

RHS of (2.18) = £, 
(4+l)(4(l + £) + l)/? (4+1)(/l((l + k) + 1)4; M 

•t+\ 

(4+i)(4(i+£)+i)2 (4+i)(4(i+*)+i)2 
,t+\ • (2.21) 

By inspection, it is apparent that (2.21) cannot yield proper dynamics for the problem at 

hand. However, suppose there is a typographical error in (2.18) of reversing the positions of 

the numerator and denominator in the first term in the first line of (2.18), which error was 

perhaps rectified in the numerical work in GJ. Under this supposition we have 

RHS of (2.18) = £, 
(4+1)/? (4+1)4. M 

7+1 

(4+l)(4(l + £) + l) '(4+l)(4(l + A:) + l) ' 
t+\ 

J) 

(2.21') 

To verify whether (2.21') is correct, we must analyze the LHS of (2.18). Since we 

have maximized the RHS of (2.18), the same must hold for the LHS of this expression. 

Under this line of reasoning, the same arguments in the LHS and RHS of (2.18) except for 

the time transition factors R and zr+1 would demonstrate the correctness of (2.21'). 

To maximize the LHS of (2.18) we must transact from the positions implied by the 

definition of /, ( 4 ) (2-17), which implies setting the respective bond and stock arguments 

equal to l /(4 +1) and 4 / ( 4 +1) • F° r these asset holdings, the optimal transaction v, 

solves 

4/(4+i)+v, 
Vtt+i)-(i+*)v, = 1 (2.22) 

which implies the following optimal holdings: 
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40+*)+i }._ [W+Q+iU ( 2 2 3 ) 

' (At+1)1^(1+k) + \]' (4+l)[4(l + Jt) + l] 

Since xtR is not equal to the first argument in (2.21') and y,zt+1 is not equal to the second 

one, we conclude that the dynamic formulation in GJ is incorrect even with the benefit of 

doubt for a typographical error. 

Apart from the algebraic errors in (2.18) shown above, another substantive error lies 

in taking outside the maximands V_(At,t)md V(Ant) the multiplicative factors that 

respectively contain At and A,, the arguments in which these two expressions are 

maximized. In case of the lower boundary At, the numerical algorithm in GJ searches for a 

given At for the value At which maximizes (2.18). Note that for At close to the solution 

At, the factor in front of the maximand in (2.18) is close to 1, in which case we obtain an 

approximately correct dynamic formulation since V_{At,t) is itself the correct dynamic 

formulation. The same line of reasoning holds for the upper boundary A,. This implies 

that, in principle, the GJ approach may lead to approximately correct results; however, this 

approach is not generally acceptable since it is based on an incorrect formulation, which 

may lead to spurious results should a guess for At or At prove to be a difficult one.78 

Notwithstanding the apparent errors in the dynamic formulation in GJ, their 

numerical results in some cases appear to be qualitatively consistent with ours and with 

those of Constantinides (1986). This may be the result of their choice of parameter values. 

We formulate below an alternative approach that leads to exact results. 

Only if one guesses a value of At close to the solution At, the factor in front of the maximand becomes 

close to 1, thus making the GJ dynamic formulation approximately correct. 
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Table 12 

Comparison with Genotte-Jung (GJ, 1994) results 

T 

0.025 
0.125 
0.25 
0.375 
0.5 
0.75 

1 
1.25 
1.5 
2 
3 
4 

0.025 
0.125 
0.25 
0.375 
0.5 
0.75 

1 
1.25 
1.5 
2 
3 
4 

0.025 
0.125 
0.25 
0.375 
0.5 
0.75 

1 
1.25 
1.5 
2 
3 
4 

/l(GJ) A 

Panel A: 8=2,k 
N/F 
N/F 
N/F 
N/F 
N/F 

-27.60 
-9.96 
-7.50 
-6.50 
-5.77 
-5.38 
-5.13 

N/F 
N/F 
N/F 
N/F 
N/F 

-25.35 
-9.74 
-7.38 
-6.47 
-5.72 
-5.25 
-5.09 

A(GJ) 

= 0.5%,(T 
-4.05 
-3.95 
-3.86 
-3.86 
-3.77 
-3.77 
-3.68 
-3.68 
-3.68 
-3.59 
-3.51 
-3.51 

PanelC: 8 =3,k=\%,a 
N/F 
N/F 
0.20 
0.39 
0.50 
0.62 
0.68 
0.73 
0.75 
0.75 
0.78 
0.78 

N/F 
N/F 
N/F 
0.06 
0.20 
0.38 
0.49 
0.56 
0.61 
0.67 
0.72 
0.75 

Panel E: 8 = 3, k 
N/F 
3.41 
4.86 
5.62 
6.16 
6.62 
6.78 
6.78 
6.94 
6.94 
6.94 
6.94 

0.02 
1.89 
3.42 
4.36 
4.98 
5.75 
6.18 
6.44 
6.61 
6.84 
7.03 
7.13 

N/F 
N/F 
5.18 
2.67 
2.01 
1.61 
1.46 
1.37 
1.37 
1.33 
1.29 
1.29 

= O.1%,0 
N/F 
N/F 
18.79 
13.16 
11.42 
10.38 
9.90 
9.67 
9.67 
9.67 
9.67 
9.67 

A 

= 15% 
-3.97 
-3.89 
-3.84 
-3.81 
-3.78 
-3.73 
-3.69 
-3.66 
-3.63 
-3.58 
-3.51 
-3.45 

= 20% 
1.02 
1.04 
1.06 
1.08 
1.09 
1.11 
1.13 
1.15 
1.16 
1.19 
1.23 
1.27 

•= 15% 
8.33 
8.67 
8.61 
8.72 
8.76 
8.95 
9.07 
9.19 
9.29 
9.47 
9.71 
9.82 

i (GJ) A 1(GJ) 

PanelB: 8 = 2,k=\%,<7 
N/F 
N/F 
N/F 
N/F 
0.33 
0.70 
0.99 
1.20 
1.36 
1.59 
1.87 
1.99 

N/F 
N/F 
N/F 
0.09 
0.33 
0.71 
0.99 
1.20 
1.36 
1.60 
1.86 
2.00 

3.00 
3.10 
3.20 
3.20 
3.30 
3.30 
3.40 
3.51 
3.51 
3.63 
3.74 
3.99 

PanelD: 8 =3,k=l%,cr 
N/F 
N/F 
0.06 
0.10 
0.12 
0.13 
0.13 
0.14 
0.14 
0.14 
0.14 
0.14 

0.01 
0.14 
0.16 
0.17 
0.17 
0.17 
0.17 
0.17 
0.17 
0.17 
0.17 
0.17 

Panel F: 8 = 3, 
N/F 
N/F 
N/F 
N/F 
1.45 
2.22 
2.89 
3.33 
3.75 
4.32 
5.10 
N/F 

N/F 
N/F 
N/F 
0.11 
0.42 
0.97 
1.46 
1.88 
2.24 
2.86 
3.73 
4.31 

N/F 
0.62 
0.38 
0.32 
0.29 
0.27 
0.26 
0.26 
0.26 
0.26 
0.26 
0.26 

k=l%,(J 
N/F 
N/F 
N/F 
N/F 
N/F 
N/F 
N/F 
N/F 
N/F 
N/F 

27.46 
N/F 

A 

= 20% 
3.06 
3.14 
3.20 
3.25 
3.29 
3.36 
3.43 
3.48 
3.53 
3.62 
3.79 
3.94 

= 35% 
0.20 
0.20 
0.21 
0.22 
0.22 
0.22 
0.22 
0.22 
0.22 
0.22 
0.22 
0.22 

= 15% 
8.40 
8.57 
8.70 
8.77 
8.87 
9.02 
9.15 
9.25 
9.37 
9.57 
9.93 
10.25 



The table displays the results for the NT region for diffusion derived under the methodology developed in this 
essay compared to the results in Table 12b in GJ. The risk premium is 6%. The symbol 'N/F' corresponds to 
the cases for which a given boundary of the NT region could not be found. 

We present in Table 12 similarities and differences between the GJ and our results. 

It appears from panels A and B that for the RRA d set equal to 2 the results are consistent 

apart from minor differences in the quantities and in the convergence pattern. However, for 

6 set equal to 3 in panels C-F the results diverge both qualitatively and numerically. First, 

we observe an apparent convergence from above of the upper boundary X in GJ. We did 

not find this type of convergence in any of different cases we considered, while in all cases 

we observed X converging uniformly from below, with the values close to but above the 

Merton line for short time horizons. In panels C-E we observe relatively consistent results 

for longer time horizons with apparent differences for shorter time horizons for either 

boundary. However, the results in panel D for the longest time horizon, which is 4 years, 

differ by more than 10% for either boundary. In panel F, which differs from panel E by a 

higher transaction costs rate, the GJ results are either highly inconsistent with ours or non 

existing. 

3 Numerical Analysis 

We describe our numerical approach that is based on forward induction. A critical step in 

this approach consists of an efficient incorporation of already known solutions to the 

problem at all future dates. Further, we present details of the discretization of the risky asset 

dynamics. We finish this section by discussing the introduction of intermediate 

consumption to our problem, which is left for future research. 

3.1 

To solve for the program (2.14)-(2.15) we apply the direct approach (2.6). This forward-

inductive approach yields V_{Xt,t) and V(Xnt) as continuous functions oiXt, resulting in 

The GJ results presented in Table 12 are excerpts from Table 12b in GJ. 
RRA of 3 was the highest value for this parameter in the GJ results. 
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flexible modeling. This admits the derivation of the NT region by reliable optimization 

routines resulting in highly accurate estimates. In general, for the current setting, we may 

write the value function as the expectation of the terminal utility of wealth with respect to 

the underlying probability space:81 

V{xt,y„t) = 9 max Y ^ ( x r j + (l-£)>v,7.)Pr(tf>;), (3-1) 

where a>j represents a pathy for a given discrete-time probability space, and xTj and yT j 

have been derived for the filtration of a given probability space and the optimal investment 

decisions at all dates t=t,t+I,... ,T-\.]n particular, (3.1) applies to the program (2.14)-

(2.15) with appropriate quantities substituted for xt, yt. 

Since we use a (multidimensional) tree to represent the process of the risky asset, 

equation (3.1) appears to be difficult to solve in numerical work for more than a few time 

periods. The difficulty stems from the fact that the number of paths grows exponentially in 

time partition. To deal with this difficulty, in the following paragraphs we present a 

recursive model which efficiently aggregates the paths of the state variable Xr, 

T = t + l,...,T-\. As we will show, exploiting the fact that the ratio ytlxt is the sole state 

variable, the homothetic property of the value function and the recombination property of 

the assumed discretization of the risky asset dynamics will allow us to aggregate the states at 

each forward step. 

Assume that the boundaries of the NT region X,. and A,T were found for all times 

T = t + \,...,T-l. Given this information set, we define the indirect but not necessarily 

maximized utility for a portfolio consisting of $1 in the riskless and $A,t in the risky asset at 

time t for the probability space as defined in (3.1) and for the future optimal portfolio 

restructuring: 

The idea of solving for the NT region by forward induction in numerical work was first presented in 
Boyle and Lin (1997). However, their numerical approach considered the first order condition on the 
terminal utility, which was suitable to solve the problem only for a limited number of periods. 
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AM^Tvixrj+Q-QyTjjWaM&A}^^- (3-2) 
j 

By (2.14)-(2.15) and (3.2) it is clear that we have: 

A,=a.rgmaKl[(\ + k)Al+lJa J(\,Ant)} 

and . (3.3) 

It = arg max {[(1 - it) \ +1]"* J (l, /L,, t)} 

We partition the time-r paths of the state variable Xr into two types: the first type 

includes those paths which remain inside the NT region, and the second type includes the 

paths that fall outside this region and are traded to the nearest boundary ^ or XT by virtue 

of the simple investment policy. The first type of paths presents no particular problem since 

inside the NT region the state variable will follow the recombination pattern of a given 

lattice. To see that, consider that in this case the time-r portfolio holdings are (RT~' ,XtZA, 

y 
with the cumulative stock return up to time r Zr = n,rIj'z,+I. which implies A,T - Xt —^, with 

R 

the associated probabilities resulting from the (r-/)-period convolution of the one-period 

distribution of the risky asset with itself. 

For the second type of paths, namely those for which the simple investment policy 

stipulates a trade to the nearest boundary of the NT region, at each time r we derive a single 

number, the contribution of these paths to the terminal derived utility ( = AJT). As we will 

demonstrate, the quantity AJT will subsume all the relevant past and future path information 

as of time-r. We elaborate below on the derivation of AJT; here we define it implicitly by 

J{l,^tt)=^/SJr + a-lfi?T(zTJ[)(R^+{l-k)^ZTJ[)
a, (3.4) 

r=t+\ k=\ 
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where the second summation is over the NT paths which remained inside the NT region at 

each and every time r, T = t + l,...,T-\, with Pr(.) denoting time-/ probabilities of the 

terminal states of the risky asset. 

To aggregate the time-r paths outside the NT region to AJr defined above, we use 

the homothetic property of the value function and the fact that we already solved for the 

value function ¥{[,^.,1) and V(\,AT,T), T = t + \,...,T-\ by maximizing (3.3). To 

demonstrate that there exists an aggregation that yields (3.2), the derived utility that 

subsumes all the relevant path information, we use the following result. 

Lemma 1: The contribution AJr of all time-r paths outside the NT region to the time-/ 

derived utility of terminal wealth as defined by (3.4) is the following: 

MT=[XTV{1,1,T) + XTV(1,XT,T)], (3-5) 

whereXr = J T P r ( ; y 
rR'-'+(l + k)A,Z,jY 

7=1 

*"+( i -* )4z T / f l 

Xr{\-k)+\ 

and 

, where ZTi and ZT . are respectively the stock 

returns resulting in the portfolio proportion XT below or above the NT region, Pr(.) are the 

time-/ probabilities of these returns, and we denote the time-r number of Zri 's (Z . 's) by 

«j. (nT). Note that these probabilities may be derived by simply following the 

recombination pattern of a given lattice. The terms under the power of a are time-r dollar 

values of the bond account after transacting to a given boundary of the NT region. 

Proof: The lemma may be demonstrated very simply by induction. Without loss of 

generality, in our proof we consider only the portfolio adjustments to the lower boundary of 

82 In our numerical work, we use the fact the lattice is recombining inside the NT region, which implies that 
at the terminal date we have nodes rather than paths. 
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the NT region A^ and the resulting quantity XT. The inclusion of the adjustment to the 

other boundary Ar follows easily by extension. Consider t = T-2. We have 

m 

V(\,Ar_x,T-\) = a~l^ip(R + (\-k) Xj_x zs) , where pt is the probability of a one-period 
1=1 

stock return z{, i = \...m. With the use of the lemma, we have: 

: a - i 

i=\ 

R + fi + k)^^)" 
/ ^ ( l + j ^ + l 

m 

2Ps{R + {^k)^zs)
a, (3.6) 

s=\ 

where the first summation results from the definition of Xr, T = T-\, and m > nj._x > 0. 

By the homothetic property which in this simple case collapses to multiplying terms under 

the same power, (3.6) yields the same result we would get from equation (3.2) by 

considering each path separately. 

Consider any time t. Assume that the lemma holds at r + 1 . At time t we have: 

1=1 

' R + {\ + k)^Zt R + (\ + k)A,Zi 

4 ( 1 + Jfc) + 1 4 ( l + *) + l 
Xr,t ^XTV{1,1,T). (3.7) 

i=i 

When we apply one forward inductive step to the quantity above we get: 

A^=fX 

& (R + (\ + k)AzkX , „ 

UP, 
r R + il-k)^^ 

AT+x{l-k) + \ 
V(\,AT+1,T + 1) + 

m-n,.,-nz. 

(3.8) 

where the first two summation in square brackets consider these one-period paths that are 

outside the NT region by using the induction hypothesis and the third one considers these 
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paths which remain inside this region, with zk 's, z. 's and zs 's denoting appropriate one-

period returns and m denoting the number of one-period returns in a given lattice. Since, by 

the definition of XT it is apparent that equation (3.8) considers all the relevant path 

information, continuing forward until the terminal date T is reached will reproduce the 

definition (3.2) for the time-r paths outside the NT region. This ends the proof, QED. 

With the use of Lemma 1, we rewrite the maximization problem (3.3) as follows: 

/?> =argmaxi[(l + &)4+l ] 

and 

At = arg max < [(1 - k) Xt +1J 

where the second summation is over the NT recombined paths which remained inside the 

NT region at each and every time r, t = t +1,..., T - 1 . 

Now we can describe the major steps of our numerical solution. Take a candidate 

solution Xt for either maximization problem in (3.3) and proceed forward with the lattice. 

At each time r derive the terminal contribution AJT of all paths outside the NT region by 

(3.5). Delete these paths from the lattice and repeat the process till t = T-l is reached. 

Since it is apparent that equation (3.9) yields the derived utility as a continuous function of 

Xt, the maximization problem can be passed to optimization routines present in many 

software packages such as Matlab. Except for possible numerical errors, the formulation 

(3.9) yields the exact solution for the NT region for a given discretization approach. This 

algorithm executes in short time even for the large number of nodes in a one-period lattice 

that we use to approximate a jump-diffusion process, since a limited number of nodes 

remains inside the NT region at any time r. For instance, for a 10-year span with 50 

subdivisions a year we derive the results for all subdivisions in app. 1000 seconds for either 

^AJ^a-^^Z^R^' + il-k)^)" 
r=t+\ k=\ 

, (3.9) 

ZA/r + a- 'XPr^)^-' +(l-*)Vr,*F 
T=t+l k=\ 
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diffusion (trinomial lattice) or mixed process (19-nomial lattice) by using 1.83 GHz Intel 

dual processor with 1 GB of RAM. 

3.2 

To solve for the NT region for the diffusion case, we approximate the stock dynamics by the 

Kamrad and Ritchken (1991) trinomial model. For the jump-diffusion case we use a 

multinomial approximation. First, we approximate the diffusion component by the 

trinomial model with the mean and variance implied by (2.3) with the probabilities adjusted 

by the factor l- ;^A* implied by (2.5). To approximate the jump component, we space 

m > 3 states by the same distance in the log scale as in the trinomial model and derive the 

probabilities as the normalized to 1 densities implied by the distribution of / . These 

probabilities are adjusted by the factor^Af implied by (2.5). In the final step, the adjusted 

trinomial probabilities are added to the adjusted three central probabilities of the jump 

component. 

To derive the NT region, we start at t = T — 1 and move recursively backward while 

using the forward induction (3.1)-(3.2) to solve the problem at each time /. The function 

(3.9) is derived and passed to an optimization routine, which derives its maximizing 

arguments. We use 50 time divisions for one calendar year and 19-nomial tree for the 

mixed process. 

3.3 

The introduction of intermediate consumption presents a significant challenge for the 

numerical work. The simplifying assumption in Constantinides (1986) of state and time 

independent consumption is of little use here because of the recursive derivation in the 

discrete time discrete state setup for the risky asset. It will also be difficult to deal with the 

time and state dependent consumption since it would break down the recombining pattern 

for the state variable Xt inside the NT region. The remaining option is to use time- but not 

state-dependent consumption, i.e. to assume that for every state at given time t the agent 

8 Numerical simulations showed that increasing these numbers beyond these values did not affect 
significantly our numerical results, at least for the chosen parameter values. As a rule of thumb 
determining the lattice size, we keep branches with one-period probabilities greater than le-10. 
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consumes the same proportion of her bond account. It can be easily shown that under this 

assumption \ will recombine inside the NT according to the recombination pattern of the 

risky asset. It is in principle possible to introduce a second auxiliary state variable similar to 

XT which will subsume the intermediate consumption. However, adding another control in 

the optimization problem may create numerical problems not easy to handle. This is a topic 

for future research.84 

84 As Davis and Norman (1990) showed, the Constantinides (1986) simplifying assumption of a time- and 
state-dependent consumption does not hold in a more general model. Nonetheless, the value function, the 
NT region and the frequency of trading remain approximately equal in the simplified setup. 
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4 Results 

We focus the presentation of our results on differences between the diffusion and jump-

diffusion cases. Our base case uses the following parameters: the transaction cost rate 

£=0.5%, the RRA d=2, the total volatility a=20%, the risk premium is 4%, the logarithm of 

the expected jump size fiK=-\%, the jump volatility oK=l%. Figure 10 displays the NT 

region for the parameters above while the jump intensity J] varies from 0 (diffusion) to 2. It 

is apparent that increasing the jump intensity shifts the NT region towards the riskless asset 

with significant changes where this intensity is large. Note also that the upper boundary of 

the NT region for the mixed process falls below the Merton line for short time horizons, 

which is never the case for diffusion. In Figure 10, we may also clearly observe the 

convergence of the NT region boundaries to constant levels as the horizon length increases 

for a given set of parameters. 

In Table 13 we present the shift towards the riskless asset more systematically by 

displaying the proportional change from the diffusion case for the same jump intensities as 

in Figure 10 but for four different levels of RRA S: 2, 3, 5 and 10. We define this change as 

\-XjdjXd , with the subscripts jd and d denoting respectively jump-diffusion and diffusion. 

We can clearly see in Table 13 that the proportional shift towards the riskless asset decreases 

in risk aversion, while it more than doubles for each RRA when the jump intensity doubles. 

We can also see that for low risk aversion the proportional change in the lower boundary of 

the region from the diffusion case to the mixed process case is lower than the equivalent 

change in the upper boundary, with reversal of this effect for high risk aversion. 
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Figure 10: No Transaction Region for Diffusion and Mixed Process 

1.4 i r -i r 

Merton Line, T| = 0 

10 

The figure displays the NT region for mixed jump-diffusion process for varying jump intensity TJ. Other 

parameters are as follows: the transaction costs rate £= 0.5%, the RRA <5= 2, the total volatility a = 20%, the 

risk premium is 4%, the logarithm of the expected jump size flK = - 1 % , the jump volatility <7K = 7%. The 

Merton line corresponds to diffusion with the parameters as above except for the transaction cost rate, which is 
0. 

In the second part of our results we present the sensitivity of the boundaries of the 

NT region to the total volatility of the stochastic process of the risky asset, to the transaction 

costs rate and to the RRA. For the former, when we change the total volatility a from the 

base case of 20% to a new value, we also change the base volatility aK 7% of the jump 

component by a factor. For instance, if we change the total volatility from 20% to 30%, a 

new value for the volatility of the jump component becomes 1.5x7%. We display the results 

in Table 14. In panel A we observe an expected shift towards the riskless asset as the total 

volatility increases, with the proportional changes in the boundaries from the diffusion case 

to the mixed process case decreasing in total volatility. In panel B we observe the expected 
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widening of the boundaries as the transaction costs rate increases, with similar proportional 

changes in the boundaries from the diffusion case to the mixed process case for every 

transaction costs rate level. In panel C we observe an expected shift towards the riskless 

asset as the risk aversion increases. 

Table 13 

Proportional Differences in the Boundaries of the NT Region between Diffusion and Jump-Diffusion 

RRA (%) 
77 = 0.5 T] = \ 77 = 2 

(%) 
77=0.5 77=1 77=2 

2 2.28 5.27 13.12 2.47 5.57 13.56 
3 1.73 4.05 10.31 1.75 4.07 10.22 
5 1.47 3.52 9.60 1.45 3.45 9.27 
10 1.29 3.04 7.90 1.25 2.93 7.52 

The table displays die results for the NT region for a 10-year investment horizon. Otiier parameters are as 
follows: the transaction costs rate k = 0.5%, the RRA 8 = 2, the total volatility a = 20%, the risk premium is 

4%, die logaridim of the expected jump size /IK = - 1 % , the jump volatility GK = 7%. 

We may expect a low sensitivity of the boundaries of the NT region to the mean of 

the jump component [1K since the mean of the diffusion component is adjusted in our 

formulation by this quantity times the jump intensity 77. For instance, if we change jUj form 

- 1 % to -3% in our base case, the boundaries of the NT region change from 0.7745 and 

1.2355 to 0.7777 and 1.2420. We may expect a similar low sensitivity of the boundaries of 

the NT region to changes in oK since a change in this parameter is compensated in the 

volatility of the diffusion component in (2.4). For instance, if we change <7K form 7% to 

10.5% in our base case, the boundaries of the NT region change from 0.7745 and 1.2355 to 

0.7839 and 1.2476. These numbers are typical of our approach that keeps the total volatility 

constant and singles out the jump intensity as the most important factor governing the 

relation of the NT region in the diffusion case to this region in the mixed process case.85 

The NT region changes very significantly if die jump component is added on to me diffusion without 
keeping a constant volatility; see Liu et al (2003). 
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Table 14 

Sensitivity of the Boundaries of the NT Region 

Variable 4 
(%) 

1-4 A 
(%) 

Panel A: Sensitivity to Total Volatility 
20% 0.7745 1.2355 2.28 2.47 
25% 0.3591 0.5822 1.64 1.68 
30% 0.2131 0.3570 1.25 1.44 
35% 0.1414 0.2466 1.33 1.28 

Panel B: Sensitivity to Transaction Costs Rate 
0.1% 0.8609 1.1124 2.26 2.36 
0.5% 0.7745 1.2355 2.28 2.47 
1% 0.7210 1.3175 2.32 2.53 
2% 0.6427 1.4037 2.42 2.55 

Panel C: Sensitivity to Risk Aversion 
2 0.7745 1.2355 2.28 2.47 
3 0.3950 0.6027 1.73 1.75 
5 0.1997 0.2969 1.45 1.43 
10 0.0893 0.1307 1.29 1.25 

The table displays the results for the NT region for a 10-year investment horizon. Other parameters are as 
follows: the transaction costs rate £=0.5%, the RRA (5=2, the total volatility o=20%, the risk premium is 4%, 

the logarithm of the expected jump size jUK = - 1 % , the jump volatility <TK = 7%, the jump intensity J]= 0.5 

except that in each panel the name and values for a varying parameter are provided in the first column. 

An open question of our work is the accuracy of our discrete time numerical 

algorithm in approximating the continuous time solution. Unfortunately there are no closed 

form expressions for the NT region for the jump-diffusion problem (or, for that matter, for 

simple diffusion) when the investment horizon is finite. Liu and Lowenstein (2008) have 

provided an approximation to the continuous time solution in the form of an Erlang-

distributed horizon that produces a sequence of ordinary differential equations, whose 

successive solutions converge to the value function and NT region of the fixed-horizon 

jump-diffusion case. 
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Figure 11: No Transaction Region for Liu-Loewenstein (2008) Parameters 
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The figure displays the results for the NT region for mixed jump-diffusion process for the Liu-Loewenstein 
(2008) parameters: the RRA 8 = 5, the total volatility a = 12.86%, the risk premium of 7%, the jump intensity 

77 = 0.1, the logarithm of the expected jump size JUK = -6.75%, the jump volatility (JK = 8.53%, the transaction 

cost rate for stock purchase (sale) of 1% (0). 

Figure 11 and Table 15 show the NT region for the jump-diffusion case evaluated 

with our algorithm for the parameter values used by Liu and Lowenstein (2008). We follow 

the presentation in that latter study, i.e. we display the reciprocals of the NT region 

boundaries as defined in this essay with the following set of parameters: the RRA 8 - 5, the 

total volatility a = 12.86%,86 the risk premium of 7%, the jump intensity 77 = 0.1, the 

logarithm of the expected jump size /iK= -6.75%, the jump volatility aK = 8.53%, the 

transaction cost rate for stock purchase (sale) of 1% (0). Following our rule of thumb 

determining the lattice size, we used a tree with 81 branches for this parameter set. 

Although the exact numerical values of Liu and Lowenstein (2008) are not available, 

it is clear that our diagram is virtually identical to the corresponding Liu-Lowenstein Figure 

86 This value of the total volatility corresponds to the value of the diffusion component of 12.39%. 
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6. Hence, there is reason to believe that our numerical algorithm has equally good 

convergence and approximation properties to the "true" continuous time solution as the 

alternative approximation through the Erlang-distributed horizon of the Liu-Lowenstein 

(2002,2008) approach. 

Table 15 

Results for Liu-Loewenstein (2008) Parameters 

T 

0.25 
0.5 
1 
2 
5 
10 
15 
20 
25 

*/*>» 
0.194 
0.190 
0.185 
0.179 
0.167 
0.161 
0.161 
0.161 
0.161 

V4 
1.760 
0.665 
0.397 
0.299 
0.256 
0.247 
0.246 
0.246 
0.246 

The table displays the results for the NT region for mixed jump-diffusion process for the Liu-Loewenstein 
(2008) parameters: the RRA S = 5, the total volatility a = 12.86%, the risk premium of 7%, the jump intensity 
TJ =0.1, the logarithm of the expected jump size jlK = -6.75%, the jump volatility <7K = 8.53%, the transaction 
cost rate for stock purchase (sale) of 1% (0). 
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5 Concluding Remarks 

We presented an efficient numerical solution to the problem of deriving the NT region in 

discrete-time finite-horizon case for iid risky asset returns. We also corrected errors in an 

earlier study. The solution to our main research question indicates that the major factor 

driving the NT region for the mixed process apart from its diffusion counterpart is the jump 

intensity. It remains an empirical question whether the jump intensity estimated from 

market data would lead to major changes in portfolio rules compared to the simple diffusion 

case. Further, an empirical study may examine relative gains or losses in derived utility 

resulting from the adoption of either investment policy and tested with the observed paths of 

an index. 

A factor that may modify the influence of the jump intensity on the NT region is 

intermediate consumption. We hypothesize that with intermediate consumption even 

relatively low jump intensity may lead to the portfolio rules for the mixed process relatively 

far apart from its diffusion counterpart. The reason for this conjecture is the plausibility that 

the risk aversion will sway an agent from holding the risky asset given that a large 

proportion of the risky asset in the agent's portfolio may lead to low consumption states at 

intermediary dates in the presence of jumps. The verification of this conjecture should be a 

topic of future research. 
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