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ABSTRACT

Extending Magic Sets Techniques to Deductive

Databases with Uncertainty

Huang Qiong

With the magic sets techniques having been proposed to improve the efficiency of bottom-up
evaluations of Datalog programs by taking advantage of goal structure, we extend these tech-
niques to deductive databases with uncertainty in the context of the parametric framework
(PF). In our endeavor, we develop the generalized magic sets and generalized supplementary
magic sets techniques, and establish their correctness. We have implemented the proposed
techniques and have conducted numerous experiments for the assessment of the evaluation
performance. Our experiment results reveal that different programs enjoy different efficiency
gain, depending on the potential facts ratio, which measures the capacity to improve effi-
ciency. When this ratio ranges from 1% to 20%, the efficiency observed was approximately
1 to 700 times faster. Our results also indicate that an integration of magic sets techniques

and semi-naive evaluation with predicate partitioning yield the best performance.
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Chapter 1

Introduction

Uncertainty is considered as a term describing unsettled information and human doubt, a
measurement for the prediction of future events and the outcome of chance, and also as
a potential deficiency due to the lack of knowledge and certainty. Uncertain data exist in
a number of fields, including meteorology, astronomy, geology, medical science, economics,
psychology, engineering, and science etc. Travelers are concerned with weather forecast.
Geologists wish to have an accurate earthquake prediction. Bankers measure the risk of
loans. Chaining uncertain data becomes an interesting topic that challenges researchers.
Many systems have been developed and extended to manage uncertain information. For
example, NASA satellites help observing cloud of uncertainty on climate change; Microsoft
researchers use ma,chine learning techniques to model uncertain information for the HIV
vaccine; IBM’s Avatar project tends to extend probabilistic databases for data analysis in
its IES machine.

“Reasoning about uncertain data” has been identified as one of the thirteen topics of
next-generation databases infrastructure in Lowell Database Research Meeting in 2003

[ea05]. Since databases are designed to manage large quantities of data, reasoning over



databases have been important. A deductive database (DDB) allows reasoning based
on given rules and facts stored in the database. Many systems have been proposed in
the last two decades, such as Aditi, COL, Concept-Base, CORAL, LDL(++), LOGRES,
LOLA, Glue-Nail, Starburst, and XSB [VRK*94, AG91, JS94, RSS92, CGK 190, CCCR*90,
FSS92, DMP93, SSW94]. For basics of deductive databases (DDBs), interested read-
ers are referred to [CGT89]. Uncertainty has been addressed in some systems, such as
Coral, and XSB. Also numerous frameworks for DDBs with uncertainty have been pro-
posed [DLPI1, Fit91, KL88, KS92, LS94, NS92, NS93, Sub94, vE86]. On the basis of the
way in which uncertainty is associated with facts and rules of a logic program, these frame-
works are classified into annotation based (AB) [Sub94, KL88, NS92, NS93, KS92, Sub94],
and implication based (IB) [DLP91, Fit91, L394, vE86]. A generalized and unified IB frame-
work, called the parametric framework (PF) was introduced in [LS96].

A major concern is the efficiency of query processing for DDBs with uncertainty. Pro-
grams in DDBs can express recursive queries that conventional databases cannot handle
in general. This makes optimization of logic programs in DDBs harder than conventional
relational databases. “Magic sets rewriting” is an optimization technique for DDBs, in-
troduced by Banihon, Maier, Sagiv and Ullman [BMSUS86]. Supplementary magic sets
were introduced by Sacca and Zaniolo [SZ86]. Beeri and Ramakrishnan developed gener-
alized (supplementary) magic sets [BR87]. More studies in this direction may be found in
[MFPRY6, Ros94, RRSS94, SSW94, MP94, Bra96, FGL07]. In this work, we investigate

ways to extend magic sets technique for DDBs with uncertainty.



1.1 Motivation

Computing the least fixpoint (Ifp) is important in DDBs because Ifp contains the meaning
of a logic program. There are two approaches to evaluate logic programs in DDBs with
uncertainty and to compute the answer set: top-down and bottom-up. No matter which
approach we choose, efficiency is a crucial issue. The two sources of major problems af-
fecting the evaluation speed are (1) repeated evaluations of rules which do not contribute
to deriving of new atoms, and (2) evaluation process generates facts unrelated to a given
query.

In the context of bottom-up fixpoint evaluation with uncertainty, two algorithms have been
proposed to solve efficiency problem of type (1), i.e., semi-naive evaluation (SN) [LS96)
and semi-naive evaluation with predicate partitioning (SNP) [SZ04]. For each rule at every
iteration in the SN, the evaluation may derive atoms improved at the previous iteration,
but unrelated to the goal query. SNP is a refinement and extension of SN in which at each
iteration, the tuples found for each relation are divided into two partitions, new tuples and
old tuples. At the next iteration, a rule chosen for evaluation should have at least one tuple
in one of the new partitions.

Given a logic program P and a query Q, a top-down evaluation starts from the goal, unifies
the head of each possible rule, and propagates bindings of the variables in the rule body.
Atoms unrelated to answering Q can will not be reached. The top-down approach seems
to solve the type (2) inefficiency problem during the evaluation process since it ignores all
non-related facts for answering Q in the database. In a recent work, [Str05] studies the
building of a top-down evaluation system for logic programs with uncertainty, which use
fuzzy sets as the foundation of uncertainty. In that proposal, the evaluation engine searches

all ground atoms w.r.t. the query as the first step, disregarding certainty values. After this



lookup process stops, all related derivations from rules are recorded, and a set of equations
are generated based on the ground atoms found and the combination functions used. How-
ever, the number of the equations to be solved in this case is much larger than the number
of rules in the program, which can be considered as the number of equations dealt with in
the fixpoint evaluation.

When the input collection of facts is large, the bottom-up approach is desirable. First of
all, termination is a problem in the top-down evaluation. Even in the standard case without
uncertainty, evaluation of a program may be trapped into an infinite loop without returning
answers. When some goals are recursively found, the evaluation could be lead to a “dead
end.” We may use a book-keeping strategy to keep track of atoms already computed, but
detection algorithms are usually expensive to implement. Secondly, we need to generate a
rule/goal tree that has a large number of nodes. Whenever there is a certainty change in a
leaf (atom), it is necessary to update all duplicated leaves. Considering the case in [Str05]
which ignores all certainties first, we have to deal with a system with many equations.
Thirdly, bottom-up approach guarantees termination in finite steps in Datalog because the
herbrand base including all atoms is finite under the closed world assumption (CWA) [Lif85].
Finally, top-down requires unification, while bottom-up algorithms uses term-matching for
joins which are one-way unifications and hence easier. Existing optimization techniques
such as indexing may be applied for joins of massive relations with ease.

A “combination” solution of top-down and bottom-up, called “magic sets technique”’, was
introduced in the standard case [BMSUS86]. It is an attractive technique implementing
the goal-oriented feature of top-down in a bottom-up evaluation approach. While magic
sets technique may generate more rules, it is the principal technique in standard deduc-

tive databases to avoid computation of irrelevant facts for recursive rules [BMSU86, U189,



MFPR96, BR87, Sun92]. The basic idea in magic sets is that the bottom-up evaluation of a
logic program should be restricted to those facts that are “potentially relevant” with respect
to the known query. The magic sets rewriting starts with a logic program P and a query Q
with some bound arguments. The rewriting procedure chooses an order to pass the query
bindings from the rule head to the rule body, called “sideways information passing” (SIP)
[BR87]. Within a rule, SIP will occur for a fixed ordering of subgoals. A “Magic predicate”
is defined for each bound version of the head and added to the rule, in order to restrict the
joins of subgoals that are indeed restricted by the bound arguments. A rule will not be fired
at each iteration unless the magic sets predicates hold necessary tuples.

The magic sets technique has also been extended to programs with uncertainty [JZ02], which
uses sets as the structure of semantics, and uses fuzzy sets as the uncertainty foundation.
In this work, we extend magic sets technique to IB Frameworks in DDBs with uncertainty
which is multi-set based and uses fuzzy sets as well as other mathematical foundation of

uncertainty.

1.2 Contributions of the Thesis

The major contributions of this thesis are:

o We extend generalized magic sets rewriting (GMS) and generalized supplementary
magic sets rewriting (GSMS) techniques (Chapter 3) to deductive databases (DDBs)
with uncertainty, which is multi-set based and is capable of using different mathemat-
ical foundations of uncertainty, such as probability. We established the correctness of

the proposed techniques (Section 3.4 and 3.5).

e We modify the existing evaluation algorithms to compute the least fixpoint (Section



3.5) of a magic rewritten program in PF.

e We develop a prototype system (Chapter 4), called UNLOG, to measure the proposed
techniques GMS/GSMS. For this, we created a number of test cases, performed exper-
iments, and report the experimental results (Chapter 5). We compare the difference

of efficiency gain for different run-time optimization techniques.

1.3 Thesis Outline

The rest of this thesis is organized as follows.

In Chapter 2, we briefly review basic concepts from the parametric framework (PF), and
study, in particular, the fixpoint theory and relevant existing algorithms in Section 2.2.
Then, we recall magic sets techniques in Datalog in Section 2.3.

In Chapter 3, we focus on technical details of our work on extending magic sets techniques
to PF. We begin by presenting straightforward GMS and straightforward GSMS in Section
3.1 and 3.2. In Section 3.3, we identify problems in straightforward methods and discuss
the challenges to extend magic sets techniques. We discuss our solutions and introduce the
required modifications to the straightforward GMS and GSMS in Section 3.4 and 3.5.

In Chapter 4, we present our prototype system “UNLOG.” We present the system architec-
ture and its components (Section 4.1), the data structures (Section 4.2), and the optimiza-
tion techniques implemented (Section 4.3).

In Chapter 5, we report the results of our experiments for evaluating performance of the
proposed techniques. We describe the test programs and test data generation in Section
5.2 and 5.3. Evaluation criteria are introduced in Section 5.4. Finally, we report the test
results and our analysis in Section 5.5.

Concluding our remarks and future research directions are introduced in last chapter.



Chapter 2

Background and Related Work

This section provides a background, and reviews related work. For the background, we
review basic concepts and ideas for the parametric framework and magic sets technique
introduced in [LS96, SZ08, BR87, UlI8Y].

Numerous frameworks have been proposed to represent and manage uncertain information
in deductive databases. These frameworks may use, as a mathematical foundation of un-
certainty, fuzzy logic, probability theory, multi-valued logic, possibility theory, and hybrid
of numeric and symbolic values. They may also differ from (i) uncertainty manipulation,
and (ii) the way in which uncertainty is associated with facts and rules in a program. On
the basis of (ii), these frameworks are classified into annotated-based (AB) and implication-
based (IB).

A rule in AB framework is an expression of the form:

Aif(ﬁl,"',5n)<—31151,"',3n35n

which asserts that “if the certainty of B; is at least [J;, then the certainty of A is at least
f(B1y s Bn), 1 <@ < n.” Here f is a n-ary computable function and f; is a certainty variable

or value over an appropriate certainty domain.



A rule in an IB framework is of the form:
A (i Bla tr 1Bn

which asserts “the certainty that conjunction B;A---A B, implies A is &”. Given a certainty
assignment v to the Bi’s, the certainty associated with the result of this implication is
derived as v(A) = fo(o, fe(v(B1), -+ ,v(By))), where f, and f, are pre-defined propagation
and conjunction functions.

Evidently the AB frameworks subsumes the IB frameworks, we do not argue about which
of the two approaches, AB or IB, is better because it has been shown in [Shi05] that IB
frameworks extended with certainty constraints are equally expressive as AB frameworks.
This is done by showing that any logic program in AB framework can be translated into a

p-program in the parametric framework, and vice versa.

2.1 The Parametric Framework: A Review

The parametric framework (PF) is a generic IB framework. Every logic program in an IB
framework can be expressed as a p-program with appropriate parameters. In this section,

we review the basic syntax and semantics of PF. For more detail, please refer to [LS96].

2.1.1 Syntax and Notations

Definition 2.1.1. [Complete Lattice][ea97]: A lattice < T, <> is a set partially ordered
=, with a meet ® and a join operator @. < T, <> is said to be a complete lattice iff for

every subset 7" of 7', T' has a unique least upper bound and a unique greatest lower bound.

Definition 2.1.2. [P-program]: A parametric program P is a 5-tuple (T, R, D, P, C),

whose components are defined as follows.



e T is certainty domain assumed to be a complete lattice with meet ® and join operator
®. We use L to denote the least element in the lattice, and T to denote its greatest

element.

e R is a finite set of rules of the form

A & Bl,"' ;Bn) <fd7fp7fc>

where A, By,--- , B, are atoms, and o € T — {L}.

e D is a mapping that associates a rule with a disjunction function fy € Fy, where Fy

is the set of disjunction functions.

e P is a mapping that associates a rule with a propagation function f, € F,, where F},

is the set of propagation functions.

e C is a mapping that associates a rule with a conjunction function f. € F,, where F,

is the set of conjunction functions.

The PF uses multi-sets, which is also called bags, as the underlining structure of the seman-
tics. A multiset is a collection of unordered elements, any of which may occur more than
once. Let B be any set, called base set of a multiset, then a multiset X over B is a mapping
from B to N = {0,1,--- }. In our context, B is the Herbrand base that is the set of ground
atoms built from the predicates and constants in a logic program. We use {|- - |} to denote
multisets. For instance, {|(A : ) : 3|} is a multiset that indicates 3 copies of an element
z = (A : a), where A is the base part of x, and « is the certainty associated with A. We use
¢ to denote the empty multiset. If a multiset X is contained in another multiset Y, denoted
XCY,thenVz=(A:a): me X, wewill have that 3y = (A:a):n €Y, where m < n.

In this thesis, the following conventions are adopted. Lower case letters represent predicate



symbols and constants; upper case letters with alphabetic order from A, B,--- represent
ground atoms; X,Y,--- represents multisets as well as arguments. The lower case Greek
letters «, 3, - are used to represent the certainty values in T. Finally, 7(A) is used to
denote the predicate symbol of A, and v(A) for denoting the certainty value assigned to A

by v.

2.1.2 Combination Functions

In PF, three types of combination functions are defined. They are disjunction functions Fy,
conjunction functions F, and propagation functions F,. Each type satisfies a subset of the

following properties.

1. Monotonicity: f(ay,a2) X f(B81,82) if a; X B;fori =1,2 and o;, 3, € T

2. Continuity: f is continuous.

3. Bounded-Above: f(a,az) < ®(a1, ag).

4. Bounded-Below: f(ai, ag) = ®(ay, az).

5. Commutativity: f(a,8) = f(8,a) for Va,B € T.

6. Associativity: f(a, f(8,7)) = f(f(a, 8),7) for Vo, 8,7 € T.

7. f{laf}) =a,VaeT.

Postulate 2.1.1. Certain type of the combination functions in the parametric framework

should satisfy certain properties, postulated as follows.

10



e Every conjunction function f. € F, should satisfy properties 1,2,3,5,6,7, and 9.
¢ Every disjunction function f4 € Fy should satisfy properties 1,2,4,5,6,7, and 8.

o Every propagation function f, € F}, should satisfy properties 1,2, and 3.

Disjunction functions Fy is classified into three types as follows.

Definition 2.1.3. Let f; be a disjunction function in the parametric framework, then f;

is of one of the following types:

1. Type 1: fq = &, i.e., fq coincides with the lattice join.
2. Type 2: &(a,f) < fala,8) < T,Va,8€ T —{L, T}

3. Type 3: &(a,8) < fila,0) = T,Va,8 € T — {L,T}, ie., there are the certainty

values o , 3 € T — {1, T}, such that fy(c/,5) =T.

A type 1 disjunction function coincides with the join operator & in the underlying certainty
lattice T', such as f; = maz. A type 2 disjunction function always returns a “larger” value,
while a type 3 disjunction function may return T when its arguments are different from T.
For instance, f; = ind, where ind(a,3) = a + 8 — a x (3, is a type 2 disjunction function,

whereas the negative correlated function nc = min(1, a+ ) is a type 3 disjunction function.

2.1.3 Fixpoint Theory

The fixpoint theory in standard deductive database is concerned with computing the least
model of the program in a bottom-up fashion, starting with the facts and applying the rules
repeatedly until no new fact is derived. This has been extended in [LS96] to compute the

fixpoint semantics of programs in parametric framework.

11



Definition 2.1.4. [LS96] Let P be any p-program, and P* be the Herbrand instantiation
of P. Also let Tp be the set of all valuations of P. The immediate consequence operator
T, is a mapping from Tp to Tp, such that for every valuation » € Tp and every ground
atom A € B,, T,(v)(A) = f4(X), where B, is the Herbrand base of P, f; is the disjunction

function associated with m(A), the predicate symbol of A, and

X = {lfolar, f({lv(Br), -+, v(BR)ID(A & By, -, Bus {fu, fp, fo)) € P*[}

The bottom-up fixpoint evaluation of P is then defined as follows:

y
V) lfk=0

T} = To(T,F ) if k is a successor ordinal

®{T,}|l <k}  if k is a limit ordinal
Note that v, (A) = 1, VA € B,. It has been shown that T, is monotone and continuous.
For k = 0, T, evaluates the facts with f,(a, fc(é))) = a,. For any A € B,, if A does not

unify with the head of any rule in P, then T,(v)(A) = L.

2.2 Bottom-up Fixpoint Evaluation Algorithms: A Re-
view

The basic bottom-up least fixpoint evaluation in the PF is the naive evaluation (N) extended
from the standard naive method by taking into account the presence of certainties.

Given a p-program P, every atom is initially assigned the least certainty value L in the
naive evaluation. At each iteration i, we apply every possible rule. For every ground atom A
derived, the disjunction function fy associated with the predicate of A is used to combine the
multiset of certainties associated with derivations of A into one. The evaluation terminates
at the iteration in which the certainty of no atom is improved. Figure 2.1 shows the multiset

12



procedure Naive(P, D, [fp(Tpyp))
: input: P : a set of parametric rules(IDB);

D : a set of atom-certainty pairs(EDB).
output:v : the least fixpoint valuation of P JD.
: begin
forall A € B,

w(A) == 1;

My(4) == {lol(4: a) € DI}
9: v (A) == fa(Mi(A));
10:  end forall
11: new; :={A|(A:a) € D};i:=1;
12:  while(new; # @)

13: i=i+1
14: forall V(A <= Bu,..., Bn; (fi, o, fo)) € P%;
15: M«L(A) = {’fp(am fC({!Vi—1<Bl)’ ey Vl—l(Bn)'}))*}’

16: end forall;

17: vi(A) = fa(M;(A));

18: new; := {A|A € By, v;(A) » vi_1(A)};
19: end while

20:  Ifp(Tpup) == v

21:end procedure

Figure 2.1: A multiset based naive algorithm for p-programs [LS96]

based naive algorithm for p-programs.

The naive evaluation in PF suffers from the same two problems as the naive method
in Datalog: (1) a tuple (A : «) derived at iteration i continues to be derived at every
next iteration, and (2) a goal structure is looked up only when the fixpoint is reached. A
part of the redundant computation in the naive evaluation is avoided by using semi-naive
(SN) algorithm [LS96] as follows. A pair (M;,0;) is associated with every ground atom
A at iteration ¢, where M; is a multiset of all certainties of A derived from the program,
and o; = fy(M;) is the combined certainty of A. Every element (r,¢) in M; indicates a
derivation of A with certainty a obtained by a ground instance of rule r. Only those rules
with “new” subgoals in the body are re-evaluated at iteration i+ 1, and the certainty of the
corresponding derivation of A is replaced. Otherwise, we use the certainty of A at iteration

i as its certainty at iteration ¢+ 1. The SN algorithm yields the same result as the naive
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1
2
3
4
o:
6:
7
8
9
1

0:
11:

12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:end procedure

: procedure Semi_Naive(P, D, [fp(Tp;p))

forall A € B,
v(A) ==L
My(A) = {lal(A: a) € DI};
vi(A) = fa(Mi(A));
end forall
new; = {A|(A:a) € D};i:=1,
while(new; # @)
fi=i+1;
forall A € new;
if 3(-’4 = Bl? s 7Bn; <fdafp7 fc>) SIS
such that 3B; € new;, for j € {1,...,n}
then begin
M‘L(A) = Mz_l(A),
forall (r: A S By, ..., By; <fd7fp)fc>) SV
such that 3B; € New;,for some j € {1,...,n};
Mi(A) := Mi(A) = {lof_1(A)[} U{lo](A)I}, where
07 (A) = fylor, fe({lvima(B1), - -, i1 (Bn)[}));
end forall;
vi = fa(Mi(A)), where fq := Disj(m(A));
end else v;(A) == v;_1(A);
end forall;
new; := {A|A € By, vi(A) = vi-1(A)};
end while
lfp(Tpyp) = v

Figure 2.2: A multiset based SN algorithm for p-programs [LS96]

method at every iteration and hence they are equivalent. Figure 2.2 shows this multiset

based SN algorithm for p-programs.

A rule r in SN may be applied multiple times at iteration ¢, but not all of them may
yield improved certainties. If a derivation of r yields an improved certainty, the SN method
above replaces all previous derivations of r by the new derivations, even though most of
them may not yield improved certainties. The efficiency of SN is further improved by the
semi-naive with predicate partitioning (SNP) [SZ04], which distinguishes between improved
certainties from different derivations at iteration ¢ and unimproved certainties from others,

and correspondingly partitions each IDB relation into the new and the old: improved and
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1: procedure Semi_Naive_Partion(P, D, fp(Tpp))
2:  forall A € By;

3 C1(A4) .= {|(a:0)|(A:a) € DI}

4 vi(4) := fa(C1(A)());

5:  end forall

6: new; :={A|(A:a) € D};i:=1;

7:  while (new; # @)

8

: r=i+1;
9: forall A ¢ B, :
10: CZ(A) = Cz_l(A),
11: forall B € new;_1 A\(e, Sg) € C;-1(A) AB € Sp
12: Ci(A) = Ci(4) — {|(e, SB)I}
13: end forall
14: forall (A <= By, ..., Bu;{fa, for fo)) € P* A 3B; € new;,
where j € {1,...,n}
15: Ci(A) := Ci(A) U {|(cf(A), S)|}, where

i (A) = folar, fe({|ti-1(B1), - .., vi-1(Br)(})), and
Sp:={B;lj€{1,...,n}}

16: end forall;

17: Vi = fd(C,(A)(CY»,

18: end forall;

19: new; := {A|A € By, vi(A) = vi-1(A) };

20: end while

21:  Ufp(Tpyp) = vi;

22:end procedure

Figure 2.3: A multiset based SNP algorithm for p-programs [SZ04]

non-improved atoms. At iteration ¢ + 1, if the certainty of a tuple ¢ is not improved,
compared to t’s certainty at iteration ¢, then ¢ will stay in or be moved to the old partition.
There must be one tuple selected in a new partition to contribute to joins and hence, the
evaluation process will continue.

In more details, the SNP algorithm replaces M; with C; that is a multiset with all certainties
derived from different paths, and o; = f4(C;) is the certainty of a ground atom A. A pair
(C;,0;) is associated with A at iteration 7. Every element in C; is of form (a, S;), where o
is A’s certainty and S; contains all IDB subgoals from the previous iterations. At iteration

i + 1, derivations with at least one improved tuple in S; are re-evaluated. Figure 2.3 shows
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the SNP algorithm for p-programs.

2.3 DMagic Sets Techniques in Datalog

The idea of magic sets rewriting comes from sideways information passing (SIP) strategy
[BR87]. Intuitively, SIP induces an order among the rules and subgoals of a rule, when
evaluating a logic program. Magic sets act like filters that hold values for bound variables.
A rule is applied if the instances of the variables in its IDB subgoals unify the instances of
the variables in the corresponding magic predicates. A magic predicate m_p is created for an
IDB predicate p with unique variables-binding pattern. A supplementary magic predicate
sup_p is created for a subgoal p with unique variables-binding pattern. Magic predicates
hold “bound” arguments, but supplementary magic predicates hold both “bound” and “free”
arguments that appear in the path in SIP. Depending on the types of magic predicates used
in a rewriting, magic set rewriting approaches are classified into magic sets rewriting (MS)
and supplementary magic sets rewriting (SMS) [BR87]. Given a program P, EDB D and a
query Q, the magic sets rewriting technique is to generate a magic rewritten program P™
with EDB = D U M, where M is the initial tuples for magic predicates such that P™ and

P produce the same set of answers w.r.t. Q.

Definition 2.3.1. Subgoal-rectified: A rule is said to be subgoal-rectified if it includes

no repeated argument in the body. For example, a rule
p(X,)Y)-e(X,Y), p(Y,Y).

is not subgoal-rectified because Y appears more than once in the body.
“Generalized magic sets rewriting” (GMS) and “generalized supplementary magic sets

rewriting” (GSMS) were introduced in [BR87, Ull89]. For a non-subgoal-rectified rule,
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MS binds the same arguments in different positions of subgoals in multiple steps, but GMS
will consider them in one step. Therefore, the MS and GMS techniques produce the same
rewritten program in this case. Otherwise, MS will generate more magic rule than GMS
in the rewritten program because a predicate might have more forms if its arguments are
bounded in more steps. In this case, the rewritten program generated from MS cannot
achieve the same performance as GMS does. In this thesis, we consider more general cases
GMS and GSMS and extend them to the PF.

Example 2.3.1 shows the well-known same-generation cousin (SGC) program in Datalog
and its GMS program. After the GMS procedure, one rule and one fact that holds the
bound argument in the query has been added, and two rules have been modified. Let’s
consider rule 71’, a new predicate has been added to its body: magic.sge(X). The presence
of this new predicate restricts 1’ to be fired only if the person X is related to answer the
query. Rule r2’ says that if X; is the parent of X, X; should contribute to answer the query
and is stored into magic_sgc. In rule r3’, the added magic predicate magic_sgc(X) forces
the argument X of the EDB relation par to assume some specific values which belong to
magic-sgc and hence, X in par is restricted to expect specific values in sge(X;,Y;). Rule

r4’ simply stores the initial constant anna to start the evaluation.

Example 2.3.1. An Example: GMS transformation of a SGC program

Original program P:
rl: sge(X, X) « person(X).
2 :89¢(X,Y) «— par(X, X1), sgc(X1, Y1), par(Y, Y1).
? — sgc(Anna, Y).
The GMS rewritten program P™:
rl’: sge(X, X) « magic_sge(X), person(X).
r2’ : magic_sgc(X1) «— magic_sge(X), par(X, X;).
3 : sgc(X,Y) < magic.sge(X), par(X, X1), sge(X1, Y1), par (Y, Y1).
r4’ : magic_sgc(anna).
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Let us consider the evaluation of the program shown in Example 2.3.1 on the following
sample data set D.
D = {person(Anna), person(Tom), person(Jack), person(George), person(Sam),
person(Mike), par(Anna, Jack), par(Tom, Jack), par(Mike, sam),
par(Geoge, Sam)}.

The data set D represents relationships of two small families, shown as Figure 2.4.

/ \

Parents l Jack ! Sam\
o >/\ >< o
.
Siblings (’Anna ) ( Tom ) rGeoge (Mlke

Figure 2.4: A family graph

On one hand, the program P on the data set D, at iteration 1 rule rl is fired and yields
{sgc(Anna, Anna), sgc(Tom, Tom), sgc(Jack, Jack), sgc(George, George), sge(Sam, Sam),
sgce(Mike, Mike)}. At iteration 2, rule r1 does not yield new tuples. Rule 72 yields
{sgc(Anna,Tom), sgc(Tom,Anna), sge(Mike, George), sgc(George, Mike)}. The eval-
uation process terminates in iteration 3 since there is no new tuple discovered. The answer
set for the query is sgc(Anna,Y) is {sgc(Anna, Anna), sge(Anna, Tom)}.

On the other hand, considering the program P™ on the data set D, at iteration 1 rule r1’ is
fired, but only sge(Anna, Anna) is yielded since person(X) is restricted by magic_sge(X)
which contains only Annae at that moment. At the same time, Anna’s parent, Jack, is
discovered by r2’ and stored into the relation magic_sgc. At iteration 2, sgc(Jack, Jack)
is discovered by rule r1’, but rule 2’ does not yield new tuples. At iteration 3, only rule
r3’ yields a new tuple sgc(Anna,Tom) since the variable X in par(X,X1) is bound by

magic_sge(X), so X, is restricted to expect sgc(Jack,Y;) in r3’. Finally, the evaluation
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process stops. Some sgc tuples are not even derived, such as sgc(Tom, Anna), and the facts
generated are related to the answer set because joins for each rewritten rule are restricted by
the magic tuples. Hence the rewritten program improves the evaluation speed by conduct
less joins to achieve the answer set.

Example 2.3.1 also illustrates the idea of SIP. Given a rule r and a subgoal p in the body
with some bound arguments, the binding information is used to obtain the bindings for
non-instantiated variables in other argument positions. This process of passing information
is repeatedly applied for each subgoal, and recursively on other relevant rules. Thus, known

information is passed sideways within the whole program until the evaluation terminates.
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Chapter 3

Extending Magic Sets Techniques to

Parametric Framework

The objective to apply the magic sets techniques is to speed up the evaluation of goal-
oriented programs with uncertainty. We are likely to encounter the following questions:
How to manipulate the combination functions when rewriting a program? Can existing
evaluation algorithms be applied for the rewritten programs? Does the rewritten program
produce desired results? We answer these questions in this chapter by extending both
generalized magic sets rewriting (GMS) and generalized supplementary magic sets rewriting
(GSMS) techniques to parametric framework (PF).

The extended GMS includes two stages: straightforward GMS and magic tuples generation.
We use the word straightforward to show that the proposed procedure inherits major steps
of GMS in Datalog, while we extend the capability of each step to deal with combination
functions. The challenge for the straightforward GMS is to establish its correctness when
the type 2 disjunction function is applied. We claim that the second stage of the rewriting

that pre-computes all magic tuples is necessary to adapt the proposed GMS technique in a
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practical application.

The extended GSMS also includes two rewriting stages: straightforward GMS and magic
tuples generation. In the first stage, we carefully manipulate combination functions for the
written rules so as to retain the original meaning or a program. Unlike GMS, we need to
modify the existing evaluation algorithms to evaluate the GSMS rewritten program.

The rest sections are organized as follows. In Section 3.1, we introduce the straightforward
GMS and establish its correctness. In Section 3.2 we introduce the straightforward GSMS
and its correctness discussion. An example is introduced in Section 3.3 to identify the
challenge in extending GMS to PF. We present the relevant modifications for GMS and
GSMS in Section 3.4 and 3.5. Finally, the efficiency discussion of the rewriting algorithms

is presented.

3.1 Staightforward GMS

In this section a straightforward GMS procedure is introduced to solve the second source of
inefficiency, i.e., computing facts which are unrelated to the query. As in standard Datalog,
GMS in PF follows sideways information passing strategy (SIPs) [BR87]. The difference is
that here we take into account the presence of uncertainty and combination functions. The

major steps to accomplish GMS transformation in PF are as follows:
e Adorned rules generation
e Magic rules generation
e Rewriting the adorned rules

Given a p-program P and a query (), the rewriting process starts from @, and generates a
set of adorned rules (Section 3.1.1) which have the same IDB predicate as . More bound
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IDB predicates are then discovered, so we use one of these bound predicates to generate
more adorned rules until all discovered bound IDB predicates are considered. For each
adorned rule, we generate a set of magic rules for it, and rewrite it by adding the proper
magic predicates. Finally, we create a tuple for the magic predicate related to @, called
seed. As the result of the straightforward GMS, we get a version of the rewritten program
of P, denoted as P™ which includes all magic rules, the rewritten adorned rules and the
seed. The following sections describe the details of the major steps of the straightforward

GMS through the rewriting process.

3.1.1 Adorned Rules Generation for GMS

A binding pattern for a predicate is a set of bound arguments. An adornment for an n-ary
predicate p is a string of length n on the alphabet {b, f}, where b stands for bound argument
and f for free. A predicate p adorned with a binding pattern a, denoted as p®, indicates
the bound and free arguments of p. For example, p®/ indicates that predicate p is a binary
predicate, the first argument of which is bound and the second is free.

Let P be a program and @ be a query. The process of generating adorned rules starts by
considering the binding patterns of @J. We create a collection C for all adorned predicates.
Initially, the binding pattern of @ is in C. The adorned predicates in C' are processed one at
a time and are then marked, so that they are not processed again. Let p® be an unmarked
adorned predicate in C, for each rule r that has p in the head, we generate an adorned
version of r, called adorned rule and denoted as 7*¢. If r*¢ includes more adorned predi-
cates, they are added to the collection C' unless they are dealt with before. The process
terminates when there is no unmarked adorned predicate left in C. Termination of this

process is guaranteed since the number of adorned predicates for any specific program is
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1: procedure BPG(r, h*)
2: input: 7 : h(X) < p1(X1), s Pu(Xn); (F1, fo» fo) and an adorned predicate h®.
3: output:An adorned version of 7%, where the subgoals are re-ordered
depending on the order of bound variables.
4: begin
5: Initialize a stack S;//used to save bound variables
6: forall variable X; of h(X) and the 4, character c of a
7 if (¢ =" V') and X; is marked 'b’;
8: else S.push(X;);
9: end forall
10: while (Y = Q.pop())
11: forall subgoal ¢ = p;(X;) of r
12: forall variable Y; of p;(X;)
13: if (Y =Y, and Y is not from ¢) {
14: Y; is marked 'b’;
15: g is marked "Visited’; q.order++;
16: A copy of S is attached to ¢;}
17: else {
18: Y; is marked 'f’;
19: S.push(Y;); }
20: end forall
21: end forall
22: end while
23: Sort the body or r based on the order of attached variables;
24: end
Figure 3.1: Adorned rules generation algorithm for GMS
finite.

Generating an adorned rule follows sideways information passing strategy. For an (un-
marked) adorned predicate h® and a rule r with head h, we create the binding pattern a.
The bound variables are added to a new collection S. Next, we replace each subgoal of r by
an adorned version. If this version is new, we add it to C. To obtain the adorned form of a
subgoal in the body, we select a variable Y from S. For every argument of each subgoal p,
if p has Y as a argument, we mark it as ‘b’ and the rest of the variables are collected into
S if they do not appear there. We then consider the next variable in S until all variables in
S are considered. The number of predicates in an adorned rule is the same as its original

rule, but the arguments of each predicate are adorned.
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Figure 3.1 shows the process in which a stack is used to save the bound variables. In general,

the order in which we bound the variables is not unique.

3.1.2 Generalized Magic Rules Generation for GMS

Once the adorned version r% of a rule r is generalized, we may generate generalized magic
rules. Figure 3.2 illustrates the steps to generate generalized magic rules for an adorned
rule. A generalized magic rule is a rule with magic predicate as the head and its body also
include at least one magic predicate. A method called getMagicPredicate(p®?) is defined
to return the corresponding magic predicate for an adorned predicate p2?. If p¢ is an IDB
predicate, the method returns a generalized magic predicate m._p®¢, based on the binding
pattern ad; otherwise, it returns p?¢. The arguments of m_p® are the bound arguments in

p®. For each IDB subgoal p;** in an adorned rule 7%, where i indicates the position of

1: procedure GenerateGM SR(ro?)

2: input: An adorned rule r%¢ : h% (X)) & p;%1(Xy), .., p®¥ (X0); (fas Fos fo)
3: output: A collection of generalized magic rules for 7%¢

4: begin

5: Initialize a collection C';//used to save magic rules

6: forall subgoal ¢ = p;%%(X;) 7: in ¢

8: if (7(q) is a IDB predicate name) {

9: Create a magic rule r,,%%;

10: Tm®. fa = maz; 1% f, = maz; 1, fo = maz; r%a = T;
11: rm?®.head = get MagicPredicate(q);

12: Add m_h = getMagicPredicate(r®.head) to the body of r™;
13: for j=1toido

14: g; = p;*%(X;);// j is the position in the body of r

15: ~ Add m_g; = getMagicPredicate(g;) to the body of r™;
16: end for

17: Add r,,% to C; }

18: end forall

19:  return C;

20:end

Figure 3.2: Generalized magic rules generation algorithm for GMS

p;%% in the body, we generate a magic rule r,,°? with certainty T, and defining predicate
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m_p;®% as the magic predicate of p;. As the combination functions associated with r%¢, we
use (maz, max, maz). This associates T with all ground tuples of the magic predicates in
the rewritten program. The rules extended with magic predicates are not affected when
they are evaluated because f(a, T) = «, for all certainty o € T'. The head of r,,2¢ for the
IDB subgoal p;°% is the corresponding magic predicate of the head of r%¢. We then add
getMagicPredicate(p;°*) to the body of r,,%¢. For each subgoal at the position j € [1,1] in
the body of 7%¢, we add p;°% to the body of r,,%¢. Note that an adorned predicate may have

several occurrences in the same adorned rule, so several rules that define m._p;°% might be

generated from a single adorned rule.

3.1.3 Rewriting the Adorned Rules for GMS

The remaining operations to complete a straightforward GMS include rewriting the adorned
rules and seeding the facts for magic predicates. We add the magic predicate of h® to the
body of each adorned rule with h as the head and then get a collection of rewritten rules
for the original rules, referred to as R™. Then, we create a seed that contains the bound
arguments in @, and is with predicate name 7(Q) and certainty T. This completes the
rewriting process and the rewritten program includes the magic rules, the rules collection
R™, the tuples from original program, and the seed. Example 3.1.1 shows the adorned rules
and the transformed program using the proposed GMS rewriting. Note that * is the regular
multiplication operation.

While users do not consider “max” as a propagation function because it does not satisfy
property 3 mentioned in Section 2.1.2, we allow “max” in magic rules in order to preserve
the original meaning of the program, viewing this use as “internal”. The following definition

define this “internal” property for the magic predicates.
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Definition 3.1.1. [Definitely Relevant]: If a variable X in a rule is “definitely relevant”
in computing an answers, then the certainty of X belonging to the magic predicate m, is

T, i.e, mp(X) is certainly true.

Example 3.1.1. An Example: straightforward GMS of a p-program

Original Program:
p(X,Y) L a(X,Y); (ind, *, ).
p(X,Y) <0-'5—p(Y, Z),p(Y, X); (ind, *, %).
a(1,2) 2 ().
a(2,1) <% (.-, ).
a(1,1) ().
?p(L,Y).

Adorned Rules:
X, Y) & a(X,Y); (ind, x, %).
P (X)Y) &5 a(X,Y); (ind, *, *).
(X, Y) & pfoy, X), o (Y, 2); (ind, ¥, ).
PP(X,Y) 2 pY (Y, Z), p (Y, X); (ind, %, %).

The Staightforward GMS Rewritten Program:
pbf(X,)Y) & magicpbf(X),a(X,Y); (ind, *,*).
magic-p-fb(X) & magicp-bf(X); (mazx, maz, mazx).
magicpbf(Y) & magic.p-bf (X), p-fo(Y, X); (max, maz, maz).
pbf(X,Y) &2 magicp bf(X),p-fb(Y, X),pbf (Y, Z); (ind, *, ).
p-fo(X,Y) 25 magic-p-fb(Y),a(X,Y); (ind, *, *).
magicpbf(Y) & magic_p-fb(Y); (mazx, maz, mazx).
magicp-bf(Y) & magic.p-fo(Y),p.bf (Y, Z); (max, maz, maz).
p-fB(X,Y) & magicp_fo(Y), pbf (Y, Z), pbf (Y, X); lind, x, ).

a(1,2) 9_{23 {55
a(2,1) 9—5 S
a(1,1) & (.-,
magicp-bf(1) £ (., -, ).

3.1.4 Correctness of Staightforward GMS

Let P be a p-program, @ be a query, and P™ be the GMS rewritten program. We will
show that P™ produces the same results w.r.t. Q. We construct three sequences {z,},{yn},
and {z,} for each derived atom A € B, (without certainty values), where B, is Herbrand
base of P. The sequence {z,} is the sequence of certainty values at different iterations
in a bottom-up fixpoint computation of P™. {y,} is the sequence of certainty values at
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different iterations for P. {z,} is a sub-sequence of {x,}, selected as described in section
3.1.4. In general, {z,}, {yn}, and {z,} are infinite sequences, but in case they are finite
and have different number of elements, we simply repeat the last element to maintain the
sequences which have the same size because the last element of each sequence represents
the certainty value of A in the fixpoint. We prove that these three sequences converge to

the same certainty value, indicating A’s certainty in the limit.

Definition 3.1.2. [Iterative Aggregated View D;]: Let D; be the set of atom-certainty
pairs with their associated certainties obtained at iteration i in a fixpoint evaluation of the

program.
Definition 3.1.3. [Atom Collection]: Pure(D;) = {A|{(A:a) € D;;a > L}.

Definition 3.1.4. We use New(D;) to represent the set of all atom-certainty pairs found
the first time at iteration ¢ with a certainty greater than L. In symbol, New(D;) = {(A :
a)l(A:a)e Dy, (A:5) ¢ Diey and a, 5> L}

The next result shows that without new atom being derived at iteration ¢, there will be if
no new atom derived at iteration i + 1. In this case, a fixpoint evaluation continues beyond

iteration 7 + 1 only because the certainty of some atom A in Pure(D;) is improved.

Lemma 3.1.1. Considering two consecutive iterations, if New(D;) = 0, then

New(Di.H) = @

Proof. Suppose that New(D;) = 0, then Pure(D;) = Pure(D;_1), ie., for any A €
Pure(D;), we have A € Pure(D;_1). In this case, the program evaluation would not yield
any new ground atoms based on D;_;, no matter which rule is fired. On the other hand,
suppose New(D;1) # 0, then there is at least one new ground atom A € Pure(D;41),
but A ¢ Pure(D;). In this case, the evaluation yields some new ground atom based on
Pure(D;), which is the same as Pure(D;-;) — a contradiction. a

27



Theorem 3.1.2. [Convergence]: Considering the sequences {z,}, {yn}, and {z,} such
that zn, < yn < 2n, for alln > 1 for somei € N, if {z,} and {z,} both converge to the same

limit a, then {y,} also converges to a.
Proof. The above result is well-known, e.g., see page 84 in [Zor04] for a proof. ]

Note that a Datalog program is just a p-program where certainty values are restricted to
{1, 0}, with maz as the disjunction and min as propagation and conjunction functions. In
standard Datalog, [BR87] has established the correctness of GMS transformation. Given a
p-program P with a query Q and its straightforward GMS rewritten program P™, Lemma
3.1.1 implies that all ground atoms derivable from P are found in finite number of iter-
ations, denoted as /. Precisely, the number of iterations is polynomial in the number of
constants in the EDB and the program. Therefore, the major task to show the correctness
of transformation is to demonstrate that the certainties associated with every ground atom

in P w.r.t @ in the fixpoint is the same as the one in P™ w.r.t Q.

Theorem 3.1.3. [Correctness of Straightforward GMS]: Considering a p-program
P, a query Q, and a set of EDB facts D. Suppose P™ is the straightforward GMS rewritten
program with facts D™ = D U M, where M 1is the initialized tuples/facts in the magic

predicates. Then naive fizpoint evaluation of P and P™ produce the same results w.r.t Q.

Proof. Given a p-program P with a set of rules R and a set of facts D, each rule r in P can

be rewritten as follows:

r: 7(Xo) & qu(Y1)y e e (Y2)s PLXD)s oos P(Xn); (s fos fo)

where g; is an EDB predicate, and p; is an IDB predicate. Each rule r is transformed into
a set of magic rules and a number of transformations of r» with adorned predicates. The

adorned rule and magic rules are of the form:
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R (Xo) € qu(Ya)y -ons G (Ya)y PR (X1)y coor P (X0 ); (fity fis fo)-

had(XO) (i magichadz q1 (Yl)a seey qt(}/t)y ma'gicmadl’p%dl (Xl), ey

magicpnad",p%d” (Xn)y <fd? fm fC>

For every ground instance of r with head atom A{A) in P and h®(A) in P™, we construct
three certainty sequences {z,},{yn} and {z,}, where xy = yo = 20 = L, and

zi = vi(h*%(4))

Yi = i(h(;l))

2 = vr-1y(R%4(A))
I indicates the iteration that Pure(New(D7)) = 0, but Pure(New (D7 ,)) # 0.
Case i =1:
If there is a derivation “A%(A4) <& magicy®, qi(E1), ..., q:(E:)” for he¢ at iteration 1, then
there is also a derivation “h(4) & ql(E_l), o qt(i’t)” in P at iteration 1 because some rules
in P™ may not have being fired since more tuples are yet to be derived for the magic
predicates. Also if there is a derivation “h(;l) & ql(E_l), ...,qt(lzt?t)” for P at iteration 1,
then there is also a derivation “h%%( ;1) < magicy®, ql(E_l), ey qt(g?t)” for P™ at iteration I

because Pure(New(Pj™)) = 0, but not vice versa.

Let X = {Ifs(, fu({vo(magics®), vo(as (1)), - vola( BN}, then [XP| = s™ which
indicates the number of derivations for P™ at iteration i.

Let X; = {lfp(a,fc({lzxo(ql(E_l)), o Vo(qt(ét))[})ﬂ}, then | X;| = s which indicates the num-
ber of derivations for P at iteration 1.

Let X! = {If,(a, fol{lvo(magicy®®), vo(a:(Er)), .., vo(gu(E)) D)1}, then [X]| = s which

indicates the number of derivations for P™ at iteration I 41 — 1.
We have s™ < s < s!. Therefore,

z1 = ni(h*(4)) = T (wo) (h4(4)) = fa{IXP1})
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< fa({IX:1})

= n((A4)) = Tp(vo)(h(A)) = 11 = fal{|X:]})
< fa({IX{1})

= vr(R(A)) = TTvro1) (h*4(A)) = 2.

Let us examine the intermediate results for case ¢ = 1. First, for any head atom h(A)

in P and h*¢(4) in P™, we have 1 (h*¢(4)) < ni(h(4)) = vi(h*(A)). Secondly, if
hed(A) € Pure(D), then h(A) € Pure(D:); if h(A) € Pure(D;), then h*d(4) € Pure(DT)
because all ground atoms are determined at iteration I. Thirdly, z;, y; and z; represent three
certainty values for any specific ground atom. That means for every non-magic ground atom
w.r.t @, the inequality holds.

Casei =k +1:

For any head atom h(A4) € P and h*(4) € P™, if z; < yx < 2, then:

Tier = Vi (R°4(4)) = T () (h°(4)) = fa({IXT 1)

= fa({1 Xe41l})

= ve1(h(4)) = T(ve) ((A)) = yr = fal{1X1})

= fa{IXEal})

= vrk(A(A)) = T (vrr-1) (R A)) = 2411
Correspondingly, if there is a derivation through “h“d(;l) & magich“d,ql(E—l),.‘.,qt(E_Jt
), magicy, **, p‘l‘dl(fil), <oy TROGICp, %, pgd"(fin)” for P™ at iteration k£ + 1, then a deriva-
tion is obtained for P through “A(4) <& ql(él), ...,qt(E—t),pl(/L), ...,pn(fin)” at iteration
k + 1. We have s > s™ because some rules might not be fired when magic sets are

not fully prepared. If a derivation “h(;l) & ql(El),...,qt(];?t),pl(zil),...,pn(fin)” is ob-

tained for P at iteration k -+ 1, then a derivation “h“d(;l) & magich“d,ql(E—’l), ey (B
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), magicy, ™, pdl(A;), ..., magic,, ", pi9n(A,)” is obtained for P™ at iteration (I + k) be-
cause Pure(New(DT.,_;)) = 0.

Based on the discussion above, we then conclude that for every atom A, which is an instance
of head atom h(X) in P and h%(X) in P™, we construct three sequences {z,}, {ya}, and
{z,}, where z; < y; < z. {z.} represents a sequence of certainty values of A through
hed(X). Then, {z,} converges since the bottom-up fixpoint evaluation of any p-program in
PF terminates at some steps and no more than w [L.S96]. Let this fixpoint value be v'(A4),

then {z,} also converges to v7"(A). Correspondingly, let the certainty associated with h(X)

in the limit be v,(A). Based on Theorem 3.1.2,
im0 2i=limy 0o 2 = VIH(A) = iMoo Yi=viw(A).

which was to be proved. M

3.2  Staightforward GSMS

In Datalog, GMS succeeds in restricting facts to be potentially related to the given program,
but it suffers from the drawback that many facts are evaluated repeatedly, especially in the
non-linear rules. For instance, in Example 3.2.1, the joins “magic_sgc.bf(X), par(X, X1)”
for the magic rule will be re-done in the rewritten adorned rule. In Datalog, generalized
supplementary magic sets rewriting (GSMS) was introduced to solve the problem. In this
section we extend the GSMS technique to PF, called straightforward GSMS, which also

includes three steps:

e Adorned rules generation
e Supplementary magic rules generation

o Rewriting the adorned rules
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The step of “generating adorned rules” for GSMS is exactly the same as the one of the

proposed for GMS. We will represent the last two steps in the following sections.

Example 3.2.1. GMS of same generation cousin p-program

Original Program:
sge(X, X) < person(X); (ind, *, ).
s9c(X,Y) a par(X, X1), sge(X1, Y1), par(Y, Y1); (ind, *, %).
p(a,Y).

The Straightforward GMS Rewritten Program:
sgebf(X, X) L magic_sge-bf(X),person(X); (ind, *, *).
magic-sge-bf(X7) & magic-sge-bf(X), par(X, X1); (maz, max, maz).
sgebf(X, Y) & magic_sge bf(X), par(X, Xy), sge(Xy, i), par(Y, Vi)

(ind, %, %).

magic_sge bf(a) <= (- -,).

3.2.1 Supplementary Magic Rules Generation for GSMS

Instead of generating magic rules in GMS, the GSMS needs to generate supplementary magic
rules. During the adorned rules generation, each adorned IDB predicate is associated with
a list of bound variables S. Then we can define supplementary magic sets predicate for an
adorned predicate p*¢ by a defined method called getSupMagicPredicate(p®?, p®¢.S). The
method returns a generalized supplementary magic predicate sup_p®?, where all variables
existed in p®¢ and S.

Figure 3.3 shows the steps to generate supplementary magic rules for an adorned version

ad

of a rule r, referred to as 7%¢. For each IDB subgoal p;®% in r%¢, we generate a generalized

?

supplementary rule rsupad in which “(max, min, fz)” is used as the combination functions.
The major difference between a supplementary magic rule and a magic rule is that for each
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1: procedure GenerateGSM SR(r®)

2: input:  An adorned rule r°¢ : he%(X) & pi(X1), ., Pa%4 (X0 ); (fay for fe)
3: output: A collection of GSMS rules for re¢

4: begin

5: Initialize a collection C;//used to save GSMS rules

6: k=0;//a pointer indicating the position of the subgoal visited at last
7: forall subgoal ¢; = p;*%(X;) of r%

8: if (m(g;) is an IDB predicate) {

9: Create a supplementary rule rsup“d;

10: Tsup™@-(fa, o fo) = (maz, min, v f3); rep," o =T;

11: Tsup®®.head = getSupMagicPredicate(g;, ¢:.S);

12: if (k=0) sup_h = getMagicPredicate(r®®.head); k+-+;

13: else sup_h = getSupMagicPredicate(qk, gx.S);

14: Add sup_h to the body of r4,,%%;

15: for j =k toido

16: gj = p;*%(X;);// j is the predicate position in the body
17: Add sup.g; = getSupMagicPredicate(q;) to the body of rg,,%
18: end for

19: Create a transformation rule r,,%¢;

20: Tm®fa, for o) = (maz, maz, maz); 4o = T;

21: rm®.head = sup_h;

22: Add sup_h to the body of r,,%?, and 74,,%¢, 7% to C; }

23: end if

24: end forall

25:  return C;

26: end

Figure 3.3: Generalized supplementary magic rules generation algorithm

predicate subgoal p;*% in r%, where j € [1,i], GMS adds getMagicPredicate(p;°%) to
the body of the magic rule, but GSMS adds the supplementary magic predicate of p%%*
and the subgoals in the position j € [k,i], where k is the position of the previous IDB
predicate considered. A magic rule in GMS may be divided into several supplementary
rules in GSMS. This difference results in saving the intermediate joins into a relation and
hence avoids unnecessary or repeated joins from the rewriting, especially for non-linear rules.
Note that for GSMS, we need to generate a magic rule for each adorned IDB subgoal in r%¢.
The head of the magic rule is the magic predicate related to the head of 7%¢. The body of

the magic rule has one subgoal which is the supplementary magic predicate generated for
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the considered subgoal in the body of the adorned rule. We used to call this magic rule a

transformation magic rule.

3.2.2 Rewriting the Adorned Rules for GSMS
Example 3.2.2. An Example: Straightforward GSMS rewritten program of P

The Straightforward GSMS Rewritten Program:
r:pbf(X,Y) 25 magic_pbf(X),a(X,Y); (ind, pro, pro).
re : sup2.1.0(X) & magicp-bf(X); (max, min, pro).
r3 : magic_p_fbo(X) & sup2_1.0(X); (maz, mazx, maz).
ra s sup2 1.1(X,)Y) & sup2_1.0(X), p_fb(Y, X); (maz, min, pro).
rs : magicp-bf(Y) & sup2-1.1(X,Y); (max, mazx, maz).
re : p-bf(X,Y) 25 sup2 1 .1(X,Y),pbf(Y, Z); (ind, pro, pro).
r7:p-fb(X,Y) &5 magic_p-fo(Y),a(X,Y); (ind, pro, pro).
rs : supd 1.0(Y) & magicp-fb(Y); (mazx, min, pro).
9 : magicp.bf(Y) & supd 1.0(Y); (mazx, maz, mazx).
710 : supd 1.1(Y, Z) & supd 1.0(Y),pbf(Y, Z); (maz, min, pro).
r11 : magicp-bf(Y) & supd_1_1(Y); (mazx, maz, maz).
ri2 1 p-fO(X,Y) & supd 1.1(Y, Z),pbf (Y, X); (ind, pro, pro).
a(1,2) &5 ().
a(2,1) &5 (.~ )
a(1,1) < (4 - 4.
magicpbf(1) & (- )

1

)

(=)
o

1

[

The rest of operations to complete a straightforward GSMS process are rewriting the orig-

ad

inal rules, and seeding the magic facts. For each adorned version rule 7%%, assume k is the

ad

position of the last visited IDB subgoal in the body of r%. We add the supplementary

predicate of g% to the rule body. subgoals in positions 1 to (k — 1) are eliminated from

od  This yields a collection of rewritten rules for the original rules, referred to as R™.

r
Like GMS, we create a seed for GSMS. The rewritten program includes the supplementary
magic rules, the transformation magic rules, the collection of rewritten adorned rules R™,

the facts from original program, and the seed. Example 3.2.2 shows the result of GSMS

transformation of the p-program given in Example 3.1.1.
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3.2.3 Correctness of straightforward GSMS

Given a p-program P with a set of rules R and a set of facts D, each rule r in R can be

rewritten as follows:

r h(Xo) & q1(Ya), -+, @e(Ye), p1(X0)s -+ Da(Xn); (Fats For o)

where ¢;s are EDB predicates, and p;s are IDB predicates. We may classify these rules into

two groups:
e Group 1: rules with no IDB predicates (n = 0)
e Group 2: rules with at least one IDB predicate (n > 1)

The following theorem shows that the naive fixpoint evaluation of a p-program P and its

straightforward GSMS rewritten program P™ produce the same result w.r.t a given Q.

Theorem 3.2.1. (Correctness of Straightforward GSMS): Given a p-program P
with a query Q and a set of facts D. The Straightforward GSMS rewritten program of P
is P™ with facts collection D™ = D U M, where M is the initialized facts for the magic

predicates. A Naive fizpoint computations of P and P™ produce the same result w.r.t. Q.

Proof. Recall that after a GSMS transformation, an adorned rule is replaced by a set of

supplementary magic rules and the rewritten adorned rules:

o sup,® <~ magicy®, g1 (Y1); (maz, min, f.).

o supy@2 & sup, e, gy (Ya), p1(X3); (maz, min, £.).
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o h(Xo) & sup,®®, grs1 (Yosr), ooy @u(Y); (fis fir fo), called base rule.

For every head atom h(;l) in P and hod( ;1) in P™, we construct three sequences {z,}, {yn}
and {z,}, where zg = yy = 2o = L, and

z: = v;(h4(4))

Vi = Vi(h(;l))

& = V1+(i—1)(had(;1))
I indicates the iteration that Pure(New(D7)) = 0, but Pure(New(D7,)) # 0.
We are to show z; < y; < z;. Since only rules in group 1, showed as above, can be fired at
iteration 1, the proof of the case 1 for GSMS is the same as the one for GMS. Here we just
highlight the differences at case k + 1

Case i =k+1:

Suppose in case i = k, for any head atom h(A4) in P and h®¥(4) in P™, we have z; <

vk < 2k ie. ve(h(A)) = vi(h(A)) < vrsk-1(h°Y(A)). if h*d(4) € Pure(DT), then h(4) €

Pure(Dy) but not vice versa; if h(A) € Pure(Dy), then h*(4) € Pure(D7. _;)). Note
I > 2, or there are no supplementary magic rules.

(I) consider the iteration k + 1 for either P or P™, suppose s rules are fired for P, and s™

rules are fired for P™. If there is a derivation "A%(A4) < supy®™, gni1(Bns1), -, @ (Ey)”

for P™ at iteration k + 1, then there is also a derivation "h(4) < ¢ (Ey), ...,qt(ét),pl(Al

)y Pn(An)” for P at iteration k+ 1. We have s > s™ because if h*¢(A) € Pure(DT), then
h(A) € Pure(Dy), and some rules are not fired when (supplementary) magic sets are not
fully prepared. Note that

vi(supp®®) = T (vi-1) (supn®?)

= fal{lfole, fel{lvimr(supn®®), vi-a (5% (4))))1})

= fd({lf;o(a: fc({ll/k(suphadj% Uk(p?d](AJ))l}»‘})
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= T (ve) (supn®¥) = viesa (supn?)

Therefore,

Zra1 = Ve (R4(A)) = T (i) (h*4(A))
= fal{|fola, fel{Iva(supr®®™), V(Gns1 (Bns1))s o (@ (E)Y)), s™ derivations|})
< Fa1fo (s £o({a(5upn ™), vi(ga(Bn)), - V(@ ED), V(2 (ADI),

s™ derivations|})

< Fal{1n{e 1@ By oo vl ge( B, w52 (AD), oy vk (0F (ADID),
s™ derivations|})
< Fa{ (0 £l L@ (B o V(@ (B, DI (AD), s e (P (A 1)),
s derivations|})
= v (R(A)) = (i) (A(A)) = yr
(I1) On the other hand, consider the iteration k+1 for P and the (/+ k) iteration for P™.
Yt = virr ((A)) = Tp(vi) (h(A))
= a0 £ (@ (B, s vi(@e(Be)), v (01(AD), s (Pl ADID),
s derivations|})
< Fall1 (0 £ ({1 rebea(@a(BL)s oo Va2 (@n(Bn), Vo1 (G (Bna)),
o Vs (0B, i b2 (pr(AD)s s vik-2 (Pa(Aa)) D)),
s derivations|})
< {1 Fol{1vrams (50D, Vit (@i (B, o Vs (@B
s derivations|})
2 Fa{1o(0 Fol {2t (5UPR), Vot (Gt (Bagn))s oy Vo (@ (B )

s! derivations|})

= vra(ho4(A)) = T;n(l/uk)(had(;l)) = Zk41-
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3.3 Magic Sets Do Not Play Magic Role!

An important difference between evaluating programs in PF and in Datalog is that while
the fixpoint evaluation of Datalog program terminates in polynomial time (in the number
of database constants), an evaluation for a p-program may terminate only at w. This
may happen when a type 2 combination function (see Section 2.1.2) is associated with
a recursive predicate. With the T, operator that is continuous, we may allow a fixpoint
evaluation proceed until certainties derived are “close enough” to the fixpoint and within
some desired precision. On the other hand, a real computation is bound to certain precision
decided by memory word size. The question is how to balance these two issues: infinite
number of iterations and finite precision. Given a p-program P and a query Q, consider
a precision parameter ¢, w.r.t fixpoint evaluation. If |v;.;(A) — v (A4)] < ¢, VA € D;, and
A € D;y;, then the evaluation terminates. Theorem 3.1.3 and Theorem 3.2.1 have shown
that a straightforward GMS/GSMS rewritten p-program may converge to its least fixpoint
in the limit, but under “precision control”, certainties obtained by evaluating the original
program might be different in a finite computation. The following example illustrates the

problem.

Example 3.3.1. Consider Example 3.1.1, T' = [0, 1], and precision in controlled less than
0.001. The following table shows the database for IDB predicates at every iteration. We

use *¥*** to indicate when the aggregated terms is considered as new.

| Iteration i | Original Program P | GMS Rewritten Program p™

1 P(2,1):0.25 7 pbi(1,1):0.25 FF
p(1,2):0.25 **** magic.p.fb(1):1.0 ****
p(1,1):0.25 *H*x p-bf(1,2):0.25 ****

3 p(2,1):0.20614258 *¥* | p bf(1,1):0.25
p(1,2):0.2734375 **%% | b fb(2,1):0.20614258 ****
p(1,1):0.29614258 **** | magic_p.fb(1):1.0

3 p(2,1):0.307260 % | p_bif(1,1):0.304409 *¥**
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p(1,2):0.28288764 F¥**
p(1,1):0.31192228 ****

p1b(2,1):0.20614258
magic_p_fb(1):1.0
p-fb(1,1):0.29614258 ****
magic_p_bf(2):1.0 ****
magic_p-bf(1):1.0 ****
p_bf(1,2):0.25 ***x

p(2,1):0.30882657 ****
p(1,2):0.28540534 ****
p(1,1):0.31691408 ****

p-fb(1,1):0.31199324 ****
magic_p_bf(2):1.0
magic_p_bf(1):1.0
magic-p{b(2):1.0 ****
p-fb(2,1):0.30109218 ****
magic_pfb(1):1.0
p-bf(1,2):0.25
p-bf(1,1):0.31032723 ***x*
p_bf(2,1):0.25 %

p(2,1):0.30882657
p(1,2):0.28540534
p(1,1):0.31691408

pIb(1,2):0.2734375 *F*¥
p_fb(1,1):0.31199324
magic_p_bf(2):1.0
magic_p-bf(1):1.0
magic_pfb(2):1.0
p_tb(2,1):0.30109218
magic_pfb(1):1.0
p-bf(1,2):0.27776337 *¥***
p-bf(1,1):0.31348562 ****
p_bf(2,1):0.25

pfb(1,2):0.2734375
p_fb(1,1):0.31501645 ****
magic_p-bf(2):1.0
magic_p-bf(1):1.0
magic_p-fb(2):1.0
p-fb(2,1):0.30942565 ****
magic_p_fb(1):1.0
p_bf(1,2):0.27776337 ****
p_bf(1,1):0.31657955 ****
p.bf(2,1):0.30851895 ****

p{b(1,2):0.28569397 ***x*
p-fb(1,1):0.31890637 ****
magic_p-bf(2):1.0
magic_p_bf(1):1.0
magic_pfb(2):1.0
p-1b(2,1):0.31063545 ****
magic_pfb(1):1.0
p-bf(1,2):0.28579888 ***x*
p-bf(1,1):0.3179317 ****

1,2):0.28569397

(

_bf(2 1):0.30971062 ****
b(
_fb(1,1):0.31890637
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magic_p-bf(2):1.0
magic_p_bf(1):1.0
magic_p-fb(2):1.0
p-fb(2,1):0.31063545
magic_pfb(1):1.0
p-bf(1,2):0.28579888
p-bf(1,1):0.3179317
p_bf(2,1):0.30971062

In the example 3.3.1, the answer set of P regarding the query p(1,Y) is {p(1,2):0.28540534,
p(1,1):0.31691408}; whereas, the answer set of P™ w.r.t. Q is {p-bf(1,2) : 0.28579888,
pbf(1,1):0.3179317}.

Given a p-program P and its MS rewritten program P™. The evaluation order of P™ is
changed when the magic atoms are not fully prepared. Atoms evaluated at the same iteration
in P might be separately evaluated at different iterations. For P™, let T,(7T,(X)UY') be the
evaluation results for a specific atom A, where T}, is the immediate consequence operator, X
related to derivations which magic atoms are prepared, and Y are those potential derivations
which magic atoms are to be prepared. Then for P, T,(X UY') represents all derivations may
be fired at corresponding iteration. When type 2 f4 is applied, T,(T,(X)UY) # T,(X UY)
which is the major barrier in extending GMS to PF. Although we may prove that the
fixpoint values converge finally in an infinite procedure, we realize that bias might occur in
a finite steps evaluation. Providing the error estimation analysis seems to be an interesting
and complex topic, we do not discuss this topic in this thesis; instead, we add an additional
stage “magic tuples generation” for the proposed techniques to avoid the bias in a finite

numeric computation.
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3.4 Magic Tuples Generation for GMS

In general, for any two adorned facts p?@*(A) and p*®?(A) of a predicate p(X) in a magic sets
rewritten program, semantically they should have the same certainty because they represent
the same fact in the original program. Let us go back to Example 3.3.1, p(1,1), p(1,2),
and p(2,1) are computed at the first iteration in P, but only p_bf(1,1) and p_bf(1,2) are
computed at the first iteration in P™ because not all necessary magic atoms are prepared
at the first iteration, such as magic_p-bf(2). For P™, iterations 2,3,4 are used to prepare
magic_p-bf(2). However, pbf(1,1), and p-bf(1,2) are improved during these iterations.
This results in p_bf(1,1), and p_bf(1,2) having the different certainties from p_fb(1,1), and
p-fb(1,2), and these differences would not converge in a finite steps evaluation. When the
type 2 disjunction function (f;) is adapted in a p-program, the evaluation order of the MS
rewritten program will be changed when the magic atoms are not fully prepared at every
iteration.

In this section, we introduce an stage after straightforward GMS such that the new rewrit-
ten program, called alternative GMS rewritten program, may generate the same results set
w.r.t. the given query at each iteration. Based on the assumption that “the disjunction
functions should combine the certainties of atoms derived at the same iteration, and should
not combine newly derived certainties with prior certainties of the same atom from the same
rule” [SZ04], we pre-compute all magic atoms before the evaluation.

Magic tuples generation is conducted as follows. Given a p-program P, first, we make a
copy of its straightforward rewritten program p™, and standardize it to be p*® ,i.e., for any
rule r in p°, we apply (maz, min, min) as combination functions and T as the certainty.
Second, we evaluate p®, and found magic atoms are added to p™. Thirdly, we construct

a new program (p™)’, alternative GMS rewritten program, in which all magic rules are
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eliminated. Example 3.4.1 shows the intermediate results of a magic tuples generation by

considering the program in Example 3.1.1.

Example 3.4.1. Intermediate Results of magic tuples generation for GMS

Standardized GMS program p°:
pbf(X,Y) & magic_pbf(X),a(X,Y); (maz, min, min).
magicp-fb(X) & magic_p-bf(X); (maz, min, min).
magicpbf(Y) & magic_pbf(X),p-fo(Y, X); (max, min, min).
pbf(X,Y) & magicpbf(X),p-fo(Y, X), pbf(Y, Z); (maz, min, min).
p-fb(X,Y) & magicp_fb(Y),a(X,Y); (maz, min, min).
magic.pbf(Y) & magicp_fb(Y); (maz, min, min).
magicpbf(Y) & magicp-fo(Y),p-bf (Y, Z); (max, min, min).
p-fo(X,Y) & magicp-fb(Y),pbf(Y, Z),pbf (Y, X); (mazx, min, min).
a(1,2) ‘_1—5 {220
a(2,1) <5 (5, ).
a(1,1) &, ).

magicpbf(1) < ().
Evaluation Results:

p(1,2): 1. p(1,1): 1. p(2,1) : L.
a(1,2) : 1. a(1,1): 1. a(2,1): 1.
p-bf(1,2) : 1. pbf(1,1):1 pbf(2,1):1
p-fb(1,2) : 1. pfb(1,1): 1 p-fb(2,1): 1
magicp-bf(1) : 1. magicpbf(2) : 1.
magic-p-fb(1) : 1. magic.p-fb(2) : 1.

Alternative GMS Program (p™)’:
pbf(X,Y) &2 magicpbf(X),a(X,Y); (ind, pro, pro).
pbf(X,Y) ~ magic.pbf(X),p-fo(Y, X),p-bf (Y, Z); (ind, pro, pro).
p-fb(X, Y) 25 magicp-fo(Y),a(X,Y); (ind, pro, pro).
p_fb(X Y) & magicp- fo(Y),pbf(Y, Z2),pbf (Y, X); (ind, pro, pro).
o(1,2) (...,

o(2,1) £ (.
a(1,1) #3; (.
magic_p-bf
magic_p-bf

bt it B

1

magic.p-fb
magic.p-fb

—
N’ N N

We then introduce Theorem 3.4.1 to show that the alternative GMS rewritten program may
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generate the same intermediate results at every iteration, and thus the same fixpoint as the

original program w.r.t. the query.

Theorem 3.4.1. Alternative GMS Correctness: Given a query-related p-program P
with a query @ and facts collection D, P’s alternative GMS rewritten program is P™ with
facts collection D™ = D U M, where M is the set of all pre-computed facts for the magic
predicates. A naive firpoint computation of P and P™ produces the same result regarding

Q.

Proof. Basis: On one hand, for any h(A4) € D; in P, assume s rules are fired. They are of

the form:

h(Xo) & a(V1), - @V, r(X0), -, pal(X0); (s o £o)
Then
v (h(A)) = To(wo) (h(A) = fal{1 fola, Fel{Ivo(@r (BD)), oo vo(@(E)[1)), 1 < 5 < s]}).
Note that only those rules without IDB predicates in the body are fired in the first iteration
because no IDB facts existed in the initialized database.
On the other hand, for any adorned version h%¢( ;1) in P™ the same number s of rules are

fired since all the magic facts are pre-computed. They are of the form:
had(}}()) & ma’gichad) QI(};I)y e >(Zt(}7t)7 magicp1ad1’p%d1 ()21)7 R

magicpnadnapzd" (Xn); (fa, fos fe)

Since vy(magicy®) =T,

v1(h94(A4)) = Tp(vo) (h*(A))

= fal{l fyle, fo({Ivo(magics®), vo(@r(BL)), -y vo(@(Ee) 1)), 1 < 5 < sl})
= fal{lfola, fol{lto(@r(BL)), - vol@ E)IN), 1 < 5 < s[})

= T, (o) (R(4)) = v1(h(A))
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Induction: Suppose for any h(A) € Dy in P, and h*¥(A4) € DI in P™, if vp(h(A)) =
To(ve-1)(h(A)) = Tp(ve-1)(h*(A)) = vie(h*(A)), and v(magicy®®) = T, then
Va1 ((A)) = Tp(ve) (h(4))
= fal{l foles fel{lvr(a1(BL)), - v (@ (BD)), ve(p1(A1)), ory (2 (An)) 1)),
1<j<s)}),
= fal{lfple fel{lve(magicn), vi(a(Br)), -, vk(@:(Be)), vk (magicy, “™),
Ve (PE (A1), ., vi(magicy, “), vi(pEn(Aa))1 1), 1 < 5 < 8f})
= Ty(vks1) (B 4)) = vis1 (h*(4))
Based on the discussion above, we may conclude that for every atom A in P and its adorned

form A™ in P™, the certainty of A at every iteration is exactly same as A™. Therefore,

their certainties in the limit are also the same. O

3.5 Magic Tuples Generation for GSMS

In this section, we discuss how to evaluate GSMS rewritten program such that the rewritten
program may generate the same set of results as the original program at each iteration
of evaluation. The idea is that we pre-compute all magic facts and add them into the
straightforward GSMS rewritten program.

Given a p-program P, all rules generated for the same adorned rule 7%¢ are classified into
the same group. To do that, we can simply attach a symbol to each rule which indicates
rules generated from the same r%? have the same symbel. We make a copy of the rewritten
program P™, and standardize it to be P* \i.e., for any rule r in P*, we apply (maz, min, min)
as combination functions and T as the certainty. Then we evaluate P*® to obtain all magic
tuples and construct a new rewritten program (p™)’, alternative GSMS rewritten program,

in which all magic rules are eliminated, but all magic tuples pre-computed are added.
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Example 3.5.1 shows the intermediate results of a magic tuples generation for GSMS by

considering the program in Example 3.1.1.

Example 3.5.1. Intermediate Results of magic tuples generation for GSMS

Standardized GMS program p°:
gl:pbf(X,)Y) & magic_p bf(X),a(X,Y); (max, min, min).
92 : sup2_1 0(X) & magzc_p_b f(X); (maz, min, min).
92 : magicp-fb(X) & sup2.1.0(X); (mazx, min, min).
92 : sup2_1.1(X,Y) & sup2.1.0(X), p_fb(Y, X); {maz, min, min).
92 : magicpbf(Y) & sup2_1.1(X,Y); (max, min, min).
92 :pbf(X,Y) & sup2 1 1(X,Y),pbf(Y, Z); (max, min, min).
93 :p_fb(X,Y) & magz'c p-fo(Y),a(X,Y); (maz, min, min).
g4 : supd 1.0(Y) & magzc_p Fo(Y); (max, min, min).
94 : magic.p bf(Y) & supd 1.0(Y); (mazx, min, min).
94 :supd 1.1(Y, Z) & supd 1.0(Y), p-bf (Y, Z); (max, min, min).
94 : magicpbf(Y) & supd_1.1(Y'); (maz, min, min).
94 :p_fo(X,)Y) & sup4 1.1(Y, Z), p-bf (Y, X); (max, min, min).
a(1,2) ‘1—§ (=12
a(2,1) &5 {4 ).
a(1,1) &5 (,0 ).

magicp-bf(1) &; (-, -, ).
Evaluation Results:

p(1,2) - 1. p(1,1): 1. p(2,1): 1.

a(1,2) : 1. a(1,1) : 1. a(2,1): 1.

p-bf(1,2): 1 pbf(1,1): 1. p-bf(2,1): 1.
p-ALYL - p DL YL
sup2_1_0(1) sup2.1.0(2) : 1

sup4-1.0(1): 1 supd_1.0(2) : 1

supd 1.1(1,2) : 1 sup4_1_ 1(1,1) supd 1.1(2,1): 1.
sup2.1.1(1,2) : 1. sup2.1.1(1,1) : 1 sup2.1.1(2,1) : 1
magicp-bf(1):1 magicp-bf(2) : 1.

magicp-fb(1) : 1. magic_p_fb (2) 1.

Alternative GSMS Program (p*?)':
gl :pbf(X,)Y) b magicpbf(X),a(X,Y); (ind, pro, pro).
92 : sup2.1 0(X) & magicpbf(X); (maz, min, pro).
92 sup2.1.1(X,Y) & sup2_1.0(X), p-fo(Y, X); (maz, min, pro).
g2 :pbf(X,Y) & sup2 1. 1(X,Y),pbf(Y, Z); (ind, pro, pro).
93 1 p-fb(X,Y) & magic_p-fb(Y),a(X,Y); (ind, pro, pro).
94 : supd 1.0(Y) & magic_p_fbo(Y); (maz, min, pro).
94 :supd 1.1(Y, Z) & supd 1. 0(Y),pbf(Y, Z); (maz, min, pro).
94 :p_fb(X,Y) 25 supd 1.1(Y, Z), p-bf (Y, X); (ind, pro, pro).

05

a(lt 2) N <-= - ->'
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a(2,1) &5 (.

(1 1) 05’<-’ - >
magicp-bf(1) &; ().
magic-pbf(2) < (- ).
magic.p-fb(1) ‘ia (o)
magicp-£b(2) < (-, -).

Algorithm 3.5.1. A modified SNP for the GSMS rewritten p-programs

1: ProcedureSemi_Naive_Partion. GSMS(P,D,lfp(Trp))
2 forall A € By;
3 CyA)={l(a:0)(A: )€ D]}
4 v(A) = fa(C1(A)(a)); wherefq := Disj(n(A));
5:  end forall
6: new; :={A4|(A:a) € D};i:=1;
7. while (new; # @)
8: 1=i+1;
9: forall A € B, :
10: Ci(A) == Ci-1(A);
11: forall B € new;_, /\(CZ, SB) S Ci_1(A) /\B € Sp:
12: Ci(A) := Ci(A) — {la, SB)|}
13: end forall
14: forall (r: A < By,..., Bu; (fa, for fo)) € P* \3B; € new;,
where j € {1,...,n})
15: Ci(A) = C;(A) UH{l(af(A), SB)|}, where af(A) :=
folar, fo({lvii(Bi), -, vi1(Bn)l})),end Sp =
1B € {L,....,n}}
16: sb =r.gs//gs is the group symbol forr
17: forall((ry : 4, < Blg7 o3 Brg; (fdyfp,fc>) € P* A3Bj, € new;
Arg.gs == sb where j € {1
18: C.(Ay) = Cu(A) ULI(@f(As), So)]}, where af(4;) i=
fp(ar) fC({’Vi—l(Blg)v SRR Vi—l(Bng)'}»?and Sp =
(Bislig € {1,....,n}}
19: end forall;
20: end forall,
21: v = fa(Ci(A)(a)), wherefq := Disj(n(A));
22: end forall;
23: new; :== {A|A € By, v;(A) = vis (A}
24: end while
25: Ifp(Tpyp) = vis
26: end procedure

Different from GMS we need modified evaluation algorithms to evaluate (p

’
™) because rules

with the same group symbol conduct the same task for an adorned rule r®¢. If these rules
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are evaluated in several iterations, found atoms might do the self-improvement while supple-
mentary magic facts are prepared. Updated evaluation algorithm (Figure 3.5.1) guarantee
the rules with the same group symbol are fired at the same iteration.

Comparing “modified SNP” and “SNP” (Section 2.2), we will see lines from 16 to 19 are
added in Algorithm 3.5.1. These lines are used to force rules generated from the same ¢,
i.e. with the same group symbol, to be fired at the same iteration. For N and SN, we can
simply insert these lines to the proper places to obtain the modified algorithms, i.e., we can
add these lines after line 18 for both algorithms shown in Figure 2.1 and 2.2.

Theorem 3.5.1 establishes the correctness of the alternative GSMS. Here, we just highlight

the difference from Theorem 3.4.1 since the two proofs are quite similar.

Theorem 3.5.1. Alternative GSMS Correctness: Given a p-program P with a query
@ and facts collection D, P’s alternative GSMS rewritten program is P™ with facts collection
D™ = DUM, where M is the set of all pre-computed facts for the magic predicates. A Naive

fizpoint computation of P and P™ produces the same result regarding Q.

Proof. Basis: We ignore the proof here since it is the same as the basis part in the proof

of theorem 3.4.1. In this case, only rules without IDB predicates are fired.

Induction: Suppose for any h(A) € Dy in P, and h®d(4) € DI in P™, if vy(h(4)) =
Ty (1) (A(A)) = Ty(ve1)(h( ) = i (4(A)), then
vis1(h(A)) = Tp(v) (h(A))

= fal{1foles fo{ (@ (E)), oo k(@ B)), (D1 (AD)), oy (D (An)) 1)),

1<j<sh,

= fal{lfole, fel{lva(supnl), vi(@(Br))y oo vi(@e(ED)), vk (52(A2)), oy
V(2 (A))D) 1 < 5 < sl})

- fd({lfp(a> fc({lyk(suphz)v Vk(ql (El))7 a3 Vk(Qt(Et))v Vk(pgd3(A3))v
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V(P2 (A)) 1), 1 < 5 < sl})

= fal{lfo(c, fe({Iva(supn™), (@ (E1)), ..., vi(ae(Ee)), 1 < 5 < sl})

3.6 Efficiency Discussion

The disadvantage of magic sets technique is that rewriting the program incurs an overhead.
The more rules in a logic program, the more time is required to generate the rewriting
program. In this section, we study the growth of the running time of the proposed rewriting
algorithms introduced. For convenience, given a p-program P with a query Q, we use ‘m’
to denote the number of rules, ‘n’ to denote the number of constants existing in known
tuples. We use ‘k’ to denote the largest arity of the predicates in P, and ‘s’ to denote the
largest number of subgoals of rules in P. Therefore, in Datalog, the compiling time for both
GMS and GSMS can be represented as O(2fmks), and the evaluation time of the Datalog
program is O(n*k*m). However, the compiling time of the proposed techniques is O(n*k*m)
in the worst case.

First, for adorned rule generation, the running time of the algorithm in Figure 3.1 is O(ks).
Since there are 2°m rules are considered for the rewriting, the total running time for the
adorned rule generation is O(2mks).

Secondly, for magic rules generation, the algorithms in Figure 3.2 and Figure 3.3 run in
O(2%sm) to generate all (supplementary) magic rules since each adorned rule generation
takes O(s), and the rewritten program includes 2m adorned rules.

Thirdly, rewriting the adorned rules requires O(2*ms). In the worst case, for each rule r in

P, there are 2* adorned forms, then we will get 2¥m adorned rules. For each adorned rule,
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each subgoal is determined, and hence the running time for rewriting the adorned rules is
O(2*ms).

Finally, generating magic tuples for the given query takes O(k), but in the worst case when
type 2 disjunction function is used, this time is the evaluation time of the “standardized”
rewritten program, i.e., O(n*k*m), which is the complexity of evaluating Datalog programs.
Therefore, the total time complexity of magic sets rewriting is O(n*k°*m) when type 2

disjunction function is used; otherwise it is O(2*mks).
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Chapter 4

UNLOG : A Prototype System

To study the performance of magic sets techniques, we have developed a prototype deduc-
tive database with uncertainty, which implements the proposed rewriting algorithms. This
prototype, called UNLOG, was implemented in Java. It is platform-independent. The cer-
tainty domain is considered as [0..1]. In this chapter, we describe the details of the proposed
system. We first show the architecture of the system and its major components. Then we
describe the data structure. Optimization techniques incorporated are described at the end

of the chapter.

4.1 Architecture and Components

UNLOG is a single user, memory-based system. Figure 4.1 shows the system architec-
ture. When a p-program, saved in a file, is read into the system by the coordinator, the
p-program parser parses the source code and stores the rules and tuples into the storage
space. Necessary metadata is generated and collected at the same time, such as the type of
the combination functions, the type of query and the size of the tables. Next, an optimizer is

invoked to determine useful optimization techniques based on the metadata, such as magic
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sets rewriting and simplification. Then the evaluation process starts to compute the fix-
point. An appropriate evaluation algorithm is selected based on the metadata and system
configuration. Once the evaluation terminates, results are returned to the user through the

system interface or saved into a target file if desired. The components descriptions are as

P-program
& Query Q P-program & Q
C—':——_J,> » P-Program Parser
o Coordinator | Predefined Combination
uer ! : : revoke
— Function Library
4
Y b S ——
Magic Set
Rewriter
Query o s
P-program indexer
Evaluation  e—revoke—]
Y Processor :
: Status
Query Parser Simplifier
result S o
P-program optimizer
Parsed
Symbol
y
Revoke [ Status
i ‘ revoke
Status Meta data
Manager ‘
T Parsed
| ¢————————Symbols—
3 Revoke : Data y
| Query > Operator
Processor | s
result Data Manager

( Main Memory
Storage Space

Figure 4.1: System Architecture and Components

the following.

e Coordinator

The coordinator is the central component of the prototype system. It interacts with other
modules, controls the data flow, and determines the execution order between the modules.
It provides interface for the user, accepts the request, invokes different components and
outputs the final results.
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e Parser

The parser performs two tasks: program parsing and query parsing. Each of these reads the
input and collects information to identify basic logical units. A logical unit is a meaningful
element in the source language called token. The parser takes the collected tokens in stream
and builds the syntax representation in the memory. Then, a top-down parsing technique
is used to determine the grammar of the program based on the syntax representation. Ac-
cording to the p-program grammar, we create a well-defined data structure into which we
store the rules and atom-certainty pairs (tuples).

¢ Evaluation Processor

This component computes the aggregation view for the input p-program. Three multiset
based evaluation algorithms are supported in our system. They are naive (N), semi-naive
(SN) and semi-naive with partitioning (SNP). The practical evaluation algorithms for eval-
uating the generalized magic sets rewritten programs are also implemented.

e Data Manager

The data manager is a set of libraries which communicates with the main storage manager
and other components. The basic operations of the data manager include data storage, data
deletion, data updating and data retrieval.

¢ Query Processor

The query processor in UNLOG is a component that allows a user to report structured data
pulled from the storage. The major tasks of the query processor include (1)receiving queries
from the coordinator, (2)generating optimized query plan, (3)informing data manager to
manipulate the data based on the query plan (4) and encapsulating the results.

e P-Program Optimizer

The P-program optimizer is a key component that implements the optimization algorithms
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when computing the fixpoint of a given p-program. This component includes three modules.
They are the magic sets rewriter, the indexer, and the simplifier modules.

Magic sets rewriter implements GMS and GSMS algorithms. The input to this module is
a parsed p-program and a query. Its output is a new set of rules and the seeded magic
atom-certainty pair referring to the bound arguments in the query.

The indexer is used to speed up locating tuples in the database. In our system, indexer
generates indices for EDB atoms and IDB atoms derived during query processing. It is also
responsible for creating indices for intermediate data structure and using them.
Simplification is an important technique to discard unnecessary rules in a logic program.
Reducing the size of the program may result in increasing efficiency during the evaluation
of programs. However, parametric framework is based on multisets and uses uncertainty
and hence, a careful use of simplification is required (see Section 4.3.3). In our current
engine, the simplifier conducts two major tasks: (1) eliminates rules that do not contribute
to results of a given query when magic sets rewriting technique is not applicable; (2) reduces

duplicated magic rules.

4.2 Data Structures

A suitable data structure is crucial to achieve better performance. Since Sun JDK is our
implementation environment, we used existing classes, data structures and implemented
algorithms in Sun JDK. For example, we use the quick sort algorithm is used to re-order
subgoals, hash function for indexing, and existing data structures such as hash table, queue

and stack are used to store tuples and intermediate results.
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4.2.1 Representation of Indices

Indexing is a technique for fast locating elements in a structured data collection. Many
types of indices exist such as B-tree, R-tree, Hash index and bitmap index etc. In UNLOG,
we use indices to locate tuples, tables, and intermediate results. As most of the search
operations are single search we mainly use hash indexing in our prototype. For any element
to be indexed, we convert it into a string, which makes it unique in the context, described
later. Then, we use the function called HashCode(s : String) in Sun JDK to generate a
hash key for the element. A pair combining the hash key and the reference of the element

is pushed into the relevant hash table.

4.2.2 Tuples

A tuple is an atom-certainty pair of the form “p( ;1) : o, where Aisa sequence of constants,
and a € [0,1] is its associated certainty. Since tuples in the same table have the same
predicate name, we do not save the predicate name; instead, we use hash keys to identify
tuples. We first concatenate all terms with “.” to create a string. Then, we use the function
HashCode(s : String), which returns a hash key for the tuple. For example, for p(1,2) : 0.5,
we first create string “p_1.2”, then convert it to a hash code using the function. The hash
code is used as the ID of the tuple. The IDs may be used for further indexing. To save the
memory space, we do not save every ground term for tuples. All ground terms are stored
in a link list. References are assigned to the corresponding positions in tuples, as showed in

Figure 4.2.
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Figure 4.2: Internal representation of a tuple p(1,2) : 0.5 in UNLOG
4.2.3 Tables

A table in our implementation, similar to a table in relational databases, is a collection of
tuples. Every table has a name, a list of tuples, and a hash table used to save the index.
The ID of the table is generated by the function “HashCode(s:String)” using the table name
as input. A hash table is used an index for the table, where each element in the hash table

points to a tuple in the table. Figure 4.3 shows the structure of a table. While this index

1D —»  Tuple; —» ... Tuple,
Name X x
Index | Key, —» ... > Key,

Figure 4.3: The structure of index for a table in UNLOG

is useful for N and SN evaluations, it is not beneficial much for SNP method since for a
rule to be fired , it must have at least one new tuple for one of the subgoals found in the
previous iteration. To avoid exhaustive search of the table, we partition the tuples in the
table into two linked lists. One list is used to save new tuples obtained at last iteration.
Another list is used to save the tuples in that table whose certainties were not changed at
previous iteration. If the partition for “new” tuples is empty, we know that there would be

no new tuples for the table. Figure 4.4 shows the structure of a partitioned table.
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ID J—» Tuple;, ¥ ... —»l Tuplen i-NewTuple1 — .. —» NewTuple,
{ V\
Index —» Key; - wes o e e KeYmn

Figure 4.4: The structure of index for a partitioned table in UNLOG

4.2.4 Rules and Queries

To represent a rule r in our implementation, we create data structures for predicates, implicit
constraints implied between subgoals and combination functions. A predicate p(X1, ..., X»)
in a rule represents a relation. We use a field “ID=HashCode(name)” to identify a predicate,
and a link list to save its terms. The head of a rule and its subgoals in the body are
all predicates. Being expressed within the same rule, implicit constraints are introduced

through the typing mechanism of the terms. For example, a rule:
roh(X,Y) & pX,Y), gV, a); (fa, fp, fo)

we know that p.Y = ¢.Y and the second argument of q is a constant ‘a’. Depending on the
number of parameters, we classify implicit constraints into two groups.

e Unary constraint is of the form X=a, where X is a reference pointing to an argu-
ment in a rule, and a is a constant.

¢ Binary constraint is of the form X=Y, where X and Y are the references pointing
to two variables with the same name but different locations in subgoals.
Due to a well known heuristic “it is better to make selections before joins” in query opti-
mizations, we classify the implicit constraints into two parts in the data structure. Those
constraints verified by selections are grouped together. Thus, we create the data structure
from rules shown in Figure 4.5. A query is a special case of a rule which does not have

body. Hence a query includes head predicate, implicit constraints, and a unique ID.
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Figure 4.5: Rules in UNLOG

4.3 Optimization Techniques

In the last two decades, a number of query optimization techniques have been introduced
for deductive databases, such as [HN84, BMSU86, Vie86, Sun92, Lus92, RRSS94, Hav97,
JS94, SZ04). While most of these techniques are not directly applicable to programs with
uncertainty, we may consider the idea, and adapt and extend them to our context. For
instance, in section 3.3, we discussed the problems of using magic sets in PF. In our system,
we consider such techniques, which can be adapted and applied in our work. They are

studied in the following sections.

4.3.1 Subgoals Reordering in Magic Sets Rewriting

We proposed extended magic sets techniques to PF in Chapter 3. In the algorithm in
Figure 3.1.1, we proposed that re-ordering subgoals is based on the order of variables which
are bounded. A variable called “order” is attached to every subgoal. We use a counter
to record the number of subgoals visited. Each time a subgoal is visited, this counter
is incremented by 1. Finally, we sort the subgoals based on “order,”. There are two
justifications that are associated with counters for doing this reordering. On one hand, the
re-ordered subgoals clearly represent which variables are bounded. There is no need to use

extra data structure to represent sideways information passing graph which was used in the
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magic sets transformation. On the other hand, re-ordering plus materialization corresponds

to “pushing selections into joins”. For example, consider the following rule:
WX, W) & r(W),p(X,Y),q(Y, Z); (maz, min, min).

In general, the join plan (p(X,Y) > ¢(Y,Z)) < r(W) performs faster than (r(W)
p(X,Y)) pa q(Y, Z) because the join p(X,Y) i ¢(Y, Z) is restricted by implicit constraint
“p.Y = ¢q.Y”. Certainly, when r(W) is empty or extremely small, the first execution plan is

better. These, however, are exceptional cases, which we do not consider.

4.3.2 Predicate Partitioning

In the context of bottom-up evaluation, given two relations R and S in a p-program P, we
use A to denote all improved atom-certainty pairs at iteration i and use A to denote the
rest of atom-certainty pairs. An obvious way to compute R < S is to reduce unnecessary
joins at every iteration, that is,
AR S) = A((A(R) b2 A(S)) U (A(R) pa A(S)) U (A(R) = A(S)))

The expression on the right hand side (RHS) excludes the uncertainty join A(R) < A(S)
because we may obtain the results for A(R) b A(S) from the previous iteration by the
bookkeeping technique. For example, if |A(R)| = 50, |[A(R)] = 200, |A(S)| = 50, and
IA(S)| = 300, then RHS does not perform A(R) v A(S), which saves 200 x 300 = 60000
joins of tuples. Note that in PF atoms derived at some iteration will continue to be derived at
all the subsequent iterations in the fixpoint bottom-up evaluation. Less and less derivations
produce “better” certainties, so the potential of the idea in improving performance is huge.
This idea is developed in [SZ04], called partitioning.

The idea of partitioning for programs with uncertainty was developed in [SZ04] and the

algorithm proposed for partitioning was called semi-naive with partitioning, or SNP for
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short. In our system, we implement SNP. Every relation saved in the database is divided
into two partitions: old and new. We implement joins in a rule at avoiding performing the

joins which consists of only old tuples, denoted as partition.

4.3.3 Program Simplification

There is no doubt that evaluations of a logic program is faster with less number of rules.
Simplification is a technique to remove unnecessary rules. In our implementation, we exe-
cute simplification procedure under two situations. One situation is when we wish to apply
magic sets rewriting technique but there is no bound argument in the given query. For

instance, consider the following example:

Example 4.3.1.

Original Program
p(X,Y) & a(X,Y); (ind, pro, pro).
7o .p(X Y) & p(Y,Z),p(Y, X); (ind, pro, pro).
51 q(X,Y) & p(X,Y); (ind, pro, pro).
0.

a’( 12)(—-7(7 - )
a(2,1) 5 ().
a(1,1) & (. ).
p(X,Y).

Rule “r3” in this example does not contribute to answer query @ = p(X,Y). Besides,
the system will not generate the magic sets rewritten program because there is no bound
argument in ). To simplify the program, in this example, we start from the query with
predicate name p. For every rule r with p in the head, we recursively check the IDB subgoals

and collect their names a collection C. Such a rule “r” is then marked “scanned”. Then,
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we get the next predicate name from C, and continue scanning until C is exhausted. This
yields all useful rules, which are marked “scanned”. Algorithm 4.3.1 shows the steps to
eliminate unnecessary rules.

Another situation in which we may be able to simplify a program is when the magic sets
rewritten program is generated, which may include duplicated magic rules. In general, we
should not eliminate the rules in the input program because the parametric framework is
based on multisets, and atoms derived from rules are combined by disjunction functions. If
there are two rules that are exactly the same, we cannot eliminate any one of them because
any such rule might result in a new derivation of instances of tuples, which are duplicately
derived by another rule. However, magic rules are different, in that each magic fact derived
by magic rules is always associated with certainty T. The number of instances of such
tuples does not change the certainties of the magic predicates. Therefore, we may remove

the duplicate magic rules from the MS rewritten program.

Algorithm 4.3.1. Simplify Program

1: procedure Simplifyp(Q, P)

2: input: A parsed p-program P and a query Q
3. output: A collection of useful rules w.r.t Q
4: begin

5: Initialize a queue C=0;

6: Initialize a collection S=0;

7 C.enqueue(n(Q));

8: while (N = C.dequeue())

9: forall r € P, n(r.head) = N and r.scanned = false
10: forall subgoal A in the body of r.
11: if (m(A) = p is an IDB)

12: C.enqueue(p);

13: end forall

14: S.add(r);

15: r.scanned=true;

16: end forall

17:  end while

18:  return S;

19: end
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4.3.4 Materialization and Pipelining

When evaluating a rule, the pipelining approach considers a sequence of joins of subgoals as
a bunch of small pieces of jobs. A sets of pointers are used to locate the tuples concerned.
The tuples currently pointed to are chosen to participate in a join, and results are materi-
alized. Then, the pointers are moved (piped) to a new combination of tuples for the next
join. This process is repeated until all possible combinations are discovered.

In materialization, we consider a sequence of joins of subgoals as sequential tasks. An in-
termediate relation is introduced to save the result of the first two subgoals after applying
joins. Then, the intermediate relation and the third subgoal are considered as the input to
the next join, resulting in a newer intermediate relation. This process is repeated until all
subgoals are joined.

Both materialization and pipelining have advantages and disadvantages, but we prefer ma-
terialization for the following reasons. First, a major advantage of pipelining is that it
requires less memory space. However, for both SN and SNP evaluation, we have to book-
keep intermediate results, which include all derivations at previous iterations but not for the
current iteration, the structures for book-keeping are M; for SN and C; for SNP (Section
2.2). If we use M; or C; to store the temporary results for joins, the major disadvantage of
materialization is eliminated, compared to pipelining in our context. Secondly, a well-known
heuristic to improve the joins operation performance in database is to “push selections be-
fore joing”. If there are any implicit constraints of the form X = a, we may performs joins
faster. One may argue that if the indices of tuples are attached with some metadata, which
indicates the implicit constraints, they may achieve the same performance. For instance,

[SZ04] uses index plans to implement the idea. However, when the size of the indices is

61



large, the overhead of using indices may be costly. In our work, we do not have heavy in-
dex operations for SNP. Materialization benefits from disk I/O cost. Although our current
system prototype is memory-based, materialization helps to deal with large data when they

are stored on disk.
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Chapter 5

Experiments and Results

In this chapter, we present our experiments on evaluating performance of the proposed
techniques and other optimization techniques implemented. We report the test results and
relevant analysis.

Different test cases might lead to different test results. Some optimization techniques bene-
fit from some test cases and some might benefit from other techniques. Combining different
optimization techniques may result in overhead. To assess the performance of the proposed
techniques, we conduct a number of experiments under different test cases. For each test
case, we consider different input parameters, such as combination functions, types of data
sets, different certainty of rules and different combinations of optimization techniques.

To show the correctness of the implementation, we do the following comparisons. First, we
compare the rewritten program of a program P with the one generated by CORAL for the
standard case of P. Secondly, we compare our evaluation results with Zheng’s implementa-
tion [SZ04]. Finally, we study the performance of our system with different optimization

including magic sets.
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5.1 Experiment Environment

To perform the experiments, we use Sun’s Java running time environment (JRE) 1.5.1.
The Java virtual machine is installed in a Dell desktop computer with Pentium 4 CPU of

2.4GHz, 2G RAM, 250GB hard disk, and runs under windows XP professional 2003.

5.2 Test Programs Generation

Recursion is an attractive feature of deductive databases. A recursive program is the one in
which the depth graph has a cycle. The recursion could come from the same rule or several
rules. A p-program P is linear if there is at most one occurrence of a head predicate in the
body of any rule, defining in P; otherwise, P is non-linear. To study the performance of
magic sets, we adopt the same-generation cousin (SGC) problem, which is widely used as
the test program in standard deductive databases. A linear version as well as a non-linear

version of SGC program are introduced as follows.

Example 5.2.1. P1: Linear version of the SGC program

r1:sge(X, X) & person(X); <fd,fp, fe)-
T2 : SgC(X, Y) & pCL’f‘(.X, Z),SgC(Z, W),par(Y, W)7 (fda fp?fc>-
---{ Relevant facts } - - -

Example 5.2.2. P2: Non-linear version of the SGC program

T SgC(X, Y) (3' fla't(X> Y)v <fd7 fpa fc)

o 1 59c(X,Y) & up(X, Z21),s9c(Z1, 22), flat(Z2, Z3), sgc(Z3, Z4), down(Z4,Y);
<fdvfp7 fc)

---{ Relevant facts } - - -

Each of either program of the above has two rules. To experiment programs with more
rules, we define a N x NN structure which represents a SGC program holding 2 x N? rules.

A N x N SGC program has N? sets of rules. Each set R;;, where 1 < i,5 < N, contains
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two rules. If ¢ = 1, Ry; includes r¥ and r,!7 which are the rules in either Example 5.2.1 or
Example 5.2.2, and attached with subscript 15. If 1 < i < N, R;; also includes two rules:

9" and a new rule with attached subscript, denoted as r3¥:
rs : sgeii(X,Y) & sgeao1);(X,Y); (mazx, min, min).

For example, a 2 x 2 p-program for P1 in Example 5.2.1 is shown in Figure 5.1, denoted as
“P1,X2”. In the graph, the program includes 8 rules divided into four sets and each set
contains 2 rules. In the sense of evaluation, atoms for sgcp; cannot be derived until sgei;
is prepared. We apply combination functions “(max, min, min)” to rs in order to initialize
the certainty of sgco; at the start point is 0.5. In this case, the 2 x 2 P1 combines four

copies of P1 and evaluate them at the same time.

TRy e — I
¢ sgea(X, V)& $gC11{X, Y);<max, min, min > . © sgc(X, Y) eoi 5gC1(X, Y} :<max, min, min >,
sgea(X, Y)é’i par(X, Z), sgea(Z, W), par(Y, W);<ind, pro, pro > . © sgca(X, Y) 90.5_ par(X, Z), sgc2(Z, W), par(Y, W),<ind, pro, pro > .
Ry Re
T sgen(X, Y)é):_s_ person(X, Y);<ind, pro, pro > . sgciAX, Y) é?i person{X, Y).<ind, pro, pro > .
- sgen(X, Y)& par(X, Z), sgci(Z, W), par(Y, W);<ind, pro, pro > . sgcia(X, Y)QO_'E_ par(X, 2}, sgcs2(Z, W), par(Y, W);<ind, pro, pro > .

Facts

Figure 5.1: A 2 x 2 structured P1

Moreover, for magic sets rewriting technique, an important parameter affecting the efficiency
is the input query Q. Different types of queries may lead to different potential set of relevant

facts, which contribute to the answers of Q.

5.3 Test Data Sets Generation

In standard deductive databases, a number of data sets for SGC have been introduced and
used to measure the efficiency of query processing and optimization techniques [RSS94,
DMP93, BR86, KNSSS90]. Zheng [SZ08] adopted these data sets and made them suitable
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for p-programs by incorporating uncertainty rules and combination functions. In this thesis,
we employed the relevant data sets from Zheng for P2 and developed our own data sets T,
for P1. To demonstrate the relations between tuples, we introduce the notation of data set
graph (DSG), which is limited to generation of binary tuples and is suitable for P1 and P2.
DSG is a directed graph in which vertices are constants. An edge (A, B) from A to B is
labeled with a predicate name p. To construct a data set, we exhaustedly search the whole
data set graph, and for each edge, we generate a fact whose predicate is the label of the
edge and the arguments are the labels of the vertices connected. The certainty associated
with the tuple is generated by the data set generation program developed. Figure 5.2 shows

how to generate facts based on a data set graph.

up(1, 2):.0.5
down(2, 1): 0.5

(a) data set graph (b) data set generated

Figure 5.2: A data set graph and the tuples it denotes

Below, we present the DSGs for the data sets generated and used in our implementation.
e Data set T,,

The DSG of T, (see Figure 5.3) looks like a “balanced” binary tree, in which all leaves are
at the same depth. Each node has an outgoing edge to its parent, and each parent has two
edges pointing to its children.

e Data set A,

The DSG of A, shown in Figure 5.4 looks like a pyramid. As the number of layers in this
data set increases, the size of the bottom layer increases. There is at most one matched

path from a node to its same generation node. It means that if there is an inference for an
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Figure 5.3: The DSG graph of data set T,

answer, there is at most one match. To find a same generation node in level i, the derivation
must go to the top-level layer and then down to the layer i. The more layers it has, the

more computation time is required to find the match.

down up down up

e

down up down up down up  down up

ﬂaté\/k Mﬂatj%ﬂatjok

down up down up down up down up down up down up
oY vy
v

Figure 5.4: The DSG graph of data set A,

fjﬁ
3 ———p]

¢ Data set B,

The DSG of B, shown in Figure 5.5 contains n layers of nodes. Each layer has 8 nodes.
There are four arcs connecting a lower layer and its immediate higher layer, two of which
are upward and the other two are downward.

e Data set C,

The data set C, is very similar to B,,. Each layer in C, includes a single linked list of 8
nodes. Each node has an arc connected to the corresponding node at the higher layer. All

arcs connecting a higher layer to its immediate lower layer are bi-directional.
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Figure 5.5: The DSG graph of data set B,

flat flat flat flat flat flat fla

flat flat flat flat flat—p{ —fat flat

flat: flat flat flat flat flat fiat
flat flat ﬂat-»é—ﬂat flat flat flat

Q. -
(>

f‘

u down u’ down n
ﬂatjiﬂat flat flat f ﬂatziﬂat flat
flat flat flat ﬂatﬁﬂat fla flat

=

|<._M

Note: for convinience § = up down

Figure 5.6: The DSG graph of data set C,

e Data set F,
F, is a variant of C,. Unlike C,, the length of each layer and the number of layers in F),
are flexible. The number of layers is the same as the length of each layer. Each node in the

lowest layer has an extra arc to the corresponding node of each higher layer.

e Data set S,

Sy includes 2n linked lists, each of which has n nodes. The first n lists have upward links,
while the second n lists have downward links. There is only one link between two nearest
linked lists.
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Figure 5.8: The DSG graph of data set S,

e Data set T, ,

This data set represents an m-ary tree, where n indicates the height of the tree and m is the
number of children an internal node has. As an example, Figure 5.9 shows the DSG of T3,
where each internal node that has three children and provides many paths between any two
same generation nodes. When the height n increases by 1, the total number of edges in the
n—1 .

graph increases by 3m
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Figure 5.9: The DSG graph of data set T3

e Data set U, ,,

Unm is another variant of C,. It makes the number of layers n and the length of each

flat

flat O flat flat O —x

‘.
O =
Q* n
q‘— flat O . flat o

at O flat ' flat ‘ >y

>

le m

Figure 5.10: The DSG graph of data set Uy,

layer m flexible. Each layer is revised to be cycle-linked. This also causes the connections

between two nearest layers to be more frequent.

5.4 Performance Evaluation Standards

We consider the following parameters to measure the performance.

e The evaluation time: the time to compute the least fixpoint. We use 7(D) to denote
the computing time for data set D.

e The rewriting time: the time used to rewrite a p-program. We use £(D) to denote this
compile time for data set D.

e Facts generated: The number of IDB tuples generated, obtained by counting the number
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of tuples in the database in the fixpoint evaluation minus the number of tuples in the EDB.
We use §(D) to denote this number for data set D.

e Potential Facts Ratio: x(D, Q) = [{A4|A € §(D) and QrA}|/6(D), where A is a desired
tuple subsumed by the query (). This ratio indicates the portion of the derived facts that
is matched or subsumed by the user query @. A smaller value for x(D, Q) is expected to
bring advantage for using MS technique.

e Speedup: \(D) = 7(D)/(7™(D) + £™(D)).

5.5 Test Results and Analysis

Due to the limitation of the memory, the database size considered in our experiments was in
the range from 5,000 to 100,000 tuples. We report our experimental results in the following

sections.

5.5.1 N, SN and SNP

Without applying the proposed magic sets techniques, Table 5.3 shows the speedups of
semi-naive (SN) over naive (N) and semi-naive with partition (SNP) over N by evaluating
different types of test data. Row 1 records the speedup of SN for the programs with
uncertainty, where a = 0.5 and (fq, fe, fp)={(ind, %, ). Table 5.4 shows the running time for
some test cases for P2 with “1 X 1”7 structure in our system and the running time for the
same test cases in Zheng’s implementation “Z3”. Note that the numbers of “UNLOG” and
“Z3” shown in Table 5.4 are not comparable because “UNLOG” was running under Java
virtual machine, and Zheng’s implementation was written in C'+ + and the target code was
running above the operating system. However, we may compare the trend of performance

gained from the different test cases. It seems that “UNLOG” achieves a better improvement
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Table 5.3: Speedup A of SN over N and SNP over N

Tig | Ag | Bes | Coa | F32 | Sea | T54 | Uss o
SN [287(105|104]1.03]1.13}1 1.03 | 1.07
SNP | 717|256 |1.40(1.18 1231 |0.75|1.051.03

Table 5.4: Running time of N, SN and SNP for some test cases with “1 x 1” program
structure (time in millisecond)

Ag By Céa F3y
UNLOG | Z3 UNLOG | Z3 UNLOG | Z3 UNLOG | Z3
N 64,100 | 560716 | 766 53,047 | 801 147,562 | 146,078 | 1417,768
SN 44,234 260,575 | 735 880 859 931 128,500 | 51,213
SNP | 16,719 12,824 | 547 851 750 822 63,281 43,843
Se4 T54 Uis,10
UNLOG { Z3 UNLOG | Z3 UNLOG | Z3
N 47 37,263 | 89,219 94669,628 | 3,688 13,730
SN 47 711 86,625 113,644 3,438 6,199
SNP | 62 60 85,016 82,008 3,578 6,159

of N and SN evaluation than “Z3” does. The reason is the difference of joins manipulation.
We believe that materialization technique, compared to pipelining, results in “UNLOG”
achieving better performance for N and SN. Relevant discussion is referred to in Section
4.3.4. Therefore, although we may see programs benefit from SN and SNP, the speedup
reported in our implementation is much smaller than the speedup reported in [SZ04]. The

speedup of Zheng’s engine by comparing N over SNP ranges from 2 to 213 times for the

same test data; whereas, we obtained speedup for SNP over N ranges from 0.75 to 7.17.

5.5.2 SN vs SN+GMS

As in the worst case, magic sets techniques may not result in an efficiency increase when x
is close to 100%. It happens when all the EDB facts are potentially relevant to the given
query. We focus on finding the speedup when the potential facts ratio x varies between 1%
and 20%. Table 5.5 shows how SN is affected by GMS. Columns 2, 4, and 6 record the

speedup ranges obtained for the standard case, where a = 1, (fy, f¢, fp)=(mazx, min, min).
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Table 5.5: Speedup X of GMS for SN

x=1% x = 5% x = 10%
a=1 a=05 a=1 a=0.5 a=1 a=05
SN| 5~700(2.9~550(025~50102~4521014~17910.12~ 16

Table 5.6: Impact of GMS for SN with different data sets, o = 0.5

Q) MAn) [ X8 @) AMB) [ XCor @0 NCo) [ X(Fnn @) ANF)
15.8% 12.0 18.4% 0.5 19.8% 0.35 19.1% 2.5
8.7% 18.1 10.1% 1.3 9.7% 1.2 10.5% 4.1
4.2% 51.2 5.3% 3.8 4.65% 4.4 4.5% 6.6
2.7% 95.3 3.0% 9.0 3.0% 8.6 3.8% 8.9
1.7% 169.0 }| 1.77% 13.7 2.1% 13.6 2.5% 16.5
T Q) ML) [ X @) M) [ o0 @) M) [ X @A)
19.65%  4.03 | 2.62% 10.0 20.2% 3.0 13.6% 0.1
7.55% 14.12 | 1% 26.3 12.7% 13.4 9.0% 0.15
4.54% 22.6 0.61% 40.6 4.3% 49.0 3.97% 0.3
3.21% 31.1 0.43% 98.0 1% 550.0 2.4% 0.7
2.48% 41.49 0.83% 612.0 1% 2.9

For example, considering SN evaluation with certainty o = 0.5 and x = 1%, the speedup
we obtained ranges from 2.9 to 550 times. Columns 3, 5, and 7 indicate ranges for programs
with uncertainty, where oo = 0.5 and (f3, f., fp)=(ind, *, %). From Table 5.5, the evaluation
performance obtained for the standard p-programs is better than p-programs with uncer-
tainty. The smaller the x is, the bigger the difference between the two speedups is.

Table 5.6 shows more details for SN, where oo = 0.5, (fq, fe, fp)={(ind, *, ). There are eight
types of test cases reported in this table. The first column for each case represents the y
and the second column represents the speedup. Figure 5.11 shows the speedup A based on
different chi values. The horizontal axis is chi, and the vertical axis is the speedup A. The
potential facts ratio x is an influential parameter affecting the speed. The smaller x is, the
larger speedup we obtain. Whatever type of data sets used, the test program benefits from
GMS when x is small. The degree of impact of GMS is determined by the complexity of

the data set and its structure.
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Figure 5.11: x/A graph of GMS for SN with different datasets

5.5.3 SNP vs SNP+GMS

In the previous section, we analyze how GMS affects SN evaluation. In this section, we are
to report how GMS affects SNP evaluation. Table 5.7 shows how SNP is affected by GMS.
Columns 2, 4, and 6 record the speedup ranges obtained for the standard p-programs, where
a =1, (fs, fe, fp)y={(maz, min, min). Columns 2, 4, and 6 indicate the ranges for programs
with uncertainty o = 0.5, where (fy, fe, fp)={(ind, *,*). From Table 5.7, the smaller y is,

the larger the speedup benefiting from GMS is.

Table 5.7: Speedup A of GMS for SNP

a=1 a=0.>5 a=1 a=0.5 a=1 a=0.5
SNP | 3.5 ~ 400 2~2801 05 ~38104~339]027~11.1]03 ~ 8

Table 5.8 shows more detail for SNP, where o = 0.5, (f4, fc, fp)={(ind, *,*). The first column
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Table 5.8: Impact of GMS for SNP with different data sets, o = 0.5

@) NA) | xBu@) AMB) [ X0 @0 NGCo) [x(Fn@) A
15.8% 5.84 18.4% 0.59 19.8% 0.44 19.1% 2.48
8.7% 7.98 10.1% 1.32 9.7% 1.42 10.5% 3.97
4.2% 21.54 | 5.3% 2.79 4.65% 3.85 4.5% 6.83
2.7% 34.5 3.0% 7.39 3.0% 6 3.8% 8.1
1.7% 50.4 1.77% 11.7 2.1% 8.86 2.5% 12.3
X(Tr, Q) MT) | X(Tom, @) MTum) | X(Unm, Q) )‘(UHM) X(Sm Q) /\(Sn)
19.65% 4.88 | 2.62% 11.4 20.2% 2.5 13.6% 0.19
7.55% 9.84 | 1% 19.3 12.7% 10.3 9.0% 0.31
4.54% 16.29 | 0.61% 33.89 4.3% 39.36 3.97% 0.75
3.21% 26.04 | 0.43% 59.72 1% 400 2.4% 1.46
2.48% 31.52 0.83% 455.1 1% 6.07

in the table represents the x ratio and the second column represents the speedup. Figure
5.12 shows the trend of how different types of datasets benefit from GMS.

As a result, SNP is also beneficial from GMS. Like SN, the degree of influence of GMS is
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Figure 5.12: x/A graph of GMS for SNP with different datasets

determined by the potential facts ratio x. The smaller x is, the more benefit the programs

gain from GMS technique.
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5.5.4 SN4GMS vs SNP+GMS

By comparing the influence of GMS to the different algorithms, we examine the test results
from two aspects. First, we examine the speedup gained for SN over SNP by comparing
Table 5.6 with Table 5.8. For most test cases the evaluation of SN achieves better perfor-
mance than that of SNP. For instance, “SN+magic” achieves a speedup of 12 times faster
than SN, while the result of “SNP+magic” is only 5.84 times faster than SNP for A, by
considering x = 15.8%. Figure 5.13 shows the significant difference. Secondly, we com-
pare the actual running time between “SN+GMS” and “SNP+GMS”. Table 5.9 shows the
running time for some test cases that represent the general situation of different types of
test data. The second row shows the SN running time of the GMS for P2, where a = 0.5,
(fa, fe, foy=(ind, *,%). In most cases, “SNP + GMS” performs faster than “SN+GMS”,
except “T,” which has the less complex data structure, i.e., less cyclic data than other data
sets.

As a result, we conclude that different evaluation schemes yield different efficiency gains.

Table 5.9: The running time for SN+GMS and SNP+GMS for some test cases (time in
millisecond) for P2 with “5 x 5” program structure, x ~ 5%

Tig | Ao | Bes | Ces | Fis Sea | Ts54 | Uso
SN+GMS | 250 {688 1,766 | 5,250 | 7,234 | 2,735 | 144 | 564
SNP+GMS |94 | 766 | 1,656 | 4,672 | 6,250 | 1,641 | 297 | 547

Semi-naive evaluation benefits more from GMS rewriting than SNP does. However, “SNP
+ GMS” yields better performance than “SN + GMS” does, especially when the test data

is in a more complex structure.

5.5.5 SN4-GMS vs SN+GSMS

Table 5.10 shows how SN is affected by GSMS. Columns 2, 4, and 6 record the speedup
ranges obtained for the standard p-programs. Columns 3, 5, and 7 indicate the ranges for
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Figure 5.13: Speedup graph of SN4+GMS vs SNP+GMS

programs with uncertainty, where the rule certainty set is & = 0.5 and (fa, fe, fo)=(ind, *, *).

Comparing Table 5.10 with Table 5.5, “SN+GSMS” achieves better performance than

Table 5.10: Speedup A of GSMS for SN and SNP

x = 1% x =5% x = 10%
a=1 a=0.5 a=1 a=05}) a=1 a=105
SN 12~1700 | 1.3 ~ 395 [ 0.76~64|01~33]02~19}(<0.1)~145
SNP| 13~651 |1.03~311{033~51|01~2702~17](<0.1)~13

“SN+GMS” does for most standard p-programs, whose certainty are always 1. Like Dat-
alog program, for standard p-programs, the GSMS rewritten program achieves better run-
ning time by reducing intermediate joins for magic predicates and supplementary magic
predicates. However, to retain the dependency of the subgoals in a rule, we modified the
evaluation algorithms for GSMS (Section 3.5) to avoid the evaluation bias of uncertainties
between the original program and the GSMS rewritten program at every iteration. Compu-
tation for every supplementary magic predicate at every iteration has to be re-applied while

most of these computation may be saved for the standard p-programs and hence, computing
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Table 5.11: Impact of GSMS for SN with different data sets, @ = 0.5

X(4n, @) A(An) || X(Bn, Q) A(Bn) || Xx(Cn, Q1) MCn) | X(Fr, @) A(Fn)
15.8% 9.47 18.4% 0.37 19.8% 0.27 19.1% 2.6
8.7% 16.6 10.1% 0.9 9.7% 1.28 10.5% 4.4
4.2% 47.6 5.3% 4.1 4.65% 4.59 4.5% 6.6
2.7% 69 3.0% 9.9 3.0% 10.6 3.8% 8.7
1.7% 105 1.77% 19.4 2.1% 17.04 || 2.5% 11.7
X1, @) AT0) | X(Toms @) ATom) | XUy @) AlUnm) || X(Sn, @) A(Sh)
19.65% 2.58 | 2.62% <01 20.2% 3.0 13.6% < 0.1
7.55% 9.95 | 1% 13 12.7% 134 9.0% 0.1
4.54% 226 |0.61% 54 4.3% 43.0 3.97% 0.22
3.21% 39.8 | 0.43% 92.0 1% 395 2.4% 0.56
2.48% 65.7 0.83% 453.0 1% 1.3

the results for supplementary magic predicates becomes overhead in GSMS rewritten pro-
grams with uncertainty. Therefore, “SN+GMS” performs better than “SN-+GSMS” does
for p-programs with uncertainty for most cases. Exceptionally, by examining Table 5.6, the
GSMS performance for data sets “B,,” and “C,” is better than GMS. The proposed GSMS
rewriting includes two stages when the type 2 combination function is applied. In the first
stage, we generate the straightforward GSMS rewritten program. The second stage is to
obtain all magic facts by evaluating the conversion from from the straightforward GSMS
transformation program to a standard p-program. Compared to GMS, the second stage
may yield better performance in GSMS, like the Datalog program. This gain might result

in GSMS winning the whole evaluation provided that the computation for the supplemen-

tary predicates are not very complex, and the potential facts rate is very small.
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Chapter 6

Conclusion and Future Research

In this thesis, we studied techniques for efficient fixpoint evaluation of programs with uncer-
tainty. Since magic sets rewriting techniques has been used in Datalog and standard logic
programs, our goal was to incorporate the idea in our context, parametric framework (PF).
Our studies cover four major aspects. They are (1) developing magic sets rewriting algo-
rithms, (2) establishing the correctness of rewriting algorithms, (3) adapting the proposed
techniques, and (4) reporting the evaluation performance.

Generalized magic sets rewriting technique (GMS) may result in better performance than
magic sets rewriting technique when programs have subgoal-rectified rules, so we focus on
GMS which is similar to GMS in Datalog, except rules in a p-program associates with com-
bination function, and hence adopting proper combination functions in each rewriting step
is the major difference to GMS in Datalog. Invisible problem arises when the type 2 dis-
junction function (fy) is applied. The evaluation order of the magic sets rewritten program
will be changed when the magic atoms are not fully prepared. Atoms evaluated at the same
iteration in a p-program might be separately evaluated at different iterations and this is the

major barrier extending GMS to PF. Our study has shown that no matter what type of
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disjunction functions is applied, the fixpoints of a p-program P and its magic sets rewritten
program P™ meet in the limit.

To adapt GMS in a practical application with uncertainty under the precision control, we
add an additional stage after the straightforward GMS such that the alternative rewritten
program including all magic atoms prepared can be evaluated by the existing evaluation
algorithms. This modification guarantees a p-program and its GMS rewritten program are
evaluated at the same number of iterations, and certainties of “potentially relevant atoms”
computed at each iteration are exactly the same. The tradeoff of the additional step is that
the rewritten program has to be evaluated twice.

In Datalog, GSMS is a refinement of GMS. Many joins evaluated repeatedly in GMS can
be eliminated, especially for non-linear rules. To extend GSMS for PF, carefully adopting
appropriate combination functions is required to retain the original meaning of a p-program
because the subgoals in a rule might be divided into several parts, and consequently the
dependency of the predicates will be broken. To adapt GSMS in a practical application, we
also need an additional stage to obtain all magic atoms ready before the rewritten program
is evaluated. In addition, we revised the existing evaluation algorithms to keep the depen-
dency of the subgoals from the original rules. However, this revision forces the evaluation
of GSMS to conduct joins saved for GMS in Datalog.

A number of experiments were conducted to report the performance of the proposed tech-
niques. We noted that different programs enjoy different efficiency gain, depending on the
potential facts ratio, which measures the capacity for efficiency improvement. When this
ratio ranges from 1% to 20%, the efficiency of semi-naive (SN) observed was about 1 to

700 times higher. Our results also indicate that while different evaluation schemes yield
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different efficiency gain, semi-naive (SN) benefits more from magic sets rewriting than semi-
naive with predicate partitioning (SNP). However, SNP combined with GMS yield the best
performance for p-programs with uncertainty. For the standard p-program, GSMS yields
the best performance, the speedup observed for SN was about 1 to 1700 times and that for
SNP was about 1 to 651 times when this ratio ranges from 1% to 20%.

In this thesis, the theoretical extension as well as practical extension of magic sets rewriting
techniques to logic programs with uncertainty in this thesis suggest some avenues for future
research.

So far, our studies focus on p-programs, which does not include functions, constraints and
negation predicates, despite that these features enhance the expressive power of the PF. A
“direct” adaption of magic sets techniques to p-programs with stronger expressive power
may lead to new challenges. For example, evaluating a p-program associated with type 2 dis-
junction function is a infinite computation, while when combined with certainty constraints,
it might be changed a finite computation. Therefore, the study of relevant problems is a
topic for prospect.

When type 2 disjunction function is applied to a p-program, our solutions of magic sets
were based on assumption that “the disjunction functions should combine the certainties
with the atoms derived at the same iteration, and should not combine the newly derived
certainties with prior certainties for the same atom from the same rule [SZ04).”, and thus
the magic sets rewritten programs are evaluated twice. Seeking better solutions seems to
be interesting. Our test runs show that the evaluation results for programs without magic
atoms fully prepared seem to be “close” enough to the fixpoint, so we conjecture the evalua-
tion bias between the approximate certainties of the straightforward rewritten program and

the fixpoint is less than the desired precision. “Analyzing the error range between computed
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certainties in a MS rewritten program and the fixpoint” seems to be an interesting direction

for the future research.
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