UNCERTAINTY MANAGEMENT FOR DESCRIPTION

LOGIC-BASED ONTOLOGIES

HSUEH-IENG PAI

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoOr THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2008

(© HsueH-IENG PAI1, 2008

A

Library and Bibliotheque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-37747-5
Qur file Notre référence
ISBN: 978-0-494-37747-5

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Uncertainty Management for Description Logic-Based Ontologies

Hsueh-Ieng Pai, Ph.D.

Concordia University, 2008

Description Logics (DLs) play an important role in the Semantic Web as the
foundation of ontology language OWL DL. The standard DLs, based on the classical
logic, are more suitable to describe concepts that are crisp and well-defined in nature.
However, for many emerging applications, we also need to deal with uncertainty. In
recent years, a number of proposals have been put forward for incorporating uncer-
tainty in DL frameworks. While much progress has been made on the representation
and reasoning of the uncertainty knowledge, query optimization in this context has
received little attention.

In this thesis, we tackle this problem in both theoretical and practical aspects
by taking a generic approach. We first propose the ALCy framework which extends
the standard DL ALC with uncertainty. This is done by extending each component
of the ALC framework, including the description language, the knowledge base, and
the reasoning procedure. In particular, the resulting semantics of the description

language is captured using the certainty lattice and the combination functions. The

1ii

knowledge base is extended by associating with each axiom and assertion a certainty
value and a pair of combination functions to interpret the concepts that appear in the
axiom/assertion. A sound, complete, and terminating tableau reasoning procedure
is develobed to handle such uncertainty knowledge bases. An interesting feature of
the ALCy framework is that, by simply tuning the combination functions that are
associated with the axioms and assertions, different notions of uncertainty can be
modeled and reasoned with, using a single reasoning procedure.

Using this framework as the basis, we then investigate optimization techniques in
our context. We adapt existing optimization techniques developed for standard DLs
and other software systems to deal with uncertainty. New techniques are also devel-
oped to optimize the handling of uncertainty constraints generated by the reasoning
procedure.

In terms of practical contribution, we developed a running prototype, URDL -
an Uncertainty Reasoner for DL ALCy, which implements the proposed optimization
techniques. Experimental results show the practical merits of the ALCy framework,
as well as the effectiveness of the proposed optimization techniques, especially when

dealing with large knowledge bases.

v

Acknowledgments

First of all, I would like to thank my supervisors, Dr. Volker Haarslev and Dr. Nema-
tollaah Shiri, for their guidance, insightful discussion, encouragement, and support
throughout the development of this thesis. Dr. Haarslev introduced me to the world
of the Semantic Web and Description Logics, and Dr. Shiri introduced me to the field
of uncertainty management and knowledge base systems. Without them, this work
would not have been possible.

I would like to give special thanks to my brother, Dr. Cheng-Yu Pai. His insight-
ful discussion inspired my research on the optimization aspécts of the uncertainty
management.

This work is supported by the following agencies which I would like to acknowl-
edge: Natural Sciences and Engineering Re-search Council (NSERC) of Canada,
Genome Québec, and Faculty of Engineering and Computer Science (ENCS), Con-
cordia University.

I would like to express my gratitude to my fellow students, Ali Kiani and Xi Deng,
with whom we spent countless time together throughout the past few years. My col-

leagues at the Database Research Lab, especially Mihail Halachev, Qiong Huang,

Nima Mohajerin, Ahmed Alasoud, Srinidhi Kannappady, and Anand Thamildurai,
also helped me with valuable comments and suggestions regarding my technical pre-
sentations.

Finally, I would like to dedicate this thesis to my family. I thank my parents and
brother for their love, support, and encouragement. This work is as much theirs as it

1S mine.

vi

Contents

List of Figures xi
List of Tables xiv
1 Introduction 1
1.1 Towards the Semantic Web 2

1.2 Description Logic-Based Ontology Languages. 3

1.3 Motivation for Extending Description Logics with Uncertainty 4

1.4 Motivation and Objectives of the Thesis 5

1.5 Contributions of the Thesis 6

1.6 Thesis Outline e 8

2 Background and Related Work 9
2.1 The ALC framework 9
2.1.1 Description Language ACC 10

2.1.2 ALC Knowledge Base 12

2.1.3 ALC Reasoning Procedure 14

vil

2.2 Deductive Database with Uncertainty 25

2.3

Description Logics with Uncertainty - A Survey 28

2.3.1 Approaches for Extending Description Logics with Uncertainty 28

2.3.2 Description Language with Uncertainty 29
2.3.3 Knowledge Base with Uncertainty 33
2.3.4 Reasoning with Uncertainty 37
2.4 Summary and Concluding Remarks 41
A Framework for the Description Logic ALCy 43
3.1 Description Language ALCy oL 44
3.1.1 Representation of Certainty Values 45
3.1.2 Semantics of the Description Language ALCy 45
3.2 ALCy Knowledge Base 52
321 ALCy TBOX o o 52
322 ALCy ABox oo 54
3.3 ALCy Reasoning Procedure 56
3.3.1 ALCy Reasoning Services 57
3.3.2 Pre-processing Phase 61
3.3.3 ALCy Completion Rules 62
3.3.4 Correctness of the ALCy Tableau Algorithm 71
3.4 Ilustrative Example 79
3.5 Related Worko 84

viii

3.5.1 Deductive Database with Uncertainty 84

3.5.2 Existing Frameworks for Description Logics with Uncertainty . 88

3.6 Summary and Concluding Remarks 91

4 Optimizing ALC;; Reasoning 93
4.1 Optimization Techniques for Standard DL Systems 93
4.2 Optimization Techniques for the ALCy System 96
4.2.1 Lexical Normalization 97

4.2.2 Concept Simplification 99

4.2.3 Partitioning Based on Connectivity 100

4.2.4 Optimized Individual Group Creation. 109

4.2.5 Optimized Clash Detection. 111

426 Caching 111

427 Optimized Hashing 113

4.2.8 Optimized String Comparison 113

4.3 Summary and Concluding Remarks 114

5 URDL - A Prototype System 116
5.1 Reasoner Controller 117
5.2 Configuration Loader 125
5.3 Parser 126
5.4 Inference Engine L 128
5.5 Constraint Solver 131

ix

5.6 Experimenting with URDL. 133

5.7 Summary and Concluding Remarks 135

6 Performance Evaluation 137
6.1 Test Cases o o e 138
6.2 Performance Evaluation Results 141
6.3 Optimization Effects 146
6.3.1 Effect of Partitioning Based on Connectivity 147

6.3.2 Effect of Optimized Individual Group Creation. 153

6.3.3 Effect of Optimized Clash Detection 156

6.34 Effect of Caching 161

6.3.5 Effect of Optimized Hashing 164

6.3.6 Effect of Optimized String Comparison 164

6.3.7 Overall Optimization Effect 168

6.4 Summary and Concluding Remarks 171

7 Conclusions and Future Research 174
7.1 Conclusions 174
7.2 Future Research Directions 178
Bibliography 180
A URDL Implementation Details 196
B Glossary 209

List of Figures

10

11

12

13

14

15

The ALC Framework 10
Tableau-based reasoning procedure for standard DL 15
A model for Example 2.1.6o L 21
The ALCy framework 43
Overview of the ALCy reasoning procedure 57

Example of Partitioning Based on Connectivity as Individual Groups 101
Relationship between ABox, Individual Groups, and Assertion Groups 104

Example of Partitioning Based on Connectivity as Assertion Groups . 105

The Creation and Merge of Assertion Group(s) 106
URDL Architecture 116
General sequence diagram for URDL 119

Sequence diagram for consistency checking of ABox with respect to TBox120

Sequence diagram for consistency checking of ABox associated with an

individual 122
Sequence diagram for entailment checking 123
Sequence diagram for subsumption checking 124

xi

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Completion rule application policy 129

Example represented using URDL syntax 134
URDL Scfeenshot 134
Deep (a) and Wide (b) test cases 140
Performance of the test cases Simple-Deep 144
Performance of the test cases Simple-Wide 144
Performance of the test cases Complex-Deep 145
Performance of the test cases Complex-Wide 145
Effect of partitioning based on connectivity 148
Effect of partitioning based on connectivity - Simple-Deep 149
Effect of partitioning based on connectivity - Simple-Wide 150
Effect of partitioning based on connectivity - Complex-Deep 151
Effect of partitioning based on connectivity - Complex-Wide 152
Effect of optimized Individual Group creation - Simple-Deep 154
Effect of optimized Individual Group creation - Simple-Wide 155
Effect of optimized clash detection - Simple-Deep 157
Effect of optimized clash detection - Simple-Wide 158
Effect of optimized clash detection - Complex-Deep 160
Effect of optimized clash detection - Complex-Wide 160
Effect of caching - Complex-Deep 162
Effect of caching - Complex-Wide 163
Effect of optimized hashing - Complex-Deep 165

xii

38

39

40

41

42

43

44

45

46

47

48

49

50

ol

52

93

Effect of optimized hashing - Complex-Wide 166

Effect of optimized string comparison - Complex-Deep 167
Effect of optimized string comparison - Complex-Wide 167
Overall optimization effect (constraint solving disabled) - Complex-Deepl71

Overall optimization effect (constraint solving disabled) - Complex-Wide172

Pseudo-code for augmenting the ABox with respect to the TBox . . . 196
Pseudo-code for adding atomic concept assertion into the ABox . . . 201
Pseudo-code for adding non-atomic concept assertion into the ABox . 202

Pseudo-code for adding role assertion into the ABox 203
Pseudo-code for determining Individual Group for role assertion . . . 204
Pseudo-code for the negationrule 205
Pseudo-code for the conjunctionrule 205
Pseudo-code for the disjunctionrule 206
Pseudo-code for the role value restrictionrule 206
Pseudo-code for the role exists restrictionrule 207
Pseudo—code for checking whether role value restriction rule needs to

bere-applied 208

xiii

List of Tables

10
11
12
13

14

Completion rules for ALC with an unfoldable TBox 20
Role Exists Restriction Rule for ALC with general TBox 23
Combination function properties 48
Syntax and semantics of the description language ALCy 52

Correspondence between the ALCy description language syntax and
the URDL syntax 126

Correspondence between the ALCy knowledge base syntax and the

URDL syntax e 127
Propertiesof test cases, 138
Properties of some generated test cases 141
Performance measures inseconds 142
Effect of partitioning based on connectivity (in seconds) 148

Effect of partitioning based on connectivity - Simple-Deep (in seconds) 149

Effect of partitioning based on connectivity - Simple-Wide (in seconds) 150
Effect of partitioning based on connectivity - Complex-Deep (in seconds)151

Effect of partitioning based on connectivity - Complex-Wide (in seconds)151

Xiv

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Effect of optimized Individual Group creation - Simple-Deep (in seconds)155

Effect of optimized Individual Group creation - Simple-Wide (in seconds)156

Effect of optimized clash detection - Simple-Deep (in seconds) 158
Effect of optimized clash detection - Simple-Wide (in seconds) 158
Effect of optimized clash detection - Complex-Deep (in seconds) . .. 159
Effect of optimized clash detection - Complex-Wide (in seconds) . . . 161
Effect of caching - Complex-Deep (inseconds) 162
Effect of caching - Complex-Wide (in seconds) 163
Effect of optimized hashing - Complex-Deep (in seconds) 165
Effect of optimized hashing - Complex-Wide (in seconds) 165
Effect of optimized string comparison - Complex-Deep (in seconds) . . 166
Effect of optimized string comparison - Complex-Wide (in seconds) . . 168
Overall optimization effect - Simple-Deep (in seconds) 169
Overall optimization effect - Simple-Wide (in seconds) 169
Overall optimization effect - Complex-Deep (in seconds) 170
Overall optimization effect - Complex-Wide (in seconds) 170

Overall optimization effect (constraint solving disabled) - Complex-Deep
(inseconds) 172

Overall optimization effect (constraint solving disabled) - Complex-Wide

(inseconds) 172
System preferences 197
Printing preferences L. 197

XV

35 Optimization preferences . . .

36 EBNF grammar used by parser

......................

.....................

xXvi

Chapter 1

Introduction

There is a huge amount of heterogeneous information available on the Web today. In
year 2000, the size the entire Web was estimated to be 1 billion pages [She00]. This
number increased to over 19 billion in 2005 [Mar05]. This trend of phenomenal infor-
mation growth is most likely to continue in the future. Hence, there is an increasing
need for finding efficient ways to locate desired information on the Web.

The current Web, also known as the Syntactic Web [Wik07], consists of infor-
mation that is mostly encoded using markup languages such as HyperText Markup
Language (HTML) [W3C99]. Such information does not contain any special tagging
to convey the meaning of the Web content. This makes it difficult for computers to
understand the current Web content. Although humans are capable of understanding
the content, the amount of information available on the Web is too huge for humans
to handle. To overcome this problem, it is necessary to rely on the computational

power of the machines to make sense of the huge amount of information on the Web.

1.1 Towards the Semantic Web

The vision of the Semantic Web [BHLO1] was first introduced by Tim Berners-Lee
as “a Web of data that can be processed directly or indirectly by machines” [BF00].
The idea is to make Web resources more machine-interpretable by giving them a
well-defined meaning through semantic markups.

To move toward this goal, the Resource Description Framework (RDF) [W3C04d]
was developed by the World Wide Web Consortium (W3C) as a language to represent
information about Web resources [W3C04b]. RDF uses Extensible Markup Language
(XML) [W3C06a] syntax, and describes each Web resource using a triple consisting
of the subject, the predicate, and the object. A subject is anything tha’; can be
identified by a Universal Resource Identifier (URI) [W3C06b]. A predicate expresses
the relationship between the resource and its value. Finally, an object may be atomic
(such as a string, an integer, etc.) or can be another resource [Tau06].

RDF Schema (RDFS) [W3C04c], also developed by W3C, further extended RDF
by giving additional semantics to particular RDF predicates and resources, such as
classes, class inheritance, properties, property inheritance, and domain/range restric-
tions. This gives extra hints to computers as to how the terms and their relationships
should be» interpreted. However, RDFS is still not enough to describe resources in suf-
ficient details. For instance, it lacks support for existential and universal constraints,
and cannot represent general axioms. As a result, more expressive languages were

needed to better describe the meaning of Web resources.

1.2 Description Logic-Based Ontology Languages

In recent years, a number of expressive Semantic Web ontology languages were pro-
posed [DAMO00, HFB*00, W3C01, W3C04a]. An ontology is “an explicit specification
of a conceptualization” [Gru93]. Informally, an ontology consists of a set of terms
in a domain, the relationships between the terms, and a set of constraints imposed
on the way in which those terms can be combined. Constraints such as concept con-
junction, disjunction, negation, existential quantifier, and universal quantifier can all
be expressed using ontology languages. By explicitly defining the relationships and
constraiﬁts among the terms, the semantics of a term is constrained by restricting
the number of possible interpretations of the term [BP02]. This makes the meaning
of the terms more precise and better understandable.

Among Semantic Web ontology languages [DAM00, HFB*00, W3C01, W3C04a),
the OWL Web Ontology Language [W3C04a] is the most recent W3C Recommen-
dation. One of its species, OWL DL, is named because of its correspondence with
Description Logics (DLs) [BCM*03]. The family of DLs is mostly a subset of first-
order logic (FOL) [Hod01] that is considered to be attractive because it keeps a
good con}promise between the expressive power and the computational tractability
[BCM™*03]. The well-defined semantics as well as the availability of the powerful
reasoning tools make the family of DLs particularly interesting to the Semantic Web

community [BHS02].

1.3 Motivation for Extending Description Logics

with Uncertainty

The standard DLs, such as the one that OWL DL is based on, focus on the classical
logic, which is more suitable to describe concepts that are crisp and well-defined
in nature. However, in the real-world applications, uncertainty, which refers to a
form of deficiency or imperfection in the information for which the truth of such
information is not established definitely [L.SO01al, is everywhere. Not only because the
real-world information is mostly imperfect or deficient, but also because many realistic
applications need the capability to handle uncertainty - from classification of genes in
bioinformatics, schema matching in information integration, to matchmaking in Web
services. Modeling uncertainty and reasoning with it have been challenging issues for
over two decades in database and artificial intelligence research [Bac90, LS01a, MS97,
Par96], and is inevitably also a challenge for the Semantic Web/DL community.
The need to model and reason with uncertainty has been found in many different
Semantic Web contexts, such as Semantic Web services [MR05], multimedia annota-
tion [VSP05], ontology learning [HV05], and bioinformatics [SEW*07]. For example,
in an online medical diagnosis system, one might want to find out to what degree a
person, John, would have heart disease if the certainty that an obese person would
have heart disease lies between 0.7 and 1, and John is obese with a degree between
0.8 and 1. Such knowledge cannot be expressed nor reasoned with standard DLs.

Indeed, to support uncertainty, the syntax and the semantics of the standard DLs

need to be extended.

1.4 Motivation and Objectives of the Thesis

In the last few years, a number of frameworks have been proposed on extending DLs
with uncertainty [Jae94b, KLP97, TM98, Str01, GL02a, PFT*04, Str05a, SSSPO6,
SBO07]. Some of them deal with only vagueness while others deal with only prob-
abilistic knowledge. In addition, existingvframeworks focus on representation and
reasoning of the uncertainty knowledge, but have paid little attention to efficient
query processing and implementation. Rather than addressing these issues for indi-
vidual frameworks, we are interested in studying these problems so that the results
obtained and the tools developed will be useful over a spectrum of frameworks for

DL with uncertainty. This aim is further developed into the following objectives:

1. To propose a generic framework that extends the DL ALC [SS91], a DL fragment
that is of practical interest, so that uncertainty knowledge can be represented

and reasoned with in a uniformed way.
2. To develop query optimization techniques for the proposed framework.

3. To develop a system to show the practical merits of the proposed framework

and to serve as the test bed for the optimization techniques.

1.5 Contributions of the Thesis

To fulfill the above objectives, this thesis makes the following main contributions:

e We classify the existing frameworks for DLs with uncertainty into 'three ap-
proaches based on the underlying mathematical foundation and the type of
uncertainty modeled (Section 2.3). In addition, we identify the common com-
ponents of the DL frameworks that need to be extended in order to support

uncertainty. A variation of this work will appear in [HPS09].

e The ALCy framework is proposed (Chapter 3), which extends the ALC frame-
work by allowing various forms of uncertainty knowledge be expressed and rea-

soned with. To work towards this goal, we make the following contributions.

— We define the semantics of the description language ALCy based on the
underlying certainty lattice as well as the combination functions that sat-

isfy some pre-defined properties (Section 3.1).

— We present the syntax and semantics of ALCy knowledge bases, which
allow various forms of uncertainty knowledge be expressed by changing
the combination functions that are associated with axioms and assertions

(Section 3.2).

— We propose a generic reasoning procedure that can deal with uncertainty

knowledge expressed in ALCy (Section 3.3).

The work related to ALCy description language and knowledge base was pub-
lished in [HPS05). That work was further extended in [HPS06b] with a core
reasoning procedure. A reasoning procedure for dealing with acyclic uncer-
tainty knowledge bases was presented in [HPS06a], which was then extended

for general knowledge bases [HPS] as presented in this thesis.

We establish soundness and completeness of the proposed ALCy reasoning pro-

cedure, and show that it terminates (Section 3.3.4). This work is under evalu-

ation [HPS)].

We study applicability of the standard DL optimization techniques to the ALCy
framework, and propose new optimization techniques in our context (Chapter
4). We show that some optimization techniques from standard DLs cannot be
apf)lied to the ALCy framework. Even for those that can be applied, care must
be taken when uncertainty is present. Most of these techniques were presented

in [HPS07].

We developed a running prototype which shows the practical merits of the
ALCy framework. It also served as a test bed for the proposed optimization

techniques (Chapter 5).

We investigate the performance of the ALCy system, and the effectiveness of the
proposed optimization techniques (Chapter 6). Some preliminary experimental

results were published in [HPSO07].

1.6 Thesis Outline

This thesis is organized as follows. Chapter 2 gives an overview of the ALC frame-
work, and presents the related work. Chapter 3 presents the ALCy framework in
detail, along with an illustrating example. We also compare the ALCy framework
with the related work. In Chapter 4, we study the optimization techniques used in the
standard DLs and other software systems, and investigate how they can be adapted
to the ALCy framework. New techniques are also presented to optimize the uncer-
tainty reasoning procedure. Chapter 5 presents an ALCy system named URDL, an
Uncertainty Reasoner for the DL ALCy. We study the performance of URDL and the
effectiveness of the proposed optimization techniques in Chapter 6. Finally, Chapter

7 concludes the thesis and presents some possible future improvements.

Chapter 2

Background and Related Work

This chapter describes relevant background knowledge and work related to this thesis.
We first give an overview of the ALC framework in Section 2.1, which we use as
the basis to extend with uncertainty in Chapter 3. We then present related work.
Our work on the ALCy framework was inspired by the parametric framework for
deductive database with uncertainty, which we present in Section 2.2. We also survey

the existing frameworks for DLs with uncertainty in Section 2.3.

2.1 The ALC framework

Description logics (DLs) are a family of knowledge representation languages that

can be used to represent the knowledge of an application domain using concept de-
scriptions, and have formal, logic-based semantics [BHS07, BL06, BCM*03]. In this

thesis, we focus on the DL fragment called ALC [SS91], which corresponds to the

propositional multi-modal logic K(Sch91].

m) [
The ALC framework consists of three main components — the description language,

the knowledge base, and the reasoning procedure (see Figure 1). In what follows, we

present each of these components in detail.

Intensional Knowledge

f > Nz

Language - Reasoning
ALC Extensional Knowledge / Procedure

ALC Knowledge Base

Description

~

Figure 1: The ALC Framework

2.1.1 Description Language ALC

The description language refers to the language used for building concepts. Descrip-
tion languages are distinguished by the constructors they provide. By adding more
constructors to the description language, more expressive languages may be obtained.

Every description language has elementary descriptions which include atomic con-
cepts (unary predicates) and atomic roles (binary predicates). Complex descriptions
can then be built inductively from concept constructors. The description language
ALC consists of a set of language constructors that are of practical interest. Specifi-
cally, let R be a role name, the syntax of a concept description (denoted C or D) in

ALC is described as follows, where the name of each rule is given in parenthesis.

10

C,D — A (Atomic Concept) |
—C (Concept Negation) |
C 1 D (Concept Conjunction) |
C U D (Concept Disjunction) |
3JR.C (Role Exists Restriction) |

VR.C (Role Value Restriction)

For example, let Person be an atomic concept and hasParent be a role. Then
VhasParent. Person is a concept description. We use T as a synonym for AU —-A,
and L as a synonym for A —A.

The semantics of the description language is defined using the notion of interpre-
tation. An interpretation Z is a pair Z = (A%, .7), where A? is a non-empty domain
of the interpretation, and -Z is an interpretation function that assigns to every atomic
concept A aset AT C AT, and to every atomic role R a binary relation R C A% x AZ.

The interpretations of concept descriptions are shown below:
(=C)F = AT\C*
(CnDY=ctnD?*
(CuD)yr=cCctuD?
(3R.C)* = {a € AT| 3b: (a,b) € RT Ab e C?}

(VR.C)* = {a € AT} Vb: (a,b) € R — b e C?}

11

2.1.2 ALC Knowledge Base

As shown in Figure 1, the knowledge base ¥ consists of two components: the inten-
sional knowledge denoted by 7 (the Terminological Box, known as the TBox) and

the extensional knowledge denoted by A (Assertional Box, known as the ABox).

ALC TBox

A TBox 7 is a set of statements about how concepts in an application domain are
related to each other. Let A be an atomic concept, and C' and D be concept descrip-
tions. Also, let C denote the subsumption (sub-class/super-class) relationship, and
let = denote the equality relationship. The TBox is a finite, possibly empty, set of

terminological axioms that could be a combination of:

o Concept subsumptions of the form (A C C)

e Concept definitions of the form (A = C), which is equivalent to (A C C) and

(CCA)
e General concept inclusions (GCIs) of the form (C C D)

o Concept equations of the form (C = D), which is equivalent to (C T D) and

(DEC)

For example, the axiom (ObesePerson = Person N Obese) is a concept definition that
is equivalent to the two concept subsumptions: (ObesePerson = Person 1 Obese)

and (Person Obese T Obese Person). Note also that a GCI is simply a more

12

general form of concept subsumption, and a concept equation is a more general form
of concept definition.
An interpretation Z satisfies (C C D) if CT C D?, and it satisfies (C = D) if

C% = D%. An interpretation 7 satisfies a TBox 7 iff Z satisfies every axiom in 7.

ALC ABox

An ABox A, or a world description, is a set of statements that describe a specific
state of affairs, with respect to some individuals, of an application domain in terms
of concepts and roles. Let a and b be individuals, C be a concept, R be a role, and
let “:” denote “is an instance of”. The ABox consists of a set of assertions that could

be a combination of:

e Concept assertions of the form {(a : C)

® Role assertions of the form ((a,b) : R)

For example, the concept assertion (John : Obese) asserts that individual John is an
instance of concept Obese. Similarly, the role assertion ((John, Mary) : hasParent)
asserts that John’s parent is Mary.

An interpretation 7 satisfies (a:C) if a € C%, and it satisfies {(a,b): R) if
(a®,b") € RT. An interpretation Z satisfies an ABox A iff T satisfies every asser-
tion in A with respect to a TBox 7.

An interpretation Z satisfies (or is a model of) a knowledge base X (denoted

7 = Y, if and only if it satisfies both components of 3. The knowledge base 3

13

is consistent if there exists an interpretation Z that satisfies X. We say that ¥ is

inconsistent otherwise.

Definition 2.1.1 (Predecessor/Ancestor) Let R be arole, and a and b be indi-
viduals. An individual a is a predecessor of an individual b (or b is an R-successor of
a) if the ABox A contains the assertion ((a,b) : R). An individual a is an ancestor
of b if it is either a predecessor of b or there exists a chain of assertions ((a, b;) : Ry),

((b1,b2) : Ra),oory {(beyb) : Reyn) in A

2.1.3 ALC Reasoning Procedure

The purpose of the reasoning procedure is to explicate knowledge that is stored im-
plicitly in a give knowledge base. Most DL systems use tableau-based reasoning
procedures (called tableau algorithms) to provide reasoning services, which work by
trying to construct a tableau/model [BCM*03].

Figure 2 gives an overview of a general tableau-based reasoning procedure. The
rectangles represent some data or knowledge, the arrows show the data flow, and the
gray rounded boxes show where data processing is performed. As shown in the figure,
some pre-processing steps are first applied to obtain the initial extended ABox .A§.
Then, a set of completion rules are applied.

In this sectién, we first describe the reasoning services that are commonly pro-
vided by standard DL frameworks. We then present the tableau algorithm for the

description logic ALC.

14

If more rule applicable

Knowledge
Base
Initial

TBox T~ ; ‘Pr‘e-_ N Extended Extendeg

rocessing ABOX Ag ABox A

)
ABox A (If no more
rule applicable,

é return inference
result

Figure 2: Tableau-based reasoning procedure for standard DL

Reasoning Services

The following are some main reasoning services supported by standard DL frame-

works:

e Consistency Problem: The ABox A is consistent with respect to the TBox 7
if there is an interpretation Z that is a model of both A and 7. The knowledge
base is consistent if and only if its ABox is consistent with respect to its TBox

[Mol01].

e Entailment Problem: An assertion X is entailed by a knowledge base %,
denoted ¥ |= X, if every model of ¥ is a model of X. The entailment problem
can be reduced to the consistency problem. Let (a : C) be an assertion. Then,

Y = {a: C) if and only if ZU {(a : =C)} is inconsistent [BCM*03].

e Concept Satisfiability Problem: A concept C is satisfiable with respect to
a TBox 7 if there exists a model Z of 7 such that C? is not empty. The
concept satisfiability problem can be reduced to the consistency problem: C

is satisfiable if and only if {{(a : C)} is consistent, where a is a new individual

15

name [BCM*03].

e Subsumption Problem: A concept C is subsumed by a concept D with
respect to a TBox 7, denoted 7 = C E D , if C* C D? for every model Z of
7. The subsumption problem can be reduced to concept satisfiability problem:
C is subsumed by D if and only if C M —D is unsatisfiable [Sch94, BCM*03].
The concept satisfiability problem can, in turn, be reduced to the consistency

problem.

Since the above reasoning services can all be reduced to consistency problem, we focus
on the consistency problem in this thesis.

Tableau Algorithm for ALC

The tableau algorithm for checking the consistency of knowledge base works slightly

differently, depending on whether or not the TBox is unfoldable, described as follows.

Definition 2.1.2 (Unfoldable TBox) A TBox is unfoldable [Baa90] if all of the

following conditions hold.

e All the axioms in the TBox are either concept subsumptions or concept defini-

tions. That is, there is no GClIs nor concept equations in the TBox.

e All the axioms in the TBox are unique on the left hand side. In other words,
for every atomic concept A, there is at most one axiom of the form (A C C) or

(A = C) in the TBox.

16

e All the axioms are acyclic. That is, there is no recursive axiom in which a con-
cept name directly or indiretly uses itself. For example, there is no axiom such as
(Person C YhasParent. Person), nor is there mutually recursive axioms such
as (Person C VhasParent.Father) and (Father C VhasChild.Person). Note
that the pair of concept subsumptions {(A C C), (C T A)} is not considered

to be cyclic since it is equivalent to the concept definition (A = C).

With unfoldable TBox, we can eliminate all the defined names from the right
hand side of all axioms [BCM™*03]. For example, suppose a TBox consists of these
two axioms:

(Parent = Person M 3hasChild. Person)

(Mother = Parent N Female)

Then, it éan be unfolded as:

(Parent = Person N JhasChild. Person)

(Mother = Person Tl 3hasChild.Person M Female)

Similarly, if we have concept subsumptions, we can first replace an axiom of the form
(A C C) with the concept definition (A = C 1 A’), where A’ is a new concept name.
Then, we can follow the same procedure described above to unfold the TBox.

Once a TBox is unfolded, we can unfold a concept C with respect to the TBox (see

Deﬁnition 2.1.3). Since all the concepts in a knowledge base with unfoldable TBox

can be unfolded, the problem of reasoning with respect to an unfoldable TBox can

17

be reduced to the problem of reasoning with respect to an empty TBox [BCM*03],

which simplifies the reasoning procedure as we will describe shortly.

Definition 2.1.3 (Unfoldable Concept) Given an unfoldable TBox, a concept
C in the knowledge base is unfoldable by recursively substituting each non-atomic
concept name in C by its definition in the unfolded TBox until all the sub-concepts

in C' are atomic concept names.

In the following, we first present a tableau algorithm for ALC with unfoldable

TBox. We then describe what needs to be done when the TBox is not unfoldable.

Tableau Algorithm for ALC with an Unfoldable TBox

Given a knowledge base ¥ = (7, A) where 7 is an unfoldable TBox, the tableau
algorithm starts with some pre-processing. In this phase, each concept in the ABox
A is unfolded with respect to the TBox 7. In addition, each concept description
is transformed into its negation normal form (NNF) (see the definition below). The

resulting ABox is referred to as the initial extended ABoz, AS.

Definition 2.1.4 (Negation Normal Form) A concept C is in negation normal
form (NNF) if the negation operator appears only in front of concept names.
Let C and D be concepts, and R be a role. Any concept description can be

converted to NNF by applying the following equivalence rules:

e —~(C)Y=C

il

18

e ~(CUD)=-CnN-D
e ~(CND)=-CU-D
e -3JR.C =VR.-C
e -VR.C =3R.-C

For example, NNF of the concept ~3hasPet.(Dog U Cat) is YhasPet.(—Dog N —~Cat).

Next, the tableau algorithm tries to construct a model by iteratively applying a set
of completion rules in arbitrary order. Each completion rule application adds one or
more additional inferred assertions to the extended ABox to represent explicitly the
knowledge that was previously stored implicitly. The algorithm terminates when no
further completion rule is applicable. If one could arrive at a completion that contains
no contradiction (also called the clash), then the knowledge base ¥ is consistent.
Otherwise, it is inconsistent.

The completion rules for ALC with unfoldable TBox are introduced in Table 1
[BCM™03]. Note that the disjunction rule is nondeterministic since it can be applied
in different ways to the same ABox. Furthermore, the role exists restriction rule is

the only rule that generates new individuals.

Definition 2.1.5 (Forest, Node Label) The model being constructed by the
tableau algorithm can be thought as a forest [HST00]. A forest is a collection of trees,

with nodes corresponding to individuals, edges corresponding to relationships/roles

19

| Rule Name l Rule
Clash Trigger {{a: A),(a:—A)} C A7
Conjunction Rule if (a: CN D) e Af and
{(a: C)a: D)} ¢ A2
then A, ; = AfU{(a:C){a: D)}
Disjunction Rule if (a: CLUD) € A¢ and
{(@a:CYa:D)}NAE =0
then A%, = Af U (a: C), or
A5, = A Ula: D)
Role Exists Restriction Rule | if (a : JR.C) € Af and
3 an individual b such that {((a,b) : R)(b: C)} C A?
then A%, = Af U{((a,b) : R)(b: C)}
where b is a new individual
Role Value Restriction Rule | if (a: VR.C) € A; and
3 an individual b such that {(a,b) : R) € A¢ and
(b:C) ¢ A
then Af,; = Af U (b: C)

K5

Table 1: Completion rules for ALC with an unfoldable TBox

between individuals, and root nodes corresponding to individuals present in the initial
extended ABox .A5. Each node is labeled using the notation £(individual-name) to
indicate the concept assertions associated with it. These labels are referred to as the

node labels.

Example 2.1.6
To illustrate the completion rules, assume the initial extended ABox is:
A = {{a: DN IR.C),
((b;c) - R),
((b,d) : 5),
(b:VS.E)}

We start by applying the conjunction rule to the first assertion, which yields the new

20

extended ABox:
Af = A5 U {(a: D),
(a:3R.C)}
We can then apply the role value restriction rule to the third and forth assertions in
A§, which gives:
AS = Af U{(d: E)}
Finally, the role exists restriction rule is applied to assertion (a : 3R.C). This yields:
A§ = AS U {{(a,indl) : R),
(indl: C)}
Since there are no more rules applicable, the reasoning procedure terminates. The

resulting model is shown as the forest in Figure 3.

£(b) = {¥S.E} L(a)={DN3R.C.D.3R.C}

L{d)y={E} L{indl) = {C}

Figure 3: A model for Example 2.1.6

Tableau Algorithm for ALC with a General TBox
A general TBox is a TBox that may contain GCls, concept equations, and cycles.

21

To check the consistency of such a knowledge base, we need to perform the following

pre-processing steps before applying the completion rules.

1. Replace each concept equation of the form (C = D) with two GCIs: (C C D)

and (D C C).

2. Transform every CGI in the TBox 7 into normal form. That is, replace each

GCI of the form (C C D) with (T C -~C U D).
3. Transform every concept into NNF (refer to Definition 2.1.4).

4. Augment the ABox A with respect to the TBox 7. That is, for each individual
a in A and each axiom (T £ -C U D) in 7, add {(a : ~C Ut D) to A. The reason
behind this augmentation is that a GCI (C C D) is satisfied by a model 7 iff
every individual in the model satisfies ~C LI D [BDS93]. We call the resulting

ABox as the initial extended ABoz A§.

5. Apply the clash trigger (described in Table 1) to check if the initial knowledge

base is inconsistent.

With general TBoxes, generation of new individuals by the Role Exists Restriction
rule may cause the completion-rule application to fail to terminate (see Example

2.1.8). To ensure termination, the notion of blocking is introduced below.

Definition 2.1.7 (Blocking) Let a and b be generated individuals in the extended

ABox Af. Also, let £(a) and L£(b) be the node labels for a and b respectively. Then,

22

individual b is blocked by some ancestor a (or a is the blocking individual for b) if

L(b) C L(a).

With the notion of blocking, the modified Role Exists Restriction Rule can then
be presented. Table 2 shows the modified rule that checks for the blocking condition
before the rule is applied. In addition, each time a new individual is generated, it

must be asserted to satisfy all the general axioms in the TBox.

Role Exists Restriction Rule:

if (a: IR.C) € Af and
a is not blocked and
? an individual b such that {((a,b) : R)(b: C)} C Af
then Af,, = Af U{((a,b) : R)(b: C)} where b is a new individual
for each axiom (T C —~C U D) in the TBox T

Ay = AFU{(b:~CUD)}

Table 2: Role Exists Restriction Rule for ALC with general TBox

Example 2.1.8
To illustrate the need for blocking and the modified Role Exists Restriction Rule,
consider the knowledge base X = (7, A), where:

T = {(Person C 3hasParent.Person)}

A = {(John : Person)}

We first perform the pre-processing steps. This is done by first translating the axiom

in 7 into its normal form:

7= {{T C (—~Person U 3hasParent.Person))}

23

Next, augment the ABox with respect to the TBox by adding the following assertion
to the ABox:

(John : (mPerson L 3hasParent. Person))

Then, we initialize the extended ABox to:
AS :{(Johﬁ : Person),
(John : (—Person U 3hasParent.Person))}
In this case, according to the clash triggers, there is no trivial contradiction in the
knowledge base. Once the pre-processing steps are over, we are ready to apply the
completion rules.

Since the first assertion, (John : Person), contains atomic concept, no rule is
applied. For the second assertion, (John : (—Person L 3hasParent.Person)), the
Disjunction rule is applied, which yields:

AS = A5 U (John : ShasParent. Person).

Next, we apply the Role Exists Restriction rule to the new assertion in A%, and
obtain:

AS = AS U {{(John,indl) : hasParent),

(ind1 : Person),
(indl : (—Person U 3hasParent. Person))}
After appiying the Disjunction rule to the last assertion in .45, we obtain:

A = AS U (indl : 3hasParent. Person).

Next, the application of the Role Exists Restriction rule to the new assertion in A§

yields:

24

AL = A5 U{((indl,ind2) : hasParent),
(ind2 : Person),
(ind2 : (~Person U 3hasParent.Person))}
After applying the Disjunction rule to the last assertion, we obtain:
Af = A§ U (ind2 : 3hasParent.Person).
Since ind1 is an ancestor of ind2 and L(ind2) C L(ind1), individual ind2 is blocked.
Therefore, we will not continue applying the Role Exists Restriction rule, and the
tableau algorithm terminates at this point.
Note that without blocking, the tableau algorithm would never terminate since
new individual will be generated for each application of the Role Exists Restriction

rule.

2.2 Deductive Database with Uncertainty

The parametric framework [LS01b] is a generic language for deductive databases with
uncertainty. The authors classified existing frameworks for deductive databases with

uncertainty into two approaches:

e Implication-based (IB) approach, where each rule is associated with a certainty

value and is represented as:
[0 4
A~ Bl P Bn

meaning that the certainty that By A--- A B, implies A is . Given the cer-

tainty of B;s, the certainty of A is then computed by taking the conjunction of

25

the certainties of B;s, and then propagating this certainty value from the rule

body to its head, using « as an attenuation factor.

e Annotation-based (AB) approach, where each rule is an expression of the form:

Aif(ﬁl,"‘,ﬁn) —B1:B1,,Bn:bn

That is, each subgoal is associated with a certainty factor, but the implication
is as in the standard case. This rule asserts that, given the certainty of B; is
at least [3;, the certainty of A is computed by the n-ary function f(8i,---, G,)

associated with the head.

The parametric framework generalizes all the existing IB frameworks. This is
done by first assuming that certainty values form a complete lattice 7, which allows
various forms of certainty values to be modeled. Associated with each rule in the
parametric framework is a triplet of parameters:

A& By Bo (f4 £7, f9)

The first parameter, f¢, is known as the disjunction function, used to combine the
certainties associated with different derivations of the same ground atom. The second
parameter, fP, is known as the propagation function. It is used to combine the
certainty of the rule body with the rule’s certainty to derive the certainty of the
head. Finally, the third parameter, f¢, is known as the conjunction function. It is
used to combine certainties of the atoms in the rule body and returns the overall
certainty of the rule body. To ensure that these three functions (also known as the

combination functions) are meaningful, the parametric framework enforces that each

26

of the functions must satisfy some properties. For example, for any conjunction
function f¢ and any pair of certainty values a and 8, f¢(a, 3) cannot be more than
a or f3.

By setting different certainty lattice and by considering different combination
functions associated with the rule, different types of uncertainty IB formalisms can
be simulated by the parametric framework. For example, by setting the certainty
lattice to be T = {0,1}, a to 1, f? and f° to the min function, and f¢ to the max
function, the classical logic programming framework can be simulated. Similarly, by
setting the certainty lattice to 7 = [0, 1], @ to some certainty value in [0, 1], f? to the
algebraic product (prod(z,y) = x X y), f¢ to the min function, and f? to the maz
function, it becomes van Emden’s framework [Van86].

The parametric framework uses a bottom-up method to evaluate the programs.
For example, consider the following program:

rl:p(X,Y) & (X, Z2),p(Z,Y) (max, prod, min)

r2:p(X,Y) pild (X, Y) (maz, min, min)

r3: g(a,b) P (mazx,—, —)

rd: q(b,c) & (maz, —, —)

After deriving the facts g(a,b) : 0.8 and ¢(b,c) : 0.6 at iteration one, in the second
iteration, the rule r2 infers p(a, b) : 0.7 and p(b, ¢) : 0.6 since the propagation function
associated with r2 is min. In the third iteration, r1 is applied. Since the conjunction
function is min, the certainty of g(a,b) and p(b,c) is 0.6. Then, the propagation

function associated with r1, prod, is applied, which yields p(a,c) : 0.54. Since no

27

more rule can be fired, the evaluation terminates.

2.3 Description Logics with Uncertainty - A Sur-

vey

In this section, we first categorize the existing approaches to incorporate DL with
uncertainty. We then describe how each component of the DL framework (the de-
scription language, the knowledge base, and the reasoning component) is extended in

different approaches.

2.3.1 Approaches for Extending Description Logics with Un-
certainty

In the last few years, a number of frameworks have been proposed for extending DLs
with uncertainty [Jae94b, Hol94, KLP97, TM98, GL02a, PFT*04, Str05a, SSSP06,
QPJ07, SSPT07]. Based on the underlying mathematical foundation and the type of
uncertainty modeled, we can classify each of these frameworks into one of the three
approaches.

The fuzzy approach is based on fuzzy set theory [Zad65]. It deals with the vague-
ness in the knowledge, where a proposition is true only to some degree. For example,
the statement “Jason is obese with degree 0.4” indicates Jason is slightly obese. Here,
the value 0.4 is the degree of membership that Jason is in concept obese.

The probabilistic approach is based on the classical probability theory. It deals

28

with the uncertainty due to lack of knowledge, where a proposition is either true or
false, but one does not know for sure which one is the case. Hence, the certainty
value refers to the probability that the proposition is true (or false). For example,
one could state that: “The probability that Jason would have heart disease given
that he is obese lies in the range [0.8,1].”

Finally, the possibilistic approach is based on possibility theory {Zad78]. It allows
both certainty (necessity measure) and possibility (possibility measure) be handled
in the same formalism. For example, by knowing that “Jason’s weight is above 80
kg”, the proposition “Jason’s weight is 80 kg” is necessarily true with certainty 1,

while “Jason’s weight is 90 kg” is possibly true with certainty 0.5.

2.3.2 Description Language with Uncertainty

As in standard DLs, the description languages contain a set of language constructors
that serve as the building blocks for the description. However, these description lan-
guage constructors are extended to take into account the presence of uncertainty. In
this section, we study how description languages are extended in fuzzy, probabilistic,

and possibilistic approaches.

Fuzzy Description Language

All existing fuzzy DL frameworks keep the syntax of the description languages the
same as the standard case. However, the semantics of the description languages are

extended by fuzzifying their interpretation using fuzzy logic.

29

In general, a fuzzy interpretation Z is a pair Z = (AZ, -T), where A7 is the domain
and -Z is an interpretation function that maps language elements to some membership
degree in the unit interval [0, 1]. For instance, the semantics of an atomic concepts A
is defined as A%(a) € [0,1], for all @ € AZ. Intuitively, it means that if an individual
a is in the domain, then the interpretation of A gives the membership degree with
which a belongs to A. The semantics of concept descriptions are defined in a rather
straightforward way. For instance, for any fuzzy concepts C' and D, the semantics
of the concept conjunction is defined as (C M D)%(a) = min(C*(a), D*(a)), for all
a € AT [TM98, Str98, Str01, HKS02, ST04, Str04a, SSSP06]. In other words, when
we intersect two fuzzy concepts C' and D, the resulting certainty degree is computed
by taking the minimum of the certainty degrees of C' and D.

Among existing fuzzy description languages, the ones reported in [PFT*04, Str05a,
Str05b, Str04b] differ from the rest. The first three allow the semantics of the descrip-
tion language constructors to be flexibly defined. For example, instead of fixing the
semantics of the concept conjunction to the standard min function, these frameworks
use a more general function, t-norm. Some commonly used t-norm functions are: the
standard minimum function (¢(a, b) = min(a, b)), the algebraic product (t(a, b) = ab),
and the bounded difference (¢(a,b) = maz(0,a + b — 1). On the other hand, [Str04b]
allows the certainty values to be flexibly defined by assuming that the certainty values
lie in a complete lattice. Note that the parametric framework [LS01b] also takes the
lattice approach.

In addition to extending the semantics of the description language, a number of

30

fuzzy-based frameworks also add new language constructs to the description language.
These language constructors can be categorized into two types: manipulators and
fuzzy quantifiers. The manipulators [TM98, HKS02, Str05a, Str05b], also known
as modifiers, are unary operators such as “mostly”, “more or less”, and “very” that
can modify the membership functions of the concepts they are applied to. The fuzzy
quantifiers proposed in [ST04] extend the expressiveness of the description language
by allowing one to express vague quantities (such as “about 2”) or quantity intervals

(such as “roughly between 1 and 3”).

Probabilistic Description Language

There have been two approaches proposed to extend the description language with
probability.

The first approach [DS05, Dur05] keeps the syntax of the description language the
same as the standard DL, and extends the corresponding semantics with probability.
A probabilistic interpretation 7 consists of the domain A? and an interpretation func-
tion, where the interpretation function maps language elements to some probabilistic
value in the unit interval [0, 1]. The semantics of concept descriptions are defined in a
straightforward way. For instance, with the independence assumption, the semantics
of concept conjunction is defined as (C' 1 D)% (a) = C%*(a) - D*(a), and the semantics
of concept disjunction is defined as (C U D)*(a) = C*(a) + D*(a) — (C 1N D)*(a), for

all a € AT,

31

The second approach [Hei%4, Jae94a, Jae94b, GL02a, GLO2b] keeps both the syn-
tax and semantics of the description language the same as the standard DL. However,
a new language constructor, namely the conditional probability constructor, is added
to handle uncertainties. The probabilistic interpretation Z in this approach consists
of the domain A? and an interpretation function that maps the language elements
to some probabilistic value in the unit interval [0,1]. The new language construc-
tor (C|D) can be thought as the abbreviation for the conditional probability in the
classical probability theory as (C|D) = (CMD)/D, and its semantics is defined as

(C|D)*(a) € [0,1], for all a € AZ.

Possibilistic Description Language

The possibilistic DL [Hol94, QPJ07] keeps the syntax of the description language the
same as the standard DL, while changing their interpretation using possibility theory.

To define the semantics of the possibilistic description language, the most basic
notion is the possibility distribution 7 defined as a mapping from the domain € to
[0,1]. From the possibility distribution, two measures can be determined. Given an
event or formula C, the possibility measure is defined as: II{(C) = maz{r(w) | w = C},
and it gives the extent to which event C is possible. For example, the possibility of
the universal event (or the Top concept) is 1, i.e., II(T) = 1, and the possibility of
the null event (or the Bottom concept) is 0, i.e., II(L) = 0. As another example, the
possibility of the occurrence of C or D is the maximum of the possibilities of the two,

ie., II(C U D) = maz{II(C), II(D)}. The second measure is the necessity measure

32

which is simply defined as N(C) = 1 —II(—=C), and it characterizes the extent to

which an event is necessary or certain to occur.

2.3.3 Knowledge Base with Uncertainty

A knowledge base X in uncertainty frameworks consists of a TBox 7 and an ABox
A, where each axiom and assertion is extended to account for the certainty values.
An interpretation 7 satisfies (or is a model of) a knowledge base ¥ (denoted as Z
k= X)), if and only if it satisfies each element of ¥ (i.e., both the 7 and .A). In addition,
the knowledge base ¥ is said to be consistent if there exists an interpretation Z that

satisfies X; otherwise, X is said to be inconsistent.

TBox with Uncertainty

Fuzzy TBox There are two approaches to incorporate fuzzy notions into the TBox.

The first approach keeps the syntax to be the same as the standard axioms while
extending only the semantics using fuzzy logic [Str01, HKS02, ST04, PFT*04, Str04a,
Str04b, Str05a). A fuzzy interpretation Z satisfies a fuzzy concept inclusion (C C D)
if for all a € A%, C%(a) < D*(a). That is, the certainty value of a sub-concept C
(such as veryTall) is no more than the certainty value of the super-concept D (such
as Tall). Similarly, an interpretation 7 satisfies a fuzzy concept definition (C = D)
if for all a € A%, C*(a) = D*(a).

The second approach extends the TBox both syntactically and semantically. The

syntax is extended by associating with each axiom a certainty value and optionally an

33

operator. For example, given two concepts C and D, and a certainty value a € [0, 1],
a fuzzy concept inclusion can be expressed as (C E D > a), indicating that the cer-
tainty that C is subsumed by D is at least a [Str98, Str05b]. In terms of the seman-
tics, the expression C C D can be viewed as the first order formula: Va.C(a) — D(a),
where C(a) — D(a) can be viewed as (=C V D)(a) and V can be viewed as a con-
junction over all the elements of the domain. Therefore, an interpretation Z satisfies

a fuzzy concept inclusion (C' C D > a) if mingeaz {(=C U D)*(a)} > c.

Probabilistic TBox The probabilistic TBox contains a set of the standard ter-
minological axioms and a set of probabilistic terminological axioms. There are two
main approaches to represent probabilistic terminological axioms. The first approach
is to embed probabilistic information as part of the terminological axiom, while the
second approach stores the probability information using Bayesian networks.

In the first approach, a probabilistic terminological axiom is expressed as P(C|D)
€ [l,u}, where C and D are concept descriptions, and 0 <! < u < 1 [Hei%4, Jae94a,
Jae94b, GL02a, GLO2b]. This axiom states that, if an individual is known to belong
to concept D, then the probability that this individual belongs to concept C lies in
the interval [l,u]. Note that, although some frameworks such as [Jae94b, Jae94a)
express probabilistic terminological axiom using exact probability, P(C|D) = w, it is
simply a special case of the interval probability, since P(C|D) = u can be expressed
as P(C|D) € [u,ul.

The second approach uses Bayesian networks to express probabilistic information

34

[KLP97, Yel99]. For example, the probabilistic component defined in [KLP97] con-
sists of a set of probabilistic classes (p-classes), where each p-class represents the
probabilistic information related to a certain class of individuals. Each p-class is rep-
resented using a Bayesian network Np [Pea88]. Also, each node in Np is associated
with a conditional probability table that defines the probability of each possible value

of the node, given each combination of values for the node’s parents.

Possibilistic TBox The possibilistic frameworks extend the standard TBox both
syntactically and semantically [Hol94, QPJO7]. 'fo be more specific, let C and D
be concepts, and « € [0,1] be a certainty value. A possibilistic axiom is expressed
as (C C D, a). If o represents the possibility degree, the axiom means “C C D is
possibly true at least with degree a.” On the other hand, if o represents the necessity

degree, the axiom asserts “C C D is necessarily true at least with degree «.”

ABox with Uncertainty

Fuzzy ABox The fuzzy frameworks extend the standard assertions both syntacti-
cally and semantically [TM98, ST04, PFT*04, HKS02, Str01, Str04a, Str04b, Str05a,
Str05b, Str98]. In general, a fuzzy assertion can be represented in the form (X op
a), where X is either a concept assertion a : C or a role assertion (a,b) : R, op is a
comparison operator in {>, <, >, <, =}, and « is a certainty value. For example, the
fuzzy concept assertion (a: C > 0.5) means the certainty that individual a belongs

to concept C is at least 0.5.

35

Probabilistic ABox There are a couple of approaches to extend ABox with proba-
bilities. In the first approach [Jae94a, Jae94b, DS05], a probabilistic concept assertion
is an expression of the form P(a : C) = o, where a is an individual, C is a concept,
and a € [0,1]. Intuitively, this asserts that “the probability that an individual a be-
longs to concept C' is a.” Similarly, a probabilistic role assertion is an expression of
the form P((a,b) : R) = o, where a and b are individuals, R is a role, o € [0, 1], and
it asserts that “the probability that an individual a is related to individual b through
role R is a.”

In the second approach [GL02a, GLO2b], the set of individuals is partitioned into
classical individuals and probabilistic individuals. The probabilistic individuals are
defined as individuals for which some probabilistic knowledge is explicitly stored. Let
a and b be individuals, C be a concept, and R be a role. An ABox consists of a
set of standard assertions, and a set of probabilistic assertions. The probabilistic
concept assertions are expressed as (C|{a})[l,u], where [,u € [0,1]. It asserts that
“the probability that individual a is in concept C lies in the range [I, u].” Similarly,
the probabilistic role assertions are expressed as (IR.{b}|{a})[l, u], where [, u € [0, 1].
It asserts that “the probability that individual a is related to individual b through

role R lies in the range [[, u].”

Possibilistic ABox The possibilistic assertion extends the standard assertion by
associating with it a certainty value [Hol94, QPJO07]. Specifically, let a and b be

individuals, C be a concept, R be a role, and « € [0, 1] be some certainty value.

36

A possibilistic concept assertion is expressed as {a: C,a), and a possibilistic role
assertion is expressed as ((a,b) : R,a). For example, if « represents the possibility
degree, then the concept assertion above means “individual a is possibly in concept

C with at least degree a.”

2.3.4 Reasoning with Uncertainty

The reasoning component in uncertainty frameworks provide inference services that
enable implicit knowledge to become explicit, while taking into account the presence of
the certainty values associated with the axioms and assertions. This section presents
how the reasoning component is extended using fuzzy, probabilistic, and possibilistic

approaches.

Fuzzy Reasoning

There are two main approaches for extending the reasoning component in fuzzy frame-

works.

Approach 1: Transform Fuzzy DL into Standard DL In this approach, the
fuzzy knowledge bases are transformed into standard knowledge bases [Str04a), which
are then fed into a standard DL system to perform the actual inference.

As a simple example, consider a fuzzy knowledge base with empty TBox and the
ABox: A={{a: A>04),(a: A<0.7),(a: B<0.2),(b: B<0.1)}. To transform

this fuzzy knowledge base into a standard one, new concepts are first introduced:

37

Aso4, A<o7, B<os2, and B<g 1. Then, axioms that describe the relationship between
the newly introduced concepts such as B<gs T B are created. Finally, the fuzzy
assertions are mapped to standard ones as (a:A>p4), {@:4<07), (a:B<oz2), (0:B<0.1),
(b:B<g.2)-

The advantage of this approach is that one can directly use the existing reasoners
developed for standard DL. Although this may save time from reinventing the wheel,
the existing reasoners do not consider the certainty values in fuzzy DL as something
special. Furthermore, no extra optimization techniques can be applied to inferences
that involve the use of certainty values. Another problem with this approach is that,
as shown in the above example, many new concepts and axioms need to be generated
during the reasoning process even for small knowledge bases. This problem makes
this approach less practical for real-world applications, where the knowledge base size

is usually large.

Approach 2: Tailored Reasoning Procedure for Fuzzy DL Most existing
fuzzy frameworks introduce new reasoning procedures that are tailored for fuzzy DL.
The advantage of this approach is that the certainty values are being treated as the
first class citizen. However, the drawback is that the reasoner must be built from
scratch.

The inference problems that have been studied in this approach include: consis-
tency problem, entailment problem, and subsumption problem. In what follows, we

briefly look at each of these inference problems.

38

Consistency Problem Let X be a fuzzy knowledge base and 7 be a fuzzy
interpretation. The consistency problem amounts to checking whether ¥ has any
model. To solve this problem, the tableau algorithms developed for standard DLs are
extended so that they consider certainty values in fuzzy DL. There are two different
approaches to extend the tableau algorithm.

The first approach deals with the certainty values within the tableau algorithm
[HKS02, Str01, Str04b, Str98]. For example, suppose the fuzzy assertion (a : C M D >
0.5) is in the ABox, then the conjunction rule would derive assertions (a : C > 0.5)
and (a: D > 0.5). The completion rules are applied until either all branches in the
extended ABox contain a clash (indicating that no model can be build), or there
exists a clash-free completion of ABox (meaning that a model can be built).

The second approach relies on bounded Mixed Integer Programming (bMIP) to
deal with certainty values [Str05a). In this approach, a set of completion rules is ap-
plied to the ABox to infer new assertions together with a set of inequations over [0,1}-
valued variables. For example, if the ABox contains the fuzzy assertion (a : C' U D, &),
then the disjunction rule would infer the assertions (a : C,z;) and (a : D, zs), and the
constraints & + 22 = o, 11 <y, 12 < 1—y,z; € [0,1], and y € {0,1}, where z; and
Ty are two new variables, and y is a new control variable. The completion rules are
then épplied until either the extended ABox contains a clash, or no rule can be further
applied. If there is a clash, then the ABox is immediately inconsistent. Otherwise, the
bMIP technique is applied to the extended ABox to solve the system of inequations

generated to determine consistency of the knowledge base.

39

Entailment Problem There are two types of entailment problems investigated
in fuzzy frameworks. The first one is similar to the standard entailment problem
which, given a fuzzy assertion X and a fuzzy interpretation Z, determines whether
Z = X, for all models Z of the knowledge base . It is shown in [Str01] that
such fuzzy entailment problem can be reduced to the consistency problem. That is,
LE{{ 2>2a)if X U{(Y <)} isinconsistent. Also, L = (Y <a)if X U{(Y > a)}
is inconsistent.

The second entailment problem is also known as the best degree bound (BDB)
problem [Str04a, Str05b, SB07]. Given a fuzzy knowledge base ¥, the BDB problem
determines the degree to which an assertion is entailed. Specifically, let (a: C > x)
be a fuzzy assertion. The BDB problem can be reduced to the consistency problem

by finding the degree of z such that XU {(a : -C > 1 — z)} is consistent.

Subsumption Problem Let ¥ be a fuzzy knowledge base, and C and D be
concepts. The fuzzy subsumption problem determines the degree to which C' is sub-
sumed by D [Str01, Str05a, SB07]. This problem can be reduced to the consistency
problem by finding the value of z such that S U {{a : C =D > 1 — x)} is consistent,

where a is a new individual name.

Probabilistic Reasoning

The probabilistic reasoning procedure depends heavily on how the probabilistic in-
formation is represented in the knowledge base. If Bayesian networks are used to

express the probabilistic information, the inference algorithm developed for Bayesian

40

networks can be directly applied as shown in [KLP97, DP04, DPP04]. On the other
hand, if the probabilistic information is embedded in the knowledge base, inference
procedures need to be developed. However, unlike in the fuzzy case, none of the
existing probabilistic frameworks extended tableau-based reasoning procedures from
standard DLs. Instead, these frameworks rely on existing algorithms developed for
probabilistic reasoning. For example, the consistency checking algorithm proposed in
[GL02a, Luk07] is based on the default reasoning algorithm from conditional knowl-

edge bases [GP91].

Possibilistic Reasoning

Like in the probability case, none of the existing possibilistic frameworks directly
extended the tableau-based reasoning procedures from standard DLs. In [QPJ07],
it is shown that the inconsistency degree of a possibilistic DL, knowledge base can
be computed by using binary search. On the other hand, [Hol94] shows that the

possibilistic entailment problem is reducible to the standard entailment problem.

2.4 Summary and Concluding Remarks

In this chapter, we presented relevant background knowledge and related works.

By studying the architecture of the ALC framework, we learned that the ALCy
framework to be presented in the following chapter also needs to have three compo-
nents, where the description language provides a set of language constructors so as

to represent concepts and roles, the knowledge base consists of a set of axioms and

41

assertions, and the reasoning procedure explicates knowledge that is stored implicitly
in a knowledge base. In addition, we learned that attention needs to be paid when
we design a tableau algorithm for general TBoxes, since blocking is needed to ensure
termination of the completion-rule application.

We also reviewed the parametric framework for deductive database with uncer-
tainty, which inspired our work on the ALCy framework. Specifically, we learned
that, by assuming certainty values form a certainty lattice, various forms of certainty
values can be modeled. In addition, each rule and fact can be associated with some
parameters, where each parameter is a combination function used to combine cer-
tainty values in the rule/assertion. By tuning these parameters, different uncertainty
frameworks for deductive databases can then be simulated.

Finally, we surveyed the existing frameworks for DLs with uncertainty. We ob-
served that, despite the fact that different frameworks may support different notions
of uncertainty, they follow roughly the same pattern. That is, all the three compo-
nents of the DLs framework, namely the description language, the knowledge base,
and the reasoning procedure, need to be extended in order to represent and reason

with uncertainty knowledge.

42

Chapter 3

A Framework for the Description

Logic ALCy

This chapter presents a formal framework for the DL, ALCy. This framework extends
each component of the ALC framework while abstracting away the notion of uncer-
tainty in the extension. As shown in Figure 4, the ALCy framework consists of the

following three components:

Intensional Knowledge

ALC;; TBox

Description / _ \Y ALCy
Language - Reasoning
ALC: N Extensional Knowledge / Procedure

ALC; Knowledge Base

Figure 4: The ALCy framework

43

1. Description Language ALCy: The description language ALCy extends the se-
mantics of the description language ALC to allow different notions of uncer-

tainty be expressed.

2. ALCy Knowledge Base: The ALCy knowledge base extends both the syntax
and the semantics of the ALC knowledge base to allow the modeling of uncer-

tainty in axioms and assertions.

3. ALCy Reasoning Procedure: The ALCy framework is equipped with the reason-
ing procedure that takes into account the presence of uncertainties associated

with axioms and assertions in the ALCy knowledge base.

In the rest of this chapter, we first describe each of the above three components
in Sections 3.1, 3.2, and 3.3 respectively. Then, we illustrate through an example
the various extended components of the ALCy framework in Section 3.4. Finally, we

compare the ALCy framework with related works in Section 3.5.

3.1 Description Language ALCy

Recall that the description language refers to the language used for building concepts.
The syntax of the ALCy description language is identical to that of the standard
ALC, while the corresponding semantics is extended to support different notions of
uncertainty. In this section, we first describe how certainty values can be represented
in a generic way. We then describe how the semantics of the description language

ALCy is defined.

44

3.1.1 Representation of Certainty Values

To represent different forms of uncertainty, we assume that certainty values form a
complete lattice shown as £ = (V, <), where V is the certainty domain, and < is the
partial order on V. Other comparison operators <, >, >, and = are used with their
obvious meanings. We use [to denote the bottom or the least element in V, and
use t to denote the top or the greatest element in V. The least upper bound (join)
operator in £ is denoted by @, its greatest lower bound (meet) operator is denoted
by ®, and its negation operator is denoted by ~. We assume that there is only one
underlying certainty lattice for the entire knowledge base.

The advantage of using a lattice is that it can be used to model both qualitative
and quantitative certainty values. An example for the former is the classical logic
whose certainty values form a certainty lattice £ = ({0, 1}, <), where < is the usual
order on binary values {0,1}. For the latter, an example would be a family of multi-
valued logics such as fuzzy logic whose certainty values form a certainty lattice £ =

([0,1], %), where < is the usual order on real numbers.

3.1.2 Semantics of the Description Language ALCy

The ALCy framework treats each type of uncertainty formalism as a special case.
Hence, it would be restrictive to consider any specific function to describe the seman-
tics of the description language constructors (for example, fixing the min function as
the semantics of concept conjunction). Instead, we allow the user to flexibly define

combination functions to define the semantics of the description language as long as

45

these functions satisfy some pre-defined properties which ensure the admissibility of
the description language semantics.

Specifically, the semantics of the description language is based on the notion of
an interpretation. An interpretation 7 is defined as a pair (A%, -Z), where A7 is the

domain and -Z is an interpretation function that maps each
e atomic concept A into a certainty function CFg, where CFg : AT -V
e atomic role R into a certainty function C'Fg, where CFg : AT x AT -V
e individual name a to an element a € A?

where V is the certainty domain. For example, let individual John be an element in
the domain and let Obese be an atomic concept. Then, for the fuzzy approach,
Obese® (John®) gives the degree (membership) that John belongs to the concept
Obese, and for the probabilistic approach, Obese(John®) gives the probability that
John is Obese.

We now define the semantics of the ALCy description language constructors, in-
cluding the top concept, the bottom concept, concept negation, concept conjunction,

concept disjunction, role exists restriction, and role value restriction.

Top Concept

The interpretation of the top concept T is the greatest element in the certainty domain
V, that is, TZ(a) =t, for all a € AZ. For instance, the interpretation of T is 1 (or

true) in the standard logic with V = {0, 1}, as well as in other logics with V = [0, 1].

46

Note that in ALC, it is not necessary to introduce the top concept T in the
description language, since it can be represented using other description language
constructors, namely A LI =A. However, when uncertainty is present, T is no longer
AU =A. Assume that an individual a belongs to a fuzzy concept A with a membership
degree of 0.6. Then, a would belong to —~A with a membership degree of 0.4. Also,
the certainty that a is in A U —A would be the maximum of the two certainties, which
is 0.6. This is not what one would expect, since the certainty that a is in T should
be 1 in the fuzzy case. Therefore, it is necessary to explicitly introduce the Top (T)

concept in ALCy.

Bottom Concept

The interpretation of the bottom concept 1 is the least element in the certainty
domain V, that is, 1%(a) =1, for all a € AZ. For example, this corresponds to 0 (or
false) in the standard logic with ¥V = {0,1}, as well as in other logics with ¥V = [0, 1].
Note that it is necessary to introduce the Bottom (L) concept in ALCy for the same

reason as the one for the top concept.

Concept Negation

Given a concept C, the interpretation of the concept negation —C' is defined by the

negation function ~, where ~: ¥V — V must satisfy the following properties:
e Boundary Conditions: ~] =1t and ~t =1.

e Double Negation: ~(~a) = q, for all @ € V.

47

The negation operator ~ in the certainty lattice is used as the default negation func-
tion. That is, (~C)*(a) =~C%(a), for all a € AT. A common interpretation of =C
is 1 — C%(a). For example, if the certainty domain is V = [0, 1], and if the certainty
that individual John is Obese is 0.8. Then, the certainty that John is not Obese is

1-08=02.

Before introducing the semantics of the other description language constructors,
let us define the combination functions, which are used to specify how one should
interpret a given description language constructor. We also define two types of com-

bination functions called the conjunction function and the disjunction function.

Definition 3.1.1 (Combination Function) A combination function f is a binary
function from V x V to V. This function combines a pair of certainty values into one.

A combination function must satisfy some properties, as listed in Table 3 [LS01b).

ID | Property Name Property Definition

P; | Monotonicity flay,) <X f(B1,B2), if a; 2B, fori=1,2
P, | Bounded Above flag,a2) X i, fori=1,2

P; | Bounded Below flay, a2) = a;, fori = 1,2

P4 | Boundary Condition (Above) | Va €V, f(a,l) =« and f(a,t) =t
Ps; | Boundary Condition (Below) | Va € V, f(a,t) = a and f(a,l) =1

Fs | Continuity f is continuous w.r.t. each one of its arguments
P; | Commutativity Va,B €V, fla,B) = f(B,a)
Py | Associativity Va,B,6 €V, f(e,f(8,0))= f(f(e,B),6)

Table 3: Combination function properties

48

Definition 3.1.2 (Conjunction Function) A conjunction function f. is a com-
bination function that should satisfy properties P, P,, Ps, Ps, P;, and Ps described
in Table 3. The monotonicity property asserts that increasing the certainties of the
arguments in f improves the certainty that f returns. The bounded value and bound-
ary condition properties are included so that the interpretation of the certainty values
makes sense. The commutativity property allows reordering of the arguments of f,
say for optimization purposes. Finally, the associativity of f ensures that differ-
ent evaluation orders of concept conjunctions will not yield different results. Some
common conjunction functions are the well-known minimum function, the algebraic

product (prod(z,y) = zy) and the bounded difference (bDiff (z,y) = maz(0,z + y—

1)).

Definition 3.1.3 (Disjunction Function) A disjunction function f; is a combi-
nation function that should satisfy properties Py, Ps, Py, Fs, P;, and Pg described
in Table 3. These properties are enforced for similar reasons as the conjunction
case. Some common disjunction functions are the maximum function, the proba-
bility independent function (ind(z,y) = z + y — zy) and the bounded sum function

(bSum(z,y) = min(1,z + y)).

In what follows, we define the semantics of the remaining ALCy description lan-
guage constructors, including concept conjunction, concept disjunction, role exists

restriction, and role value restriction.

49

Concept Conjunction

Given concepts C' and D, the interpretation of the concept conjunction CM D is
defined by the conjunction function f, (refer to Definition 3.1.2) as:

(C N D)*(a) = f.(C*(a), D*(a)), for all a € AT
For example, if the conjunction function is min, the certainty that an individual Mary
is Tall is 0.8, and the certainty that Mary is Thin is 0.6, then the certainty that Mary

is both Tall and Thin is min(0.8,0.6) = 0.6.

Concept Disjunction

Given concepts C and D, the interpretation of concept disjunction C U D is defined
by the disjunction function f; (refer to Definition 3.1.3) as:

(C U D) (a) = f4(C*(a), D*(a)), for all a € AT
For example, if the disjunction function is max, the certainty that an individual Mary
is Tall is 0.8, and the certainty that Mary is Thin is 0.6, then the certainty that Mary

is Tall or Thin is maz(0.8,0.6) = 0.8.

Role Exists Restriction

Given a role R and a concept C (also known as the role filler), the interpretation of

the “role exists” restriction FR.C is defined as:
(3R.C)*(a) = Bpeaz{f-(R*(a,b),CT(b))}, for all a € AT

where @ is the join operator in the certainty lattice. The intuition here is that IR.C

o0

is viewed as the open first order formula 3b. R(a,b) A C(b), where 3 is viewed as a dis-
junction over certainty values associated with R(a, b) A C(b). Specifically, the seman-
tics of R(a, b) A C(b) is captured using the conjunction function as f.(R%(a,b), C*(b)),

and 3b is captured using GBpeaz.

Role Value Restriction

Given a role R and a concept C, the interpretation of the “role value” restriction
VR.C is defined as:
(VR.C)*(a) = ®penz{fi(~ R*(a,b),CT(b))}, for all a € AT

where ® is the meet operator in the certainty lattice. The intuition is that VR.C
is viewed as the open first order formula Vb. R(a,b) — C(b), where R(a,b) — C(b)
is logically equivalent to —R(a,b) V C(b), and V is viewed as a conjunction over cer-
tainty values associated with the implication R(a,b) — C(b). To be more precise, the
semantics of R(a,b) — C(b) is captured using the disjunction and negation functions

as fq(~R%(a,b),C%(b)), and Vb is captured using Qpcaz.

Additional Inter-Constructor Properties

In order to convert a concept description into its negation normal form (see Definition

2.1.4), we further assume that the following inter-constructor properties hold:
e De Morgan’s Rule: -(C U D) =-CMN-D and ~(CND)=-CU-D.

e Negating Quantifiers Rule: -3R.C = VR.—-C and -VR.C' = 3R.-C.

51

Table 4 summarizes the syntax and the semantics of the description language ALCy.

Name Syntax | Semantics (a € A?)
Top Concept T T(a) =t

Bottom Concept 1 1%(a) =1

Concept Negation -C (=C)*(a) =~C*(a)

Concept Conjunction | CMD | (CND)(a)= f.(C*(a), D*(a))
Concept Disjunction | CUD | (CuU D) (a) = fis(C*(a), D*(a))
(
(

Role Exists Restriction | 3R.C JR.CY(a) = @penz{f-(R%(a,b), C*(b))}
Role Value Restriction | VR.C VR.C)(a) = ®peaz{fi(~R(a,b),C*(b))}

Table 4: Syntax and semantics of the description language ALCy

3.2 ALCy Knowledge Base

An ALCy knowledge base X is a pair (7, .A), where 7 is a TBox and A is an ABox.
An interpretation Z satisfies (or is a model of) ¥ (denoted Z | ¥), if and only if
it satisfies both 7 and \A. The knowledge base X is consistent if there exists an
interpretation Z that satisfies £, and is inconsistent otherwise. Finally, the ABox A
is conststent with respect to a TBox 7 if there is an interpretation that is a model of
both A and 7.

In what follows, we describe how the TBox and the ABox are extended syntacti-

cally and semantically to model uncertainty in axioms and assertions.

3.2.1 ALCy TBox

An ALCy TBox T consists of a set of terminological axioms defining how concepts

are related to each other. Each axiom is associated with a certainty value as well

52

as a conjunction function and a disjunction function which are used to interpret the
concept descriptions in the axiom. Specifically, an ALCy TBox consists of axioms

that could include:

o Concept subsumptions of the form (A C C | o, f, fa)

Concept definitions of the form (A = C | a, f., fa), which is equivalent to (A C

C l avfmfd) and <C C A I a7fca fd)

e General concept inclusions (GCIs) of the form (C C D | a, fe, fa)

Concept equations of the form (C' = D | «, f., fa), which is equivalent to (C C

Do, f., fa)y and (DT C |, fe, fa)

where A is an atomic concept, C' and D are concept descriptions, o € V is the certainty
that the axiom holds, f. is the conjunction function used as the semantics of concept
conjunction and part of the role exists restriction, and fy is the disjunction function
used as the semantics of concept disjunction and part of the role value restriction. In
case the choice of the combination function in the current axiom is immaterial, “—”
is used as a place holder. For example, the axiom

(Rich C ((3owns. ExpensiveCar L Jowns. Airplane) N Golfer) | [0.8, 1], min, max)
states that the concept Rich is subsumed by owning expensive car or owning an
airplane, and being a golfer. The certainty of this axiom is at least 0.8, with all the
concept conjunctions interpreted using min function, and all the concept disjunctions

interpreted using max.

o3

Note also that a GCI is simply a general form of the concept subsumption, and a
concept equation is a general form of the concept definition.

In order to transform an axiom of the form (C T D | a, f., fa) into its normal form,
(TE -CUD|a,fe, fa), the semantics of the concept subsumption is restricted to
be fi(~C%(a), D*(a)), for all a € A%, where ~C%(a) captures the semantics of ~C,
and fy captures the semantics of Li in —C' U D. Hence, an interpretation Z satisfies

(CC D|a,f., fa) if fs(~C*a),D*(a)) = a, for all a € A

3.2.2 AﬁCU ABox

An ALCy ABox A consists of a set of assertions, each of which is associated with a
certainty value and a pair of combination functions used to interpret the concept de-
scription(s) in the assertion. Specifically, an ALC, ABox consists of a set of assertions

that could include:

e Concept assertions of the form {a: C | a, f, fa)

® Role assertions of the form {(a,b): R| a,—, —)

where a and b are individuals, C is a concept, R is a role, a € V, f, is the conjunc-
tion function, f; is the disjunction function, and — denotes that the corresponding

combination function is not applicable.
For instance, the assertion “Mary is either tall or thin, and smart with de-

gree between 0.6 and 0.8” can be expressed as (Mary : (Tall L} Thin) N Smart | [0.6,

54

0.8],min, —). Here, the concept conjunction is interpreted using the min function,
and the disjunction function is interpreted using mazx.

In terms of the semantics of the assertions, an interpretation 7 satisfies (a: C |
a, fo, fa) if C%(a%) = @, and T satisfies {(a,b) : R | @, —, —) if RZ(aZ, %) = a.

There are two types of individuals that could be in an ABox — defined individ-
uals and generated individuals, defined as follows. We also introduce the notion of

predecessor and ancestor in Definition 3.2.2.

Definition 3.2.1 (Defined/Generated Individual) Let I be the set of all indi-
viduals in an ABox. We call individuals whose names explicitly appear in the ABox as
defined individuals (Ip), and those generated by the reasoning procedure as generated

individuals (Ig). Note that Ip NIg =0, and IpUIg =L

Definition 3.2.2 (Predecessor/Ancestor) An individual a is a predecessor of
an individual b (or b is an R-successor of a) if the ABox .A contains the assertion
((a,b) : R | a,—,—). Anindividual a is an ancestor of b if it is either a predecessor of b
or there exists a chain of assertions ((a,b1) : Ry | a1, —, =), {(b1, b2) : Ra | a2, —, —),-..,

((bk‘u b) : Rk+1 l QApt1, —, ——> in A.

We now define the notion of “admissibility” for ALCy axioms, assertions, and knowl-

edge bases.

55

Definition 3.2.3 (Admissibility of ALCy Axiom/Assertion) An ALCy axiom
(resp. assertion) is admissible if the combination functions associated with it and the
negation operator of the certainty lattice satisfy the pre-defined properties specified

in Section 3.1.2.

Definition 3.2.4 (Admissibility of ALCy; Knowledge Base) An ALCy knowl-

edge base is admissible if all its axioms and assertions are admissible.

3.3 ALCy Reasoning Procedure

The ALCy framework is equipped with a tableau-based reasoning procedure (also
called the AECU tableau algorithm) that takes into account the presence of uncer-
tainties associated with axioms and assertions in the ALCy knowledge base. Figure
5 gives an overview of our reasoning procedure. The rectangles represent data or
knowledge bases, the arrows show the data flow, and the gray rounded boxes show
where data processing is performed.

Compared with the reasoning procedure for standard DL shown in Figure 2, the
main difference between the two is that, for the uncertainty case, in addition to
deriving assertions, each completion rule application also generates a set of constraints
which encode the semantics of the assertion. Once there is no more rule applicable, we
feed the generated set of constraints into the constraint solver to check its solvability,

and return the inference result.

56

If more rules applicable

In what follows, we present the ALCy tableau algorithm in detail.

Knowledge
pase Initial Completi l
niti ompletion
T80 T | bl ororms Extended "Rile Extended
Processing ABox AL Application ABox Aj
ABox A
If clash Constraint
Initial Set C;
Constraint
Set Cy If no more
¥ rule applicable

Constraint
Solving

Return
inference
(\Q result

Figure 5: Overview of the ALCy reasoning procedure

by introducing the reasoning services offered, and then present the pre-processing

phase and the completion rules. We also establish correctness of our ALCy tableau

algorithm.

3.3.1 ALCy Reasoning Services

The ALCy reasoning services include the consistency, the entailment, and the sub-

sumption problems as described below.

Consistency Problem

To check if an admissible ALCy knowledge base ¥ = (7, A) is consistent, we first
apply the pre-processing steps (see Section 3.3.2) to obtain the initial extended ABox,

A§. In addition, the constraints set Cy is initialized to the empty set {}. We then apply

o7

We start

the completion rules (see Section 3.3.3) to derive implicit knowledge from explicit
ones. Through the application of each rule, we add any assertions that are derived
to the extended ABox Af. In addition, constraints which denote the semantics of
the assertions are added to the constraints set C;, in the form of linear or nonlinear
inequations. The completion rules are applied in arbitrary order as long possible, until
either A¢ contains a clash or no further rule could be applied to A¢. If A¢ contains a
clash, the knowledge base is inconsistent. Otherwise, the system of inequations in C;
is fed into the constraint solver to check its solvability. If the system of inequations
is unsolvable, the knowledge base is inconsistent. Otherwise, the knowledge base is

consistent.

Entailment Problem

Given an admissible ALCy knowledge base ¥, the entailment problem determines
the degree to which an assertion X is true. Like in standard DLs, the entailment
problem can be reduced to the consistency problem. That is, let X be an assertion of
the form (a: C | z4.c, fe, fa)- The degree that ¥ entails X is the degree of z,.¢ such

that YU {(a: =C | Zg-~c, fe, fa)} is consistent.

Subsumption Problem

Let ¥ = (7, A) be an admissible ALCy knowledge base, and (C C D | zcep, fer fd4)
be the subsumption relationship to be checked. The subsumption problem deter-

mines the degree to which C is subsumed by D with respect to the TBox 7. Like in

58

standard DLs, this problem can be reduced to the consistency problem by finding the
degree of z,.-cup such that XU {{a: CN =D | Zo.cn-p, fe, fa) } is consistent, where

a is a new, generated individual name.

To present the ALCy tableau algorithm further, we need to define a few terms as

follows.

Definition 3.3.1 (Node Label, Node Constraint, Edge Label) As in the
standard DL, the model being constructed by the ALCy tableau algorithm can be
thought as a forest, which is a collection of trees, with nodes corresponding to in-
dividuals, edges corresponding to relationships/roles between individuals, and root
nodes corresponding to individuals present in the initial extended ABox. Each node
is associated with a node label, L(individual), to show the concept assertions as-
sociated with a particular individual, as well as a node constraint, C(individual),
for the corresponding constraints. Unlike in the standard DL where each element
in the node label is a concept, each element in our no&e label is a quadruple,
(Concept, Certainty, C’onjungtionFunctz’on, DisjunctionFunction). Finally, unlike
in the standard DL where each edge is labeled with a role name, each edge in our
case is associated with an edge label, L({individualy,individualy)) which consists of
a pair of elements (Role, Certainty). In case the certainty is a variable, “—” is used

as a place holder.

o9

Definition 3.3.2 (Evaluation) Let Var(C) be the set of certainty variables oc-
curring in the constraints set C, and V be the certainty domain. If the system of
inequations in C is solvable, the solution to the constraints set w: Var(C) — V is

called an evaluation.

Definition 3.3.3 (Complete) An extended ABox A¢ is complete if no more com-
pletion rule can be applied to .AS and the set of constraints C obtained during the

rule application is solvable.

Definition 3.3.4 (Model) Let ¥ = (7, .A) be an admissible knowledge base, and
A% be the extended ABox obtained by applications of the completion rules to the
extended ABox A¢. Also, let 7 be an interpretation, 7 be an evaluation, o be a
certainty value in the certainty domain, and zx be the variable representing the
certainty of assertion X. The pair (Z,7) is a model of the extended ABox .A¢ if all

the following hold:
o for each assertion (a: C | a, f., f1) € AL, C%(a) = a.
e for each assertion (a: C | Zac, fo, fa) € AL, C¥(a) = 7(24.0).
o for each assertion ((a,b): R | a, —, —) € A%, R%(a,b) = a.
e for each assertion {(a,b) : R | z(ap):r, — —) € A%, RT(a,b) = 7(z(ap):R)-
The knowledge base X is consistent if there exists a model for the extended ABox

AL

C

60

3.3.2 Pre-processing Phase

The ALCy tableau algorithm starts by applying the following pre-processing steps.
Note that, since GCI is the general form of the concept subsumption, and a concept
equation is the general form of the concept definition, we only use the general forms

here.

1. Replace each axiom of the form (C = D | o, f, fa4) with the following two equiv-

alent axioms: (C C D | a, fe, fa) and (D C C | «, fe, fa)-

2. Transform every axiom in the TBox into its normal form. That is, replace each

axiom of the form (C T D | o, fe, fa) with (TE-C U D | o, fe, fa)-

3. Transform every concept (in the TBox and the ABox) into its NNF (refer to Def-
inition 2.1.4). Due to the Concept Negation properties and Inter-Constructor
properties described in Section 3.1.2, the equivalence rules described in Defini-
tion 2.1.4 can be used to transform any ALCy concept into its NNF. That is,
let C' and D be concepts, and R be a role. NNF of an ALCy concept can be

obtained by applying the following equivalence rules:
o —(C)=C
e ~(CUD)=~CN-D
e ~(CND)=~-CU~-D
e -JR.C =VR.-C

e VR.C =3R-C

61

4. Augment the ABox A with respect to the TBox 7. That is, for each individual a
in A and each axiom (TC ~CUD | a, f, f3) in T, add {(a: =CU D | a, fe, fa)

to A.

We call the resulting ABox after the pre-processing phase as the initial extended

ABoz, denoted by A§.

3.3.3 ALCy Completion Rules

The ALCy completion rules are a set of satisfiability preserving transformation rules,
where each rule either detects inconsistencies in the knowledge base or derives one or
more assertions and/or constraints that encode the semantics of the knowledge base.
Since the application of the completion rules may lead to nontermination (see Section

3.4 for an example), we introduce the notion of blocking to handle this situation.

Definition 3.3.5 (Blocking) Let a,b € Ig be generated individuals in the ex-
tended ABox Af, Af(a) and Af(b) be all the concept assertions for a and b in A%.

An individual b is blocked by some ancestor a (or a is the blocking individual for b)

if AS(5) C AL (a).

Let 7 be thé TBox obtained after the pre-processing phase, A¢ be an extended
ABox which is initialized to be the initial extended ABox A§, and Cy be the initial
constraints set. Also, let @ and [be certainty values, and let I' be either a cer-
tainty value or be the variable zx denoting the certainty of assertion X. The ALCy

completion rules are defined as follows.

62

Clash Triggers:
(a:L|a,—,—) e Af, with a =1
(a:T]a,—,—)€ A5, witha <t
{{a: Ala,—, =), {a: A]B,—, =)} C Af, with ®(a, B) =1

{{(a,b) : R | a,~, =), {(a,b) : R| B,—, =)} C Af, with ®(a,8) =1

The purpose of the clash triggers is to detect possible inconsistencies in the knowl-
edge base. Note that the last two clash triggers detect the contradiction in terms of
the certainty values specified for the same assertion. For example, suppose the cer-
tainty domain is V = CJ[0, 1], i.e., the set of closed subintervals [a, (] in [0, 1] where
a =X B. If a knowledge base contains both assertions (John : Tall | [0,0.2], —, —) and
(John : Tall | [0.7,1], —, =), then the third clash trigger will detect this as an incon-

sistency.

Concept Assertion Rule:
| if (a: A|T,— =) e A°
then if (2.4 =1I') ¢ C; and T is not the variable z,.4
then Cj11 = C; U {(zpa =T}
if (Zma =~T) ¢ C;

then Cj.,.] = Cj U {(ma:—‘A = P)}

This rule simply adds the certainty value of each atomic concept assertion and

63

its negation to the constraints set C;. For example, suppose we have the assertion
(John : Tall | [0.6,1],—,—) in the extended ABox. If the certainty domain is V =
C[0,1] and if the negation function is ~(z) = t — z, where ¢ is the top certainty in the
lattice, then we add the constraints (Z jonn.7eu = [0.6, 1]) and (2 sonn-—7au = [0, 0.4]) to
the constraints set C;. On the other hand, if we have the assertion (John : Tall | Zsorn:
Tall; —, —) in the extended ABox, we add the constraint (Z john:—~Tat = t— ZJjohn:Tail)

to CJ

Role Assertion Rule:
if (a,b): R|T,—,—) € A
then if (z(ap).r = I') € C; and I' is not the variable z(q)5
then Cj41 = C; U {(Z(ap)r = 1)}
if (Z-(apy:r =~T) ¢ C;

then Cj+1 = C] U {(H?ﬁ(ab):R :NF)}

Similar to the Concept Assertion Rule, this rule simply adds the certainty value
of each atomic role assertion and its negation to the constraints set C;. For exam-
ple, suppose we have the assertion ((John, Diabetes) : hasDisease | 0.9, —, —) in the
extended ABox. If the certainty domain is V = [0, 1] and if the negation function is
~(z) =t — x where t is the top certainty in the lattice, then we add the constraints

(x(John,Diabetes):hasDisease = 09) and (x(John,Diabetes):—vhasDisease = 01) to Cj- On the

other hand, if the assertion ({(John, Diabetes) : hasDisease | T(jonn,Diabetes):hasDiseases

64

™ _> is in the ABOX) the constraint (x(John,Diabetes):ﬂhasDisease =t- Z(John,Diabetes):

h,asDiseQ_Se) jS added tO C].

Negation Rule:
if (a: =A|T,—,—) € Af
then if (a: A |~T,—,~) ¢ Af

then Af+l = .Af: U {(a A INFy_‘a _>}

The intuition behind the Negation Rule is that, if we know an assertion has
certainty value I', then the certainty of its negation can be obtained by applying the
negation operator in the lattice to I'. For example, suppose the certainty domain is V
= [0, 1], and the negation operator is defined as ~(z) = 1 — z. Then, if the assertion
(John : —Tall | 0.8,—,—) is in the ABox, we could infer (John:Tall|0.2,—,—),

which is added to the extended ABox.

Conjunction Rule:
if (a: CNDI|T, f,, fa) € Af
then for each ¥ € {C, D}
if ¥ is atomic and {a : ¥ | 2.y, —, —) ¢ A
then AL, = Af U {(a: ¥ |zsu,—, —)}
else if ¥ is not atomic and (a : VU | 24w, fe, fa) € A‘ig
then AS, = AL U{(a: V| z,u, fo, fa)}

if (fc(xa:C: xa:D) = F) ¢ Cj!

65

then Cj+1 = Cj U {(fc(wa:CB xa:D) = F)}

The intuition behind this rule is that, if we know an individual is in C' I D, then
we know it is in both C and D. In addition, according to the semantics of the
description language, we know that the semantics of a : C M D is defined by applying
the conjunction function to the interpretation of a : C and the interpretation of a : D.

For example, if the extended ABox includes the assertion (Mary : Tall M Thin |
0.8, min, maz), then we could infer that (Mary : Tall | Z pary: e, — —) and (Mary :
Thin | € pary:Thin, — —)- In addition, the constraint min(z sary: zait, TMary: Thin) = 0.8

must be satisfied.

Disjunction Rule:

if (a: CUD|T, [, fa) € Af

then for each ¥ € {C, D}
if ¥ is atomic and (a: U | 24y, —, —) ¢ A
then A%, = AfU{{a: ¥ |2y, —, —)}
else if ¥ is not atomic and {(a : ¥ | za.y, fo, fa) & AS

then AS, | = AL U {{a: V| zau, fo, fa)}

if (fa(za:cr Zap) =T) ¢ C;,

then Cj+1 = Cj U {(fd(xa:CH xa:D) - F)}

The intuition behind this rule is that, if we know an individual is in C' U D, then

66

we know it is in either C, D, or in both. In addition, according to the semantics
of the description language, we know that the semantics of a : C LU D is defined by
applying the disjunction function to the interpretation of a : C' and that of a : D.

It is interesting to note is that the disjunction rule in the standard DL is non-
deterministic, since it can be applied in different ways to the same ABox. However,
note that the disjunction rule in ALCy is deterministic. This is because the se-
mantics of the concept disjunction is now encoded in the disjunction function in
the form of a constraint. For example, if the extended ABox includes the assertion
(Mary : TallU Thin | 0.8, min, maz), then we infer that (Mary : Tall | Zpary: Talt, —
—) and (Mary : Thin | Zaary:Thin, — —). Moreover, the constraint maz(uary: rau,
T Mary:Thin) = 0.8 must be satisfied, which means that Zyary: 7anr = 0.8, OF Tprary: Thin =

0-87 Or T Mary: Tall = T Mary: Thin = 0.8.

Role Exists Restriction Rule:
if (a:3R.C|T, f., fa) € Af and a is not blocked
then if 3 individual b such that (f.(Z(ap):r, Tr:c) = Ta3rc) € C;
then let b be a new individual

Af = Af U {{(a,b) : R z(apyr, =, =)}
if C is atomic
then Af,, = AZU{(b: C | zpe, —, —)}
else A%, = AL U{(b: C | zpc, fo, fa)}

Cit1 = C; U {(fe(@(ap):rs Th:c) = Ta3rC)}

67

for each axiom (T C -C'U D | a, f, fa) in the TBox T
A,y = AEU{(b:~CUD | o, foy £}
if I is not the variable z,.3r.¢
then if (z43rc =T") €C;
then if ' # IV and T is not an element in I"
then Cj11 = C; \ {(Zaarc = I")} U {(2a:3rc = (1, T))}

else Cj11 = C; U{(zaarc =T}

The intuition behind this rule is that, if we know that an individual a is in
JR.C, there must exist at least an individual, say b, such that a is related to b
through the relationship R, and b is in the concept C. If no such individual b
exists in the extended ABox, then we create such a new individual. In addition,
this new individual must satisfy all the axioms in the TBox. For example, suppose
the assertion (Tom : 3hasDisease. Diabetes | [0.4,0.6], min, maz) is in the extended
ABox and the axiom (T C —Obese LI 3hasDisease. Diabetes | [0.7,1], X, ind) is in the
TBox. Assume also that the ABox originally does not contain any individual b
such that Tom is related to b through the role hasDisease, and b is in the concept
Diabetes. Then, we could infer ((Tom, d1) : hasDisease | Z(rom, a1):hasDisease, —» —) and
(d1 : Diabetes | zq1.pigbetes, — —), where d1 is a new individual. In addition, since
dl must satisfy the axioms in the TBox, the assertion (d1: —QObese Ll hasDisease.
Diabetes | [0.7,1], x,ind) is added to the extended ABox. Finally, the constraints

(mzn (x(Tom,dl):hasDz‘sease, xdl:Diabetes) = xTom:BhasDisease.Diabetes) as well as (SE Tom:JhasDisease.

68

Diabetes = |0.4, 0.6]) must be satisfied. Now, suppose there is another assertion (Tom :
JhasDisease. Diabetes | [0.5,0.9], min, maz) in the extended ABox. Then, when we
apply the Role Exists Restriction Rule, we do not generate a new individual. In-
stead, we simply replace the constraint (Z7,m:3hasDisease. Diabetes = [0-4, 0.6]) in C; with
the constraint (Z tom:3naspisease. Diavetes = SuP([0.5, 0.9], [0.4,0.6])), where sup is the join
operator in the lattice @. This new constraint takes into account the certainty value

of the current assertion as well as that of the previous assertion.

Role Value Restriction Rule:
if {(a:VRC|T, fo, fa), {(a,b) : R| ', —, —)} C A
then if C is atomic and (b: C | zp.c, —, —) ¢ A¢
then A%, = A U{(b: C | zpc,—, —)}
else if C is not atomic and (b: C | Tu.c, fo, fa) & AL
then AL, = AL U{(b: C | zvc, for fa)}
if (fa(T(a,b):R) Tbee) = Tavr.c) E C;
then Cj11 = C; U {(fa(@-(ap):Rr) Ttic) = TavrC)}
if I" is not the variable z,.vr.c
then if (Zovre =1") €C;
then if I # I'” and I' is not an element in I'”
then Cj11 = C; \ {(Zavrec = T} U {(zavre = (T, T7))}

else Cj11 = C; U {(Zavrc =T}

69

The structure of the Role Value Restriction rule is similar to that of Role Exists
Restriction rule, although they have different semantics. The intuition behind the
Role Value Restriction rule is that, if we know that an individual a is in VR.C,
and if there is an individual b such that a is related to b through the relation-
ship R, then b must be in the concept C. For example, assume we have assertions
(Jim : VhasPet.Dog | [0.4, 0.6], min, maz) and ((Jim, d1) : hasPet | [0.5,0.8], —, —) in
the extended ABox. Then, we could infer (d! : Dog | T41.pog, —, —). In addition, the
constraints (maz(T(jim,d1):~hasPets Td1:Dog) = T Jim:YhasPet. Dog) &S Well 88 (& sim:¥hasPet. Dog
= [0.4,0.6]) must be satisfied. Now, suppose we have yet another assertion (Jim :
VhasPet.Dog | [0.5,0.9], min, maz) in the extended ABox. Then, when we apply the
Role Value Restriction rule, we simply replace the constraint (2 jim:vnaspet.og = [0-4,
0.6]) in C; with the constraint (2 sim:vhespet.Dog = nf([0.5,0.9], [0.4,0.6])), where inf is
the meet operator in the lattice ®. Note that the new constraint takes into account

the certainty value of the current assertion as well as that of the previous assertion.

Note 3.3.6 Like in standard DLs, our tableau algorithm treats each axiom in 7 as a
meta constraint. That is, for each individual a in A and each axiom (C C D | a, f., fa)
in7,weadd (a: -CUD|a, f, fa) to A. This results in a large number of assertions
with concept disjunction be added to .A. In standard DLs, this would dramatically
extend the search space and is the main cause for empirical intractability, since the
disjunction rule in standard DLs is non-deterministic. However, since the disjunction

rule in ALCy is deterministic, large number of assertions with concept disjunction

70

does not cause any problem in our context. Note also that the idea of unfolding does
not work in ALCy because each axiom is associated with a certainty value and a
pair of combination functions. Consider the axioms (A = BM3R.C | 0.6, min, max)
and (D= AU E | 0.7, x,ind). In the standard DLs, we would replace A on the right
hand side of the concept definition D with the definition of A. However, we cannot do
so in our context, since there is a certainty value (0.6) and two combination functions

(min, max) associated with the concept definition A.

3.3.4 Correctness of the ALCy Tableau Algorithm

We establish the correctness of the ALCy tableau algorithm by showing that it is

sound, complete, and it terminates, as shown below.

Lemma 3.3.7 (Soundness) Let Af be an extended ABox obtained from the
extended ABox A% by applying the completion rule. Let Z be an interpretation and

7 be an evaluation. Then, (Z,7) is a model of A® iff (Z,7) is a model of A%’

Proof.

The “if” direction: Let C be the constraints set associated with the extended
ABox Af, and C’ be the constraints set associated with the extended ABox A%
Since Af C A and C C C', if (Z,) is a model of A%, it is also a model of .A%.

The “only if” direction: We prove the claim by considering each completion rule.

71

Since the cases of Concept Assertion, Role Assertion, and Negation rules are straight-
forward, we skip them here.

Let C and D be concepts, a and b be individuals in the domain, and R be a role.
Also, let (Z,7) be a model of A?, and assume that the following completion rule is
triggered.

Conjunction Rule: By applying the conjunction rule to {(a: CN D |T, f, fa) in
Af we obtain the extended ABox A% = A% U {{a:C | zac, fe, fa),(a: D | za:p, fe,
fa)} and the constraints set C' = C U {(fe(Za.c, Ta:p) = T')}. Since (Z,) is a model of
A T satisfies (a: CM D | T, f., f4), and we know that, by definition, (C M D)*(a) =
f-(C*(a), D*(a)) = T". Therefore, the pair (C%(a), D*(a)) is in {(z,) | f.(z,y) =T}
Hence, there exists some a;, o € V such that C%(a) = o; and D¥(a) = ay. That is,
7 satisfies both {a: C | ay, fe, fa) and (a : D | ag, f, fa)-

Disjunction Rule: Applying the disjunction rule to (a: CU D | T, f., fa) in A®
yields the extended ABox A¢" = A* U {(a: C | Za.c) fo, fa), {a: D | zap, fe, fa)} and
the constraints set C' = C U {(fa(Za:c) Za:p) = I')}. Since (Z,7) is a model of A°, T
satisfies (a : CU D | T, f., f4), and we know by definition that (C U D)%(a) = f4(C?
(a), D*(a)) =T. Therefore, the pair (C¥(a), D*(a)) is in {(z,v)| fa(z,y) =T}
Hence, there exists some a;,as € V such that C%(a) = a; and D*(a) = ay. That
is, Z satisfies both {(a: C | ay, f, fa) and (a : D | ag, fe, fa)-

Role Exists Restriction Rule: When the role exists restriction rule is applied
to {(a:3R.C | T, f., f1) in A%, there are two possible augmentations to the extended

ABox/constraints set: (i) There is already an individual b such that {((a,) : R | Z(4,p):

72

Ry = =) (b2 C | Tpe, for fa)} © Ao Also, {(fe(Z(ap):rs The) = Ta:ar.C)s (Taare = T)}
C C. In this case, we replace the constraint (z4.3rc = I") with (z4.3rc = ST, I")).
(ii) A new individual b is generated, and we have A = A° U {{(a,d) : R | Z(ab):r, —
=3, {b: C | Twcy fo, fa)} as well as C' = C U {(fe(@(apyr, To:c) = Ta:ar.0), (Tazrc = 1)}
Since (Z,) is a model of A, we know that 7 satisfies (a : IR.C | T, f., fa), the eval-
uation 7 gives the certainty that a is in 3R.C (denoted 7(z,.3r.c)), and by definition,
we know that (3R.C)*(a) = @peaz{fo(R%(a,b),C*(b))} = m(zaarc). Hence, there
are certainty values a, ay € V such that R(a,b) = a; and CZ(b) = ap. That is, 7
satisfies both {(a,b) : R| a1, —,—) and {b: C | as, fe, fa)-

Role Value Restriction Rule: Assume that the role value restriction rule is ap-
plied to (a : VR.C | T, f., fa) in A%. Then, for every individual b that is an R-successor
of individual a, we either obtain the extended ABox A = A5 U {(b: C | zp.0, fo, fa)}
and the constraints set C' = C U {(fa(Z~(ap):r> Tt:c) = Tavr.C)s (Tavrec =T)}, or if
the constraint (z,vrc = ') is already in C, we replace it with (z.vrc = (I, T)).
Since (Z, 7) is a model of Af, T satisfies (a : VR.C | T, f,, f4) and, for every individ-
uél b that ié an R-successor of a, Z satisfies ((a,b) : R| I", -, —). In addition, the
evaluation 7 gives the certainty that a is in VR.C (denoted 7 (zq.vr.c)) and the cer-
tainty that b is an R-successor of a (denoted 7(z(,p).1)). We know by definition that
(YR.CY(e) = @reas {fulr~ (@, 1), C*(5)} = m{zavnc). Hence, fo overy b that is
an R-successor of a, there exists some a € V such that R%(a,b) = n(z(, k) and

C%(b) = . That is, Z satisfies (b: C | a, fe, fa).

73

Lemma 3.3.8 (Completeness) Any clash-free and complete extended ABox A%

has a model.

Proof. Let A be a clash-free and complete extended ABox, and C be the con-
straints set associated with A¢. Since Af is clash-free and complete, there exists an
evaluation 7 : Var(C) — V that is a solution to the constraints set C, where Var(C) is
the set of variables occurring in the constraints set C, and V is the certainty domain.

We now define a canonical interpretation Z4 of A as follows:
e The domain A4 of 74 consists of all the individual names occurring in AZ.

e For every atomic concept A in A, we define

4

W(xa:A) if <a c A ! Za:Ar ™ —> € A(CS

A4y =14 o if (a:Ala,—,—) € A

k l otherwise, where [is the least value in V

e For all roles R, we define

p
7T("E(a],az):ﬁ) if ((al)a’Z) 'R I x(al,ag):R’ T _> S Ag

R™(ar,a3) = { ¢ if ((a1,a0) : R | @ty —,) € A

l otherwise

\

Next, we show that the pair (Z4,7) is a model of A%. That is, Z4 satisfies all the
assertions in A%, and 7 is a solution to the constraints set C.
By definition, Z4 satisfies all the role assertions in .AS. We now show that Z 4 also

satisfies all the concept assertions of the form (a: C | T, f., f4) in A%, For this, we

74

use the induction technique on the structure of the concept C, where I' is either a
certainty value in the certainty domain or the variable x,.c denoting the certainty of
the assertion.

Base Case:

If C is an atomic concept, then by definition, Z 4 satisfies the concept assertion.
Induction Step:

IfC=CiNCy wehave (a: CyMNCy | T, fo, fa) € AL, Since Af is complete, there
is no more rule applicable, and we have {(a : C} | Ta.cy, fe, fa), (@ : Co | Ta:cy, for fa)} €
A¢ and (fo(za:c,, Ta:c,) = I') € C. By the induction hypothesis, we know that 74 satis-
fies {(a: Cy | Zacy, fe, fa) and Z 4 satisfies (a : Cs | Za.c,, fe, fa). Also, since 7 is a solu-
tion to the constraints set C, we have f.(7(z4.c,), 7(Za.c,)) = I', where the evaluation
7 gives the certainties to variables zqo.c, and z.c,. Hence, f,(C74(a), C54(a)) = T.
Since, according to Table 4, we have f.(C%(a),C%(a)) = (C11 Cy)*(a), and since an
interpretation Z satisfies (a : C; M Cy | T, fo, fa) if (C1 M C2)*(a) =T, the canonical
interpretation Z 4 satisfies concept assertions of the form (a: C1 N Cy | T, fe, fa)-

If C=CUC,, we have (a: CyUC, | T, f., fa) € AS. Since A% is complete, no
more rule is applicable, and we have {{a : C} | Ta.cy, fe, fa), (@ : Co | Tacy, for fa)} C
A¢ and (f4(Zacy, Tac,) =T) € C. By the induction hypothesis, we know that Z4
satisfies (a: C) | Za.cy, fo, fa) as well as‘ {a:Cy| Ta:cys fer fa). Also, since 7 is a
solution to the constraints set C, we have fy(m(Za.c,), m(Zac,)) =T, and hence,
fa(CT4(a), CE4(a)) = T. Since f4(C¥(a), CE(a)) = (C11d C3)*(a) according to Table

4, and since an interpretation 7 satisfies (a: C; U Cy | T, fe, fa) if (C1 U Cy)*(a) =T,

70

the canonical interpretation Z 4 satisfies concept assertions of the form (a : C; U Cy | T,
fes fa). Note that the proof presented here is much simpler than that of standard ALC.
This is because the disjunction rule in ALC is nondeterministic, while the disjunction
rule in ALCy is deterministic, as explained in Section 3.3.3.

If C = ~A, we have (a: ~A | T, —,—) € AS. Since Af is complete, no more rule is
applicable, and we have {(a: A |[~T, —,) € A¢ and {(zg.a = ~TI), (zg-a =T)} CC.
Since 7 is a solution to the constraints set C, we have 7(zq.-4) = I', where 7 gives the
evaluation to the variable z,.-4. Hence, ~A%4(a) =TI. Since ~AZ(a) = (-=A)*(a)
according to Table 4, and since an interpretation 7 satisfies (a: —-A | T, —,—) if
(—A)%(a) =T, the canonical interpretation Z 4 satisfies concept assertions of the form
{a:-A|T,—,-).

If C = 3R.Cy, we have (a : 3R.C, | T, f., fa) € A%, Since Af is complete, no more
rule is applicable. The application of Role Exists Restriction rule either: (i) generated
a new individual b, added assertions {{(a,b) : B | T(ap).r, —, =), (b : C1 | To:cy, for fa) }
to the extended ABox A%, and added the constraint (fe(z(ap).r, To:cy) = Ta3rC,) 1O
the constraints set C, or (ii) did not generate a new individual because there already
existed an individual b such that {{(a,b) : R | z@u:r, — =), (b: C1 | Zuucys for fa)} C
A%, and the constraint (fe (T(ap):r Tr:c,) = Ta:arc,) Was already in the constraints
set C, or (iii) did not generate new individual because a is blocked by some ances-
tor b with Af(a) C Af(b); in such case, we could construct the model by having
((a,b) : R | z(ap):r, — —) and (b : C1 | ZTw:cy, fe, fa). In all the three cases, there exists

at least one individual b such that ((a,b) : R | (4 p):r, — —), (b: C1 | x’b;Cl, fey fa), and

76

fe(Z(ap):r: To:cy) = Ta:ar.c,. By the induction hypothesis, we know that for each indi-
vidual b such that (a,b) is in R and b is in Cy, Z4 satisfies ((a,b) : R | Z(a,p).r; — —)
and (b: Cy | Zv.c,, fe, fa). Also, since 7 is a solution to constraints set C, we have
Drear{ fe(m(z(@t:r), T(T5:cy))} = T(Tazrcy). Hence, Bpenza{fe(R™(a,), C1™(b))}
= (3R.C1)*(a). That is, T4 satisfies concept assertions of the form {a : 3R.C, | T, £,
fa)-

If C =VR.C}, we have {a : VR.C, | T, f., fa) € A&. Since A is complete, no more
rule is applicable, and for every individual b such that ((a,b) : R | Z(ep):r, — —) € AL,
we have (b: C | Tw.c,, fo, fa) € AE and also (fa(z(@b)-r> To:cy) = Tavr.c,) € C. By the
inductiop hypothesis, we know that for each individual b such that (a,b) is in R and
bisin Cy, Z4 satisfies ((a,b) : R | (ap):r, —, —) and T4 satisfies (b: C1 | zpcy, fe, fa)-
Also, since 7 is a solution to the constraints set C, we have ®peaz { fa(m(Z(a,p):-r), T(Zb:
o))} = m(ZTavrc,). Hence, ®ycpza{fa(~R¥(a,b),C;™ (b))} = (VR. C1)*4(a). That

is, 7 4 satisfies concept assertions of the form (a : VR.C) | T, f., fa)-]

Lemma 3.3.9 If an extended ABox AS contains a clash, or if the constraints set C

associated with A¢ is unsolvable, then A does not have a model.

Proof. If an extended ABox A contains a clash, then no interpretation can satisfy
A%, Thus, A is inconsistent and has no model. Similarly, if the constraints set C
associated with AZ is unsolvable, there does not exist an evaluation 7 : Var(C) — V

that is a solution to the constraints set C, where Var(C) is the set of variables occurring

7

in the constraints set C, and V is the certainty domain. Hence, A% is not satisfied

and has no model.]

Before proving the termination property, we need to introduce the term “concept

subsets.”

Definition 3.3.10 (Concept Subsets) Let C be a concept. The subsets of C,
denoted subset(C), is recursively defined as follows.

subset(A) = {A}, where A is an atomic concept

subset(Cy M Cy) = {Cy M Cy} U subset(Cy) U subset(Cy)

subset(Cy U C) = {Cy U C2} U subset(Ch) U subset(Cy)

subset(3R.C}) = {3R.C1} U subset(C})

subset(VR.C)) = {VR.C1} U subset(C))

Lemma 3.3.11 (Termination) Let X be any assertion in the extended ABox Af.

The application of completion rules to X terminates.

Proof. Let X be of the form (a : C | a, f, fa), and s = |subset(C)|. As in the stan-
dard DL [HST99], termination is a result of the following properties of the completion

rules:
1. The completion rules are designed to avoid duplicated rule applications.

2. The completion rules never remove any assertion from the extended ABox nor

change/remove any concept in the assertion.

78

3. Successors are only generated by Role Exists Restriction Rule, and each appli-
cation of such rule generates at most one successor. Since there cannot be more

than s Role Exists Restrictions, the out-degree of the tree is bounded by s.

4. Each node label contains non-empty subsets of subset(C'). Hence, if there is a
path of length at least 2°, there must be two nodes along the path that have
the same node label, and hence blocking occurs. Since the path cannot grow

longer once a blocking takes place, the length of the path is at most 2°.

3.4 Illustrative Example

To illustrate the ALCy tableau algorithm and the need for blocking, let us consider
a cyclic fuzzy knowledge base ¥ = (7, A), where:

T = {(ObesePerson T JhasParent. ObesePerson | [0.7, 1], min, maz) }

A = {{John : ObesePerson | [0.8,1],—,)}
Note that the fuzzy knowledge bases can be expressed in ALCy by setting the cer-
tainty lattice as £ = (V, <), where V = C[0, 1] is the set of closed subintervals o, 8] in
[0, 1] such that & < 3. We also set the meet operator in the lattice as inf (infimum),
the join operator as sup (supremum), and the negation operator as ~(z) =t — x,
where ¢ = [1, 1] is the greatest value in the certainty lattice. Finally, the conjunction

function is set to min, and the disjunction function is set to max.

79

To find out if X is consistent, we first apply the pre-processing steps. For this, we

transform the axiom into its normal form:
T= {{T C (—ObesePerson L) ShasParent. ObesePerson | [0.7, 1], min, maz)}

We then augment the ABox with respect to the TBox. That is, for each individual

a in the ABox (in this case, we have only John) and for each axiom of the form
(TE-CUD]|a,f., fs) in the TBox, we add an assertion {a : ~C U D | a, f, fa) to

the ABox. Hence, in this step, we add the following assertion to the ABox:
(John : (—ObesePerson L) ShasParent. ObesePerson | [0.7, 1], min, maz)}
Now, we can initialize the extended ABox to be:
AS = {{(John : QbesePerson | [0.8,1], —, —),
(John : (= ObesePerson Ll ShasParent. ObesePerson | [0.7, 1], min, maz)}

and the constraints set to be Co = {}.
Once the pre-processing phase is over, we are ready to apply the completion rules.
The first assertion is (John : ObesePerson | [0.8, 1], —, —). Since ObesePerson is an

atomic concept, we apply the Concept Assertion Rule, which yields:

Cl = CO U {(xJohn:ObesePerson = [0~87 1])}
C2 = Cl U {(xJohn:—vaesePerson =1 xJohn:ObesePerson)}a where t is the greateSt

element in the lattice, {1, 1].

80

The other assertion in AS is (John : (= ObesePerson U 3hasParent. ObesePerson | [0.7,
1], min, maz)}. Since this assertion includes a concept disjunction, the Disjunction

Rule applies. This yields:
Aé = A5 U {(John : —~ObesePerson | jonn:-ObesePersons —» =) }
AS = Af U {{John : 3hasParent. ObesePerson | T john:3hasParent. ObesePerson s MM,
maz)}

CS - CZ U {(max(zJohn:ﬂObesePersom xJohn:ElhasParent.ObesePerson) = [07, 1])}

The assertion (John : =ObesePerson | T jorn:~ObesePerson, —» — in Af triggers the Nega-

tion Rule, which yields:
Ag = .Ag U {(JOh’I’L : ObesePerson I L John: ObesePersons —» _>}

The application of the Concept Assertion Rule to the assertion (John : Obese Person |
T John: ObesePersony —, —) il Ag does not derive any new assertion nor constraint. Next,

we apply the Role Exists Restriction Rule to the assertion in .45, and obtain:

A = A5 U {{(John, ind1) : hasParent | T(jokn,ind1):hasParents —> —) }

AE = A§ U{(ind! : ObesePerson | Tinas:obesePersons —> —) }

Cs=0C3U {(min($(Jahn,ind1):hasparem) CEmdz:Obeseron) = .’EJohn:ahasParem.Obeseperson)}
Aé = A U{(ind! : (—ObesePerson U IhasParent. ObesePerson | [0.7, 1], min,

maz)}

81

The application of the Role Assertion Rule to the assertion in Aj§ yields:
Cs = Ca U {(&(John,ind1):~hasParent = t — T(John,ind1):hasParent) }
After applying the Concept Assertion Rule to the assertion in AS, we obtain:
Cs = C5 U {(Tina1:-OvesePerson = t — Tind1:ObesePerson) }
The assertion in A§ triggers the Disjunction Rule, which yields:
A8 = AL U {{indl : ~ObesePerson | Tinds.0besePerson, —> —) }
Af = AS U {(ind1 : 3hasParent. ObesePerson | Tina1-3hasParent.ObesePerson s
min, maz)}
Cr = Cs U {(maz(Zind1.~ObesePerson Tind1:3hasParent. ObesePerson) == [0.7,1])}
Next, the application of the Negation Rule to the assertion in A yields:
AS = Af U {(ind1 : ObesePerson | Tings:ObesePerson, — =) }
We then apply the Concept Assertion Rule to the assertion in A§, and obtain:
Cs = C7 U {(Tinds:~ObesePerson = t — Tind1:ObesePerson) }
The application of the Role Exists Restriction Rule to the assertion in A§ yields:
Aéy = A5 U {{(ind1, ind2) : hasParent | T(ind1,ind2):hasParent> —> =) }
Af = AS U {(ind2 : ObesePerson | Tings. obesePersons —» —) }

CQ = CS U {(min(x(z'ndi,z'nd2):hasParenta IindQ:ObesePerson) = Tind1:JhasParent.

82

ObesePerson) }

AS, = A5, U {(ind2 : (~ObesePerson LI 3hasParent. ObesePerson | [0.7, 1], min,
maz)}
Next, the Role Assertion Rule is applied to the assertion in A%, yields:
Cro = Co U {(T(ind1 ind2):~hasParent = t — T(ind1 ind2):hasParent) }
After applying the Concept Assertion Rule to the assertion in .A;, we obtain:
C11 = C10 U {(Tind2:~ObesePerson = t = Tinas: ObesePerson) }
The assertion in \Af, triggers the Disjunction Rule, which yields:
AS, = A5, U {(ind2 : =~ ObesePerson | Tingg.~ovesePersons —» =) }
A8, = A5, U {(ind2 : ShasParent. ObesePerson | Tinas.ahasParent. ObesePerson»
min, maz)}
Ci2= Cil U {(maz(Zind2:~0besePersons Tind2:3hasParent. ObesePerson) = [0.7,1]) }
Next, the application of the Negation Rule to the assertion in .A%; yields:

A% = A%, U {(ind2 : ObesePerson | Tings:ObesePersons —> —))

We then apply the Concept Assertion Rule to the assertion in A%, and obtain:

ClS = Cl2 U {(xindQ:—uObesePerson =t— mindQ:ObesePerson)}

83

Next, consider the assertion in A%,. Since indl is an ancestor of ind2 and L(ind2) C
L(indl), individual ind2 is blocked. Therefore, we will not continue applying the Role
Exists Restriction Rule to the assertion in .A¢,, and the completion rule application
terminates at this point. Note that without blocking, the tableau algorithm would
never terminate since new individual will be generated for each application of the
Role Exists Restriction Rule.

Since there is no more rule applicable, the set of constraints in C;3 is fed into
the constraint solver to check its solvability. Since the constraints are solvable, the

knowledge base is consistent.

3.5 Related Work

To compare our ALCy framework with related works, we first describe how it differs
from the parametric framework for deductive database with uncertainty. We then

compare it with existing frameworks for DL with uncertainty.

3.5.1 Deductive Database with Uncertainty

The ALCy framework was inspired by parametric framework for deductive database
with uncertainty (see Section 2.2). It is therefore important to note the similarities

and distinctions between the two frameworks. We first note the similarities as follows:

1. The certainty values are assumed to form a certainty lattice.

84

2. Bach axiom/rule and assertion/fact is attached with some parameters. By tun-

ing these parameters, various forms of uncertainty can be handled.
3. A set of reasonable properties for the combination functions were proposed.
Despite the similarities, there are some major differences between the two frameworks:

1. The ALCy framework extended the Description Logic ALC, which is a decidable
fragment of FOL that corresponds to the propositional modal logic K,, [Sch91].
On the other hand, the parametric framework extended Datalog, which is closely
related to the first-order Horn clause logic [Mak02]. Although both languages

are subsets of FOL, there are some important distinctions:

e Datalog uses the closed world assumption (CWA), which assumes that
the information that is not available in the knowledge base is false. On
the other hand, DLs use the open world assumption (OWA), which leaves
unstated information open [PH06]. For example, suppose the only fact
in the knowledge base is that John knows Mary. If we ask whether John
knows David in Datalog, the answer would be false. However, in DLs, we

do not know whether this holds or not.

e DLs model the domain as a set of objects and relationships between them.
There can be many models (or interpretations), each describes one possible
state of the domain. Datalog also assumes models the domain as objects
and relationships between them. However, due to CWA, it assumes that

the only objects and relationships that exist in the domain are those that

85

are explicitly represented in the knowledge base. As a result, there is only
one model, and both the data and the model can be thought interchange-

~ ably [PHOS).

The inference in DLs boils down to checking whether a certain situation
holds in all interpretations that are consistent with the available infor-
mation [PHO6]. For example, if we know from the knowledge base that
Mary and John are both students at Concordia University, that they are
married to each other, and that only people with opposite gender can get
married. Then, we can infer that Concordia University has both male
and female students, even though we do not know the gender of Mary or
John. This is because in all interpretations where Mary is female, John
must be male, and vice versa. On the other hand, the inference in Datalog
is much simpler than DLs since the standard Datalog program has only
at most one interpretation [PH06]. However, it can model only relatively
simple situation in which complete information is stated. For example, the
DL example that we just presented cannot be captured using Datalog. It

would, for example, be necessary to assert the genders of Mary and John.

The standard Datalog does not support negation nor allow existentials in

the head [GHVDO3], but these can be easily expressed in DLs.

Datalog is unable to assert the existence of individuals whose identity
might not be known [GHVDO3|, such as asserting that all animals have a

gender, whether the gender is known or unknown. However, this can be

86

easily expressed in DLs as (Animal © 3hasGender.T).

e The mainstream DLs, such as SHOZN which is the logic foundation of
the ontology language OWL-DL, do not directly support n-ary predicates.

This can be easily expressed using Datalog.

e DLs cannot describe classes whose instances are related to an anonymous
individual via different properties [GHVDO03] (such as expressing individ-
uals who attend local conferences). However, this can be easily expressed

in Datalog as:
attendLocalConference(x) :- attendConference(x,y),
liveIn(x,z), locatedIn(y,1l),

locatedIn(z,1).

e DLs are suitable for representing complex knowledge, whereas Datalog is

good at formulating complex queries [CPL97].

2. Although both frameworks attach some parameters to each axiom/rule and as-
sertion/fact, the parameters have different meanings. In the ALCy framework,
each axiom/assertion has two combination functions — the conjunction and the
disjunction functions. The conjunction function is used to interpret the concept
conjunction and part of the role exists restriction that appear in the associated
axiom/assertion, and the disjunction function is used to interpret the concept
disjunction and part of the role value restriction that appear in the associ-

ated axiom/assertion. On the other hand, in the parametric framework, each

87

rule/fact has three combination functions — the conjunction, the propagation,
and the disjunction functions. The conjunction function is used to combine
certainties of the atoms in the rule body and returns the overall certainty of
the rule body; the propagation function combines the certainty of the rule body
with that of the rule itself to compute the certainty of the head; the disjunction
function combines the certainties associated with different derivations of the

same ground atom.

3. In addition to proposing a set of reasonable properties for the combination
functions, the ALCy framework also proposed desirable properties for other
functions, such as those for the negation function, which was not supported in

the parametric framework.

3.5.2 Existing Frameworks for Description Logics with Un-
certainty

In what follows, we compare each of the components in the ALCy framework with
that of the existing DL/uncertainty frameworks.

In terms of the description language, recall that the semantics of the ALCy lan-
guage constructors are defined based on a set of properties that the combination
functions must satisfy. A similar approach was taken in [PFT104, Str05a, StrO5b].

However, the properties that these frameworks proposed are specific to fuzzy logic.

88

Note also that, like in our framework, the certainty values in [Str04b] were also as-
sumed to form a certainty lattice.

The ALCy knowledge base extension was not based on existing DL/uncertainty
frameworks. In fact, it differs from those in the existing frameworks since each ax-
iom/assertion is attached with the combination functions (f. and f;) which are used to
interpret the axiom/assertion. This allows us to handle various forms of uncertainty
within one single framework which is not possible in other frameworks.

The ALCy reasoning procedure is a generalization of the ones in [TM98, Str05a,
BS07). Similar to these frameworks, the proposed tableau algorithm generates a set of
constraints during the completion rule applications. However, the ALCy framework

differs from these works in several ways, described as follows.

e The ALCy reasoning procedure was designed to deal with various forms of
uncertainty knowledge, which are based on different mathematical foundations.
On- the other hand, others mainly considered one form. For instance, [TM98]
supported only fuzzy logic with Zadeh semantics, and [BS07] supported only
product t-norm. Although [Str05a] supported both Zadeh and Lukasiewicz
semantics, it used two sets of reasoning procedures instead of using one generic

reasoning procedure to deal with different semantics.

e General TBoxes are supported in the ALCy framework, but not in [TM98,
Str05a]. As mentioned in Section 2.1.3, a tableau algorithm that can deal with

general TBoxes (i.e., the one that can contain GCls, concept equations, and

89

cycles) is much more complicated than the one that cannot.

The ALCy framework is optimized in the generation of the assertions and vari-
able names. For example, the variable that denotes the certainty that individual
a is in concept C is always z,.c, no matter how many times it is used through-
out the reasoning process. This is not the case in [Str05a, BS07], where a new

assertion/variable name is always generated for each rule application.

Consider the extended ABox consisting of the assertions (a : C M D | 0.6, bDiff,
bSum) and (a:C U D|0.8,bDiff, bSum). That is, both assertions are inter-
preted using Lukasiewicz logic, with the conjunction function defined as bDiff (z,
y) = maz(0,z +vy — 1), and the disjunction function defined as bSum(z,y) =

min(1, z +y).

With the ALCy completion rules, application of the conjunction rule to the first
assertion will generate two assertions {{(a: C | Za:c, —, =), (@ : D | Za.p, —, —)}
and the constraint (bDiff (2q.c,Ze.p) = 0.6). Then, application of the disjunc-
tion rule to the second assertion will not generate any new assertion, but will
infer the constraint (bSum(z,.c,zq.p) = 0.8). Note that we reuse the generated

assertions and variable names as much as possible

Now, consider the completion rules from [Str05a], application of the conjunction
rule to the first assertion will generate two assertions {(a: C, 1), (a: D, z2)},
where z; and z, are two new variables, as well as a set of constraints that

capture the semantics of bDiff expressed using variables x; and z5. In addition,

90

application of the disjunction rule to the second assertion will also generate two
new assertions {(a : C, z3),{a : D,z4)}, where 3 and x4 are two new variables,
and a set of constraints that encode the semantics of bSum expressed using
variables z3 and z4. Note that the same assertions are generated twice, and

new variable names are created for each rule application.

3.6 Summary and Concluding Remarks

In this chapter, we presented the ALCy framework which allows us to represent and
reason with various forms of uncertainty knowledge in DLs in a uniformed manner.
This is achieved by abstracting away the underlying notion of uncertainty in the de-
scription language, the knowledge base, and the reasoning procedure. In particular,
we generically represented different certainty values by assuming that they form a cer-
tainty lattice. In addition, the semantics of the description language is defined by the
combination functions which a set of properties must satisfy to ensure admissibility.
Each axiom and assertion in the ALCy knowledge base is associated with a cer-
tainty value and a pair of combination functions that are used to interpret the concepts
that appear in the axiom/assertion. The advantage of this approach is that, by simply
tuning the combination functions, different notions of uncertainty can be modeled.
We also presented a sound, complete, and terminating tableau reasoning proce-
dure for ALCy, which derives a set of assertions and a set of constraints in the form

of linear/nonlinear equations/inequations to encode the semantics of the knowledge

91

base. Note that there could be infinitely many models for a single ALCy knowl-
edge base. Consider, for example, a knowledge base consisting of only one assertion:
(Mary : TallU Thin | 0.8, min, maz). Then, the only constraint we derive would be
MAZ (T Mary: Tall> T Mary:Thin) = 0.8. There could be infinitely many possible solutions for
this constraint, such as (Zaary: Tatt = 0.8, Taisary: Thin = 0.8), (TMary: et = 0.8, T Mary: Thin
= 0.7), and so on. As far as checking the consistency of the knowledge base is con-
cerned, all we need from the constraint solver is whether there exists any solution
to the given constraints set. Note also that, although the constraint-based approach
makes the ALCy reasoning process dependent on the constraint solver, it also makes
the design of the tableau algorithm elegant, since only one single reasoning procedure

is needed to work with different notions of uncertainty.

92

Chapter 4

Optimizing ALCy Reasoning

The ALCy reasoning procedure presented in Chapter 3 provides the theoretical ba-
sis for developing the core of an ALCy system (reasoner). However, for practical
purposes, techniques need to be developed to optimize the performance of the ALCy
system in general, and the ALCy reasoning procedure in particular. This chapter first
briefly summarizes some of the established runtime optimization techniques known in
standard DL systems. Then, optimization techniques developed for the ALCy system

are presented in detail.

4.1 Optimization Techniques for Standard DL Sys-

tems

This section briefly surveys some runtime optimization techniques that are employed

in standard DL systems such as FaCT++ [FaC], Pellet [Lab], and RacerPro [KG].

93

This is by no means a complete list, but it covers the most commonly used techniques.

e Lexical Normalization: Lexical normalization is the process of transforming
each concept description into a canonical form. The advantage of doing this is
that it facilitates another optimization technique, called concept simplification.
In addition, it could arrange the sub-concepts in such a way that a clash can

be detected early during the tableau expansion [BH91, Hor97b).

e Concept Simplification: Concept simplification is the process of removing
redundant sub-concepts in a given concept. For example, (T M C) can be sim-
plified to C, and (AT A) can be reduced to A. That is, these sub-concepts are
redundant and can be safely removed without any consequences. The advan-
tage of this technique is that it could reduce the number of sub-concepts in a
concept description, hence reducing the number of completion rule applications

and also enabling the knowledge base be more compactly stored [BH91].

¢ Partitioning Based on Connectivity as Individual Groups: To check
consistency of the knowledge base, the ABox can be partitioned into smaller
groups based on how individuals are related to each other through role assertions
in the initial extended ABox. Each of these individual groups can then be

thought of as the initial trees in the forest.

e Optimized Individual Group Creation: The process of creating the indi-
vidual groups we just mentioned is optimized so that no redundant groups are

created during the process.

94

e Caching: During the consistency check for which completion rules are applied,
there may be many successor nodes created. Some of these nodes can be very
similar. Hence, caching satisfiability status of these nodes can save the compu-

tation time [Hor97b).

e Lazy Unfolding: Lazy unfolding is an optimized unfolding process in which

unfolding is done only on demand [BH91].

e GCI Absorption: This technique tries to eliminate GCIs in the knowledge
base as much as possible by replacing them with primitive definition axioms
[Hor97b]. For example, the axioms (A C C M D) and (AN BC EUF) can be

transformed into (AC(CnD)yn(=BUu(EUF)).

e Semantic Branching: Recall that the disjunction rule in standard DLs is
nondeterministic by nature, and hence requires search when it is actually im-
plemented. When this rule is applied, semantic branching can be used to avoid

repeatedly exploring redundant search spaces [DLL62, GS96].

e Dependency-Directed Backtracking: This technique allows fast recovery
from bad branching choice by finding the branching points that are responsible
for the clash, and jumping back to relevant branching point without exploring
anyv alternatives [SS77, Hor97a]. Note that this technique is designed to deal

with the nondeterministic nature of the disjunction rule.

95

4.2 Optimization Techniques for the ALCy System

This section presents some runtime optimization techniques that can be used for the

ALCy system. These techniques can be divided into three categories:

1. The techniques that were adapted from standard DL systems by taking into
account the uncertainty factor. These techniques include lexical normalization,
coﬁcept simplification, partitioning based on connectivity as Individual Groups,
optimized Individual Group creation, and caching (see sections 4.2.1, 4.2.2,
4.2.3, 4.2.4, 4.2.6 respectively). Note that not every optimizatipn technique
pregented in Section 4.1 can be adapted to the ALCy system. In particular,
lazy unfolding and GCI absorption are not adaptable since these two techniques
take advantage of the unfoldable TBox. However, as mentioned in Note 3.3.6,
the notion of unfolding is not applicable to the ALCy framework. The other
two optimization techniques that are not applicable to the ALCy system are
semantic branching and dependency-directed backtracking. Both of these tech-
niques are useful to handle the nondeterministic nature of the disjunction rule.
However, as we mentioned in Section 3.3.3, the disjunction rule in the ALCy
framework is deterministic, and hence these optimization techniques are not

needed.

2. New optimization techniques that deal with uncertainty reasoning, including
partitioning based on connectivity as Assertion Groups, and optimized clash

detection (see sections 4.2.3 and 4.2.5).

96

3. The optimization techniques that are commonly used in software systems, in-
cluding optimized hashing and optimized string comparison (see sections 4.2.7

and 4.2.8).

In what follows, we explain these optimization techniques in detail.

4.2.1 Lexical Normalization

Lexical normalization is a common optimization technique used in the standard
DL systems, and can be directly adopted to the ALCy system. With normaliza-
tion, concepts are transformed into a canonical form. For example, concepts like
(Cni(BNA)), (BN(CrA)), and ((BMA)MNC) can all be transformed into the
canonical form (AN (BN C)).

In the ALCy system, lexical normalization is done while the user input is being
parsed. Only concept conjunctions (i.e., concepts of the form C M D) and concept
disjunctions (i.e., concepts of the form C LI D) need to be converted to canonical form,
since I and LJ are the only language constructors that combine concepts.

Lexical normalization is realized in the ALCy system by sorting the sub-concepts

of the concept description:

e In case sub-concepts are of the same type, they are sorted lexicographically.
For example, if we have (—mBT1—A), then the concepts ~B and —A will be
sorted lexicographically, hence the canonical form is (-A M —B). In case of role
value restriction (V) and role exists restriction (3), the role names are sorted

lexicographically if they are different; otherwise, the concept names are sorted

97

lexicographically. For example, if we have the concept (3R.C U (3S.B U 3R.A)),

then its canonical form would be (3R.AU (3R.C U 3S.B)).

e In case sub-concepts are of different type, they are sorted based on the concept
types using the order: Top Concept (T) <« Bottom Concept (L) < Atomic
Concept (A) <« Concept Negation (—-C) « Concept Conjunction (C M D) <«
Concept Disjunction (C U D) <« Role Value Restriction (VR.C) <« Role Exists
Restriction (3R.C). For example, the concept ((3R.D) LI (=Z)) would have the

canonical form ((—Z) U (3R.D)).

Note that re-ordering of the sub-concepts does not change the semantics of the orig-
inal concept due to commutativity and associativity properties of the combination
functions (see Section 3.1.2 for more details).

The major advantage of lexical normalization is that it allows obvious clashes be
detected early. For example, given assertions (Mary : Tall 71 Thin | [0.8, 1], min, —)
and (Mary : Thin 11 Tall | [0,0.4], min, —), the later becomes (Mary : Tall N Thin |
[0,0.4], min, —) after the lexical normalization. This allows us to easily notice the
conflicting certainty values associated with these two assertions, which would be
detectable only later at the constraint solving stage if lexical normalization is not
applied. Another advantage of lexical normalization is that it facilitates other opti-

mization methods, namely concept simplification described next.

98

4.2.2 Concept Simplification

Concept simplification is an optimization technique that removes redundant sub-
concepts in a given concept. Let ~» denote “can be simplified to”. The following

simplifications can be applied to the ALCy system:

e TNC~C
o I T-vom~r |
o TLI-.:~»T
o LLUC~C
e VRT~T

o JR. 1 ~ L

Note that the above simplifications are valid due to the boundary-condition properties
of the combination functions (see Section 3.1.2 for more details).

It is important to note that not all types of simplifications used in the standard
DL systems can be applied when uncertainty is present. For example, it is a common
practice in the standard DL systems to remove duplicated sub-concepts in a concept
conjunction or disjunction, such as simplifying (A1 A) to A. However, this kind of
simpliﬁca‘cion may not always be true in our context, depending on the combination
function used. For example, assume that the interpretation of concept A is 0.4. If the

conjunction function is min, then (A A) is A since min(0.4,0.4) = 0.4. However, if

99

the conjunction function is the algebraic product (x), then (A M A) is not the same as
A, since x(0.4,0.4) = 0.16 # 0.4. Therefore, concept simplification must be applied
with care.

The major advantage of the simplification method is that it could potentially re-
duce the number of sub-concepts in a concept description, hence reducing the number
of completion rule applications. In some extreme cases, a complex concept description
can be simplified to only T or L, hence eliminating the need to apply any completion

rule.

4.2.3 Partitioning Based on Connectivity

Since the knowledge bases are usually large in size, it is a common practice to per-
form inferences on a divide-and-conquer basis to improve the performance. In the
ALCy system, we partition the knowledge bases into Individual Groups and Asser-
tions Groups based on the notion of connectivity. In what follows, we describe these

different bases for partitioning in detail.

Partitioning Based on Connectivity as Individual Groups

Similar to the standard DL systems, the individuals in the ABox are divided into
one or more partitions called Individual Groups. Each group consists of individuals
that are “related” to each other through role assertions. In general, two individuals a
and b are in the same Individual Group if a is an ancestor of b. That is, either there

exists a role assertion of the form ((a,b) : R | o, —, —) in the ABox, or there exists a

100

chain of role assertions ((a,b;) : Ry | a1, —, =), ((b1,b2) : Ry | g, —, =), -+, {(bx, b) :
Riy1 | ags1,—, —) in the ABox, where the role assertion could be either explicitly
specified in the user input or derived through the application of Role Exists Restriction
Rule.

For example, consider an ABox with the following assertions:

(a: DME|[0.6,1], x,—)

(a: EUQ|[0.8,1],—,ind)

(a: F|1[0.7,0.7], —, =)

(b:VYR.D | [0.6,1], —, max)

((b,c): R1[0.9,1], -, —)

{c: GMH|[0.6,0.8], min, —)

Since individual a is not related to other individuals in the ABox, it forms a
standalone Individual Group. On the other hand, individual b is related to individual
c through the role B. Therefore, b and ¢ together form an Individual Group. The

result of Individual Group partitioning is shown in Figure 6.

((w: DME|[0.6.1]. x A
IGy | {a: EUQ |08, 1] - md

(: F|{0.7.07]. -)

- J

~

(b:VYR.D | [0.6,1], =, max)
IG2 | ((b.c): R1[0.9.1],—. =)
¢: GNH|[0.6.0.8]. min.—) |

ABox

k(

Figure 6: Example of Partitioning Based on Connectivity as Individual Groups

101

There are some interesting properties about Individual Groups. Let Ij; be the set
of all individuals in the ABox, Ijg, be all the individuals in the Individual Group
I1G;, and 1G4, IG,, ..., IGE be all the Individual Groups in the ABox. Then,
Iig, ULig, U+ Ulg, = Iy and Ijg, N I1g, = 0, for i # j. In addition, let Ay be
the set of all assertions in the ABox, and Aj¢, be all the assertions associated with
individuals in the Individual Group IG;. Then, A;g, U Ajg, U+ U Ajg, = Ay and
Aig,NAjg, =0, for i # 5.

By partitioning the ABox this way, inferences can be performed independently
for each Individual Group. Once no more completion rule can be applied to a given
Individual Group, we could pass the derived assertions and their corresponding con-
straints to the constraint solver to build the model, and we can be sure that the model
built will not be changed even if we perform inference on other Individual Groups in
the ABox.

This has several advantages. First, the consistency of the ABox can now be
checked incrementally. At any given time, the co.nsistency of one single Individual
Group is checked. If the current Individual Group is found to be consistent, we con-
tinue checking the remaining Individual Groups. On the other hand, if the current
Individual Group is found to be inconsistent, we could stop checking the remaining
groups, since this implies that the whole ABox is inconsistent. Therefore, in gen-
eral, this reduces the reasoning complexity when the knowledge base includes many
individuals which could be partitioned as described. To further improve the perfor-

mance, we could also sort the Individual Groups based on some pre-defined criteria,

102

such as the initial Individual Group size. Hence, the smaller Individual Groups will
be checked for consistency before the larger groups.

Another advantage is that, since the number of constraints and the variables used
in the constraints in one single Individual Group is, in general, no more than those
in a complete ABox, solving small sets of constraints would be faster than solving
one large constraints set. That is, let Cy be all the constraints associated with the
ABox, let Cjg, be the set of constraints associated with the Individual Group IG;,
and IGy, IG,, ..., IG} be all the Individual Groups in the ABox. We also use |C] to
denote the number of constraints in C, and v(C') to denote the cost (or the speed) of
solving the constraints set C. Then, although |Crg,| + |Cig,| + -+ + |Cia,| = |Cul,

we expect in general that v(Cig,) + v(Cig,) + - -+ + v(Crg,) < v(Cy).

Partitioning Based on Connectivity as Assertion Groups

As mentioned in Section 3.3, the reasoning procedure for the ALCy framework gener-
ates a set of linear/nonlinear constraints in the completion rule application. Because
the number of constraints is usually large, it is important to optimize the constraint
solving process by partitioning constraints into independent subsets. For this, Indi-
vidual Groups are partitioned into Assertion Groups (see Figure 7). Note that each
Assertion Group belongs to only one Individual Group, and each Individual Group
can consist of many (and at least one) Assertion Groups.

In general, each Assertion Group consists of assertions with inferred constraints

depending on each other. For instance, the first Individual Group in the previous

103

Individual Group Individual Group Individual Group

[]

? T ?

Assertion Group{|Assertion Group |{Assertion Group||Assertion Group||Assertion Group

1A1|A2,| lAslAAlAsl IASIA7|

Figure 7: Relationship between ABox, Individual Groups, and Assertion Groups

example contains the following assertions:

(a: DN E|][0.6,1], x,-)

(a: EUQ|[0.8,1],—, ind)

(a: F|[0.7,0.7], -, —)

When the completion rule is applied to the first assertion (a: DM E | [0.6,1], x,
—), we know that individual a is in D to some degree and a is in E to some degree.
That is, we infer the following assertions:

(a:D|xep,—,—)

(a: F|zep,—,—)

Also, the semanticé_ of the concept conjunction in the first assertion is given by the
algebraic product, and is encoded as the constraint:

(Za:p X Za.g > 0.6)

Similarly, for the second assertion {(a : £ Q | [0.8,1], —, ind), we infer the assertions:

((J, B I Ta:Ey —» _>

104

{a: Q| zag,— —)
and the semantics of the concept disjunction is given by the independent function,
and is encoded as the constraint:

(Za:E + Ta:0 — (Ta:E X Ta:g) > 0.8)
Because the certainty that a is in F (z,.5) appears in both constraints, these two con-
straints depend on each other, and need to be solved together. So, the first two asser-
tions form an Assertion Group. Finally, with the last assertion (a : F'|[0.7,0.7], —, =),
we infer the constraint:

(To:r = 0.7)
which does not depend on other constraints. So, this assertion forms an Assertion

Group on its own. The result of Assertion Group partitioning is shown in Figure 8.

(a: DNE[0.6,1], x,—)

{a: EUQ|[0.8,1], —,ind)
Inferred Assertions:

((l : D] xa:Dy‘v")

AG (a:El$u:E~._1—>

! (a : Q l Ta:Q: —>

Inferred Constraints:

(ma:D X Ty > 06)

(:I:rz:E + Ta:Q — (il.'(,;E X -'L'a:Q) > 08)

{@: F|[0.7,0.7], -, —)

AG2 | nferred Constraint:
(.T,a:p = 07)

IG,
Figure 8: Example of Partitioning Based on Connectivity as Assertion Groups

The Assertion Group(s) are created and merged whenever an assertion A is to

be added to the ABox. The decision procedure is illustrated in Figure 9. In this

105

figure, we use the term creator Assertion Group defined as follows: if assertion A
is inferred from assertion B, then the Assertion Group to which B belongs is A’s
creator Assertion Group. Note that in case A is a role assertion, the two merge cases
in Figure 9 will never happen, since it is impossible for a role assertion to be both
inferred and already be present in the ABox. To be more specific, a role assertion A
of the form ((a,ind) : R | Z(a ina):r, — —) can be inferred from an assertion A; only if
Ay contains Role Exists Restriction, and ind is a new individual created during the
application of Role Exists Restriction rule on A;. Hence, it is impossible to have a

role assertion that is both inferred and already be present in the ABox.

Merge As's Assertion:
. Groupwith A's
. ..cfeator Assertion
. Group

Yes
~»1 Als inferred? "‘|

— ‘Merge Ay's Assertion.)
3 A In ABox 3 A; in ABox that Group with A's creator
that is identical [> g TLA Yas | Assertion Group, and
to A? is identical to A es i Cadd Ato.t L
[T Sxcet thei i
No Yes ogﬁz;nﬂef; fc | No Add A,tO creator's B
ancior 1d .. Assertion Group]
- Ais inferred? —‘ T T T
3 A, in ABox that . AddAtoAys
N 2 i .
E» is identical to A |Yes | ASsertionGroup
except their , e
certainties, fc | NO [- - AddAtoanew
and/or fd? - Assertion Group

Figure 9: The Creation and Merge of Assertion Group(s)

There are some interesting properties about Assertion Groups. Let A;g be the set
- of all assertions in a particular Individual Group IG, let Ay, be all the assertions

in the Assertion Group AG;, and let AG,, AGs, ..., AGy, be all the Assertion Groups

106

in IG. Then, Apgg, UAsg, U - UAsg, = Ajg and Aag, N Aag; =0, for i # j. In
addition, let C;g be the set of all constraints that are associated with Individual
Group IG, and let Cyg, be all the constraints associated with assertions in the As-
sertion Group AG;. Then, Cug, UCag, U+ U Caug, = Cig and Cug, N Cag,; =0,
for 7 # j. Finally, let Vi¢ be the set of all variables that are used in Cjg, and Vg,
be all the variables associated with Cag,. Then, Vg, UVag, U-- U Vyg, = Vig and
Vag; N Vag; =0, for i # j.

By partitioning the Individual Groups into Assertion Groups, constraints can be
solved independently for each Assertion Group. This implies that the model built will
not be changed even if we solve constraints in other Assertion Groups in the same
Individual Group.

This has several advantages. First, the consistency of the Individual Group can
now be checked incrementally by inspecting the consistency of each Assertion Group.
At any given time, the constraints in one single Assertion Group are fed into the
constraint solver. If the current Assertion Group is found to be consistent, we continue
checking the remaining Assertion Groups. On the other hand, if the current Assertion
Group is found to be inconsistent, we could stop checking the remaining Assertion
Groups, since this implies that the whole Individual Group is inconsistent. Therefore,
the consistency checking could be done more effectively by considering the Assertions
Groups one by one. In the worst case, all the assertions associated with an Individual
Group are in one single Assertion Group. In such case, the performance is the same as

performing consistency checking on the whole Individual Group. To further improve

107

the performance, the Assertion Groups within an Individual Group can be sorted
based on some pre-defined criteria, such as the number of constraints plus the number
of variables in the Assertion Group. Hence, the smaller Assertion Groups will be
checked for consistency before the larger ones are checked.

A related advantage is that, in case an Individual Group is inconsistent, the rea-
soner will be able to more precisely identify the group of assertions that cause the
inconsistency instead of simply returning that the whole Individual Group is incon-
sistent.

Another advantage is that we are now able to determine the degree to which a
particular assertion (say, X) is true by simply solving the constraints in the Assertion
Group that X belongs to, without solving those of the whole Individual Group. This
is possible since, for each assertion, a link is kept to keep track of which Assertion
Group does this particular assertion belongs to. Hence, all we need to do is to solve
the constraints in that particular Assertion Group. All the other Assertion Groups
can be ignored.

Finally, since the number of constraints (and the variables used in the constraints)
in one single Assertion Group is, in general, no more than those of the whole Individual
Group, solving a few small constraints sets would be faster than solving one large

constraints set.

108

4.2.4 Optimized Individual Group Creation

The process of creating Individual Groups can be optimized so that no redundant
groups will be created. This optimization is particularly useful when we have a deep
knowledge base, i.e., when there is a long chain of role assertions in the ABox.

In the ALCy system, the process to create Individual Groups is as follows. When
a new individual is added to the ABox, it is marked as a standalone individual and its
Individual Group is initially set to null. Then, whenever a new role assertion of the
form ((a,b) : R | a, —, —) is added to the knowledge base, we get the Individual Group
that individual a belongs to (say, /G;), and the Individual Group that individual b
belongs to (say, IG). If both IG; and IG, are null, it means that both a and b are
standalone individuals. Hence, we create a new Individual Group, and add a and b
to it. On the other hand, if IG; (resp. IG,) is null and IG; (resp. IG,) is not null,
it means that individual a (resp. b) is standalone, but individual b (resp. a) already
has an Individual Group. In this case, we simply add a (resp. b) to the Individual
Group of b (resp. a). Finally, if both IG; and IG5 are not null, it means both a
and b already have Individual Groups. Hence, we need to merge IG; and /G, into
one single Individual Group. Once we finish parsing the user input, we create a new
Individual Group for each of the leftover standalone individuals in the ABox.

To illustrate this optimization, assume that we have the following assertions as
the input knowledge base:

(a:3R.F |[0.4,0.7], min, maz)

(b: E|[0.6,1],—,—)

109

(c:G|[0.1,0.9],—,—)

{(a,0) : R|[1,1], -,)

After processing the first assertion (a : 3R.F'| [0.4,0.7], min, maz), a new individ-
ual a is created, and is marked as a standalone individual. Similarly, with the second
assertion (b: E | [0.6, 1], —, —), a new individual b is created, and is marked as a stan-
dalone individual. Likewise, after processing the third assertion {(c: G | [0.1,0.9], —,
—), a new individual c is created, and is marked as a standalone individual. Finally,
the last assertion ((a,b) : R | [1,1], —, =) is a role assertion. Since both individuals a
and b do not belong to any Individual Group, a new group is created, and both a and
b are no longer marked as standalone individuals. At this point, all the assertions are
processed, and individual c¢ is the only standalone individual. Hence, we create a new
Individual Group for ¢. Finally, the concept assertion {(a : IR.F' | [0.4,0.7], min, mazx)
is the only assertion that is non-atomic in the ABox, hence further processing is
required. Based on the Role Exists Restriction Rule, a new individual ind is gener-
ated, and two assertions are added to the ABox: ((a,ind) : R | Z(q ind):r, —, —) and
(ind : F | Ting.r, —, —), where zx is the variable denoting the certainty of assertion
X. Since individual a already belongs to an Individual Group, individual ind is
added to a’s'group. So, to summarize, there are two Individual Groups in the ABox

— individuals a, b, and ind form one group, and individual ¢ forms another.

110

4.2.5 Optimized Clash Detection

The clash is detected as early as possible throughout the reasoning procedure as

follows:

e When parsing the input knowledge base, if an obvious contradiction is detected
(for instance, if the knowledge base contains both assertions (a : C' | [0, 0.2], min,
maz) and {a : C | [0.6, 1], min, maz)), a clash is detected, and no further pro-

cessing will be done.

e The non-trivial contradictions can be detected only at the constraint-solving
phase. At any time, if an Assertion Group is found to be inconsistent (that
is, the constraints set associated with this group is not solvable), then the
Individual Group that it belongs to is automatically inconsistent, which in turn
implies that the ABox is inconsistent. Therefore, the consistency-checking can

be stopped immediately.

4.2.6 Caching

To avoid redundant, repeated work, caching is employed in the ALCy system as

follows:

e Fach assertion and constraint is stored orﬂy once. This not only prevents
the same assertion being processed multip’l‘e times, but also saves the storage
space. For example, assume we have the following two assertions in the ABox:
(a:CNDY|[0.8,1], min, maz) and (a: B (CMND)|[0.6,1], min, maz). The

111

first one yields the assertions {{(a : C M D | z4cnp, min, maz), (a: C | zac, —,
—)y{a: D | zep,—,—)} and the constraints {(zq.cnp > 0.8), (min (z4.c,Za:n)
= Za;CnD)}. The second assertion will also yield the assertion (a: C M D | z,.
cnp, min, maz), however, it will not be added to the ABox since it is al-
ready there. The only new assertions we derive from the second assertion are
{{a: BU(C TN D) | zapucnp), min, maz), {a : B | a5, —,—)}, and constraints
{(za:Bucrp) = 0.6), (maz(Ta:B, To:cnp) = Ta:Bu(cnp))}, Which are added to the

ABox.

A flag is set to indicate whether completion rules have been applied to a given
assertion (resp., Individual Group). This prevents the same assertion (resp.,

Individual Group) being processed multiple times.

After the constraints in an Assertion Group are solved, the result is cached for
later use. As an example, suppose the user decides to first check whether the
whole ABox is consistent, and later on, he/she decides to check whether the
ABox associated with a particular individual, say a, is consistent. Since the
consistency of individual a was already checked when the reasoner was checking
for the consistency of the whole ABox, the reasoner will be able to return to

the user the cached result right away.

112

4.2.7 Optimized Hashing

To allow fast access, a hash table is a commonly used data structure in many software
systems, including standard DL systems. In the ALCy system, all the assertions, con-
straints, and variables are stored as hash sets, which offer constant time performance
for basic operations (including insertion of element, deletion of element, and check
if an element is a member of the set), given that the hash function distributes the
elements uniformly among the buckets [Sunb].

To minimize collisions, the hash code values are calculated based on the special
properties of the object of interest. For example, the hash code of a concept assertion
is calculated based on the hash codes of the various components that form a concept
assertion, namely the individual, the concept, the conjunction function, and the dis-
junction function. On the other hand, the hash code of a role assertion is calculated
based on the hash codes of the two related individuals as well as the hash code of the

role name.

4.2.8 Optimized String Comparison

String comparison is a commonly used operation in the ALCy system, for instance,
to check if two concept names are equal or if two assertions have clash. Since string
comparison is expensive, it is important to optimize this operation. For this, each
string used in the knowledge base is assigned a canonical reference. This allows us to

compare strings via simple reference comparison instead of a full string comparison.

113

4.3 Summary and Concluding Remarks

In this chapter, we first surveyed the well know optimization techniques used in
the standard DL systems. Note that, to the best of our knowledge, there is no
work reported on optimizing DL systems with uncertainty. Therefore, no survey was
presented in this regard.

We observed that not all optimization techniques used in the standard DL systems
can be adapted to the ALCy system. This is because some of these techniques take
advantage of the unfoldable TBox which is not applicable to the ALCy framework,
while others are specific in dealing with the nondeterministic nature of the disjunction
rule in standard DL reasoning procedures which is not needed in our context because
the ALCy reasoning procedure is deterministic.

Nevertheless, we were able to apply many optimization techniques from the stan-
dard DL systems and other software systems to the ALCy system, including lexical
normalization, concept simplification, partitioning based on connectivity as Individ-
ual Groups, optimized Individual Group creation, caching, optimized héshing, and
optimized string comparison. However, we noted that concept simplification needs
to be applied with care, because not all types of simplifications used in the standard
DL systems can be applied when uncertainty is present.

We also proposed new optimization techniques that specifically deal with the

constraint-based nature of the ALCy reasoning procedure. In particular, assertions

114

and constraints associated with each Individual Group are partitioned into indepen-
dent sets called Assertion Groups so that constraints in any Assertion Group can
be solved independently. This enables incremental checking of the knowledge base
consistency, helps in speeding-up the constraint-solving process, and allows clash to
be detected as early as possible. Note that, unlike in the standard DL systems where
the clash is always detected by applying the completion rules, the ALCy completion
rules can detect only trivial clashes. The non-trivial clashes can only be detected at
the constraint-solving phase. This is why partitioning the constraints into smaller

groups helps in optimizing the clash detection.

115

Chapter 5

URDL - A Prototype System

This chapter presents URDL — an Uncertainty Reasoner for the DL ALCy. URDL
shows the practical merits of the ALCy framework. It also serves as a test bed for
the optimization techniques described in Chapter 4. To ensure portability, URDL

was implemented in Java. Figure 10 gives an overview of the URDL architecture.

TOutput

Input

¥

Reasoner
Controller

$
Y v v

Configuration Inference Constraint | Externz.:l
Parser . i Constraint
Loader Engine Solver
Solver
URDL

Figure 10: URDL Architecture

As shown in the figure, URDL consists of five main components:

116

1. Reasoner Controller is responsible for the overall program flow. It gets the
input from the user, and delegates tasks to Configuration Loader, Parser, In-
ference Engine, and Constraint Solver in order to fulfill the user query. It then

returns the query results back to the user.

2. Configuration Loader loads and stores user preferences from the configura-

tion file.

3. Parser parses the user input, and stores the parsed axioms, assertions, and

combination functions into the knowledge base.

4. Inference Engine applies the ALCy reasoning procedure to the knowledge

base and stores the inferred assertions and constraints into the knowledge base.

5. Constraint Solver solves the set of constraints generated by the Inference
Engine by calling an external constraint solver. It then returns the result back

to the Reasoner Controller.

In what follows, we first describe each of these components in detail in Sections 5.1,

5.2, 5.3, 5.4, and 5.5. We then demonstrate URDL using an example in Section 5.6.

5.1 Reasoner Controller

The Reasoner Controller, which acts as the brain of URDL, is responsible for the

overall program flow.

117

Figure 11 shows how the Reasoner Controller interacts with the user and the other
four URDL components in a time sequence. As shown in this figure, the Reasoner
Controller first gets the knowledge base and the configuration file from the user. It
then calls the Configuration Loader to load the user preferences from the configu-
ration file, and calls the Parser to parse the knowledge base. Once parsing is over,
the Reasoner Controller augments the ABox with respect to the TBox (see Figure
43 in Appendix A) and creates Individual Groups for the standalone individuals as
described in Section 4.2.4. The Reasoner Controller then gets the user query and
calls the Parsér to parse the query. Depends on the type of user quersr, appropriate
reasoning must be performed by calling the Inference Engine, and the derived con-
straints must be solved by calling the Constraint Solver. At the end, the query result
is returned back to the user‘..

The processes of infereﬁcing and solving constraints depend on the type of user
query. The main inference services supported by URDL include: the consistency
checking which checks the consistency of the ABox with respect to a TBox, the
entailment checking which, given a knowledge base, determines to what degree an
assertion is true, and the subsumption checking which determines the degree to which
concept C is subsumed by concept D with respect to the TBox. In what follows, we

explain each of these reasoning services in detail.

Consistency Checking

There are two types of consistency checking supported by URDL. One checks the

118

. Constraint Solver

in

Inferen

Parser
[}
]
]
]
]
]
)
|
]
]
1
]
[}
1
]
;
]
]
]
|
1
}
I

B ettt e T

Create Individual Groups for standalone individuals

Augment the ABox with respect to the TBox

f=
o)
lllllllllllllllll vKIIl! PO S B
Al L
3 ST otg o
S ‘o !
g !
1)
5) 1
=]) !
= 1 |
<] ')
©] |
= 2 !)
i 1
5 sl O
=

Input KB
Input configuration

Us}er
|-;
1
t
1
]

]

'

1
I
!

!
1
|
!

!

1
1
i
T
i
i
1

Input query

T
1
!
IIIIIIIIIIIIIIIIII pEIpUEPEN S
1
¥ |
1 1
1 I
1 |
1 |
1 1
I |
3 !
1 1
i t
i |
[} |
- e o ! P I
. R s T e .
' I 1
1 | 1
1 I |
1 1 1
I t t
| i '
I i |
| ! t
P g 1 !
_.m ! t
1 1 !
_...1 lllllll T i Y PSS SR AU ERp
i c 1 i
1 1O I '
t ® 1 © 1 '
t bt [1 i
i b3 3 i i
' o % § '
1 S 1 1 1
' = 1 1 i
! = 1 1)
1 E 1 ! i
1 1 ! '
fd i s i 1 1
@ } 3] i i !
B f-—t-ToQ qm-—b - | et Sk (it bl
o t 1 1)
gl . !
©
' 1 | i
e i 1 ! |
t 1 | t
] 1 i 1
i 1 i '
1 1 | i
i 1 i |
1 ! | i
! [| 1
i 1 t i
NS Ll !
i
!
b-- R, ol e
! t
! t
| i
= | |
3 g1 |
<] @ ! [}
a e | !
= !
3 flll! |0
= a [T) @
£ =)
= Q I _[
T
!

Figure 11: General sequence diagram for URDL

119

consistency of the entire ABox with respect to the TBox, and the other one checks
only the ABox associated with a particular individual (also with respect to the TBox).

If the consistency of the entire ABox is checked, we need to iterate through all the
Individual Groups in the ABox. As soon as any of the Individual Groups is found to
be inconsistent, the entire ABox is inconsistent. Otherwise, the ABox is consistent
with respect to the TBox. Figure 12 shows how the Reasoner Controller, the Inference

Engine, and the Constraint Solver interact with each other in a time sequence.

: Reasoner Controller > Inference Enagine : Constraint Solver

_ | Checkconsistency
r of the entire ABox

i

i

'

User !
:

i

w.r.t. TBox '

|
Loop [For each Individual Gr}oup G in the ABox]
1

]
Perform inference oq /3

1

Loop | [For each Assertion Group AG in IG]
!

I

|
Solve constra'ints in AG
1

i

[Constraints in AG

ABoxw.r.t. THox are not soivable]

is inconsistent

ABox w.r.t. TBox
is consistent

|

|

|

|

e

[Re)

13

14

|'1
o,

'3

(B

)

=X

=

1.3

@
-

'@

%]

=

=

1

l

1

\

1

1

I
I
]
I
|
I
I
|
]
t
}
|
]
|
I
]
i
1
J
|
I

Figure 12: Sequence diagram for consistency checking of ABox with respect to TBox

120

On the other hand, if only the ABox associated with a particular individual, say
ind, is to be checked, we need to first get the Individual Group that ind belongs
to, perform inference on this Individual Group, and solve the constraints associated
with the Assertion Groups that are related to ind. If any of these constraints sets is
not solvable, the ABox associated with ind is not consistent. Otherwise, the ABox
associated with ind is consistent. The sequence diagram illustrating these interactions

can be found in Figure 13.

Entailment Checking

Recall that the entailment checking determines the degree to which an assertion A
of the form {a: C | zac, fe, fa) is true, given an ALCy knowledge base. For this,
let A’ be an assertion of the form (a: —C | z4.-c, fe, fa). If individual a is already
in the ABox, we apply completion rules to the Individual Group that a belongs to,
if this group has not been inferred in the past. Then, if A’ is not present in the
ABox, we temporarily add it and apply the completiqn rules to its Individual Group.
After that, we get the Assertion Group that A’ belongs to, and solve the constraints
associated with it. Finally, the entailment degree is returned. The sequence diagram

for entailment checking is shown in Figure 14.

Subsumption Checking
The subsumption checking determines the degree to which a concept C' is subsumed
by concept D with respect to a TBox. For this, let (C' T D | z¢cp, fe, fa) be the

subsumption relationship to be checked, and let A be an assertion of the form

121

. Reasoner Controller . Inference Engine . Constraint Solver

User

1
1 Check consistency of
ABox associated with

]
I
I
1
I
i
1
]
1
individual ind {

T
!
!
I
|
'
|
|
f
i
i
)
|
i

]
Get the Indivﬁdual Group /G that
ind belongs th

|
Perform inference Orﬁ
A

]
Get the Assepion Groups AGs that
ind belongs t?

Loop I [For each Assertion Gjoup AG in AGs]
|
Solve constraints in AG

b o e e e e e e e o}

1
Constraint-solving result

ind is consistent

. Consirant swngrosut | |
' '
Alt E i
ABox associated with [Constraints in AG | |
ind is inconsisten are not solvable]) |
| z
' |
ABox associated with : :
] 3
] i
]]
] i
I3 i

Figure 13: Sequence diagram for consistency checking of ABox associated with an
individual

122

: Reasoner Controller < Inference Engine . Constraint Solver

User

)
! Check the degree to which}

an assertion A true, given:
the knowledge base |

Alt | [lndividualaisiin ABox]
]

|
Get the Indivlfidual Group /G that

a belongs o

]

Perform inference on Ié

T
Alt l {A'is not in ABbx]
1
> Temporarily hdd A’ to the ABox
1
i
Get the lndivldual Group /G that
A’ belongs to, if a was not in ABox
1

. '
Perform inference on\lb dueto A’

[}
Get the Assejtion Group AG that
A'belongs to]

i
Solve constraints in AG

' il
e_____PQES_t@'_"l'SlQ'\QQQ_V_eiU_“ ______
Alt l [A" was not in ABox}
1

[}
Restore ABox to its original state
Return the degree !

that A is true

-]
/|\

Figure 14: Sequence diagram for entailment checking

123

(a: CM =D | Ze.cn-p, fe, fa), where a is a new individual name. To find the sub-
sumption degree, we temporarily add A to the ABox, and apply completion rules
to the Individual Group that A belongs to. After that, we get the Assertion Group
that A belongs to, and solve the constraints associated with it. Finally, the subsump-
tion degree is returned. Figure 15 illustrates the sequence diagram for subsumption

checking.

: Reasoner Controller . Inference Engine : int Solv

]

1

i

i

User :
| Check the degree to which|

ot

concept C is subsumed by
concept D w.r.t. a TBox :

i
]
1
|
|
|
1
|
3
I
!
i
}
i

]
> Temporarilyladd A to the ABox
)

i
1
Get the Indiidual Group /G that
A belongs tq
]
Perform inference on ﬁ
S .
{

|
Get the Asseftion Group AG that

A belongs to

)

Solve conétraints in AG

T
Constrain‘-solvin resuit l l
6_. ____________ G——— _.g_ ________

J

|

| i

> Restore ABox to its original state |
Return the | :
i

1

I

]

1}

1}

subsumption degree

-
T

i

|

I

!
__.__{

Figure 15: Sequence diagram for subsumption checking

124

5.2 Configuration Loader

The Configuration Loader is responsible for loading user preferences from the config-
uration file, and storing the preferences into the reasoner for later use. All the user
preferences are stored as name-value pairs. For example,

certaintylLattice = [0,1]

enableCaching = true

The user preferences can be divided into three categories:

1. System preferences are those that are related to the operation of URDL,

such as the location of the external constraint solver.

2. Printing preferences are concerned with URDL’s information display, such
as whether or not to print the running time. Each preference has a boolean

value.

3. Optimization preferences are directives used to define optimization of the
reasoner in effect during the reasoning procedure, such as whether caching

should be turned on or off.

All the user preferences are optional. In case no user preference is specified, default
values are used. The complete list of the user preferences and their descriptions can

be found in Tables 33, 34, and 35 in Appendix A.

125

5.3 Parser

The URDL parser is responsible for parsing the user inputs, and storing them into
the knowledge base. The module for parsing the user inputs was generated using
JavaCC (Java Compiler Compiler) [Jav], which is an open source parser generator
that gets the grammar in EBNF (Extended BackusNaur Form) notation as the input
(see Table 36 in Appendix A), and generates a parser in Java as the output.

Like in many standard DL systems, URDL uses the prefix notation to repre-
sent the description language. Table 5 shows the correspondence between the ALCy
description language syntax and the URDL syntax. Note that URDL allows the key-
words to Ee in either lowercases or uppercases, although we show the keywords only

in lowercases in the table.

ALCy Syntax | URDL Syntax
T *top*

L *bottom*

-C (not C)

cnbD (and C D)
cubD (oxr C' D)

3R.C (some R C)
VR.C (all R C)

Table 5: Correspondence between the ALCy description language syntax and the
URDL syntax

The axioms and assertions in URDL are also represented using the prefix notation.
Table 6 shows the correspondence between the ALCy syntax and the URDL syntax.
To interpret the description language and the knowledge base, the combination

functions that are used in the knowledge base must be defined by the user. There are

126

ALCy Syntax URDL Syntax

(ACC|[l, u), fo, fa) | (define-primitive-concept A C | [l, ul, fe, fa)
(A=C |l u], fe, fa) | (define-concept A C | [I, u}, fe, fa)

(C ED ‘ [lr u]: fC) fd) (implies ¢ D l [l’ u]: fca fd)
(C=D||[l, ul, fe, fa) | (equivalent C D | [l, u, fe, fa)
((
((

a:C|[l,u], fo fa) instance a C | [I, ul, fe, fa)
(a,b) : R|[l, u], —, =) | (related a b R | [I, u}, —, —)

Table 6: Correspondence between the ALCy knowledge base syntax and the URDL
syntax

two types of functions supported in URDL ~ general functions and special functions.
The general functions are defined using the following syntax:
FunctionName(parameter;, parameters) = FunctionDefinition
where parameter; and parameters are two variable names, and FunctionDefinition is
any expression formed by using numbers, the defined variable names (i.e., parameter;
and/or parameters), and operators +, —, %, and /, with the appropriate parenthesis
in place. For a more intuitive way of defining functions, we employ the infix notation
for combination functions. For example, the independent function can be defined as:
ind(z,y) = (z+y) — (z*y).
In addition to general functions, there are two types of special functions that can
be defined using the following syntax:
maz(parameter;, parameters) = maz(expression;, expressions), and
min(pammeierl,'pammeterg) = min(expression;, expressiong)
where pardmetér; and parameter, are variable names, and expression; and expressions
are any expressions formed by using numbers, the defined variable names (that is,

parameter; and/or parameters), and operators +, —, x, and /, with the appropriate

127

parenthesis in place. For example, using Lukasiewicz logic, the conjunction function
can be defined as: maz(z,y) = maz(0, ((z + y)— 1)), and the disjunction function
can be defined as: min(z,y) = min(1, (z +y)).

Once the axioms, assertions, and combination functions are parsed, they are stored
into the knowledge base. Since the procedures for storing axioms and combination
functions are straightforward, we focus mainly on the procedure for storing assertioné‘

Before an assertion A is added to the ABox, we check whether it clashes with
any of the existing assertions in the ABox. If no trivial clash is detected, we need to
determine the appropriate Assertion Group to add A, using the decision procedure
presented in Figure 9. If A is an atomic assertion, the Concept Assertion rule is
applied. On the other hand, if A is a role assertion, the Role Assertion rule is applied.
In addition, we need to determine which Individual Group should the individuals in
the role assertion be placed, using the decision procedure presented in Section 4.2.4.
The pseudo-codes for adding assertions into the ABox are presented in Figures 44,

45, 46, and 47 in Appendix A.

5.4 Inference Engine

In URDL, inference is performed on one Individual Group at a time. The Inference
Engine is not only responsible for applying cofnpletion rules, but also for ensuring
that the rules are being applied in the proper order. In this section, we study the

completion rule application policy. We then present the non-generating rules and the

128

generating rules in detail.

Completion Rule Application Policy

To ensuré that the completion rules are applied in a right order, specific completion
rule application policy is followed. Figure 16 shows the procedure of completion rule
application, where “generating rule” refers to the Role Exists Restrictions rule, and

“non-generating rules” refer to all the other completion rules.

// Apply the completion rules to an Individual Group, IG
Do

{

Step 1: Apply non-generating rules as long as possible to IG.

Step 2: Apply a generating rule and restart with Step 1 as long as possible.

} While there is more change made to the ABox associated with IG.

Figure 16: Completion rule application policy

This order of applying completion rules ensures that rules are applied to generated
individuals only if no more rule is applicable to the defined individuals. In addition, if
I, and I, are two generated individuals, and if I is a predecessor of I5, the completion
rules are applied to /5 only if no more rule is applicable to ;. This enforces the breadth

first order.

Generating and Non-Generating Rules
Non-generating rules refer to all the completion rules except the Role Exists Restric-

tion rule. The algorithms for the generating rules are straightforward, since they

129

can be directly translated from the completion rules described in Section 3.3.3. The
pseudo-codes for the Negation, Conjunction, Disjunction, and Value Restriction rules
can be found in Figures 48, 49, 50, and 51 respectively in Appendix A.

The Role Exists Restriction rule is also known as the generating rule, since this
rule can introduce generated individual. To ensure termination, blocking condition is
checked whenever the Role Exists Restriction rule is triggered to determine whether
or not a new individual needs to be generated. That is, let ind be the individual
in the assertion that triggered the Role Exists Restriction rule. If ind is a defined
individual (refer to Definition 3.2.1), it is not blocked. Otherwise, ind is a generated
individual, and we need to check if it is directly blocked by its predecessor. If it is
not, then check if ind is indirectly blocked by its ancestors. The pseudo-code for the
Role Exists Restriction rule is presented in Figure 52 in Appendix A.

Due to the optimization employed in URDL, each assertion is processed by the
Inference Engine only once. That is, once the completion rule is applied to a given as-
sertion, it is marked as being processed, and will not be processed again in the future.
Although this method can avoid the reasoner from doing repeated work, it could‘ po-
tentially cause some missing completion rule applications. Consider the following ex-
ample. Assume that there are three assertions in the ABox: {(a: VR.D | Z,vr.p, min,
maz), ((a,b) : R | (ap):r, — —), and (a : IR.C | za:3p.c, min, maz), and for simplic-
ity, there is no axiom in the TBox. According to the policy for application of
completion rules (see Figure 16), we apply all the non-generating rules before the

generating rule is applied. Hence, we first apply the Role Value Restriction rule

130

to (a:VR.D | Z.vr.p, min, maz) and mark it as being processed. We then apply
the Role' Exists Restriction rule to (a : 3R.C | z4.3r.c, min, maz). Since individual a
is not bl;)cked, a new individual ind is generated, and the assertions ((a,ind) : R |
T(a,ind);:R, — —) and (ind : C' | Ting.c, —, —) are derived. At this point, since the as-
sertions in the ABox are either processed or do not need to be processed (for role
assertions and atomic assertions), we would stop the application of completion rules.
However, this will cause one missing rule application, since the newly generated role
assertion ((a, ind) : R | Z(4,inayr, — —) together with the assertion (a : VR.D | Zo.vr.D,
min, maz) should trigger the Role Value Restriction rule. However, since the asser-
tion {a : VR.D | Z,.vr.p, min, maz) is already marked as being processed, it will not
be processed again. To overcome this problem, at the end of the Role Exists Restric-
tion rule, we need to check whether it is necessary to further process the Role Value
Restriction assertions associated with the given individual due to the newly derived

role assertion (see the pseudo-codes in Figures 52 and 53).

5.5 Constraint Solver

The Constraint Solver is responsible for solving the constraints generated by the In-
ference Engine by calling an external constraint solver, and returning the result back
to the Reasoner Controller. In URDL, RealPaver [Rea] is used as the external con-
straint solver, which is capable of solving linear/nonlinear equations and inequations

over integer and real variables.

131

The constraints associated with one Assertion Group are solved at a time. To solve
the constraints, the Constraint Solver first checks if the given Assertion Group was
solved in the past. If so, it simply returns the cached result. If not, the constraints
are transformed into the format used by the external constraint solver, which are
then written into a file. Finally, the external constraint solver is called to solve the
constraints, and the constraint-solving result is parsed and cached.

The process for transforming the URDL constraints into the format recognized by
RealPaver is straightforward. For example, the constraint (z,.c € [0.4,0.6]) in URDL
is transformed into two constraints (z,.c > 0.4) and (2,.c < 0.6) in RealPaver. One
restriction about RealPaver is that it does not accept special characters such as “”
inside variable names. Inaddition, it allows only variable names of length up to 40
characters. If the variable name is over 40 characters, it will be truncated. This
may lead to unexpected results if there are multiple long variable names that have
identical prefix in the first 40 characters. To overcome these problems, during the
constraint rewriting, we map all the variables into short, generated variable names
before they are written to files that are used by RealPaver.

The more complicated constraint rewriting comes when the constraint includes
combination functions. For these constraints, the combination function name used
in the constraint must be replaced with the corresponding func‘pion definition. For
example, suppose we have the constraint: ind(2,.c, Zo.p) = Ta:cup, Where ind is the
independent function defined as: ind(z,y) = (z + y)— (z *y). Then, the constraint

will be translated into: (Z4.c + Zo.p) — (Ta:c * Ta:p) = Ta:cubD-

132

Once the constraints are written to the file, the external constraint solver, Real-
Paver, is called to solve the constraints. Since it is possible for RealPaver to terminate
abnormally (such as in case of stack overflow), a thread is created to monitor such

abnormal termination.

5.6 Experimenting with URDL

In this section, we demonstrate URDL by extending the example described in Sec-
tion 1.3. Let us interpret this example as a fuzzy knowledge base, where the state-
ment “The certainty that an obese person would have heart disease lies between 0.7
and 1”7 can be expressed in ALCy as the axiom (QbesePerson T HeartPatient | [0.7,
1], min, maz), and the statement “John is obese with a degree between 0.8 and 1”
can be captured as the assertion (John : ObesePerson | [0.8,1], —,—). Assume that,
in addition to the above information, we also know that John is a male person. His
mother, Mary, is a diabetes patient. We also know that the certainty of a female
person being a breast cancer patient is at least 0.65, and the certainty that somebody
who has a diabetes mother is a diabetes patient is at least 0.9. Finally, we also know
some general information, such as a male person is disjoint with a female person, and
that the range of the role hasMother is a female person. Figure 17 illustrates how

this knowledge base is represented using URDL syntax.
To determine the certainty with which John is a heart patient, we apply the

entailment checking. As expected, this gives a certainty between 0.7 and 1, as shown

133

(implies ObesePerson HeartPatient | [0.7, 1], min, max)

(instance John ObesePerson | [0.8, 1], -, -)

(instance John MalePerson | [1, 1}, -, -)

(related John Mary hasMother | [1, 1], -,-)

(instance Mary DiabetesPatient | {1, 1], -,-)

(implies FemalePerson BreastCancerPatient | [0.65, 1], min, max)

(implies (some hasMother DiabetesPatient) DiabetesPatient | [0.9,1], min, max)
(implies (and MalePerson FemalePerson) *bottom* | [1, 1], min, max)

(implies *top* (all hasMother FemalePerson) | [1,1], min, max)

Figure 17: Example represented using URDL syntax

in Figure 18.

dPlease choose one of the following options:
1. Consistency checking.

. Entailment checking.

. Subsumption checking.

. Exit.

; hoice [1 to 4]: 2

{Please enter the assertion to be checked:

For example: (instance? Individual Concept | fc, fd)
L (related? Individuall Individual2 Role)
§»> (instance? John HeartPatient | -, -)

dThe entailment degree is [0.7000,1.0000]

Figure 18: URDL screenshot

Other interesting queries can also be posted. For example, to find out the certainty
that John is a diabetes patient or a heart patient, we input the query:

(instance? John (or HeartPatient DiabetesPatient) | min, max)
which returns an entailment degree between 0.9 and 1. This is due to the inferred
fact that the certainty with which John is a diabetes patient is at least 0.9, whereas

the certainty that John is a heart patient is at least 0.7.

134

Consider another query for which we would like to know the certainty that John
has a mother who is both a breast cancer patient and a diabetes patient. For this,
we input the query:

(instance? John (some hasMother (and BreastCancerPatient

DiabetesPatient) | min, max)
and we obtain an entailment degree of at least 0.65. It is interesting to note that,
although we did not explicitly assert that Mary is a female person, we inferred that
Mary is a breast cancer patient with a certainty of at least 0.65 through the fact that
Mary is John’s mother, a mother is a female person, and a female person is a breast

cancer patient with a certainty of at least 0.65.

5.7 Summary ahd Concluding Remarks

In this chapter, we presented the five components that made up URDL. The Rea-
soner Controller, which acts as the brain of URDL, first gets the knowledge base and
configuration preferences from the user. It then calls the Configuration Loader to
load the user preferences and calls the Parser to parse the knowledge base. It then
gets the user query and calls the Inference Engine to apply the reasoning procedure.
Finally, the derived constraints are solved by calling the Constraint Solver and the
query result is returned to the user.

URDL contains roughly 8500 lines of Java code, among which 1150 lines of code

are mixed with JavaCC syntax used to generate the URDL parser. The main reason

135

to use JavaCC (formerly known as Jack, developed by Sun Microsystems) as our
parser generator was that it is open source, has intuitive syntax, and the parser it
generates conforms well to the Java standard. One problem we encountered during
the development of URDL was that, by default, JavaCC emits Java SE version 1.4
source code when generating the parser. However, since URDL was programed using
Java’s generics feature [Mah04] which is available only for Java SE versions 5.0 and
later, we had version incompatible problem [Suna]. This problem was solved by
setting the JDK_VERSION flag in JavaCC, which specifies the Java version to be
used to generate the parser [Cop07].

URDL used RealPaver as its external constraint solver, since it is open source,
is capable of solving linear/nonlinear equations/inequations over integer and real
variables, and is freely available. Note, however, that URDL can be easily modified
to use other external constraint solvers, since we only need to rewrite the constraints
to a syntax accepted by the constraint solver, call the appropriate solver, and parse the
result returned from the solver. RealPaver also inspired us to optimize the constraint-
solving aspect of URDL. As we will present in Section 6.3.1, when the knowledge base
size increases, the constraints set becomes too large for RealPaver to handle. This
inspired us to partition the constraints into smaller, independent sets as we presented

in Section 4.2.3.

136

Chapter 6

Performance Evaluation

In this chapter, we study the performance of URDL and show the effectiveness of the
optimization techniques described in Chapter 4. All the experiments were conducted
under Windows XP Professional on an Intel® 2.40 GHz Core™2 computer with
3.25 GB of RAM. All the time measures are in seconds, and were computed as the
average of ten independent runs. In addition, the time measures in the figures are
shown in logarithmic-scale.

In what follows, we first describe in Section 6.1 the test cases used to evaluate
URDL. We then present the performance of URDL in Section 6.2. Finally, Section

6.3 demonstrates the effect of the proposed optimization techniques.

137

6.1 Test Cases

Since we were unable to find suitable test cases to evaluate the performance of URDL,
we had t;) either manually create or write test case generators to generate the test
cases.

First, to see how different properties of the knowledge base affect URDL’s per-
formance, we manually created some test cases that are similar in many aspects but
differ in some details. These test cases were created by first carefully building a
standard ALC knowledge base that makes use of all the ALC description language
constructors. Then, different variations of this knowledge base were created by tuning
its certainty domain, combination functions, and the type of axioms. The properties
of the test cases are shown in Table 7, including: the number of concept assertions
(C) in each test case, the number of role assertions (R), the number of axioms with
necessary condition (N), the number of axioms with concept definitions (D), the com-
bination functions (F), the certainty domain (V), the number of Individual Groups
(IG), the number of Assertion Groups (AG), the width of the ABox (W), and the

height of the ABox (H).

| Test Case C|R|[N|D]JF | v JIG]AG|W|H]
Standard 1512 | 5|0 | min/maz {0,1}{ 3 | 8 |25|6
Min-Max 1512 | 5|0 | min/maz o 1Cl0,1] 1 3| 8412516
Mixed 1512 | 5|0 | min/maz/prod/ind | C[0,1] | 3 | 159 | 44 | 6
Min-Max/Def | 15 {2 | 0|5 | min/mazx Clo,1} | 3 | 13|58 |6

Table 7: Properties of test cases

Note that all the test cases have the same number of axioms and assertions. The

test case Standard is a standard ALC knowledge base, where we use {0, 1} for the

138

certainty domain, and min and maz for its conjunction and disjunction functions.
The test case Min-Max is a fuzzy knowledge base, which uses the same combination
functions as the standard case, and C[0, 1] as the certainty domain, where C[0,1] is
the set of closed subintervals e, §] in [0, 1] such that & < 8. The test case Mixed is
very similar to the test case Min-Max, except that half of its axioms and assertions
use non-linear functions like product (prod) and independent (ind) functions as the
combination functions, and the other half use simple functions like min and maz.
The test case Min-Max/Def differs from the test case Min-Max in the type of axioms
it contains. That is, Min-Max/Def contains axioms with concept definitions instead
of those with necessary conditions.

The second type of test cases is used to test scalability of URDL. Since it is
not feasible to create test cases with thousands of axioms/assertions manually, we
developed test case generators that automatically generate test cases with different

properties, including:

1. Complexity (simple or complex). The simple test cases contain only asser-

tions, while complex cases include both axioms and assertions.

2. Shape (deep or wide). The deep test cases contain chains of role assertions of

the form ((Zo, I) : Ro | @0, fe, fa), (11, I2) : Ry | au, fe, fa), (12, I3) : Ry | ag, fo,

fa), --.. On the other hand, wide test cases contain tree-like role assertions of the

form ((107 Il) : RO l o, fC7 fd)> ((10712> : Rl l o, fm fd>> ((10713) : RO [Qg, fm fd}:

.... These two shapes are shown in Figure 19 (a) and (b), respectively.

139

10380

R, Re R Ry

O

(a) (b)

Figure 19: Deep (a) and Wide (b) test cases

3. Size. The size of the test cases refers to the number of role assertions in
the original ABox, since these assertions form the preliminary shape of the
knowledge bases. For example, for a deep test case of size 10, we have a chain of
ten role assertions in the knowledge base. On the other hand, for a wide test case
of size 10, the ten role assertions form a tree-like structure. Moreover, for simple
test cases, additional concept assertions are asserted for each individual in the
ABox, and for complex test cases, additional axioms with concept definitions

are asserted.

Table 8 lists the properties of some generated test cases. The test cases are named
based on the three properties of the test cases. For example, the test case Simple-—

Deep-50 refers to a test case that is simple, deep, and its size is 50.

140

| Test Case |CIRIN]ID] F [V |[IG|]AG| W] H|
Simple-Deep-10 111 10/ 0| 0| min/maz | [0,1] | 1 21 1] 10
Simple-Deep-50 51| 50| 0| O|min/max | [0,1]] 1 101 1] 50
Simple-Deep-100 | 101 | 100 | 0 | 0| min/maz | [0,1] | 1 201 1| 100

o

Simple-Wide-10 111} 10 0 | min/maz | [0,1] | 1 21| 10 1
Simple-Wide-50 51| 50 0| min/maz | [0,1}] 1 | 101] 50 1
Simple-Wide-100 | 101 {100 | 0 | O | min/maz |[0,1]| 1 | 201|100 | 1

[e=]

10 | min/mazx 3 | 527 | 28| 14

o

Complex-Deep-10 21 10

[0, 1]
Complex-Deep-50 2| 500 |10 |min/mazx |[0,1]| 3 | 2142 | 28| 54
Complex-Deep-100 21100| 0 | 10 | min/maz | [0,1] | 3 | 4179 | 28| 104

=3

Complex-Wide-10 2] 10 10 | min/maz | [0,1) | 3 | 527 | 78| 5
Complex-Wide-50 50 10 | min/mazx | [0, 1] 2142 | 318
Complex-Wide-100 21100 0 |10 | min/maz | [0,1} | 3 | 4179 | 618 5

[\
[an}
w
ot

Table 8: Properties of some generated test cases

6.2 Performance Evaluation Results

The performance of URDL is evaluated based on the time it takes to load the knowl-
edge base (Load), to apply the completion rules (Inference), to solve the constraints
(Constraint-Solving), and other input/output time (I/0). Therefore, the overall run-
ning time (Total) can be computed by summing up the above four time measures.
Note that the runningitime reported in this section is measured when all URDL’s op-
timization features are enabled. The comparison between the performance evaluation
results with or without an optimization will be given in Section 6.3.

Table 9 shows how URDL behaves for the test cases listed in Table 7. Recall that
these tes’c} cases are similar in many aspects but differ in some details, which allow us
to study the effect of different properties of the knowledge base on the running time.

From the above table, we can make the following observations:

141

| Test Case | Load | Inference | Constraint-Solving | 1/0 | Total |
Standard 0.014 0.10 2.19 0.22 | 2.52
Min-Max 0.015 0.10 247 019 278
Mixed 0.016 0.17 12.92 0.32 | 13.43
Min-Max/Def | 0.016 0.54 21.36 0.29 | 22.20

Table 9: Performance measures in seconds

1. The time spent on solving constraints dominates the overall running time for all
the test cases. This shows the importance of optimizing the constraint solving

process.

2. When the certainty domain is [0, 1] (for the test case Min-Max), it takes longer
to solve the constraints than when the certainty domain is {0,1} (for the test
case Standard). This can be attributed to the way that the external constraint

solver, RealPaver, deals with the certainty values.

3. It takes much longer to solve constraints that include some nonlinear functions
(for the test case Mixed) compared to dealing with only simple constraints (for
the test case Min-Max). This is due to the way that RealPaver handles different

functions.

4. A TBox consisting of axioms with concept definitions (for the test case Min-Max/
Def) takes much longer to perform the inference and to solve constraints com-
pared to a TBox consisting of axioms with necessary conditions (for the test
case Min-Max). This is expected since each axiom with concept definition of the
form (C = D | a, f, f4) is equivalent to two axioms with necessary conditions

of the form (C C D | a, f, fa) and (D E C | o, fo, fa)-

142

To test scalability of URDL, we measured the running time of the test cases listed in
Table 8. Recall that these generated test cases are of different complexities (simple
or complex), shapes (deep or wide), and sizes.

We first study the performance of the simple test cases. Figures 20 and 21
show the performance of the test cases Simple-Deep and Simple-Wide respectively.
The x-axis in a figure indicates the sizes of the test cases, and the y-axis shows the
running time in seconds using logarithmic-scale. For example, Figure 20 illustrates
how different sizes of the test case Simple-Deep behave by showing the running time
as the load time, the inference time, the constraint-solving time, other I/O time,
and the total time. For instance, consider the test case size 100, which gives the
performance of the test case Simple-Deep-100 (see Table 8). It takes 0.01 second to
apply the completion rules, 0.0S second to load the knowledge base, 0.5 second for
input and output operations, and 3.35 seconds to solve the constraints. So, the total
running time is 3.94 seconds.

From Figures 20 and 21, we can observe that, when the knowledge base is simple
(i.e., one that has only ABox and no TBox), not much time is spent on performing
inferences. In addition, when the knowledge base is wide, the time spent on loading
the knowledge base increases rapidly. This is because, as the knowledge base becomes
wider, the time to access/store the assertions from/to the knowledge base increases
(as the parser needs to check for possible duplications, conflicts, and so on). This
shows the importance of using an efficient data structure to store the assertions, and

efficient string comparisons.

143

Performance (Simple-Deep)

~©— Load

—0— Inference

-2 Constraint-Solving
->—1/0

—— Total

Time (seconds)

Test Case Size

Figure 20: Performance of the test cases Simple-Deep

1000 -
@ 100 o Load
: o ~0- Inference
(3]
: -4 Constraint-Solving
g 1 -~ 1/0
E L—_O——— Total
0.01
P PP PSS S
\Q (:;Q \QQ ‘]/QQ %QQ D‘QQ bQQ /\cﬁg

Test Case Size

Figure 21: Performance of the test cases Simple-Wide

144

Performance (Complex-Deep)

1000
~ 100
» -~ Load
§ 10 ~{3- Inference
o & Constraint-Solving
e ! —¢1/0
E —o— Total
=01
0.01
10 15 25 50 75 100 125 150 175 200
Test Case Size
Figure 22: Performance of the test cases Complex-Deep
Performance (Complex-Wide)
1000 -
__ 100 -
0]]~<»~ Load
§ 10 ! - Inference
8 | —a— Constraint-Solving
e 1 E—x—— 1/0
F o ooq | —— Total
0.1 ——— . . - {
10 25 50 75 100 1256 150 175 200
Test Case Size

Figure 23: Performance of the test cases Complex-Wide

145

We next study the performance of the complex test cases Complex-Deep and
Complex-Wide as shown in Figures 22 and 23 respectively. The experimental results
show that, when the knowledge bases are complex, the time spent on inferencing
exceeds the time spent on loading the knowledge bases. This situation is reversed
when the knowledge bases are simple. Indeed, it takes much longer to perform
inferences when the TBox is not empty. This is because, as described in Section 3.3,
for each individual in the ABox, we must assert that it satisfies all the axioms in
the TBox. Note also that, when the knowledge bases are wide, the time spent on

applying inference rules exceeds the time spent on I/O as the test case size increases.

6.3 Optimization Effects

In order to test the effect of the optimization techniques mentioned in Chapter 4, the
test cases were run with one or more of the optimizations disabled. The performance
improvement was measured using the speed-up factor, which is defined by the following

formula:

T,
Speedup = Tooﬁ (1)

where Speedup is the speed-up factor, »and Tog and To, are the running times when
a particular optimization is turned off and on respectively. We also use “T/0O” to
denote “Time-Out” when a running was forced to terminate, and “N/A” to denote
“Not Applicable.”

In what follows, we present the experimental results for optimization techniques

146

including partitioning based on connectivity, optimized Individual Group creation,
optimized clash detection, caching, optimized hashing, and optimized string compar-
ison. Since lexical normalization and concept simplification are optimization tech-
niques directly adopted from the standard DL systems, we suppress the experimental
results for these two techniques. At the end of this section, we also present the overall

effect of the optimization techniques.

6.3.1 Effect of Partitioning Based on Connectivity

Recall that an ABox can be partitioned based on connectivity into Individual Groups
and Assertion Groups, as described in Section 4.2.3. To test the effect of the dif-
ferent bases for partitioning, we measured the total running time when the ABox is
partitioned into Assertion Groups (AG), Individual Groups (IG), and when there is
no partition at all (ALL). Moreover, we compared these time measures using three

different speed-up factors:

Tic

SpUpic/ac = Tog (2)
T

SpUpari/ic = 71‘1? (3)
T

SpUpaLL/ac = CZ::I;L @)

where SpUp denotes the speed-up factor, and Ty¢, Tig, and T4y, denote the running
times when the ABox is partitioned into Assertion Groups, Individual Groups, and
when there is no partition respectively.

Figure 24 and Table 10 show the performance improvement of partitioning based

147

on connectivity for the test cases listed in Table 7. It is interesting to note that,
regardless of the certainty domain, the combination functions, and other factors, we
achieved the best performance when the ABox was partitioned into Assertion Groups,

and the worst performance when the ABox was not partitioned.

Partitioning Based on Connectivity

100
'g Assertion Group
g 10 m Individual Group
@ 3 No Partition
ig

Classical Min-Max Mixed Min-Max/Def
Test Case

Figure 24: Effect of partitioning based on connectivity

| Test Case | AG l IG ALL SPUPIG/AG SPUPALL/IG l SpUpALL/AG I
Standard 2.52 3.42 4.84 1.36 1.42 1.92
Min-Max 2.78 4.15 6.17 1.49 1.49 2.22
Mixed 13.43 | 25.54 28.99 1.90 1.14 2.16
Min-Max/Def | 22.20 | 37.24 | 100.58 1.68 2.70 4.53

Table 10: Effect of partitioning based on connectivity (in seconds)

To study how the complexity, the shape, and the size of a test case affect the
partitioning technique, we evaluated the performance of the test cases Simple-Deep,
Simple-Wide, Complex-Deep, and Comples-Wide. Figures 25, 26, 27, 28, and Tables
11, 12, 13, 14 indicate the experiinental results.

There are some interesting observations that can be made about these test cases:

148

1000
2 o
g 100 ~O— Assertion Group
§ —0— Individual Group
g 10 | =—No Parttion
=

e S & & & & &
R RN P OIS S

Test Case Size

Figure 25: Effect of partitioning based on connectivity - Simple-Deep

| Test Case 7 AG | 1G l ALL l SpUplg/AG l SpUpALleG } SpUpALL/AG I
Simple-Deep-100 394 | 127 127 0.32 1.00 0.32
Simple-Deep-250 6.64 6.04 6.03 0.91 1.00 0.91
Simple-Deep-500 20.28 | 23.60 | 23.65 1.16 1.00 1.17
Simple-Deep-750 31.25 | 50.98 | 50.99 1.63 1.00 1.63
Simple-Deep-1000 41.22 | 87.25 | 87.61 2.12 1.00 2.13
Simple-Deep-1100 43.13 | 105.22 | 104.70 2.44 1.00 2.43
Simple-Deep-1300 48.09! T/O| T/O N/A N/A N/A
Simple-Deep-1500 56.85 | T/O| T/O N/A N/A N/A
Simple-Deep-1750 6929 | T/O| T/O N/A N/A N/A
Simple-Deep-2000 7.7 T/O| T/O N/A N/A N/A
Simple-Deep-3000 | 121.57 | T/O | T/O N/A N/A N/A
Simple-Deep-4000 | 156.77 [T/O | T/O N/A N/A N/A
Simple-Deep-5000 | 223.28 | T/O T/O0 N/A N/A N/A
Simple-Deep~7500 | 336.54 | T/O T/0 N/A N/A N/A
Simple-Deep-10000 | 461.22 | T/O | T/O N/A N/A N/A

Table 11: Effect of partitioning based on connectivity - Simple-Deep (in seconds)

149

Partitioning Based on Connectivity (Simple-Wide)

1000
0)
5 100 —~o— Assertion Group
;‘; —0— Individual Group
g 10 -~ No Partition
g

S . & & LS o
S & G %Q@ & &

Test Case Size

Figure 26: Effect of partitioning based on connectivity - Simple-Wide

Test Case [AG l 1G I ALL [SpUpIG/AG I SpUpALLNG l SpUpALL/AG]
Simple-Wide-100 4.49 1.28 1.27 0.28 1.00 0.28
Simple-Wide-250 6.50 6.11 6.13 0.94 1.00 0.94
Simple-Wide-500 2415 | 24.72 | 24.75 1.02 1.00 1.02
Simple-Wide-750 3743 | 53.12 | 53.36 1.42 1.00 1.43
Simple-Wide-1000 47.50 | 93.68 | 93.71 1.97 . 100 1.97
Simple-Wide-1100 55.31 | 114.59 | 114.80 2.07 1.00 2.08
Simple-Wide-1300 62.70{ T/O| T/O N/A N/A N/A
Simple-Wide-1500 6630 T/O| T/O N/A N/A N/A
Simple-Wide-1750 | 75.34 | T/O | T/O N/A N/A N/A
Simple-Wide-2000 8485 | T/O T/O N/A N/A N/A
Simple-Wide-3000 | 120.28 ¢ T/O | T/O N/A N/A N/A
Simple-Wide-4000 | 162.06 | T/O T/O N/A N/A N/A
Simple-Wide-5000 | 185.51 T/0 T/0 N/A N/A N/A
Simple-Wide-7500 | 333.50 | T/O T/0 N/A N/A N/A
Simple-Wide-10000 | 434.73 | T/O T/O N/A N/A N/A

Table 12: Effect of partitioning based on connectivity - Simple-Wide (in seconds)

150

1000

100 -

10

Time (seconds)

Partitioning Based on Connectivity (Complex-Deep)

—o— Assertion Group
—0— Individual Group
-y No Partition

QL W
~— ~— N N~ O N
-

Test Case Size

Figure 27: Effect of partitioning based on connectivity - Complex-Deep

| Test Case

AG | 1IG [ALL [SpUpigsac | SPUPaLL/ic | SPUPALL/aG |

Complex-Deep-10
Complex-Deep-11
Complex—-Deep-12
Complex-Deep-13
Complex-Deep-14
Complex-Deep-15
Complex-Deep-25
Complex-Deep-50
Complex-Deep-75
Complex-Deep-100
Complex-Deep-125

13.64 | 47.76 | 63.33 3.50 1.33 464
15.18 | 55.74 | 74.70 3.67 1.34 4.92
16.02 | 64.99 | 85.58 4.06 1.32 5.34
17.18 | 74.58 | T/O 434 N/A N/A
18.20 | 84.07 | T/O 4.62 N/A N/A
19.80 | T/O | T/O N/A N/A N/A
3479 | T/O| T/O N/A N/A N/A
69.54 | T/O| T/O N/A N/A N/A
102.91 | T/O | T/O N/A N/A N/A
14263 | T/O | T/O N/A N/A N/A
19751 | T/O | T/O N/A N/A N/A

Table 13: Effect of partitioning based on connectivity - Complex-Deep (in seconds)

| Test Case

l

AG | IG [ALL | SpUpsgsac | SPUparrsic | SPUPALL 4G |

Complex-Wide-10
Complex-Wide-11
Complex-Wide-12
Complex-Wide-13
Complex-Wide-14
Complex-Wide-15
Complex-Wide-25
Complex-Wide-50
Complex-Wide-75
Complex-Wide-100
Complex-Wide-125

1554 | 48.43 | 63.89 3.12 1.32 411
17.09 | 56.86 | 75.70 3.33 1.33 443
18.05 | 64.01 | 85.39 3.55 1.33 473
2224 | 7895 | T/O 3.55 N/A N/A
23.06 | 84.57 | T/O 3.67 N/A N/A
2461 | T/O| T/O N/A N/A N/A
4030 | T/O | T/O N/A N/A N/A
89.10 | T/O | T/O N/A N/A N/A
14161 | T/O | T/O N/A N/A N/A
209.94 | T/O | T/O N/A N/A N/A
24260 | T/O | T/O N/A N/A N/A

Table 14: Effect of partitioning based on connectivity - Complex-Wide (in seconds)

151

Partitioning Based on Connectivity (Complex-Wide)

1000 -

100 —O— Assertion Grouﬁ

—A— Individual Group

10 —— No Partition

Time (seconds)

10 11 12 13 14 15 25 50 75 100 125
Test Case Size

Figure 28: Effect of partitioning based on connectivity - Complex-Wide

1. Partitioning the ABox into smaller groups does not always work well. This is
particularly the case when the knowledge base is simple and small (see test cases
Simple-Deep and Simple-Wide, when the test case size is below 500). This is
understandable since when the knowledge base is simple and small, it does not
take long to solve the constraints set even without partitioning, because the
number of constraints is small.- On the other hand, with partitioning, although
the overall time spent on solving constraints may be shorter than when there is
no partition, the time spent on loading the constraint solver into the memory is
longer because it involves loading and offloading many times. Hence, the overall

effect is worse compared to when there is no partitioning.

2. When the knowledge base is complex, even if its size is small, partitioning

into Assertion Groups always outperforms partitioning into Individual Groups,

152

which in turn always outperforms no partitioning. This is true regardless of the

shape (deep or wide) of the knowledge bases.

. Thg larger the knowledge base, the more gain we get by partitioning the ABox.
This is shown not just in terms of the running time, but also in terms of the
solvability of the constraints. For example, for the test cases Simple-Deep and
Simple-Wide, if the ABox was not partitioned into Assertion Groups when the
tesf case size reaches over 1100, the constraints set was too large for the exterﬁal
constraint solver to handle (we got a stack overflow error). On the other hand,
if the same test cases were partitioned into Assertion Groups, they scaled to
test cases of size of 10000 and above. This shows the importance of partitioning

the ABox to keep the constraints set as small as poésible.

. Since the test cases Simple-Deep and Simple-Wide have only one Individual
Group, the performance of partitioning into Individual Groups is the same as

that of ABox with no partition.

6.3.2 Effect of Optimized Individual Group Creation

Optimized Individual Group creation is an optimization technique aimed to avoid

redundant creation of Individual Groups when we load the knowledge base. Since

this optimization affects only the load time, we compare only the time that URDL

takes to load the test cases.

As mentioned in Section 4.2.4, optimized Individual Group creation is particularly

153

useful if there is long chain of role assertions in the ABox. That is, when we have a
deep knowledge base. Figure 29 and Table 15 illustrate this case by comparing the
time spent on loading the test case Simple-Deep when the optimization is on and off.
The experimental results confirm that optimized Individual Group creation clearly
improves the load time for deep knowledge bases. Also, the larger the knowledge

base, the more we gain from this optimization.

Optimized Individual Group Creation (Simple-Deep)

100
-
T 10
g ~[3— Optimization On
X —/v— Optimization Off
g 1
£

0.1

o
>
Test Case Size

Figure 29: Effect of optimized Individual Group creation - Simple-Deep

In addition to the deep knowledge bases, we also studied the effect of optimized
Individual Group creation on wide knowledge bases. As shown in Figure 30 and Table

16, this optimization does not improve the performance when the knowledge base is

wide. However, note that it does not decrease the performance either.

154

[Test Case | Optimization On | Optimization Off] Speedup]

Simple-Deep-1000 0.26 0.32 1.24
Simple-Deep-2000 0.47 0.66 1.39
Simple-Deep-3000 0.70 1.01 1.45
Simple-Deep-4000 0.87 1.48 1.71
Simple-Deep-5000 1.00 2.01 2.01
Simple-Deep-7500 1.28 3.80 2.96
Simple-Deep-10000 1.67 6.26 3.75
Simple-Deep~12500 2.22 9.16 4.12
Simple-Deep-15000 2.61 12.84 4.92
Simple-Deep-17500 2.99 16.83 5.63
Simple-Deep-20000 3.28 21.67 6.60

Table 15: Effect of optimized Individual Group creation - Simple-Deep (in seconds)

Optimized Individual Group Creation (Simple-Wide)

1000
- 100
'g S ——
g | —0— Optimization On
f»; 10 | ~-2=— Optimization Off
g
[1
0.1 : - ¢ ‘ : ?
O O & O O O & & & & O
O & & O & & & & N0 O
OSSP quQ

Test Case Size

Figure 30: Effect of optimized Individual Group creation - Simple-Wide

155

| Test Case | Optimization On | Optimization Off | Speedup |

Simple-Wide-1000 0.76 0.77 1.00
Simple-Wide-2000 2.45 2.50 1.02
Simple-Wide-3000 5.00 5.14 1.03
Simple-Wide-4000 9.00 9.05 1.01
Simple-Wide-5000 14.10 14.11 1.00
Simple-Wide-7500 31.30 32.31 1.03
Simple-Wide-10000 58.64 60.55 1.03
Simple-Wide-12500 97.07 97.96 1.01
Simple-Wide-15000 142.26 144.13 1.01
Simple-Wide-17500 198.59 200.20 1.01
Simple-Wide-20000 264.36 267.79 1.01

Table 16: Effect of optimized Individual Group creation - Simple-Wide (in seconds)

6.3.3 Effect of Optimized Clash Detection

In order to test the effectiveness of optimized clash detection, contradicting asser-
tions/axioms were deliberately introduced to the test cases. There were two types of

clashes evaluated:

e Trivial clashes (TC) are those that can be detected during the parsing phase.
For example, the assertions (a : C | [0,0.2], min, maz) and {(a : C | [0.6, 1], min,

maz) would trigger such a clash.

e Non-trivial clashes (NC) are those that can be detected only at the constraint-
solving phase. Consider, for example, the assertions (a: C' U D | [0,0.2], min,
maz) and (a : C M D | [0.6, 1], min, maz). It is not obvious at the parsing phase
that these two assertions would trigger a clash. However, such clash can be de-
tected at the constraint-solving phase since there is no solution to the constraints

set {(maz(za.c, Ta.p) < 0.2), (Min(Ta.c, Ta.p) > 0.6)}.

156

Figures 31, 32, 33, 34, and Tables 17, 18, 19, 20 illustrate the effectiveness of opti-
mized clash detection for the test cases Simple-Deep, Simple-Wide, Complex-Deep,
and Comples-Wide. Let SpUp denote the speed-up factor, and Ty denote the run-
ning time when optimized clash detection is disabled. Also, let Tr¢ (resp. Tnc)
be the running time for test cases with trivial clash (resp. non-trivial clash), when

optimized clash detection is enabled. The speed-up factors are defined as:

T,

SpUpog/Tc = T% (5)
T,

SpUpog/ne = % (6)

Optimized Clash Detection (Simple-Deep)

1000 -
. 100
2 10 —O— Optimization On
§ (Trivial Clash)
@ 1 ~0— Optimization On
Y 01 - (Non-Trivial Clash)
£ - 5~ Optimization Off

0.01 -

0.001 -
\QQ
Test Case Size

Figure 31: Effect of optimized clash detection - Simple-Deep

From the experimental results, it is interesting to notice that:

e When optimized clash detection is enabled, the running time does not appear to

be directly correlated with the size of the test cases. This is expected, since the

157

| Test Case Op. On (TC) | Op. On (NC) | Op. Off SpUpog/Tc SpUpos/ne |
Simple-Deep-100 0.005 2.88 9.39 1817.45 3.26
Simple-Deep-500 0.008 24.31 43.28 5524.91 1.78
Simple-Deep-1000 0.005 25.98 89.88 16852.03 3.46
Simple-Deep-2000 0.010 27.26 199.66 19321.56 7.32
Simple-Deep-3000 0.029 40.43 262.51 9104.48 6.49
Simple-Deep-4000 0.008 157.72 284.37 36302.97 1.80
Simple-Deep-5000 0.008 195.23 301.52 39329.13 1.54
Simple-Deep-7500 0.005 155.41 488.11 91520.00 3.14
Simple-Deep-10000 0.011 199.58 563.56 53587.32 2.82

Table 17: Effect of optimized clash detection - Simple-Deep (in seconds)

Optimized Clash Detection (Simple-Wide)

1000 +
"’T 100 . . .
2 ‘ —O— Optimization On
s 1071 (Trivial Clash)
§ 1 —— Optimization On
o 01 (Non-Trivial Clash)
£ . —v— Optimization Off
= 001
0.001 =i , e S
QD O O O O O O O ®
L L LS
N S
7T ST P A S

Test Case Size

Figure 32: Effect of optimized clash detection - Simple-Wide

| Test Case | Op. On (TC) | Op. On (NC) | Op. Off | SpUpog/7c | SPUpog/ne |
Simple-Wide-100 0.008 3.53 11.70 1493.38 3.31
Simple-Wide-500 0.008 26.36 51.55 6723.52 1.96
Simple-Wide-1000 0.013 27.03 104.36 8027.42 3.86
Simple-Wide-2000 | 0.008 30.14 198.47 25887.89 6.59
Simple-Wide-3000 0.002 46.03 297.70 120689.46 6.47
Simple-Wide-4000 0.003 173.96 383.16 143686.56 2.20
Simple-Wide-5000 0.013 214.17 458.91 35300.68 2.14
Simple-Wide-7500 0.010 165.87 737.95 71414.56 4.45
Simple-Wide-10000 0.083 243.46 897.52 10770.19 3.69

Table 18: Effect of optimized clash detection - Simple-Wide (in seconds)

158

running time depends on where the contradicting assertions/axioms appear in
the test case, and/or whether the constraints set that contains the contradicting

constraints are solved early or late at the constraint-solving phase.

Trivial clashes can always be detected quickly (in less than a second for all the
tesf cases evaluated), regardless of the shape, the complexity, and the size of
the test cases. In general, it takes no more than the time spent on loading the
knowledge base. The speed-up factor for simple test cases range from 1493.38
to 143686.56, whereas the speed-up factor for complex test cases range from

18188.90 to 441183.33.

For all the test cases with non-trivial clashes, the performance when optimized
clash detection is on is always better than the performance when the optimiza-
tion is off. This is particularly true for complex test cases, where contradicting
axioms are present. The speed-up factor for simple test cases range from 1.54

to 7.32, and the speed-up factor for complex test cases range from 1137.91 to

6385.73.
| Test Case [Op. On (TC) | Op. On (NC) | Op. Off | SpUpog/rc | SpUpog/nc |
Complex-Deep-10 0.005 0.14 23.65 4730.67 172.23
Complex-Deep-15 0.007 0.23 36.53 4981.89 158.31
Complex-Deep-25 0.010 0.18 60.64 5868.69 343.05
Complex-Deep-50 0.011 0.22 108.29 10118.91 498.77
Complex-Deep-75 0.015 0.11 171.91 11211.25 1577.12
Complex-Deep-100 0.011 0.18 214.57 20435.49 1212.27
Complex-Deep-125 0.011 0.19 273.98 25846.74 1410.63
Complex-Deep-150 0.013 0.19 339.94 25495.49 1813.55
Complex-Deep-175 0.010 0.28 364.80 35882.16 1304.42
Complex-Deep-200 0.011 0.14 398.87 37987.38 2837.79

Table 19: Effect of optimized clash detection - Complex-Deep (in seconds)

159

1000

- 100 ~o— Optimization On
.§ 10 (Tl’iV'BI CbSh)
o —0— Optimization On
8 1 (Non-Trivial Clash)
g 0.1 ~x— Optimization Off
= 001

0.001

Optimized Clash Detection (Complex-Deep)

o 1O W O W O W
- = N 0 M~ O
- e

150
175
200

Test Case Size

Figure 33: Effect of optimized clash detection - Complex-Deep

Time (seconds)

Optimized Clash Detection (Complex-Wide)

1000
100 —O— Optimization On
(Trivial Clash)
10 —0— Optimization On
1 (Non-Trivial Clash)
—&— Optimization Off
0.1
0.01

Test Case Size

Figure 34: Effect of optimized clash detection - Complex-Wide

160

| Test Case | Op. On (TC) | Op. On (NC) | Op. Off | SpUpog/rc | SPUpog/NC |
Complex-Wide-10 0.011 0.25 26.32 2467.56 103.76
Complex-Wide-15 0.011 0.24 36.97 3434.09 156.59
Complex-Wide-25 0.013 0.23 58.16 4473.77 255.71
Complex-Wide~50 0.010 0.28 96.40 9640.10 348.86
Complex-Wide-75 0.010 0.14 161.72 15650.24 1123.05
Complex-Wide-100 0.011 0.18 217.80 20743.08 1207.78
Complex-Wide-125 0.015 0.19 272.83 18188.90 1455.54
Complex-Wide-150 0.010 0.19 320.00 30967.52 1692.11
Complex-Wide-175 0.013 0.30 339.98 27198.52 1137.91
Complex-Wide-200 0.010 0.15 370.32 36478.30 2483.49

Table 20: Effect of optimized clash detection - Complex-Wide (in seconds)

In what follows, we present the effect of caching, optimized hashing, and optimized
string comparison. Since these optimization techniques do not affect the constraint
solving time, we ignore the time spent on writing the constraints to file and solving

the constraints.

6.3.4 Effect of Caching

The experimental results presented in this section show only partial effect of the
caching techniques, since the first caching technique mentioned in Section 4.2.6 cannot
be disabled, and the last caching technique depends mainly on the follow-up user
query.

Figures 35, 36 and Tables 21, 22 show the performance evaluation results for the
test cases Complex-Deep and Complex-Wide when the caching is on and off. From

these results, we observe that:

e When the knowledge base is deep, caching clearly improved the performance.

The speed-up factor increases as the test case size increases.

161

e Wide knowledge bases benefit from caching technique only slightly. Also, unlike
the deep knowledge bases, the gap between the optimized case and the non-

optimized case does not increase as the test case size increases.

Caching (Complex-Deep)
10000
1000
]
2
§ 100 —O— Optimization On
@ Lo
o 10 -/~ Optimization Off
=y
0.1 e % vz
10 25 50 100 250 500 750 1000
Test Case Size
Figure 35: Effect of caching - Complex-Deep
| Test Case | Optimization On | Optimization Off | Speedup |
Complex-Deep-10 0.33 0.82 2.46
Complex-Deep-25 0.59 3.38 5.74
Complex—Deep-50 1.08 11.55 10.67
Complex—-Deep~-100 1.97 42.75 21.68
Complex-Deep-250 5.42 251.29 46.35
Complex-Deep-500 13.14 968.54 73.74
Complex-Deep-750 24.28 2155.69 88.80
Complex-Deep-1000 39.19 3914.91 99.90

Table 21: Effect of caching - Complex-Deep (in seconds)

162

Caching (Complex-Wide)

10000
= 1000
H
§ 100 ~0— Optimization On
L 10 -~y Optimization Off
[
E
= 1

0.1
10 25 50 100 200 300 400 500 600 700
Test Case Size
Figure 36: Effect of caching - Complex-Wide

u‘est Case [Optimization OniOptimizationvOﬁ' | Speedup]

Complex-Wide-10
Complex-Wide-25
Complex-Wide-50

Complex-Wide-200
Complex-Wide-300
Complex-Wide-400
Complex-Wide-500
Complex-Wide-600
Complex-Wide-700

Complex-Wide-100

0.33
0.77
3.08
10.96
57.08
104.85
337.81
712.42
1312.31
1757.80

0.84
3.46
13.64
47.30
213.64
451.93
952.98
1670.01
2818.16
3721.92

2.53
4.49
4.43
4.31
3.74
4.31
2.82
2.34
2.15
2.12

Table 22: Effect of caching - Complex-Wide (in seconds)

163

6.3.5 Effect of Optimized Hashing

Since it is not feasible to disable optimized hashing by changing the underlying data
structure, hash sets, to other data structures such as the ordinary sets, we simulated
this effect by changing the way hash code values are computed. For example, instead
of calculating the hash code of a concept assertion based on the hash codes of the
various components that form a concept assertion, we assigned the assertion type as
the hash code value when optimized hashing is disabled.

As usual, we tested the effect of optimized hashing with both deep and wide
knowledge bases, as shown in Figures 37, 38 and Tables 23, 24 respectively. The

interesting things to note here are:

e Optimized hashing ‘improved the performance of deep knowledge bases slightly.
In addition, the speed-up factor remains almost constant as the test case size

increases.

e When the knowledge base is wide, optimized hashing significantly improved the
performance. Indeed, larger knowledge bases show more performance gain from

this optimization.

6.3.6 Effect of Optimized String Comparison

Optimized string comparison is the technique that has the least effect on the URDL

performance. As shown in Figure 39 and Table 25, it has almost no effect on deep

164

Optimized Hashing (Complex-Deep)

100
w
2 10
§ —o— Optimization On
2 —a— Optimization Off
g 1
=
0.1
10 25 50 100 250 750 1000
Test Case Size
Figure 37: Effect of optimized hashing - Complex-Deep
| Test Case 1 Optimization On l Optimization Off I Speedup |

Complex-Deep-10
Complex-Deep-25
Complex-Deep-50
Complex—Deep-100
Complex-Deep-250
Complex-Deep-500
Complex-Deep-750
Complex-Deep-1000

0.33
0.59
1.08
1.97
5.42
13.14
24.28
39.19

0.42
0.72
1.41
2.59
7.10
16.65
29.96
48.62

1.26
1.23
1.30
1.32
1.31
1.27
1.23
1.24

Table 23: Effect of optimized hashing - Complex-Deep (in seconds)

I Test Case

| Optimization On | Optimization Off] Speedup I

Complex-Wide-10

Complex-Wide-25

Complex-Wide-50

Complex-Wide-100
Complex-Wide—-200
Complex-Wide-300
Complex-Wide-400
Complex-Wide-500
Complex-Wide-600
Complex-Wide-700

0.33
0.77
3.08
10.96
57.08
104.85
337.81
712.42
1312.31
1757.80

0.42

2.38
26.26
139.89
1291.87
2874.91
15231.64
49833.11
117686.47
171622.35

1.28

3.09

8.52
12.76
22.63
27.42
45.09
69.95
89.68
97.63

Table 24: Effect of optimized hashing - Complex-Wide (in seconds)

165

Optimized Hashing (Complex-Wide)

1000000
100000
10000
1000
100

10

1

0.1 E

Time (seconds)

10 25 50 100 200 300 400 500 600 700
Test Case Size

—-o— QOptimization On
—£— Optimization Off

Figure 38: Effect of optimized hashing - Complex-Wide

knowledge bases. This is expected, since when the knowledge is not wide, the number

of string comparison is low.

| Test Case

I Optimization On | Optimization Off l Speedup I

Complex-Deep-10 0.33 0.34
Complex-Deep-25 0.59 0.59
Complex-Deep-50 1.08 1.09
Complex-Deep-100 1.97 1.97
Complex-Deep-250 5.42 5.43
Complex-Deep-500 13.14 13.15
Complex-Deep-750 24.28 24.38
Complex-Deep-1000 39.19 39.85

1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.02

Table 25: Effect of optimized string comparison - Complex-Deep (in seconds)

We also studied the effect of this optimization on wide knowledge bases. It turned
out that optimized string comparison improved the performance, as shown in Figure

40 and Table 26. Indeed, the larger the test case, the more speed-up is gained from

this optimization.

166

Optimized String Comparison (Complex-Deep)

—o— Optimization On|
~a— Optimization Off

Time (seconds)

10 25 50 100 250 500 750 1000
Test Case Size

Figure 39: Effect of optimized string comparison - Complex-Deep

10000
. 1000
"
2
100 : e e ——
§ t —O— Optimization On |
> ORRT | —a— Optimization Off|
£
L 1
0.1

10 25 50 100 200 300 400 500 600 700
Test Case Size

Figure 40: Effect of optimized string comparison - Complex-Wide

167

Test Case Optimization On | Optimization Off I Speedup I
Complex-Wide-10 0.33 0.34 1.03
Complex-Wide-25 0.77 0.80 1.04
Complex-Wide-50 3.08 3.46 1.12
Complex-Wide-100 10.96 13.96 1.27
Complex-Wide-200 57.08 80.10 1.40
Complex-Wide-300 104.85 154.89 1.48
Complex-Wide-400 337.81 561.98 1.66
Complex-Wide-500 712.42 1457.30 2.05
Complex-Wide-600 1312.31 3195.40 2.43
Complex-Wide-700 1757.80 4815.02 2.74

Table 26: Effect of optimized string comparison - Complex-Wide (in seconds)
6.3.7 Overall Optimization Effect

The experimental results showed in the previous subsections were measured by dis-
abling one of the optimizations at a time. We now present the overall effect of the
proposed optimizatidn techniques.

Tables 27, 28, 29, and 30 compare the performance when all the optimizations are
on and off. It is interesting to note that the performance when all the optimization
techniques are disabled is only slightly worse than the performance when partitioning
based on connectivity is disabled (see Section 6.3.1). This is not surprising because,
when the ABox is not partitioned, URDL can handle only small knowledge bases due
to the external constraint solver limitation. As we observed in all of the optimization
results presented earlier, the speed-ups from the optimizations are not significant for
small knqwledge bases, and the performance gain increases as the knowledge base size
increases.

In order to better study the overall effect of the optimization techniques, we

disregard the constraint-solving factor. That is, the external constraint solver is not

168

[Tbm;Ca&e

Optimization On [Optimization Off] SpeedupJ

Simple-Deep-100
Simple-Deep-250
Simple-Deep-500
Simple-Deep-750
Simple-Deep-1000
Simple-Deep-1100
Simple-Deep-1300
Simple-Deep-1500
Simple-Deep-1750
Simple-Deep-2000
Simple-Deep-3000
Simple-Deep-4000
Simple-Deep-5000
Simple-Deep-7500
Simple-Deep-10000

3.94
6.64
20.28
31.25
41.22
43.13
48.09
56.85
69.29
75.75
121.57
156.77
223.28
336.54
461.22

1.29
6.67
24.33
53.31
092.66
111.90
T/O
T/O
T/O
T/O
T/O
T/O
T/O
T/O
T/O

0.33
1.00
1.20
1.71
2.25
2.59
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Table 27: Overall optimization effect - Simple-Deep (in seconds)

l Test Case

[Optimization On | Optimization Off | Speedup l

Simple-Wide-100
Simple-Wide-250
Simple-Wide-500
Simple-Wide-750
Simple-Wide-1000
Simple-Wide-1100
Simple-Wide-1300
Simple-Wide-1500
Simple-Wide-1750
Simple-Wide-2000
Simple-Wide-3000
Simple-Wide-~4000
Simple-Wide-5000
Simple-Wide-7500
Simple-Wide-10000

4.49
6.50
24.15
37.43
47.50
55.31
62.70
66.30
75.34
84.85
120.28
162.06
185.51
333.50
434.73

1.32
6.89
26.50
55.59
98.34
119.33
T/O
T/O
T/O
T/O
T/O
T/O
T/O
T/O
T/O

0.29
1.06
1.10
1.49
2.07
2.16
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

]

Table 28: Overall optimization effect - Simple-Wide (in seconds)

169

Test Case [Optimization On LOptimization Off l Speedup]
Complex-Deep-10 13.64 65.61 4.81
Complex-Deep-11 15.18 79.79 5.26
Complex-Deep-12 16.02 90.32 5.64
Complex-Deep-13 17.18 T/O0 N/A
Complex-Deep-14 18.20 T/0 N/A
Complex-Deep-15 19.80 T/0 N/A
Complex-Deep-25 34.79 T/0 N/A
Complex-Deep-50 69.54 T/O N/A
Complex-Deep-75 102.91 T/O N/A
Complex-Deep-100 142.63 T/O N/A
Complex-Deep-125 197.51 T/0 N/A

Table 29: Overall optimization effect - Complex-Deep (in seconds)

I Test Case | Optimization On [Optimization Off] Speedup]
Complex-Wide-10 15.54 66.05 4.25
Complex-Wide-11 17.09 80.13 4.69
Complex-Wide-~12 18.05 - 90.19 5.00
Complex-Wide-13 22.24 T/O N/A
Complex-Wide-14 23.06 T/O N/A
Complex-Wide-15 24.61 T/0 N/A
Complex-Wide-25 40.30 T/O N/A
Complex-Wide-50 89.10 T/O N/A
Complex-Wide-75 141.61 T/0O N/A
Complex-Wide-100 209.94 T/O N/A
Complex-Wide-125 242.60 T/O N/A

Table 30: Overall optimization effect - Complex-Wide (in seconds)

170

called, and the constraints are not written to files. The experimental results show
that the proposed optimizations improved the performance of URDL significantly.
For deep knowledge bases (see Figure 41 and Table 31), the speed-up factor ranges
from 2.83 to 100.22. The performance gain for wide knowledge bases is even greater
(see Figure 42 and Table 32), with the speed-up factor ranging from 3.17 to 267.26.
Consider, for example, the test case Complex-Wide-700. It takes roughly 30 minutes
to run this test case with all the optimizations enabled, while it takes 5 days 10 hours

and 30 minutes to run the same test case when the optimizations are disabled.

Overall Optimization Effect (Constraint Solving Disabled) -
Complex-Deep

10000 -

1000

100 + ~<— Optimization On

—— Optimization Off

10

Time (seconds)

0.1

10 25 50 100 250 500 750 1000

Test Case Size

Figure 41: Overall optimization effect (constraint solving disabled) - Complex-Deep

6.4 Summary and Concluding Remarks

In this chapter, we studied the performance of URDL and the effectiveness of the

proposed optimization techniques. We observed that different characteristics of the

171

Test Case Optimization On | Optimization Off | Speedup
Complex-Deep-10 0.33 0.94 2.83
Complex-Deep-25 0.59 3.68 6.26
Complex-Deep-50 1.08 12.22 11.29
Complex-Deep-100 1.97 43.64 22.14
Complex-Deep-250 5.42 254.39 46.92
Complex-Deep-500 13.14 975.79 74.29
Complex-Deep-750 24.28 2180.04 89.80
Complex~Deep-1000 39.19 3927.80 100.22

Table 31: Overall optimization effect (constraint solving disabled) - Complex-Deep
(in seconds)

Overall Optimization Effect (Constraint Solving Disabled) -

Complex-Wide
1000000
100000
.'é 10000 -
S 1000 —o— Optimization On
;"”.’, 100 ~—¢— Optimization Off|
o
E 10
-
1
0.1+

10 25 50 100 200 300 400 500 600 700
Test Case Size

Figure 42: Overall optimization effect (constraint solving disabled) - Complex-Wide

[Test Case I Optimization On [Optimization Off] Speedup }
Complex-Wide-10 0.33 1.05 3.17
Complex-Wide-25 0.77 7.13 9.25
Complex-Wide-50 3.08 78.46 25.47
Complex-Wide-100 10.96 289.76 26.43
Complex-Wide-200 57.08 3759.39 65.86
Complex-Wide-300 104.85 9637.61 91.92
Complex—Wide—-400 337.81 54365.23 160.93
Complex-Wide-500 712.42 146990.19 206.33
Complex-Wide-600 1312.31 321881.03 245.28
Complex-Wide-700 1757.80 469795.34 267.26

Table 32: Overall optimization effect (constraint solving disabled) - Complex-Wide
(in seconds)

172

test cases, such as the certainty domain and the combination functions, can affect the
performance of URDL. We also noted constraint solving to be the main bottleneck
for URDL. We tackled this weakness by partitioning the constraints into independent
subsets. Our experimental results showed that this optimization not only improved
the performance in terms of the running time, but also improved the constraints’
solvability significantly. We also noted from the experimental results that optimized
Individual Group creation and caching techniques work well when the knowledge
base is deep, whereas optimized hashing and optimized string comparison work well
when the knowledge base is wide. In addition to dealing with consistent knowledge
bases, optimized clash detection was also found to be very effective in dealing with
inconsistent knowledge bases, with speed-up factor ranging from 1.54 to 441183. For
most test cases, larger knowledge bases benefit more from the optirrﬁzations. We also
noted that the overall effect of the optimizations is significant, with the speed-up
factor ranging from 2.83 to 267.26.

Although all the experiments reported in this chapter were conducted under Win-
dows XP, we had also tested URDL under Linux (Fedora). The experimental results
showed that the performances on both platforms were roughly the same. Note also
that, in order to enable or disable the optimizations, we had included many if state-
ments in URDL. Although this was a slight disadvantage to the performance of URDL,

we do not expect much effect on the experimental results.

173

Chapter 7

Conclusions and Future Research

In order to handle many real-world Semantic Web applications, it is essential not only
to model and reason with uncertainty knowledge, but also do so efficiently. The goal
of this thesis was to develop a DL-based framework that can represent and reason with
uncertainty knowledge following a generic approach, and to study query optimization
in this context. In this chapter, the work done towards this goal and the contributions

of this thesis are summarized. We also present some directions for future research.

7.1 Conclusions

We summarize the contributions of this thesis by assessing the extent to which the

objectives set out in Section 1.4 have been met.
The first objective of this thesis was to propose a framework that extends the

DL ALC so that uncertainty knowledge can be represented and reasoned with in

174

a generic way. To fulfill this goal, we proposed the ALCy framework in Chapter
3. The ALCy framework extended each component of the ALC framework, namely
the description language, the knowledge base, and the reasoning procedure, while
abstracting away the notion of uncertainty in the extension. Inspired by the para-
metric framework for deductive database with uncertainty, we modeled various forms
of certainty values, assuming that they form a certainty lattice. We then defined the
semantics of the description language using the combination functions together with
the certainty lattice. To ensure admissibility, we also identified a set of properties
which the combination functions must satisfy. We defined the ALCy knowledge base
by associating with each axiom and assertion a certainty value and a pair of combina-
tion functions, used to interpret the concepts that appear in the axiom/assertion. We
also presented a sound, complete, and terminating tableau-based reasoning procedure
for ALCy, which derives a set of assertions and a set of constraints in the form of
linear /nonlinear equations/inequations to capture the semantics of the uncertainty
knowledge base. The unique feature of the proposed ALCy framework is that, by
simply tuning the combination functions associated with the axioms and assertions,
different notions of uncertainty can be modeled and reasoned with, using a single
reasoning procedure.

With the ALCy framework defined, V\}e then dealt with the second objective of
this thesis in Chapter 4 by investigating suitable optimization techniques in our con-
text. We adapted many optimization techniques from standard DL systems so that

they take into account the presence of uncertainty. These techniques include lexical

175

normalization, concept simplification, partitioning based on connectivity as Individ-
ual Groups, optimized Individual Group creation, and caching. We noted that not all
optimization techniques developed for the standard DL systems can be applied to the
ALCy framework, and even if they could, care must be taken when applying these
techniques due to the presence of uncertainty. In addition to the optimization tech-
niques from standard DL systems, we also reused the techniques that are commonly
used in software systems, including optimized hashing and optimized string compar-
ison. Finally, we proposed new optimization techniques to deal with the certainty
values and the uncertainty constraints generated by the reasoning procedure. In par-
ticular, since the number of the generated constraints is usually large, we partitioned
these constraints into independent subsets before they are fed into the constraint
solver, so that they can be solved independently. In addition, we optimized the han-
dling of inconsistent knowledge bases by detecting contradicting assertions and/or
axioms as early as possible so that we do not perform inferences or solve constraints
unnecessarily. The proposed techniques could also be adapted and used in other
constraint-based systems.

The last objective was fulfilled by developing a running prototype URDL and mea-
suring its performance, as described in Chapters 5 and 6, respectively. To the best of
our knowledge, URDL is the first reasoner that employs optimization techniques in
the DL/uncertainty context. URDL consists of five main components. The Reasoner
Controller gets the input from the user, and delegates tasks to Configuration Loader,

Parser, Inference Engine, and Constraint Solver in order to fulfill the user query. It

176

then returns the query results back to the user. The Configuration Loader loads
and stores user preferences from the configuration file. The Parser analyzes the user
input, and stores the parsed axioms, assertions, and combination functions into the
knowledge base. The Inference Engine applies the reasoning procedure to the knowl-
edge base and stores the inferred assertions and constraints into the knowledge base.
Finally, the Constraint Solver solves the set of constraints generated by the Inference
Engine by calling an external constraint solver, RealPaver. Note that the main differ-
ence between URDL and other standard DL systems is that, URDL relies on both the
Inference Engine and the Constraint Solver to complete the reasoning tasks, whereas
the standard DL systems need only the Inference Engine since they do not generate
linear and/or nonlinear constraints during the completion rule application.

Through performance evaluation of URDL, we learned that different properties
of the knoWledge bases, such as the certainty domain and the combination functions,
can affect the running time. We also identified constraint solving as the main bottle-
neck for URDL. All the optimization techniques presented in Chapter 4 were shown
to be effective, especially when dealing with large knowledge bases. Among these
techniques, the newly proposed optimization which partitioned the ABox into Asser-
tion Groups was particularly useful. It not only improved the performance in terms
of the running time, but also increased the solvability of the constraints significantly.
We also noted that the overall effect of the optimizations was significant, with the
speed-up factor ranging from 2.83 to 267.26. In addition to dealing with consistent

knowledge bases, optimized clash detection was found to be very effective in dealing

177

with inconsistent knowledge bases, with the speed-up factor ranging from 1.54 to

441183.

7.2 Future Research Directions

The theoretical as well as practical development in this thesis suggest some promising
avenues for future research.

For theoretical aspects, it would be interesting to extend the ALCy framework to
support more expressive fragments of DLs, such as SHOZAN. The DL SHOIN is
the logic foundation for the ont.ology language OWL DL. In addition to the language
constructors supported by ALC, the DL SHOZN also allows transitive role, role
hierarchy, nominal, inverse role, and unqualified number restriction be expressed. The
challenge for this extension would be to come up with the completion rules for these
additional description language constructors, including the appropriate constraints to
denote their semanfics.

Another interesting extension to the ALCy framework would be to support other
forms of uncertainty. Currently, we keep the description language syntax the same
as the standard DL while extending only its semantics. However, since probabilis-
tic reasoning usually requires extra information about the events,v their relationships,
and the facts in the world, it would require syntactical extension to the descrip-
tion language in order to‘model knowledge bases with more probability modes, such

as positive/negative correlation [L.S94] and conditional probability [KLP97, GL0O2b].

178

The challenge here would be investigating whether it is feasible to extend the syntax
of the description language generically to support these uncertainty formalisms, and
how such extension can fit into the existing ALCy framework.

For practical aspects, it would be interesting to further optimize the reasoning pro-
cedure. For example, since constraint-solving is the dominant cost for the reasoning
process, in case we have multiple Assertion Groups, we could solve them concurrently
by running multiple threads or on different computers. Another related optimization
would be to reduce the number of constraints or the number of variables in the con-
straints generated during the reasoning procedure. These methods are expected to

greatly enhance the performance.

To sum up, in this thesis, we proposed the ALCy framework which allows un-
certainty knowledge be expressed and reasoned with in a generic way. Optimization
techniques were developed to improve the performance of the uncertainty reasoning
in this context. We also developed a prototype for the proposed framework to show
its practicality as well as the effectiveness of the optimization techniques. It is hoped
that the framework proposed in this thesis can serve as a foundation for the ongoing

research on DL-based uncertainty reasoning in the Semantic Web.

179

Bibliography

[Baa90)

[Bac90]

Baader, F. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. Technical Report RR-90-13, Deutsches

Forschungszentrum fiir Kiinstliche Intelligenz GmbH, 1990.

Bacchus, F., editor. Representing and Reasoning with Probabilistic Know!l-
edge - A Logical Approach to Probabilities. MIT Press, Cambridge, Mas-

sachusetts, 1990.

[BCM*03] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-

[BDS93]

[BF00]

Schneider, P. F., editors. The Description Logic Handbook: Theory, Imple-

mentation, and Applications. Cambridge University Press, 2003.

Buchheit, M., Donini, F. M., and Schaerf, A. Decidable reasoning in ter-
minological knowledge representation systems. Journal of Artificial Intelli-

gence Research, 1:109-138, 1993.

Berners-Lee, T. and Fischetti, M. Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by its Inventor. Harper-

Collins, New York, 2000.

180

[BH91]

[BHLO1]

[BHS02]

[BHS07]

[BLOG]

[BP02]

[BS07]

[Cop07]

Baader, F. and Hollunder, B. KRIS: Knowledge representation and infer-

ence system. SIGART Bulletin, 2(3):8-14, 1991.

Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific

American, 284(5), May 2001.

Baader, F., Horrocks, I., and Sattler, U. Description logics for the semantic

web. KI - Kinstliche Intelligenz, 16(4):57-59, 2002.

Baader, F., Horrocks, 1., and Sattler, U. Description Logics. In Frank
van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of

Knowledge Representation. Elsevier, 2007. To appear.

Baader, F. and Lutz, C. Description logic. In Patrick Blackburn, Johan
van Benthem, and Frank Wolter, editors, The Handbook of Modal Logic.

Elsevier, 2006.

Beck, H. and Pinto, H. S. Overview of approach, methodologies, standards,
and tools for ontologies. Technical report, The Agricultural Ontology Ser-

vice, United Nations (UN) Food and Agriculture Organization (FAO), 2002.

Bobillo, F. and Straccia, U. A fuzzy description logic with product t-norm.

In Proceedings of the IEEE International Conference on Fuzzy Systems

(Fuzz IEEE-07), pages 652-657. IEEE Computer Society, 2007.

Copeland, T. Generating Parsers with JavaCC. Centennial Books, Alexan-

dria, VA., 2007.

181

[CPL97] Cadoli, M., Palopoli, L., and Lenzerini, M. Datalog and description logics:
Expressive power. In Workshop on Database Programming Languages, pages

281-298, 1997.

[DAMO0] About DAML, 2000. URL: http://www.daml.org/about.html (Last visited

September 22nd, 2006).

[DLL62] Davis, M., Logemann, G., and Loveland, D. A machine program for

theorem-proving. Communications of the ACM, 5(7):394-397, 1962.

[DP04] Ding, Z. and Peng, Y. A probabilistic extension to ontology language OWL.
In Proceedings of the 37th Hawaii International Conference on System Sci-

ences (HICSS-37), Big Island, Hawalii, January 2004.

[DPP04] Ding, Z., Peng, Y., and Pan, R. A Bayesian approach to uncertainty mod-
eling in OWL ontology. In Proceedings of 2004 International Conference on
Advances in Intelligent Systems - Theory and Applications, Luxembourg,

November 2004.

[DS05] Durig, M. and Studer, T. Probabilistic ABox reasoning: Preliminary re-
sults: In Proceedings of the International Workshop on Description Logics

(DL’05), pages 104-111, Edinburgh, Scotland, UK, 2005.

[Dur05] Durig, M. PALC: Extending ALC ABoxes with probabilities. Master’s

thesis, Institute of Computer Science and Applied Mathematics, Faculty of

Science, University of Bern, 2005.

182

[FaC]

FaCT++. URL: http://owl.man.ac.uk/factplusplus/ (Last visited May 3rd,

2007).

[GHVDO3] Grosof, N., Horrocks, L., Volz, R., and Decker, S. Description logic pro-

[GLO02a)

[GLO2D)]

[GPY1]

[Gru93s]

grams: Combining logic programs with description logic. In Proceeding
of the Twelfth International World Wide Web Conference (WWW 2003),

pages 48-57. ACM, 2003.

Giugno, R. and Lukasiewicz, T. P-SHOQ(D): A probabilistic extension
of SHOQ(D) for probabilistic ontologies in the Semantic Web. Technical
Report INFSYS 1843-02-06, Technische Universitdt Wien, Wien, Austria,

April 2002.

Giugno, R. and Lukasiewicz, T. VP-SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the Semantic Web. In Proceedings
of the Buropean Conference on Logics in Artificial Intelligence, pages 86-97,
Cosenza, Italy,‘ 2002. Springer-Verlag. Lecture Notes In Computer Science;

Vol. 2424.

Goldszmidt, M. and Pearl, J. On the consistency of defeasible databases.

Artificial Intelligence, 52(2):121 — 149, December 1991.

Gruber, T. R. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199-220, 1993.

183

(GS96]

[Hei%4]

Giunchiglia, F. and Sebastiani, R. Building decision procedures for modal
logics from propositional decision procedure - the case study of modal k. In

Conference on Automated Deduction, pages 583-597, 1996.

Heinsohn, J. Probabilistic description logics. In Proceedings of the 10th
Annual Conference on Uncertainty in Artificial Intelligence (UAI’94), pages

311-318, San Francisco, CA, 1994. Morgan Kaufmann.

[HFB*00] Horrocks, 1., Fensel, D., Broekstra, J., Decker, S., Erdmann, M., Goble,

[HKS02]

[Hod01]

[Hol94]

C., van Harmelen, F., Klein, M., Staab, S., Studer, R., and Motta, E. OIL:
The Ontology Inference Layer. Technical Report IR-479, Vrije Universiteit

Amsterdam, Faculty of Sciences, September 2000.

Holldobler, S., Khang, T. D.; and Stérr, H.-P. A fuzzy description logic
with hedges as concept modifiers. In Proceedings of the 3rd International
Conference on Intelligent Technologies and 3rd Vietnam-Japan Symposium
on Fuzzy Systems and Applications, pages 25-34, Hanoi, Vietnam, 2002.

Science and Technics Publishing House.
Hodges, W. Classical Logic I: First Order Logic. Blackwell, 2001.

Hollunder, B. An alternative proof method for possibilistic logic and its ap-
plication to terminological logics. In Proceedings of the 10th Annual Confer-
ence on Uncertainty in Artificial Intelligence, pages 327-335, San Francisco,

CA, 1994. Morgan Kaufmann.

184

[Hor97a] Horrocks, I. Optimisation techniques for expressive description logics. Tech-
nical Report UMCS-97-2-1, University of Manchester, Department of Com-

puter Science, 1997.

[Hor97b] Horrocks, I. Optimising Tableauz Decision Procedures for Description Log-

ics. PhD thesis, University of Manchester, 1997.

[HPS] Haarslev, V., Pai, H.I,, and Shiri, N. A constraint-based reasoning pro-
cedure for description logic with uncertainty. Submitted to International

Journal of Approximate Reasoning.

[HPS05] Haarslev, V., Pai, H.I., and Shiri, N. A generic framework for description
logics with uncertainty. In Proceedings of the 2005 Workshop on Uncertainty
Reasoning for the Semantic Web (URSW) at the Jth International Semantic

Web Conference, pages 77-86, Galway, Ireland, November 2005.

[HPS06a] Haarslev, V., Pai, H.'.I., and Shiri, N. Completion rules for uncertainty
reasoning with the description logic .AZC In Proceedings of the Canadian
Semantic Web Working Symposium - Series: Semantic Web and Beyond:
Computing for Human Ezperience, Vol. 4, pages 205-225, Quebec City,

Canada, June 2006. Springer Verlag.

[HPS06b] Haarslev, V., Pai, H.I., and Shiri, N. Uncertainty reasoning in description
logics: A generic approach. In Proceedings of the 19th International FLAIRS

Conference, pages 818-823, Melbourne Beach, Florida, May 2006. AAAI

Press.

185

[HPS07]

[HPSO09]

[HST99]

[HST00]

[HV05]

[Jae94a)

Haarslev, V., Pai, H.I., and Shiri, N. Optimizing tableau reasoning in ALC
extended with uncertainty. In Proceedings of the International Workshop
on Description Logics (DL’07), pages 307-314, Brixen-Bressanone, Italy,

June 2007.

Haarslev, V., Pai, H.I., and Shiri, N. Semantic web uncertainty manage-
ment. In Encyclopedia of Information Science and Technology, 2nd edition.

Information Science Reference, 2000.

Horrocks, I., Sattler, U., and Tobies, S. A description logic with transi-
tive and converse roles, role hierarchies and qualifying number restrictions.
LTCS-Report 99-08, LuFg Theoretical Computer Science, RWTH Aachen,

Germany, 1999.

Horrocks, 1., Sattler, U., and Tobies, S. Reasoning with individuals for the
description logic SHZQ. In David McAllester, editor, Proceedings of the
17th International Conference on Automated Deduction (CADE 2000), vol-
ume 1831 of Lecture Notes in Computer Science, pages 482-496. Springer,

2000.

Haase, P. and Volker, J. Ontology learning and reasoning - dealing with
uncertainty and inconsistency. In Proceedings of Uncertainty Reasoning for

the Semantic Web, pages 45-55, Galway, Ireland, November 2005.

Jaeger, M. A prQbabilistic extension of terminological logics. Research

Report MPI-1-94-208, Max-Planck-Institut fiir Informatik, March 1994.

186

[Jae94b)

[KLP97]

[LS94]

[LSO01a]

Jaeger, M. Probabilistic reasoning in terminological logics. In Proceedings of
the 4th International Conference on Principles of Knowledge Representation

and Reasoning (KR’9/), pages 305-316, 1994.
JavaCC. URL: https://javacc.dev.java.net/ (Last visited May 21st, 2007).

Racer Systems GmbH Co. & KG. RacerPro. URL: http://www.racer-

systems.com/ (Last visited June 22nd, 2007).

Koller, D., Levy, A. Y., and Pfeffer, A. P-CLASSIC: A tractable probab-
listic description logic. In Proceedings of the 14th National Conference on
Artificial Intelligence, pages 390-397, Providence, Rhode Island, July 1997.

AAAI Press.

Mindswap Lab. Pellet. URL: http://pellet.owldl.com/ (Last visited August

2nd, 2007).

Lakshmanan, L.V.S. and Sadri, F. Probabilistic deductive databases. In
Proceedings of Workshop on Design and Implementation of Parallel Logic
Programming Systems, pages 254-268, Ithaca, NY, November 1994. MIT

Press.

Lakshmanan, L.V.S. and Shiri, N. Logic programming and deductive
databases with uncertainty: A survey. In Enclyclopedia of Computer Sci-
ence and Technology, volume 45, pages 153-176. Marcel Dekker, Inc., New

York, 2001.

187

[LS01b]

[Luko07]

[Mah04]

[Mak02]

[Mar05]

[Mol01]

[MROS5]

Lakshmanan, L.V.S. and Shiri, N. A parametric approach to deductive
databases with uncertainty. IEEE Transactions on Knowledge and Data

FEngineering, 13(4):554-570, 2001.

Lukasiewicz, T. Probabilistic description logics for the Semantic Web. Tech-
nical Report INFSYS 1843-06-05, Technische Universitdt Wien, Wien, Aus-

tria, March 2007.

Q.H. Mahmoud. Using and programming generics in J2SE 5.0, 2004.
URL: http://java.sun.com/developer/technical Articles/J2SE/generics/

(Last visited January 3rd, 2007).

Makowsky, J.A. Theory of Horn clauses — Encyclopaedia of Mathematics.

Springer-Verlag, 2002.

Markoff, J. Debating the size of the Web. The New York Times, August

2005.

Moller, R. Expressive description logics: Foundations for practical appli-
cations, habilitation thesis. University of Hamburg, Computer Science De-

partment, July 2001.

Martn-Recuerda, F. and Robertson, D. Discovery and uncertainty in seman-
tic web services. In Proceedings of Uncertainty Reasoning for the Semantic

Web, Galway, Ireland, November 2005.

188

[MS97]

[Par96]

[Pea88]

Motro, A. and Smets,Ph., editors. Uncertainty Management in Information
Systems: From Needs to Solutions. Kluwer Academic Publishers, Boston,

1997.

Parsons, S. Current approaches to handling imperfect information in data
and knowledge bases. IEEFE Transactions on Knowledge and Data Engi-

neering, 8(3):353-372, 1996.

Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann, San Francisco, CA, USA, 1988.

[PFT104] Pan, J. Z., Franconi, E., Tessaris, S., Stamou, G., Tzouvaras, V., Ser-

[PHO6]

[QPJO7]

[Rea)

afini, L., Horrocks, 1., and Glimm, B. Specification of coordination of rule
and ontology languages. Technical Report KWEB/2004/D2.5.1/v1.0, The

Knowledge Web project, June 2004.

Patel-Schneider, P.F. and Horrocks, I. A comparison of two modelling
paradigms in the semantic web. In Proceeding of the Fifteenth International

World Wide Web Conference (WWW 2006), pages 3-12. ACM, 2006.

Qi, G., Pan, J. Z., and Ji, Q. Possibilistic extension of description logics. In
Proceedings of the International Workshop on Description Logics (DL’07),

pages 435442, 2007.

RealPaver. URL: http://sourceforge.net/projects/realpaver (Last visited

August 15th, 2007).

189

[SBO7]

[Sch91]

[Sch94]

Straccia, U. and Bobillo, F. Mixed integer programming, general concept
inclusions and fuzzy description logics. In Proceedings of the 5th Conference
of the European Society for Fuzzy Logic and Technology (EUSFLAT-07),
volume 2, pages 213-220, Ostrava, Czech Republic, 2007. University of

Ostrava.

Schild, K. A correspondence theory for terminological logics: preliminary
report. In Proceedings of IJCAI-91, 12th International Joint Conference on

Artificial Intelligence, pages 466-471, Sidney, AU, 1991.

Schaerf, A. Reasoning with individuals in concept languages. Data Knowl-

edge Engineering, 13(2):141-176, 1994.

[SEW*07] Stevens, R., Egana Aranguren, M., Wolstencroft, K., Sattler, U., Drum-

[She00]

[SS77]

mond, N., Horridge, M., and Rector, A.L. Using owl to model biological
knowledge. International Journal of Human-Computer Studies, 65(7):583~

594, 2007.

Sherman, C. Google announces largest index. Search Engine Report, July

2000.

Stallman, R. M. and Sussman, G. J. Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis. Ar-

tificial Intelligence, 9(2):135-196, 1977.

190

[SS91] Schmidt-SchaubB, M. and Smolka, G. Attributive concept descriptions with

complements. Artificial Intelligence, 48(1):1-26, 1991.

[SSP*07] Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., and Horrocks, I. Rea-
soning with very expressive fuzzy description logics. Journal of Artificial

Intelligence Research, 30:273-320, 2007.

[SSSP06] Stoilos, G., Straccia, U., Stamou, G., and Pan, J.Z. General concept in-
clusions in fuzzy description logics. In Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI 06), pages 457-461, Riva del

Garda, Italy, August 2006. IOS Press.

[ST04] Sénchez, D. and Tettamanzi, A. G. B. Generalizing quantification in fuzzy
description logics. In Proceedings of the 8th Fuzzy Days in Dortmund -

Advances in Soft Computing Series. Springer-Verlag, 2004.

[Str98] Straccia, U. A fuzzy description logic. In Proceedings of the 15th National
Conference on Artificial Intelligence, pages 594-599, Menlo Park, CA, USA,

1998. AAAT Press.

[Str01] Straccia, U. Reasoning within fuzzy description logics. Journal of Artificial

Intelligence Research, 14:137-166, 2001.

[Str04a] Straccia, U. Transforming fuzzy description logics into classical description
logics. In Proceedings of the 9th European Conference on Logics in Arti-

ficial Intelligence, pages 385-399. Springer-Verlag, 2004. Lecture Notes In

191

[Str04b)

[Str05al]

[Str05b]

[Suna]

[Sunb]

[Tau06]

Computer Science; Vol. 3229.

Straccia, U. Uncertainty in description logics: a lattice-based approach. In
Proceedings of the 10th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems (JIPMU’04),

pages 251-258, 2004.

Straccia, U. Fuzzy description logic with concrete domains. Technical Re-

port 2005-TR-03, Istituto di Elaborazione dell’Informazione, January 2005.

Straccia, U. Towards a fuzzy description logic for the semantic web (prelimi-
nary report). In Proceedings of the 2nd FEuropean Semantic Web Conference

(ESWC’05), pages 167-181. Springer Verlag, 2005. Lecture Notes in Com-

puter Science; Vol. 3532.

Sun Microsystems. Incompatibilities in J2SE 5.0 (since 1.4.2).
URL: http://java.sun.com/j2se/1.5.0/compatibility.html (Last visited Jan-

uary 3rd, 2007).

Sun Microsystems. Java Platform Standard Edition 6 API Specification -
HashSet.
URL: http://java.sun.com/javase/6/docs/api/java/util/HashSet.html

(Last visited January 3rd, 2007).

Tauberer , J. What is RDF. In XML.com, July 2006.

192

[TM98]

[Vang86]

[VSPO5)

[W3C99)

[W3C01]

Tresp, C. and Molitor, R. A description logic for vague knowledge. In
Proceedings of ECAI-98, pages 361-365, Brighton, UK, 1998. John Wiley

and Sons.

Van Emden, M. H. Quantitative deduction and its fixpoint theory. Journal

of Logic Programming, 3(1):37-53, 1986.

Van Ossenbruggen, J., Stamou, G., and Pan, J. Z. Multimedia annotations
and the semantic web. In Proceedings of Semantic Web Case Studies and

Best Practices for eBusiness, Galway, Ireland, November 2005.

W3C. HTML 4.01 specification, 1999.

URL: http://www.w3.org/TR/html4/ (Last visited September 22nd, 2006).

W3C. DAMLA+OIL reference description, 2001.
URL: http://www.w3.org/TR/daml+oil-reference (Last visited September

22nd, 2006).

[W3C04a] W3C. OWL web ontology language overview, 2004.

URL: http://www.w3.org/TR/owl-features/ (Last visited September 14th,

2007).

[W3C04b] W3C. RDF primer, February 2004.

URL: http://www.w3.org/TR/rdf-primer/ (Last visited September 22nd,

2006).

193

[W3C04c] W3C. RDF vocabulary description language 1.0: Rdf schema, 2004.
URL: http://www.w3.org/TR /rdf-schema/ (Last visited September 22nd,

2006).

[W3C04d] W3C. RDF/XML syntax specification, 2004.
URL: http://www.w3.org/TR/rdf-syntax-grammar/ (Last visited Septem-

ber 22nd, 2006).

[W3C06a] W3C. Extensible Markup Language (XML) 1.0, 2006.
URL: http://www.w3.0org/TR/2006/REC-xml-20060816/ (Last visited

September 22nd, 2006).

[W3C06b] W3C. Naming and addressing: URIs, URLs, ..., 2006.
URL: http://www.w3.org/Addressing/ (Last visited September 22nd,

2006).

[Wik07] Wikipedia. Syntactic Web — Wikipedia, the free encyclopedia, 2007.
URL: http://en.wikipedia.org/wiki/Syntactic_-web (Last visited December

ond, 2006).

[Yel99] Yelland, P. M. Market analysis using a combination of bayesian networks
and description 1ogics..TechnicalvReport SMLI TR-99-78, Sun Microsystems

Laboratories, August 1999.

[Zad65] Zadeh, L. A. Fuzzy sets. Information and Control, 8:338-353, 1965.

194

[Zad78) Zadeh, L. A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets

and Systems, 1(1):3-28, 1978.

195

Appendix A

URDL Implementation Details

// Augment the ABox with respect to the TBox
augment ABoxWrtTBox()

If the ABox is empty, add an individual ind to the ABox.

For each individual ind in the ABox

{
For each axiom in the TBox of the form (T C -C U D | «, fe, fa)
{
Create an assertion A of the form (ind: ~CU D | o, fe, fa).
Add A to the ABox.
}
}

}

Figure 43: Pseudo-code for augmenting the ABox with respect to the TBox

System Preference Description
certaintyLattice The certainty lattice used in the input knowledge base.
certaintyPrecision The precision of the certainty value.
generatedIndividualName The prefix of the generated individual name.
generatedVariableName The prefix of the variable name.
constraintInputFileName The location and the prefix of the file name where

the generated constraints will be saved.

196

constraintOutputFileName

The location and the prefix of the file name where

the constraint solving result will be stored.

consistencySolverCommand

The location of the constraint solver and the solver

preference used for consistency checking.

entailmentSolverCommand

The location of the constraint solver and the solver

preference used for entailment checking.

Table 33: System preferences

Printing Preference

Description

printMenu Display the menu. If menu is disabled, the
reasoner will check the consistency of the
knowledge base by default.

debug Display the debugging messages.

printIndividualsInIndividualGroup | Print the individual names in each Individual
Group.

printIndividualsInAssertionGroup | Print the individual names in each Assertion
Group.

print Assertions Print the assertions, including the derived
assertions.

printVariables Print the generated variables.

printConstraints Print the derived constraints.

printModel Print the model.

printConflictingAssertions

Print the conflicting assertions if the knowledge

base is inconsistent.

printDerivedConflicting Assertions

Print the conflicting assertions, including the

derived ones, if the knowledge base is inconsistent.

printRunningTime

Print the running time.

printKBHeight Width

Print the height and the width of the knowledge

base.

Table 34: Printing preferences

197

Optimization Preference

Description

partitionOption

Specifies whether the. ABox should be partitioned
into Assertion Groups, Individual Groups, or no

partition,

optimizelndividualGroupCreation

Specifies whether optimized Individual Group
creation should be turned on or off.

enableCaching

Specifies whether caching should be enabled
or disabled.

optimizedClashDetection

Specifies whether optimized clash detection
should be enabled or disabled.

stopCheckConsistencyOnFail

Specifies whether to stop consistency checking
in case one Assertion Group is found to be

inconsistent.

optimizeHashing

Specifies whether optimized hashing should be
enabled or disabled.

optimizeStringComparison

Specifies whether optimized string comparison
should be enabled or disabled.

callConstraintSolver

Specifies whether the reasoner should call

the constraint solver to solve the constraints.

writeConstraintsToFile

Specifies whether generated constraints should
be written to files. (For example, in case
callConstraintSolver is disabled, there is no

need to write the constraints to file.)

Table 35: Optimization preferences

KB := (Statement (EOL)*)* EOF
Statement = Assertion
| Axiom
| FunctionDef
EOL = “\n” ‘
I A\
L An?
Assertion = “(” Instance Identifier Concept “|” CertaintyValue “,”

CombinationFunction “,” CombinationFunction)”
| “(” Related Identifier Identifier Identifier “|”

198

Axiom

FunctionDef

Instance

Identifier
Concept

CertaintyValue

CombinationFunction

Related

DefineConcept

DefinePrimitiveConcept

Equivalent

Implies

CertaintyValue ¢, -, -)”

“(” DefineConcept Identifier Concept “|”
CertaintyValue “,” CombinationFunction “,”
CombinationFunction“)”

I”

“(” DefinePrimitiveConcept Identifier Concept “
CertaintyValue “,” CombinationFunction ¢,
CombinationFunction“)”

“(” Equivalent Concept Concept “|” CertaintyValue “,”
CombinationFunction “,” CombinationFunction®)”

[{3n4]

“(” Implies Concept Concept “|” CertaintyValue ¢,

“p
CombinationFunction “,” CombinationFunction®)”
Identifier “(” Identifier “,” Identifier “)” “="
AdditiveExpression

Max “(” Identifier “,” Identifier “)” “=" Max “(”
AdditiveExpression “,” AdditiveExpression “)”
Min “(” Identifier “” Identifier “)” “=" Min “(”
AdditiveExpression “” AdditiveExpression *)”
“instance”

“INSTANCE”

[“@”-“z” “A"—“Z"] ([“a"-%2",“A"-“17 ,“0"-“9” ,“-"])*
AtomicConcept

“(” Not Concept “)”

“(” And Concept Concept “)”

“(” Or Concept Concept “)”

“(” Some Identifier Concept “)”

“(» All Identifier Concept “)”

“” Number “,” Number “}”

“»

Max

Min

Identifier

“related”

“RELATED”

“define-concept”

“DEFINE-CONCEPT”

“define-primitive-concept”
“DEFINE-PRIMITIVE-CONCEPT”

“equivalent”

“EQUIVALENT”

“implies”

199

AtomicConcept

Not
And

Or
Some
All

Top
Bottom
Number
Max
Min
AdditiveExpression

MultiplicativeExpression
UnaryExpression

“‘IMPLIES”

Identifier

Top

Bottom

“not”} “NOT”
“and”| “AND”
“or” | “OR?
“some” | “SOME”
“all” | “ALL”

“*top*” | “FTOP*”

“*bottom*”| “*BOTTOM*”

(o9 ()7 (-9

“min” | “MIN”

“max” | “MAX”

MultiplicativeExpression ((“+” MultiplicativeExpression) |
(“~” MultiplicativeExpression))*

“*” UnaryExpression) |

UnaryExpression ((
(¥/” UnaryExpression))*
Identifier
(AdditiveExpression)

Number

Table 36: EBNF grammar used by parser

200

// Add the atomic concept assertion A, of the form (a: A| T, —, —) to the ABox.
/] If As is a derived assertion, AG is the Assertion Group of the assertion that
/] As derived from. Otherwise, AG is null.
addAtomicConceptAssertion(Assertion A;, Assertion Group AG)

{

If individual a is not yet in the ABox, add it.
If ' is a numerical certainty value

certaintyOfA =T
If T’ clashes with any existing certainty values for z,. 4, return.

}
Else

certaintyOfA = x,4.4

// Decide which Assertion Group A, should belong to.
If A, is not present in the ABox

If AG is null

Create a new Assertion Group for A;.
Else

As is in AG.

Add A; to the list of atomic concept assertions associated with a.
Else // There is an assertion A’ in the ABox that is identical to A

If AG is null
As is in the same Assertion Group as A’.
Else
Merge the Assertion Group of A’ with AG.
}

If certaintyOfA is a numerical certainty value

{
Create a constraint C of the form (z4.4 =T)
Add C to the Assertion Group of A;.

Create a constraint C’ of the form (z4.-4 =~T)
Add C' to the Assertion Group of A;.

}
Else

{

Create a constraint C of the form (zg:na = T — Z4:4)
Add C to the Assertion Group of A;.

}

Add new variables to the Assertion Group of 4.

Figure 44: Pseudo-code for adding atomic concept assertion into the ABox

201

// Add the non-atomic concept assertion A of the form (a: C' | T, fc, fa) to the ABox.
// If A is a derived assertion, AG is the Assertion Group of the assertion that

// A derived from. Otherwise, AG is null.

addNonAtomicAssertion(Assertion A, Assertion Group AG)

If individual a is not yet in the ABox, add it.
If T is a numerical certainty value

certaintyOfA =T

If T’ clashes with any existing certainty values for z,.c, return.
}
Else

certaintyOfA = z,.¢

Check if there is an assertion A’ associated with a that is either identical to A or
has the same concept name as A.

// Decide which Assertion Group A should belong to.
If there is no A’ found

If AG is null

Create a new Assertion Group for A.
Else

Aisin AG.

}
Else // There is A’ found

If AG is null
A is in the same Assertion Group as A'.
Else
Merge the Assertion Group of A’ with AG.
}

If there is no assertion associated with a that is identical to A
Add A to the list of concept assertions associated with a.

If A is of type Role Value Restriction
Add A to the list of Role Value Restriction assertions associated with a.

If certaintyOfA is a numerical certainty value

{

Create a constraint C of the form (zq.c =T)
Add C to the Assertion Group of A.

}

Add new variables to the Assertion Group of A.

}

Figure 45: Pseudo-code for adding non-atomic concept assertion into the ABox

202

// Add the role assertion A of the form ((a,b) : R|I',—, —) to the ABox.

// If A is a derived assertion, AG is the Assertion Group of the assertion that
// A derived from. Otherwise, AG is null.

addRoleAssertion(Assertion A, Assertion Group AG)

If individuals @ and b are not yet in the ABox, add them.
If T is a numerical certainty value

certaintyOfA =T
If T" clashes with any existing certainty values for x(g p).z, return.

}
Else

certaintyOfA = z(, 4).r

// Decide which Assertion Group A should belong to.
If A is not present in the ABox

If AG is null

Create a new Assertion Group for A.
Else

Aisin AG.

Add A to the list of role assertions associated with a.
Else // There is an assertion A’ in the ABox that is identical to A

If AG is null

A is in the same Assertion Group as A’.
// There is no Else, since we cannot have a role assertion that is both
// inferred and is already present in the ABox.

}

If certaintyOfA is a numerical certainty value

{
Create a constraint C of the form (z(q).r = I')
Add C to the Assertion Group of A.

Create a constraint C’ of the form (z-(q,0).r =~T)
Add C’ to the Assertion Group of A.

}
Else

{ ,
Create a constraint C of the form (z_(gp):r = T — Z(a,b):R)
Add C to the Assertion Group of A.
}
Add new variables to the Assertion Group of A.
Call determinelGForRoleAssertion(A) to decide the Individual Group for A

}

Figure 46: Pseudo-code for adding role assertion into the ABox

203

// Create or merge Individual Group for individuals a and b in the role
// assertion A of the form ((a,b): R|T,—, —).
// Standalonelndividuals is list consists of individuals that currently do not
// belong to any Individual Group.
determinelGForRoleAssertion(Assertion A)
{

Let IG1 be the Individual Group of individual a.

Let IG2 be the Individual Group of individual b.

If both IG1 and IG2 are null
{
// IG1 and IG2 do not yet belong to any Individual Group
Remove IG1 and IG2 from Standalonelndividuals
Create a new Individual Group for ¢ and b. }
Else if IG1 is not null, and IG2 is null
{
// a already belongs to the Individual Group IG1, but b does not yet
// belong to any Individual Group.
Remove b from Standalonelndividuals
Add b to IG1. :
}

Else if IG1 is null, and IG2 is not null

// b already belongs to the Individual Group IG2, but a does not yet
// belong to any Individual Group.

Remove a from Standalonelndividuals

Add a to IG2.

Else // Both IG1 and IG2 are not null
// a already belongs to the Individual Group IG1, and. b already

// belongs to the Individual Group IG2.
Merge IG2 to IG1 to form one single Individual Group.

Figure 47: Pseudo-code for determining Individual Group for role assertion

204

// Apply the negation rule to assertion A of the form (a: -4 | z4:24,—, =)
negationRule(Assertion A)

o

Create an assertion A’ of the form (a: A | z4:4,—, —)

Assign the line number of A to the line number of A’ to indicate
that A’ was derived from A.

Add A’ to the ABox.
}

Figure 48: Pseudo-code for the negation rule

// Apply the conjunction rule to assertion A of the form {(a: C 1D | ze.cnp, fe, fa)
conjunctionRule(Assertion A)

Create an assertion A’ of the form (a : C | z,.c, fe, fd)

Assign the line number of A to the line number of A’ to indicate
that A’ was derived from A.

Add A’ to the ABox.

Create an assertion A” of the form (a : D | z4.p, fe, fa)

Assign the line number of A to the line number of A” to indicate
that A” was derived from A.

Add A” to the ABox.

Create a constraint C of the form (f:{zs.c, Za:p) = Za:cnp)
Add C to the ABox.

Add new variables to the ABox.

Figure 49: Pseudo-code for the conjunction rule

205

// Apply the disjunction rule to assertion A of the form (a: CU D | Ze.cup, fe, fa)
disjunctionRule(Assertion A)
{
Create an assertion A’ of the form {a: C | za:c, fo, fa)
Assign the line number of A to the line number of A’ to indicate
that A’ was derived from A.
Add A’ to the ABox.

Create an assertion A” of the form {(a : D | za.p, fc, fa)

Assign the line number of A to the line number of A” to indicate
that A” was derived from A.

Add A” to the ABox.

Create a constraint C of the form (f4(Zq.0, Za:D) = Ta:cup)
Add C to the ABox.

Add new variables to the ABox.

Figure 50: Pseudo-code for the disjunction rule

// Apply the role value restriction rule to assertion A of the form (a : VR.C | o:vr.C) fer fa)
roleValueRestrictionRule(Assertion A)

{

Let RoleAssertions be the set of role assertions associated with individual a.
For each role assertion Ap in RoleAssertions

If Ag is of the form {(a,b) : R| T(q,b):R> —» —Y where b is any individual that is
related to individual a through role R
{
Create an assertion A’ of the form (b: C | zp.c, fe, fa)
Assign the line numbers of A and Ar to the line number of A’ to indicate
that A’ was derived from A and Ag.
Add A’ to the ABox.

Create a constraint C of the form (f4(%-(a,b):R) Th:c) = TavR.C)
Add C to the ABox.

Add new variables to the ABox.

Figure 51: Pseudo-code for the role value restriction rule

206

// Apply the role exists restriction rule to assertion A of the form (a: 3R.C | z4:3R.C, fe, fa)
roleExistsRestrictionRule(Assertion A)

{

If individual a is blocked by its ancestor, return.
Let b be a newly generated individual.

Create an assertion A’ of the form ((a,b) : R |z b):rs— —)
Assign the line number of A to the line number of A’ to indicate
that A’ was derived from A.

Add A’ to the ABox.

Create an assertion A” of the form (b: C | zp.c, fe, fa)

Assign the line number of A to the line number of A” to indicate
that A” was derived from A. '

Add A” to the ABox.

Create a constraint C of the form (f.(x(q,5):R To:0) = Ta:3R.C)
Add C to the ABox.

Add new variables to the ABox.

// Abstract the ABox w.r.t. TBox
For each axiom in the TBox of the form (T C ~CU D | a, fe, fa)
{ .
Create an assertion A" of the form (b: ~C U D | o, fc, fa).
Add A" to the ABox.
}
Call processRoleValueRestriction(A4, A’) to process any Role Value Restriction
assertions associated with a due to the newly derived role assertion A’. '

}

Figure 52: Pseudo-code for the role exists restriction rule

207

// Process the Role Value Restriction assertions associated with a due to the new

// role assertion A’ of the form {(a,b) : R | %(qp):r, —, —) generated by the application
// of Role Exists Restriction rule to assertion A of the form (a : 3R.C | Z4.3R.C) fe, fa)
processRoleValueRestriction(Assertion A, Assertion A’)

{

Let RoleValueRestrictions be the set of assertions with Role Value Restrictions
that are associated with individual a.

For each assertion Ar in RoleValueRestrictions

If Ay is of the form (a: VR.D | Zavr.D, fl f) where Agr has the same
role name as A’, and D is any concept name

{

Create an assertion A” of the form (b: D | zu.p, fl, f)

Assign the line numbers of A’ and Ag to the line number of A” to indicate
that A” was derived from A’ and Ag.

Add A” to the ABox.

Create a constraint C' of the form (f}(2-(a,5):r, Tt:D) = Ta:vR.D)
Add C to the ABox.

Add new variables to the ABox.

Merge the Assertion Groups of A and Apg.

Figure 53: Pseudo-code for checking whether role value restriction rule needs to be
re-applied

208

Appendix B

Glossary

ABox = Assertional Box

AG = Assertion Group

ALC = A Description Logic fragment that provides the following language construc-
tors: atomic concept, atomic role, top concept, bottom concept, concept negation,
concept conjunction, concept disjunction, role exists restriction, and role value re-
striction

ALCy = The Description Logic ALC extended with uncertainty

BDB = Best Degree Bound

bMIP = Bounded, Mixed Integer Programming

DL = Description Logic

EBNF = Extended BackusNaur Form

FOL = First-Order Logic

GCI = General Concept Inclusion

209

JavaCC = Java Compiler Compiler

Java SE = Java Standard Edition, also known as J2SE

HTML = HyperText Markup Language

IG = Individual Group

NNF = Negation Normal Form

OWL = Web Ontology Language

OWL DL = An OWL specie that has close correspondence with the Description Logic
SHOIN

RDF = Resource Description Framework

RDFS = Resource Description Framework Schema

SHOIN = ALC extended with transitive role axioms, role hierarchy, nominal, in-
verse role, and unqualified number restriction

TBox = Terminological Box

URDL = Uncertainty Reasoner for the DL ALCy

URI = Universal Resource Identifier

URL = Uniform Resource Locators

W3C = World Wide Web Consortium

XML = Extensible Markup Language

210

