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ABSTRACT

MODELING AND ANALYSIS OF REINFORCED GRANULAR LAYER
OVERLAYING VERY SOFT SOIL

Dory Bitar, Ph.D.
Concordia University, 2007

Many regions of lowlands contain areas of very soft soils where large settlements
are observed. Placing a fill over these areas will lead to extensive differential settlements.
For this reason, reclaiming such surfaces with the aid of reinforcements is very essential.

The proposed model is an elastic-plastic constitutive model derived from
CANAsand model which uses a non-associated flow rule along with the concept of the
state boundary surface possessing the critical and the compact state. The model is capable
of simulating the surface profile of reinforced granular fill over very soft soil due to the
immediate settlement. A primary ground deformation profile is evaluated prior to filling
and is based on a parametric study involving variables such as the height and the spacing
of the embankment fingers, the stiffness modulus of the reinforcement and the cohesion
of the soft soil. The numerical results indicated that these parameters affect the
performance of the system in many direct ways. The immediate and final settlement is
based on the level the first deformation has attained and is estimated using a nonlinear
and incremental stress-strain analysis. An integro-differential equation written in its finite
difference form is developed to estimate the total displacement field of the system. The
computer generated results showed that larger surface settlements were associated with

high void ratios whereas smaller surface settlements were associated with low void ratios.
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1. INTRODUCTION

1.1 INTRODUCTION

Lowlands are defined as the areas wherein the resident populations are dealing
with problems and disasters caused by the changes and fluctuations of water levels of sea,
rivers and lakes. Many of the problems of lowlands are accentuated by the presence of
soft ground underneath. A significant percentage of the world population either resides in
or have activities, (agricultural, industrial, commercial or recreational) connected with
these lowlands. In view of the relative sea level rise due to global warming, subsidence
due to groundwater withdrawal, risks, dangers and the problems with lowland areas
would be of increasing importance in the near future. There is an urgent need to bring
together engineers, scientists, planners, and administrators into an organization to focus
attention and to evolve solutions to the problems of lowlands.

The formed deposits on the surface in many lowlands areas are diverse. Vast
regions of moderately capable ground may surround areas containing very soft soil and
the material is much more compressible in comparison with its surroundings. If a fill is to
be placed over such regions then large differential settlements are likely to occur on the
surface of the fill due to its self-weight. Hence, ground improvement techniques are
required to ameliorate the performance of the ground. The use of reinforcements is
effective along with the compaction of the granular fill in reducing the settlement of the
fill layer. A reinforced granular layer over a very soft soil will improve the settlement

profile of the fill and provide a competent surface for construction.



1.2 STATEMENT OF THE PROBLEM

The modeling and analysis of the reinforced granular layer over soft soil will
provide a reasonable and analytical model to evaluate the settlement profile of such
systems due to the immediate settlement. Constitutive and governing equations
developed in this study will be able to present a practical model of the soil behavior by
using an incremental elastic-plastic model. The developed model will be able to estimate
different surface profile due to the immediate settlement of the fill. It is a simple model to
use in comparison with other numerical models. CANAsand model which uses a non-
associated flow rule and its developed equations is used to represent the stress-strain
behavior of the soil. The performance of the system will depend on several parameters
which play an important role such as the unit weight of the fill and the embankment
fingers, the cohesion of the soft soil, the stiffness modulus of the reinforcement, the
height of and the distance between the embankment fingers and the depth of the
reinforced fill. Moreover, the model will be capable of predicting the settlement profile at

different void ratios of the granular fill ranging from very dense to very loose fill.

1.3 OBJECTIVE OF THE STUDY

The objective of the present study is to investigate the surface profile of a

reinforced granular layer overlaying very soft soil due to the immediate settlement. To

study the above mentioned problem in a qualitative way, it is necessary:




e To evaluate a primary settlement profile of the system consisting of the
reinforcement, the embankment fingers and the very soft soil prior to the spreading of

the granular fill between the embankment fingers.

e To describe the non-linear behavior of the fill and the stress and strain relationship.
Constitutive equations are derived from CANAsand model using the critical state, the

compact state concept and the state boundary surface.

e To develop an elastic-plastic constitutive model to analyze the behavior of the
reinforced granular layer and to describe a mathematical formulation to estimate the

total displacement field of the system.

e To establish an efficient computational method capable of simulating the settlement
profile of the system after the dispersal of the granular layer by incorporating the
elastic-plastic model with the aid of the integro-differential equation referred to as the
ID technique. The immediate settlement of the system is determined by superposition
of the bulge due to the loading of the embankment fingers and the settlement due to

the self-weight of the fill.

In order to obtain satisfactory results, the above described points need to be
targeted concurrently. Taking into consideration the constraints and the complexities of

the experimental assessment of the size of the stress-strain in a sample, the present study




focuses on information acquired from theoretical analysis and numerical trials to have a

creditable idea of the developed model.

1.4 STRUCTURE OF THE THESIS

The material covered in this current research is divided into six chapters.
Following the first chapter which explains the objective of the study, reviews of some

previous works which have been achieved in this domain are presented in Chapter two.

Chapter three starts with a brief historical outline on the theory of plasticity and
after that a background on important concepts and laws useful for this research.
CANAsand model is presented and described along with the critical state, the compact
state and the state boundary surface. The stress-strain relationship for the non-linear soil

behavior along with the elastic and plastic components of strain is illustrated.

Chapter four focuses on estimating a primary settlement profile for the system
under study. A description of the reclamation technique used for reinforcing a granular
layer over soft soil is presented, followed by modeling and analyzing the system prior to
the filling and the effect of the involved parameters is analyzed. Finally, results and some

discussions are highlighted.

The formulation of the constitutive equations is presented in Chapter five.

Constitutive equations are derived for the analysis and modeling of the elastic-plastic




behavior of the granular layer. The integro-differential technique with the mathematical
formulation of the problem is discussed. It is followed by the numerical scheme
employed to cover the solution region and the finite difference method used to solve the
governing equation. The results of the numerical evaluations incorporating a range of

void ratios of the fill layer are compared and discussed.

Finally, the main conclusions drawn from the present study are highlighted in

Chapter 6 with the recommendations for future research in this field.




2. LITERATURE REVIEW

2.1 INTRODUCTION

One of the greatest challenges in the development of lowlands is the reclamation
of ground consisting of very soft soils and affected by fluctuating water levels. In order to
use these lands as construction facilities, they have to be reclaimed from the existing
ground level to make it safe from inundation. If the subgrade is very soft, large
settlements will occur and hence ground improvement techniques are required to
ameliorate the performance of the ground against applied loads. One of the reclamation
techniques is to spread a compacted granular bed over the soft subgrade soil. It reduces
the surface settlements by spreading the applied loads through a wider area. With the
advent of geosynthetics, the settlements can be reduced by placing a geosynthetic at the
base or within the granular bed in one or more layers. This improvement increases the
bearing capacity from the reinforcement action of the geosynthetic layer in the granular
bed.

The reinforced earth concept was developed by Vidal (1966). Since then large
number of attempts have been made to understand the behavior of the reinforcing
element as well as the reinforced earth structures. Research in this area has been
progressing a lot over the last few years especially in studying the mechanisms of
reinforced soil. In addition to that, several model tests using various forms of reinforcing
elements such as strips, bars, sheets, grids and nets have been conducted to obtain an

approach into the reinforcing mechanisms of these materials. Finite element analysis has



helped in measuring the increase of the bearing capacity of reinforced foundation beds.
Few models based on elastic theories and mechanical models are also available for
representing the behavior of footings resting on unreinforced and on reinforced granular

beds.

2.2 REVIEW OF RECLAMATION TECHNIQUES

This section reviews the process of deposition and the various methods of
reclamation of soft deposits that are in vogue such as natural drying, displacement and

replacement, removal and replacement and near surface reinforcement.

2.2.1 The Process and Classification of Deposition

Reclaimed ground consists of very soft soils with their water contents either close
to or often somewhat higher than the liquid limit values. One of the earliest examples
reported by Feld (1971) has been the work of Spezia Harbor, in Italy, by the Italian
engineer Berberis. The soil at the site consisted of 32 m of very soft fluid mud. The site
was dredged to a depth of 14.3 m below sea level and filled up with sand to a level of +
4.5 m for a dry dock. The settlement at the bottom of the sand layer was 0.9 m during
1912 to 1915 and 0.3 m from 1916 to 1927 and no intrusion of the mud into the sand
blanket was observed over twenty years.

Artificial islands are a form of reclamation. The initial artificial islands were built

with side slope of 10:1 to 15:1 for water depth less than 20 m. Subsequently, modern




form of island construction or reclamation with caisson rings had become very popular.
Figure 2.1 shows two typical examples of a surface piercing island and a caisson retained

island. Figure 2.2 shows the process of construction of a typical artificial island structure.
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Figure 2.1 Surface piercing island and caisson retained wall (Mitchell (1988))
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Figure 2.2 A typical artificial island structure (Mitchell (1988))



For the development of lowlands, one is normally concerned with sub-aqueous
deposition either in the form of beach or non-beach deposition. The behavior of the
ground is very much influenced by the process of deposition of the materials.
Morgenstern and Kupper (1988) presented a report on hydraulic fills. The process of

deposition has been classified according to the diagram shown in Figure 2.3.

Hydrauilc Deposillon }

Sub-Aerial Deposition Sub-Agueous Deposition

Non-Bsach Deposition Beach Daposition Beach Deposition Non-Beach Deposition

Sand Infilfing | | Thickenad | Patterned| { Random 0890”‘;?[“ Point gggg“ifn;ﬁ'm
Dischatge on tha Fill 8 the Fi
/ {H=0) {H>0)

Heterogeroous Fill Homogansous Fil / \

/\ /\ Gradual] | Dump
Contained j No Finas] | Fines Removed |

N

Caontraf Coro | | Upatream | { Canterting | | Downstream

Figure 2.3 Classification of hydraulic deposition (Morgenstern and Kupper (1988))

The deposits that are often reclaimed are very young sediments that always require some
engineering modification before the site can be developed for any use. They consist of
either cohesionless fills of low relative density, low strength and high liquefaction
potential or fine grained soils of high water content, high compressibility and low

strength. The soil consisting of soft ground material may be classified as in Table 2.1.



Type of Borrow Material Characteristics of Soft Ground

Clean sand (< 15% finer than | Uniform soil of low to medium density

No0.200 sieve)
Silty or clayey sand Heterogeneous soil of large void ratio
Stiff cohesive soil Clay balls with sand and clay matrix
Soft cohesive soil Soft normally or under-consolidated

clay

Table 2.1 Classification of soft ground (Whitman (1971))

2.2.2 Natural Drying

In many parts of the world, evaporation from the surface either seasonally or
throughout the year, due to favorable climatic conditions, can be expected to dry out
hydraulically deposited fine-grained material, either during placement or after complete
deposition. With the drying process, the phreatic surface propagates downwards and

continually falls down as shown in Figure 2.4.
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Figure 2.4 Phreatic surfaces (Blight (1988))
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The increase in effective stress due to desiccation causes a reduction in the void ratio and
could generate pseudo-preconsolidation effect (Blight (1988)). Figure 2.5 depicts the
effect of desiccation on gold slimes fill. This method is very economical but requires

considerable amount of time.
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Figure 2.5 Sun drying effect (Blight (1988))

2.2.3 Displacement and Replacement

The soft soil is displaced and replaced by gradual dumping of a good quality of
granular fill and the weight of the granular fill squeezes the soft soil out. The reclaimed
ground gets stabilizes when the surrounding soft deposits resists the load from the fill.

This method is commonly used for the construction of dykes for the development of

11




polders in Japan and breakwaters into the sea in most Asian countries. However, the
disadvantage in the displacement technique is that it requires a huge amount of granular
material. Figure 2.6 illustrates an example of the displacement method proposed by

Aczaraih et al. (1999).
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Figure 2.6 Forced displacement method (Azaraih et al. (1999))

2.2.4 Removal and Replacement

The replacement of original soil is extensively practiced all over the world before

the advent of modern geotechnical practices. This technique has been used for the

construction of embankments and sea revetments. The soft soil is excavated first and
replaced by sands or sandy clay fills. Complete or partial replacement is achieved

depending on the depth of the soft layer. Reclamation by the removal and replacement

12



method is depicted in Figure 2.7 where the sea bottom was excavated first with aid of

dredger cutter.

CENTRE LINE CF STONE BUND

| 10.00m ) 7-00rpy i 5.00m .fi
[v l IH i ..f_l:-SOm ;L-JOm
50m N FILTER CLOTH
000m ACD T }4,__.,._‘0.00’“{ - PROPQSED
130 nZ}.QDm ; ' -3.00m  EARM FiLL
-~ 4.30m \. TN
IR F— 792. 74
f21.5% O T
p=0* . DREDGE AND SAND FILL" 5 -
¢=180 o e .+t 7 NEW MARNE CLAY
L;‘S.O&n ) 77
r;ﬁ?oofn ] MEDIUM TO STIFF SILTY CLAY
‘i’égm}) i 20.00m _! 1x7.00 7
zQ° | ' 20"
¢x500 OLD MARINE CLAY ¢+ 700
.~30:00m : .

AL/

Figure 2.7 Removal and replacement method (Lee et al. (1999))

Transport and deposition of granular material were excavated either from adjacent sea
bottom or land to build the underwater embankment. Quarry stones are dumped on each
side of the embankment as counter weights. The loose pockets can be compacted either
during or after replacement. However, the embankment could suffer large settlements
due to long term consolidation of the underlying soft soils and even due to its self weight.
The weakest zone extends usually from the sea or water level to few meters below. The
limitations of this method are the variations in grain size, the placement unit weight and

the ways of placement (Lee et al. (1999)).

13




Earthquakes could cause large settlements unless the reclaimed ground is
improved or treated properly by one of the dynamic densification methods (Van Impe
and Madhav (1995)). Mitchell (1988) presented a summary of various methods available
for improvement of hydraulic fills. Improvement during placement is believed to be
favorable to post reclamation. However, deep mixing methods necessitate the use of

specialized construction equipments.

2.2.5 Near Surface Reinforcement or Geosynthetic Reinforcement

Near surface reinforcement with geosynthetics are by far the simplest, quickest
and the most preferred method of reclaimed soft ground. One of these methods was
proposed by Miki (1985) which is to enclose cement treated coal ash piles in geosynthetic
stockings on which a granular bed was laid over for the construction of embankments
over soft soils. Watari et al. (1986) and Broms and Shirlaw (1987) reported an earliest
application of this method for reclaiming mining waste lagoons.

Martin et al. (1988) proposed using geotextile reinforced mat over soft soil
dredging for assembly of offshore drilling rigs which is shown in Figure 2.8. The
reinforced granular mat consists of multiple layers of reinforcement and high strength
geosynthetic which act as separator and reinforcement.

Lawson (1999) described the sequence of reclamation with geosynthetic
reinforcement. The construction procedure starts with laying a geosynthetic layer over the
very soft soil and then with the use of soil berms, the edges of the geosynthetic are

anchored. The construction of embankments fingers is then followed to stress the

14



reinforcement and finally the procedure ends with filling and spreading the fill in

between the embankment fingers.

T,

3
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Figure 2.8 Multiple geosynthetic reinforcement for reclaiming

lagoons (Martin et al. (1988))

The floating mat method by Yonezu et al. (1993) has also been used to construct a
layer of sand on extremely soft soil. The ground had cone bearing values increasing from
zero at the surface at a rate of 10*z kPa and a tensile strength of 5 kPa for the net. The

floating mat method is described in Figure 2.9.
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Figure 2.9 Floating mat method (Yonezu et al. (1993))
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The application of geosynthetic reinforced granular mat has also been useful for
the construction over waste and sludge ponds. The reinforced granular fill provides not
only a strong platform but also a resistance to the large installation stresses. The
geotextile reinforced sand mat along with ‘Cakar Ayam System’ has been used for the
construction of a twenty kilometer highway embankment across a swampland in research
conducted by Risseeuw and Voskamp (1993b). The geosynthetic reinforcement with

‘Cakar Ayam System’ is highlighted in Figure 2.10.
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Figure 2.10 Geosynthetic with Cakar ayam system (Risseeuw and Voskamp (1993b))

Other reinforcement techniques such as extra light fill consisting of polystyrene blocks,
of unit weight of the order of 20 kg/m?, are in use in the Scandinavian countries and
Japan. It is one of the quickest methods of construction but is relatively expensive.
Lawson (1999) presented an excellent summary on different earth reinforcement

techniques including reclamation of very soft soil.
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Imanishi et al. (1998) described the method of reclaiming soft marine clay with geonet
and sand replacement in Figure 2.11. The use of geonet reduces the amount of sand fill

required and prevents its lateral spread.

T CRRTY

{r) cross section

Figure 2.11 Sand replacement with geonet (Imanishi et al. (1998))

2.3 GEOTEXTILE DESCRIPTION AND PROPERTIES

Geotextiles are permeable, synthetic fiber fabrics used in the construction of civil
engineering projects. There are many other names for geotextiles, some of these are:
engineering fabrics, geofabrics, plastic filter clothe, filter fabric and synthetic fabric. The
international term for these materials is geotextiles, which comes from the Latin “geo”,
meaning soil, and “textilis”, meaning woven fabric. Geotextiles are manufactured from
various synthetic materials. The most popular of these are polyethylene, polyester and
nylon. Table 2.2 shows the conventional products used to reinforce soil along with the

details of the rolling width, mesh width, and maximum strength mobilized due to axial
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tensile strain in the machine denoted by MD and the cross section denoted by XD. The
numbers of geosynthetics are also shown with the type and manufacturing process. These

are biaxial products that are able to resist approximately the same force in both

directions.
No. Type of geosynthetic Width Grid (mm) Maximum tensile
(m) strength (kN/m)
MD XD
02 | PP slit tape woven 5.15 - 65 65
27 | Biaxial extruded PP grid in 5 layers 4.50 60 x 60 55 35
28 | PVC-coated knitted PET grid 5.10 20x 20 55 55
32 | PET flat rib grid 4.75 32x32 30 30
40 PP nonwoven (separation) 5.00 - 10 10
41 PP nonwoven (reinforcement) 5.00 - 20 20
42 | PVC-coated knitted PVA gnid 5.20 40 x 40 40 40
44 | PET yarn reinforced PP nonwoven 5.20 8.5x8.5 50 50
45 | PP slit tape woven 5.15 - 30 30
46 | Biaxial extruded PP grid 3.80 65 x 65 30 30

Table 2.2 Conventional products used for reinforcing soil (Hufenus et al. 2006)

There are other types which are included under the term geosynthetic such as
geogrids, geonets, geomembranes and geosynthetic clay liners (Koerner (1994)).
Geogrids are made on weaving machinery and they function as reinforcement materials.
Geonets are formed by a continuous extrusion of parallel sets of polymeric ribs at acute
angles to one another. The primary function of geonets is drainage. Geomembranes are
impervious thin sheets of rubber or plastic material used primarily as liquid or vapor
barrier. Geosynthetic clay liners are rolls of factory fabricated thin layers made of
bentonite clay and placed between two geotextiles or bonded to a geomembrane. They

are used as hydraulic barriers or as secondary liners.
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According to Koemer and Welch (1980), geotextiles fall into three broad
categories based on the method of manufacture: nonwoven, woven and composite.
Nonwoven geotextiles include spun-bonded and needle-punched. Spun-bonded
geotextiles are constructed by randomly extruding a continuous filament over a belt and
then bonding it by heat or resin. With needle-punched process, the fibers are
mechanically entangled by punching needles through the geotextile. Woven geotextiles
are generally constructed of monofilament, multifilament or slit film strands crossing
each other at right angles. Because of the strength of the filaments used in the
manufacturing process, woven geotextiles are generally stronger than nonwoven of the
same weight. Very strong geotextiles are manufactured with steel strands woven into the
synthetic filaments. Composite geotextiles are constructed of woven and nonwoven
geotextiles sewn together.

The following is a general description of the physical properties of geotextiles
shown in manufacturers’ literature and used for construction project specifications. The
Grab tensile strength is the strength of the geotextile of a specific width (usually 4 inches)
gripped in one inch jaws. The elongation at failure is the percentage increase in length at
failure expressed as the ratio of the length at failure to original length. The Mullen burst
strength is carried out by an inflated rubber membrane where it is used to distort the
geotextile out of its plane until it bursts. The permeability test is an adaptation of the
normal soil permeability test. It measures the rate of diffusion of water under pressure
through the geotextile. Since geotextiles are relatively thin a better measure of this ability
is the water flow rate. The water flow rate is the volume of water that will pass through

the geotextile at a given head for a given period of time. The equivalent opening size is
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the size of the openings in a geotextile expressed as an equivalent U.S Standard Sieve
No. The trapezoidal tear strength is the force required to continue a tear in the geotextile.
The puncture strength is defined as the resistance to penetration by a blunt object. The
ultraviolet stability is the ability of a geotextile to resist degradation due to exposure to
ultraviolet light. The thermal shrinkage is the amount of shrinkage of a geotextile at a
specified temperature expressed as a percentage of the original length.

Most of these tests for these properties were developed for the textile industry and
were not meant to measure properties for engineering applications. They represent a
marriage between the textile industry and civil engineering. For a complete description of
all physical properties, laboratory tests, and their significance one can refer to the list of

the references by Bell and Hicks (1980).

2.4 UNREINFORCED GRANULAR BED ON SOFT SOIL

In practice, the bearing capacity of foundations on soft clay can be improved by
placing a layer of compacted sand or gravel. The lack of design information concerning
the bearing capacity of non-homogeneous soil profiles is due primarily to the difficulty of
obtaining exact solutions. In recent years, approximate solutions have been presented for
a number of encountered non-homogeneous soil profiles in attempt to provide acceptable
design data. A two parametric Pasternak subgrade model, in which the granular fill is
represented by a shear layer and the soft soil by Winkler springs, has been found

physically feasible and mathematically simple in representing a two layer soil.
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2.4.1 Bearing Capacity of Sand Overlaying Soft Clay

Terzaghi and Peck (1948) were the first to calculate the bearing capacity of a
strong layer over a weak soil by assuming that the upper layer spreads the footing load
onto a larger area of the lower soil, therefore reducing its intensity as shown in Figure

2.12.

Figure 2.12 Load spread through sand overlaying clay (Terzaghi and Peck (1948))

It has been assumed that the load spreads through an angle corresponding to two vertical
units to one horizontal unit of distance (a load spreading angle o where tan a = 0.5). The
bearing capacity, qu, of a surface footing is therefore given by the expression:
qu = qc {1+2(H/B) tan a} < g (2.1)
where q. and q; are the bearing capacity of clay and sand respectively. H is the thickness
of sand layer below the footing and B is the width of the footing.

Meyerhof (1974) presented a semi-empirical method with punching mode of

failure to estimate the bearing capacity of a footing on or within sand layer overlaying
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clay. The results were compared with those from model tests on circular and strip
footings and some field observations were made for two cases of a dense layer on a soft
deposit and of a loose stratum on firm bed.

Meyerhof and Adams (1968) developed an approximate theory for the bearing
capacity of a footing punching through a thin sand layer into a thick clay bed by
assuming that the ultimate bearing capacity, qs of a homogeneous thick bed of sand is
much greater than the one of the underlying clay deposit, q.. At ultimate load, a sand

mass having an approximate friction angle, ¢, of the sand and the undrained cohesion,

‘c’, of the clay are mobilized in the composite failure zones illustrated in Figure 2.13.
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Figure 2.13 Soil failures below footing on dense sand (Meyerhof and Adams (1968))

The ultimate bearing capacity of a strip footing resting on dense sand overlaying clay bed
is expressed by:

qu=cN,+ yH’ (I + 2D/H) K, tan &/ B + yD (2.2)
with a maximum of g,

q.= yBN,/ 2 + yDN, 2.3)
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where Ny and N are the bearing capacity factors. The punching shear coefficient, K, has
been determined from the corresponding earth pressure coefficient Kp, and is shown in

Figure 2.14.
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Figure 2.14 Coefficient of punching shearing resistance (Meyerhof and Adams (1968))

It is important to note that K, increases rapidly with ® from about one to two times the
Rankine value of tan” (45° + ®/2). The analysis for the strip footing can be extended to
circular footings by considering the passive resistance, Pp, to be inclined at 6 on a vertical
cylindrical surface through the footing edge (Figure 2.13). Thus the ultimate bearing
capacity becomes:

qu=1.2¢N, + 2yH* (1 + 2D/H)sK;tan &/ B + yD (2.4)
with a maximum of g,

.= 0.3yBN,/ 2 + yDN, (2.5)
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where ‘s’ is the shape factor governing the passive earth pressure on a cylindrical wall.
The ultimate bearing capacity of rectangular footings of width B and length L can be
obtained by interpolation between the bearing capacities of strip and circular footings.
The corresponding values of q, are computed from equation 2.2 after multiplying the first
term of the right hand side by (1+0.2B/L) and the second term by (1+B/L), with the

maximum q, interpolated between equations 2.3 and 2.5.

2.4.2 Stress-Strain Behavior of Soil and Models

The stress-strain behavior of soil depends on a number of factors such as unit
weight, water content, structure, drainage conditions, strain conditions (plane strain and
triaxial), duration of loading, stress path, stress history, confining pressure and shear
stress. In many cases, it may be possible to take into consideration these factors in
selecting a soil specimen and testing conditions which stimulate the corresponding field
situation. When this can be done accurately, the strains resulting from the given stress
changes in the laboratory would be expected to be representative of the strains which
occur in the field under the same stress changes. Lambe (1964, 1967) had described a
procedure to predict strains and movements in soil masses without developing an
analytical stress-strain relationship for the soil.

The concept of duplicating field conditions can greatly simplify the procedure

required for determining stress-strain behavior of soil. However, the behavior over a wide
range of stresses is nonlinear, inelastic and dependent upon the magnitude of the

confining pressure used in the test.
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In the past, only linear elastic soil behavior could be assumed to perform analyses
of stresses in soil masses. Nowadays, with the availability of computing facilities and
numerical techniques, it is possible to estimate the nonlinear stress response of soil.
Duncan and Chang (1970) have presented nonlinear responses of soil mass and some of

the models are described below.

Bilinear and Multi-linear Models

It is the simplest form of nonlinear model in which the material maintains
linearity until the stress reaches a yield value beyond which the response is strain
hardening or strain softening. The multi-linear model or also called piece wise linear
model can be represented by the tangents to each of the segments of nonlinear stress-

strain curve.

Hyperbolic Model

The stress-strain curve obtained from triaxial test can be represented by a
hyperbolic relation in the form of:

&

(a+be) (29

01 —03=

where o) and o3 are the major and minor principal stresses in the triaxial sample, ‘€’, the
axial strain, and ‘a’ and ‘b’ are the constants of hyperbola Kondner (1963).
The hyperbolic relation was extended to generate stress-strain curves in function

of shear strength and initial tangent modulus by Duncan and Chang (1970) as:
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where E; is the tangent modulus, K the modulus number, R¢the strength ratio and E; the

initial tangent modulus which is equal to

O'3 !
E, -—KR,[;) (2.8)

where P, is the atmospheric pressure and n is the exponent determining the rate increase

of E; with o3 The strength ratio is

(O-l _0'3),"

R =1 "3
g (0'1 — 0, )ull

2.9)

where (0 - 03)ris the stress difference at failure and (o, . 63)y is the asymptotic value of

stress difference.
2.4.3 Foundation Response

Idealized subgrade models prove to be particularly useful in the analysis of soil-
foundation interaction problems. The choice of choosing an idealized behavior of the soil
depends on a number of factors including the type of soil and soil conditions, the type of
foundation and the nature of external loading. The response of each idealized model is
characterized by the surface deflection it experiences under the application of external
forces. These surface deflections represent the displacement of the upper soil layer which
is in contact with the foundation or so called soil-foundation interface. These models are
intended to model the response of the soil media and not the response of the elements

within the soil.
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Kerr (1964), Selvadurai (1979) and Chandra (1979) presented an excellent survey

on the existing foundation models for soils as subgrades and are introduced below.
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Figure 2.15 Models: a) Winkler b) Filenenko-Borodich c) Pasternak d) Viasov e) Kerr

(Chandra (1979)

The Winkler model shown in Figure 2.15a is the simplest and relates the stress on the

soil, q, with the displacement, w, as:
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(2.10)

g
il
==

where k is the spring constant or the modulus of subgrade reaction. The two parameter
models are a significant improvement over the Winkler model and take into consideration
the displacement of the soil outside the loaded region.

The Filonenko-Borodich model (Figure 2.15b) achieves continuity between
individual springs through a thin smooth membrane stretched over them. The equation

governing the response is:

2
w14 -
dx

2.11)

where T is the constant tension in the membrane.
The Pasternak model (Figure 2.15c¢) considers the shear interaction between
compressible soil elements (springs). Characterizing the shear layer by its shear modulus,

G, and thickness, H, the response is

d*w

C=q (2.12)

w—-GH
dx

The Vlasov model (Figure 2.15d) is very similar to Pasternak model but with the

parameters K and G reduced from a simplified continuum as:

K E dh(z)}
K_Oj(l = )[ dz (2.13)
and;
1” o _[n(z)} (2.14)
U =2 Jew) '

where the constant k is the measure of compressibility of the soil medium under applied

compressive stresses, G, is the measure of the transmissibility of an applied force to
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neighboring elements or the load-spreading capability and h(z) is a function for variation
of displacement with depth.
Kerr (1964) modified the Pasternak model with another spring layer on the top of

the shear layer (Figure 2.15¢). The derived differential equation is:

{1+f}q—ﬂv2q=kw=c;ﬂv2w (2.15)
C C

where ‘c’ is an additional spring constant of the upper spring layer and all the other
parameters are previously defined.

Rhines (1969) developed Kerr’s model by assuming that the shear layer
interconnecting the spring elements is capable of sustaining finite shear stress. The shear

stress-shear strain relationship for the elastic layer is of an elastic-rigid plastic type.
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Figure 2.16 a) Kerr model b) Elastic-perfectly plastic response of shear layer
c¢) Contact stress distribution for the perfectly elastic model
d) Contact stress distribution for the elastic perfectly plastic model

(after Rhines (1969))
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The results indicate that the inclusion of such yielding characteristics can alter both the
magnitude and distribution of contact stresses that are developed at the soil-foundation
interface. The effects become significant when the average stress beneath the foundation
exceeds the critical shear strength of the shear layer (Figure 2.16).

Madhav and Poorooshasb (1989) have extended the Pasternak concept for
reinforced granular fill, by filling the effect of confinement in the fill due to the

reinforcing effect.

2.5 REINFORCED GRANULAR BED ON SOFT SOIL

Since the development of the reinforced earth concept (Vidal, 1966), various
attempts have been made to study the soil-reinforcement interaction mechanisms of near
surface reinforced foundation beds. The interaction mechanism resulting from the
integration of various reinforcing elements, their position and orientation, the number of
layers and the surface characteristics has not been fully examined yet. The basic purpose
of providing an inclusion is to improve the foundation response to the unreinforced one.
The reinforced foundation bed consists of a layer of granular fill over soft clay. The
reinforcement (geogrid or geonet) is placed within the fill or at the interface of the soft
clay and the fill. Properly used inclusions possess more stability and deform less than the
soil alone. In most cases, the tensile forces are generated in the reinforcement as a result
of mobilization of the interface frictional forces. The flat shape of the inclusion results in

a longitudinal extension which causes the inclusion to act only in pure tension.
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2.5.1 Review of Various Analytical Methods

Binquet and Lee (1975a, b) studied the problem of the bearing capacity of a strip
footing on a granular soil containing horizontal layers of tensile reinforcement. Based on
their model test results, a failure hypothesis is proposed which forms the basis for the
bearing capacity analysis. The analytical results are then compared with experimental
data. A design method for the bearing capacity of a footing on a reinforced earth
foundation is proposed by specifying preliminary footing dimensions, location, the
reinforcement size and then checking the adequacy.

Broms and Massarsch (1977) proposed an analytical method for grid mat
foundation and verified the theory with model tests. Experiments have been conducted
with triangular and rectangular steel cells on both cohesive and cohesionless soils of
different densities. Punching and general shear failures have been assumed for relatively
small and large cell height to circumference ratios.

Niewenhuis (1977) developed a simple model for describing the behavior of a
road base membrane subsoil system. The load transferred through the road base is
derived from the Boussineq equation. The membrane is smooth and anchored at its ends
and the subsoil is represented by Winkler springs. The membrane and the subsoil were
assumed to behave as linear elastic materials.

Andrawes et al. (1978) discussed the soil-inclusion interaction with respect to two

kinds of internal strain mechanisms, one controlled by compressive strains and the other
by tensile strain. Piles under compressive and tensile applied loads are shown in Figure

2.17 (a) and (b) and soil strain controlled inclusions are shown in Figure 2.17 (c) and (d).
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Figure 2.17 Loading characteristics of piles strain controlled inclusion

(Andrawes et al. (1978))

In piling system, both external compression and tension loads induce internal
deformations in the soil in which they are installed. In reinforced earth systems, the
inclusions are loaded by the soil itself.

Basset and Last (1978) have investigated the modification of natural strain field
caused by the presence of reinforcement in the soil. The load transfer mechanism

between soil and reinforcement is dependent on the limiting interface friction or
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adhesion. Figure 2.18a shows the conventional Mohr’s circle of strain rate. The pole of
origin of planes determines the major (&, ) and minor (g, ) principal strain rate directions

from which o and B characteristics can be found for the planes ‘A’ and ‘B’ (Figure

2.18b).
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Figure 2.18 Internal strain field (Basset and Last (1978))

Normal strains within the arc segment containing minor principal strain direction (£, ) are

tensile and reinforcement laid along the tensile stress zone would be effective in

improving the bearing capacity and settlement response of the soil. Figure 2.19 illustrates
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the zero extension lines of the internal strain field, developed due to strip load applied at

the surface.
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Figure 2.19 Zero extension lines characteristics (Basset and Last (1978))

Accordingly, the reinforcement below the footing is to be placed horizontally. Its
direction becomes progressively vertical at some distance away from the footing edge.
The ideal as well practical pattern of reinforcements under the footing is suggested to be

along the direction of principal tensile strain (Figure 2.20).

{ y t -
b2 B 7
A . / A 7

) ldeal pattern of reintorcement B) Pructical pattern of

reinforcement (before
structure being bullt)

i
5y

.2

c) Pructical pattern of reinforcement d) Practical pattern of
{After siructure being built) reinforcement

| -

b

AN

5
!
!

Figure 2.20 Pattern of reinforcement beneath footing (Basset and Last (1978))
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Bourdeau et al. (1982) presented a theoretical model for soil-membrane
interaction using a probabilistic concept for the vertical stress in a particulate media. The
geotextile is introduced at the interface of the two layers. The Mohr-Coulomb friction
criteria are satisfied at the soil-geotextile interfaces. The soil below the geotextile is
represented by Winkler springs. The governing expression from the vertical force

equilibrium of the membrane element is given by:

2
T, 4 ()™ 4 kw=5, (v, 1) 2.16)
dx dx

2
where S,_(x,h, )= exp{—- 2x 5 }and S, =h J2v,vis the coefficient of lateral stress.

12z 1

Tx (x) is the horizontal component of the tensile force in the membrane along the x-axis.

It is expressed as:

T, G)=T, - [{, ()= 1, (e
Where
Tl(x): Fl[Slz(x9h])+ 7’11]

and

z'2(’C)= FZ[Slz(x’h1)+ 7]11]: Fz(ksw + 7’hl)

(2.17)

v and h, are the bulk unit weight and the thickness of the upper soil layer respectively, T,
is the maximum tensile force occurred below the membrane, and P is the point load at the

surface.

Nishigata and Yamaoka (1990) developed an equation to calculate the bearing

capacity of reinforced unpaved road by considering the restraint of the soft subgrade soil
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and the confinement effect of the aggregate layer. The stress condition assumed is

highlighted in Figure 2.21.
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Figure 2.21 Stress condition in the reinforced region (Nishigata and Yamaoka (1990))

They extended the bearing capacity theory for the unpaved roads given by Yamanouchi
and Gotoh (1979) by introducing an additional horizontal force caused by geotextile to
the passive earth pressure term defined by Meyerhof (1974) for ultimate bearing capacity
of sand overlaying clay. The following formula was obtained for the ultimate bearing
capacity of the road system as:

Qi =, N, +20,/B +q,N, +[2P, +20 rans/B+mw, N, (2.18)
where qunt is the ultimate bearing capacity, N, and N are the bearing capacities factors, P,

is the passive earth resistance (Meyerhof (1974)), y the unit weight of the subgrade and

Wmax the maximum settlement under the footing. The vertical component of the pressure
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7
was found to be Q, = j‘q, cosg* R*d *¢ and the horizontal component of pressure was
0

17}

0, = [g,sing*R*d*¢.

0

2.5.2 Review of Numerical Methods

Brown and Poulos (1981) used finite element method for the analysis of
reinforced soil by incorporating elasto-plastic soil model satisfying Mohr-Coulomb
failure criterion. Their results indicate that the reinforcement layers have negligible effect
on the initial response of the footing. Collapse load and displacement increase at failure
with the increase of number of layers and surface area rather than the stiftness of the
reinforcing layers. Tensile forces increase in each of the reinforcement with depth. The
analysis brings out that the provision of reinforcement helps in spreading the load over a

wider area and within lesser depth.

Floss and Gold (1990) used finite element technique to stimulate tests conducted
by Bauer and Preissner (1986) for a reinforced two layer system. The shear modulus was
defined to be independent of the Young’s modulus and the movement of soil elements
relative to the elements of the reinforcement was possible by large shear distortion of the
thin layer elements, which were additionally supplied with a joint parallel to the
reinforcement, to limit the transfer of forces from the soil into the reinforcement by a
yield criterion. The Young’s modulus of the thin layer elements is equal to the one of the

surrounding soil. The shear modulus and the friction parameters between the
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reinforcement and the soil were determined from pull-out or direct shear tests. The
following findings were observed with the reinforcement in the granular bed:
- The peak shear stresses were about 25% lower in the reinforced system.
- The horizontal strains were reduced due to the reinforcement and the horizontal
stresses were concentrated in the areas where high vertical stresses were found.
- The vertical stress distribution indicated the load spreading effect of

reinforcement.

2.5.3 Laboratory and Field Testing Results

A large number of results are available on reinforced foundation beds to analyze
their behavior and study their mechanisms. However, few test results are mentioned
below.

Binquet and Lee (1975) carried out model tests with strip footings on reinforced
sand foundations for these three conditions: homogenous deep sand, sand above an
extensive layer of very soft material stimulating soft clay or peat and sand above a finite
size pocket of very soft material such as a pocket of organic soil or limestone. The tests
resulted in an improvement of the load-displacement responses and the allowable bearing
capacities by a factor of 2 to 4 times the values for an unreinforced soil for identical
conditions. The improvement was obtained for a linear density ratio (LDR) equal to
42.5%, a relative spacing of reinforcement of S/B equal to 0.3 and for a number of layers

(N) equal to 4 to 6 layers of the reinforcement strips.
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Andrawes et al. (1983) conducted load tests on strip footings resting on deep layer
of dense sand with and without a single layer of geotextile at different depths below the
surface. The deformation fields for the sand and the geotextile up to and beyond the
limited conditions have been directly measured. On the basis of the test results the
following general points were made regarding the reinforcement of roads, airfields and
railways:

- The inclusion must be placed in the zone and direction of the tensile strains to
generate tensile resistance which will restrict the development of these tensile
strains.

- The tests have shown that the soil-geotextile surface friction/adhesion is less than
the soil-soil friction/adhesion.

- If the geotextile is placed close to the directions of zero extension lines with the
soil, slip surface may form along the geotextile surface and this will limit the

tensile resistance of the geotextile.

Bauer and Preissner (1986) investigated the effect of geotextile on the bearing
capacity and the deformation of the two layered system that has been reinforced. A two-
fold approach was proposed for the analytical treatment of the stability problem.
Consideration of the membrane effect, and, the effect of transfer of shear stress to the
reinforcement were jointly put forward. Due to failure in cases of elasto-plastic and
plastic deformations, commencing from the flow action of the system, force
redistribution from overloaded areas to the reinforcement areas with lesser load is

produced. The load stages as yet did not bring on these plastic deformations. The stress
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transducers demonstrate a distinct increase in stress under the loading beam upon use of
reinforcements despite the envisaged relief of the subsoil due to the membrane. This

demonstrates that stress redistributions are induced by the reinforcement.

Milligan et al. (1986) conducted and presented full-scale trails of the reinforcing
effect of a geogrid for modifying the behavior of a granular layer over a weak clay
subgrade subjected to monotonic loading. Large scale tests in combination with
numerical analysis using a finite element program were used in the investigation. The
tests conducted were plane strain and axi-symmetric conditions of two kinds of
subgrades. First one is a weak subgrade with an undrained strength, c, = 8kN/m? and the
second was strong subgrade with undrained strength, ¢, = 33 kN/m’. The trials indicate
that, under the conditions involved, reinforcements at the interface result in an increase of
50 mm in the layer thickness for a given deformation. These results do propose a number

of situations where alternately, a grid could be more effective:

A geogrid would be more effective in less stiff material as suggested by

calculations from the finite element program.

- As may occur in temporary roads, the results of both the full scale and model tests
propose that a geogrid is more effective at larger deformations.

- The mathematical modeling and the large scale tests jointly demonstrate that
further improvement could be achieved by optimum location of the geogrid, as
well as by ensuring interlock between geogrid and aggregate.

- These tests are not necessarily applicable in considering the effect of a geogrid

under repeated loading as they had been primarily concerned with static loading.

40



Das (1989) performed tests with and without a geotextile at the sand clay interface

to determine the ultimate bearing capacity of strip and square foundations supported by a

compact sand layer with underlying soft clay. Based on these, the following is concluded:

With the use of geotextile at the sand-clay interface, the maximum bearing
capacity ratio of a foundation will increase. The increase was approximately 24%
for square foundations and about 8% for strip footing.

The critical values of the H/B ratio, where H is the height and B is the width of
the foundation, at which the maximum bearing capacity ratio occurs is 0.75 for
strip foundations and 0.5 for square footings upon use of geotextile.

The most advantageous width of the geotextile layer for deriving the maximum
bearing capacity ratio is about 4B for strip foundations and 3B for square
foundations.

The increase of the bearing capacity ratio obtained by using a geotextile at the
sand-clay interface may also be a function of the tensile strength of the geotextile

itself.

2.5.4 Modeling of Reinforced Foundation Beds

Poorooshasb (1985) extended the concept of Pasternak by taking into

consideration both the material non-linearity and body forces. Both the failure as well as

the pre-failure stages of the loading are dealt with in the model. Main conclusions drawn

from this work are;
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- If the sand layer is normally consolidated, the existence of a sand layer between
the footing and the supporting soft bed does not appear to be very effective in
reducing settlements.

- The settlements can by reduced up to 50% with the inclusion of a compacted

cohesionless layer.

A new model for the analysis of footing on a reinforced granular bed was
developed by Madhav and Poorooshasb (1988). The subgrade soil, granular bed and
reinforcement have been modeled by Winkler springs, Pasternak shear layer and rough
membrane respectively. Results demonstrate that the role of shear layer is more
significant in reducing the settlements of the reinforced soft soil at small displacements.
Hence, it is shown that the effect of the reinforcement is significantly more effective at

higher loads.

To solve a certain class of problems associated with the performance of heavily
reinforced mats supported by weak subgrades, an analytical procedure was proposed by
Poorooshasb (1991). The granular fill is considered as a rigid strain hardening plastic
material having a yield function, ‘f*, a hardening function, ‘h’, and flowing in accordance
with a plastic potential function, ‘@’. A specific hypothesis regarding the mode of
deformation of the granular fill states that vertical planes in the unloaded system remain
both vertical and planar after the loading has been imposed. Every element of the fill
undergoes a state of simple shear in the vertical direction. All elements along an original

vertical plane undergo identical flow patterns.
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The basic governing equation is:

o

172(x)—[%{ +°]n(s)ds+%}@ = a[ Iy(s)ds~£;—%]+ﬂ{l +u(eo,77)—{1—21————}% (2.19)

s | dx +y (77)}”2

where o = k, /ko vs H and B = nE/kqysH. The integral function y(s) is between the limits x

5

to infinity to represent the magnitude of the u(x) which the displacement in the x
direction. The yield function n = t/c. The shear strain is v, the subgrade modulus is ks, v
the volumetric strain, p is the applied load, py the surcharge and H the thickness of the

fill.

Ghosh and Madhav (1994a) elaborated the Madhav and Poorooshasb (1988)
model by including a non-linear stress-displacement relation for soft soil as well as a non-
linear shear stress-shear strain response for the granular fill. The combined effects of the
system on the response of the footing resting on the reinforced granular bed were
quantified. Ghosh and Madhav (1994b) and (1994c) quantified the membrane effect on
the load-settlement response of the footings resting on reinforced granular bed and also
developed another model by taking into account the confinement effect of reinforcement

on the granular fill. These models assume the granular fill as incompressible.

Alternatively, the compressibility of the granular fill was considered in the
modified model of Shukla and Chandra (1994a). In order to study the effect of the
compressibility of the granular fill on the load-settlement response of the footing resting
on the reinforced granular bed, a mechanical model was presented. This model

considered simultaneously all of the compressibility of the granular fill, the compaction
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of the granular fill, the time-dependent behavior of soil and pre-stress in the geosynthetic
reinforcement and soil-geosynthetic interface characteristics. The Madhav and
Poorooshasb (1988) model was further modified and extended by Shukla and Chandra
(1995) by considering the vertical and horizontal component of shear stresses on the
reinforcing element. Then, Yin (1997a) presented a different model by analyzing the
compatibility of displacements at the interface of the fill and the reinforcing layer.
Similarly to the Madhav and Poorooshasb (1988) model, he also modeled the soil, the
granular fill and the reinforcement layer. Yin (1997b) further modified the original Yin

(1997a) model by considering the non-linear response of the soil and the fill.
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3. MODELING THE NON-LINEAR BEHAVIOUR OF

COHESIONLESS GRANULAR MEDIA

3.1 INTRODUCTION

Any soil material undergoes both elastic and plastic deformation when subjected
to loading. The deformation is called elastic if it is recoverable and independent of time
as soon as unloading takes place. On the other hand, the deformation is called plastic if it
is irrecoverable and enduring. Many definitions were given out in textbooks to describe
the theory of plasticity. However, elastic-plastic constitutive models help distinguish
between the recoverable and irrecoverable deformations for understanding the stress-
strain behavior of soil during loading and unloading.

Theory of plasticity was first based and observed on the behavior of metals. The
theory applies very well on these materials that it led to satisfying analytical results.
Despite the use of the theory in different areas, there is no need to start from the
definitions of elastic and plastic deformation used in other fields than soil mechanics.
Elastic deformations are described as reversible in a closed cycle of loading and
unloading and during which energy is preserved. The strain increments occur in the
direction of the increments of applied stresses. Alternatively, plastic deformations are
permanent as the cycle carries on and energy is dissolved. During plastic deformations,
the strain increments occur in the direction of the current stress and during a small

increment they are slightly affected by the direction of the stress probe.
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When Tresca published his yield principle in 1864, the door was opened to many
researchers in plasticity theory. Based on his experimental results on punching and
extrusion, he stated that metal yielded plastically when the shear stress reached a critical
value. Since then over 140 years of remarkable progress has been made in theory of
plasticity which is nowadays an active field in soil mechanics.

In plasticity, the failure surface is assumed to be the yield surface when the state
of stress reaches that surface. A state of stress acting below the yield surface is to behave
elastically. Therefore, one failure surface defines the yielding of the material. De Saint-
Venant (1870) was one of the first who attempted to develop a stress-strain relationship
for plastic deformation. His main work was on plane strain problems using Tresca’s
principles. He assumed that the work hardening is zero and that the principal axes of
strain increment coincided with the axes of principal stress. De Saint-Venant’s idea for
the three dimensional case between stress and strain was worked on by Levy (1871) and
then by Von Mises (1913). Based on normality concept, Von Mises developed a
constitutive relation that relates the plastic strain rate to the yield surface. He also stated
that a material behaves plastically when the distortional energy reaches a critical value.
This theory was named afterward the Levy-Mises theory of plasticity and stated that the
elastic strain is so small as to be ignored and that the direction of principal plastic strain
increment tensor coincides with the ones of the stress tensor (this is known as coaxial).

The relationship is the following:

e =As, (3.1

where A is called the proportional parameter and determined from the yield criterion,
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eyis the strain rate and s;is the deviatoric stress. This equation is called the flow rate
and the strain rate has been generalized for the constitutive equation of plastic strain

rate,z” and therefore the plastic deformation is called plastic flow. Prandtl (1924) and

Reuss (1930) developed constitutive equations for linear elastic perfectly plastic soils of

o

the assumption of Fy. =5 (3.2a)
Gy
Sy
e, =dAs; + 2 (3.2b)
£y = g—ké (3.3)

where e; is the deviatoric strain, s; is the deviatoric stress, G is the shearing modulus, g

is the bulk strain, K , the bulk modulus, dA, the loading parameter and oy is the bulk
stress.

Another historical criterion was found by the Coulomb (1773), where he proposed
the failure mode in soil mechanics. His research was based on hydrostatic pressure
affecting the strength parameters of granular materials. The Coulomb failure law is
defined by:

T=0, tang + ¢ (3.4)
7 is the shearing stress, 6, is the normal stress, ¢ the angle of friction and ¢ the cohesion.
The graphical solution for the above equation is represented by Mohr’s stress circle. Later
on, Meyerhof (1951) proposed a conservative method to measure the bearing capacity of
foundations using the perfectly plastic theory. However, this theory was not

mathematically accurate enough for solving soil problems (Drucker and Prager (1952)).
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Drucker and Prager (1952) proposed a new failure criterion, by depending on and
modifying the hydrostatic stress, which is close to Coulomb’s approximation. They
assumed the following:

fJi,J2)=0 (3.5)
The Drucker-Prager yield equation is:

Appd, T ypp =K pp (3.6)
app , Kpp are the Drucker-Prager material constants. The graphical representation of this
surface in (o3, 62, 63) space is a circular cone shown in Figure 3.1. The Drucker-Prager

parameters could be extracted from Mohr-Coulomb parameters values.

Figure 3.1 Drucker-Prager yield surface

During the 1950’s and 1960’s, major advancements were made in the theory of
plasticity. One of them was the work hardening behavior which triggered so many
investigations in soil mechanics. In addition to that, the vital part of all these
developments was the critical state concept developed by Poorooshasb (1961) at
Cambridge University. This concept was earlier referred to as the critical void ratio by

Roscoe et al. (1958). The critical state is the end of all state or failure paths for all shear
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tests under drained and undrained conditions and where large shear distortions (change in
shape) occur without any change in state parameters.

Associated flow rule, which means that the plastic potential curve would take the
same form as the yield function, was used in plasticity to find the deformation of
frictional materials. However, it was proven experimentally that it predicts large
volumetric expansions. Poorooshasb et al. (1966, 1967) studied the deformation of a sand
sample under a triaxial test and proved that it is necessary to employ a non-associated
flow rule i.e. the plastic potential surface and the yield surfaces are not coincidental. His
research which examined the flow and yielding of cohesionless granular medium led to
the existence of a potential function, known as the plastic potential of the form ¥ (o, e)
where o is the stress and e the void ratio. The plastic potential curves draw a family of
similar curves when plotted in the stress space. The yield loci, lines of constant stress
ratio, were found to be independent of void ratios and are used to describe the yielding of
sand as followed:
n=q/p (3.7)
Shortly after, Poorooshasb (1971) confirmed that the yield function for the same sand
tested under a triaxial test was computed regardless of the density and the stress path by
the following relation:
f=n+mhnp (3.8)
where m is a constant assumed to be 0.6 for that specific sand.

A two surface model was developed by Poorooshasb and Pietruszczak (1986) to
describe the mode of deformation of sand undergoing complicated loading paths of the

generalized stress space. The proposed model assumes the existence of a yield surface
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and a bounding surface (Dafalias and Popov, 1975; Pietruszczak and Mroz, 1983). The
bounding surface is created by any active loading upon a virgin material and separates
this loading from the other types of loadings such as stress reversals and unloading. On
the other hand, the yield surface encloses all the stress points for which the material
behaves elastic i.e. reversible and all stress reversals involved. The two-surface model
assumes an isotropic-kinematic hardening law including the Lode angle (8) in the
calculation of the surfaces and its formulation is based on incorporating a non-associated
flow rule and the concept of reflected plastic potential. The applicability of the model has
been proven to be very efficient for loose and dense sand. An alternative model has been
proposed by Pietruszczak and Stolle (1987) to simplify the kinematics of the model by
considering a circular section independent of the Lode angle for the yield surface.
Poorooshasb (1989) proposed another scheme following mainly the same line of thought
presented previously by Poorooshasb and Pietruszczak (1986). During virgin loading the
yield surface is tangential to the bounding surface along a meridian as it moves with the

bounding surface and the simplified scheme is highlighted in Figure 3.2.

te Bounda Bounding
s §ur?ace TN Surace

Yield
Surface

Origin of
Stress Space

Conjugate
Yield Surface

Conjugate
Stress Point

Figure 3.2 Bounding surface and yield surface (Poorooshasb (1989))
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During stress reversals or unloading, the yield surface is no longer in contact with the
bounding surface and must follow special kinematical constraints.

Recently, a lot of developments have been made in elastic-plastic models for the
solution of complex geotechnical problems. Constitutive models based on experimental
and theoretical research have been developed as well for reliable solutions in this area.
However, the most efficient ones are being measured by their simplicity and their

representation.

3.2 BACKGROUND ON IMPORTANT CONCEPTS AND LAWS

3.2.1 The Concept of Critical Void Ratio

In the mid 1930s, Rendulic and Hvorslev carried out their research by working on
the direct shear test which is nowadays the foundation of soil mechanics mainly in
plasticity and strength theories. From the direct shear test, the only components measured
are the shear stress (1) and the normal effective stress (o). If several tests are carried out
at different vertical stress value, each of which are kept constant during each test, and the
peak shear stress values are plotted against the vertical stress, the angle of friction can be
computed. The angle of friction obtained from a loose sample is called the critical angle
of friction and is represented by (@ crisca). However, these plots are not actually straight
lines if the void ratios are the same for each line but are slightly curved because of the
inclination of the so called Casagrande Critical Void Ratio line. The volume change that

takes places during loading is mainly due to the contraction or expansion of the voids into
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the soil mass and it was first pointed out by Reynolds (1885). Reynolds showed that
dense sands tend to expand increasing their total volume when they are subjected to shear

stresses. This phenomenon was called by “The Reynolds dilatancy”.

From the observation of the volumetric strains on dense and loose sands,
Casagrande (1936) realized the actual importance of the volumetric strain in the soil
response developing the concept of "critical density or critical void ratio". Using direct
shear tests, Casagrande observed that during shearing dense sand expands and therefore
increases its void ratio, while very loose sand reduces its volume and accordingly its void
ratio. In dense sand, the grain are pretty well interlocked, thus any deformation causes a
loosening up of the initial compact structure. On the other hand, very loose sand tends to
contract in order to achieve a more stable structure. Based on this observation Casagrande
developed the concept of the critical void ratio: when dense and loose sands are sheared
in a drained condition, they change their void ratio until a common constant value is
eventually reached. This ultimate common void ratio was termed the critical void ratio
(C.V.R)) and today the line representing the critical state is often referred to as the
Casagrande CVR line. At this state, the soil continues to deform under constant strength
and constant volume, hence the soil behaves as a frictional fluid. The so-called critical
void ratio line traces a straight line if the p axis is plotted in a logarithmic scale and is
shown in Figure 3.3. The symbol e represents the void ratio of the sample and p the mean

effective stress.
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Figure 3.3 Casagrande C.V.R Line for Sacramento River Sand (after Lee (1965))

Critical void ratio is that void ratio at which a cohesionless soil can undergo
deformation or actual flow without volume change. In general, it is a function of
confining pressure, i.€., an increase in confining pressure yields a lower value of critical
void ratio. Theoretically, a soil with a void ratio above the critical void ratio line for the
confining pressure is subject to flow failure or liquefaction if it undergoes sufficient
undrained stress, whether that stress is cyclic or monotonic (steadily increasing).
However, if the void ratio is lower than the critical void ratio line for the given confining
pressure, the soil will not liquefy under monotonic stress increase. Liquefaction resulting
from monotonic stress increase and “initial liquefaction” occurring under cyclic stresses
are not the same phenomenon. Liquefaction refers to the behavior of a mass of
cohesionless soil during flow slides. For monotonic loading conditi.ons, failure is caused
by a substantial reduction in shear strength due to large increases in pore pressure and the
consequent great reduction of effective stress.

Poorooshasb and Noorzad (1996) worked on simulating the cyclic simple shear

behavior of loose and dense sand under constant cell pressure. The study showed that the
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liquefaction of a sand sample falling below the Casagrande critical void ratio line
depends on how far the state point is from the line representing the compact state line, the
magnitude and duration of the earthquake it must resist. The compact state line traces a
line parallel to the Casagrande critical void ratio line in the space of e vs. p. During the
compact state the response of the granular sample to stress change is reversible. i.e. it
behaves as an elastic material and as a result, plastic deformation does not take place due
to the strong interlocked particles.

Roscoe et al. (1958) extended the Casagrande concept and presented a conclusive
study proving the concept of critical void ratio using the simple shear test. The test results
were in function of the void ratio and horizontal displacement for a constant normal
stress. It was observed that the volumetric strain can be either positive or negative
depending upon the initial void ratio and the level of deformation, but when the ultimate
state is achieved, the volume change stops and the soil deforms under constant-volume
condition reaching the critical void ratio associated with the normal stress under which
the test is performed. For the same tests, results were also developed for the void ratio
versus the shear stress. It was readily apparent that for a constant normal stress an
ultimate unique critical void ratio can be reached. Furthermore, at this state a condition
where the granular material deforms under constant volume, constant normal stress and
constant shear stress was achieved.

Taking advantage of the above particular situation, Poorooshasb (1961) realized

that when an element is undergoing constant shear deformation, it will reach a critical
state condition under which it will continue to deform without any change in void ratio

and effective stresses. He called this special case “the critical state”.
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3.2.2 The Concept of the Critical State Line

A soil is said to be in critical state when it undergoes large shear deformations at
constant volume, constant shear and normal effective stress (Schofield and Wroth, 1968).
The locus of all critical state points from all shear tests (drained and undrained) on a soil
is called the Critical State Line (C.S.L.). The critical state line is plotted in a three-
dimensional state space. The state space consists of the two stress components, the shear
stress (t) and the normal effective stress (o ), and the void ratio (¢) of the sample. The use
of this space is permissible only if the soil material is isotropic. The line representing the
critical state which is also known as the Casagrande Critical Void Ratio Line traces a
straight line in the e-c subspace if the ¢ axis is in a logarithmic scale. Figure 3.4 shows

what is referred to as a state space.

e (void ratio)
T (shear stress)

o (effective normal stress)

»
>

Figure 3.4 The state space

If the critical state line, whose projection onto the e-6 plane is the Casagrande CVR line,
is plotted in the state space, a curve is obtained in the state space and shown in Figure

3.5.

55



critical state line
A /

o=

Casagrande CVR Line

Figure 3.5 The Critical State Line

Officially the critical state line is defined as the set of states at which states the condition;

0t 0o 6e_0

Z 2 R 3.9
o 0Og O¢ (3-9)

holds true at every point on the line. The projection of the critical state line in e-6 and -

G subspaces are highlighted in Figure 3.6.

Figure 3.6 Projection of the Critical State Line
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Figure 3.7 shows typical undrained shear responses of sand with different
densities but the same initial confining pressure. Specimen A, which has a low relative
density, is in a loose state. The sand tends to contract when sheared, resulting in a
reduction of the effective confining pressure and a significant drop in shear strength,
yielding flow liquefaction. Specimen B with a higher relative density is in a dense state.
The sand tends to dilate after a phase transformation state (Ishihara et al. 1975), at which
the reversal from contractive to dilative response takes place. Both the loose and the
dense specimens finally reach a state called the critical or steady state, where g is the

deviatoric stress, g, and g, are the volumetric strain and deviatoric strain, respectively.
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Figure 3.7 Influence of density on undrained

shear (after Been and Jefferies (1985))

Figure 3.8 shows the typical undrained responses of two specimens of same

density but with different initial p. The specimen A with the higher p is in a loose state,
which tends to contract towards flow liquefaction. The specimen B with the lower p 1s in
a dense state, tending to dilate. The two specimens finally reach an identical critical state

because they have the same void ratio e.
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Figure 3.8 Influence of initial confining pressure

(after Been and Jefferies (1985))

In conclusion, a unique critical state line exists for a given sand sample and is the
locus of all critical state points from drained and undrained tests. In addition to that, the
critical state line is independent of sample preparations, drainage conditions and stress
path, while on the other hand before reaching the critical state, the soil sample is strongly

dependent on these factors.

3.2.3 Steady State of Deformation

Castro (1969) studied the behavior of cohesionless soils with different densities
under undrained conditions. As demonstrated in Figure 3.9, three different behaviors
were displayed when undergoing shearing and termed as follows: liquefaction (steady
state curve), limited liquefaction (quasi-steady state curve) and dilative (strain
hardening). At high strain values, these curves reach a state at which they continuously
shear under constant effective stress and constant shearing resistance. This state has been

defined as the steady state by Castro and Poulos (1977). The effective stress and the
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shearing resistance are a function of the density, and both the loose and dense samples are

able of reaching the steady state.

Ditation

Limited
Liguefaction

# Limited DCilation

7 Liquefaction

Figure 3.9 Undrained stress-strain curves and stress

path behavior (after Castro (1969))

Figure 3.9 shows that very loose samples developed a peak shearing resistance at
first and collapsed at a low strain level, and then a reduction in shearing resistance
occurred as pore pressures increased and the specimen failed rapidly at large strains
toward the steady state. Dense specimens initially dilated when shearing, with high
effective stress and high shearing resistance and finally reached the steady state. Medium
dense soils exhibited contractive behavior with a peak shearing resistance at relatively
low strains, followed by a period of strain-softening behavior. Unlike the loose samples,
medium dense soils did not strain at constant effective stress, but began to dilate at
intermediate strains and eventually reached the steady state at large strain levels. On
further shearing, strain hardening behavior will take place. The point of minimum
effective stress, which coincided very nearly with the point of minimum shearing

resistance, marked a boundary between contractive and dilative behavior that Ishihara et
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al. (1975) later termed the “phase transformation boundary”. At the phase transformation
point, the soil strains with very nearly constant effective stress and constant shearing
resistance under constant volume conditions; the conditions at this point are so close to
those of the steady state that the soil is often described as being in a quasi-steady state.
The range of strain is variable when the soil is in the quasi-steady state and the phase
transformation points can exist for conditions in which the quasi-steady state does not
develop 1.e. conditions in which phase transformation occurs without a post-peak
reduction in shearing resistance.

Following the concept of Casagrande Critical Void Ratio, Poulos (1981)
developed the concept of steady state and stated: “the steady state of deformation for a
soil mass is that state in which the mass is continuously deforming at constant volume,
constant normal effective stress, constant shear stress, and constant velocity. The steady
state of deformation is achieved after all particle orientation has reached a statistically
steady-state condition and after all particle breakage, if any, is complete, so that the shear
stress needed to continue deformations and the velocity of deformation remains
constant”. He also added that if the velocity of deformation is zero or changing, the
sample is not in steady state. Roscoe et al. (1958) had earlier suggested the term “critical
state” to describe the same phenomenon described by Poulos (1981), and indicated that
there is a unique steady-state line in the void ratio versus stress space for a given sand.

Poorooshasb (1989) stated that zero velocity is a constant velocity and a very
stable steady state, and therefore Poulos condition regarding zero velocity can not be met.
In addition to that, he argued that the steady state of deformation and the critical state are

both identical and represent a state of sample, which it will reach eventually. The term
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“state” was used by Poulos in association with the steady state flow in liquids. As for
Poorooshasb (1961), it was used to refer to the state of a sample. The state of a sample of
sand is described by the complete set of the pertinent state parameters. A state parameter
is any quantity related to the sample that can directly be measured at the moment of
examination without any previous references or situations. If homogeneity and isotropy
of a sample is assumed, the void ratio ‘e’ is considered to be a pertinent state parameter.
So are the pore water pressure ‘u’ and the effective stress tensor represented by the stress
tensor ‘c;;” which is related to the total stress tensor ‘*o;’. The pore water pressure and
the total stress tensor are directly measurable at the moment of examination of a sample
which qualifies the effective stress tensor to be a pertinent state parameter. To avoid all
confusions, Poorooshasb (1989) decided to use the term ultimate state for the simple
reason that if all samples went under large distortions they would end up at this ultimate
state.

Desrues et al. (1996) have provided direct evidence, using a computed
tomography technique to measure the local void ratios of drained triaxial sand samples, to
verify the concept of the critical void ratio. They found that under the same effective
confining stress, the global and local void ratios of a loose sample were the same, and
equal to the local void ratio within the shear zone of a dense sample, even though the
local void ratio was much higher than the global void ratio in the dense sample.
Furthermore their test results showed that a “steady state” could be reached at an axial
strain of 8% in drained triaxial tests on loose samples.

Based on the above arguments, the term “critical state” is preferred throughout

this study to avoid possible confusion between the critical and steady state.
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3.2.4 Similarity Laws

Some problems in geotechnical engineering such as stability and deformations of
media can not be solved by numerical techniques due to their complexity and lack of
understanding of the material response. Carrying out full scale tests on these types of
problems was not cost effective. The alternative solution was to construct economical
model testing which can give reliable results.

Centrifuge model testing is a major physical modeling tool available in
geotechnical engineering. By artificially constructing a gravitational field, one can
replicate the behavior of the in situ soil structures under various loading conditions. The
model is a reduced scale version of the prototype where the soil behavior is reproduced in
terms of strength and stiffness. Soil models are placed at the end of a centrifuge arm and
are accelerated so that they are subjected to inertial radial acceleration field, where as far
as the model is concerned, it feels like a gravitational acceleration field that can be
stronger than earth’s gravity. In addition to that, some models include a shaking base to
ensure dynamic loading. The model container, in which the soil is held, has a stress free
surface and the magnitude of stress within the soil body increases with depth at a rate
related to the soil density or void ratio and the strength of the acceleration field.

In order to have valuable results in centrifuge model testing, certain laws of
similarity, other than geometric similarity, must be taken into consideration. Roscoe and
Poorooshasb (1963) proposed a principle using the linear theory of soil deformation.
Even though more sophisticated descriptions of soil behavior were proposed using the

theory of plasticity, their theory appears to be very solid and stands true so far. Using the
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critical state concept, they showed that at the initial mean stresses the effective void ratio
to the critical state line must be the same for both the model and the prototype.
Poorooshasb (1989, 1995) extended the version by incorporating the third invariant of
stress deviation tensor J; through the parameter 6. The principle of similarity stated that

two elements are in similar states if;

{—q—ﬁ,e} ={fl—,9,e1 (3.10)
p element p element2

and that if these elements are loaded in a similar fashion, then they would deform
similarly and the resulting state paths would be the same. (q/p) is the stress ratio, 8 is
analogous to Lode’s angle and e is the effective void ratio. In other words, the mentioned
above means that any two samples of a given soil will have similar strains when
undergoing similar stress paths, if the difference between the initial void ratio and the
void ratio at the critical state at the same normal stress is the same for both samples.

Scott (1989) used the same principle as Roscoe and Poorooshasb (1963) to
examine the scaling relations between centrifuge modeling and their prototype. He also
considered the behavior of the prototype and replaced the effective void ratio by the
density index.

Altae and Fellenius (1994) emphasized the role of the effective void ratio by
running tests on sand samples undergoing similar stress paths and examining the resp]ts.
They indicated that, in order to be able to compare behaviors between the model and the
prototype at various stress levels, the original soil states must be very close until it

reaches the critical state line or steady state.
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The usefulness of the similarity laws will become evident in the section where the
constitutive formulation of sand is described under the modeling of the elastic-plastic

response of non-linear soil.

3.3 THE CANAsand CONSTITUTIVE MODEL

The CANAsand model is a constitutive model which describes the soil behavior
of a cohesionless granular media. The granular medium is composed mainly of sand,
gravel and certain chemicals. The original CANAsand model suffered from major
problems and lacked generality. Reasonable predictions of the soil behavior were
impractical during a complicated loading program. Over the years it has been modified
and now it can simulate and handle very complex problems such as stress reversal and
static liquefaction. In the latest version of CANAsand model, two concepts, which are the
critical state and the compact state, play an important role in the model since all the
coefficients needed to describe the soil behavior are related to these states. It has become
an integrated model which includes the critical state, the compact state concept and the

state boundary surface.
3.3.1 General Features
The fundamental issue of CANAsand model is that the state of a sand element can

be completely described by the state parameters: the void ratio and the parameters related

to the effective stress acting on that element. The state of sand sample is defined by the
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complete set of the pertinent state parameters. Any quantity that is associated with the
sample and that can be directly measured at the moment of examination (during a triaxial
test), is a state parameter (Poorooshasb, 1989). The effective stress, represented by the
stress tensor oj;, is related to the total stress tensor, ijTOtal, by the following equation:

_ Total
Gijj = Oj

— udj; 3.11)
where u is the pore water pressure and §;; is the Kronecker delta. Since the pore water
pressure and the total stress tensor are directly measurable during the test, it would
qualify the effective stress tensor to be a pertinent state parameter.

The effective stress tensor has three invariants, I;, the first invariant of stress
tensor, J,, the second invariant of stress deviation tensor, and J3, the third invariant of the

stress deviation tensor, from which the parameters, p (the mean stress component or

hydrostatic pressure) is derived, and ¢ (the deviator component) and € are defined

respectively:

p=—1‘§ where 1) = o5 (3.12)

q= 72 here Jo = (sij sy) (3.13)
2

0= %sin"1 (—%) where J3 = (S;j Sjk Ski) 173 (3.14)

and the stress deviation tensor s;; = oj; — o 9 / 3 and 6 is analogous to Lode’s angle

ranging from -7 /6 to 7 /6.

Hence, the state of a sand element is represented by the three quantities (p, q, 6)

and the void ratio e of the element and the state space 1s four dimensional of (e, p, q, 0).
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3.3.2 Critical State Surface

In a four dimensional state space of (e, p, q, 8), the critical void ratio line, which is
referred to as the critical state line in a state space, is transformed into a surface. The
concept of the critical state surface states that there exists a surface for which the
following relation holds true at every point on this surface:

d _09_09_0e_, (3.15)
Jg 0Og 0Og Os

where the parameter &, which is not a state parameter, is the distortion of the sample and
is derived from the second invariant of the strain deviation tensor. At the critical state,
unlimited distortions can take place in the sample without any change in the state
parameters. If all samples are sheared far enough, they would eventually reach this
critical state.

A two dimensional graphical representation of the critical state surface is
practically impossible on a sheet of paper. However, there exists a relationship between
the void ratio e and the mean stress component p which reduces the number of
dimensions by one. The Casagrande equation for the critical void ratio line that has been
shown graphically in Figure 3.3 is in the form of:

e = ey, — Aln (p) (3.16)
where e, and A are fundamental constants for a given sand. e, is the value of e
corresponding to a p of one kpa and A is the slope of the Casagrande line. As a result, the
number of independent variables has been reduced to three and the state space to (q, 6, e).
Figure 3.10 shows the critical state surface in the (q, 6, e) space determined by

Poorooshasb (1989).
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One has to emphasize here that at the critical state the element flows freely and

experiences unlimited deformation. Hence, the plastic shearing strain tends to infinity:

ele, p,q,0) = (3.17)

where all the quantities within the brackets are at their critical values.

Critical state surface

q (MPa)

1 4 H

§ H 1
03 04 05 08 07 08

Compact state surface

Figure 3.10 Critical and compact states for gravel (Poorooshasb (1989))

3.3.3 Compact State Surface

Poorooshasb and Noorzad (1996) postulated that the compact state lie on a surface
in the state space (q, 9, €) that is parallel and similar in shape to the critical state surface.
The isometric view of the compact state surface is shown in Figure 3.10. and it conforms

to the laws of similarity of a cohesionless granular media when subjected to loading.
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Another important hypothesis to be taken into account is that the compact state traces a

line parallel to the critical void ratio line in the (e, Inp) space. This is an essential

consideration if the laws of similarity proposed by Roscoe and Poorooshasb (1963) and
Scott (1989) are to be followed. The relationship between the void ratio € and the state
parameter p at the compact state is as follows:

e=e,— Aln (p) (3.18)
where € = e, — ¢, and c is the vertical distance between the Casagrande critical void ratio
line and the compact void ratio line. The compact void ratio line is highlighted in Figure

3.11.

Casagrande CVR Line -}
"-‘-—\____,__-_--‘
N e "-——.___l
b 9 ‘--‘-__"-—u--'—.n—..'—
Void Ratio, e K :
) K\cmfreﬁt state ¢
NS
-‘-—___- ‘--‘-“--
Coompact e —t —— 1 - L1
_"‘-"‘——\-______‘
/\ P11 ||
7
Compact Void Ratio Line

1
Mean effective stress, p. MPa

Figure 3.11 The compact void ratio line

In contrast to the critical state, the granular sample does not experience any plastic
deformation at the compact state and behaves as a purely elastic material (the response

to a stress change is reversible). This behavior is due to the strong interlocking between

68



the particles which avoids particle slippage that causes plastic deformation. At the

compact state one has:

&(e, p,q,0)=0 (3.19)

where all the parameters between the brackets are at values related to the compact state.
3.3.4 The State Boundary Surface
When the various stages of the stress state (t and o) that a sample goes through

are plotted in the stress space, the resulting curve is called a stress path. Figure 3.12

shows a possible stress path.

V

Figure 3.12 A possible stress path

,
» o

In a constant (0’) drained test or what is usually referred to as a fully drained test, the
state paths are parallel to the (1, €) plane. In Figure 3.13, a state path is shown in the three

dimensional space of (1, G, €).
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o

Figure 3.13 A state path in (1, 6, €) space

Typical results of a sample tested at different void ratios under a constant normal stress
(o) or drained test are illustrated in Figure 3.14. All state paths end at the critical state
where the loose samples contracting and the dense samples expanding. The boundary of
all paths is called the state boundary surface and on which a sample fails at a point on that

surface.

State Boundary Surface

A \
Shear Stress, T

/ Critical State

v

Void Ratio, e

Figure 3.14 State path followed and the state boundary surface
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Figure 3.15 shows the state boundary surface (SBS) plotted in the (p, q, €¢) domain and
the position of both the critical and the compact state surfaces for a constant void ratio e.
This Figure deserves some attention and certain features need to be explained as follows.
In this Figure, the critical and the compact state have been reduced to bands and they
trace two distinct curves on the state boundary surface. Also shown, are the yield surface
and the bounding surface (Dafalias and Popov (1975)) where the former encloses the set
of all stress points for which the material behaves elastic and becomes involved in all
stress reversals and the latter is used when stress reversals are encountered. Such loadings

are experienced by earthquakes or vibrations caused by traffic.

State Boundary Surface

Critical state .

Yield
1y surface

Compact gaunding
e=05
state surface

Figure 3.15 Critical, compact and state

boundary surface (Poorooshasb, (1998))

Note that a sand element may experience all states within the state boundary surface
(Poorooshasb, 1961). However, if the state point of a sand element lies to the left of the
vertical plane holding the compact state curve and the origin then its behavior would be

purely elastic, otherwise it may experience both elastic and plastic deformations. In a
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drained test, when a very dense soil is subjected to loading, its stress path fails on the
state boundary surface and if the loading proceeds, it follows a path on or ride on it until
the critical state is reached. The state boundary surface in conjunction with the critical
state surface is essential for describing the strain softening of the sample.

Reverting to Figure 3.14, a simplified version of it is shown below to analyze the

maximum shear stress at the state boundary surface under a ¢ constant condition.

Shear stress, T, State Boundary surface
A A /
y O (dv/de) d o Critical State
Tspq
Teritical = UG = AN Beriticat - ©
Y v y Voig ratio, e
e €critical

Figure 3.16 Shear stress at the state boundary surface

It may be noticed that the peak value of the state path is in the proximity of the state
boundary surface. Hence, at peak stress, for a given value of ¢’ one can write the
following equation:

Tmax = TsBS = Tarittical + 6” (AV/d€) = G tan Berivical + 6 (dv/de) (3.20)

where (dv/de) represents the rate of dilation, which in other words is the rate of change of
volume with respect to the shearing strain. The component ¢’ (dv/dg) is known as the

energy correction factor. This factor is related to the behavior of dense sand and would be
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explained by considering two rough blocks sliding at an angle relative to the direction of
the imposed movement, which is the direction of shearing in this case. The total energy
spent in this system would be equal to the energy spent in friction plus the work done in
moving the block and therefore the work done would be:

1d¢ = no’d¢ +0°dv (3.21)
and which upon dividing the equation by d¢, it would result in equation 3.20. Noting that:
1de = no’d¢ is the situation at the critical state and p= tan @critical.

Considering the situation relating to the peak stress point in Figure 3.16, one may write:

Tan & = 6” (dv/de) / (€critical — €) (3.22)
and
o’ (dv/de) = tan & (€critical — €) (3.23)

where 8 is the angle of interlocking between the particles. If the void ratio e of a sample
is greater than the critical void ratio, €itical, (€ > €critical) then the expression within the
brackets is negative and indicates a tendency of the sand to contract, and if the void ratio,
¢ is smaller than the critical void ratio, €citical, (€ < €criticat) then the expression is positive
indicating the material has a tendency to dilate.

Equation 3.20 is rewritten as follows:

Tax OT TSBS = Torittcal T ta & (Ecritical — €) = © taN Beritcal T tan & (Ceritical — €) (3.24)
which upon dividing by ¢’°, equating the critical void ratio to the Casagrande equation

and rearranging the terms, the angle of friction at maximum shear is:

aT T tano .
=tan™'| 2 |=tan!| il L " le, —Alno —e}|=
max h
o o Vol

tan“[tan B ivicar + tao_i.é‘(eh ~Alno’ —e)] (3.25)
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A sample with a void ratio e at high initial normal stress reaches the critical state point

. tand .
and the expression — (e,, -Alnc —e) approaches zero andg__ = ¢, However, the

(o)

ritical

same sample at the same void ratio with low stress level results in high values of ¢ and the

. tand . T . .
expression — (eh —Alno —e) can be quite significant. This fact explains the curvature
o

ofthe ¢__ versus ¢ of samples at same void ratio but different initial normal stress.

The rate of dilatation (dv/de), which is associated with the energy correction
factor 6’ (dv/dg), plays a central role and very important one in the theory of plasticity. It
was shown that during a loading process the dilatation factor is independent of the stress
path a sample is following. Unless, the stress path undergoes an unloading process then

the value of this dilatation factor associated with every stress point is unique.
3.4 MODELING THE ELASTIC-PLASTIC RESPONSE OF SOIL
3.4.1 Stress-Strain Response of Granular Soil

The shear strength of granular material is affected largely by the initial void ratio
of the soil and can be determined from the results of a constant drained test. Typical
stress-strain response of a granular soil under a drained test is shown schematically in
Figure 3.17 for a loose and dense state. Here, it is seen that the stress versus shear strain
relation is non-linear and depends on the material’s void ratio. In dense sand there is a

considerable degree of interlocking between particles, and before shear failure can take
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place this interlocking must be overcome in addition to the frictional resistance at the

points of contacts.

A
Shear stress, T / dense sand

P

Strength due to interlocking

loose sand

.
»

Shear strain, €

Figure 3.17 Schematic shear behaviour of sand

The stress-strain curve shows a peak stress at a relatively low strain and as interlocking is
progressively overcome the stress necessary for additional strain decreases until it levels
out to a residual value. The reduction in the degree of interlocking produces an increase
in the volume of the specimen during shearing as characterized by the relationship
between the volumetric strain &, and the shearing strain €, shown schematically in Figure
3.18a. A similar relationship can be obtained in a direct shear test between the change in
specimen thickness and shear displacement.

The change in volume is also shown in terms of void ratio e in Figure 3.18b.

Eventually the specimen would become loose enough to allow particles to move over and
around their neighbors without any further net volume change and the principal stress

difference would reach an ultimate value.
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0 Loose € €

Volume decrease

\ 4

\ 4

‘Figure 3.18 a) Volumetric behaviour, b) Change in volume in (e, €) space

The loose sand decreases in volume as the shear is increased. The dense sample shows a
slight decrease in volume during the earliest stages of loading, but with increased strain
the sample increases in volume until the volume of the sample is larger than the initial
volume, even though it has decreased in length. This increase in volume is referred to as
dilatancy in dense sand and the rate of dilatation is represented by the gradient (dv/dg) as
seen earlier. At some stage between the loose and dense states, the sample changes very
little in volume as shearing continues because it has reached the critical state and the void

ratio at this state is referred to as the critical void ratio.

The differences in the volume change described above for loose and dense sand is
a result of the different particle arrangements at the time of application of a disturbing

shearing stress. The particles in loose sand tend to seek a more compact shape on
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application of the shearing stress, whereas the volume of the dense sample tends to
increase, because the particles must either fracture or raise out of their positions to pass
by one another, thus leading to an increase in volume. In other words, the increase in
volume of dense sand is due to the strong interlocking between the particles at the
compact state. Considering the situation in Figure 3.19, one can obtain the angle of
interlocking of a dense sand in a (7, ) space, where the angle of friction is denoted by

Fcompact at the compact state and @crisical at the critical state.

Compact State, 4,

Shear stress, T / State Boundary surface
A O
Critical State, ¢_,,..,

I 5 ( /

4 y . Void ratio, €

Ccompact Ceritical

Figure 3.19 Angle of interlocking, &

From Figure 3.19, Tan 6 = (@compact - Deriticat) / (€critical = €compact) (3.26)
and therefore, the angle of interlocking is obtained:

8 = tan”" [(@oompact - Geriticar) / (Eeritcal = Ecompact)] (327)
Having determined the value of 6, the angle of friction of a given sand can be evaluated

from Figure 3.20 using equation 3.24 which is the following:
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Tmax OF TsBS = Terittical T 180 O (€critical — €) = O tan Geriticat + tan & (Ecritical — €) (3.24)

€compact
Ccompact < € < Ecritical

Tan & Ceritipd] — e) Ceritical

e ct Beritical

1% (e}

v

Figure 3.20 Angle of friction, &

Similarly to equation 3.24, the angle of friction of sand at a given void ratio e can be
estimated as follows:

@ = Periicas + 1N (e — €) (3.28)
Replacing tan & by equation 3.26;

(¢compact - ¢critica/ )

(ecritical - ecompacl )

¢ = ¢critica1 + (ecritical - e) (329)

where €gitical = €, — AMn (p) from equation 3.16 and €compact = € — Aln (p) from equation
3.18 and e; = ¢, — c. Substituting these two last equations in the above relationship, the

angle of friction would be:

€ jtical —_ €
¢ = ¢critica1 + (¢compacl - ¢critica1 ) -(__CH——;I————) (3 3 0)

The stress-strain model is used to simulate the sand behavior under shearing and

its response depends mainly on its density or void ratio, the applied stresses and the stress

ratio.
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3.4.2 Constitutive Formulation of Sand

The CANAsand constitutive model is very simple and fairly robust in solving
complex elastic-plastic problems in geotechnical engineering. The aim of this section is
to present a simple but realistic mathematical formulation for sands. It is an incremental
elastic-plastic model, with the plastic shear strain as the hardener, which uses a non-
associated flow rule.

During shear loading, the stress-strain relationship is non-linear, elastic and plastic
strains occur simultaneously and are additive, whereas only elastic strains takes place
during unloading and reloading (Figure 3.21).

Shear stress 4

O » Shear strain

3.21 Stress-strain relationship

Initially, between point O and Y the relationship is approximately linear for most
-soils then beyond point Y significant plastic strain becomes apparent, i.e. Y is the point at
which yielding takes place. The peak shear strength is reached at point F. Between the

points of yielding and failure (Y and F) further plastic strain will occur only if the stress

79



is increased, but a progressively smaller stress increment is required to produce a given
plastic strain increment: this characteristic is known as strain hardening. Hardening
occurs only if plastic work is done. In certain cases the resistance to shear shows a
decrease after the peak strength has been reached, this characteristic being referred to as
strain softening.

In CANAsand model, as most elastic-plastic formulations it is not possible to
correlate the magnitude of the total strain to the stress level directly, one should relate the
strain increment (or rate) to the stress increment (or rate). In a two dimensional

deformation, the invariants of stress are T and ¢ and those of strain €, v with their

associated rates,7,o, gandv. It is emphasized that the upper dot denotes the rate and

does not indicate any derivative with respect to time. The strain increment experienced by
an element has an elastic and a plastic component. Therefore, the shear strain £

(associated with the change of shape) as well as the volumetric strain v (associated with

the change of volume) each have two components composed of an elastic and a plastic

part:
e=£°+&Porde =ds° + deP (3.31)
v=1v°+ yPordv=dv’+dv (3.32)

The elastic strain component is related to the stress increment (or its rate) by the elastic
constitutive laws (Hooke’s law where isotropy is almost always assumed) through the
shear modulus G and the bulk modulus K, which in tumn are related to the Young’s
modulus E, the magnitude of which is dependent on the state of the element (mostly on ¢

and e), and to the Poisson’s ratio v which is a constant:
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(3.33)

pe=2 (3.34)

where the shear modulus G = E / 2(1+ v) and the bulk modulus K =E / 3(1-2v)  (3.35)
The direction of the plastic strain increment (or its rate) is independent of the direction of

the stress increment. Therefore, the plastic strain rates are given by the following

equations:

&7 =392 or de” =ap2? (3.36)
or or

vo =39 ordvr = ap2? (3.37)
oo oo

where ¢ is the so called plastic potential, £” the plastic shear strain and v” the plastic

volumetric strain. Superimposing the two spaces stress (7, 6) and strain (£7,v”) on each

other, the result is similar to Figure 3.22 where shown is the unit vector along the plastic

strain rate. This space will be referred to as the combined space.

v“’/2

Unit vector along the plastic strain rate

B

TG, v P2

Figure 3.22 Plastic strain rate
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Based on equations 3.36 and 3.37, the combined space is now covered with a set of
constant ¢ curves. The normal to each of these curves at each stress point would indicate
the direction of the unit vector showing the rate of plastic flow (normality condition).

Figure 3.23 demonstrates two such curves. The function ¢ is the plastic potential.

T, &” curves of @

e

—>

v

o,v°i2

Figure 3.23 Curves of constant ¢

Adding the elastic strain rates to the plastic strain rates, will result in the following

relation between the strain rate and the stress rate:

T30

g—G+ P (3.38)
-0, 30

V= I +ﬂaa (3.39)
where:

,B h( f0'+—f—z') or df = hdf =h/( fdo*+—a—j:dr) (3.40)

where /4, is the loading index, dff is an incremental quantity or constant relating strain

components to the gradient of plastic potential and f'is the yield function. Within the yield
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surface the material behaves as an elastic material, however once the stress point
approaches the surface and tends to move outside, the material behaves as an elastic-
plastic material. In other words, a material is said to undergo plastic deformation if the
state of stress rate is such that it increases the magnitude of the yield function f. In its
simplest form, the yield function is assumed to be a function of state of stress and lately it

has been assumed to be a function of state of the sample i.e. 1, ¢ and e. Thus, since the

yield function f = f (1, o), yielding takes place if [ o 0'+—ZI—T] > 0 leading the plastic
T

flow (deformation) and no yielding takes place if [ af f ——71] < 0 with no associated
o T

plastic flow. Hence the set of equations 3.38 and 3.39 can be rewritten as:

[0 (3.41)

v w2 Y Y (3.42)

K Jo Oo or

where the symbol < > stands for singularity brackets or as Macauley bracket, i.e. < ,6 > =

B if B>0and<pB>=0if g <0.
The form of function ¢ is derived from the equation of balance 3.20 which is as
follows:

dv? dv? /2 dv? /2
o( )=

critical to d}/ P = Tcritica[ +o d P / 2 Tcritical + dg P crmcal

r=r +o(m) (3.43)

where m is the tangent of the angle between the direction of strain rate vector and the t
axis (Figure 3.22). If an element is traced along a plastic potential curve (¢ constant

curves) passing through a typical stress point, equation 3.43 can be transferred to:
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T= 2-critical + O.;i_:_ (344)

dividing by o on both sides and rearranging the terms:

LA
s do’
gg~—3=—y (3.45)

where p is the slope of the normal projection of the critical state line into the stress space.

The last equation can be written in a different form using the quotient rule:

of _de
i £]=—df—————2@—— and hence;
dx\ g g
_g’_(_r_j__df___r_ (3.46)
do\o) odo o* '

dividing equation 3.45 by ¢ and equating it to the previous equation will result in the

following:
_d_(i) __H (3.47)
do\o o

integrating the last equation with respect to o;

T g 0-0
g O-O (o2

oexpln/ u)= o, = constant (3.48)

where o is the constant of integration and represents the abscissa of the point of
intersection of a ¢ (constant contour) with the o axis. Therefore, the plastic strain

increment, ¢, is derived from the plastic potential in the form of the following

relationship:
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o=c0(n) (3.49)

where 1 is the stress ratio (t / o) and a particular form of the function (;)(77) adopted by

many and referred to as the critical state formulation is:

@(17) = exp(n/ 1) (3.50)
In its simplest form, the yield function is a straight ray passing through the origin

of the stress space (1, 6). The yield function is given by the simple expression:

f=—=n (3.51)

where 1) is the stress ratio. This form is only valid if the Casagrande line is parallel to the
o axis (Figure 3.11) i.e. the slope A of the Casagrande line is equal to zero. Since this is
not generally true, a slight curvature of the yield function is always present as shown in
Figure 3.15 and as reported by Poorooshasb (1971). In this study the value of A is taken
to be very small and the choice regarding this assumption is a matter of convenience.
Otherwise, the formulation of the stress-strain behavior would be incredibly complicated
causing it to be rather impractical. In addition to that, this assumption simplifies the
numerical evaluations and it provides a simple rule of similarity where two systems with
similar geometry are to behave similarly for a given void ratio. If, for a granular material,
the value of A is small then both the critical and the compact void ratio are pressure
insensitive and the soil is said to have a unique critical void ratio and a unique compact
void ratio. Since this is a non-associated flow rule, then the direction of the plastic strain
increment vector is not perpendicular to the yield loci, which are line of constant stress
ratio. In other words, the plastic potential differs from the yield function and the latter

does not serve as the plastic potential and it is illustrated in Figure 3.24.
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Figure 3.24 Yield loci, plastic potentials and plastic strain vectors

The value of the parameter h in equations 3.38, 3.39 and 3.39 depends on whether
the element is loading, unloading or reloading. In a loading process, its value is
determined using the “plastic strain curve”, which is usually expressed by a hyperbolic

stress-strain relation in the form:

Py =a(—~l——] (3.52)
Nsps =11

where a is function of state, 1} the stress ratio and ngsgs is the value of the stress ratio at the
state boundary surface (SBS) corresponding to the present value of ¢ and e. It may be
noted that when 1 — nsgs, € — o and that nspgs indicates the failure of the element at the
state boundary surface. When using equation 3.52, the strain hardening and strain
softening of the medium can be modeled, and in the case of the strain softening, the
loaded element may have to ride on the state boundary surface till it reaches the critical
state (as shown in Figure 3.16). In a constant normal stress test (or constant ¢ drained

test), the following is derived from the plastic strain curve:
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de”’ (77SBS _77)"‘77 _ Oy

dn (77533 _77)2 B (77535 - ’7)2

and

de? = allsps 2d77
(’7333 _77)

(3.53)

On the other hand, from equation 3.36 for a constant ¢ test, using the critical state

formulation of the plastic potential:
de? =h % dn
or
wheredn=df, n=f=t/candp=cexp(n/p)

or de” =ha—(pd77=h§£§g—d77=hgexp(77/,u)id77:ﬁexp(n/,u)dn
ot on Ot y7, o 7,

Equating the right hand side of equations 3.53 and 3.54:

aMNsps

h
dn= —exp(n/u)dn
(77SBS _77)2 H

apin] g
(7555 _77)2 exp(n/ 1)

or the parameter A =

(3.54)

(3.55)

This concludes the description of the constitutive formulation used in this study

and the behavior of cohesionless granular media when subjected to shearing and

CANAsand model is a non-associated one for as stated earlier where f=mn, ¢ = 0'(_0(17)

and where (;(77) may take the form of (exp(n/ u)).
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4. MODELING OF THE REINFORCED EARTH

PROBLEM OVERLAYING VERY SOFT SOIL

4.1 INTRODUCTION

Reclamation of grounds consists of raising the ground to the level required to
make it safe for construction facilities. The ground is raised by filling and compacting the
granular fill over the subgrade. If the subgrade is very soft, the fill will sink into the
ground under its own weight and more fill will be required. By placing a geosynthetic
reinforcement over the subgrade, the mixing of the fill and the soft soil will be avoided.
The reinforcement improves the reclaimed area in such a way that it prevents the
spreading of the fill over a wide area causing more uniform settlements resulting in a
reduction of fill volume. In addition to that, the developed tension in the reinforcement
spreads the loads away from the reclaimed area leading to a decrease in the fill
settlement.

This chapter presents a brief description of the reclamation technique used for
reinforcing a very soft soil. It is followed by modeling and analyzing the system under

study prior to the filling. Finally, results and some discussions are presented.

4.2 THE CONSTRUCTION PROCESS OF REINFORCING A SbFT SOIL

The general construction procedure for reclaiming a very soft soil using a
geosynthetic reinforcement is followed according to Lawson (1999) shown in Figure 4.1.
The process of reclamation consists of laying a geosynthetic reinforcement, often a

geotextile, over the very soft soil where the edges of the geosynthetic are anchored with
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the soil berms. Embankment fingers are subsequently constructed to stress the
reinforcement and to avoid slippage of the geosynthetic. The final step involves the
spreading and the compaction of the granular fill over the reinforcement and between the
embankment fingers. Therefore, the immediate settlement of the fill is due to its own
weight and to the surface loading. Since the ground is very soft, very large settlements
are expected to occur after the filling. Moreover the embankment fingers will undergo

some settlements depending on how loose or compact the void ratio of the fill is.

l.aying geosynthetic .

Super soft soil

Step 1: Lay geosynthetic reinforcement over super soft soll

Anchor berm Geosynthatic Anchor berm

oY Lty N oy oe e oy sy pry-sampesren
«s’E‘?‘t '@ RERE P .@gﬁggux ey ‘%3";‘: a{fﬁ&b‘;‘:ﬁgﬁ'
& raowy Y LRGSR BTN e Lt
Ssamat e NSRRI S G [T

Step 4: Fill in between embankment fingers

3
PR

Figure 4.1 Sequence of reclamation using geosynthetic reinforcement (Lawson 1999)
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4.3 MODELING OF THE REINFORCED EARTH PROBLEM

The real and idealized model under study are illustrated in Figure 4.2a and 4.2b
respectively where geotextile reinforcement is placed at the base between the soft soil
and the granular fill. Two embankments fingers are constructed on each side of the
reinforcement to provide supports and to avoid slippage. The inclusion plays two
important roles in this model. First, it acts as a reinforcement tool and second as a
separator between the fill and the soft soil where the fill can sink into the ground in the

case of a very soft ground.

Geosynthetic reinforcement Embankment fingers  Granular fill

V% NNNN

Geosynthetic \einforcement Embankment fingers  Granular fill

b)

Figure 4.2 Sketch of a) Real model b) Idealized model
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In order to determine the settlement profile of the system prior to the spreading of
the granular fill, the system has to be converted into a system with forces. The
embankment fingers are transformed into uniform load and the tension force created in

the membrane is a function of its stiffness. Figure 4.3 shows the acting forces on the

system.
The reinforcement
q q
P P
z
hI YYVVVVVY vo s IYVVYYY Ih
\ \ A 7
Soft soil Soft soil
r 0 r

o

Figure 4.3 Forces acting on the system

q is the uniform load from the embankment loading and is equal to the following:

q=vh (4.1)
where y (kN / m®) is the unit weight of soil used in building the embankment fingers and
h (m) is the height of the embankment fingers. P are the forces acting on the membrane

from the pressure of the very soft soil and which are normal to the reinforcement. 2s is
the spacing between the embankment fingers. r is the distance taken from a point o in the

soft soil. 0 is the angle created between the distance r and the vertical line dividing the
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system into two symmetric parts. The angle 0 is a function of r and s and therefore it is

equal to:
Sin0=s/r ;or; 4.2)
0=sin(s/1) (4.3)

Since the system under study is symmetric and all the variables needed are
incorporated in this system, one part of it is examined and can lead to an agreeable

solution. Figure 4.4 shows this symmetric system.

The reinforcement

q arc of 10
P ,/ T
LT
h YYVYVYVY S y &
\ s
Soft soil
r 0 | rcosd
0

Figure 4.4 Symmetric components of the system

The arc formed by the reinforcement is equal to (r8) and the geosynthetic strain or the

stretch of the membrane is in the form of the following equation:

Strain of membrane = (rg — SJ 4.4)
s

o is the settlement or deformation profile of the model when subjected to the

embankment loading. The vertical projection of the distance r is r (cosf) and it is along
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the vertical center line. The tension T produced in the inclusion is in function of the

stretch and the stiffhess modulus of the latter. Therefore the tension T is:

T=(r0_SjEr (4.5)

S

where E; is the stiffness modulus of the reinforcement and is taken per its unit width
(kN/m). Furthermore, the tension formed in the membrane depends on the spacing
between the embankment fingers and on the pressure acting on the membrane. Taking
into consideration the free body diagram containing the reinforcement and the forces

acting on it, the tension is determined from the Figure 4.5 and as follows:

The geotextile reinforcement

p p
Tension S | S Tension
D ! >
\‘ 5 > /
v v
T T

Figure 4.5 Free body diagram of the reinforcement

By taking a moment at one of the sides of the reinforcement and since the pressure is

very small the uniform load p is assumed to be vertical and is transferred into a force

acting in the middle of the free body diagram:

D> M =0=~(T*2s5)+(p(2s) *(2—;)) =0 or;
T(2s)=P(2s)* (%) and the tension T is:
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T'=ps (4.6)
The tension is considered to be vertical here when the distance r is equal to s and 8. The
pressure or the forces p exerted on the reinforcement coming from the soft soil is almost
negligible. Therefore, it is assumed to act uniformly on the surface adjacent to the

embankment loading q. The loading scheme is highlighted in Figure 4.6.

The reinforcement

q p

A

YYVYVVYVY \AAAA22222

3

<%

Soft soil

Figure 4.6 The loading of pressure p

In order to determine the loading q, it is assumed here to be the bearing capacity
of a footing on a very soft soil where it is going to fail along a circular plane. The chosen
solution to this particular problem is both kinematical and statically admissible and thus
the solution obtains from it an upper bound and a lower bound at the same time. This can
only occur if the solution is the exact answer to the problem. Figure 4.7a shows the
characteristics of the stress field due to the loading q. Along these lines the value of the
shear stress is at its maximum and is equal to the cohesion c¢ of the soft soil. In Figure
4.7b, the velocity field is shown indicating the possible movements along these lines. The
stress field in Figure 4.7a is divided into three zones as shown below where each zone

has to be analyzed separately.

94



YYYYYYYVYVYYYYVYY rO Iq vvvvvvvvvvvo Iq

I I

() (b)

Figure 4.7 a) Characteristics of the stress field, b) Velocity field

The aim of this analysis is to determine the stress components acting on sides OA and
OB; however the vertical and the horizontal stresses are to be resolved first for an
element in soil in each zone. Since there is no friction involved and hence oy, = 0, the
incremental equation of equilibrium can be integrated to yield to the vertical stress

component, .. The incremental equations of equilibrium for an element in soil are:

90, 9% _ 4.7
Ox Oz
Jdo Jo

Xz Y4 — 4.8

Ox 1574 4 (4.8)

The second equation can be integrated and leads to the subsequent:

C.=) (4.9)
The horizontal stress components are based on the active and passive earth pressures
exerted on sides OA and OB. In zone I, the vertical stress component, G,,, iS Zero in view
of the fact that there is no pressure on the outside loaded area. The horizontal stress
component, Oy, is based on the passive earth pressure equation where the side OA is

being moved towards the soil in this zone:

95



c, = ;atanz(45+g)+2ctan(45+§) or

O = O e =K 2 +2¢ [K, (4.10)
where K, is known as the passive earth pressure coefficient, y is the unit weight of soil, z
is the depth of soil, ¢ the cohesion, and ¢ is the angle of friction of sand. In Figure 4.7
the soil underneath the loading is very soft that it can be similar to clayey soil and thus
the angle of friction ¢ is assumed to be zero. The stress component oy, is therefore equal
to:

Oxx = 2C (4.11)
To satisfy the boundary condition, the Mohr’s circle is shown in Figure 4.8 where the

pole is located at the extreme right of the circle and denoted by PI.

0 stress on OA

0]

RO,
RS/

2c

v

Figure 4.8 Zone 1

From the Mohr’s circle in Figure 4.8, the stress components acting on side OA are
determined and shown on the last Figure. The shear stress T is equal to the radius of the
Mohr’s circle:

T = c; and the normal stress o is 4.12)
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_010, =O+2():c

> 5 (4.13)

c

In zone 111, the vertical stress component G, is estimated using equation 4.9 as follows:

.=7=q (4.14)
due to the loading q on top shown in Figure 4.7a. The horizontal stress component oy, is
derived from the active earth pressure equation where in this case the side OB is being

moved away from the soil in this zone:

o, =ztan’ (45— g) —2ctan(45— g) or
O = Come = K12 -20[K, (4.15)
where K, 1s known as the active earth pressure coefficient and ¢ is the angle of friction of
the soft soil which is still assumed zero in this case. Hence, 6, is estimated and is equal
to:

o,.=pr-2c=q-2c (4.16)
Having determined the stress components on an element within the soil in zone I11, the

Mohr’s circle can be complete and its representation is illustrated in Figure 4.9 with its

pole denoted by PIIL.
q stress on OB
A 4

q-2¢
B

Figure 4.9 Zone 111
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From the Mohr’s circle in Figure 4.9 the stress components acting on side OB are
evaluated and shown on the last diagram. The shear stress is equal to the radius of the
Mohr’s circle and therefore:

T = ¢; and the normal stress is 4.17)

_ O, +O-xx _ q+(q—2C) _

—c 4.18
5 5 _ (4.18)

(2

Finally, the equilibrium of the radial fan zone, zone II in Figure 4.7a, is considered with
the stress components applied on sides OA and OB found previously. The two sides are
assumed to have the same length L and the arc formed by these two sides is equal to

nL/2. Zone 11 is illustrated in Figure 4.10.

nl./2

Figure 4.10 Radial fan zone: Zone II

Having determined the shear stress and the normal stress acting on sides OA and OB
from zone I and zone III, a moment can be taken about point O in zone II to determine

the loading q as follows:
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cL§+c%L =(q——c)L§ or;

c+mc=q—c Or
g=(m+2)c=514c (4.19)
where c is the cohesion of the soft soil.

Reverting to Figure 4.6, the pressure p is assumed to be very small as mentioned
earlier and therefore it can be added to the loading q by modifying equation 4.19 to:
q=@Q+7m)c+p (4.20)
By using equation 4.6 the pressure p can be determined in function of the tension created

in the reinforcement and the spacing s:

T = ps and;
p= r (4.21)
s
and upon substituting equation 4.5 into equation 4.21 results in:
» :(rB-SJEr 1 or:
s s
p= [59 - 1) £, (4.22)
s s

The angle 6 was evaluated earlier by equation 4.3 where 0 = sin'(s / r) and replacing it in

the previous equation will lead to the following relationship:

P :(fsin"‘ (fj—lj E, (4.23)
A v S

Swapping the value of p in equation 4.20 with equation 4.23, the outcome will be:

g=Q+7n)c+ [i sin”™ (EJ — IJ E, or; (4.24)
S

v N
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g-Q2+m)c= (Isin'l (Ej - l]ﬂ or;

s r S

[9-Q+m)c]—= (ﬁ sin™ (5) ~1| or;
E s r

¥

r

1+[g-(+ n)c]Ei = (Esin'l(i) (4.25)

r

In order to have a simpler relationship and to reduce the number of variables in the last

equation, the value (r / s) is taken equal to &:

&= (f—) and where; (4.26)
s
—;— = (fj (4.27)

Equation 4.25 is rewritten using equation 4.26 and 4.27 as shown below:

1+[g—(+ ﬂ)c]i— = (f sin”’ [%D or;

r

fsin‘l[é] =1+|[q —(2+7z)c]Ei (4.28)

The very last equation is a highly nonlinear one and it is solved by using Maple, a
comprehensive computer software for advanced mathematics. Hence solving equation
4.28 will result in finding the variable £ which will result in determining the variable r as

well. The vertical projection of r is r (cos@) on Figure 4.11. Since 9 is also found due to

the fact that is related to r and s by equation 4.3, therefore it will lead to estimate the
deformation d of the system under study. As stated earlier, the deformation here is caused

by the embankment loading and its profile is shown in Figure 4.11.
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The reinforcement

q q
rvyyyvyy VW FYYYYVYY
Soft soil Soft soil

Figure 4.11 Settlement profile

The settlement profile 6 is determined from Figure 4.11 in function of r and 0 as follows:
8 =r—rcosé or,

0 =r(l-cosb) (4.29)

4.4 RESULTS AND DISCUSSION

In this section the results of some settlement profiles of the system under study are
presented. The parametric study is carried out through the parameters g, ¢, s and E; which
are respectively the loading from the embankment fingers, the cohesion of the very soft
soil, the spacing between the embankment fingers and the stiffness modulus of the
reinforcement. In order to determine the settlement, equation 4.28 has to be solved with

the four given parameters described above. In addition, the height h of the embankment
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fingers is considered to be another important parameter by its relation to the loading q by
equation 4.1 stated earlier as follows:

q=vh

where the unit weight of soil vy, used to construct the embankment fingers, is taken to be
20 kN/m’ in this present study. For the first settlement profile the height h of the
embankments fingers is assumed to be 3 meters, the cohesion of the soft soil is 10 kPa,
the spacing is 10 meters and the stiffness of the reinforcement is 800 kN/m. The result of

these stated assumptions is presented in Figure 4.12.

SaillemeniProle
5 r=939m
3. Omax = 1.44 m
m] 2_2 5l‘ﬂa)(
1_'
o 2 4 6 8 10
X

Figure 4.12 Settlement profile for a 10 meter spacing

The settlement 8 is determined to be 1.44 meters with the corresponding values of r being
equal to 9.39 meters and the angle 0 equal to 0.56 radians. The parameters r and 0 are
clearly described in Figure 4.11. In this parametric study the height h of the embankment
fingers is varied from 3 to 5 meters, the spacing between the fingers is varied from 8 to
12 meters and the stiffness modulus of the reinforcement is varied between 800 and 4000
kN/m. The soil cohesion or the undrained strength c of the soft ground is restricted to 10

kPa where at this value the soil is considered to be very soft behaving like a fluid.
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In the second settlement profile the stiffness of the reinforcement is increased to
4000 kN/m, the cohesion is still 10 kPa, the spacing is 10 meters and the loading q is 60

kN/m” with a height h of 3 meters. The profile is illustrated in Figure 4.13.

SettlemeniProlle

57 r=20.46 m

4 0=0.246

37 Smax = 0.635 m
Delajm] |

2

1] .

0 2 4 6 8 10

x

Figure 4.13 Settlement profile for a stiffness modulus of 4000 kN/m

The settlement here has decreased to 0.63 meters with an increased value of r equal to
20.46 meters and smaller angle 0 of 0.24 radians. The reinforcement and its stiffness play
a central role in reducing the ground settlement. The higher the stiffness modulus of the
reinforcement the less settlement is expected. Moreover, the reinforcement avoids the
sinking and the mixture of the fill of the embankment fingers with the soft ground and
reduces the fill volume by not adding some to replace the sunken one.

In the next settlement profile the spacing is taken equal to 8 meters instead of 10
meters with a stiffness modulus of 4000 kN/m, a soil cohesion of 10 kPa, a height of 3
meters and a loading of 60 kN/m®. The spacing has been reduced and therefore the
settlement has decreased by comparing it to the previous profile where the deformation
was equal to 0.63 meters. Figure 4.14 shows the ground profile for an 8 meter spacing

between the embankment fingers.
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Figure 4.14 Settlement profile for an 8 meter spacing

The settlement has been reduced to 0.46 meters with decreasing values of r of and 8 equal
to 17.5 meters and 0.23 radians respectively. A decrease in the embankment spacing
leads to a diminution in the ground settlement and on the other hand an increase in the
spacing would lead to an increase in the settlement as discovered in the next outcome.

In Figure 4.15 the distance between the embankment fingers has been increased to
12 meters while previously it was assumed to be 8 and 10 meters. The other parameters
remain unchanged with 4000 kN/m stiffness of the reinforcement, 10 kPa of soil strength
for the soft ground and 60 kN/m” of loading on both sides of the inclusion. The outcome

is highlighted in the Figure below.

SettlernentProlle
r=21.18m

> 0 =0.287

4 Sumax = 0.867 m

3
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x

Figure 4.15 Settlement profile for a 12 meter spacing

104



The settlement increases to 0.86 meters as for an 8 meter spacing it was 0.46 meters and
0.63 meters for 10 m spacing. Hence, the settlement increases as the spacing enlarges
between the embankment fingers. The adequate spacing in this present research would be
10 meters between two embankment fingers as it will be seen in the next chapter.

The height was assumed to be 3 meters in the previous results and in the
following profile it has been increased to 4 meters with the same stiffness of 4000 kN/m,
10 kPa of soil strength and 10 meters of spacing. Therefore, the loading q is 80 kN/m?
rather than 60 kN/m? acting on both sides of the system. Figure 4.16 shows the settlement

profile for the above declared values.

SeitiementProlle
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Figure 4.16 Settlement profile for a height of 4 meters and loading of 80 kN/m’

It is observed here that the settlement, d, has increased to 1.16 meters as compared to
earlier outcomes with an r of 11.32 meters and an angle 6 of 0.45 radians formed in the
ground. The higher the embankment fingers are constructed, the higher the pressure will
be on the reinforcement and the more the system is expected to settle. Hence, the loading
g, which in terms is in function of the height, plays a fundamental role in designing a

reinforced earth problem.
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The angle, 8, is formed by the horizontal line and the reinforcement when
subjected to ground deformation and is shown in Figure 4.16. Limitations have to be
assigned to contain this angle in an acceptable degree. In this study the angle varied
between 13 degrees and 32 degrees. This angle should not exceed a very high degree for
the reason that it could cause damages to the reinforcement. On the other hand, some
reinforcements are made of very high quality of synthetic material and may sustain larger

angles.

4.5 CONCLUSION

In this chapter, a primary settlement profile has been evaluated for the system
under study. The parameters involved were respectively, the loading acting on the system
derived from the height of the embankment fingers, the stiffness modulus of the
reinforcement, the cohesion or the undrained strength of the very soft soil and the spacing
between the embankment fingers. These variables helped in estimating the settlement of

such a model prior to the spreading of the granular fill between the embankment fingers.

The simulated results deduced that the parameters described above affect the
system under study in many direct ways. A higher stiffness modulus of the reinforcement
can decrease the settlement by creating a higher tension in the inclusion which will
eventually spreads the loads away from the system. The higher the spacing between two
embankment fingers is, the more the model has a tendency to settle. Finally, the height of

the embankment fingers, which generates a uniform loading acting on the two ends of the
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system, has an effect on increasing or decreasing the settlement depending on the design

criterion.

The reinforcement plays the role of a construction expedient that prevents the
local loss and the intermixing of the fill and the soft soil, allows a uniform settlement of
the fingers and enhances the bearing capacity for construction equipment. Moreover, the
reinforcement allows rapid construction of embankments fingers and the economies
saved exceed the cost of the reinforcement. The use of reinforcement is attractive in this
case because greater embankment heights can be built in any one stage which leads the
reduction of construction time and to the improvement in the foundation strength during

consolidation.

The final settlement of the reinforced earth system is based on the primary
settlement approximated in this section. Moreover, the final settlement of the system is
determined from the level at which the main settlement has attained. Therefore, it has to
be taken into account that a first ground deformation has been validated in this section.
The final and immediate settlement is determined after the dispersal of the granular fill

between the embankment fingers and is discussed in depth in the next chapter.
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S. NONLINEAR ANALYSIS OF THE REINFORCED

GRANULAR LAYER

5.1 INTRODUCTION

In the previous chapter, the settlement profile was determined prior to the
spreading of the granular fill. In this section, the dispersal of the granular fill between the
embankments fingers will be taken into consideration to evaluate the surface profile due
to the immediate settlement. The granular fill has been examined so far to be behaving in
an elastic media to find the deformation. In this study, it is going to be treated as an
elastic-plastic material since it is.

The stress-strain relationship or the response of the granular fill is non-linear
when subjected to shear loading and depends on the materials’ void ratio. During shear
loading, elastic and plastic strains occur simultaneously and are additive. Therefore, it is
an incremental elastic-plastic model using a non-associated flow rule, i.e. the direction of
the plastic strain increment vector is not perpendicular to the yield loci which are line of
constant stress ratio, used to analyze the behavior of the reinforced granular layer
overlaying very soft soil.

This chapter presents the description of the constitutive equations used for
analyzing and modeling the behavior of the granular fill of the syste;m under study. Then,
the integro-differential (ID) technique and the mathematical formulations used to analyze
the problem are presented. It is followed by the numerical method used and the derivation
of the governing equation of the problem and its characteristics. Finally, the results of the

proposed model and the finite element model are illustrated.
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5.2 FORMULATION OF THE CONSTITUTIVE EQUATIONS

As in most elastic-plastic formulations it is not possible to associate the
magnitude of the total strain to the stress level directly, the strain is related to the stress
by its rate or increment. In a two dimensional deformation, the invariants of stress are t
and ¢ and those of strain €, v with their associated increments, dt, do, de and dv. The
strain increment experienced by an element has an elastic and a plastic component.
Moreover, the strain increment is composed of two strain increments which are the shear
strain de (associated with the change of shape) and the volumetric strain dv (associated

with the change of volume) and each have two components composed of an elastic and a

plastic part:
de = de° + deP (5.1)
dv =dv°* + dv? (5.2)

The plastic strain increment, @, is derived from the plastic potential in the form of

the following relationship:
p=0 ¢(77) (5.3)

where 1) is the stress ratio (1 / ) and a particular form of the function (;)(77) adopted by
many and referred to as the critical state formulation is:

@(1) = exp(n/ 1) (5.4
where p is the slope of the projection of the critical state line into the (t, ) plane. In its

simplest form, the yield function is a straight ray passing through the origin of the stress

space (1, 6) and is given by the simple expression:
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f===n (5.5)

where 1 stated earlier as the stress ratio.
The shearing and the volumetric strain increments are derived from the plastic

potential using the following equations:

de” =dp°? (5.6)
or

dv? =dp? (5.7)
oo

where ¢ is the so called plastic potential, d¢” the plastic shear strain, dv? the plastic

volumetric strain and where df is:

o

—do +
oo

dp =hdf =h/( jSdr) (5.8)
or

where #; is the loading index, dff is an incremental quantity or constant relating strain
components to the gradient of plastic potential and f'is the yield function. The parameter

h was derived in the previous chapters when modeling the elastic-plastic behavior of non-

linear soil and was determined from the plastic strain curve:

£” =a( ] ] (5.9)
Nsgs =1

where the value of the scalar h:

— a:uznsBS (5 1 0)
(1555 —11)" exp(n/ p1)

where a is function of state, 1 the stress ratio and nsgs is the value of the stress ratio at the

state boundary surface (SBS) corresponding to the current value of ¢ and e.
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The constitutive equations described above must be expanded in order to be useful in the
following analysis. Figure 5.1 shows the reinforced gravel layer overlaying very soft soil

and the coordinate axis taken along and normal to the reinforced granular fill.

Embankment fingers

Geosynthitic reinforcement X ><Granular fill

KT x

Very soft

soil

/

Figure 5.1 System under study and the coordinates system used in the analysis

In an incremental loading process, the plastic strain increments are derived from the

plastic shear strain equation 5.6:
de? =dp %p
or

where df = hdf = h,(—QLdG + g—dr) =hdn
oo or
based on equations 5.5 and 5.8. 1} is equal to the stress ratio and therefore it is in function

of the stress and more precisely in function of oy, 6,, Tx, and 1,x which are the stress
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components acting on an element within the reinforced granular layer. Hence, dn can be

written in the following:

dn=" 45 + M 4o + O g 4 9N 4 (5.11)
oo, oo or or

z Xz X

Since Ty, = Tz, €quation 5.11 can be rewritten as:

dn=" 45 + 21 45 1291 4, (5.12)
oo oo ot

X z Xz

From equation 5.6, %(e is derived from the plastic potential which is in the form of
T

¢ =oexp(n/ 1) and where =1/ ¢ as follows:

—az=0'Lexp(r/,u0')=lexp(r/,u0')=—¢— (5.13)
or MO y7, HO

As a result, the plastic strain increment is determined in the form of:

de? =h- 2 (Mg + M 4o 1291 47 (5.14)
Ho 00, oo 0

Following the coordinate system described in Figure 5.1 and differentiating with respect

to each stress component, the plastic strain increments are given by the following set of

equations;
h

de; =—(pn.do +on.do, +¢21.d7..) (5.15)
H
h

de} =—(p.n,do, +¢.n.do. +¢.2n,.dr,.) (5.16)
y7i
h

dgx’; = (¢xzf7xdo-x + ¢XZ’72dO-Z + ¢XZ 277XZdTXZ) (5' l 7)
7,

on on on op op op

where: n, =—, n,=—, 1, =—, ¢, =—, ¢, =—— and ¢ = —— 5.18

Tx oo, 7 oo, & or, oo, oo, ? . (5.18)
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In order to determine the equations in 5.18, the following Mohr’s circle of stress is first
considered with the stress components taken as the invariants of the stress tensor in two
dimensions. They are defined as the radius of the Mohr’s circle of stress and the distance

between the center of the circle and the shear axis of the stress space, Figure 5.2.

AT

A
v

Figure 5.2 Stress invariants used in the present study

The shear stress, being the radius of the Mohr’s circle, is determined as follows:

/2

T ={(¥)2 +szsz‘ 2 Z%[(O'x ~0,) +4(1xz)2]’ :%[(o_x —o ) +(2sz)2]|/2 or:

/2

r=lo,—0) +@, 47,0 (5.19)

The normal stress, being the distance between the center of the circle and the shear axis,

is as follows:

_[o. o)1
0'~( 5 J—2(0x+0'z) (5.20)

113



As a result, the yield function, which was stated earlier as the stress ratio, will take the

following form:

L CATA SRR ) 52
o (o, +0,)

The equations in 5.18 can now be derived with respect to each stress component with the

plastic potential taking the form of ¢ = 0'(_0(77) = o exp(n/ 1) and where p is the slope of

the normal projection of the critical state line in the (1, o) plane, i.e. p=tan (¢,,.,), as

follows:
0 1o ~o

g = 2n 1[0 z_,,} (5:22)
do, ol 1
0 1{-(o.~-0c

n, = n_1 ( x "0, _,7} (5.23)
do, o| T

”xz - 877 :l[(rxz +sz =_1_l:21xz] (524)
or,, © T oL 7

¢x=a—¢=exp(—"— oo | —n)}=e><p(lj{l+l(nx0)} (5.25)
do, /7y A 7 7
dp n\,,1(-(o.-0,) AR

@, =——=¢exp| — | l+—| ———F—n ||=exp| — 1+*‘(’7:°’) (5.26)
oo, H) Hu T u 7.

9. = - exp(ZJ[—l—(ﬁ)] - GXP(ZJF (ﬂua)] (5.27)
or,, 7y VAN 1)L

From the theory of elasticity, the stress is related to strain by the elastic constitutive law.
For a homogeneous isotropic elastic material there exist only two materials constants

which are E, the Young’s modulus, and v, the Poisson’s ratio. All other quantities such as
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the shear modulus, G, and the bulk modulus, K, are related to these two constants. The
shear modulus is related to E and v by the following relationship:

E

o= 2(1+v) (>28)

Since the model is a two dimensional plain strain case, therefore the relation between

stress and strain is:

de = é—(a’ax -wvdo ) (5.29)
de_ = é(do; -vdo ) (5.30)
dr
de , = —= 5.31
SXZ 2G ( )

The above elastic strains increments are added to the plastic strains increments, equations
5.15 to 5.17, to determine the total strain increments of the system and are given by the

following set of equations:

de. =" (n 4o +n.do +2m_dr )+ 2% Y do. (5.32)
H ) 7 E E
dz, =%y do +n do. +2n dr )~ Ldo, +4% (5.33)
y7, ) E E
de, =02 (g, do, +n.do, +2n dr )+ 2 (5.34)
y7, 2G

In an isotropic elastic material the matrix of the coefficients relating stress to strain is
symmetric and contains only two constants E and v. In the elastic-plastic model, not only
the matrix is non-symmetric but it is also full containing nine coefficients. The elastic

strains have to be incorporated in the matrix; otherwise the matrix will become a singular
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one where its determinant is zero. The relation between the strain and stress increments,

equation 5.32 to 5.34, can be represented in a matrix form as:

= , )
—+—=0n, —-——+—07n, —@2n, |
de, E p E p H do,
de, |= —i+ﬁ(pznx l+—h—(pznz ﬁq)ZZUﬂ do, (5.35)
d E u E u u J
Bl | b h RIS
i (Dx-' nx (DXZ 77: 2 G (oxz 77.)CZ

de, a, a, a;|do,
de, |=|a, a, a,|do, (5.36)
de,, ay 4y ay | dr,

In the original work by Poorooshasb et al. (1996), one of the fundamentals assumptions
of the integro-differential (ID) technique is that in certain type of problems one
component of the displacement is taken to be equal to zero. In this present study, the
lateral strain component, which is along the x direction (Figure 5.1), is zero and it leads

to the following:

de, =0=a,do +a,do_ +a,dr_ =0 or (5.37)
do,=-2245 2347 (5.38)
ay, a,

substituting the above relation in equation 5.36 will result in a reduced form matrix to:

de do . '
z — j'l 1 j12 z (5'39)
de,. Ay Ay ldr,,
where the coefficients are described below as:

Ay =ay ———*= (5.40)
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Ay = ay 0% (5.41)

Ay =ay, - Githe (5.42)
a;

Ap =a3— Tty (5.43)
an

Finally, the matrix in equation 5.39 needs to be inverted to read as:

do-z - cl] Cl2 dgz (5 44)
dez c21 022 dgxz .

where the coefficients are as follows:

o = % (5.45)
¢, = —%—‘ (5.46)
¢y = —%& (5.47)
Cyy =% and; (5.48)
A=A Ay~ Ay iy, (5.49)

The inversion of equation 5.39 helped in obtaining the stress increments in function of
the strain increments and will be useful in the next section where the substitution of these
stress increments will occur in the incremental equation of equilibrium of an element
within the reinforced granular layer. In addition to that, the inversion will facilitate the
use of the integro-differential technique to determine the incremental displacement fields,

which is discussed in the coming section, and make it practical in the analysis.
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5.3 THE INTEGRO-DIFFERENTIAL (ID) TECHNIQUE

The integro-differential (ID) technique is a simple numerical procedure developed
jointly by the researchers at Concordia University, Canada and the Institute of Lowland
Technology, Saga University, Japan to analyze certain types of geotechnical engineering
problems. It is called the ID technique because it evaluates an integro-differential
equation depending on the type of the problem. Its analysis follows the route proposed by
Hill (1963) the central feature of which was to satisfy “as many overall conditions of
equilibrium as possible” in order to achieve an adequate and accurate solution. At the
time, the work proposed by Hill did not attract much attention mainly because the
evaluation of the basic equation was obtained in a closed form and essentially dealt with
a very simple soil model. With the advance and the availability of computers it is now
possible to obtain a numerical solution of the central equation.

The technique was applied to different types of problems encountered in
geotechnical engineering such as axi-symmetric one, e.g. the analysis of pile-raft
foundations (Poorooshasb et al., 1995), the nature of the negative skin friction acting on a
single rigid pile to bedrock (Poorooshasb et al., 1996), the design of inclined piles
(Poorooshasb et al., 1998), and plain strain problems such as ground subsidence caused
by earthquake excitation (Poorooshasb, 1998) and heavily reinforced earth (Poorooshasb,

2002).

The ID technique was tested against some other numerical techniques which use
finite element method (FEM) and the results between the two techniques were judged to

be satisfactory and acceptable in geomechanics. The ID technique appeared to be a
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powerful method of analysis and it is simple to understand. The computational
requirements in applying this technique are minimal in comparison to other numerical
methods. In addition to that, the value of this technique appears to be very solid and
capable of handling complex elastic-plastic constitutive models that uses a non-associated

flow rule such as the one encountered in reinforced earth problems.

5.4 MATHEMATICAL FORMULATION OF THE PROBLEM

An element within the reinforced granular layer shown in Figure 5.1 is considered

with the stress components acting on it and is illustrated in the Figure below.

Oz

Figure 5.3 Stress components on an element within the reinforced granular layer

In the absence of body or dynamic forces the incremental equation of equilibrium along
the vertical component, i.e. along the z axis shown in Figure 5.1, requires that:

o(do,) N o(dr,,) B
oz Ox

0 (5.50)

Integrating equation 5.50 with respect to z leads to:
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10
do_+ |—(dr,)ds=0 5.51
O PG (5.51)
Substituting from equation 5.44 for do, and dr, yields the following equation:
0
¢, de, +cpde.,, + I& [, (x,E)de, +cyy (x,E)de, JdE =0 (5.52)
0

Let the parameter du be the incremental vertical movement of the soil particles or in other
words the velocity field along the z axis. The horizontal component along the x axis is by
assumption zero. The strain components are deduced from the displacement field using

the law of kinematics by the following equation:

o, ou,
) 5.53
i = 2(6x o, J (5-53)

and therefore the strain components are as follows:

de, = %(duz) (5.54)
ds,, = Eg—(du ) (5.55)
ds, = —E(du £) (5.56)
de,, = %%(dug) (5.57)

The above strain increments, equations 5.53 to 5.56, are to be inserted in equation 5.52

where the outcome is:

8(duz)+ 1 8(du ]- 5(du§) +£(c 1 a(du(g)
1574 Ox 5 ox 22 ox

(5.58)

S

Rearranging the terms in equation 5.58 and rewriting it as:
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1dé =0

z o(d 0% (di o(di 0’ (d
c”a(duz)+clzla(du2)+j[acﬂ (”f)+c2, (du;) ey, (“f)+c22 (?,;)

oz 2 Ox ox 0f ox0& ox Ox Ox
(5.58a)

0

The following second order terms are considered to be very small and can be neglected in

numerical evaluations:

dc,, 0(duy) and dc,, 0(du,)
ox O Ox Ox

Hence, the last equation is reduced to:

1d&=0 (5.59)

= 0X(d 0% (d
. a(du:)+01216(du:)+ I[cﬂ ( ug)w22 ( ztg)
oz 2 & oxo& x

The developed formulation is intended to serve as the basis of numerical procedure
proposed in the next section. In order to evaluate equation 5.59, the integral sign needs to
be replaced by the sum sign (3)) and it has to be written in its finite difference form. The
result should be a number of linear simultaneous equations that can be solved to obtain
the incremental displacement fields. The total displacement field of the system under
study is estimated by adding up the incremental values. Note that the governing equation
must be solved with the appropriate boundary conditions that must be satisfied and which
will be presented in the subsequent section.

The governing equations developed in this chapter are not sufficient to solve the
problem in soil mechanics. Therefore, the constitutive equations play an essential role
and are necessary to complete the solution of the problem under study. Constitutive
equations have a major impact on the solution by presenting a realistic and practical
model of the soil behavior. In the last governing equation, the coefficients were based on
the elastic-plastic formulation described earlier and which were necessary to be

incorporated in the model to give the complete description of the soil behavior.
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Constitutive models based on plasticity have contributed extensively to the
development of analytical procedures. The CANAsand model, which is based on the
theory of plasticity, using a non-associated flow rule has been proven in recent studies to
be capable of modeling the response of sandy soils. The model can be applicable for both
loose and dense sands. In the present study, CANAsand model with its developed
equations is used to represent the stress-strain behavior of the granular fill spread

between the embankment fingers of the system shown in Figure 5.1.

5.5 THE NUMERICAL SCHEME

In order to solve the governing equation 5.59, a finite difference mesh needs to be
considered. The solution region will be covered by a network with a number of nodal
points distributed at equal intervals along the x and z direction. At node j, the increment
of vertical displacement is denoted by x(j), at node i by x(i) and at node ne by x(ne). The
objective of the analysis is to evaluate the magnitude of du,, the incremental vertical
movement of the soil particles, at each and every point of the network. Following this
route of reasoning, the incremental displacement field should be obtained and the total
displacement field would be evaluated by adding up these incremental values. The
governing equation must be solved and subjected to the appropriate boundary conditions
which be must be satisfied.

The network used to evaluate the governing equation is simple and demonstrated
in Figure 5.4 where the mesh has im.x columns, spaced regularly at Ax intervals, and jmax

rows, spaced regularly at Az intervals.
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» X, 1 values

Node number =

A
h 4

AZ, AC Ax /
\4 . . .
W (1 - 1)*Jmax +.]

¢ west 4 ] 4 east

[——rx
g jFI=south v/

Figure 5.4 Network used in this study

v

zZ, j values

Referring to Figure 5.4, it is assumed that every node has eight neighboring nodes of the
net made up of horizontal and vertical lines and which are given compass abbreviations.
Each node has an identification number of n = (i — 1)*j,.. + j. Let Az be kept constant
therefore A = Az. In order to determine the magnitude of du, at each and every node of
the mesh, the coefficients of a set of linear simultaneous equations for du(1),
du(2),...du(ny,,) are first derived where nyax = (imax — 1) ¥max +J = bmax * jmax 1 the total
number of unknown to be determined. Consider the situation at node (i, j) where the
objective ié to find the values of constants a(n, 1), a(n, 2), a(n, 3),...a(n, n),...an, Npaxt1)
so that one of the equations of the set corresponding to the node » may be formed as:

an, Ddu(l) + a(n, 2)du(2) +...a(n, n)dun) + a(n, n +Ddu(n + 1) +... = a(n, nye +1)

(5.60)
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Equation 5.60 may be written in a matrix form as follows:

a, ap . du, L +1

ay 4pn o du, _| P2t (5.61)
: : ' dun+l an+],nm,+l .

a, A Qmn ann,,m dunmax an“m r—

and therefore to find the displacement matrix du one can write:

-1

du, a, 4y A, L
du a, a e a a
2 . 21 22 2 ypax 2,0ax +1 (5 62)
dun+l : : : : an+1,nnm+l
dun"m anl ann a nn+l a/mmax a Minax +Mmax 1

Note that du is the incremental displacement field at each and every node and the total
displacement field at each node is the sum of these incremental values.
Recalling equation 5.59 and with the aid of Figure 5.4, the equation may be

written in its finite difference form:

adu,) l@(du:)+] O‘*(aVug)Jr 1 9 (du,)

— = _ ——ldE=0 5.59
" o Tny ar % (559

0

The first and second term on the left hand side of the equation are written as follows:

e, o(du.) :C”(x(j+l)—x(j)) (5.63)
Oz Az
MECRIRTECTEC) BRECE) 660
2 ox 2 2Ax 4Ax

The first term within the bracket under the integral is written along these lines and as

mentioned earlier A = Az. With respect to the x axis, the two equations are:

(5.65)

x(n) = (x(ne) - x(nw))

2Ax

and;
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[ x(se) — x(sw)
x(s)= (42Ax j (5.66)

Now with respect to z axis at a node i on the network the following is in place:

x(i) = (M) and replacing x(s) and x(n) by the above equations:

2Ax
(x(se) —x(sw) x(ne)—x(nw) )
(i) = 2Ax 2Ax _ (x(se) ~ x(sw) — x(ne) + x(nw)) (5.67)
2Az 4AxAz
hence;
e o (du,) ¢, (i)( x(se) — x(sw) — x(ne) + x(nw)) (5.68)
ox0& 4AxAz

Finally, the second term within the bracket under the integral is written with respect to

the x axis at a node i on the mesh:

x(e)—x(i)  x(i)—x(w)

1 0%(du,) 1 Ax Ax A x(e) =2x(i) + x(w)
Cx» 'i“"&zi =Cy B Ax =y () DAL (5.69)
Therefore, for a typical node the corresponding ID equation is:
A x(G+D) =x(j A x(e)—x(w
cll(])( (‘j A)Z (J))'*'Clz(J)(“_——_( )4A)C( ))""
i=node _ —
Z ¢ (i)( x(se) — x(sw) — x(ne) + x(nw) N
P 4AxAz
iede  ( x(e)—2x(i) + x(w) .
Z} Cy (z)( A Az=0 (5.70)

Equation 5.70 can be expressed in a simplified form suitable for coding that is:

a(x(j +1D) = x(j))+ Blx(e) — x(w))+
I:ide (Z'(x(e) - ZX(l) + X(W))+ l:”feﬂ'(x(se) - x(SW) - x(ne) + x(nw)) =0 (57 1)

i=1
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where the coefficients a, B, o and B’ are defined as:

i

a=— 5.72
(5.72)
B = :‘2 (5.73)

' Cyp

' C
—_ 5.75
i} 2 (5.75)

The numerical scheme is complete and fully explicit. However, the governing equation
(equation 5.71) must be solved and subjected to the appropriate boundary conditions

which must be satisfied:

® The z axis in Figure 5.4 is a line of symmetry. Therefore at x = 0, all the labels
indicating west are replaced by east. To impose this condition, it is sufficient to
specify that at x = 0, nw = ne, sw = se and west = east.

® At the surface of the system, the vertical stress component o, must be equal to

zero. This condition is satisfied by using an upper limit of the integral (at z = 0,
do, = 0) in equation 5.5} which is the following: do, + _‘-aﬁ(drx £)ds=0.
o X '

® At the base, the vertical stress is YD where D is the depth of the system and ¥ is
the unit weight of the fill.
® At the vertical line, between the granular fill and the embankment fingers, the

boundary of the solution region is full of shearing stress. The shearing stress at
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this location is 7_ and the friction based on the horizontal stress is

o, tan(g, ) where @, , is(2/3)¢ il +

The calculations are to take place in n stages where at each stage evaluations are
performed and are added to the next stage. The material properties are then evaluated and
reevaluated. Increments of stress are generated at each stage and are added at each step.
The number of stages reported in this study is 10. At the base, the vertical stress is being
decreased at each level by the difference of the initial pressure assumed to act at the base

and the final pressure on the soil.
5.6 STRESS LOADING THE REINFORCEMENT

The reinforced layer enhances the performance of the system in reducing its
settlement. Therefore, the reinforced granular layer increases the value of the stress
component and as a result it increases the stiffness of the soil. The tension created in the
geotextile reinforcement needs to be evaluated to be able to obtain the increase in lateral
stress, Aoy. Figure 5.5 shows the position of the reinforcement at rest and the position as
a result of loading.

reinforcement at rest

dx e//reinforcement due to loading

E u(x+dx)

u(x)

y

Figure 5.5 Loading of the geotextile reinforcement

127



At rest, the length of the reinforcement strip is dx and due to loading the length is
dx/cosa. The displacements of the reinforcement due to the stress loading are shown in
Figure 5.5 as u(x) and u(x+dx). The angle o is computed from Figure 5.5 as follows:

u(x) —u(x + dx) .

tan o = nd;
dx
o =tan_,(u(x)—~u(x+dx)) (5.76)
dx

The change in shape of the geotextile is determined as:

(‘” —mjnu;on
Coso

1
cosa

-1 (5.77)

And therefore the tension in the reinforcement is given by the equation:

1
T=J ( —1) (5.78)
cosa

where the parameter J denotes the stiffness modulus of the reinforcement.

Let d represents the vertical distance or the depth of the system under study. Hence, the

increase in lateral stress due to the reinforcement is:

Aq=i(1 —q (5.79)

d\ cosa
Then, the increase in lateral stress needs to be added to the value of the horizontal

component of the stress tensor in equation 5.36. In that way, the contribution from the

reinforced granular layer has been taken into account in reducing the soil deformation.
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5.7 CHARACTERISTICS OF THE ELASTIC-PLASTIC RESPONSE

To characterize the elastic-plastic response of the granular fill, model parameters
are needed to calibrate the constitutive equations. Due to lack of experimental data
necessary for the model, some index parameters and empirical coefficients are considered
to obtain a plausible stress-strain relationship. As determined earlier in chapter 3, the

angle of friction is in function of the void ratio by the equation:
(ecritical — e)
¢ = ¢cri!ical + (¢compact - ¢critical ) c (5’80)

where e is the void ratio, ¢

compace A0 B, are the angles of friction at the compact state
and the critical state which are respectively assumed to be 45° and 25°. ¢ is the vertical

distance between e, and e in the e-log p graph shown in Figure 3.11 and in this

compact
study may be chosen as 0.5. The elastic young modulus is assumed to be in function of
the current state of stress and some index parameters identifying the current state of sand
such as the void ratio. In the present model, the relationship chosen to characterize the

variation of the young modulus with stress and void ratio:

El+E o Gme =9 (5.81)
(e - ecompact )
where E, is the initial young modulus and is estimated by the function:
E =2G(1+v) (5.82)
and G, the shear modulus:
G=_E (5.83)
2(1+v)

The Poisson’s ratio, v, is assumed to have a value of 0.15 for the material used.
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hase ANA €compac: are the void ratios at the baseline and at the compact state. In the
complete representation of the state boundary surface for two-dimensional stress cases,
the baseline designates the loosest possible state a sample may have. “Void ratios higher
than the one indicated by the baseline cannot be experienced by an element”
(Poorooshasb 2002). ep4se and ecompacr are written as:

€5, = €hbase—Alno (5.84)

and at the compact state:

e = ehcompact — A1noc (5.85)

compact
The value of ehbase and ehcompact are considered to be 1.1 and 0.4 respectively and X is
assumed to be very small as discussed earlier in section 3.4.2 of chapter 3.

The form of the plastic strain hardening function, 4, was derived earlier from the

plastic strain curve expressed by hyperbolic stress-strain relation (equation 5.9) as:

= s (5.86)
(17555 —11)" exp(n/ 1)

The dependence of / on the void ratio is through the parameter a. The parameter a in the
model formulation describes the hardening law for the plastic moduli. This empirical
coefficient may have other forms but as long as it is in function of the void ratio e the

analysis remains valid (Poorooshasb 1991). In this study, it has the following form:

(e - ecompact )

a=q,——— 5.87
‘ (eba:e_e) ( )

where a, 1s assumed to have the value of 0.1 and e is the void ratio. #gsps is the maximum
value 5 the sample may attain for a given value of e. The stress ratio at the state boundary

surface, #sps, by following the form of equation 5.80 is expressed as:

130



(e riti - e)
Nsps = Neriticat + (77 compact N eriticat ) _C—%—— (5 88)

where feompacr and Herisicat are related to ¢, ., and @......- The above constitutive

assumption may also be written as the form used in the present study which is:

e .. ,—e
Nsps = M+ (K eompacr —u)gﬂc"’——) (5.89)

where 4 is the slope of the normal projection of the critical state line and ucompacr is the
slope of the normal projection of the compact state line in the (t, o) space and which are

also related to ¢

compace A B, . 7 is the stress ratio (t/ ©) and ¢ is the angle of friction of
the material. e.icq; 15 the void ratio at the critical state and is written as:

e =eh—Alno (5.90)

eritical
where eh is considered to have the value of 0.9 and A has a very low magnitude.
Similarly, the other constitutive assumption used in this study for a void ratio higher than
the void ratio at the critical state and closer to the void ratio at the baseline, is expressed
by:

(ebase B e)

: (5.91)

Nsps = H

where b is the vertical distance between epuse and e,iicar in the e-log p graph and in this
study may be chosen as 0.2.
In order to have a final stress-strain relationship reasonable for the model under

study, the strain increments have to be determined. Since the total shear strain is the sum

of the plastic strain and the elastic strain, hence;

de =de? +deg°
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The plastic strain increments are evaluated by the following equations developed

previously as:

ds? =ds_ — dg" (5.92)
ds? =ds_ — d;xz (5.93)

where E and G are the young modulus and the shear modulus respectively. Therefore, the

total plastic strain is estimated by the following:

de? = [(del)? +(del)’ (5.94)
The strain increments de_ andde_ are estimated from the strain-displacement relation as

follows:

de,, =—Q—(duz) ; and;
oz

10
de_ =——(du
¥ 26x( )

where the above equations may be written in their finite difference form using the mesh

described in Figure 5.4:
de,, = (MIA)Z;)C(QJ (5.95)
de,, = (—’f(—e-)z_A;Cﬂ) (5.96)

The stress increments do_ and dr_, in equations 5.92 and 5.93 are determined from the

developed relation in 5.44 as:

do_ =c,de_ +c,ds, (5.97)

dr_ =c,ds, +cyds,, (5.98)
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where ¢,;, c,, ¢, and c,, are the coefficients relating stress to strain and defined in
equations 5.45 to 5.49. Recalling equation 5.38, the horizontal stress increment is in

function of do,anddr ,:

a a
— 12 13
do  =-—=do, ——dr_,

ap a,,

where a,,, a,,and a,,are the elastic-plastic coefficients relating stress and strain and are
defined in equation 5.35 and 5.36. The volumetric strain is related to the void ratio and

the strain increments through the following equation:

de, = ——4—6— (5.99)
1+e

Since the lateral strain de¢__ is assumed to be zero in this analysis, therefore the relation

would be:
de, = _de. and;
1+e

de=—-de_(1+e) (5.100)
where e is the void ratio and tﬁe minus sign is used in conformity with soil mechanics
conventions. Note that a decrease in de would indicate a positive strain.

Since this is an incremental analysis, all the stress increments defined above are to
be added to the stresses at each stage of calculations. They would be added to the

previous values of stress in the following way:

o,=0""+do,, (5.101)
o,=0c+do_ (5.102)
v =t +dr, (5.103)
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In addition to that, the incremental volume increase/decrease or the change in volume
will be added to the void ratio of the material by this relation:

e=e" +de (5.104)
where e is the void ratio of the fill and de is the incremental change in volume.

Note that when the system is at rest the coefficient of earth pressure is chosen to be

(1-sin¢). Therefore the vertical and the horizontal stresses are:
o= (5.105)
o, =(1-sing)o_, (5.106)

At rest, the normal stress and the shear are defined from the Mohr’s circle of stress

respectively:
0'=%(0'xx +0,) (5.107)
r=%(0'zz -0o.) (5.108)

5.8 RESULTS AND DISCUSSION

Reinforced granular systems may induce settlements over very soft soils. The use
of geosynthetic reinforcement is efficient in reducing these settlements and in stabilizing
the system. The maximum surface settlement of non-cohesive soils can be estimated
using the proposed model. The immediate surface settlement is due to the self-weight of
the fill overlaying the soft soil. As discussed in the previous chapter, the system will
undergo two settlements. The primary settlement will take place before the spreading of

the granular fill and the final immediate settlement is determined after the dispersal of the
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fill between the embankment fingers. It is assumed that the fill will be spread in one stage
and compacted to the specified degree of compaction. Figure 5.6 shows the ground
deformation of the system before the spreading of the fill and the profile the fill will take
when the dispersion takes place. In order to level the ground at the surface, a surcharge
has been assumed to act on the surface. The assumed surface loading will be of small

values on the sides and zero at the center.

Assumed surface loading

M

Reinfor€ement

<&
- Ll

10m

Figure 5.6 Profile before the immediate settlement

The upward deflection at the bottom of the system is measured vertically at the center
and is 0.635 meter for this case with the material properties described below. The ground
deformation at the bottom was determined and discussed in depth in the previous chapter
with the developed equations related to it. This deflection is mainly due to the pressure
caused by the embankment fingers on the soft soil. In this study, the computer
simulations correspond to the immediate settlement of the reinforced fill layer with a

depth of 3 meter overlaying very soft soil with a cohesion value of 10 kPa. The distance
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between the embankment fingers is 10 m with a height of 3 m and their unit weight is
assumed to be 20 kN/m’. The embankment fingers are assumed to be made of very high
quality dense material to stand vertically. This is a simplified assumption because the
maximum surface settlement is expected at the center far away from the fingers where
there is a minimal settlement and only the vertical settlement of the fingers is taken into
consideration. Otherwise, inclined edges would complicate the formulations involved
making it quite unusable in this study. The geotextile reinforcement has a stiffness
modulus, J, of 4000 kN/m. The immediate settlement of the system is determined by the
superposition of the bulge due to the loading of the embankment fingers and the
settlement due to the self-weight of the fill. Figure 5.7 shows the superposition of these
two settlements. The bulge is represented by dotted lines and the fill settlement by solid

lines.

Figure 5.7 The superposition of settlements

In order to evaluate the performance of the model, the fill is considered with a
wide range of void ratio varying from 0.5 - 0.9 from very dense to very loose sand. The
first simulation is related to a very dense fill with a void ratio of 0.5. Figure 5.8 shows the

surface profile after the immediate settlement of a very dense granular fill.
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The surface profile after
immediate settlement = 9.1 cm at the center

Original
datum
0.28 m

Figure 5.8 Settlement of a very dense fill

It can be seen that after the immediate settlement, the surface has settled 9.1 cm. This is
the maximum surface settlement that occurs in the middle of the system. The angle of
friction and the unit weight of the fill depend on the void ratio and therefore they have the
values of 41° and 17.65 kN/m’ respectively. It is important to note that the void ratio is
close to the void ratio at the compact state, therefore the soil behavior is more elastic than
elastic-plastic. Since the system is overlaying soft soil, then the embankment fingers
along with the fill will settle as well. In this case, the fingers have settled 0.28 m. The
more compact the soil is the higher pressure is on the soft soil and the more the fingers
will settle. This settlement is being measured vertically at the bottom from the original
position of the datum shown in Figure 5.8.

For the next fill profile the value of the void ratio is increased to 0.6. Again the
soil behavior is elastic but there are some plastic strains. The soil is looser than the
previous case and the settlement has increased about the double of the previous onc and

is 18.3 cm as shown in Figure 5.9.
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The surface profile after
immediate settlement = 18.3 cm at the center
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Figure 5.9 Settlement of a dense to medium fill

The friction angle of the fill, ¢,,, is 37° and the unit weight, 5, , is 16.55 kN/m’. The

embankment fingers have settled 0.23 m from their original position. The fingers here
have settled less than the previous case since the fill is becoming looser and the pressure
is decreasing.

It is emphasized here that the degree of compaction of a fill varies from one
material to another. Therefore, the degree of compaction, measured by the void ratio, of
this particular medium is classified with reference to its critical and compact void ratios.

The result of the test on medium to loose fill is presented in Figure 5.10. The void
ratio has been increased to 0.7. It is obvious that as the void ratio is increased the soil
behaves as an elastic-plastic material rather than an elastic one. In this case, the
settlement becomes 25.4 cm which is about 39% more than the case when the void ratio,
e, was equal to 0.6. The fingers have settled 0.19 m which 20% less than the preceding

test and that is due to the fact that the soil is becoming looser.
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The surface profile after
immediate settlement = 25.4 cm at the center
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Figure 5.10 Settlement of a medium to loose fill

The angle of friction and the unit weight of the fill were determined as 33° and 15.58
kN/m? respectively. It is essential to notice that the unit weight of the fill and the angle of

friction are decreasing as the void ratio is increasing. The angle of friction of the fill is

leaning towards to the angle of friction at the critical state, #,,,,.,, Which is equal to 25°.

The response of the loose to very loose sand with a void ratio of 0.8 is illustrated
in Figure 5.11. As expected by increasing the void ratio the settlement of the fill layer
increases as well. The surface settlement has increased another 16% than the preceding
test and reaches 29.4 cm. This is due to the fact that the void ratio here is close to the
critical void ratio denoted by e, and which was previously set to 0.9. The angle of
friction of the fill is 29° and the unit weight is 14.71 KN/m’. In this test the embankment
fingers have settled 0.18 m from their original grade. It is observed here that as the void
ratio is increasing the embankment fingers are settling less than before since the unit

weight of the soil has been decreasing.
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The surface profile after
immediate settlement = 29.4 cm at the center

_— N }
oty
:Mﬂ o—o—s s—oe—o—os o Original
| _o—o—e— 88— s *—o—e—o ] datum
‘Mm ¥ 0.18m

Figure 5.11 Settlement of a loose to very loose fill

The last test was performed on a very loose soil with a void ratio of 0.9. The
distorted shape of the fill layer is presented in Figure 5.12. The surface settlement
corresponds to the most critical void ratio of the soil. The maximum surface settlement
was estimated at 33.3 cm, another increase of 13.5%. The angle of friction corresponds to
the critical angle of friction and has the value of 25° and the reinforced fill layer has a

unit weight of 13.94 kN/m”.

The surface profile after
immediate settlement = 33.3 c¢cm at the center
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Figure 5.12 Settlement of a very loose fill
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In this last computer-generated test, the embankment fingers have a settlement of 0.16 m,
14% less compared to the previous result, and is the lowest settlement among all the other
tests carried out in this study.

The points settling below the maximum surface settlement (centerline) of the
system were analyzed with respect to depth as well. Table 5.1 presents the settlements

with respect to the depth of the fill layer at void ratios ranging from 0.5 — 0.9.

e=05| ¢e=06 | e=07 | ¢e=08| e=0.9

Depth (m) | AS(m) | AS(m) | AS(m) | AS (m) | AS (m)
0 0.091 0.183 0.254 0.294 0.333
0.394 0.091 0.183 0.254 0.294 0.333
0.788 0.0918 | 0.186 0.258 0.299 0.34
1.182 0.0934 | 0.189 0.264 0.308 0.351
1.576 0.0955 | 0.194 0.272 0.319 0.367
1.97 0.0984 | 0.201 0.282 0.334 0.387
2.365 0.102 0.209 0.296 0.354 0.413

Table 5.1 Settlement with respect to depth

The results presented above are the settling points located at the middle of the system
beneath the maximum surface settlement. These settling points were chosen to study the
deformation with respect to depth. AS is the settlement and zero meter depth indicates the
surface of the fill layer. At the depth of zero m, AS shows the surface settlements

illustrated earlier in this chapter and as the depth increases AS shows the settlement of the

nodes located underneath these surface settlements. It is noted here that as the depth
increases the settlements are increasing as well. The settlement of these nodes is larger

than the surface settlements due to the fact that the stresses are higher at these locations.
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Larger settlements are expected at nodes situated at the base of the system since the base
is directly located on the very soft soil i.e. these nodes are positioned right on the
reinforcement overlaying the soft soil. Figure 5.13 shows the settlements presented in

Table 5.1 with respect to the depth of the fill layer for e = 0.5 - 0.9.

Settlement (m)
0 0.05 0.1 0.15 02 025 03 035 04 045
0.5 ‘
‘ q
Depth (m) ; )
15 /
 e=05
2
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Figure 5.13 Settlement vs. depth (e = 0.5 — 0.9)

It is clearly shown in Figure 5.13 that the nodes located beneath the surface have higher
settlements and that the deeper the nodes are in the fill layer the larger the settlements are
for these nodes. Higher stresses are encountered at deeper nodes and especially at the
ones resting on the soft soil. For the case of the very loose fill where the void ratio is
equal to 0.9, the surface settlement was estimated at 0.33 m and at the base the settlement
was determined to be 0.41 m and that is 8 cm more than the surface one. For the case of
the very dense fill, at a void ratio equal to 0.5, the computed surface settlement was 9.1

cm whereas at the base of the system the node settled 10.2 cm. It is pointed out here that
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the difference between these last two deformations (at € = 0.5) is very small compared to
that of the former case where the soil is looser. When the soil was well compacted the

soil settled less whereas looser soil settled more.

It was shown that the elastic-plastic model developed in this chapter is capable of
estimating the immediate surface settlement of a cohesionless media. The results
illustrated the importance of the void ratio and its effect on the behavior of the reinforced
granular layer. Small settlements were associated with lower void ratios whereas large
deformations were associated with higher void ratios and the evaluated surface

settlements were in the range of 0.09 — 0.34 m.

5.8.1 RESULTS AND DISCUSSION OF THE FINITE ELEMENT MODEL

Since no similar studies were found on this type of model to compare the results
of the immediate settlements, the other alternative was to use a finite element program to
model the system. Phase’ from rocscience is a powerful elastic-plastic finite element
stress analysis program designed for geotechnical engineering purposes. This software

was used for many researches and projects and referenced in numerous published papers.

In order to have a complete and accurate analysis of the finite element model
several elastic properties and strength parameters had to be assumed. Note that these
assumptions were not incorporated in the modeling of the system described in the

previous section since they were not required in the analysis. However, they are very
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essential to this analysis in obtaining a reasonably accurate behavior comparable to the
original model. In addition to that another important point which needs to be noted here is
that the void ratio e of the reinforced granular layer does not change with depth when the

compaction proceeds.

The system under study was modeled using finite element analysis with the same
geometry prescribed in the earlier section. The depth of the fill layer is set to 3 m same as
the height of the embankment fingers which have a unit weight of 20 kN/m’. The spacing
between the embankment fingers is unchanged with a 10 m distance. Geosynthetic
reinforcement was used to reinforce the system at the base and to separate the fill from
the soft soil with a stiffness modulus of 4000 kN/m. The soft soil requires a depth in this
model and is chosen to be 8 m with cohesion strength of 10 kPa. The upward ground
deformation caused by the embankment fingers before the spreading of the granular fill
was estimated before at 0.635 m and which is taken into consideration when modeling

the system.

For the soft soil, a unit weight of 14 kN/m’ has been assumed with a Poisson’s
ratio of 0.25 since according to Das (2000) the range of the Poisson’s ratio for soft soil is
between 0.15 — 0.25. The angle of friction used for the soft soil is 20° with a residual
value of 10° and where it is considered a medium plastic soil. The embankment fingers
were considered to be very dense materials having a Poisson’s ratio of 0.35, an angle of
friction of 47° and a Young’s modulus of 45 MPa. It is important to state that the above

elastic properties and strength parameters have been chosen according to the ranges
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described by Das (1998, 2000). Figure 5.14 shows the finite element model of the system
under study with its mesh using Phase”. The mesh type used in this study is a uniform one

with six noded triangles for the element type.

Embankment fingers

A
3m
\ i
A [
. <
8m| H f
A\ v YAYAYA) Y EYAVAYAY PAVATA TXRAY: TR

A
v

16 m

Figure 5.14 FEM model

For the case of a very dense fill, the angle of friction is set to 41° with a unit
weight of 17.55 kN/m’. The material is assumed to have isotropic elastic properties
where the elastic properties are not dependent on directionality, and are defined by a
single value of Young's modulus and a single value of Poisson's ratio. The strength model

chosen to describe the behavior of the fill is the Mohr-Coulomb plastic model where the

material can yield and exhibit non-linear stress-strain behavior. Since dense sands
expands under shearing then there is a need to specify a dilation angle and in this case is

equal to 16°. The angle of dilation is defined here as the difference between the angle of
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friction of the fill and the angle of friction at the critical state which is equal to 25°. The
initial element loading is set to body force only where the model will settle under its own
weight to determine the immediate surface settlement. Figure 5.15 presents the surface

profile for a very dense fill.

The surface profile after

immediate settlement = 10.4 cm

Figure 5.15 Settlement of a very dense fill

The surface settlement was computed to be 10.4 cm for this case as compared to 9.1 cm
from the proposed model. The settlement here has an increase of 14% and that is 1.3 cm

more. The relative percentage of errors between the two settlements is estimated at

12.5%.
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The response of a dense to medium fill is illustrated in Figure 5.16. The fill in this
test has an angle of friction of 37°, a unit weight of 16.55 kN/m’ and a dilation angle
equal to 12°, The dotted line represents the original position of the reinforcement which
settled along with the system. The reinforcement has been given a value of 0.35 for its
Poisson’s ratio. The system has a surface settlement of 20.7 cm and which is found to be

13% higher than the one determined earlier at 18.3 cm.

The surface profile after

immediate settlement = 20.7 cm

Figure 5.16 Settlement of a dense to medium fill

In the test carried out on the medium to loose fill, the fill has an angle of friction
of 33° and a unit weight of 15.58 kN/m>. In this analysis, the degree of compaction of the
fill is measured according to the angle of friction as opposed to the original model where

the degree of compaction was measured according to the void ratio. The angle of friction
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was derived previously as a function of the void ratio. Figure 5.17 illustrates the
settlement profile for a medium to loose fill. The angle of dilation here has been equal to
8° for the granular fill. The fill settled 27 cm in this case with 6% higher than the one
evaluated originally. It is important to note that the fingers settlements are not studied in

this analysis due to the complexity of the soil behavior and the lack of data parameters.

The surface profile after

immediate settlement = 27 cm

Figure 5.17 Settlement of a medium to loose fill

In the next test, loose to very loose fill is analyzed with an angle of friction of 29°

and a unit weight of 14.71 kN/m’. The soil is becoming looser as these last two

parameters are decreasing and the surface profile for this case is shown in Figure 5.18. In
the figure below, the deformed mesh of the system under study is shown along with its

surface settlement. The evaluated settlement here is 33 cm with an increase of 12% as
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compared to the original one with 29.4 cm. A 12% increase in this case is only equivalent

to 3.6 cm and a 10% margin of error.

The surface profile after

immediate settlement = 33 cm

Figure 5.18 Settlement of a loose to very loose fill

The last analysis was performed on a very loose fill with an angle of friction of
25° and a unit weight of 13.94 kN/m’. In this test, the angle of friction is equal to the
critical angle of friction defined for the fill in this study. Figure 5.19 presents the surface
profile due to the immediate settlement. The settlement of a very loose soil is evaluated
at 40 cm as compared to 33.3 cm in the proposed model. In this case, the settlement

computed from the FEM model has an increase of 6.7 cm to the original one.
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The surface profile after

immediate settlement = 40 cm

i

Figure 5.19 Settlement of a very loose fill

The FEM model was also analyzed using a refined mesh to determine the surface

settlement and is shown in Figure 5.20.
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Figure 5.20 FEM model with a refined mesh
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The results of the refined mesh are compared to the previous mesh and are tabulated in

table 5.2.
Degree of Very Denseto | Medium | Loose to Very
compaction dense fill | medium | to loose very loose fill
fill fill loose fill
FEM model (cm) 10.4 20.7 27 33 40
FEM model with 11 21.6 28.5 33 42
refined mesh
(cm)

Table 5.2 Results of refined FEM model
The settlements were determined to be very close to the previous ones with less than 5%

margin of errors.

5.9 FINAL REMARKS

The settlements obtained from the finite element model are higher than the
estimated one and in the worst case the errors involved are about 16%. This margin of
errors is considered quite acceptable in geotechnical engineering. It is very important to
note that the FEM results presented in this section were determined under the assumption
that the elastic properties and strength parameters described earlier are the soil condition
of the proposed model. However, if a parameter does not match the soil condition under
which the study is based the values of the surface settlements could vary. For instance if
the angle of friction of the soft soil beneath the reinforced layer is highly plastic with a
value of 17° and a residual one of 6°, the range of the immediate settlement would be
between 0.094 — 0.36 m as compared to 0.104 — 0.4 m. The objective here was to show

that the surface settlements obtained from the integro-differential technique can be
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experienced by such a system. However, the fact that several parameters had to be
assumed and that no other studies were available made this present study open for one
alternative which is to try to reproduce similar behavior by a finite element model. It is
added here that the intention of using a finite element model was to demonstrate that the

estimated surface settlements are very reasonable.

In this study, the constitutive formulations and the behavior of the cohesionless
granular media when subjected to shearing are based on a non-associative flow rule. The
material undergoes plastic deformation when the state of stress reaches the yield surface
and the direction of the plastic strain increment is independent of the direction of the
stress increment. The direction of the plastic strain vectors is defined through a flow rule
by assuming the existence of a constant curve called the plastic potential function and to
which the plastic strain vectors are orthogonal. This is referred to as the normality rule.
Since this is a non-associative flow rule then for the reinforced granular layer the plastic
potential and the yield function are different. The yield functions are lines of constant
stress ratio or simply straight rays passing through the origin of the stress space. Having
stated that, the plastic strain vectors are only perpendicular to the plastic potential and not
to the yield functions where these last ones do not serve as the plastic potentials. As a
result, the difference in the surface settlements between the model under study and the
finite element model could have been affected by the explanation described above on the
theory that follows non-associative flow rule and the theory of plasticity interpreted by
the finite element model. The difference in interpreting the theory may have an impact on

the results and adding to it that the normality rule does not hold.
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Another important characteristic is the work hardening of the material which
occurs between the points of yielding and the points of failure. The concept of the work
hardening can be expressed in terms of the work done by the additional stress increments
to produce given plastic strain increments and that for all such added stresses the material
remains stable. The value of the scalar representing the plastic strain hardening depends
whether the element is loading, unloading or reloading. In a loading process, the form of
the plastic strain hardening function is derived from the plastic strain curve which is
expressed by hyperbolic stress-strain relation. The dependence of this last function on the
void ratio of the material is through an empirical coefficient which describes the
hardening law for the plastic moduli. In the model formulation this empirical coefficient
may have different forms but it should always be in function of the void ratio for the
analysis to remain valid. The characteristics of the plasﬁc strain hardening adopted in this
study and the way it is formulated in the model may affect the final results obtained from

the two compared analyses since the other analysis does not use the same formulation.

Since a slight curvature is always present in the yield function then a very small
value of the slope of the Casagrande line is assumed in this study. The choice regarding
this assumption is a matter of convenience to avoid the complexity in the formulation of
the stress-strain behavior causing it to be impractical. Again this is another assumption
which could not be taken into consideration when using the finite element program. All
the characteristics mentioned in this last section may have a significant impact on the

surface settlements obtained and could justify the errors occurred.
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6. CONCLUSION

6.1 CONCLUDING REMARKS

Recently, the issues of disaster prevention in geotechnical engineering have
become very important and earth reinforcement technique could be one of the effective
solutions. The stability of geotechnical systems containing cohesionless granular media
cannot be easy modeled due to its complex mechanical behavior. In addition to that the
major difficulty arises from the irregular behavior of granular material when settling
under its own weight. Therefore an incremental stress-strain analysis used to analyze the

behavior of reinforced granular layer overlaying very soft soil is postulated.

The non-linear behavior of the fill and the stress-strain relationship has been
described. Furthermore, the constitutive equations have been derived for the analysis and
modeling of the elastic-plastic behavior of the granular layer. The formulation of the
constitutive equations has been developed based on the compact state, the critical state
and the state boundary surface. The model is capable of simulating the immediate

settlement of both loose and dense fill behavior.

The mathematical formulation of the problem is presented along with the mesh
used to cover the solution region. The elastic-plastic model is developed to analyze the
behavior of the reinforced layer by relating stress increments to strain increments in a

matrix representation. The characteristics of the elastic-plastic response have been proved
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to be very efficient in the analysis by calibrating the constitutive equations using some
index parameters and empirical coefficients to obtain a plausible stress-strain

relationship.

An integro-differential equation is applied to investigate this type of problem in
the field of geotechnical engineering. With the aid of this equation, which lead to a
governing equation written in finite difference form, the total displacement field of the
system was estimated. However, the emphasis in this research is placed on developing
the equation and the numerical technique used in the evaluation of the settlements
experienced by the system under study. The application of this technique is simple and

requires minimal computational efforts as opposed to other numerical models.

In the proposed method by Lawson (1999) for the reclamation of soft soil using
geosynthetic reinforcement, one of the steps was to construct embankment fingers over
the soft soil to stress the geosynthetic. It was not taken into account that the
reinforcement will undergo deformation before placing the fill. Therefore, in this study a
primary ground deformation has been evaluated prior to the spreading of the granular
layer between the embankment fingers. The settlement was in function of the pressure
from the soft soil underneath the system and the loading from the fingers. The
performance of the system was dependant on several parameters such as the loading
acting on the system derived from the height of the embankment fingers, the stiffness
modulus of the reinforcement, the cohesion or the undrained strength of the soft soil and

the spacing between the embankment fingers. These variables helped in estimating the
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settlement of such a model and affected the system in many direct ways. Moreover, the
ground deflection was able to give the structure the profile the fill will take after the

dispersion of the fill and the lines forming the profile are referred to as contour lines.

The immediate settlements were computed for a wide range of void ratio going
from very dense to very loose fill. The numerical simulations showed that small surface
settlements were associated with lower void ratio whereas large surface settlements were
associated with higher void ratio. The parameters characterizing the settlement are the
thickness of the reinforced layer, the unit weight and the angle of friction of the fill, the
stiffness of the reinforcement and the cohesion of the soft soil. Among the parameters
involved, the void ratio plays a paramount role in determining the settlement of sandy
soil layer. The degree of compaction is measured according to the void ratio of the
medium with reference to its critical and compact void ratio. If the representation of the
void ratio is near the compact state or the compact void ratio then the soil is very dense
and if it falls close to the critical void ratio then the soil is referred to as very loose. The
model was éble to predict the surface profile due to the immediate settlement of a

reinforced granular layer settling under its own weight.

In the present research it was attempted to model the system under study using
finite element analysis. Several parameters were assumed to have a complete and
accurate analysis of the model. Medium and low plasticity soils were used to study the
undergoing settlements and the errors involved were quite acceptable for this type of

analysis.
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6.2 RECOMMENDATIONS FOR FURTHER RESEARCH

The proposed model, which uses an integro-differential method, has a strong
potential in the analysis of certain types of geotechnical problems. However, it is
recommended to further investigate the model with well documented case studies before
relying on the results. In order to use the model for practical purposes, the computational
results should be validated in a different method such as using the technique to solve

other types of encountered problems in geotechnical engineering.

The proposed analysis may be applied to other types of reinforced mats such as
cohesive fills provided that the fill material will follow the same constitutive law outlined
in this research. Loading on the surface is another problem which could be investigated
when the system is used for constructing means of transportation such as highways,

railways and airports.
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