A Methodology for Semi-Automatic Assistance in

Elicitation and Analysis of Textual User Requirements

Shadi Moradi Seresht

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Computer Sciericé at
Concordia University
Montreal, Quebec, Canada

September 2008

© Shadi Moradi Seresht, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-45325-4
Qur file Notre référence
ISBN: 978-0-494-45325-4

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent &tre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canadz

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enleveés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Methodology for Semi-Automatic Assistance in Elicitation

and Analysis of Textual User Requirements

Shadi Moradi Seresht

Requirements Engineering (RE) is a sub-discipline within Software Engineering
increasingly recognized as a critical component in the success of a software develop-
ment project. With. the escalating complexity of software requirements, problems of
traditional requirements engineering techniques, including the use of natural language
text, are becoming increasingiy apparent.

This research aims to assist software analysts in dealing with the challenges that
exist in correctly understanding user requirements during the interactive process of re-
quirement elicitation and analysis. It proposes a methodology related to visualization
of textual requirements and ways of making them shared, reviewed and debated by
the stakeholders. The proposed methodology serves as a basis for a semi-automated
process aimed at capturing the conceptual model of the software system under de-
velopment and its high-level services from user requirements text. The extracted
information can be used by analysts in their in-depth study of the requirements text

and in avoiding the risks associated with specifying poor or invalid requirements.

iii

The approach is based on a syntactic analysis and formalization of the text writ-
ten in natural language and enriched with domain-related information extracted from
reusable domain—speéiﬁc data models. The applicability of this research is illustrated
with a case sfudy. A prototype implementing our methodology is developed as a
proof—of-concept. The results of controlled experiments designed to evaluate our ap-
proach prove the validity of the methodology. The thesis discusses future work, issues,
problems, and priorities. Furthermore, it proposes recommendations for textual re-

quirements comprehension research.

iv

Acknowledgements

Initially, I would like to thank my supervisor: Dr. Olga Ormandjieva for her
guidance and support, for being a great technical advisor and finally for being such
a nice person. Your aptitude is appreciated.

Many thanks to Kaveﬁ for inspiring me to continue my studies, for his love ahd
patience; Moreover, for his review and feedback on the thesis. Invaluable and always
remembered.

| Thanks to my father for supporting me, and my mother for encouraging me.

I would also like to thank Dr. Yong Zeng (Institute for Information Systems Engi-
neering, Concordia University) for providing information and references for my thesis.

Special thanks to everyone who helped me in preparing this thesis: All my friends
who made the evaluations for this thesis possible, TROMLAB research group for
their support, Sam, Chen, Ishrar, and Ayrin for their valuable contributions to the
implementation.

Thanks fo all other friends for scintillating talks and delightful coffee breaks on

working days at 5:00.

Contents

List of Figures vi
List of Tables xi
List of Abbreviations xiii
1 Introduction 1
1.1 Problem Statement e 4
1.2 GoaloftheResearch 5

1.3 Contributions 6
1.4 Organization of the Thesis 7

2 Background 8
2.1 Requirements Engineering 8
211 Feasibility Study 0 . 9

2.1.2 Requirements Elicitation and Analysis 9.

2.1.3 Requirements Validation 10

2.1.4 Requirements Management 10

vi

2.1.5 ScopeoftheThesis e

2.2 Linguistics and Language Processing
2.3 Applying Linguistic AnalysistoRE
24 READ Project e e

2.4.1 Automatic Ambiguity Detection in User Requirements Docu-

2.4.2 Formal Graphical Presentation of the Requirement Text

Related Work

3.1 Introduction

3.2 General ReVIEW o o v i

3.3 Overview of Most Important Related Work
3.3.1 NL-OOPS e
332 LIDA S
333 CM-Builder 00,

Proposal

4.1 Objective e

4.2 Summary of the Research Methodology

Research Methodology

5.1 Hypothesis.
5.2 Methodology
5.2.1 Preprocessing of the Text e e

vii

14

18
18
18
24
24
25

26 -

28
28

29

32

5.2.2 Structural Analysis oL

5.2.3 Capturing High-Level System Services P

6 Illustration

9

6.1 User Requirements
6.2 Preprocessing of the Requirement Text
6.3 Structural Analysis o
6.4 Identification of the Sysﬁem Services PP
Prototype
T1 OVervIEW o e e e
7.2 Development Platform,
73 EVP Modules e
7.3.1 First-Cut Structural Visualizer
7.3.2 Improved St;uctural Visualizer
7.3.3 Context Use Case Visualizer I
7.3.4 Distance Calculator-Partitioner (DC-P)

Experimental Work

81 Experiment e
81.1 Procedure e e
812 Discussion e

Discussion

9.1 Intentions and Contributions e e e e e e

viii

69
69
70
72

7

86
86
88
88
88
91
91

94

100
100
101

102

107

9.2 Limitations

................................

10 Conclusion and Future Work

ix

112

List of Figures

1.1

2.1

2.2

2.3

24

2.5

4.1

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

NLP-driven quality assessment in RE. 3
Object. e e e 15
Compound object. 15
Constraint relation. 15
Predicate relation. o 16
Connection relation. 16
Summary of the research methodology. e 30
ROM diagram. i 44
SM for the sample sentence. 48
ECCforinvoicing. e 54
Sample ROM diagram. 72
Overall ROM presentation. 73
FCSM. . . . e 74
ISM. . o e e 78
CUCM diagram. v v v v it et e e e e e 85

7.1

7.2

7.3

7.4

9.1

Architecture of READ. 87

EVP context menu. 98
EVP’s logging through Eclipse error log view. 99
SM visualized as class diagram. 99
Supported sentence patterns. 111

xi

List of Tables

5.1 Graphical presentation of Rule 1. 34
5.2 Graphical presentation of Rule 2.1. 35
5.3 Attribute keywords. IR AU 36
5.4 Graphical presentation of Rules 2.2 and 2.3. 36
5.5 Graphical presentationof Rule 3. 38
5.6 Gl\“aphical presentation of Rule 4. 39
5.7 Graphical presentation of Is kind of. 40
5.8 Graphical presentation of Rule 6. 41
5.9 Graphical presentation of Rule 7.1. 41
5.10 Graphical presentation of Rule 7.2. 42
5.11 Graphical presentation of Rule 8. R 43
5.12 Graphical presentation of Rule 9. 43
5.13 Syntactical analysis for the sample sentence. 44
5.14 ECC concept. L v46
5.15 ECC generalization. 47
5.16 ECC generalization with all combination.. 48

Xii

| 5.17
5.18
5.19
5.20
5.21
5.22
5.23

5.24

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

8.1
8.2
8.3

8.4

Conventions used for mutually inclusive and mutually exclusive concepts. 48

ECC attributes. B 49
ECC aggregation/c.orhposition. e e 49
ECC association with * multiplicity. 50
ECC associatioﬁ with OR constraint. 51
ECC self association. o 52
Calculating similarity.00 66
Calculating dissimilarity. 66
Parts of speech for the sample sentence. 71
Syntactical analysis for the sample éentenbe. 71
Finding use cases from a formal presentation (system perspective). . . 80
Finding use cases from a formal presentation (actor perspective).. . . 80
Extracted actors and use cases. . . o 81
Distance calculations for S1. o 82
Distance calculations for S11. 83
Distance calculations for S13. oo oL 84
Validation result (extracted information perspective). 103
Validation result (missing information perspective). 104
Validation result (extracted Concept perspective). 105
Validation result (missing Concept perspective). 106

xiii

List of Abbreviations

CASE Computer Aided Software Engineering
CUCM Context Use Case Model

CU'CV Context Use Case Visualizer

DCP Distance Calculator-Partitioner

ECC Expert-Comparable Contextual

EMF Eclipse Modeling Framework

EVP U Eclipse Visualisation Plugin

FCSM First-Cut Structural Model

FCSV First-Cut Structural Visualizer

GMF Graphical Modeling Framework

ISM Improved Structural Model

ISMA Improved Structural Model Algorithm
ISV Improved Structural Visualizer

MDT Model Development Tools

NLP Natural Language Processing

NLU Natural Language Understénding

Xiv

00 Object Oriented

OOCA Object Oriented Analysis

RE Requifement Engineering
READ Requirements Engineering Assistance Diagnostic
ROM Recursivé Object Model

SM ..o Structural Model

SUD System Under Development
SV Structural Visualizer

UCM Use Case Model

UML Uhiﬁed Modeling Language
VDM Vienna Development Method
XML Extensible Markup Language

XV

Chapter 1

Introduction

Software Engineering is a systematic, disciplined, quantifiable approach which is
adopted for the development, operation, and maintenance of software [18]. The fo-
cus of this thesis is on the area of Requirements Engineering (RE) - a sub-discipline
which appeared within software engineering about twenty years ago to address spe;
cific challenges in the effort to gain an understanding of the nature of the engineering
problem arising from stakeholders’ real-world needs and the real expectations from
the final software system by the stakeholders [45]. RE may be bfoken down into ac-
tivities mainly concerned with “requirements elicitation (gathering the requirements
from stakeholders), analysis (checking for consistency and completeness), specification
(documenting the requirements) and validation (making sure the specified require-
ments meet stakeholders’ expectations)” [49]. In the contex;c of RE, comprehension
of the requirements text describing a problem and its domain can typically be di-
vided into two broad levels: the literal meéning (or surface understanding) and the

interpretation (or conceptual understanding). In the context of our work, we consider

surface understanding and conceptual understanding to bé the two main factors on
which the quality of a text depends.

We use the term conceptual understanding to represent how much a developer
would gain in designing or implementing a system by carefully reading/examining its
problem statement only. The conceptual level involves interpretation of the docu-
ment or, in other words, understanding what is meant or implied, rather than what is
stated. This includes making logical links between facts or events, drawing inferences
and trying to represent the content more formally. The above activities often take con-
siderable time to perform manually, as the length of a real-life requirements document
can range from a few to hundreds of pagés containing numerous words, phrases and
sentences, ‘where each can potentially be wrongly interpreted. Consequently, inspect-
ing the user requirements documents manually, in spite of being the most common
way of doing so, is also one of the costliest phases of RE. A lack in domain knowledge
is another important factor contributing to the difficulty of these activities because in
reality, stakeholders do not usually understand the software design and development
~ process well enough to write a comprehensive problem statement, and, at the same
time, software analysts often do not understand the stakeholders’ problem and field
of endeavor well enough to model requirements satisfying their real needs. For this
reason, different approaches have been deployed during the recent years in providing
assistance to the RE process (see Chapter 3).

In this research, we provide a methodology for assisting the conceptual under-
standing of textual user requirements by both stakeholders and analysts. Such semi-

automatic assistance can reduce the time needed for requirements elicitation and

analysis, and will help requirements engineers correctly understand the problem and,
therefore, develop the right solution for it. Our approach combines two technologies: |
a formal graphical language called the Recursive Object Model (ROM) [50], [52] and
an Expert-Comparable Contextual (ECC) model extracted from the universal data
models. ROM provides a formal graphical model of the text and the knowledge it
carries, and ECC is used to extract stakeholder role analogies and to investigate the
completeness of the original requirements text.

The work reported in this thesis is part of a bigger project, Requirements Engi-
neering Assistance Diagnostic (READ), aimed at improving the quality of RE doc-
umentation by applying Natural Language Processing (NLP) techniques to the RE

process (see Fig.1.1).

v ProblEmL L

NLP: Assess
Text Quallty

e >
’ £
Write [Yes ~Accepted ;
- Domaln " Structural
srs > a HEE]—
e ,g
: »
P q g FR
l'ROM 3 ‘
; — a
. Contextud] ° Capturing %
Vlsuall:atlon . UseCads" | HighLevel & NLP: FRNFR
¢ — (Mode| /. | Swtem 2 lassificatio
Models : {Modef / E Services Classification
through i p S
EVP
WNFR_

Figure 1.1: NLP-driven quality assessment in RE.

The objectives of the overall project can be expressed in terms of two main goals:

(G1) Automatic NLP-driven quality assessment of the textual requirements in the

requirements elicitation and analysis phase.

(G2) Extraction and graphical visualization of the conceptual knowledge extracted

from the requirements text for the stakeholders’ validation and feedback.

This thesis is concerned with the challenges inherent in capturing the high-level
conceptual view on the software system structure (Structural Model), i.e., concepts
and relations between them as well as the high-level contextual view on the software
system actors and services (Context Use Case Model) from the textual user require-
ments. The goal is to help software analysts‘ meet the challenges that exist in correctly
understanding user requirements during the intéractive process of requirement elici-
tation and analysis, where a full and proper understanding of the application domain

is considered as a fundamental success factor in the software development process.

1.1 Problem Statement

The problem statement of this thesis mainly stems from the gap between the stake-
holders’ perception of their needs and how these needs are described textually, whereby
the description can be misinterpreted by developers due to the inherent ambiguity
of the natural language itself. We found virtually no conceptual characteristic that
would be extractable automatically from text for highlighting problems of conceptual
understanding by currently available NLP tools. This may be due to the subjective
nature of the conceptual understanding process, which requires expertise in software

modeling. The ability to detect serious conceptual problems in the requirements text

at a very early stage of requirements analysis could help avoid very costly require-

ments misinterpretations.

1.2 Goal of the Research

The proposed methodology forms the basis of the automated process designed to
capture the high-level conceptual view on the system structure (SM) and high-level
contextual view on the software system’s actors and services (Context Use Case Model
- CUCM) from the tex‘qual user requirements. The SM of the system which shows the
structure of the system in terms of the concepts and the relations between them. The
CUCM is intehded to serve as a basis for software Uée Case Model development, and
can be used by analysts in their in-depth study of requirements text (The Use Case
Model is recognized as one of the models most often used in coming to an agreement
on the final set of requirements [9], as well as being well known as a conventional
analysis method in RE [20]).

The approach is rooted in the syntactical analysis and formalizafion of text written
in natural language, and it is enriched with domain-related information provided by
the ECC models that are extracted from reusable domain-specific data models.

Such visualization would save development time, serve as a mean to proofread
the requiréments, and facilitate communication between the stakeholders who pro-
vide the requirefnents and the software development team who have to implement
them. In conélusion, the semi-automatic assistance proposed in this thesis aims at

reducing the effort needed for improving requirements understanding and clarity, and

for analyzing their consistency and completeness, ultimately increasing the quality of

the RE documentation.

1.3 Contributions

This section summarizes the expected contributions in response to the problem state-

ment in this research.

e Devise rules for extracting CUCM and SM elements, i.e., concepts, attributes,
relations, actors, summary-level use cases, and making associations between

them.
o Define rules for Creating ECC models from the universal data models.

e Apply the kndwledge included in the ECC to identify the potential actors for

CUCM.

o Identify the key sentences characterizing high-level system services and assign
the remaining sentences from the requirements text to the corresponding use

case they describe, with the help of a metrics-based text partitioning algorithfn.

o Investigate the completeness of the original requirements text with the aid of

ECC modeling and improved their completeness by injecting the domain related

missing information conveyed in ECC model.

e Develop a prototype tool in support of the methodology as a proof of concept.

1.4 Organization of the Thesis

The thesis is organized as follows: The context of the research and the background
required to understand the methodology are covered in Chapter 2. In Chapter 3 a
critique of the research and a comparison with the related work are presented. Objec-
tives and research proposal are outlined in Chapter 4. The methodology is explained
in Chapter 5 and is illustrated with a case study in Chapter 6. The architecture
of the tool implementing our approach is described in Chapter 7. Chapter 8 covers
the results of the validation of the meth;)dology. In Chapter 9 we present a critical
discussion on the significance and limitations of our work. Finally, in Chapter 10,

conclusions are presented and directions for future work are outlined.

Chapter 2

Background

In this chapter, we introduce the areas of RE and NLP. We will also briefly describe
the work that has been done in ROM and the previous phases of the READ project

as a background knowledge on which the work in this thesis is based.

2.1 Requirements Engineering

We start our discussion with defining the term RE as used in literature.

Zave [19] has defined RE as “the branch of software engineering concerned with
the real world goals for, functions of, and‘constraints on software systems. It is also
concerned with the relationship of these factors to precise specifications of software
behavior, and to their evolution over time and across software families.” As stated
above, the RE is mostly concerned with real world goals which can indeed‘be consid-
ered as the motivation behind the development of the system. Another interesting

point in the previous description is the term “precise specification” which can be

considered as a basis for analysis and validations of stakeholders’ needs.
Sommerville [45] defines RE as a process that includes four high level sub-processes,
namely, Feasibility Study, Requirements Elicitation and Aﬁalysis, Requirements Vali-
dation, and Requirements Management with the final goal of creating and maintéining
a system requirements document. Each of these sub processes is described in greater

detail in the following.

2.1.1 Feasibility Study

The goal of this stage is to determine whether the stakeholders’ needs are achievable
considering the current software and hardware technologies and budget. Based on
the final report of this stage, a decision is made whether or not to continue with the

development of the system.

2.1.2 Requirements Elicitation and Analysis

Once a decision is made to continue with the development of the system, the next
step is the elicitation and analysis of the requirements with the purpose of clarifying
what is expected from the system. This stage encompasses elicitation activities which
deal with gathering requirements through discussion with the potential stakeholders,
interview mock ups, prototyping, etc. Requirements elicitation and analysié can be a

long and arduous process which plays a crucial role in the success of the project [2].

2.1.3 Requirements Validation

Allowing errors, inconsistencies and conflicts in the user requirements document will
cause them to propagate to the stages of system design and implementation, which
will increase the cost of fixing and resolving them. Making sure that requirements de-
scribe what .really stakeholders need is the aim of the requirement validation phase.
Requirements should be validated from different aspects such as consistency, com-
pleteness, and realism. Different validation techniques such as reviews, test case

generation, etc. can be used for this process.

2.1.4 Requirements Management

Requirement man'agement aims at understanding and controlling change. The stake-
holdérs’ needs may change ana new requirements may appear also existing require-
ment may be modiﬁed, or dropped. Therefore, there should be a mechanism for man-
aging the requirements, keeping track of the newly added or changed requirements as
well as capturing and maintaining the interdependencies between the requirements.
Planning for requirements management can start as early as the requirement elicita-

tion phase.-

2.1.5 Scope of the Thesis

The focus of this thesis is on the requirements elicitation and analysis and to some

extent validation. Other sub-processes are out of the scope of this thesis.

10

2.2 Linguistics and Language Processing

Linguistics is mainly concerned with studying human languages whereas Compﬁta—
tional Linguistics, as a subset of both Linguistics and Computer Science, emphasizes
the formalizatioﬁ of linguistics structures while automatically processing languages.
Alternatively, NLP or Natural Language Understanding (NLU), involves building the
information processing systems that are able to recognize and understand humans
language in various forms and interact with humans accordingly [33,47].

Some typical applications of the NLP include:

Information Retrieval.

Spelling and grammar checking.

Automatic text summarization.

Machine Translation.

There also exist different levels of NLP, namely:

Phonetics deals with the physical characteristics of the language like constants and

vowels, and it is used in speech recognition.

Lexicon and Morphology examine different forms of the words such as singular and

plural forms.

Syntax works on the possible order and arrangement of the words in a sentence or,

in other words, the structure of the sentences.

11

Semantics studies the meaning of the words either in isolation or when combined in

sentences.

Pragmatics addresses how the real world knowledge can affect the literal meaning

of the words and sentences [25].

2.3 Applying Linguistic Analysis to RE

As‘ pointed out previously, having a precise requirement statement is playing a key
role in the success of the software project. Although great progress has been made
in the area of formal methods yet it does not sound tenable to ask the stakeholders
to learn and express their needs using formal methods. Therefore, majority of the
requirements are still written in natural language [30] which tends to be ambiguous
by nature. According to [3], writing requirements is a cooperative work between an-
alysts and stakeholders. The stakeholders best know their needs. ‘On the other hand,
the analysts should translate the needs to the world of computing and establish the
communication between these two worlds. Being capable of extracting the concepts
and their relations from the requirements document is an important factor and, as
systems are expanding and becoming more complex, the necessity to extract the in-
formation from large requirement documents written in natural language has emerged
as a great motivation for research on the applications of NLP in RE [34]. As Ryan
has concluded in [37], reviewing the history of NLP in RE makes it clear that build-
ing a system which automatically understands the stakeholders’ needs is unrealistic.

However, considering that conformance of the requirements to stakeholders’ needs is

12

a dynamic and social process, NLP can be used as support for this process (not a -

replacement), which will assign the proper role to NLP in RE.

2.4 READ Project

In this section, we will briefly explain what has been done previously in the context

of the READ project (see Fig. 1.1).

2.4.1 Automatic Ambiguity Detection in User Requirements

Documents

The first phase of the READ project aimed at detecting the presence of possible
ambiguities in software requirements documents during the requirements elicitation
process. The objective was to identify textual ambiguities in the text before the
conceptual modeling of the requirements begins. This approach relied heavily on
the NLP, namely, on the usage of a text classifier that erﬁulates human reading
comprehension considering a number of quality characteristics to differentiate between
ambiguous and unambiguous requirements. Using the text classifier yielded optimum
results with an accuracy of 86.67% in detecting ambiguities at thé level of surface
understanding (as a reminder, we use the term surface understanding to denote how
easy or how difficult it is to understand the facts stated in the document, without
judging its design or implementation concerns in terms of any software engineering
concept) [16].

Having the improved text, meaning the text from which the ambiguities were

13

removed, the formal graphical presentation of the requirement text (ROM diagram)
is created. Generating the ROM diagram from the requirement text forms the second

phase of the READ project.

2.4.2 Formal Graphical Presentation of the Requirement Text

The purpose of this section is to introduce briefly t'he formal representation of the
syntactic structure of text with ROM. Our choice of formal representation is justified
by the fact that ROM is proved sufficient to represent technical English text used in
the software engineering documents, where only statements are involved. The ROM

was initially developed in [50] and further refined in [51].

Mathematical Foundation

The formal representation of the linguistic structure has been confronted with funda-
mental mathematical and philosophical challenges. The axiomatic theory of design
modeling provides a solution on the basis of the rigorous mathematical concepts for

this problem based on which ROM is developed for representing the text [5,50, 51].

Graphic Representation of Linguistic Structure with ROM

The following graphical symbols are defined in correspondence with the axiomatic
theory of design modeling to represent English verbs and nouns [51].

The ROM uses only five basic symbols to represent an object, a compbsite object,
constraint, connection, and predicate relations.

The basic unit in the ROM is an object represented by a word surrounded by a

14

solid line box. This object represents a concrete entity that equals a concrete noun,

an object that can be measured, or a proper noun Fig. 2.1 shows the object in ROM.

0

Figure 2.1: Object.

The concept of compound object (BO) is used to represent a more complex ob jeét,
which is an object that includes at least two objects in it. A compound object is shown

in Fig. 2.2

Lo}

Figure 2.2: Compound object.

A constraint relation (£), an arrow with a solid line attached by a circle at one
end as shown in Fig. 2.3, represents a descriptive, limiting or particularizing relation

of one object to another. The arrow always points to the object to be constrained.

o>

Figure 2.3: Constraint relation.

The mathematical definition for such a relation can be represented as an.interac-

tion from the constraining object O; to the constrained object O;:
ECO;® Oj

A predicate relation (p), an arrow with a solid line (see Fig. 2.4) represents an act

of an object on another object or the state of an object. A predicate relation includes

15

different forms, such as an action, and it corresponds to transitive or intransitive

verbs in English.

Figure 2.4: Predicate relation.

The mathematical definition for such a relation can be represented as an interac-

tion from the one object O; to another object O;:
pCO;®O0;

A connection relation (¢), a dashed arrow, shown in Fig. 2.5, is used to connect
two objects that do not constrain each other. The arrow is optional, depending on

the semantics of the relation.

L

Figure 2.5: Connection relation.

The mathematical definition for such a relation can be shown as an interaction

between one object, O;, and another object, O;:
L C Oz &® Oj

Connections can be further classified into spétial, temporal, and logical. Examples
of connection relations include and, or, onto, to, from-to, if, then, etc.
The Recursive Object Model Analysis (ROMA) tool transforms a text in natural

language into a ROM diagram. This diagram is also stored internally in the XRD

16

(an extension of the Extensible Markup Language - XML) format, and can be used
by various applications which‘are based on the formal syntactical structure of a text.

The formal ROM model of the requirements text represents its linguistic structure,
and carries knowledge on the structured relations between language entities. It does
not, however, offer the means to discover relations, concepts and attributes, that is,
the conceptual context and high-level services of the system.

In our methodology, the formal model is employed to formalize the textual user
requirements, and serves as an input to the generation of SM and CUCM.

The next chapter presents an overview of some of the most noted work in the field
of applying linguistic techniques to static and dynamic analysis of the requirements

text.

17

Chapter 3

Related Work

3.1 IntrdduCtion

Over the past few decades, extensive studies have been conducted in the area of
applying linguistic techniques to static and dynamic analysis of a requirements text.
Although a wide variety of radically different case tools have been developed, common
to most of these approaches are a couple of basic concepts, such as relating nouns to
classes, and relating adjectives to attributes [1,4].- In this chapter, we will review a

few noteworthy studies in this area in a chronological order.

3.2 General Review

The earliest study in this field is done by Abbott [1] (1983). His idea is that the
terms used in the original problem description are the best candidates that can be

used to write a program that solves the problem. He proposes a technique for creating

18

programs which is extracting different data types from proper nouns or common nouns
and operators from verbs or predicates that match the informal but precise English
descriptions. His major contribution is identifying the relationship between data types
and common nouns. His target programming language is Ada. His idea is further
developed by Booch who introduces an Object Oriented (OO) design model [4] (1986).
In his proposed model nouns suggest classes and verbs suggest operation.

Saeki et al. (1989) [41] propose a process of evolving a formal specification frbm
an informal specification in natural language. Their methodology is consisted of two
activities: “design” and “elaborate”. In the “design” activities, nouns and verbs are
extracted from the requirements document and assigned to software concepts and
relations. In theirbapproach nouns and verbs are divided into different categories
such as class nouns or value nouns, and action verbs or relational verbs. They em-
phasized more on verb patterns that occur more often to make the approach more
applicable to dynamic systems. In the “elvaborate” activities, they are rewriting the
informal sentences more precisely. They do not intend to develop a tool to be used for
transforming natural language text to formal specification automatically using NLP.
Their aim is to create software module design documents using OO concepts that are
extracted from t..he natural language requirements documents. Although the tool is
able to extract verbs and nouns automatically, it cannot detect the importance of the
words and, as stated clearly in their paper, from this activity emerges the need of
participation of a knowledgeable human being.

Meziane et al. (1986) [28] introduce the system that obtains a set of logical form

expressions from translating an informal natural language requirements text. These

19

expressions are then used as a basis for producing the entity-relationship models and
from there the system can extract the formal data types and generate the specification
in the Vienna Development Method (VDM). The major drawback of this method is
that not only it needed great amount of involvement from analysts but it needs
analysts who are very knowledgeable in formal methods for it to be able to produce
acceptable results.

Mich L. (1996) [29] propose a CASE tool called NL-OOPS which is capable of
analyzing requirements and creating OO models. The architecture of the system
is divided into three parts. The first part contains all NLP activities and is based
on system called Large scale Object based Linguistic Interactor Translator Analyzer
(LOLITA). The second part deals with defining coherent requirements set, and the
last parﬁ is concerned with the OO analysis itself. The OO module implements
an algorithm that extracts the objects and their associations. Two ;nain issues are
remaining unsolved in this approach. The first problem is detecting ambiguities,
inconsistencies, and omissions from the requirement text and the second problem is
the size of the requirement document. In the larger documents the selection of the
relevant objects becomes a concern.

Moreno et .al. (1997) [31] propose a methodology for formalizing the Object Ori-
ented Analysis (OOA) process in order to reduce its immaturity. The aim of this
method is to analyze the informal specifications, extract the components of the OO
system such as classes, present the models (OO class diagrams) graphically, and make
this process as independent as possible for analysts’ domain knowledge. The major

drawback of the method is that it cannot deal with incoherence, ambiguity, inconsis-

20

tency, and other deficiencies in the requirements specification. Therefore, it assumes
that the requirements document is correct.

Recently, many researches have attempted to deal with unrestricted natural lan-
guage using the progress that has been made in NLP. Their major goal is generatjng
static and dynamic view of the System Under Development (SUD). One interesting
tool, that of Harmain et al. 2000 [14], called CM-Builder, is a CASE tool which
performs domain independent OO analysis. The input to the system is a software
requirement document and the output is a set of candidate classes and their rela-
tionships. The output is in a format called CDIF (CASE Data Interchange Format)
which can be directly fed to a graphical CASE tool like Select Enterprise Modeler for
further refinements. The shortcomings of this approach are: not being integrated to
the powerful graphical CASE tool designed specifically to support software analysis,
not suppbrting any kind of dynamic diagrams as well as being useful for small corpus
of case studies.

Another tool, LIDA, is introduced by Overmyer (2001) [35] with the goal of helping
analysts in transition from natural language text to OO notation. LIDA is a prototype
tool that provides linguistic assistance in development process. It helps analysts
develop OO models of a domain, using a subset of the Unified Modeling Language
(UML). The input to the tool could be textual domain descriptions, operational
concept documents and use cases, and the output is a model consisting of elements,
their relaﬁions and attributes that would be finally mapped to a UML model by an
analyst. However, the‘ text analysis and generation of the models remains in good

part a manual process that can be cumbersome with complex texts. LIDA does not

21

support dynamic diagrams and it requires considerable user interventions.

B. S. Lee et al. (2002) [22] develdp a system in which there is a mapping from
a natural language requirement document to the OO formal specification languége
called VDM++, an OO extension of the Vienna Development Method. The aim of
this tool is to provide the mapping from natural language to OO formal specification
language. The drawback of this tool is being limited to only a two-level grammar.

For their part, H.G. Perez-Gonzalez et al. (2003), present GOOAL (Graphical
Object Oriented Analysis Laboratory) [36]. .The goal is to produce static and dy-
namic object models from natural language document automatically. Original prob-
lem statements are automatically translated to semi-natural language called 4W. The
produced sentences then are analyzed with role POSets which are based on the math-
ematical concept of partially ordered set which are used widely in many linguistics
formalisms to construct the necessary structures that can generate static and dynamic
views of the system from a problem written in 4W. After that the interpretation in a
4W language is shown by the system and validated by the user. GOOAL can produce
a dynamic behavioral’diagram. The drawback is that the system has been t;estved with
problems described in no more than eight sentences and 100 words on an average.

Lui et al. (2003) [24] propose a tool for automatic objects/class identification.
The goal of this tool is to automate the transition from requirements to the detail
design. The case tool is developed as one of the \add-ins of rational rose. This tool
has two main functionalities: 1) use case realization and 2) class diagram generation.
However, there are no further information regarding the performance of the tool and

the maximum size of the corpus they have used for testing their system. For their part

22

Drazanet al. [10], suggest a method for processing textual use cases and extracting
their behavioral aspects based on linguistic techniques namely parts of speech of the
words.

Finally, Some [44] presents a tool called UCEd with the aim of providing the
framework for use cése editing, clarification and finally developing the “executable
specification integrating the partial behaviors of the use cases” in the form of state
machines. UCEd provides means for capturing the use case descriptions but does not
assist the developer in the‘ use case model’s elicitation process.

The work reported in this thesis differs considerably from the related work in that
our methodology is founded on a formal syntactical representation of the text and
not on the parts-of-speech technique [10, 24}, which allows for an automatic and thus
objective elicitation of SM and CUCM elicitation from text. This approach would
allow us to reduce the number of costly human errors in the RE process. Moreover,
we bring an automatic and objective expert knowledge into the elicitation process by
introducing the ECC models extracted from domain-specific data models.

In the next section we discuss in detail three of the research publications that
represent the most important work in this area and are relevant to the research

proposed in this thesis.

23

3.3 Overview of Most Important Related Work

3.3.1 NL-OOPS

Summary

The goal of the NL-OOPS tool [29] is to generate an OO model from the requirement
document written in natural language. Thé research on the NL-OOPS started from
the Semantic Net (SemNét) produced by the LOLITA, an NLP-based CASE tool
which is the core of NL-OOPS. The SemNet serves as a knowledge base of the LOLITA
storing knowledge that can be accessed, modified or extended. The OO analysis
algorithm is implemented using database primitives for refining the nodes contained
in the SemNet and identifying the classes, attributes, and associations required to
construct the OO model. The final Object Model is visualized using the existing

package Graphed [15].
Critical Discussion on NL-OOPS

e NL-OOPS ignores possible ambiguities and inconsistencies in the text.

o As the size of the text increases, the semantic net becomes very complicated

and thus its readability decreases.

e It filters the potential concepts according to their frequencies, which can cause’

loss of information.

24

3.3.2 LIDA

Summary

Overmyer et al. [35] develop a prototype tool which addresses linguistic assistance
in conceptual model development. They propose a methodology in which a tagger
is used to assign parts of speech to the words in the requirement text and classify
them as nouns, adjectives, and verbs. The list is used by analysts iteratively for
identifying the potential classes, attributes, and relationships between the concepts
and other unnecessary information that are omitted from the lisf. Normally, the wérds
with higHest frequencies are chosen as potential classes. New classes, attributes, and

adjectives are associated to each other graphically using the editor called Modeler.

Critical Discussion on LIDA

e LIDA does not generate the models automatically. It classiﬁés the words in the
sentences as ﬁouns, verbs, and adjectives and it is the responsibility of analysts
to associate these nouns to classes, attributes, and possible relationships. The
tool pfovides a modeling environment that can.be used by analysts to graphi-

cally visualize these models.

e Analysts have to identify the synonym nouns that are used in the text as well

as the proper adjectives that can be used as the attributes.

e LIDA can not hold the accurate interrelation between the extracted information
and show the related element in the Modeler. For example, the only criteria

to decide whether adjective X should be an attribute of concept A is their

25

proximity in the text.

e The models should be exported to Visio (a diagramming software) in order for

the analysts to edit them.

e The authors validate their models using the texts that are generated from the

model using LIDA Modeler.
e The system relies heavily on the knowledge of the analyst.

e LIDA does not support any kind of dynamic models.

3.3.3 CM-Builder

Summary

The Class Model (CM) Builder is a CASE tool which can generate the conceptual
models from the requirement text through linguistic analysis. The NLP-modules of
the tool called LaSIE (Large Scale Information Extraction) form the core of the CM-
" Builder and the input text will go through ‘lexical processing, morphological analysis
and semantic interpretation sentence by sentence and, finally, the discourse model are
produced. The next step is centered on OO analysis and an algorithm is implemented
to extrapt the classes, attributes, and relationships. The final conceptual model is
represented in the CDIF format and is fed to the graphical case tool called Select

Enterprise Modeler for further refinement.

26

Critical Discussion on CM-Builder

e The system itself was incapable of visualizing the model graphically. The final
output of the system was a CDIF file that should be exported to a graphical

case tool.
e The CM-Builder did not support any kind of dynamic models.

e Identified nouns with low frequencies were discarded which could cause loss of

important information.
e The generated models had some degree of over-specification.

e The discourse model was built and never used because their analysis was limited

to the domain independent analysis.

The details of our proposed methodology are described in the next chapter.

27

Chapter 4

Proposal

4.1 Objective

The objective of this research is to. generate semi-automatically from the textual user
requirements and graphically visualize a SM of the software system domain concepts
and their relations, as well as a high-level contextual view on the software system’s
actors and services (CUCM). The importance and benefits of such models of the
system to be developed include saving development time, providing the means to
proofread requirements and facilitate communication between the stakeholders who
provide the requirements and the software analysts who are responsible for detecting
omissions and/or conceptual errors in the text. Furthermore, we intend to develop a

tool as a proof of concept in support of our methodology.

28

4.2 Summary of the Research Methodology

As described in Chapter 2, Section 2.4, in the first phase of the READ project ambi-
guities are detected and removed from the textual user requirements. In the second
phase of the READ project, the formal ROM model is generated from the improved
requirements text. In our methodology, the formal ROM model serves as an input to

the generation of SM and CUCM.

Fig. 4.1 summarizes the proposed methodology, which consists of 3 phases:

(1) Generating the First-Cut Structural Model (FCSM) (see Chapter 5, Section 5.2.2,

First-Cut Structural Model)

(2) Generating the Improved Structural Model (ISM) (see Chapter 5, Section 5.2.2,

Improved Structural Model)

(3) Capturing high-level system services and generating Context Use Case Model

(CUCM) (see Chapter 5, Section 5.2.3)

In the first phase, concepts, attributes, and relations are extracted from the ROM
presentation of the text by applying set of heuristics developed to map the ROM
presentation to the SM. The output of this phase is FCSM which is the early sketch
of the conceptuaiization of the System Under Development (SUD).

Second phase starts with constructing the Expert Comparable Contextual (ECC)
model which is a visual representation of the noteworthy concepts of the domain,
- their attributes and the relation between them. ECC is created from the pre-built

domain specific data model according to the predefined set of heuristics. Once FCSM

29

input

ROM

Presentati%n

(FCSM Generation:

_Phase

Identification and
extraction of the concepts,
attributes, and relations
from ROM presentation by
applying set of heuristics
developed to maﬁ the ROM
presentation to the SM

Qutput

First-Cut Structural Model
(FCSM) which is consisted
of concepts, attributes and

| relations extracted from the

ROM presentation,

Outcome

the early sketch of the
conceptualization of the
System Under Development
(SUD).

FCSIA
ECC Model

READ user

feedback
e |

SM Generation:

Applying Improved Structural
Model Algorithm (ISMA) to
provide a more comprehensive
model by adding the high
priority candidate classes,
adding corresponding
generalizations and
aggregations, refining
duplicate relations, etc.

Improved Structural

1 Model which is a revised

and comprehensive
version of the FCSM,

List of the actors.

lUstofadors / Capturing High Level \

ROM
Presentati

Pre-provassed
Reguiramertext

ECC Model

READ user
feedhack
mm

System Services:

Proposing a mechanism
for identifying the
summary-level use cases.

Applying a metric-based
text partitioning algorithm
to extract the description .
for each of the

Qjmmary-level use CBSQS/

(CUCM) which is used to
show actors, high level
system services and the
communications between
them.

The corresponding uUse case

descriptions for each of the
summary- level use cases
extracted from the
requirement text.

Context Use Case Model \

_/

Assisting in the identification of\
the possible errors and/or
inconsistencies, and missing
conceptual knowledge from the
requirement text,

Giving customers the flexibility of
having the customized needs
thatdo not match exactly the
standard ECC models.

J

Thehigh-level contextual view
on the SUD.

Figure 4.1: Summary of the research methodology.

30

and the ECC model are created, the next step is to employ them in the Improved
Structural Model: Algorithm (ISMA) for generating a more comprehensive model by
adding the high priority candidate classes, adding corresponding genefalizations and
aggregations, refining duplicate relations, etc. The output of this phase is ISM which
is a revised and comprehensive version of the FCSM.

The rationale behind the ISM hinges on providing both a more comprehensive
model, assisting in the identification of the possible errors/ incoﬁsistencies and missing
conceptual knéwledge in the text and giving stakeholders the flexibility of having
the customized needs that do not match exactly the standard domain models (ECC
models).

Finally, the last phase of the methodology focuses on capturing summary-level use
cases which is defined as high-level services provided by the system to the user, and
applying a metric-based text partitioning algorithm to extract the description for-each
of the summary-levél use cases from the preprocessed requirement text. The output
of this phase is the CUCM which is used to show the actors, summary-level use case
and the communications between them as well as the corresponding summary-level
use case descriptidns extreicted from the requirements text.

Having presented the objective of the research and the proposal, in the next

chapter we describe the details of our methodology.

31

Chapter 5

Research Methodology

5.1 Hypothesis

Our hypothésis states that a formal presentation of the requirements text, in addi-
tion to the Expert Comparable Contextual (ECC) models which are considered as a
standard models of domain and are extracted from reusable universal data models,
would provide sufficient information to automatically mine the conceptual knowledge

required for the generation of the SM and CUCM from the text.

5.2 Methodology

This section describes an elaborate methodology that constitutes a proof of concept
for the idea that a conceptual knowledge on the software to be developed can be
acquired through a semi-automated process with textual requirement documents as

input and diagrams representing SM and CUCM as outputs.

32

Our methodology is divided into two parts. Using the formal presentation of the
text as a basis, the first part concentrates on the structural analysis and the second
part focuses on capturing the high-level system services from the user requirements

text.

5.2.1 Preprocessing of the Text

The preliminary step of the methodology consists of preprocessing the textual input
which means removing ambiguities from it with the help of the stakeholder [16] and

representing its structure formally and graphically using ROM methodology [51].

5.2.2 Structural Analysis

The main goal of this stage is to identify the essential elements for visualizing the text
from the concepfual point of view summarized as candidate concepts, their attributes,
and relationships between them.

Structural analysis is performed at two different levels which are described in

details in the following paragraphs:

First-Cut Structural Model

In order to map the text to its equivalent SM, with the aim of .making this trans-
formation performed semi-automatically, there is a need to develop a comprehensive
set of heuristics that should be applied to the formal ROM presentation. The output
of this step is called First-Cut Structural Model (FCSM) which is in fact one early

- sketch of the conceptualization of the System Under Development (SUD).

33

Table 5.1: Graphical presentation of Rule 1.

Formal presentation Equivalent SM

The patterns that are likely to happen in the formal presentation of text, their
equivalent FCSM and the corresponding rules are described in detail in the following
paragraphs. These rules are flexible and new fules consistent with the extracted rules
can be added when necessary.

Mapping Rules

Rule 1 Each solid box can be consiciered either as a concept or an attribute for
another concept in the SM. However, not all boxes are valid concepts in the domain
so later they will be reﬁned’ according to the defined rules. Table 5.1 is used to show
the object in RCM and its equivalent in SM.

Rule 2.1 The constraint relation (01+02) as shown in Fig. 2.3: If O1is an adverb
or an auxiliary verb, it will be ignored but if it is an adjective, it can be a candidate
attribute for O2 or imply that there exist an attribute for O2 which corresponds to
the adjective O1. In FCSM all adjectives are highlighted for the READ user in order
to make sure that the attributes that should be tracked will not be lost. Later they
can be substituted by the appropriate attributes in consultation with WordNet [13].

It should be noted that substitution should be done manually.

Example: In the phrase ‘the large (01) book (02).” the adjective large may

34

Table 5.2: Graphical presentation of Rule 2.1.

Formal presentation Equivalent SM

ot b, 02 ek OR (&1

indicate that Book may have an attribute called size or large itself can be an attribute
for the Book.

Rule 2.2 If Ol=noun and O2=noun, O2 can be considered as an attribute for O1
if 02 is found in the predefined list of keywords. This list contains the words that are
usually used as attributes in the specific domains and are extracted using [21], [43)],
and other available academic projects. Table 5.3 shows the current list. This list can
be updated and expanded.

Example: In the phrase ‘customer (O1) name (02)’, the word name can be
considered as an attribute for Customer.

Rule 2.3 If Ol=noun and O2=noun and O2 is not in the list of predefined key-
words, we calculate the frequency of the appearance of the 01402 in the requirement
text.

In the case where 01402 occurs once, if Ol is already identified as a concept
form the text (implying that it also appears without O2 in the text) or if both O1
and O2 have been identified as conéepts in the text, then O1 will be associated to

| 02 as a Has relation. The proposed association will be shown to the READ user fof

final approval.

35

Table 5.3: Attribute keywords.

Attribute Keywords

Username password serial number
ID reference number sequential ID
time name comment
message date picture
description address phone number
image Quantity amount
information detail pin number
price status

Table 5.4: Graphical presentation of Rules 2.2 and 2.3.

Formal presentation Equivalent SM

o102 o1 o1 R

o1 b_. 02 i OR}22 OR|

36

4

Example: In the phrase ‘customer(0O1) receipt(02)’, where only Customer or both
Customer and Receipt have been identified as conéepﬁs (from the other sentences of
the text), these two concepts will be associated to each other with a Has relation.

If O2 is already identified as a concept from the text, OlO2‘Will be presented to

the READ user as a potential single concept.

Example: In the phrase ‘purchase(01) order(02)’, where Order is already identi-
fied as a concept, the phrase Purchase(0O1) Order(02) will be presented to the READ
user as a representative of a single concept.

If neither O1 nor O2 are identified as a concept from the text, then all the options
(attribute, Has relation, single concept) will be provided so that the READ user can
make a proper choice.

In the case where O1+02 is fepeated more than once in the requirement text or
if 01402 is a proper noun (e.g., Invoicing System), then 0102 can be considered as
a single concept.

Note 1. We may encounter the cases where more than two nouns (N;....N,),

where n>2, are in the sequence. In that case:

(1) If the sequence is identified as a proper noun then it represents a single concept

(e.g., Invoicing Order System).

(2) If N1...Nn_; are identified as a single concept then the whole sequence is con-
straining the last noun N,,_;(e.g., purchase order details in a text where Purchase
Order is identified as a single concept).

(3) In all other cases each of the nouns is constraining the last noun in a sequence

37

Table 5.5: Graphical presentation of Rule 3.

Formal presentation Equivalent SM

o1 g Qz

Cot oz

(Vo).

Tables 5.4 is used to present different cases of the constraint relation and their
equivalents in SM.

Rule 3 The sentence pattern O1+R~+02: If R=transitive verb or a verbal (e.g.,
conform to), then O1 is in relation with O2 and the relation between them will be R:
R (01, O2) (see Table 5.5).

Example: In the sentence ‘CBMSys(0O1) creates(R) the order(02).” CBMsys is.
in relation with Order and the relation between them is Create: Create(CBMsys,
Order).

Rule 4 The sentence pattern O0+R+01+02: If R=transitive verb, then OO is
in relation with O1 and the relation between them is (R+02): R+02 (00, O1) (see
Table 5.6).

Example: In the sentence (“‘System(00) send(R) publisher(01) an invoice(02)’),

- System is in relation with Publisher and the relation between them is (Send Invoice):
Send Invoice (System, Publisher).
Rule 5 The sentence pattern O1+R~+02: If R=linking verb, according to the -

patterns described in [51], the syntactic rule of O2 will be the subject complement

38

Table 5.6: Graphical presentation of Rule 4.

Formal presentation Equivalent SM
o8 53 fer]
A %0 ReO2 o1
I

of the sentence. If the subject complement (02) is an adjective, then the sentence is
used to identify the corresponding concepts only and if the subject complement (02)
is a noun, then Ol is in relation with O2 and the relation is R: R (O1, 02).

Example: In the sentence (‘connection (O1) is(R) closed (02)."), because closed
is an adjective, only the concept Connection is identified. However, in the sentence
(‘user (O1) is(R) an engineer (02).’), the concepts User and Engineer and the relation
Is between them are idenﬁified: Is (User, Engineer).

Note 1. ROM is also capable of identifying the if clauses in the requirement text.
If the if clause pattern is O14+R+02 in which O2 is an adjective, the if clause is used
to identify the corresponding concepts and/or attribﬁtes and the sentence in the main
clause is used to extract concepts, relations, and attributes. This approach will help
to illustrate the relations that exist only under certain circumstances or conditions.

Example: ‘if customer’s credit record is good, then the system accepts the order.”

From the if clause we extract the Customer and Credit Record concepts and from
the main clause we extract System, Order, and the relation Accept: Accept (System,

Order). In other cases, both if and main clauses are used to extract concepts, relations,

39

Table 5.7: Graphical presentation of Is kind of.

Formal presentation : Equivalent SM

o1

o1 o1

and attributes. We also use the if clause as a note for the relation identified from the
main clause relation. Therefore, we can track the condition under which the relation
exists between the concepts.

Note 2. For the sentence pattern described above, if R=1Is kind of/are kinds of,
then O2 is the parent of O1 and the relation between them will be generalization (see
Table 5.7).

Example:. In the sentence ‘Saving Account and Checking Account are kinds of
accounts.’, Account is a general concept (parent) for Saving Account and Checking
Account.

Rule 6 The sentence pattern O1+R: If R=Intransitive verb, then the concep£ 01
has a self association, R (see Table 5.8).

Example: In the sentence(‘System(Ol) stops(R).’), the concept System has é, self
association Stop.

Rule 7 The prepositional relation to, for, from: The pattern of the original

sentence as it appears in the requirement text should be checked. There are three

40

Table 5.8: Graphical presentation of Rule 6.

Formal presentation Equivalent SM

-R

L S

Table 5.9: Graphical presentation of Rule 7.1.

Formal presentation Equivalent SM
o0 o

|]

g) o1

1 ——R—!

o |

1

[]

* [02

HR+0 19
Q3

cases to consider:

Rule 7.1 The Sentence pattern O0+R+O1+to/for/from+02: If R=transitive
verb, then OO is in relation with O2 and the relation is (R+01) and OO is in relation
with O1 and the relation will be R: R+01 (00, 02); R(0O0, O1) (se€ Table 5.9).

Example 1: In the sentence ‘System (00) sends(R) invoice (O1) to the customer
(02).’, there is a relation between the System and the Invoice concepts and that
relation is Send: Send (System, Invoice). Also there is a relation between the System
and the Customer which is Send Invoice: Send Invoice (System, Customer).

Example 2: In the sentence ‘Customer(00) withdraws(R) cash(O1) from ATM(02),

41

Table 5.10: Graphical presentation of Rule 7.2.

Formal presentation SM

00 | Ri(r202) | Of

P

01 02

R2

h 4

there is a relation between the Customer and the ATM and that relation is With-
draw Cash: Withdraw Cash (Customer, ATM). Also there is a relation between the
Customer and Cash which is Withdraw: Withdraw (Customer, Cash).

Note 1. For the same sentence, if Ol is defined as one of the attributes in the
predefined list of keywords (see Table 5.3) and it is being constrained by anothef
objéét such as O3 then we only consider the relation between O0 and 02, and the
relation will be (R+0301): R+0301 (00, 02).

Example: In the sentence ‘system(00) shows(R) order (03) status(O1) to the
customer(02) ", where Order (038) is constraining status (O0) (see Fig. 2.3), there
is a relation between the System and the Customer, and that relation is Show Order
Status: Show Order Status (System, Customer).

Rule 7.2 The Sentence pattern O0+R1+O1+to/for+R2+02: If R=transitive
verb, then O1 is in relation with O2, and the relation is R2: R2 (01, O2) and also
00 is in relation with O1, and the relation is R1(R2-02): R1+R202 (00, O1) (see

Table 5.10).

42

Table 5.11: Graphical presentation of Rule 8.

Formal presentation Equivalent SM

0102 o1 oi R o2
ot jg5[02 ! ORZ __ OR ¥

Example: In the sentence ‘Customer(00) request(R1) the system(0O1) to up-
date(R2) the stock(02).” There is a relation between the Customer and the System
and that relation is Request (Update Stock): Request Update Stock (Customer, Sys-
tem) and there is another relation between the System and Stock which is Update:
Update (System, Stock).

Rule 8 Ol=noun, O2=noun, and O1’s 02: If O2 is among the keywords, then
02 is the attribute for O1, else there exist a Has relation between O1 and O2 (see
Table 5.11).

Rule 9 Prepositional relation of in the phrase Ol1+of+02. If Ol is in the prede-
fined list of keywords (see Table 5.3), then O1 is the attribute for 02, otherwise, O2

and Ol are related to each other and the relation is Has (see Table 5.12).

Table 5.12: Graphical presentation of Rule 9.

Formal Presentation Equivalent SM
oz o1 has 02
— FO1
==)

43

Next, the formalization process and a sample of the rules explained above are
illustrated on a very simple example.‘ |

Given the following sentence in plain English for which the parts of speech have
been assigned to each word, after applying the axiomatic theory of design modeling
we will obtain the ROM diagram shown in Fig. 5.1 and by applying Rule 6.1 we
obtain the corresponding SM shown in Fig. 5.2. |

System (NN) sends (VBZ) invoice (NN) to (PP) the (DT) customer (NN).

Tables 5.13 demonstrates the result of the syntactic analysis for the above sen-

tence.

Table 5.13: Syntactical analysis for the sample sentence.

nsubj(sends-2, System-1)
dobj(sends-2, invoice-3)
prep(sends-2, to-4)

det(customer-6, the-5)

pobj(to-4, customer-6)

Gystam

Figure 5.1: ROM diagram.

Our next goal is improving the FCSM. Here, an improvement stands for adding

44

domain-related expert knowledge to the FCSM as well as detecting and resolving
some of the possible incompleteness or inconsistencies that may exist in the model.
The following section introduces the ECC models (the related background knowledge)
and further describes the process of obtaining the Improved-Structural Model (ISM)

using both the ECC and the FCSM.

Expert Comparable Contextual (ECC) Model

Generally, models are developed to achieve a particular goal and to highlight the
important features of something, considering that épeciﬁc goal [48]. While reviewing
the literature, we came across interesting evidence which supports the resemblance
between the entities in the data models and the conceptual classes in domain models.
For example, in [21], reuse of the universal data models has been stated as one of the
sﬁrategies for identifying conceptual classes. Data Models describe the structure of
the data as well as their meaning, and data modeling is recognized as a standard for
designing databases [43].

Our analysis revealed that there is great potential for using data mo}dels as re-
sources for identifying the necessary elements of the conceptual models due to their
resemblance.

We intend. to construct a comprehensive model for specific domains and further
investigate their applicability to .improve the structural model developed in the pre-
vious step. Furthermore, §ve want to contemplate the potential of these models for
assistance in automatic generation of the CUCM of the system.

We have named these models ECC models and their derivation process is outlined

45

Table 5.14: ECC concept.

Entity Concept

CW) i

below:

Acquisition of the standards and conventions used in data modeling.

Defining the list of heuristics that can be used for mapping data models to the

ECC model.

Developing the representative domain concepts for each of the entities in the

data models.

Developing a comprehensive model that defines the interrelation between the

concepts.

Following is the description of the transformation rules which are used for mapping
data models to ECC models. Each table is composed of two columns. The left column
presents one of the naming standards and diagramming conventions used in the data
models and the right column shoWs the corresponding name and diagram in the ECC
model.

Rule 1 Each entity in the data modeling can be simply replaced by the corre-

sponding concept in the SM (see Table 5.14).

46

Table 5.15: ECC generalization.

Mutually exclusive supertypes and subtypes Generalization
Organization
/" ORGANIZATION ™
v LegalOrganization informalOrganization

LEGAL ORGANIZATION ™
CORPORAION
g ?
INFORMAL ORGANIZATION)

C=)
\)

T

Corporation Family

Rule 2 Mutually exclusive supertypes and subtypes are mapped to the general-
‘ization (see Table 5.15).

For example: An organization can be either legal or informal. Furthermore, a
legal organization can be a corporation.

Rule 3 Non-mutually exclusive supertypes and subtypes are mapped to the spe-
cific generalization that includes conventions for illustrating all possible combinations
(see Table 5.16).

For example: A requirement can be customer, product or work requirement. From
another perspective, the same customer requirement can also be product or work
requirement.

Table 5.17 shows the conventions used to illustrate the mutually exclusive and

mutually inclusive concepts.

47

System Send {invoice} | customer

Bystem Send invoice

Figure 5.2: SM for the sample sentence.

Table 5.16:‘ ECC generalization with all combination.

Non mutually exclusive super types Generalization with all combinations

and subtypes

Requirement
4 REQUIREMENT N
(Gusrwaa mzuunnemD) AN
C WORK REQUIREMENT) CustomerReq ProductReq WorkReqg
@ouc’msawmmm)
N\ A)

Table 5.17: Conventions used for mutually inclusive and mutually exclusive concepts.

Mutually exclusive concepts Mutually inclusive concepts

e) ‘———-.'

48

Table 5.18: ECC attributes.

Attribute(s)
Qrdar
Order 1D
?::;Zn - FOrder Date
ORDER DATE Eniry Date
ENTRY DATE

Table 5.19: ECC aggregation/composition.

One-to-Many (Composed of) | Aggregation or Composition

ORDER ITEM Ordor

' ~lsComposedOf

&

Qrderttem

Rule 4 Each Attribute in the data modeling can be directly transferred to the
ECC (see Table 5.18).

Rule 5 A one to many relation (composed of, consisted of) can simply be replaced
by aggregation or composition (see Table 5.19).

For example: Each order consists of few order items. Order can be considered as
an aggregation of order items.

Rule 6 Many-to-many relations can simply be replaced by association with *(Many)

49

Table 5.20: ECC association with * multiplicity.

Many to many relations ~ Association with * Multiplicity

ContactMechanism

CONTACT ~tortacisd vie

. MECHANISM

»

Party

multiplicity. The intersection .entity can be removed because the intersection entity
is an entity that is created to breakdown the many-to-many relationships when they
are normalized (see Table 5.20).

For example: ‘A party may have more than one contact mechanism such as postal
and telecommunication and, on the other hand, many people may have the same
contact mechanism (e.g., the same woﬂcing address).” We can remove the party
contact mechanism entity and use an association directly between party and contact
mechanism.

It should be noted that assigning multiplicities to the relations is out of the scope
of this thesis.

Rule 7 Exclusive arcs are used to represent groub of relations that cannot exist
together and at each time only one of them exists. In the ECC médel they are

replaced by associations with OR Constraint (see Table 5.21), for example:

50

Table 5.21: ECC association with OR constraint.

Exclusive arcs Association with OR Constraint
o -
INVENTORY ITER!
LOGATEGAT "“m""flb?}?\"?ér) WITHN 1% Locatad Within
] 1 [
: Inventoryitem Is Located At] Container
{OR}
CONTAINER "‘.
Is Located At
At rmsssmeammsemossmssieksssssmssnssn ot !

[} Facility

‘Each inventory item can be either located at the facility or located within con-

tainer.’

Rule 8 Recursive relations show that the entity is in relation with itself. There are
two kinds of recursive relations: i) one-to-many which is pointed from the concept
to itself, and ii) many-to-many relation which is showed with the help of another
entity used as an intersection. Both of the recursive relations are mapped to the self
association in the ECC model (see Table 5.22)

For example: ‘Fach work effort is related to itself to show that the work effort
should be redone. Also it is related to another entity, work effort association meaning
each work effort may be dependent to another or broken down into several lower-level
work efforts.’

In our approach, we use a concise form of these models by extracting the fewest

concepts necessary to form the basis of the specific domain. This provides a domain

91

Table 5.22: ECC self association.

Recursive relation Self Association

WORK EFFORT

ASSCCIATION

mau«:waﬂﬁ\“—/
WiTH

is redone

-Associated Yith

A0, FRSS S

WorkEffort

WORK EFFORT
<Is redone

model which can serve the stakeholders’ various needs at different times. By this

we mean that it is essential to extract only the expert k‘nowledge required for the
conceptual modeling of the domain and to reduce the number of details pertaining
to the physical data model instances and the persistent storage.

As suggested in [43], some of the constructs applicable to most organizations
are: people and organizations, products, ordering, shipping, work effort, invoicing,
accounting and budgeting, and human resources. Currently we have investigated the
Invoicing Orders domain and the derivation process of ECC is manual. We leave the
rest of the constructs ‘to be éxplored in future. Fig. 5.3 shows the ECC model for the
invoicing ord-ers domain.

While building the ECC model for each of the mentioned constructs requires

certain effort, once these models are built they can be reused and their real benefit

52

will become evident in the long term.

- The influence of these models on the improvement and completeness of the SM,
such as useful information added about the relationships between concepts (e.g., gen-
eralization and composition), will be discussed in the following section. In section
5.2.3, we focus on the use of ECC model in capturing the high-level system services

from the requirement text.

Improved Structural Model

Once the FCSM and the ECC model are created, the next step is to employ them in
the Improved Structural Model Algorithm (ISMA) for génerating the ISM.

The steps of the ISMA are outlined below:

Stép 1 The concepts that exist in both models are the best candidates to be
added to the ISM.

Step 1.1 Selected attributes of the FCSM and the ECC model are added to the

ISM. Here, selection means that:

(i) We have to find the proper attribute that addresses a certain adjective such as

the attribute size that addresses the adjectives large or small.

(ii) If the identified attribute is one of the keywords detail or information, it will
be highlighted and READ user is asked to spécify all the attributes that should
be tracked. For example, the phrase Payment Information will be highlighted
and the READ user has to specify clearly the attributes that should be tracked

about Payment such as date, amount, etc.

53

e B I
qre x|} imaamg- Sapeuag f Dimodsg-ar gopr gl | cingay L
— i ; _ Tuuypao 225¢ np Sae jasuic,y)}
\v4
adAyuiay 4 al ‘ T Wiy - X3 SqES
PIA my Pprndiy i w
N -]
H
hvid Agpaquamegsr T o1
RN " FTe
ETITYE i Fp— |Gz gepeidl] GIPoid: Dsownafpy | oy pom || inwg werg
adAysmers - H ouRigngs umes fponpesg VapeIL T
a) .I S ;i A ? m]
Agpaguoseg¥ | ! HHMPIOS- magRsang 3 { {
H {uo} H T H b
1 H T
e
TAPOIISE Migmag
i N
-
¥
i
{ |
.‘M il Wy uosag f 1os et 3 | omensoig |1 preupaay q=533
= W.m =] J] T T i]
H Es £l
b & g g <
3 Fy
E 2§
i I
-~ WH POYRIIRIUINE]
“mopduasr| spasodiad)55 =
s onddn ApPunisn adessagy] =
o y aegINDARE] E
woNEZIMETIHRELI] iRy ajelsny Prif N =
i { I premre eppsadrs 5
T] " oresd E
e Ml =
34 m.u«.
sty anea)- ey ey] Z2E
A
& .
ToamIIRgRG dmoag 5 ANAIN A3puI Aasnaddy igpasney
»t!lHL 4 i i i |
kv =
syBunoysy g
Jenawe.y-d
- 1Ry
Asang £ d
i sl Al =
Quursicy. >
oAIROIRL ST yomiey HAPEIN
i
SHROTPICIRES JINOARY

i)

FRHREGIRAIIBIRG)

Figure 5.3: ECC for invoicing.

54

Step 2 If any FCSM concept partially matches the concepts in the ECC mo‘del,
they are both added to the model énd highlighted with the same color to show that
they might be identical. The READ user will make the appropriate choice.

Step 2.1 If any two concepts in the FCSM that are related to each other with
rela’pion labeled has, partially match a single concept in the ECC model, they will be
highlighted as a candidate for representing one single concept. The READ user will
make the appropriate choice.

Example: Suppose that because of the bad style of writing the phrase purchase
order is not identified as single concept in the FCSM which may result in having
concepts order related to the ‘purchase’ with the relation has. Then ISMA will
identify purchase order as one of the partial matches for both of these concepts.
Therefore, the concept purchase order will be suggested to the READ user as a
potential single éoncept.

Step 3 In order to make sure that we have extracted all the necessary elements
for the SUD for our final model (ISM) and nothing is missing, we ask the READ user
to answer four basic necessary questions extracted from the Larman’s category list

[14] as shown below:

(1) What is the transaction?

(2) Where is the transaction recorded?

(3) What are the roles of the people and the organization?

(4) What are the other collaborating systems?

%)

In case one of the concepts corresponding to the answers of the previous ques-
tions is missing from the model, it will be added and the model will be updated
correspdndingly.

Step 4 If thefe is a concept in the FCSM that does not exist in the ECC model as
either an attribute or a concept, and on the other side it is not found in the answers
to the previous questions, we flag the concept and the READ user will make a final
deciéion on keeping or excluding the concept from the ISM.

Step 5.1 If attribute A that exists in the FCSM or in the newly created ISM
appears as a concept in the ECC model, it will be highlighted and shown to the
READ user as a potential concept and the READ user will make a final decision
regarding keeping it as an attribute or changing it to the concept.

Step 5.2 For an attribute of the concept B in the ECC model that appears as
a concept A in the FCSM and it is not captured as an attribute by the Rule 2.2
defined in section 5.2.2, if concept B already exists in the newly created ISM, only A
is placed properly as its attribute. Otherwise, concept B is selected from the ECC
model and added to the ISM while placing A properly as its attribute. If A is the
attribute of more than one concept in ECC, all the possible concepts from the ECC
will be highlighted and the READ user will make a proper selection.

For example, in the sentence ‘the customer enters ID to the system.’, since it is
not specified to which concept ID is related, it will not be captured as an attribute,
instead, it will be considered as a concept in FCSM. However, ID .is the attribute of
the Invoice in ECC. Therefore, if the concept Invoice is already added to the ISM,

ID will be placed as its attribute. Otherwise, first we add Invoice to the ISM and

o6

then ID will be placed as its attribute.

Step 6 If, at any time, concept A in the FCSM or newly created ISM is par- .
ticipating in a composition/aggregation relationship with a concept B in the ECC
model, then both A and B concepts should be added to the ISM. Aggregation is used
to show the relationship between the part and the whole so that we can have a better
view over the relationships and attributes that go to the whole and the ones that go
to the part. CompOsition is the strong relation between the whole and the part in
which the parts are destroyed when the whole is destroyed.

Step 7 If, at any time, concept A in the FCSM or newly created ISM is partici-
pating in a generalization relationship in the ECC model, both the general concept
(parent) and its child are added to the ISM so that we can have clearer understanding
of the general attributes and relations that apply to the general type as well as the
ones applied to subtypes.

The major goal of Steps 6 and 7 is to provide better understanding and knowledge
of the SUD.

Step 8 With regard to relationships between each pair of concepts, should the
relationship in the FCSM named differently from that of the ECC model, the ECC
relation will be suggested to the READ user as an inclusive alternative but the READl
user will make the final decision. This step is also useful for refining any duplicate
relations that may exist between concepts.

Step8.1 Considering the relationships between each pair of concepts, if the re-
lation and one of the concepts are the same in FCSM and ECC, then the other

remaining concepts from FCSM and ECC model are highlighted and shown to the

57

READ user as candidates for being synonyms. The READ user will make a final
decision whether to keep them as synonyms or not.

Step 9 Finally, a list of other remaining FCSM and ECC‘ model concepts, their
attributes and their relationships are provided to the READ user who has the option
of adding any of them to the model as necessary.

The rationale behind the ISM hinges on providing both a more comprehensive
model, assisting in the identification of the possible errors/inconsistencies in the text
and giving stakeholders the flexibility of having the customized' needs that do not
match exactly the standard domain models (ECC models).

It should be noted that currently the FCSM can be generated for different require-
ment texts and it is independent of the domain. However, ISM is tied to the Invoicing
domain but ISMA can be applied to other constructs as well Qhen the corresponding

ECC models are developed.

5.2.3 Capturing High-Level System Services

The primary goal of this step is to propose a mechanism for identifying the high-level
system services (potential summary-level use cases [6]) from the user requirements
text, visualize the corresponding CUCM diagram representing the actors ‘and services
(use cases) and.extract the use cases textual descriptions from the original text.

Use case identification can be done at different levels, such as business/interaction
[20], or with different scopes, such as functional/design [6]. In the requirements elic-

itation phase, software system services are initially captured at a higher abstraction

58

level as “summary-level use cases” [6]. These are further refined into functional .or
design user-goal use cases [8]. In this work, a UML use case diagram is employed
to graphically synthesize the content of the CUCM. Similar to a Use Case Model
(UCM), actors, use cases, and the communications between them are the three el-
ements that constitute a CUCM. Actors are divided into two categories: primary
actors, which initiate an interaction with the system to achieve a goal, and support-
ing actors, which provide a service for the system [6,21]. Our goal is to identify the
software system summary-level use cases which are defined as the services provided
by the system to the user. The steps of our methodology for semi-automatically gen-
erating CUCM from the textual user requirements and extracting a brief déscription '
of the summary-level use cases are summarized below:

Step 1: Identify the actors with ECC model assistance..

Step 2: Identify the high-level system services, called ‘summary-level use cases’
and the key sentences in the user requirements text characterizing each service.

Step 3: Extract a brief textual description of the summary-level use cases using
a metrics-based text-partitioning algorithm.

Step 4: Identify the supporting actors associations.

Step 5: Draw a Context Use Case Diagram which depicts graphically the CUCM.

These steps are described in detail in the corresponding subsections.

The remaining issue is how to deal with structures such as while, go to, and if.
Because our focus is on the summary-level use cases rather than detailed use case
scenario descriptions, we are excluding the appearance of the keywords go to and

while in our text. If clauses are normally used to express the conditions, status, or

59

state under which a certain relation is established or an activity is performed. In our
methodology, the if clauses are visualized in the form of UML notes and may later be

refined to user-goal use cases.

Actors

Discovering and finalizing the existence of the actors is accomplished separately for
each type of actors (primary and supporting).

Primary Actor. Each ECC model accommodates the possible roles played in
that specific domain (e.g., Customer and Supplier in Invoicing Orders) by the various
users of the system to achieve their requests. Therefore, the list of possible roles for
each specific domain is generated automatically in terms of the potential primary
actors in the system.

Supporting Actor. There are two main approaches to producing software sys-
tems: building them individually or developing them from the perspective that sys-
tems can collaborate (in other words, a holistic approach to system development) [43].
We are interested in the second approach. Modeling the interrelationship between
software systems‘_makes it possible to automatically elicit the supporting systems
associated with the SUD as potential actors to support its services.

In order to provide the flexibility for the stakeholders and to take into account
their customized needs which do not exactly match the standard domain models
(ECC models), both lists will be shown to the READ user. Final modifications are

done with the help of the READ user and the list is approved.

60

Identification of System Services

SUD should provide certain services to the primary actors with the purpose of fulfilling
their needs. In order to identify those system services (potential summafy-level ﬁse
cases), we search for and analyze two kinds of patterns in the ROM presentation
of the text: i) relations directed from the SUD toward another entity, and ii) the
relations that are directed frém the primary actors toward another entity.
Whenever a relation is directed from the SUD to another entity, the combination
of the relation and the entity can be a use case. Yet, not all these combinations
are valid, and furthgr analysis is required to reveal those that are. Relations stem-
ming from the system can be divided into: (a) internal actions of the system; (b)
the services of the system or high-level use cases; (c) any interaction between the
system and supporting actors, such as forwarding a result, waiting for data [10], etc.;
and (d) any interaction between the system and primary actors, such as asking for
information or confirmation. In order to identify valid use cases, each <primary ac-
tor, trigger,SUD,relation directed from the SUD,entity toward which the relation is
directed> tuple will be checked with the original sentences in the user requirements.
The primary actor’s relationship to the SUD can be considered as the triggering event
for accomplishing a certain service (summary-level use case). This triggering event
is normally sté,ted in the requirements text using verbs such as request, ask, want,
choose from, select from. If in the requirement text, a sentenqe with all the keywords
in the tuple exists, then the use case and the communication between the actor and

the use case are considered to be valid. Otherwise, they are invalid and will therefore

61

be ignored.

In completing the use case identification process, we study the relations that
originate from the primary actors and are directed toward another entity. If the
relation that originates from the primary actor is one of the reserved verbs enter or
type and an entity toward which the relation is directed is found in the predefined
list of attribute keywords (see Table‘ 5.3), the relation and the entity will be ignored
because this list contains some of the keywords such as ID, user name, password, etc.,
which in combination with the verbs enter or type are normally used in response to
type (d) interactions. If the entity is not in the list and the relation is not one of
the reserved verbs, we scan the original text sentence by sentence, looking for tuplés
of the type <primary actor, relation directed from the actor, entity toward which
the relation is terminated, to/from, SUD>. We are seeking the relations that are
directed toward a system entity with the prepositional relations from and to. If there
is a sentence containing all the keywords, then a combination of the entity and the
relation is considered to be a valid use case. The above two patterns were revealed
by our studies of the user requirement documents in academic and course projects.

The result of this procedure is a set of sentences SS, each containing a primary
actor and. the verb indicating a particular use case of the SUD. There is one sentence

in an SS per high-level system service. We remind the reader that high-level system
services are referred to as “summary-level use cases” and are usually described in a

narrative style.

62

Summary-Level Use Case Briefs

Summary-level use cases are high-level descriptions of the services provided by the
SUD. Our gdal is to partition the original problem statement description around the
sentences chosen in an SS into summary—level use case descriptions, one partition per
sentence S; € SS, where each partition groups the sentences related to one service (use
case). The equivalence criterion is the rule for evaluating the closeness of a sentence |
to S; based on a distance metric. Such grouf)ing increases the visibility of the text
describing a service, which is possibly scattered among the paragr‘aphs or pages of
the original text. The increased visibility will facilitate the job of analysts in ensuring
the completeness of the use case descriptions and in inspecting the text for possible
inconsistencies between otherwise scattered statements.

Metric-based text partitioning algorithm. The set of sentences in the user
requirements is represented as a metric space were the space points are abstractions
of sentences. The word metric here means distance between two points (that is,
abstractions of two sentences) in a metric space, where the distance is a measure of
functional similarity/dissimilarity between two sentences.

Let RR be the set of all sentences in the user requirements, excluding those already
chosen in the SS. The metric-based text-partitioning algorithm takes as input the sets
RR and SS. It breaks down the set of sentences of the original problem statement into
partition P;, one partition per each sentence S; € SS (that is, for each summary-level
use case). The number of partitions is equal to the number of sentences in SS. A

sentence belongs to partition P, if it is the closest to the corresponding Si € SS.

63

The distance between two sentences S; and S, (S; € SS, S; € RR) is calculated

as follows:

sd(S1, S2) = similarity(Si, S) * dissimilarity(Sy, Ss) (5.1)

It should be noted that a similar approach was originally proposed in [46] for a
metric-based test case partitioning algorithm. The similarity (S;, S;) was redefined
to adapt the formula to the software analysts’ use case elicitation process. The details
of the distance calculation are as follows:

First, sets WSl and WS, are generated for each sentence S; and S,, each of which
contains the signiﬁcant words in the corresponding sentences meaning that modal,
auxiliary verbs, determiners, etc. are ignored and the remaining words are stemmed.
Two tables in which each row corresponds to a sentence and each column corresponds
to a different word in S; and S, are then generated. -Each cell ha}s a value 1 if the
word corresponding to that column belongs to the sentence, and 0, otherwise. Thus,
the sentences are converted into binary strings (rows are binary strings representing
the sentences) forming a metric space on which the distance sd between two sentences
S; and S, is defined. The first table (see, for example, Table 5.23) contains actors
and actions, and the second table (see Table 5.24) contains the remaining words in
the sentence. The ﬁrst table is used for calculating the similarity (57, Sz), while the
second table provides the necessary information for calculating dissimilarity (Si, S2).

Similarity and dissimilarity are calculated from the above binary strings as follows:
Similarity(S;, Sy) = 27C51,52) (5.2)

where C(S1, S2) is the number of common actors and actions in S; and S, sentences.

64

This definition is justified by the fact that the use cases might include common be-
havior started off by the same request from a primary actor (input action). In the
analysis phase the above mentioned common behavior will be refined into a set of
scenarios defining the use case. The range of the similarity measure is between 0 and
‘1, where values closer to 0 indicate greater similarity and 1 indicates no similarity.
When identifying the actions (verbs) for the similarity table, if the sentence contains
one of the triggering verbs (request, ask, Qant, choose from, select from), both the
trigger and the main action are placed in the similarity table. This is due to the fact
that triggering verbs do not represent the main action of the sentences and they just
present the trigger tﬁat causes the action.

The dissirhilarity measure between two binary strings representing S; and S, is
calculated as the number of elementary transformations or, equivalently, number of
words that should be changed in order to transform string S; into string S, excluding
the words that are already counted in similarity (see Table 5.24). The more the
set of words manipulated in one sentence differs from another sentence, the more
dissimilarity is between them. The distance formula sd(S;, S;) indicates that the
more distance there is betweeﬂ two sentences, the more they will differ in content,
and thus the less likely they will be to characterize the same use case. It is assumed
in the distance fbrmula that dissimilarity will never get the value of 0 unless two
sentences are identical which will result in héving the distance equal to 0.

For instance, let S; = ‘The custohzer requests the C’BMSys to place an order.’

and Sy= ‘If the customer’s credit record is good, then the CBMSys places the order.’

The distance between the sentences S; and S,, using the information shown in Tables

65

5.23, 5.24 is calculated as sd(Sy, Sg) = 272 % 2 = 0.5.

Table 5.23: Calculating similarity.

Customer Request Place

S1 1 1 1

S2 1 0 1

Table 5.24: Calculating dissimilarity.

CBMsys Credit Record Order

S1 1 0 0 1

S2 1 1 1 1

The distances between all the sentehces in RR and each of the sentences in SS
are calculated using the suggested above formula. Each ‘sentence is placed in one
of the partition from which its distance is minimal. If the shortest distances to
different partitions are equal, the algorithm calculates the distance between that
specific sentence and the rest of the sentences in each chosen partition; the sentence
is finally added to thé partition P; from which its distance is minimal. The sentences
corresponding to thé set of binary strings in the P; are then recovered and the use

case summary is generated and shown to the READ user.

66

Supporting Actor Associations

‘The communication links between the use cases and the supporting actors are then
extracted based on the appearance of the supporting actor names in the use case

summary description.

Use Case Context Diagram

The Context Use Case Diagram is generated from the CUCM elements (actors, use

cases, and their communications) extracted in the steps outlined above.

Discussion

As mentioned earlier, user requirements text is normally written in natural language.
The writing style and the terminology used for describing the problem are highly
dependent on the individuals who record them [6]. In this context, applying ECC
models may give rise to the question of how certain we are that the same vocabulary
will be used by the authors of the user requirements.

The terms used in the ECC models are standard in each domain and are appli-
~ cable to different organizations with different needs [43]. They form the dictionary
of terms which can be used in writing the user requirements, and authors of the user
requirement texts are greatly encouraged to use them. It should be noted that using
unpopular terminologives or different terms for a single concept may give rise to incon-
sistencies and uncertainty in the later stages of development of the SUD. It is worth
noting that using homogenized terminology has previously been suggested by [6,20]

as a pattern for specifying the requirement text and use cases.

67

The methodology we describe here is illustrated in a case study in the next chap-

ter.

68

Chapter 6

Illustration

In this section, the proposed methodology in Chapter 5 is illustrated on the Invoicing
Orders case study. The problem statement is inspired by [42] and the Invoicing Orders
System requirements for a fictitious company, CBM Corp [32].

This exazﬁple has been chosen because, despite its simplicity, it gives us the oppor-
tunity to clearly explain the details of our methodology. The sentences are numbered

to simplify the illustration process.

6.1 User Requirements

‘1.The customer requests the CBMSys to place an order. 2. CBMSys retrieves cus-
tomer’s credit record from the Customer Persistent Storage (CPS). 8. If the cus-
tomer’s credit record is good, then the CBMSys places‘the order. 4. CBMSys creates
and sends the order to the publisher. 5. The CBMSys receives the invoice of the order

from the publisher. 6. If the purchase invoice’s details are correct, then the CBMSys -

69

~ accepts it and sends it to the Account Payable System (APS). 7. The CBMSys pre-
pares publisher payment and sends the check to the publisher. 8. The CBMSys assigns
shipment to the orders. 9. CBMSys generates a sale invoice for the customer. 10.
The custoﬁer provides payment information to the CBMSys,V and the CBMSys sends
it to the Accounts Receivable System (ARS). 11. The customer shall view the order
status from the CBMSys. 12. The customer enters the order ID to the CBMSys, and
CBMSys shows the order status to the customer. 13. Customer and publisher shall

be able to update their Personal Profile from the CBMSys.’

6.2 Preprocessing of the Requirement Text

In our methodology it is assumed that the ambiguities have been removed from the
text with the help of the stakeholder [16]. In our sample text, after ambiguity detec-
tion (see section 2.4.1), pronouns will be substituted by the corresponding nouns to
which they are referring to and few minor changes are also made to the text such as
removing parenthesis. The modified text will be the input that is used in other steps.

Formal Presentation. When ambiguities are removed from the text, the next
step is generating its ROM diagram (see section 5). We will illustrate the process on
one of the-sentences of the text as an example.

Given the following sentence in plain English, after applying the axiomatic theory

of design modeling we will obtain the ROM diagram as shown in Fig. 6.1:
‘The customer enters the order ID to the CBMSys, and CBMSys shows the order

status to the customer.’

70

Tables 6.1 and 6.2 show the parts of speech and syntactic analysis for the above

sentence.

Table 6.1: Parts of speech for the sample sentence.

(ROOT(S (S

(NP (DT The) (NN customer)), (VP (VBZ enters),
(NP (DT the) (NN order) (NN ID))

(PP (TO to), (NP (DT the) (NNPS CBMSys)))), (,)
(CC and), (S (NP (NNP CBMSys)), (VP (VBZ shows),

(NP (DT the) (NN order) (NN status))

(PP (TO to), (NP (DT the) (NN customer))))), (. .)))

Table 6.2: Syntactical analysis for the sample sentence.

Det (customer-2, The-1), nsubj (enters-3, customer-2), det (ID-6, the-4),
nn (ID-6, order-5), dobj (enters-3, ID-6), det (CBMSys-9, the-8),
prep-to (enters-3, CBMSys-9), nsubj (shows-13, CBMSys-12),

conj-and (enters-3, shows-13), det (status-16, the-14), nn (status-16, order-15),

dobj (shows-13, status-16), det (customer-19, the-18), prep-to (shows-13, customer-19)

According to the sentence pattern that is shown in (Rule 7.1, 5.2.2) we will obtain
the following ROM diagram (see Fig.' 5.1).
The detailed information on the process of transforming the sentences in natural

language to the ROM presentation can be found in [5], [50], and [51].

71

o S R SR

PR
........ Eg

Figure 6.1: Sample ROM diagram.

As mentioned before, our methodology is based on the ROM presentation. The
overall ROM presentation for the text is shown in Fig. 6.2. The diagram is the sim-
plified view of the ROM output, created manually, based on the descriptions in [51].

It is shown with the purpose of simplifying the understanding of our methodology.

6.3 Structural Analysis

First Cut Structural Model (FCSM). Having the previous sentence in mind, in
this section, we will explain how the transformation rules described in section 5.2.2

of Chapter 5 can be used to extract the necessary elements for generating the FCSM:
(i) Applying rule 1 will result in having Customer, Order, and CBMSys as concepts.
(ii) Applying rule 2.2 will result in having status and ID as the attributes for Order.

(iii) Applying rule 7.1, Note 1 will result in having a relationships Enter Order ID

and View Order status between the customer and CBMSys.

Fig. 6.3 shows the overall FCSM for the text. This figure is generated directly

from the formal ROM presentation by applying the rules developed for mapping ROM

72

CBMEYS

Purchase 4§

b Poyment

fnveice

[3

Publizbar

‘ check _l 5' datails

g i R I T o ap—

Figure 6.2: Overall ROM presentation.

73

Bale e

to the SM to the whole text.

-has
Credit Record Cust Entar{OrdetiD)
{__RequestPlaceOrder)

& if the customer's credit record 18 good,
-Update § g then tho CBMSys places the order
Bz
e ¥ I
Pocaorai . 35 .
arsonal Profile ; s i e g : Customr Persistant Storage :
- &4 g3 3 1 !
f
§ E ¥ % !
k t
Payment £ =2 g E !
Infomration m_&,,l & |
Retriove{Customer Credit Record) :
' CBMSys || !
2| | snipment |
3 L
Chack § ‘En ® |
2 a !
§- I
!
Send g
Se : H
2]
-4
@ w
5 EE
. 3 QOrdor
pdat Publist -status
s
g ¢
3 frvaice
AccountPa&ab!esymm NNNNNN
I L T Ty P o o o = =4 the purchase invoice’s dutalis are correct,
then the CBMSys accapts it
y b Purchase invaice Sale Inveice

kdetails

Figure 6.3: FCSM.

ISM.‘ An improved (revised) version of the SM is generated from the FCSM using
the ISMA. The steps of the ISMA applicable to the sample requirement text are

described in the following;:

Step 1. Customer, Payment, Purchase Invoice, Sale Invoice, Invoice, and Shipment
concepts are added to the ISM because they exist in both the FCSM and the

ECC model.

74

Step 1.1. Regarding attributes for Payment and Purchase Invoice concepts, at-
tributes from the ECC model are added to the ISM and because of the appear-
ance of the word information in the phrase Payment Information and details in
phrase Purchase Invoice details, READ user’s validation is needed for ﬁnalizing

the list of the attributes for these two concepts.

Step 2. Partially matching concepts from the FCSM and the ECC model respectively
(such as Order with Ordering, Account payable and Account Receivable With
Financial Accounts, Check with Certified Check, Personal Check, etc.) are
added to the ISM and highlighted with the same color in order to show to
the analyst ‘that they might be interchangeable. The analyst will make the

appropriate choice.

Step 3. The concepts representing the answers to the following questions will be
added to the model (in case they are missing from the model) along with their

attributes and any relationships they are participating in:

(1) What is the transaction? Invoice.
(2) Where is the transaction recorded? CBM System (CBMSys).

(3) What are the roles of the people and the organization? Customer, Pub-

lisher.

(4) What are the other collaborating systems? Account Payable System, Ac-

count Receivable System, and Customer Persistent Storage.

75

In our example this step will result in adding the concepts' CBMSys and Pub-
lisher to the ISM. Customer has already been added in Step 1. Account Payable
System, Account Receivable System, and Customer Persistent Storage have

been added to the model in Step 2.

Step 4. The concepts Credit Record, Personal Profile appearihg in the FCSM which
do not exist in the ECC model, are flagged to the analyst before being omitted
with the purpose of ensuring that we are not losing any important information

extracted from the user requirements.

Step 5. The attribute status in FSCM is defined as a concept in ECC, therefore,
it will be highlighted and shown to the READ user as a potential concept and
the READ user will make a final decision regarding keeping it as an attribute

or changing it to the concept.

Step 6. According to this step of ISMA, the concept Invoice Item is added to the

model because invoice is composed of invoice items.

Step 7. The concept Invoice generalizes the concepts Sale Invoice and Purchase
Invoice. The concept Payment Method is added because it generalizes the
Check concept. These concepts come together with some of the relations that

will be shown to the READ user; they are added to the ISM if approved by the

READ user.

Step 8. We did not encounter any cases where the relationship in the FCSM was

named differently from that of the ECC model, therefore, this step is not ap-

76

plicable to our example.

Step 9. The list of the remaining concepts from the ECC model (e.g., Receipt,
Contact Mechanism, etc.) are presented to the READ user. In case there is a

need to add a missing concept, it will be added to the model.

Fig. 6.4 shows the ISM generated from the user requirements text provided at the

beginning of this chapter.

6.4 Identification of the System Services

In this section, we will illustrate the details of our methodology for generating CUCM
from the user requirements where (i) the system services provided to the primary ac-
tors are extracted from the user requirements text, and (ii) the original text is parti-
tioned into groups where each partition represents a collection of sentences describing
one service. It is to be noted that the number of partitions is equal to the number of
services identified and the partitions are mutually exclusive.

Step 1: Primary and Supporting Actors. The primitive list of actors gen-
erated for the READ user using the Party Role-Invoice Specific concept of the ECC
model contains: (i) Customer, Supplier, and general Organization as the primary ac-
tors, and (ii) Shipment, Ordering, Financial Account, and Party which are shown as
interfaces (othér constructs) communicating with the invoicing domain as supporting
actors. With the help of the READ user, this list is refined to Customer and Pub-
lisher as primary actors, and Accoﬁnts Receivable, Accounts Payable, and Customer

persistent Storage as supporting actors.

77

Customar Persistant Storage

-has C Enter(Order(D)
Cradit Rocord ™ ~ RoguostPlaceOrder]
i
d |
-Update j £ ? 2
3
[y Porsonal Profile € § g %
Pay - & &
cpors o) &
E‘- B |~ il
il [3 i 1f the purchase invoice's detalls are correct,
g‘ 2 ' a' then the CBMSys accepts it
Prepare s 7 how (Ordar Statys ;
& |
114]
CBMSys | i
" T
}
5 g 4 }
4 & g Shipment
g, £ ! -3
® F-
HE
g8 &
4 .]
Personal Check %
H
Ordor v wintarfacen
- “status Qrdering
Certitied Check 5 § Alpdate
§ Publisher J
H
winterfaces
Finsncial Acconnts e
Ig invoiceltem |
3 IrvoiceitemSEGID |
== ~TaxatieFlag !
] Quantity i
M tPaysblaSystem || |A tRecidvabloSyst . Lamount ‘
| -ltemDescription 5
| J
1
|
|
1

it the customer’s credit record is good,
then the CBMSys places the order

Figure 6.4: ISM.

78

Step 2: System Services. From the overall formal presentation of the text
(ROM) shown in F1g 6.2 we extract the services of the system (considered as potential
summary use cases) according to the patterns described in section 5.2.3.

We are interested in the relations that are rooted in the system entity and the
entity toward which the relations are directed. Sample candidate use cases from this
point of view are displayed in Table 6.3.

We are also looking for all the relations that are rooted in primary actors and the
entities toward which the relation is directed. Tables 6.4 Shows sample potential use
cases from this prospect.

For the former group of potential use cases, each <primary actor, trigger,SUD,relation
directed from the SUD,entity toward which the relation is directed> tuple will be
checked against the original sentences in the invoicing description. If é sentence with
all the keywords in the tuple exists, then the actor, use case, and communication are
considered valid. Otherwise, they will be ignored. For example, <customer, request,
place, order> is valid because the sentence that contains all these keywords exists in
the original problem statement as ‘The customer requests the CBMSys to place an
order.’ In contrast, <cust6mer, request, prepare, payment> is not valid because none
of the sentences in the original problem statement contain all these keywords.

As for the latter group of potential use cases, every tuple consisting of <primary
actor, relation directed from the actor, entity toward which the relation is terminated,
to/from, SUD> is aligned with the problem statement. As a result, Update Profile is
identified as a valid use case associated with both the Customer and the Publisher, as

well as View Order status which is associated with the Customer. On the other hand,

79

Enter ID is ignored because enter is one of the reserved verbs (see type(d) relations
in section 5.2.3) and ID is one of the keywords on the predefined list of attributes
in Table 5.3. Therefore, the phrase Enter ID is identified as a representative for the

data or information provided in response to the system’s request.

Table 6.3: Finding use cases from a formal presentation (system perspective).

Actor Trigger Sample potential use case

customer request show status

prepare payment

(to) place order

Table 6.4: Finding use cases from a formal presentation (actor perspective).

Actor Sample potential use case

customer update profile
publisher + enter ID

view status

As a result of the above procedure, the main sentences of the requirement text
characterizing the system servicéé provided to the primary actors will be:

1. The customer requests the CBMSys to place an order.

11. The customer shall view the-order status from the CBMSys.

13. Customer and publisher shall be able to update their personal profile from

the CBMSys.

80

Therefore SS={1,11, 13}, RR={2,3,4,5,6,7,8,9, 10,12}, and we have three par-

titions.

Tables 6.5 summarize the information that we have extracted up until this part.

Table 6.5: Extracted actors and use cases.

Actor use cases

customer-publisher Update Profile
customer Place Order

customer View Order Status

Step 3: Briefs. After applying the text partitioning algorithm, each of the
sentences in the RR set will be assigned to the corresponding partition where the

partitions are mutually exclusive and their union will be exactly the set RR.

(i) Sentences are divided into tokens (e.g., prepositions, articles are omitted and

the words are stemmed.)

(i) The sentences in set SS are always considered as the main sentences because it
is assumed that the brief description of the summary use cases is about them

and it starts with them.

As described before, each sentence belongs to one partition only for which the
distance between the given sentence and the partition’s root is minimal. In case there
is no minimum distance, that is, the smallest distances between the given sentence and

two or more partitions’ roots happen to be equal, then we have to find the distance of

81

the given sentence to the sets of sentences belonging to each partition. The sentence

will be finally placed into the partition from which it has the minimum distance.
According to the same procedure described and shown in section 5.2.3, distances

between the sentences in set SS and RR are calculated. The results of the calculations

are summarized in the tables 6.6, 6.7, and 6.8 .

Table 6.6: Distance calculations for S1.

(8;,8;) Distance

(51,8 25
(51,85 0.5
(S1,5) 2
(S1,55) 2
(S1,56) 7
(S1,57) 5
(S1,5s) 2
(S1,55) 2
($1,810) 2.5
($1,512) 15

As it can be seen from the calculations, the first step of the metric-based text-
partitioning algorithm results in three P; sets, namely P, = {1,2,3,4,5,6,8,9,10},
P, = {11,12} and P; = {13, 7} corresponding to the sentences 1, 11 and 13 from the

SS and the summary-level use cases Place Order, Check Status, and Update Informa-

82

Table 6.7: Distance calculations for S11.

(S:;,S;) Distance

(S11,52) 3
(S11,5s) 2
(S11,54) 3
(511,55) 3
(511,5%) 8
(S11,57) 6
(S11,58) 4
(S11,5) 2.5
(S11,510) 3
(S11,512) 1

tion.

All the sentences are correctly assigned to fheir corresponding partitions except
sentence 7 which is wrongly assigned to P; in reality, it belongs to P;. The reason
might be the ambiguous formulation of the sentence. Further analysis is required to
clarify the issues related to the wrongly classified sentences. The refinement of the
distance metric definition will be tackled in our future work.

Step 4: Supporting Actor Communications. The supporting actors identi-
fied from the P, are Customer Persistent Storage and the Accounts Receivable System.

This shows that there exists a communication between these two supporting actors

83

Table 6.8: Distance calculations for S13.

(S:,5;) Distance

(S13,52) 3

(313,53) 3
(S13,54) 2.5
(S13,55) 2.5
(S13,5%) | 8
(S13,57) 3
(S13,5s) 5
(S13,S9) 2.5
(S13,510) 3
- (513,512) 3

and the corresponding use case Place Order. No supporting actors are identified in
P, or Ps, therefore no communication exist between these use cases and any of the
supporting actors.

Step 5: Use Case Context Diagram. The graphical model consolidating the
‘above information is shown in Fig. 6.5.

Having illustrated the methodology, in the next chapter we introduce the proto-

type tool implementing our methodology.

84

If the purchase involce's details are correct, If the customer's credit record is good,
then the CBMSys accepts it then the CBMSys places the order

5 e
A /
Ay . /

5 /

’
//
\
\\) yie
Y, CBMSys /
) . // |
\@iOwer
CPS

me!)
Customer N

{ Wiew Ordar Status
/

.

/ A\

Update Profile APSystem
Publisher

ARSystem

Figure 6.5: CUCM diagram.

85

Chapter 7

Prototype

7.1 Overview

This chapter is intended to present the details related to the proof-of-concept tool
that implements our approach.

- READ is a prototype tool that operates on a requiremeht text written in natural
language. This tool is being developed with the aim of assisting the software analyst
in the requirement elicitation process where correctly understanding the stakeholder’s
need is considered an important factor for the success of the project. Upon choosing a
requirement text as an input, the requirement text is processed by ReqSAC tool [16]
which is the ambiguity checker and then it goes through the ROMA tool from which
the formal syntactical presentation of the text is generated and stored in XRD (an
extension of the XML). ROMA-EVP Mapper is then used to transform the output
of ROMA to the infernal formal presentation of Eclipse Visualisation Plugin (EVP)
in XML format. Finally, READ generates the SM as a UML domain model diagram
and the context use case model CUCM as a UML Use Case diagram, both extracted

from the formal representation of the text (ROM). The work of [16] and [5] provided

86

valuable input to this thesis. The logical architecture of the READ is shown in Fig.

} ROMA-EVP
Problem Text RegSAC ROMA Mapper
~~~~~ ~ (NP Abigaity et LR Appty Axtomati 7% transtorm ROMA NOM
fetuttion} i Theory of Deugn] [¥RW Bl to WA BONE
\\«//......\ , (i et
A /é‘ 2
S . M’ Ve "‘\\ ya AN
e ™, A homa N, : VRN
&Impmw:ﬁ'w! /) ({”"‘”&'zy“"ﬁy) et ( (mmll;l:‘ﬂ‘:ﬂﬂ'@' -
\\ e \\\ s \\\ ) e :
\7.’/ N " 2
; <
Eclipse
““““ » | Visualization
READ Plug-in
Repository s ]
P
P i i
O o | ;
eV
//L ™., A
. PaN
e eas)
Context Use | " Usecase Structural
READ User Case Mode! “Descriptions, Model
- e
\ N
S e he \,,_,// d

Figure 7.1: Architecture of READ.

As mentioned above, the first two components of READ had been developed dur-
ing the previous phases of the project. One of the objectives of this thesis was to
develop a prototype EVP, which was particularly concerned with generation and vi-
sualization of the domain model and context use case diagram from the ROM presen-
tation of the text, as well as partitioning the original problem statement description
around the sentences identified as the main sentences expressing high-level syétem
services.

The process of EVP development was divided into two sub-projects: The first
project addressed visualization, and the second was concerned with partitioning. In

section 7.3, we provide detailed information about the components of the EVP.

87



7.2 Development Platform

EVP is a Java prototype that leverages the open-source Eclipse framework and related
prbjects [11,12]. In particular, EVP depends on the UML2 component and UML?2
Tools projéct. UMLZ, a component of the Model Development Tools (MDT') project,
is an implementation of the UML 2.x OMG metamodel using the Eclipse Modeling
Framework (EMF) [11]. The UML2 Tools project is a set of UML diagram editors

developed using the Graphical Modeling Framework (GMF) for viewing and editing

UML models [12].

7.3 EVP Modules

EVP consists of three main modules: the Structural Visualizer (SV), which displays
the SM diagram, the Context Use Case Visualizer (CUCV), which displays the CUCM
diagram, and, finally, the Partitioner that calculates the distances between sentences
and uses these distances to partition the whole text around the main sentences ex-
pressing system services. The SV consists of two sub-components: the First-Cut
Structural Visualizer (FCSV) and the Improved Structural Visualizer (ISV). Cur-
rently, CUCV and Partitioner modules are dependent on each other but Structural
Visualizer can work independently.

Each of EVP modules is described in more detail in the next section.

7.3.1 First-Cut Structural Visualizer

The main functionality of this component is to generate the first sketch of the domain

for the SUD. This model is composed of the concepts mentioned in the text, relations

88



between them and their attributes. As an input, this modeler reads the XML file that
holds the ROM formal presentation of the text. Then, it processes the file according

to the following pseudo code.

89



Algorithm 1! Pseudo code for FCSV..

input

: ROM XML files
output: First-Cut Structural View XML file

1 Get the XML root element name and create a model with this name ;

2 foreach <Entity> element in the XML File do

Get the XML <Ent-Name> element value ;

if XML <Ent-Name> value is not in the predefined list of attributes then
Check for duplicate class;

Create a class with XML <Ent-Name> value;

Get the XML <Ent-Attr> value and add it as an attribute to the class;

end

end

foreach XML <Relation> element do
Get relation type;
if relation type is association-1 or modification then

end

end

end

end

end

end

if the target is in the predefined list of attributes then
Check for duplicate attribute in class; )
Add attribute to the class defined by <Ent-Name>;
end
if the target is not in the predefined list of attributes then
Check for duplicate class in model;
Create a class with name defined by the XML target atmbute,
if modification then set relation label to ‘has’;
else
set relation label to XML relation element value;
Create association between <Ent-Name> class and target class using The name
label;
end

end

if relation type is association-2 then

Check for duplicate class in model;

Create a class named by the XML i-target value;

Get XML Relation element value;

Set label to XML Relation element value concatenated with XML d-target;

element value and XML refAttr value;

Create association between <Ent-Name> class and i-target class using the name label;

if relation tybe is association-§ then

Check for duplicate class in model;

Create a class named by the XML d-target value;

Set label to XML Relation element value concatenated with XML refRel;

attribute value and i target attribute value;

Create association between <Ent-Name> class and d-target class using the name label;

if relation type is generalization then

Check for duplicate class in model;
Create a class named by the Relation element value;
Create association between <Ent-Name> class and the relation element value class;

if relation type is of-preposition then

if <Ent-Name> element value is in predefined list of attributes then
Check for duplicate class in model;

Create a class named by the target attribute value;

Check for duplicate attribute;

Add <Ent-Name> element value as attribute to target class;
end

if <Ent-Name> element value is not in predefined list of attributes then
Check for duplicate class in model;

Create a class named by the target attribute value;

Check for duplicate class in model; ‘

Create a class named by the <Ent-Name> element value;
Create an association between these two classes labeled ‘has’;

end

90



As an output, the algorithm generates an XML file that represents the First-Cut
Structural view. The model described in this XML file is implemented as a UML 2.x
(currently at version 2.2.1) metamodel provided by the Eclipse UML2 component,
which is stored as an XMI file. The UML2 Toois project class diagram editor is then

used to display the SM diagrém.
7.3.2 Improved Structural Visualizer

This module offers the functionality of generating an improved SM for the SUD. It
aims at creating a more mature model in accordance With the ISV algorithm demon-
strated in 5.2.2. For this purpose, it considers both the output of the FCSV and it
also interacts with the READ Repository that stores the ECC model.

Basically, the modeler reads a file that represents the SM as well as a second file
that represents the ECC model and is stored in the READ Repository. It implements
the ISV'algorithm and then it generates the final file that holds the information for
the Improved Structural View. ISV pseudo code is used to explain the processing
steps of this module.

As explained before, the model described in the XML file generated by this com-
ponent is then implemented as a UML 2.x metamodel provided by the Eclipse UML2
componenf, which is stored as XMI files. The Eclipse UML2 Tools project class

diagram editor is then used to display the Improved Conceptual Domain Model.

7.3.3 Context Use Case Visualizer

This component of EVP is responsible for gathering all the necessary elements for

the CUCM (i.e., actors, use cases, and the communications between them) through

91



Algorithm 2. ISV,

1
2
3
4
5
6
7
8

input

: First Cut and Category-List XML files

output: Improved XML file

Get the FC-XML root element name and create a model with this name ;

foreach element class of the FC - XMLFile do

Get the FC-XML class name ;

foreach element class of the ECC — XMLFile do

Get the ECC-XML class name ;

if FC-XML class name is equal to the ECC-XML class name or FC-XML class name contains ECC-XML class name
or ECC-XML class name contains FC-XML class name then

end

end

end

The same process as of line 4 of the pseudo code for FCSV ;
(Please,note that in the pseudo code provided below the notion of class is equivalent to the notion of element
in pseudo code for FCSV ;

foreach element class of the Category — List — X M LFile do
Get the Category-List-XML class name ;
The same process as of line 4 of the pseudo code for FCSV;

end

foreach element class of the FC — X MLF'ile do

Get the FC-XML class name ;

foreach element class of the ECC ~ X MLFile do

Get the ECC-XML class name;

if there ezist no ECC-XML class name that is equal to FC-XML class name then

end

end

end

Show that FC-XML class name to the user;

foreach element class of the FC — X M LFile do

Get the FC-XML class name ;

foreach element class of the ECC — X MLFile do

Get the ECC-XML property; )

if the FC-XML class name is equal to ECC-XML property and FC-XML class name exists in the FCC model then
The same process as of line 7 of the pseudo code for FCSV else

end

end

end

end

Get the ECC-XML class name ;
The same process as of line 4 of the pseudo code for FCSV;

foreach element class of the FC — X M LFile and the newly created model(IMP — XML) do

Get the FC-XML class name;

foreach element class of the ECC — XMLFile do

Get the ECC-XML class name;

if ECC-XML class name is equal to FC-XML class name then

end

end

Get the ECC-XML class relation (association);

foreach element association of the ECC — X MLFile do

end

Get the association type;

if the ECC-XML is equal to 'Aggregation’ or 'Composition’ then

Get the MemberEnd and OwenedEnd for that association;

Check for duplicate class in model;

Create a class with name defined by the class that is not already in the model ;

end

if the ECC-XML is equal to 'Generalization’ then

Get the MemberEnd and OwenedEnd for that association;

Check for duplicate class in model;

Create a super class/sub class which is not already in the model ;

end

foreach element class of the FC — XMLFile do

Get the FC-XML class name;

foreach element class of the ECC = XMLFile do

Get the ECC-XML class name;

if the FC-XML class name is equal to ECC-XML class name then

end

end

end

Get the FC-XML Association ;

Get the ECC-XML Association;

if memberEnd and ownedEnd of the associations are equal and names of the associations are not equal then
| Show the ECC-XML Association name as an alternative to the user;

end

foreach element class of the ECC — XMLF'ile do

Get the ECC-XML class name ;

foreach element class of the FC — X M LFile do

Get the FC-XML class name;

if FC-XML class name is not equal to FC-XML class name then

end

end

end

Show that ECC-XML class name to the user as concept that can be added to the model;

92



couple of different processes and finally displaying'the diagram graphically using
UML2 notation.

Identifying Actors. In this process, a simple interactive interface is used to finalize
the set of primary and supporting actors for the system. At first, the system suggests
the preliminary list of actors to the analyst as described in 5.2.3. The analyst modifies
the list according to his/her expectations. The final list of actors is saved in an XML
| file called CUCM.xml. The root element of this xml file is'the ‘system boundary’ and
its value is equal to the name of the SUD.

Removing Unwanted Words from the Preprocessed Requirement Text. Tokeniza-
tion. Using ReqSAC [16], each of the sentences in the original requirement text are
divided into tokens!. Stemming. Next, using ReqSac morphological analyzer the
identified tokens are stemmed and the result is saved®. Next, the unnecessary words
such as determiners and modals are removed from the sentences because we believe
that they will introduce too much unwanted noise in the data. It should be noted
that the prepositions are not removed from the text. They will be used later for iden-
tification of the use cases. The result is saved in an XML file called Preprocessed.xml.
The CUCYV reads this XML file and for each sentence, it saves the tokens.

CUCV reads four XML files: formal ROM presentation of the text for extracting
the candidate use cases, Preprocessed.xml for comparisons, CUCM.xml which con-
tains approved list of actors and, finally, the last XML file called typed.xml which

contains the keyword related to the type (d) relations as described in 5.2.3. In CUCV

1The aim of the Tokenization is to divide the text into units, called tokens. A token can be a
word but it can also be a number, a punctuation mark, an abbreviation, etc.

’In Stemming affixes are removed from the tokens and they are turned into their inflectional
forms.

93



pseudo code, the corresponding processing steps are presented.

In order for this mbdel to be considered complete the communication between the
supporting actors and the use cases should be added to the model. Identifying the
correct communications is handled by the text partitioning algorithm as described
in 5.2.3. At this stage, this model will be saved as an XML -ﬁle and, when the
communications are identified, each of them will be added to the model and associated
to thé corresponding summary use cases. Then, the XML file is ready for visualization.
Once again, the model described in this XML file is implemented as a UML 2.x
metamodel provided by the Eclipse UML2 component, which is stored as XMI files.
The UML2 Tools project use case diagram editor is then used to display the Context -

Use Case model.

7.3.4 Distance Calculator-Partitioner (DC-P)

Finally, this component of EVP is assigned the responsibility of extracting the use
case briefs by partitioning the requirement text. Each Qf the partitions contains the
main sentence that represents the service of the system and is identified with the
CucCv module (see section7.3.3) in addition to the other sentences describing briefly
that specific service as described in section 5.2.3 of the methodology.

As an input, it reads an XML file with the list of the main sentences and creates
the corresponding partition for the sentences. It also reads both the XML file that
contains the original requirements text and preprocessed requirement text in which
each sentence is stemmed and unwanted words are stripped off of it 7.3.3. One more

XML file is also read by this component, which contains the remaining sentences

94



Algorithm 3. Pseudo code for Context Use Case Visualizer.

QO © -3 OOh WK

1

input : ROM,Preprocessed,typed and CUCM XML files
output: Context Use Case Diagram XML file, Main services XML file

Get the CUCM-XML/or ROM-XML root element and create a model with this name ;

foreach < Entity> element in the ROM-XML File do

Get the ROM-XML <Ent-Name> element value;

if ROM-XML <Ent-Name> element value is equal to the ‘name of the SUD’ then

foreach ROM-XML < Relation> element do

Get the ROM-XML <Relation> element value;

Get the ROM-XML <Relation> d-target attribute value;

Create a new array i ;

Save <Relation> element value and <Relation> d-target attribute value in that array

end

end

end

end

if ROM-XML < Ent-Name> element value is equal to the name of the actors then

foreach ROM-XML < Relation> element do

Get the ROM-XML <Relation> element value; .

if <Relation> element value is equal to one of the triggering verbs then

Create a new array j ;

Save <Relation> element value and <Ent-Name> element value in the array;
foreach array i created previously do

end

end

end

Add

the content of this array i to array j ;

Compare the content of the merged arrays with each of the preprocessed array;
if they are equal then

end

Check for duplicate Actor element name;

Create an element Actor ;

Set the name of the Actor to<Ent-Name> element value;

Check for duplicate UseCase element name;

Create an element UseCase;

Set the element name to <Relation> element value + <Ent-Name> element value;
Create an association between them;

Save the sentence in-a Main services XML file;

Get the ‘type’,‘i-target’ value and ‘d-target’ value for the <Relation> element;

if the ‘type’ value is equal to 'association-2’ and ‘i-target’ is equal to the name of the SUD and the
d-target is not equal to one of the keywords in typed.zml then

Create an array k;

Save <Relation> element value and <Ent-Name> element value in the array;

Get the ROM-XML <Relation> d-target attribute value;

Add the attribute value to the content of the created array K;

foreach array k do

Compare the content of the merged array with each of the preprocessed sentences ;

if preprocessed sentence content is equal to array K and strings ‘of/to’ and the ‘name of
the SUD’ then

end

end

end

Check for duplicate Actor element name ;

Create an element Actor ;

Set the name of the Actor to<Ent-Name> element value;

Check for duplicate UseCase element name;

Create an element UseCase;

Set the value of the element to <Relation> element value + ‘d-target’ value ;
Create as association between them;

Save the sentence in a Main services XML file;

95



[ Ve

© w3,

10

12

13
14
15
16
17

19
20

22
23
24
25
26
27
28

30
31

33
34
35

of the text after theyvhave been pre-processed. Next, all the actors’ names as they
appear in the input file are flagged in the main sentences and the remaining sentences
files. Partitioner then implements the Metric-based text partitioning algorithm as
a result of which the use case summary descriptiori is generated and shown to the
analyst. Pseudo code for DC-P is describing the processing steps of this module in

detail. Fig. 7.2, 7.3 and 7.4 show snapshots of the EVP.

Algorithm 4. Pseudo code for DC-P.

input : Main sentences,Actors,Remaining sentences, and original requirement text XML files

output: Use Case Briefs

Read the main sentences(SS) and remaining sentences(RR) files;
foreach (S; € SS) do
foreach (S; € RR) do
Create a similarity table in which each row corresponds to the sentences S; and R; and each cell corresponds
to the Actors and Actions (verbs) in the sentences ;
foreach column in a table do
Get the word corresponding to that column;
scan the sentence;
if the word exists in the sentence then the value of the cell is equal to ‘1’ else
| the value of the cell is equal to ‘0’;
end
end
Create a dissimilarity table in which each row corresponds to the sentences S; and R; and each cell
corresponds to the remaining words in the sentences ;
repeat the lines 5 to 9 ;
calculate similarity and dissimilarity according to the formula;
calculate the distance and save it in a table;
end
end
foreach (S; € RR) do

Compare the distance of the S; to each (S; € 89) ;

Get the minimum distance;

Retrieve the sentence(s) that correspond to that minimum distance;

if one (S; € §8) is retrieved then Add (S; € RR) in the partition of the (S; € SS) else
Add (S; € RR) to all the partition (S; € §5) with minimum distance ;
Put (S; € RR) in an array called ‘undecided’ ;

end

end

foreach S; in ‘undecided’ array do

Retrieve the partition to which it belongs ;

Repeat steps 2-15 to calculate the distance between the S; and the remaining sentences in that partition ;

Repeat step 18 to 24 to add the S; to the appropriate partition;

if one (S; € SS) is retrieved then Add (S; € RR) in the partition of the (S; € §5) else
print the message:* The status of this sentence is not identified.’;

end

end
Retrieves the sentences corresponding to each partition from the original requirement text ;

It should be noted that the implementation of the READ tool is still in progress.

As a proof-of-concept, few of the rules (Rules 1, 2 (partially), 3, 4, 5 (Note 2), 7.1, 7.2,

96



8, and 9) described in section 5.2.2 were implemented, and the logi'c.al architecture
of the tool containing the components and the relations between them had been
designed. As described earlier in this chapter, the corresponding pseudo codes of
the main algorithms were developed. The integration of EVP with the previously
deVeloped READ components and the implementation of the remaining rules will be
tackled in our future work.

After having proved the concept by developing a prototype tool implementing our

methodology, we have validated the methodology as explained in the next chapter.

97



Java - Eclipse SDK

5 sre
B JRE System Library [iret .00
{l] BahavioralXMLFile.java
i Copy of default,umlusecase_diagram
&) default.uml
g} default.umlclass_diagram
i) default,umlusecase_diagram
#) default,uml
@ GenerateBehavioral. java
- [J IdentifyUseCases.java
@] SentenceTokenizer.java
- Test
CRE

-+ )
1 Invoice.umt
! Invoice.umiclass_diagram

1

Figure 7.2: EVP context menu.

93



1 roviems o Javadioc/ I, ptiration G Consaie [ Bmor g

Attribute ‘Urderiaveiong: iirden Y ¢ Crdecnvoiaing:int {4, 1] creatad,

{lass Orderinvocing: Froduct crestac.

Al luze Drdurimaeisng: Produc Ordered | Orderbweiung: [Suing 0. 4] creeied,

Atiribute 'Ordarinveicngiifroduct: 10’ L Dreervoicing: it 19..1] crenled,

Aribuie 'Ordeclovciing: FrOduct; /QUaily' | Qrdartavtitingsunt [C., 1] traated,

Clage ‘Orderinvoicing: Integer created.

ASSOCAHON "DIERIIVBICRG  Pracuet st [0..1] == Orderiaveicing: Tntager isie”

Agsecation "Oréerinvoicing: JPracuctient’ [0..3] - Orgerbweicingiibitock: isre' [0, 1] crented.

Claws ‘Drelwriviicing | Raskl’ creatnd

Clags ¢ 918 ' created.

Aysavintion 'Order fnelcng:  StackManagrmmenSysteens st {0..1] =+ Drdeciveiving: : St
'Oreermg S 3 f [0..4] voe Urdarivvoieng: Resuit il [0 1] created.

Atribute ‘Orderinvoicing:Stock: Tass' ; O-derlovoicing: :String [0..1] crentad,

Atrribute 'Orderinvelong: istoek: suantity @ Orderinvorting: it [0, L} created.

{loma "Orcerinvoicing: :5f | crentec.

e e o e s W o e B Be g SR s ey e e e e ey B g B e o b e o0

‘type filter 1o
Vessge
Maxdel “OrderIvoking’ crested. com.concurdis.read.evy
rQaUNG PrEMIIA TYPEG. €O, COTKOrdR. TG, 0
Frimitve hype 'Grderimoicing:iint crected. com.concordinrand, svn 2008 156
Fomive type 'Ordariweiangaisting creatac. com.concerdia.read. v 2008-U5-L

*Grthest ingg. e derSysten dn' ‘Orilerbaalsing wm. cmcaniis Jeod.evn 208050
Llase "Urgarinvercing 1 $to¢x’ Crodted. COM.CONCardR.redd. & BR8P
pasorintion 'Tederinvaiong: IavarseQrderSystan: idst! 1o Orderivoicing: Stock: seg’ | com.concordin rend. evn i)

Lom.soncardia.réad. s
com.concurdia.rend. ey
corm. concerdie.rvad vy
com.concardic.rand. evp
LOM. oMt read. e
com.concardio read. e
com.oncardia read. e
com.concerdiz.rend.evn
ennr.eoncrrdie romt e
£OM.CONCos . 1ead, 00
com cometdiaread avp
com.concordi.read. o
com.concerdinrend.evy
COM,CONCOTdR IFY. v
com.concordiv.aedd. eva

Closs “Orderipvoscing: :Custorer’ zrasted. <om.conCergia.nead. eve 2006-05-01

Class "Orderiavucing: wocelrdarsSysten’ orauted. com.concardie sead. evgr 2008-08-01 19 H
Agsociation * g Cuatome ' 9.3 -+ Qrierlvoichng i Inoice OrgerSystam:szed (C..1] croated. com. concordia.read. evp 0000302 1 H
Axsovietion 'Créertratang: Sustemer st 9 1] — Dederinvoking: tEwokeOrcerSystariad [8.1) Cweted, oM coresdie sead e 2008-05-05 !
Claze “Orgerlnvoicing: - Suppher tredted, com.concardia.read.avy 268-05-C1 ¢

ASSOLTAUOR "DIGR B T SUppedst {O..4] o "Order Invicings Involeat e S ysienn sec' 10,4 i, e e erdia read. wiy 2i0A-0%-C

Agsociatian ‘Crderinvoic ppagruast {¢.1] - ‘Urderimosang: 1 ereazs. com.concordiz.rend. evp LY U5-€3 104608

Class ‘Onderveicing: Order” oomnted. sem concuitie.cend. ev T INd44] 025 R
4gsozdtion ‘Vreerinvoicing:inva.calrdarsystom igat' [U COmM.CONCOT R 10T, o PR ERN .Y

2068050
20080303
HOB-N8-C3 1084140625
20060302 10:44:41.625
2008-03-C1 10:48:141,628

RUIL LR AN LY
WRAT01 TNdd 4L B0
UUG-UBCL INAMA LG
20082761 10

WGP
20080501
PR R
20000503

Figure 7.3: EVP’s logging through Eclipse error log view.

4

L] s

e 3%
s

ot

sty P “'“
e nmnstmijlm'&l
p

e

Pakette

{a aeiney

. :
N vy
7 s

s ko

o3 et
1 Dty
S v tive TN
{5 Covstrring

iy Reacration Ciavh
4 testee

i AtTtbus i
- Oparamon

i EAm, LS
W et

£ Tampinte
1. - SEpabe

. thamant tpen -
7 hswonkion v
" Dapendency - -+
# Gepervigeesn
A Provied
L ameie

¥

i

&
&

. Aaqass

7 dedsan

i oprriond
Earent

i Intecer
e
s

Fiwarehoe |
sopte
SEEYS

v g G H Craw

Shigmentanaseneere
ok
Sumreiey

Desdviny
Targat

G Azoomtion Eng
* Roglizeon
i Baney
Bpesifiation
Y Shot

i
i

Figure 7.4: SM visualized as class diagram.

99



Chapter 8

Experimental Work

8.1 Experiment

The mapping rules described in chapter 5 were mainly extracted through the direct
observation of sample requirement texts, therefore we decided to devise a strategy
to evaluate our methodology properly on a controlled experiment. OQur approach is
similaf to the one in [8]. The main goal of the controlled experiment was to find
out how close the c}onceptual models developed using our methodology are to those
developed by RE experts in corﬁparison with students’ models, all developed from
the same textual user requirements. Another goal of this experiment was to establish
the limitations of our methodology with the purpose of improving it and outlining

the future work directions of this research.

100



8.1.1 Procedure

In our experiment, thé same invoicing system description (see section 6.1) was dis-
tributed among experts and students. Two experts created the corresponding context
use case diagrams. They were asked to focus on the summary-level use cases. The
intersection of these mbdels served as a benchmark for validation purposes. One ex-
pert was assigned the responsibility of creating a domain model for the same text.
Our experts had in-depth knowledge of modeling the requirement as well as industrial
experience.

The case study was also given to five graduate students in software engineering
program at Concordia University with a good knowledge of use-case modeling, and
four gradua’te students with acceptable level of knowledge on domain modeling. As
a result, use-case diagrams and domain models for our experiment were déveloped.
The students’ diagrams were analyzed carefully and summarized based on the average
number of correct and incorrect choices of actors, use cases and their éommunications
in the use case diagrams. In case of domain model, only the concepts were counted
but not the relations. This is justified by the fact that the relations between the
concepts cannot be strictly defined and categorized and the way they are defined is -
highly dependent upon the human analyst who models them. It should be noted that
the difficulties related to the evaluation of the models had also been presented in [14].

Next, the students’ diagrams and the diagrams developed using our methodology
were compared with the experts’ models. In the case of use case diagrams actors,

use cases, and communications were considered equal if they were playing the same

101



role, achieving the same goal and establishing the same relationship between the
same actors and use cases respectively, and their names matched exactly. They were
considered equivalent if everything was equal, as defined above, but the names of the
roles or use cases were differént (e.g., publisher (in the case study text) played the role
of the supplier (proposed by the ECC model) in this system, however they did not
have the same name). Finally, the actors, the use cases, and their communications
were considered different if they were either incorrect or added extra (but valid)
information. An element was incorrect if it did not exist in the expert model, it was
considered wrong based on our common sense, and it was classified as eztra if it was
correct bu‘t not stated in the expert model. Once again, the decision was based on our

own judgment. The same categories existed for the concepts in the domain model.

8.1.2 Discussion

Context Use Case Model Valida?ion Result and Conclusion. The validation
results are summarized in Table 8.1.

For instance, 16.66% of the actors automatically identified by the READ method-
ology were equal, 33.33 % were equivalent, and the other 50 % was extra but valid
when compared to the expert model. As for the students, 86.95% of the actors iden-
tified were correct and the other 13.04 % was incorrect.

We concluded from this experiment that interaction with the analyst is definitely
needed in order to permit acceptance and modification of the actors once the primitive

list has been automatically proposed by the READ using the ECC model.

102



Table 8.1: Validation result (extracted information perspective).

Actor
Equal Equivalent Incorrect Extra
" READ  16.66% 33.33% 0 50%
AVG-Students 86.95% 0 13.04% 0
Use Case
READ 100% 0 0 0
AVG-Students 31.11% 0 68.88% 0
Communication
READ 100% 0 0 0
AVG-Students 38.98% 0 61.01% 0

103

The READ methodology was better at identifying the summary-level use cases
and communications, whereas human analysts tend to extract incorrect use cases
which are actually considered as steps for other use cases.

It was also important to know the percentage of information that was missing from
the READ result as compared to the expert models. The results of this compariéon
are shown i.n Table 8.2. For example, 6.66% of the use cases identified by the experts
were missing from the average student’ models, and 20% of the actors extracted by
the experts from the text were missing from the READ result.

We concluded that READ was better than the human analysts at identifying the

use cases and the communication links between the actors and the use cases.



In none of the cases were the READ results incorrect. Moreover, READ helped
identify extra information undetected by the analysts. Missing information was re-
ported in the list of actors, but the pre-approval of the actor list by the analyst would

eliminate this deficiency.

Table 8.2: Validation result (missing information perspective).

Missing Actor

READ 20%

AVG-Students 8%

Missing Use Case

READ 0

AVG-Students 6.66%

Missing Communication

READ 0

AVG-Students 28.57%

Domain Model Valiéatz’on Result qnd Conclusion. The validation results
are summarized in Table 8.3.

For instance, 83.3% of the concepts automatically identified by the READ method-
ology were e(iual, 5.5% were equivalent, and the other 11.11% was extra but valid
when compared to the expert model. As for the students, 100% of the concepts
identified were correct.

Regarding the identified concepts, we concluded from this experiment that READ

104



Table 8.3: Validation result (extracted Concept perspective).

Concepts

Equal Equivalent Incorrect Extra

READ  83.3% 5.5% 0 11.11%

AVG-Students 100% 0 0 0

and students almost perform the same except that there existed over-specification in
the models developed by READ. It should be noted that over-speciﬁcation in this
coﬁtext is used to refer to the extra correct information that is not in th'e expert
model [14]. - As stated in [14, 21, 26, 27], over-specification is more preferable than
losing information in the requirement analysis of the software development life cycle.

It was also important to know the percentage of information that was missing from
the READ and studeﬁts results as compared to the expert models. The results of this
comparison are shown in Table 8.4. For example, 53.125% of the concepts identified by
the experts were missing from the average student’ models, and none of the concepts
were miss‘ing from the READ model. We concluded that READ model is closer
in quality to the experts model in terms of completeness of the identified concepts
because none of the concepts are missing. Moreover, READ helped identifying extra
information undetected by the analysts.

The results of the controlled experiments designed to evaluate the approach proved
the validify and feasibility of the methodology.

In the next chapter, our achievements in this research as well as the limitations

105



Table 8.4: Validation result (missing Concept perspective).

Missing Concept

READ 0

AVG-Students 53.125%

of our approach are discussed.

106



Chapter ‘9

Discussion

- Our research addressed specific challenges which existed in the effort to gain an un-
derstanding of the stakeholders’ real-world needs and desires with the purpose of
providing the correct software solution. The solid formal basis of the linguistic struc-
ture of ROM makes it possible to auto.matically build the SM and CUCM of the
system which is considered as an important advantage. The outcomes of our work
can be used by software analysts in their in-depth study of requirements text. Our
achievements not only constituted a proof of concept for practical use, but élso intro-
duced a basis for future research in this area. We will summarize our contributioﬁs
in this chapter.

In our work, we also faced many challenges that we had to overcome; we improved
and evolved our methodology with new ideas and enhancements to endure these ob;
stacles and, finally, satisfied our objectives. However, we are aware that the proposed
methodology is not free from limitations. The limitations of our approach are also

discussed in this chapter.

107



9.1 Intentions and Contributions

The aim of this research was to propose an elaborate methodology which constituted
a proof of concept for the idea that a conceptual knowledge on the software to be
developed can be acquired through a semi-automated process, with textual require-
ments document as input and UML diagrams rebresenting its structure (SM) and
high-level contektual view on the software system’s actors and services CUCM, as
outputs. Another objective was to build a prototype tool for visualizing these mod-
els and validate the models generated automatically against thé ones generated by
software engineers (students and experts in the area). The following is the list of
outcomes we achieved and the outline of our contributions.

As specified before, our problem statement mainly stemmed from the gap between
the stakeholders’ perception of their needs and how these needs are described tgxtu-
ally, whereby the descriptions can be misinterpreted by analysts due to the inherent

ambiguity of the natural language itself.

(i) We proposed a solution for reducing this gap from an innovative point of view,
namely the use of automatic conceptual knowledge extraction from user re-
quirements text and its visualization, and injection of domain-related missing

information provided by ECC models where necessary.

(i) We devised rules for transforming the formal internal presentation of the text
(ROM) to two structural views (FCSM and ISM), each with different level of |

details [39].

108



(i)

(vii)

We designed rules for extracting CUCM elements, such as actors and use cases,

and associations between them from the requirement text [38,40].

We defined rules for constructing the comprehensive model for specific domain
(ECC models) from the standard pre-built Data Models. The ECC models
can be reused and improved over time [39,40]. Using them reduces the cost of

development because they work as an expert.

We applied the knowledge included in the ECC model for automatically identi-
fying the actors for the CUCM and improving the SM generated directly form
the text [38,40]. An improved SM model of the system represents its structure

with more details.

We developed a prototype tool in support of the methodology [40]. The im-
portance and benefits of such a tool are obvious. It would save interview time,
serve as a means to proofread the requirements, and facilitate communication
between the stakeholders who provide the requirements and the software ana-
lysts who have to understand them correctly and clearly. This will help analysts
to avoid errors in RE phase and their subsequent propagation to the design and
implementation phases. As it is mentioned in [23], the cost of fixing an error/or
mistake during Implementation phase is 100% to 200 % more than fixing it

during the Requirement phase.

We designed controlled experiments to evaluate our approach. The outcomes of

our experiments proved the validity and feasibility of our methodology because

109



in none of the cases the READ results were incorrect. Moreover, the READ

helped identifying extra information undetectéd by the analysts.

9.2 Limitations

The following is a list of the limitations we encountered during our work:

(i) Creating the ECC model for each of the specific domains and constructs (e.g.,
Invoicing, Ordering, etc.) requires certain effort. However, once these models
are built they can be reused and their real benefit will become evident in the
iong term. Furthermore, reusing the existing data models is expressed as one of

the classical strategies for identifying conceptual classes [21].

(ii) The proposed methodology is using the subset of the ROM functionalities thus
it is bounded and limited to the set of patterns which are presented in Fig. 9.1.
It should be noted that ROM is a work in progress and further information can

be acquired from [7].

(iii) Our conceptual analysis for the ISM is bounded by the invoicing system. How-

ever, FCSM can be developed for every domain.

(iv) Currently, our experience with the approach has mainly been in academic projects’
context. Therefore, the scalability of the approach is yet to be determined

through larger, real-world case studies.

Finally, we would like to point out that, as Ryan concluded in [37], it is clear from

a review of the history of NLP in RE that building a system which will automatically

110



ROM Representation

Pattern# Sentence Structure
. ) » biect intransitive
Pattern 1 | Subject + intransitive verb subject verb
Subject + linking verb + subject linki
Pattern 2 J b . l:ergg rb{ subject complement |
complement ‘
Subject + transitive verb + direct . ;
Pattern 3 ) subject "“f‘sf:,iw
ob_;ect ver
) . s ubiect b transitive | & .
Subject + transitive verb + indirect subject verb direct object
Pattern 4 ) . . i ‘ )
object + direct object
. transitive . .
_ | Subject + transitive verb + direct "
Pattern 5 ) i Note -
object + object complement Note . o
The commection 1 can be ‘to’.
“for". or nothing, [ object complement |

explain stakeholders’ needs is an unrealistic objective. However, considering that the
elicitation of user requirements is a dynamic and social process, NLP techniques can

assist the analyst in this process, but tools such as READ would not replace the

Figure 9.1: Supported sentence patterns.

analyst’s role in RE.

The conclusions and guidelines for our future research work are outlined in the

next chapter.

111




Chapter 10

Conclusion and Future Work

The success of a software project largely depends on the quality of the user require-
ments .documentation, which serves as an input to the design, coding, and testing
phases. Software requirements are documented mostly in natural language. Thus,
the textual user requirements should be well written and completely understood by
both stakeholders and software analysts. -

This thesis addressed the problem of semi-automatically assisting the software
analysts in the requirement elicitation and analysis activities. First, it proposed
a methodology for conceptual knowledge mining semi-automatically from the re-
quirements text and for providing domain expertisé semi-automatically by using pre-
defined domain-oriented data models. A conceptual SM was then generated with the
help of a set of pre-defined rules. Then, an ISM was generated by injecting domain-
related information provided by ECC models, which are extracted from reusable
domain-specific data models. In the second part of the methodology, the focus was in

semi-automatically assisting the software analyst in the early stages of the use case

112



model elicitation process. The same ECC was used to help identify the actors that
may exist in each domain for generating a CUCM. The elements of the CUCM were
extracted from the text according to the devised rules and the corresponding CUCM
diagram was generated to graphically visualize the identified actors and system ser-
vices provided to those actors. Finally, each sentence from the requirements text was
assigned to exactly one use case description with the help of a metrics-based text
partitioning algorithm. In our approach, whenever the information seems incorrect,
doubtful or unclear, it would be highlighted and flagged to the analyst for further
feedback.

The work »presentéd in this thesis was motivated by the industrial importance of
correctly documenting requirements and of reducing the costs inherent in identifying
the underlying requirements problems and potential system solutions.

We illustrated the approach on a case study. We also briefly described a tool which
implements the proposed methodology and discussed the results of the evaluation.

For our future work in the context of the READ project we will mainly focus
on extending the predefined rules for identifying concepts, relations, actors, and use
cases from the formal ROM presentation to the point where we can possibly handle
less structured sentences and more unrestricted natural language. We also intend to
test and improve the current rules using statistical NLP techniques. Preferably, the
components of the READ tool should not only work in stand-alone mode, but be
capable of incorporation with each other which would increase the applicability of
the tool.

We will analyze the possibility of creating the ECC model for other constructs ap-

113



plicable to the wider ranges of application and organizations. More robust evaluatioﬁ
of the methodology in -terms of the performance of the system and completeness and
accuracy of the generated models (Precision aﬂd Recall) is also required; this should
be ideally evaluated on systems already developed by different kinds of organizations
and evolving studies with large number of requirements.

We are currently investigating means for visualizing the NFRs that are automati-
cally extracted and classified from text [17]. Specifically, NFRs will be highlighted to
increase their visibility and will be explicitly linked to the corresponding functional
requirements. NFRs will be integrated within the SM and CUCM.

We believe that such automated assistance would be very beneficial to RE.

114



References

[1] R. J. Abbott, “Program design by informal english descriptions,” Communica-

tions of the ACM, vol. 26, no. 11, pp. 882-894, 1983.

[2] A. Abran, J. W. Moore, P. Bourque, and R. Dupuis. (2004) Guide to the
Software Engineering Body of Knowledge (SWEBOK). Online HTML format.

[Online]. Available: http://www.swebok.org/htmlformat.html

[3] V. Ambriola and V. Gervasi, “Processing natural language requirements,” in
Proc. 12th IEEE International Conference on Automated Software Engineering
(formerly: KBSE) (ASE’97), Incline Village, Nevada, USA, November 1997, pp.

36-45. -

[4] G. Booch, “Object-oriented development,” IEEE Transactions on Software En-

gineering, vol. 12, no. 2, pp. 211-221, 1986.

[5] Z. Chen, “Formalization and classification of product requirements using ax-
iomatic theory of design modeling,” Master’s thesis, Department of Electrical

and Computer Engineering, Concordia University, Montreal, Canada, 2006.

[6] A. Cockburn, Writing Effective Use Cases. Boston: Addison- Wesley, 2001.

115



[7]

8]

10]

~ behavior specifications,’

[11]

[12]

[13]

[14]

(2008) Design lab website. [Online]. Available: http://users.encs.concordia.ca/-

zeng/research.html

I. Diaz, L. Francisca, A. Matteo, and O. Pastor, “Integrating natural language
techniques in oo method,” in Proc. 6th International- Conference on Intelligent
Text Processing and Computational Linguistics (CICLing’05). New York, NY,

USA: Springer Berlin/Heidelberg, 2005, pp. 560-571.

I. Diaz, F. Losavio, A. Matteo, and O. Pastor, “A specification pattern for use

cases,” Information and Management, vol. 41, no. 8, pp. 961-975, 2004.

J. Drazan and V. Mencl, “Improved processing of textual use cases: Deriving
" in Proc. 33rd Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM’07), Harrachov, Czech Republic,

January 2007, pp. 856-868.

Eclipse Modeling Framework. Eclipse Foundation. [Online]. Available:

http://www.matthewwest.org.uk/Documents/princ03.pdf.

Graphical Modeling Framework. Eclipse Foundation. [Online]. Available:

http://wiki.eclipse.org/MDT-UML2Tools

C. Fellbaum. (1998) Wordnet: An electronic lexical database. [Online].

Available: http://wordnet.princeton.edu/perl/webwn

H. Harmain and R. Gaizauskas, “CM-Builder: An automated NL-based case
tool,” in Proc. 15th IEEE International Conference on Automated Software En-

gineering (ASE’00), Grenoble, France, September 2000, pp. 45-53.

116



[15]

[17]

[18]

[20]

M. Himsolt, “Graphed.: An interactive graph editor,” in Proc. 6th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS’89). New York,

NY, USA: Springer-Verlag New York, Inc., February 1989, pp. 532-533.

I. Hussain, O. Ormandjieva, and L. Kosseim, “Automatic quality assessment

of srs text by means of a decision-tree-based text classifier,” in Proc. 7th In-
ternational Conference on Quality Software(QSIC’07), Portland, Oregon, USA,

October 2007, pp. 209-218.

I. Hussain,O. Ormandjieva and L. Kosseim, “Using linguistic knowledge to im-
prove the detection of non-functional requirements specifications,” in Proc. 13th
International Conference on Applications of Natural Language to Information

Systems (NLDB’08), London, UK, June 2008, pp. 287-298.

IEEE Standard Glossary of Software Engineering Terminology, IEEE Std.

610.12, 1990.

M. Jackson and P. Zave, “Domain descriptions,” in Proc. IEEE International
Symposium on Requirements Engineering (RE’98), San Diego, CA, U.S.A, Jan-

uary 1993, pp. 56-64.

J. Kim, S. Park, and V. Sugumaran, “Improving use case driven analysis using
goal and scenario authoring: A linguistics-based approach,” Data and Knowledge

Engineering, vol. 58, no. 1, pp. 21-46, 2006.

117



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

C. Larmann, Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process, 3rd ed. Upper Saddle River, N.J.:

Prentice Hall PTR, 2005.

B. Lee and B. R. Bryant, “Automated conversion from requirements documen-
tation to an object-oriented formal specification language,” in Proc. ACM sym-

posium on Applied computing (SAC’OQ), 2002, pp. 932-936.

D. Leffingwell and D. Widrig, Managing Software Requirements: A Unified Ap-

proach. Boston, MA,USA: Addison-Wesley, 2003.

D. Liu, K. Subfamaniam, B. Far, and A. Eberlein, “Automating transition from
use-cases to class model,” in Proc. IEEE Canadian Conference on FElectrical and

Computer Engineering (CCECE’03), Montreal, Canada, May 2003, pp. 831-834.

C. D. Manning and H. Schtze, Foundations of Statistical Natural Language Pro-

cessing. Cambridge, Mass.: The MIT Press, June 1999.

J. Martin and J. Odell, Object Oriented Methods: A Foundation. Englewood

clifs, New Jersey: Prentice Hall, 1995.

B. Meyer, Object Oriented Software Construction, 2nd ed. Upper Saddle River,

NJ: ISE Inc., 1997.

F. Meziane and S. Vadera, “Towards automatic modeling of requirements,”

Malaysian Journal of Computer Science, vol. 9, no. 2, pp. 1-13, 1996.

118



[29]

[30]

[31]

[32]

[33]

[34]

[35]

L. Mich, “NL-OOPS: From natural language to object oriented requirements
using the natural language processing system LOLITA,” Natural Language En-

gineering, vol. 2, no. 2, pp. 161-187, 1996.

L. Mich, M. Franch, and N. I. Pierluigi, “Market research for requirements anal-
ysis using linguistic tools,” Requirements Engineering, 2004, vol. 9, no. ‘1, Pp.

40-56, February.

A. M. Moreno, “Object-Oriented analysis from textual specifications,” in Proc.
9th IEEE International conference on Software Engineering and Knowledge En-

gineering (SEKE’97), Madrid, Spain, January 1997, pp. 290-294.

J. Mylopoulos. Structured analysis and design technique (SADT). [Online]. _

Available: http://www.cs.toronto.edu/ jm/2507S/Notes04/SADT.pdf

P. M. Nugues, An Introduction to Language Processing with Perl and Prolog: An
Outline of Theories, Implementation, and Application with Special Consideration
of English, French, and German (Cognitive Technologies). Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2006.

J. N. och Dag, “Managing natural language requirements in large scale software

development,” Ph.D. dissertation, Lund University, Lund, Sweden, 2005.

S. P. Overmyer, B. Lavoie, and O. Rambow, “Conceptual modeling through lin-
guistic analysis using LIDA,” in Proc. 23rd International Conference on Software
Engineering (ICSE’01). Washington, DC, USA: IEEE Computer Society, 2001,

pp. 401-410.

119



[36] H. G. Perez-Gonzalez and J. K. Kalita, “GOOAL: A graphic object oriented anal-

[37)

38)

[39]

[40]

[41]

ysis laboratory,” in Proc. 17th ACM/SIGPLAN Annual Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’02).

New York, NY, USA: ACM, 2002, pp. 38-39.

K. Ryan, “The role of natural language in requirements engineering,” in Proc. -
IEEE International Symposium on Requirements Engineering (RE’93), San

Diego, CA, USA, January 1993, pp. 240-242.

S. Moradi Seresht and O. Ormandjieva, “Automatic assistance for use case elic-
itation from user requirements text,” in Proc. 11th Workshop on Requirements

Engineering (WER’08), Barcelona, Spain, September 2008.

S. Moradi Seresht and O. Ormandjieva, “Towards automatic diagnostic of con-
ceptual problems in requirements text,” in Proc. 2008 International Confer-
ence on Software Engineering Theory and Practice (SETP’08), Orlando, Florida,

USA, July 2008, pp. 105-114.

S. Moradi Seresht, O. Ormandjieva and S. Sabra, “Automatic conceptual analy-
sis of user requirements with the requirementé engineering assistance diagnostic
READ tool,” in Proc. 6th International Conference on Software Engineering
Research, Management and Applications (SERA’08), Prague, Czech Republic,

August 2008, pp. 133-142.

M. Saeki, H. Horai, and H. Enomoto, “Software development process from nat-

ural language specification,” in Proc. 11th International Conference on Software

120



Engineering (ICSE’89), May 1989, pp. 67-73.

[42] M. Sighireanu and K. J. Turner. Requirement capture, formal de-
scription and verification of an invoicing system. [Online]. Available:

http://www.inrialpes.fr/vasy /Publications/Sighireanu-turner-98.html

[43] L. Silverston, The Data Model Resource Book (Volume 1). New York, NY, USA:

Wiley Computer Publishing, 2001.

[44] S. Some, “Supporting use case based requirements engineering,” Information and

Software Technology, vol. 48, pp. 43-58, 2006.

[45] 1. Sommerville, Software Engineering, eight ed. Boston, MA, USA: Pearson

Addison Wesley, 2007.

[46] M. A. Talib, O. Ormandjieva, A.Abran, A.Khelifi, and L.Buglione, “Scenario-
based black-box testing in cosmic-fip: a case study,” Software Quality Profes-

sional, vol. 8, no. 3, pp. 23-33, 2006.
[47] Linguistic Engineering. [Online]. Available: http://portal.unesco.org

[48] M. West. Developing high quality data models. [Online]. Available:

http://www.matthewwest.org.uk/Documents/princ03.pdf.
[49] K. E. Wiegers, Software Requirements :. Redmond, WA: Microsoft -Press, 2003.

[50] Y. Zeng, “Formalization of design requirements,” in Proc. 7th World Conference
on Integrated Design and Process Technology (IDPT’08), Austin, Texas, USA,

December 2003, pp. 209-218.

121



[51] Y. Zeng, “Recursive object model (ROM)modeling of linguistic information in

engineering design,” Computers in Industry, vol. 59, pp. 612-625, August 2008.

[52] Y. Zeng, “Axiomatic theory of design modeling,” Integrated Design and Process

Science, vol. 6, no. 3, pp. 1-28, 2002.

122



