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ABSTRACT 

Signal Processing Approaches to Diagnosis of Esophageal Motility 
Disorders 

Mani Najmabadi 

Esophageal Motility Disorders (EGMDs) are a group of abnormalities 

characterized by the muscular dysfunction of the esophagus in the transportation of food 

from the oral cavity to the stomach. EGMDs typically cause chronic problems and affect 

a vast and ever-increasing number of the global population. 

The diagnosis of EGMDs mainly relies on a key test presently used to study the 

esophagus motility, known as esophageal manometry (EGM). EGM involves pressure 

measurements inside the esophagus, which provide information pertaining to its 

contractions. The diagnosis process is mainly based on visual inspection of the EGM test 

results to find certain characteristics of the manometric patterns. 

There are several factors that make such inspection tedious. For instance, 

manometry test results are often contaminated with a considerable amount of noise, (e.g. 

noise from external environment) and artifacts, (e.g. respiration artifacts) leading to a 

longer and more complex diagnosis process. As such, the diagnosis based on visual 

inspection is prone to human error and demands extensive amount of expert's time. 

This thesis introduces new signal processing approaches to provide an accurate 

means for the diagnosis of EGMDs as well as to reduce the amount of time spent on the 

diagnosis process. Specifically, a new technique known as wavelet decomposition (WD) 
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is applied to the filtering of the EGM data. A nonlinear pulse detection technique (NPDT) 

is applied to the de-noised data leading to extraction of diagnostically important 

information i.e. esophageal pulses. Such information is used to generate a model using a 

statistical pulse modeling (SPM) technique, which can classify the EGM patterns. 

The proposed approaches are applied to the EGM data of 20 patients and 

compared with those from existing techniques. Such comparisons illustrate the 

advantages of the proposed approaches in terms of accuracy and efficiency. 

As part of this thesis, a new circuit-based approach is proposed for the treatment 

of Gastroesophageal Reflux Disease (GERD), i.e. the most prevalent disease caused by 

EGMDs. The objective is to provide a framework for further research towards the 

implementation of the proposed approach for GERD treatment. 
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Chapter 1 

Introduction 

1.1 Esophageal Motility Disorders Diagnosis 

Esophageal Motility Disorders (EGMDs), are a group of abnormalities originated 

by the muscular dysfunction of the esophagus in transportation of food from oral cavity 

to the stomach [1]. These disorders correspond to very common diseases such as 

gastroesophageal reflux disease (GERD), diffuse esophageal spasm (DES) and nutcracker 

esophagus that are typically chronic and life-long [2]. For instance, GERD which is a 

state in which the liquid content of the stomach refluxes into the esophagus affects an 

estimated 5-7% of the global population including men, women, and children [3]. Owing 

to relatively unhealthy diets and lifestyles, this percentage is even higher among the 
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North American population. Such diseases affect the patients' quality of life by causing 

problems such as heartburn, swallowing/breathing difficulties and chest pain. 

Current diagnosis of EGMDs is based on a group of esophageal tests designed to 

examine the esophagus. The main purpose of these tests is to observe the function of the 

esophagus muscles regarding the food delivery. A noninvasive test presently used to 

study the esophagus is EGM. The EGM test essentially measures the pressure inside the 

esophagus, which in turn allows experts to discern vital information about the 

contractions of the different esophageal regions. The diagnosis process mainly involves 

visual inspection of these test results to find certain morphological characteristics of the 

manometric patterns. However, there are several factors that make such a visual 

inspection tedious. First, EGM data is contaminated by high-frequency noise, e.g. noise 

from external environment. Second, visual examination of EGM data involves 

differentiating between contractions and artifacts (e.g. respiration artifacts), which is 

prone to human error. Third, medical experts should examine each esophageal 

pulse/contraction and determine whether it is normal. 

General solutions to overcome the above challenges can be realized by means of a 

computer-based implementation, with emphasis on accuracy and efficiency. Obviously, 

such implementation requires development of signal processing techniques for EGM data 

analysis, including the filtering of the noise from the raw EGM data, detection/extraction 

of the key information in the whole data recording and classification of the results for 

diagnosis. 
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1.2 Motivation and Objectives 

The motivation behind this thesis is the desire to provide new signal processing 

tools to medical experts in an effort to aid in overcoming the challenges in the diagnosis 

of EGMDs. The main objectives are reducing the amount of time spent on the diagnosis 

process as well as providing an accurate means for the diagnosis of EGMDs. From a 

healthcare perspective, this work is highly practical as it enhances the ability of experts to 

diagnose disorders affecting a vast and ever-increasing number of the North American 

population. 

1.3 Thesis Outline 

This thesis proposes new signal processing-based approaches for the analysis and 

modeling of EGM data to assist the diagnosis of EGMDs. In addition, a new circuit-based 

electrical engineering approach for treatment of GERD is presented. 

Chapter 2 presents an overview of the EGMDs from a medical perspective 

including a brief description of the esophagus anatomy, an explanation of EGMDs origin, 

as well as different types of diseases caused by EGMDs. Also, a brief overview of GERD 

as well as a short description of the relevant esophagus physiology is presented. 

Chapter 3 describes a wavelet-based signal processing technique known as WD 

for filtering of the high-frequency noise from EGM data. The chapter begins with the 

background theory of an existing technique proposed for EGM data analysis known as 

empirical mode decomposition (EMD). The proposed WD is then described in detail. 
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Both the EMD and the WD are applied to the patients' EGM data and the experimental 

results are shown for the purpose of comparison. 

Chapter 4 introduces novel approaches for detection/extraction of the 

diagnostically key information and model-based classification of EGM data. The relevant 

background theory regarding pulse detection techniques as well as a pertinent modeling 

technique is presented. The proposed approaches to detection/extraction and modeling of 

esophageal pulses are then described. The approaches are applied to the patients' EGM 

data and the experimental results are illustrated. Such results are compared with the 

results from similar existing techniques where applicable. 

Chapter 5 proposes a circuit-based electrical engineering approach for treatment 

of GERD as the most prevalent esophageal disease caused by EGMDs. The idea for 

implementation of the approach using an electronic implantable device is described. 

Furthermore, a number of recent state-of-the-art circuits for the proposed implant 

structure from the existing literature are presented. 

Chapter 6 contains a discussion on the thesis' contributions as well as the 

direction for possible future works. 
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Chapter 2 

Esophageal Motility Disorders 

(EGMDs) Overview 

As previously mentioned, EGMDs are identified by the muscular dysfunction of 

the esophagus in transporting the food from the oral cavity to the stomach. In order to 

understand the causes of the EGMDs, it is necessary to know the physiology of the 

esophagus and its function. In this chapter, a brief overview of the esophagus anatomy 

and its functional role is discussed. In addition, the diagnosis process of EGMDs and the 

corresponding challenges are described. Also presented in this chapter, is a brief 

background overview of GERD including its definition and causes. 
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2.1 The Esophagus and its Function 

The esophagus is a muscular tube that has the function of transporting the food 

from the oral cavity to the stomach (see Figure 2.1). 

J * _ • — * • ' 

; '.i 

Mouth 

Esophagus 

Stomach 

Figure 2.1 The esophagus location in human body. 

In order to carry out this task safely and effectively, the esophagus is constructed 

as an 18 to 26 cm long hollow muscular channel with a slippery inner lining [1]. After 

each swallow, the food travels from mouth down to the throat and into the esophagus, 

passes the mid part of the esophagus and enters the stomach. During this journey, the 

muscles of the esophagus work together to receive food bolus in each level and push it 

down towards the stomach. This process is called the esophageal peristalsis. In essence, 

the entire esophagus wall consists of muscles that work harmoniously to transit 
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swallowed content to the stomach. Figure 2.2 shows an example of an esophageal 

peristalsis. 

I 
Figure 2.2 Esophageal peristalsis for transportation of food. 

There are two sphincters at the beginning and the end of the esophagus that 

control the transition of material. The first sphincter (known as upper esophageal 

sphincter or UES) is located at the junction of the oral cavity and the esophagus. It 

controls the entrance of the esophagus and contracts unless there is a swallow event. The 

second sphincter (known as lower esophageal sphincter or LES) is located between the 

esophagus and the stomach. It controls the junction between the esophagus and the 

stomach and is contracted unless there is a swallow event. In every swallow process, food 

passes through the UES, travels along esophageal body and passes through the LES to 

enter the stomach. Figure 2.3 shows the locations of the esophageal sphincters in human 

body. 
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Figure 2.3 Locations of the esophageal sphincters in human body [4]. 

2.2 EGMDs: Definition and Classification 

The delivery of food from the oral cavity to the stomach is a very complex 

process which involves the coordination of a set of different muscles and organs. 

Disruptions of this highly integrated muscular motion translate to EGMDs. Such 

disorders limit the delivery of food and fluid to the stomach and cause swallowing 

problems, chest pain, acid reflux, etc. 
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EGMDs are classified based on the type of abnormality which causes the 

disruption in esophagus function [2]. Generally, these abnormalities are: (i) 

uncoordinated contractions, (ii) hyper contractions, (iii) hypo contractions, and (iv) 

inadequate sphincter relaxations. Various disorders and diseases are originated from such 

categories of abnormalities. In the following section, a brief overview of the most 

common disorders and diseases initiated from esophagus abnormalities is presented. 

2.3 Common Esophageal Motility Disorders and Diseases 

In order to know the importance of EGMDs and their impact on society's health, 

a brief overview of the most prevalent disorders and diseases related to EGMDs is 

presented in this section. 

2.3.1 Gastroesophageal Reflux Disease (GERD) 

GERD, generally known as acid reflux, is a state in which the liquid content of 

the stomach refluxes into the esophagus. The acidic nature of the liquid has the potential 

to damage the sensitive lining of the esophagus, causing esophagus inflammation, known 

as esophagitis. GERD is a chronic, and in most cases life-long disease, which can result 

in possible swallowing and breathing problems or even esophageal cancer in extreme 

cases. GERD is caused by the dysfunction of the LES as a barrier to reflux of acidic 

content of the stomach to the esophagus. It is estimated that GERD currently affects an 

estimated 5-7% of the world's population. Owing to relatively unhealthy diets and 

lifestyles, this percentage is even higher in the North American population 

(approximately 22 million people in North America suffer from GERD) [3]. 
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2.3.2 Achalasia 

Achalasia is an EGMD of unknown cause characterized by the absence of 

peristalsis in esophageal body and impaired relaxation of the LES. As a result, patients 

with achalasia usually suffer from swallowing difficulties and weight loss. Although it is 

not a very common disease, it is frequent enough to be considered as an important 

EGMD. Achalasia is a disease that occurs with equal frequency between men and 

women. There are, however, striking international differences with the disease. Achalasia 

is more common in North America, north-western Europe and New Zealand [2]. 

2.3.3 Diffuse Esophageal Spasm (DES) 

DES is an EGMD of unknown cause characterized by uncoordinated spastic 

activity in the smooth muscle portion of the esophagus. DES is manifested clinically by 

episodes of swallowing difficulty and chest pain. Such a pain can mimic the angina of 

coronary artery disease which is critical due to the fact that DES patients are typically 

older than 50 years of age. DES occurs with equal frequency between men and women. 

DES is more common in North America compare to the rest of the world. 

2.3.4 Nutcracker Esophagus 

Nutcracker Esophagus is a condition in which the swallow induced peristaltic 

waves in the esophageal body have higher amplitudes compared to normal levels. 

Therefore, patients diagnosed with Nutcracker Esophagus suffer from severe chest pain 

and swallowing difficulties to both solid and liquid foods. Nutcracker esophagus can 

affect people of any age, but is more common in the 6th and 7th decades of life. 
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2.4 Diagnosis of EGMDs and the Role of EGM 

The diagnosis of EGMDs is a complex process which involves a number of tests 

to examine the esophagus and its function. The most important test for assessment of 

esophagus is EGM. As mentioned, EGM involves pressure measurements inside the 

esophagus, which provide information in terms of contractions of the esophagus [1]. This 

is due to the fact that any abnormality in esophagus function manifests itself in pressure 

dynamics inside the esophagus. Such measurements, i.e., the recorded pressure 

waveforms, are reviewed by medical experts, in order to qualify/quantify the wave 

morphologies leading to classification of normal and abnormal patterns. 

There exist a number of EGM procedures which medical experts employ 

depending upon the symptoms of the patient. These procedures are (i) sphincter 

examination/profiling and (ii) esophageal body examination. The former is mainly 

employed for examination of the LES in diagnosis of GERD or examination of the UES 

in diagnosis of swallow related disorders in the pharynx area. The latter is mainly 

employed for diagnosis of motility disorders in the esophageal body such as DES and 

Nutcracker Esophagus. A brief description of such procedures is presented in the 

following sections. 

2.4.1 Manometry Procedure for Sphincter Examination/Profiling 

EGM for sphincter examination/profiling is performed while the patient is awake, 

alert, and in a supine position. The procedure takes about 40 minutes and the patient 

should have fasted for six hours [2]. An esophageal motility catheter, which is a 
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flexible/soft tube containing micro-transducers for pressure measurements is used. The 

catheter is slowly passed into the esophagus through the nose and throat of the patient. 

Profiling of the sphincter (i.e. LES or UES) is done using the station pull-through 

technique, which involves a slow and step-wise withdrawal of the catheter. The catheter 

is moved in 0.5cm steps and is held at each position/station long enough so as to obtain a 

stable pressure reading. Once the pressure data is recorded, the results are saved on a 

machine or printed on to a paper. An example of the manometry results for LES profiling 

from a patient is shown in Figure 2.4. The LES high pressure zone is labelled in the 

figure. 

2.4.2 Manometry Procedure for Esophageal Body Examination 

EGM for esophageal body examination is performed while the patient is awake, 

alert, and in a supine position. The procedure takes about 40 minutes and the patient 

should have fasted for at least six hours. Medications that may potentially alter normal 

esophageal function must be discontinued at least 24 hours before the procedure [2]. An 

esophageal motility catheter, which is a soft tube containing micro-transducers, is used. 

The catheter is slowly passed into the esophagus through the nose and throat of the 

patient. The patient is usually asked to swallow saliva (i.e. a dry swallow) or water (i.e. a 

wet swallow). The esophagus muscles normally contract from the top portion of the 

esophagus and progress in an orderly sequence to the bottom portion of the esophagus. 

Resulting pressure changes from esophageal contractions are recorded. The recordings 

are in the form of tracings in time-domain. Sampling rate and other signal specifications 
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are adjusted by the medical doctor. An example of a 15s manometry results for 

esophageal body examination from a patient is shown in Figure 2.5. 

8 10 12 
Time (min) 

Figure 2.4 An example of the manometry results for LES profiling. 
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Figure 2.5 An example of the manometry results for esophageal body examination. 

2.5 Challenges in Diagnosis of EGMDs Using EGM 

As previously mentioned, EGM involves pressure measurements inside the 

esophagus, which provide information in terms of contractions of the esophagus. These 

measurements, i.e., the recorded pressure waveforms, are reviewed by medical experts, in 

order to qualify/quantify the wave morphologies leading to classification of normal and 

abnormal patterns. Similar to other biological signals, e.g. electrocardiography (ECG) 

and electroencephalography (EEG), EGM signal/wave analysis by medical experts highly 

relies on visual inspection. However, there are several factors that make visual inspection 
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tedious. First, EGM data is contaminated by high-frequency noise, e.g. noise from 

external environment. Second, manual examination of EGM data involves differentiating 

between contractions and artifacts (e.g. respiration artifacts), which is prone to human 

error. Third, medical experts should examine each esophageal pulse/contraction and 

determine whether it is normal. As such, accurate diagnosis based on visual inspection 

demands extensive amount of expert's time, and such inspection can be even more 

challenging in the case of 24-hour EGM data monitoring. 

2.6 Computer Aided Solutions for EGMDs Diagnosis Using EGM 

A general solution to the mentioned problems is to filter the high-frequency noise, 

browse through the de-noised EGM data to extract critical data portions/segments, and 

compare these portions with standard cases for diagnosis. The above solution can be 

realized by means of a computer-based implementation using signal processing methods, 

with emphasis on accuracy and efficiency. Obviously, such implementation requires 

development of an algorithm for EGM data analysis, which involves three specific tasks, 

namely, i) filtering of high-frequency noise from raw EGM data, ii) detection/extraction 

of diagnostically important segments from the EGM recordings, and iii) development of a 

convenient computational model that facilitates differentiation between normal and 

abnormal patterns. 

In chapters 3 and 4, the proposed signal processing techniques for implementation 

of the above tasks are presented. The following section is dedicated to a background 

overview of GERD, necessary for the GERD treatment approach described in chapter 5. 
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2.7 GERD Overview 

Gastroesophageal Reflux Disease (GERD), generally known as acid reflux, is a 

state in which the liquid content of the stomach refluxes into the esophagus [3]. The 

acidic nature of the liquid has the potential to damage the sensitive lining of the 

esophagus, causing esophagus inflammation, known as esophagitis. GERD is a chronic, 

and in most cases life-long disease, which can result in possible swallowing and 

breathing problems or even esophageal cancer in extreme cases. It is estimated that 

GERD currently affects an estimated 7% of the global population. The widespread effect 

of this disease reflects the need to develop effective diagnosis and treatment methods 

compared to those presently available. 

Current diagnosis of GERD involves a set of esophageal tests designed to 

examine the esophagus. One of the key tests presently used to study the esophagus in 

GERD diagnosis is EGM. EGM allows experts to obtain vital information about the 

amplitude and coordination of esophageal contractions especially in the LES region. 

Medical treatment of GERD is a complicated process and is based on symptoms 

presented along with organ damages [2]. Less invasive treatments involve life-style 

changes such as alteration of eating and sleeping habits. More severe cases are treated 

with prescription drugs such as antacids to control the reflux. More advanced and 

invasive GERD management methods include surgical and endoscopic techniques [3]. 

Despite the numerous existing techniques for GERD treatment, research towards an 

effective cure for GERD has continued unabated. 

16 



2.8 Cause of GERD 

The backward flow of gastric content into the esophagus, that is, gastroesophageal 

reflux (GER), is up to a certain extent a normal physiological phenomenon [1]. When the 

threshold of normality is surpassed, GER may induce inflammatory changes of the 

esophageal inner lining due to exposure from stomach contents. These contents (i.e. acid 

and enzymes) can damage the esophagus leading to symptoms such as chest pain, 

swallowing and breathing problems. 

There is a natural anti-reflux barrier in the junction of the esophagus and the 

stomach preventing the flow of stomach contents into the esophagus. This natural barrier 

is the LES. LES is in fact a muscle that acts as a valve at the opening of stomach. The 

failure of the LES to prevent the acid flow from the stomach to the esophagus causes 

GER episodes and overtime results in GERD. The location of the LES is demonstrated in 

Figure 2.6. A brief description of the LES is presented in the following section. 

2.8.1 Lower Esophageal Sphincter (LES) 

The LES involves 3 to 4 cm of the esophagus right above the stomach [1]. Resting 

LES pressure ranges from 10 to 30 mmHg (or Torr). A minimum of 5 to 10 mmHg is 

necessary to prevent GER from stomach to the esophagus. The LES has the duty of 

maintaining a high pressure almost at all times except an event of a swallow event. There 

is considerable daytime variation in LES pressure; it is lowest after meals and highest at 

night. It is also influenced by circulating hormone related foods (particularly fat) as well 

as a number of drugs [1] [2]. It is to note that the diaphragm (see Figure 2.6), provides 
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external squeeze to the LES, contributing to resting pressure during inspiration and 

augmenting LES pressure during periods of increased abdominal pressure such as 

coughing, sneezing, or bending. Diaphragm contractions impose rhythmic pressure 

increases of about 5 to 10 mmHg on the LES pressure assuring the LES function. 

Figure 2.6 LES location at the junction of the esophagus and the stomach [5]. 

LES is controlled directly by the brain and receives its control signals through one 

of the most important nerve branches known as Vagus nerve. Vagus nerve is the only 

nerve that initiates in the brainstem and controls most of the vital organs such as heart, 

liver and kidneys. It regulates both the inhibitory (relaxation) and the excitatory 

(contraction) responses of the LES. 
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As mentioned, LES is the barrier to acid reflux from stomach to esophagus and its 

dysfunction results in GERD. However, it has not been mentioned as to which LES 

characteristic corresponds to GERD origin. Therefore, a question may arise: Is the 

absence of LES tone/pressure the cause of GERD or there are other factors? 

In order to find the answer to the above question one should study the conditions 

in which GER is most likely. In the following section, the mechanisms of reflux are 

explained. 

2.8.2 Mechanisms of Reflux 

2.8.2.1 Transient Lower Esophageal Sphincter Relaxations (TLESR) 

A TLESR is a relaxation of LES that is not initiated by a swallow. TLESRs are 

the most frequent mechanisms for reflux in patients with sufficient sphincter pressure. 

Such LES relaxations occur independently of swallowing, are not accompanied by 

esophageal peristalsis, usually persist longer than 10 seconds and are accompanied by 

inhibition of diaphragm pressure. Importantly, TLESRs account for 50% to 80% in 

GERD patients. 

2.8.2.2 Swallow-Induced Lower Esophageal Sphincter Relaxations (SLESR) 

A SLESR is a relaxation of LES that is initiated by a swallow in order to allow 

food to enter the stomach. About 5% to 10% of reflux episodes occur during swallow-

induced LES relaxations. Most episodes are associated with defective or incomplete 

peristalsis. During a normal SLESR, reflux is uncommon due to the factors; (i) the 
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diaphragm does not relax (ii) the duration of SLESRs is really short (around 5 seconds) 

(iii) reflux is prevented by the oncoming peristaltic wave. 

2.8.2.3 Hypotensive (Low-Pressure) Lower Esophageal Sphincter 

GER can occur in the context of hypotensive LES by either strain-induced or free 

reflux. Strain induced reflux occurs when a relatively hypotensive LES is overcome and 

blown open by normal events such as coughing or bending over. Free reflux is 

characterized by a fall in esophageal ph caused by extremely low LES pressure. Reflux 

due to a low or absent LES pressure is uncommon. 

2.9 A Potential Solution for GERD Treatment 

As explained in the previous section, acid reflux can occur during different 

mechanisms which may result in GERD. Therefore, GERD is considered as a multi­

factorial disease i.e. various factors can cause GERD. However, the common feature in 

all GERD cases is the LES failure to stay contracted in the absence of a swallow. As 

such, a general solution for GERD treatment should involve the control of LES in order 

to assure its contraction at appropriate times. In chapter 5, an engineering approach based 

on electrical stimulation of the LES using neurostimulation techniques for GERD 

treatment is presented. 

2.10 Summary 

In this chapter, function of the esophagus as well as a brief overview of the 

EGMDs has been presented. Also, the challenges in EGMDs diagnosis along with the 
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proposed signal processing-based solutions have been discussed. In addition, a brief 

overview of GERD as the most important disease caused by EGMDs, has been described. 
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Chapter 3 

De-noising of EGM Data for EGMDs 

Diagnosis 

As discussed in the previous chapters, there are certain facts that make the EGM-

based diagnosis of EGMDs challenging. The primary fact is that the EGM data is usually 

contaminated by noise. Such noise includes components with much higher frequency 

compared to the frequency of esophageal movements and contractions. The potential 

sources of noise are external environment (e.g. patient's body movements) or the EGM 

test equipment. Such noise can make the diagnosis tedious since it may distort the 

esophageal waveforms. Therefore, there is a need for a suitable filtering technique to 

remove the high frequency noise from EGM data. 
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It is to be noted that raw manometric data exhibits discontinuities and sharp peaks 

due to natural pressure fluctuations in the esophagus. Therefore, typical filtering 

techniques may not be appropriate options. This is due to the fact that the resulted filtered 

signal using these techniques may fail to follow sharp peaks and rapid changes of the 

original signal. Recently, a signal processing technique referred to as Empirical Mode 

Decomposition (EMD) has been proposed for the analysis of manometric data [6]. 

In this chapter, an overview of EMD as the existing technique for analysis of 

EGM data in the signal processing literature is presented. The proposed technique, i.e. 

WD, for de-noising of EGM data is then described in detail. Both the EMD and WD are 

applied to the patients' EGM data and the experimental results are presented for 

comparison. 

3.1 Empirical Mode Decomposition (EMD) 

The EMD is a general signal processing method for analyzing nonlinear and non-

stationary time series. EMD was initially proposed for the study of ocean waves, and 

found pressing applications in biomedical engineering [6]. The fundamental idea of EMD 

is to decompose a signal into a finite and often small number of intrinsic mode functions 

(IMFs). An IMF is defined as any function having the number of extrema and the number 

of zero-crossings equal (or differing at most by one), and also having symmetric 

envelopes defined by the local minima, and maxima respectively. The major advantage of 

EMD is that the IMFs are derived directly from the signal itself. Therefore, the analysis is 
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adaptive, in contrast to Fourier analysis, where the basis functions are linear 

combinations of fixed sinusoids. 

3.1.1 EMD Theory and Algorithm 

The principle of EMD is to decompose a signal into a sum of oscillatory 

functions, namely IMFs, that: i) have the same numbers of extrema and zero-crossings or 

differ at most by one; and ii) are symmetric with respect to local zero mean. With these 

two requirements, the instantaneous frequency of an IMF can be well defined. 

EMD decomposes a given signal into a set of IMFs with discrete frequencies. 

Decomposition is accomplished by empirically identifying the physical time-scales 

fundamental to the data/signal. These time-scales are the time-fragments between 

consecutive maxima or minima. Each IMF satisfies the criteria of having a zero mean for 

its upper/lower envelopes. The procedure for determining IMFs includes finding 

upper/lower envelopes (xup/xioW) of the signal x(t) by connecting maxima/minima points 

via cubic splines and then subtracting the mean of the above-said envelopes from the 

signal i.e. 

hxx{t) = x{t)-(xup(t) + xlow{t))l2. (3.1) 

Treating h\\(t) as the original signal and using (3.1), we evaluate hn{f). In an 

iterative fashion, we continue to evaluate h\$(t), ..., h\p(t) and so forth. The procedure 

terminates when the mean of the envelopes of h\p(t) becomes zero, providing the first 

IMF i.e. I\(f) = h\p(f). Residue r\{t) = x(i) - I\(f) is then used as new data and the above 
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procedure is repeated resulting in subsequent IMFs h(i) = /*2p(0> ^(0 ~ 3̂p(0> and so 

forth, assuming p to be a variable index. The EMD approach terminates when the 

difference between two consecutive IMFs is equal to a small value (typically in the 0.2-

0.3 range). 

In principle, the original signal x(f) can be reconstructed as 

N 

x(t)= ZA-(0 + > N ( 0 . (3.2) 

In (3.2), N is the number of IMFs, Ix (t) is the z'th IMF, and r^(t) is the residue when the 

EMD terminates. Since each IMF corresponds to a specific frequency component of x(f), 

partial addition of the IMFs i.e. 

JC(0=Z AW, (3-3) 

results in a filtered signal. In (3.3), j,ke{\,...,N] and j<k. It is to be noted that de-

noising of the original signal can be achieved by adding the low-frequency IMFs. 
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3.2 Wavelet Decomposition (WD) 

Wavelet decomposition is gaining attention as a novel signal processing tool for 

analyzing nonlinear time-series. Compared to traditional Fourier transform, wavelet 

transform better represents functions exhibiting discontinuities and sudden changes. As 

such, wavelet-based techniques are strong candidates for the analysis of bio-signals (e.g. 

gastric and esophageal signals), in which, sudden changes and sharp peaks are likely [7] 

[8]. A brief overview of wavelet theory and WD is presented in this section. 

3.2.1 Wavelets and the Wavelet Transform 

A wavelet is a mathematical function used as a basis to divide a given function or 

continuous-time signal into different frequency components. A wavelet transform is the 

representation of a function by such wavelets. The wavelets are scaled 

(stretched/compressed over time-axis) and positioned (shifted over time-axis) copies of a 

finite-length waveform known as the mother wavelet. Similar to the Fourier transform in 

which a signal is represented by sum of sine waves, in wavelet transform a signal is 

represented by sum of scaled and shifted mother wavelets. There are different types of 

mother wavelets developed for various applications. Figure 3.1 illustrates some of the 

most popular and widely used mother wavelets. 
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Figure 3.1 A sample group of widely used mother wavelets: (a) Haar, (b) 

Biorthogonal, (c) Daubechies, (d) Symlet [9]. 

Wavelet transforms have advantages over traditional Fourier transforms for 

representing functions that have discontinuities and sharp peaks, and for accurately 

deconstructing and reconstructing finite, non-periodic and non-stationary signals. This is 

due to the fact that in wavelet transform a signal is analyzed by a group of wavelets with 

limited length, (thus suitable for analyzing local variation of the signal) which are scaled 

in order to match the original signal frequency. 
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3.2.2 Wavelet Transform Algorithm 

Wavelet transform breaks down a given signal to a group of functions known as 

wavelets. In this section a brief conceptual description of the general algorithm used in 

wavelet analysis is presented through 5 simple steps. For simplicity, the continuous-time 

case is described here. 

The continuous wavelet transform (CWT) is the sum over all time of the signal 

multiplied by scaled, shifted versions of the wavelet. This process produces wavelet 

coefficients that are a function of scale and position. 

Stepl: Choose a mother wavelet and compare it to the first portion of the original signal. 

Step2: Calculate a numerical value, e.g. coefficient C, which represents the 

similarity/correlation between the signal portion and the wavelet. The higher the C, the 

more similar is the wavelet to the original signal. 

Step3: Move on to the next portion and repeat the steps 1 and 2 and calculate the 

coefficients, i.e. Cs until the end of the signal. 

Step4: Scale/stretch the wavelet in order to obtain the new wavelet (i.e. still from the 

same family) and repeat the steps 1 to 3 to calculate all the Cs for the scaled wavelet. 

Step5: Repeat the steps 1 to 4 for all the scales i.e. scaled wavelets. 

Figure 3.2 illustrates the above process in CWT. Having calculated the Cs using 

the above procedure, the original signal can be presented by means of a set of Cs along 

with the corresponding wavelet. 
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Figure 3.2 An illustration of CWT realization for a random signal [9]. 

It is to be noted that any signal processing performed on a computer using real-

world data must be performed on a discrete signal, (i.e. on a signal that has been 

measured at discrete times) using the discrete wavelet transform (DWT). Therefore a 

question may arise regarding the difference between the CWT and DWT. The main factor 

that differentiates the CWT from DWT is the set of scales and positions at which it 
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operates. Unlike the DWT, the CWT can operate at every scale, from that of the original 

signal up to some maximum scale that you determine by trading off your need for 

detailed analysis with available computational horsepower. The CWT is also continuous 

in terms of shifting: during computation, the analyzing wavelet is shifted smoothly over 

the full domain of the analyzed function. 

3.2.3 WD for EGM De-noising 

In this section a brief overview of the WD for filtering of EGM data is presented 

[9]. CWT of a given signal x(f) can be expressed as 

y(s,T)=\x(t)y/'^{t)dt. (3.4) 

In (3.4), s and r denote scale and position parameters, and y/*s,i(t) is the complex 

conjugate of i//sr(t) given by 

•sJS 

1 (t-T^ 

V s J 
(3.5) 

It is to be noted that y/ (t) is a user-defined mother wavelet, and its selection depends 

upon the shape of the original signal. The inverse wavelet transform can be expressed as 
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x(0 = \\y(s,T)i//StZ(t)drds . (3.6) 

In the discrete form, we define 

^ » = ^ V 
n- j2 

2' 
(3.7) 

where n, i, and j represent sample index, decomposition index and position index along 

the time-axis respectively. Substituting (3.7) in (3.4), coefficients y(i,j) can be evaluated 

for different i and/. In theory, discrete signal x(ri) can be re-constructed as 

where / and J are index sets. From a signal decomposition perspective, the corresponding 

WD functions can be evaluated as 

c i(«)=2K^;)^JW- (3.9) 
jeJ 

Since each C\ corresponds to a specific frequency component of x{ri), partial addition of 

the WD functions, i.e. 
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>>(«)= £ Cs (/i), (3.10) 

where I al, results in a filtered biomedical signal. In other words, de-noising of the 

given signal can be achieved by adding the low-frequency Qs. The WD approach is 

applied to the de-noising of raw EGM data. 

3.3 Experimental Results 

In this section, the simulation results of the EMD and the WD are presented. Both 

the techniques are applied to the real EGM data from patients and the results are 

compared in order to highlight the advantages of the WD over the EMD. The presented 

manometry test results are obtained using the LES profiling procedure as part of the 

GERD diagnosis. The sampling rate in the experiments is chosen to be 6 Hz. 

3.3.1 Application of EMD to EGM De-noising 

EMD reviewed in section 3.1 is applied to the patient's data. The original signal is 

decomposed into a set of IMFs using an in-house program developed in MATLAB. EMD 

approach terminated after evaluating N = 17 IMFs, shown in Figure 3.3. De-noising of 

the signal is performed through a partial addition of the IMFs i.e. only low-frequency 

IMFs are considered in the summation of (3.3). The de-noised signal (see Figure 3.4) is 

easy-to-analyze; however, it does not accurately detect sharp peaks and rapid changes. 
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Figure 3.3 IMFs evaluated using the EMD. 
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Figure 3.4 Original manometric data and the de-noised pressure signal using the EMD 

approach. 

3.3.2 Application of WD to EGM De-noising 

WD introduced in section 3.2 is applied to the patient's data. For this purpose, 

built-in functions of MATLAB are used. Considering the time-domain behaviour of the 

pressure signal, index /' is chosen to be 15. Owing to the shape of the signal, mother 

wavelet "sym3" shown in Figure 3.5 is picked. Resulting wavelets (C,s) are shown in 

Figure 3.6. 
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Figure 3.5 Mother wavelet 'sym3' used in the WD approach. 
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Figure 3.6 WD functions i.e. C,s evaluated using the WD approach. 
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Typically, esophageal movements and contractions correspond to a frequency 

range less than 0.1Hz. As such, de-noised pressure signal is obtained using (3.10) with 

/ = {5, 6, 7, ..., 10}. The de-noised signal (see Figure 3.7) does not miss sharp peaks and 

sudden changes present in the original signal. In addition, there is no obvious phase 

difference between the original and de-noised signals. 

301 1 1 1 1 1 1 1 1 r 

I i i i i i i i i l I 

0 2 4 6 8 10 12 14 16 18 20 
Time (min) 

Figure 3.7 Original manometric data and the de-noised pressure signal using the WD 

approach. 

3.3.3 Comparison of EMD and WD in EGM De-noising 

For the purpose of comparison, de-noised signals from both EMD and WD 

approaches along with the raw signal are shown in Figure 3.8. In general, both methods 
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seem to provide a smooth de-noised signal. However, a close inspection of the results 

could lead to interesting observations. De-noised signal from the WD approach is able to 

detect/retain all the sharp changes in the original signal, which is not the case with the de-

noised signal from the EMD approach. There is a phase difference between the de-noised 

signal from EMD and the given signal. 

8 10 12 
Time (min) 

20 

Figure 3.8 Comparison of the original manometric data, the de-noised pressure signal 

using the EMD approach and the de-noised pressure signal using the WD approach. 
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A comparison in terms of number of decompositions/coefficients, CPU-time, and 

signal-to-background ratio defined as 

Z(x(',))2 

SBR=-& , (3.11) 

1=1 

is presented in Table 3.1. In the above definition of SBR, x(tt) is the filtered 

signal and n represents the total number of samples. 

TABLE 3.1 
COMPARISON OF EMD AND WD APPROACHES 

Decomposition Method No. of CPU-Time SBR 

Decompositions 

EMD 17 75s 0.85 

WD 15 0.5s 0.97 

3.4 Summary 

In this chapter, a wavelet-based decomposition approach has been applied to the 

filtering of esophageal manometric data critical to EGMDs diagnosis. For comparison, 

the WD approach and a recent approach (i.e. EMD) have both been applied to the 

patients' data. The WD approach is better in terms of accuracy, and the corresponding de-
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noised signal conveys relatively better information. In addition, the WD approach 

requires less CPU-time 
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Chapter 4 

Analysis and Modeling of EGM Data 

for EGMDs Diagnosis 

As discussed in the previous chapters, there are certain factors that make the 

EGM-based diagnosis of EGMDs challenging. In chapter 3, WD was presented as an 

effective tool for EGM data de-noising. In this chapter the other challenges are addressed 

through signal processing techniques for detection/extraction of diagnostically key 

information and generation of a computational model for classification of EGM patterns 

benefiting the EGMDs diagnosis. 
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Subsequent to high-frequency noise filtering, detection and extraction of critical 

EGM data segments is important for EGMDs diagnosis. It is to be noted that the primary 

wave morphologies to be detected and extracted from the EGM data are the esophageal 

pulses or contraction waves. For biomedical pulse/spike detection, several techniques 

have been proposed [10]-[12], although not specifically for the EGM data. Some of the 

early works based on the concept of sharpness [10], had limited success. Some of the 

more recent techniques are based on time-frequency analysis [13] and spectrum analysis 

[14]. In the case of EGM data, not much research has been reported thus far, and this is 

one of the several motivations for the presented work in this chapter. 

Model-based classification of normal and abnormal cases can immensely 

contribute to computer-aided diagnosis of EGMDs. Toward this end, a convenient 

mathematical model needs to be developed. Considering the fact that in reality there is no 

such thing as an ideal case of human/patient in terms of EGM data, such model has to be 

developed employing statistics (e.g. pulse amplitude) from a number of normal cases. 

Since esophageal contractions in a normal case consist of a set of periodic events [2], the 

model can be viewed as a dynamic periodic (or quasi-periodic) bio-system. Poincare 

mapping (PM) [15][16], which recently emerged as a vehicle to the modeling of dynamic 

bio-systems based on their statistics, is considered. 

In this chapter, brief overview of the background for the relevant techniques in 

pulse/spike detection and modeling is presented. Subsequently, the proposed techniques 

for detection/extraction and modeling of EGM data are described in detail. Furthermore, 

the proposed techniques are applied to the EGM data from 20 patients and the 
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experimental results are presented. Such results are compared to those from existing 

literature where applicable. 

4.1 Overview of Pulse Detection Techniques 

Pulse/spike detection is an important tool for segmentation of biomedical data, 

e.g. EGM signals. In this section, a quick overview of such techniques is presented. 

Techniques commonly used for measuring sharpness of waves are based on three-point 

interpolations, e.g. Taylor series approximation [17], which help estimate second 

derivative of a given signal. First derivative of a de-noised discrete signal y(ri) can be 

expressed as 

y'(n)*(y(n)-y(n-\))l5, (4.1) 

where n and S denote sample index and sampling period respectively. Second derivative 

of y(ri) can be expressed as 

y\ri)*(yXn + l)-y'(n))/S=(y(n + \)-2y(n)+y(n-r))/S2. (4.2) 

A major drawback of (4.2) is that it utilizes highly local data, e.g. a peak and its 

neighbours say, ignoring certain other points that also contribute to signal sharpness. In 

the literature, there exist some techniques, e.g. [18], which utilize "less local" data. 
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More recent techniques for pulse/spike detection utilize the time-frequency 

concept. A good example of such technique is the nonlinear energy operator (NLEO) 

proposed in [19]. NLEO is a simple way to measure the energy content of a discrete-time 

signal, based on an idea that energy variation of a signal indicates an event, e.g. 

pulse/spike. In [19], energy of a de-noised discrete signal y(ri) is defined as 

£Ka,ser [ * (« ) ] = / ( « ) " X " " 1XK« " 2 ) . (4 .3) 

In (4.3), ̂ Kaiser satisfies a key property, i.e. 

Raiser M COS( O>0» + 9)] = ^ A 1 ^ . (4.4) 

From (4.4), the energy is proportional to both amplitude and frequency, and hence termed 

as frequency-weighted energy. In [20], NLEO was presented in a more general form 

using the energy definition 

EJy(n)] = y(n - d)y{n - o) - y(n - q)y{n - r), (4.5) 
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where d + o = q + r. In the cases where d *• o and q*r, £gis more robust to "undesired 

artifacts", e.g. respiratory artifacts, owing to the absence of the squared term in (4.3). 

Considering the above definition(s) of energy, the objective is to detect/track the 

energy changes in a given signal. Toward this end, in [20], a sliding temporal window is 

used, and the frequency-weighted energy of the first half of the window is subtracted 

from that of the second half, i.e. 

"-*NLEO ' " m i d ) 

"raid " m i d + i 

(4.6) 

where «mid is the mid point of the sliding window of length 2Z, and m is the time-index. A 

major drawback of such techniques is that any change in the energy content of a 

biomedical signal results in a change in SNLEO, regardless of the cause (e.g. undesired 

artifact). This drawback is critical in the case of EGM data as well, owing to the presence 

of artifacts. In this chapter, a new NPDT, which is relatively insensitive to artifacts, is 

proposed and applied to the EGM data. 

4.2 Overview of Poincare Mapping (PM) 

In this section, PM [15], which is an emerging technique for modeling of periodic 

bio-systems, is reviewed. Given a bio-system with periodic (or quasi-periodic) dynamic 

behaviors, PM maps the "system behaviors" from a ^-dimensional space onto a n-\ 
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dimensional space referred to as the Poincare section. Owing to this dimensional 

reduction, PM-based system analysis is often less complex. For instance, consider human 

body temperature measurements as a function of time that correspond to a two-

dimensional dynamic system. If the temperature is observed to vary around 36°C, the 

system can be considered to possess quasi-periodic behavior. One way to apply PM to 

this scenario is to simply record the time points at which the temperature crosses the 

desired value. 

Having quoted an example, the mathematics involved in PM technique is 

presented. Consider an autonomous differential equation in /? given by 

^- = f(P), f:R"^R", peR", (4.7) 
at 

and its solution/trajectory is of the form 

P(.t) = t(Po>to>t), (4.8) 

where (/?o, ft) is the initial condition. Let r represent an n-\ dimensional hyper-plane in 

the ^-dimensional space, i.e. 
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r = {fieR"\<p(p) = 0,<p:R" ~> R}. (4.9) 

In this particular context, ris referred to as a Poincare section. Poincare map g:r—*r\s 

defined as 

gM=tl(Kfin>tn,tn+T)), (4.10) 

where va=rj{fin), pneT, rj: R" -^ R"~l. In (4.10), T is the least time-interval, after 

which, the solution 0(j3o,to,t) starting from a point on r crosses r again. It is to be 

noted that each vn is a n-\ dimensional point induced on Tby the coordinate translation r\ 

from the ^-dimensional space. 

Conceptually, given a certain point on r, Poincare map g provides the next point 

on r (i.e. after one time interval 7). Figure 4.1 shows a conceptual illustration of a PM. 

PM has gained attention as a modeling technique with applications in biology and 

medicine [21]. Aside from advantages including simpler analysis and improved scope for 

visual assessment in terms of system complexity/nonlinearity, a major advantage is its 

relative insensitivity to artifacts [22]. Realizing the fact that EGM data typically contains 

natural artifacts, e.g. respiration artifacts, PM is applied for developing a computer-based 

model in order to classify EGM data patterns. 
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Figure 4.1 A conceptual illustration of Poincare mapg. 

4.3 Proposed Nonlinear Pulse Detection Technique (NPDT) 

In this section, a new EGM-oriented NPDT involving two phases described below 

is developed. It is to be noted that the raw EGM data is first de-noised using the WD 

overviewed in section 3.1. 

4.3.1 Phase 1: Detection of Critical Points (CP) 

The objective of the first phase is to locate the critical points in the de-noised 

EGM data fundamental to the patient's pulse shape. Conceptually, these points are the 

boundaries of the estimated straight lines fitted to the de-noised EGM data using a least 

square approach. In the case of an EGM pulse, a CP is either a pre-steep/rising point (pr) 

or a post-steep/falling point (pf). 

In the proposed technique, the de-noised EGM data is first divided into a number 

of data segments based on the patient's pulse duration (typically 7-1 Os). Considering one 

such segment at a time, the technique involves sliding of what is referred to as a short-
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time data analysis window, through the segment. The purpose of such window is to 

monitor the rate at which the EGM data trend changes within the segment. Detection of a 

number of consecutive rises (or falls) as the window slides in small steps indicates a CP. 

In terms of implementation, the length of the short-time analysis window and the number 

of consecutive rises (or falls) that ascertain a CP are determined according to the patient 

EGM pulse duration. 

As mentioned earlier, considering a data segment at a time, the short-time window 

is slide with an objective to find a rising (or falling) trend. Within a window frame, least-

square method is used to determine a straight line that approximates the data, with the 

slope of the line quantifying the rise (or fall). In other words, for a given set of data lying 

within the tfh short-time window, i.e. yk(w), w = 1, 2, ..., W, a line i.e. lk(w) = a]gyv+bk, 

is determined, which best-fits the EGM data yk(w). This task is accomplished by 

minimizing the error function IT k given by 

w 
nk = Ibk(>v)-/k(w)]2, (4.ii) 

w=\ 

where w is sample index, W is the short-time window length, and y\&yv) and l\Syv) are the 

de-noised and fitted data respectively. Solving = 0 and = 0 leads to 
dak dbk 

computation of the unknown coefficients. For example, slope of /k(w) becomes 
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w 

w=l w~l w=l / ^ 1 0 \ 

(*F]T/»)_(£/(w))2 

Condition ak > £ is checked, where £ represents the margin or threshold for a 

rising trend. If the condition is met, a similar process is performed on the k+\th short-time 

window to determine slope ak+i and condition ok+1 > S, is then checked. Satisfaction of 

the latter condition indicates a rising trend and the first point in the fcth window, i.e. y\SS), 

is labelled as a CP. Similarly, the other CPs in the data segment are also detected. The 

above process is repeated for all the data segments of a patient's EGM data. In essence, at 

the end of phase 1, CPs in each data segment are detected. An illustrative example of the 

proposed technique in the case of a 15s long data segment is shown in Figure 4.2. 

4.3.2 Phase 2: Wave-Shape Determination and Line-Fitting 

Consider one data segment at a time. Starting with the CPs detected in the first 

phase, the objective of the second phase is to determine the underlying wave-shapes and 

accordingly fit the CPs with straight lines. Basically, the wave-shape is determined by the 

location of pT andp? in the data segment. 
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Figure 4.2. An illustration of proposed method for CP detection. 

Specifically, in the case where px is detected prior to pf {i.e. a rising data trend 

followed by a fall), a proper pulse (see Table 4.1) is deemed to be present in the data 

segment. In the case where pt is detected prior to pr, the data segment lies between two 

pulses. Since the length of the data segment is chosen such that there would not be two or 

more pulses within a segment, the possible scenarios for wave-shapes are limited to those 

presented in Table 4.1. 

TABLE 4.1 
POSSIBLE SCENARIOS FOR WAVE-SHAPES IN A DATA SEGMENT 

Scenario CP sequence Wave-shape Description 

I 

II 

III 

Pr-*Pf 

Pf-*P< 

NoCP 

_A_ Proper pulse 

Between pulses 

No event 
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Once the wave-shape corresponding to a data segment is determined, the EGM 

data between the two CPs occurring at time instants «p and nv.\ is estimated by a straight 

line, i.e. ep(n) = mpn + up, obtained using the least-square method. At the end of phase 2, 

critical information pertinent to the EGM data, i.e. EGM pulses, are detected and fitted 

with straight lines. The detected/extracted EGM signal, i.e. 

e(n) = 

ex(n), \<n<nx 

e7(n), «, <n< «, 
. , (4.13) 

where p denotes the CP index, formed by straight lines contains only those portions of the 

EGM data that are diagnostically important. An example of such a signal is depicted in 

Figure 4.3. In essence, the signal resulting from the proposed technique is suitable for 

computer-aided model-based classification into normal and abnormal cases. The flow­

chart of the proposed NPDT is shown in Figure 4.4. 

ei{n)I \eiri) e5(n)l \e6(») 

e\{n) / \ e4(«) / W«) es(n) 

Figure 4.3 Extracted and linearly estimated EGM data by NPDT. 
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Figure 4.4 Overall Flowchart of the proposed NPDT. 

52 



4.4 Poincare Map Based Pulse Modeling 

PM reviewed in section 4.2 is applied to the modeling of EGM data. The 

proposed technique, which involves generation of a statistical model for classification of 

normal/abnormal cases, is described in this section. 

As mentioned, there is no such thing as an ideal EGM pulse (or an ideal patient). 

In other words, even for normal cases, there exist different EGM pulse characteristics 

(e.g. amplitude, shape etc). Consequently, there is no definite scheme for classification 

into normal and abnormal cases. In such cases, development of a model based on pure 

mathematical formulae, is not preferable [21]. Black-box modeling techniques (e.g. 

artificial neural networks), although general, require excessive amounts of training data, 

i.e. widely varying patient data, and hence not efficient. As such, there is a need for 

techniques, which bring out statistical features from modest amounts of available 

biomedical or EGM data, in numerical/visual form. Motivated by this scenario PM has 

been used as a vehicle to statistical pulse modeling (SPM) of EGM data. 

From the proposed NPDT, important information including the estimated slopes 

representing the EGM signal rise/fall and their order of occurrence are available. The 

objective of SPM is to model both the quantitative values of slopes (i.e. mp) and their 

order of occurrence (e.g. a signal rise followed by a fall). Considering the 

detected/extracted EGM signal e(n) of (4.13), which consists of straight lines, a data set 

Mis defined as 
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M = {mpe R\ mv = e'v(n), p = \,2,..., P - 1}, (4.14) 

where p is the CP index, nv is the time instant corresponding to pth CP, and P is the total 

number of CPs. As can be seen, M includes the numerical/quantitative values of slopes 

corresponding to each CP and can be deemed to emulate the dynamic system of (4.8). In 

order to represent the order of occurrence of the slopes, two Poincare sections T\ and 7~2 

are defined for any given consecutive slopes in M(i.e. pih and/?+l,h slopes), i.e. 

r\={mv), (4.15) 

and 

r2={mp+l}. (4.16) 

i~i and r% when defined for each pair of consecutive slopes will correspondingly produce 

a number of ordered pairs of slopes, i.e. (mp, m^\) that contain both the quantitative value 

of slopes as well as their order of occurrence. 

An effective way to depict Poincare sections F\ and A is to graph them using an 

orthogonal coordinate system. Such plots lead to effective visual representation of PM, 
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i.e. g: M-* M. Once such graphical representation becomes available, given the current 

slope (say m\), all the future slope values can be iteratively found using the graph. Since 

this concept is new in the context of EGM data, an illustrative explanation follows. 

Consider the detected/extracted and line-fitted EGM data of Figure 4.3 employing 

the proposed NPDT. Applying the proposed PM technique (including generation of 

ordered pairs and representing them on a two dimensional mp-mp+i graph) leads to what is 

referred to as a Poincare plot (Figure 4.5). Although simple, the plot conveys information 

with regard to slope values as well as correlation between consecutive slopes 

corresponding to the extracted EGM pulses. In other words, the plot offers information 

about any given EGM pulse, both in terms of its "shape characteristics" and its "location" 

in a stream of EGM pulses. As such, the plots facilitate observation of the dynamics of 

the EGM pulses in a given patient, by medical experts. 

Interestingly, for a comprehensive set of EGM recordings (including a vast 

number of EGM pulses), the plot appears as a blur of points (see Figure 4.6). Based on 

the shape of the blur, one can fit a geometrical shape to the blur, mathematically 

characterize the shape, and extract key statistical information about the EGM pulses. An 

example illustrating this approach in the case of heart-rate variability measurements is 

presented in [23]. Following such an approach, a patient's EGM pulse stream can be 

statistically quantified (e.g. standard deviation, variance, etc) after fitted a suitable 

geometrical shape (e.g. circle). Such statistical information can be used as a basis for 

differentiation between normal and abnormal cases. As an example, consider the EGM 
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pulse stream of Figure 4.3 fitted to a circle. Standard deviation (SD) is denoted by the 

radius (R) of the circle, and variance (V) can be evaluated using 

V=-
n 

(4.17) 

where A denotes area of the circle. From a diagnosis point of view, medical experts can 

define/specify a range for R, within which a patient is considered normal. 

The proposed NPDT followed by the proposed SPM technique are applied to the EGM 

data of a number of patients, and the results are presented in the following section. 

Wp+l 

(m6, mi) 

Figure 4.5 Poincare plot of consecutive slopes using the proposed method. 
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Wp+l 

Figure 4.6 An example of a Poincare plot illustrating the geometrical shape fitted to a 

blur of points. 

4.5 Experimental Results 

In this section, the experimental results of the proposed NPDT and SPM are 

illustrated. Both the techniques are applied to the real EGM data from patients and the 

results are shown. The presented EGM test results are obtained using the esophageal 

body examination procedure as part of the EGMDs diagnosis. The sampling rate in the 

experiments is chosen to be 16 Hz. 

4.5.1 Experimental Results from NPDT 

The proposed NPDT is applied to the de-noised EGM data of all 20 patients. The 

algorithm is implemented in the MATLAB environment. 

A de-noised 10 minute EGM data recording of each patient (about 9600 data 

samples based on a sampling rate of 16 Hz) is considered. Each patient's data is divided 

into 40 segments of length 15s (240 samples), noting the patient's pulse duration, which 
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is typically 7-10s. Each of the segments is analyzed using a short-time sliding window of 

length Is (i.e. W=\6). Typically, threshold t; lies within [0, 0.2] range and varies for the 

de-noised EGM data of different patients. Considering this, the proposed NDPT is run 

several times, i.e. for different values of £, in order to find the optimal E, for each 

patient. For each £, CPs of a data segment are detected by sliding the short-time 

window, i.e. k=\, 2, ..., 15. The de-noised EGM data between the CPs are fitted by 

straight lines. More specifically, in our work, £ leading to the least error between the de-

noised EGM data and the line-fitted waveform is treated as the optimal £ for the patient 

under consideration. For the purpose of illustration, Figure 4.7 shows the line-fitted 

NDPT result for one of the 20 patients over a 30s time-frame. 
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Figure 4.7 De-noised EGM signal and the fitted straight lines using NPDT. 
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The proposed NPDT is compared with existing techniques briefly 

mentioned/reviewed in section 4.1 (Table 4.2). Comparison is done in terms of accuracy, 

as quantified by normalized pulse duration error (NPDE), i.e. 

/ \Detected pulse duration - Actual pulse duration 
NPDE = ^ J \= [,(4.18) 

/ j Data segment duration 

in terms of efficiency, as quantified by accurate pulse detection rate (APDR), i.e. 

/ No. of Accurate pulses detected 
APDR =±*= - - , (4.19) 

/ i No . of Total pulses detected 

and in terms of sensitivity (e), i.e. 

_ Minimum detected pulse amplitude 

Average pulse amplitude 
(4.20) 

De-noised EGM data of all 20 patients is used. Table 4.2 shows that the proposed 

NPDT is both accurate and efficient compared to other techniques as indicated by the 

values of NPDE and APDR respectively. In addition, the proposed NPDT offers the best 
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sensitivity for detection of EGM pulses. However, it is worth-mentioning that the existing 

techniques used for comparison have been shown to be accurate/useful for 

detection/extraction of certain classes of biomedical signals such as EEG signals. 

TABLE 4.2 
COMPARISON OF SPIKE DETECTION TECHNIQUES 

Detection Technique NPDE APDR s 

Taylor Series 2nd Derivative [17] 

Extrema based Estimation [18] 

Least Square Acceleration [12] 

Non-Linear Energy Operator [19] 

Proposed NPDT 

4.5.2 Experimental Results from SPM Technique 

The proposed SPM technique, implemented in MATLAB, is applied to the 

detected/extracted and line-fitted EGM data of all 20 patients (10 normal cases and 10 

abnormal cases). For brevity, SPM results of one normal case and one abnormal case are 

presented in this section. 

For each patient, the ordered pairs of consecutive slopes from NPDT, i.e. (mp, 

Wp+i), are depicted as a Poincare plot, using an orthogonal coordinate system. These plots 

offer an interesting perspective to the review of EGM pulse dynamics. In order to bring 

out the differences between normal and abnormal cases, the adjacent points on these plots 

are connected using straight lines. The objective of such an exercise is to see if there 
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exists notable visual distinction between Poincare plots of normal and abnormal cases. 

Poincare plots consisting of 120 ordered pairs, i.e. P = 120, of a normal case and an 

abnormal case, with adjacent points connected, are shown in Figures 4.8 and 4.9 

respectively. 

A visual inspection of Figures 4.8 and 4.9 shows that the Poincare plot of a 

normal case shows a regular pattern/trend, which is lacking in that of an abnormal case. 

In other words, given the current slope value in the case of a normal patient, there seems 

to be a possibility to find future slopes exploiting such pattern. This observation forms a 

"qualitative basis" for classification of normal and abnormal cases. Within the cases 

exhibiting regular patterns, certain abnormalities (e.g. out-of-range pulse amplitude) can 

not be ruled out. As such, a "quantitative approach" to further studying the Poincare plots 

of probable normal cases is of interest. 

/w0(mmHg/s) 
15 F 

10 

5 

0 

-5 

-10 

"1-51S ^ 0 -5 6 5 10 1~5 

Figure 4.8 Poincare plot of consecutive slopes for a normal case using SPM. 
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Figure 4.9 Poincare plot of consecutive slopes for an abnormal case using SPM. 

From the visual inspection of Poincare plots of all 10 normal cases, it has been 

determined that an isosceles triangle best-fits the regular patterns. Figure 4.10 shows an 

example of one such fitted triangle along with its geometrical parameters, i.e. equal sides' 

length (a), non-equal side's length (b), and height (h). These parameters have a potential 

to offer key statistical information about each patient's data. 

The next step is to relate the above-said triangle parameters to EGM pulse 

dynamics using mathematical equations. One of the diagnostically critical information 

with regard to a patient's EGM pulses is the maximum/minimum of pulse sharpness or 

slope. This information can be related to the height of the isosceles triangles, with the 

outer triangle height (h) and the inner triangle height (H) representing the maximum and 

minimum respectively, as seen in Figure 4.11. Maximum sharpness indicator (MASI) is 

defined as 
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h = Jal--y , (4.21) 

and minimum sharpness indicator (MISI) is defined as 

H A2--B2 . 
4 

(4.22) 

Symmetry of the patient EGM pulses also offers diagnostically important information. 

The patient's pulse symmetry index (PSI) using parameters o\ and oi (of Figures 4.10 and 

4.11) is defined as 

PSI =i 

cr. 

cr, 

; cr, > cr2 

; a2>a. 

(4.23) 

Ideally, the value of PSI regarding to an EGM data including a number of symmetrical 

pulses is 1. 
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»Jp(mmHg/s) 

Figure 4.10 Isosceles triangle fitted to Poincare plot of consecutive slopes for a normal 

case. 

Wp(mmHg/s) 

-15 -10 -5 10 15 20 

Figure 4.11 Realization of A^m from Poincare plot for a normal case. 
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A yet another interesting information with regard to patient's EGM pulses comes 

from the standard deviation (SD) of slopes. For quantifying this measure, area .<4diff is 

defined as 

Adlf[=AoM-Ain=±(b.h-B.H). (4.24) 

Substituting for h from (4.21), and //from (4.22), we have 

SD oc Adm = - Ja2b2 - A2B2 - -(b2 - B2) , (4.25) 

which is an indicator for the consistency of a patient's EGM pulses. 

The proposed SPM technique (including all the above measures) is applied to the 

EGM data of 10 normal patients, and the numerical results are summarized in Table 4.3. 

Such results convey key statistical information regarding to patients' EGM pulses as 

describe by the measures. A range can be specified by experts for the numerical results 

regarding each measure in which the patient is considered as normal. Interestingly, 

meaningful data is not only obtained through the particular measures cited in Table 4.3, 

but the combination of measures has enabled the observation of correlation between 

them. For instance, in cases where the MASI and MISI are relatively high yet within a 
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normal range, the higher values of SD are considered normal. Therefore, the range for the 

SD values in which the patient is considered as normal is dictated using MASI and MISI. 

Such a quantitative approach to the study of Poincare plots provides an effective tool for 

further assessment of EGM pulses aiming at differentiating certain abnormalities. 

TABLE 4.3 
STATISTICAL MEASURES FOR EGM PULSES REALIZED BY SPM FOR 10 NORMAL PATIENTS 

MASI MISI 
Patient PSI 

(mmHg) (mmHg) (mmHg) 

^diff 

2 

1 24 11 0.98 295 

2 16 9 0.64 120 

3 23 13 0.52 238 

4 19 8 0.23 170 

5 27 16 0.82 343 

6 37 26 0.69 282 

7 25 11 0.71 310 

8 22 12 0.42 225 

9 29 16 0.43 364 

10 14 9 0.71 114 
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4.6 Summary 

In this chapter, new techniques to analysis and modeling of EGM data for 

EGMDs diagnosis are described. Subsequent to high-frequency noise filtering from EGM 

data, the proposed techniques include detection/extraction of diagnostically valuable 

portions of the EGM recordings, and development of a statistical model for 

differentiation between normal and abnormal cases. The raw EGM data from 20 patients 

is first filtered using the WD described in chapter 3. A new NPDT is developed to 

identify and extract the critical information, i.e. EGM pulses with emphasis on accuracy 

and efficiency. For comparison, the proposed NPDT and the similar techniques in 

existing literature are applied to the de-noised EGM data. Such comparison shows that 

the NPDT leads to better results in terms of accuracy. The detected/extracted EGM pulses 

are then used to generate a statistical model exploiting PM that classifies/differentiates 

normal and abnormal cases. Such model aids the medical experts in the EGMDs 

diagnosis based on EGM data. 
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Chapter 5 

A New Approach for Treatment of 

Gastroesophageal Reflux Disease 

(GERD) 

As mentioned earlier, GERD is the most prevalent EGMD-based disease that 

despite the numerous existing techniques for its treatment, research towards an effective 

cure has continued unabated. In this chapter, a novel idea for treatment of GERD using 

an electronic implantable device is described. Furthermore, a number of sample circuits 

for the proposed implant structure from the existing literature are presented. 
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5.1 A Potential Approach to GERD Treatment 

As explained in section 2.8.2, acid reflux can occur during different mechanisms 

which may result in GERD. However, the common feature in all GERD cases is the LES 

failure to stay contracted in absence of a swallow. As such, a general solution for GERD 

treatment should involve the control of LES in order to assure its contraction at 

appropriate times. In the following, an engineering approach based on electrical 

stimulation of LES using neurostimulation techniques for GERD treatment is proposed. 

5.1.1 LES Control Utilizing Neurostimulation Techniques 

LES consists of a muscle that controls the transition of material at the junction 

between the stomach and the esophagus. Importantly, this muscle can be stimulated 

through its motor nerves/neurons using available neuroengineering techniques [24]. A 

good example for application of such techniques is presented in [25]. Ultimately, the 

control of LES can be accomplished by means of these techniques and it can be 

considered as an effective GERD treatment. In the next section, a new approach to 

implement this idea is described. 

5.1.2 An Effective Approach to Realizing Neurostimulation-Based Control of 

LES 

The control of LES using neurostimulation techniques can be implemented by 

using an electronic device implantable in the body of the patient. Such an implant is 

responsible to control the LES and guarantee the LES contraction and relaxation at 

appropriate times. Obviously, the implant device has to be supplied with electrical power 
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to be able to perform the control tasks. This power can be supplied by means of wireless 

power transmission methods dedicated to biomedical applications [25]. It should be noted 

that, the implant consists of a number of circuits/modules that have to be designed 

according to strict criteria such as low power consumption, low supply voltage, minimal 

chip area, etc. Therefore, analog circuit design techniques are required to achieve the 

desired criteria for circuits of the device. A number of sample analog circuits from the 

existing literature are presented in the following sections. 

5.2 A Smart Implant Dedicated to GERD Treatment 

In this section, the concept of the proposed implant device for GERD treatment is 

described extensively. The main idea of LES control through neurostimulation techniques 

is explained and the potential challenges/concerns are mentioned. The objective is to 

create a basis for further research regarding this subject. 

5.2.1 LES Stimulation Concept 

As explained in section 2.8.1, LES is a muscle that receives its control signals 

from parts of the brain through Vagus nerve. Therefore the control of LES can be 

accomplished through electrical neurostimulaion of the motor neurons included in the 

Vagus nerve. This stimulation can be done by applying low amounts of electric current 

(in the order of mAs), by means of simulation electrodes (e.g. cuff electrodes) [24]. 

There are two motor neuron groups included in the Vagus nerve, one producing 

contraction and the other relaxation of the LES. In other words, contractions and 

relaxations of the LES are two separate events that are produced by the brain and 
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transmitted by neurons. Therefore, the LES control procedure used by the proposed 

implant should include two separate sections dedicated for creation of contractions and 

relaxations. In the following section, the main tasks/responsibilities of the implant are 

described. Consequently, a control algorithm is developed based on these 

tasks/responsibilities. 

5.2.2 Main Tasks/Responsibilities of the Implant 

As explained in section 2.8.2, the main mechanism of reflux leading to GERD is 

the frequent TLESRs. In other words the high incidence rate of these transient LES 

relaxations leads to GERD overtime. Therefore an effective strategy to cure GERD is to 

reduce the number of TLESRs. As such, the tasks/responsibilities of the implant are 

determined so that the LES is forced to stay contracted at appropriate time thus reducing 

the TLESRs. It should be noted that the TLESR is a natural mechanism and occurs due to 

a number of reasons such as stomach distention caused by food or gas (which results in 

belching), excess body fat and stress. Consequently, the total elimination of all the 

TLESRs is not an option. However, the idea of reducing the number of TLESRs seems to 

be an effective means to cure GERD. 

As explained, the implant is responsible to stimulate the LES to stay contracted 

unless there is a swallow event or a stomach distention. As such, there is a need for 

different sensors in order to detect swallows or stomach distentions. Based on the facts 

mentioned above, the main tasks of the implant are summarized as: 

i) Detection of swallow events. 
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ii) Detection of stomach distentions. 

iii) Contraction of the LES unless there is a swallow or a stomach distention. 

iv) Relaxation of the LES when there is a swallow or a stomach distention. 

It is to note that the contraction and relaxation of LES are two separate tasks ever 

since each of them is accomplished by stimulation of a different nerve group. An implant 

capable of realizing the above tasks has to be equipped with multiple channels of sensors 

and stimulators. In the following section a general scheme for implementation of the 

proposed implant system is described. In addition, a number of sample circuits proposed 

in the literature are also presented. 

5.3 Implant System Structure and Circuits 

The proposed implant system consists of two main units, one implanted in 

patient's body and another one being outside the body (see Figure 5.1). The first unit is 

the actual implant device which is responsible for the LES control. The second unit is the 

external controller unit which is responsible for transmitting electrical power and control 

commands to the implant unit. More precisely, it supplies the power for the implant and 

adds user-based control features to the system. The above mentioned units communicate 

through a wireless link for transmission of power and data. A suitable option for 

implementation of such a link is via inductive link using two coils, one on each unit. 
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Esophagus 

Figure 5.1 Proposed implant system. 

The implant unit is determined to be in close contact with the target tissue in order 

to acquire the sensory signals and to stimulate the tissue. As such, this unit includes a 

control/logic module to manage the operation of the other modules in the implant and 

generate necessary control signals. The power needed for all the modules in implant unit 

is provided by a power recovery circuitry which receives the transmitted power from the 

external source. A communication circuitry is designed to receive the data which is 

mainly the user-implied control signals in emergency situations. A sensing module is 

determined to collect the desired physical quantity {i.e. displacement in this case) from 

the body tissue and provide such information to the control/logic unit. Stimulation of the 

target tissue is performed via the stimulator module which is designed to generate the 

suitable electrical signal for the specific tissue. 
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The external controller is responsible for transmission of power and user 

commands to the implant device. Therefore, it consists of a control/logic module to 

manage the control commands and a communication module for transmission of power 

and data. Figure 5.2 illustrates the different modules in the proposed implant structure. In 

the following sections a number of sample circuits for implementation of the proposed 

system are presented. 

External Controller 

Power Supply Control/ 
Logic 

Data 

Inductive link 

Power 

Implant 

Power Recovery 

Communication 
Curcuitry 

Control/Logic 

Sensor/ 
Stimulator 

Tissue 
Interface 

Figure 5.2 Implant structure. 

5.3.1 The Power Recovery System 

In this subsection a power recovery system to be implemented on the implant 

device is presented. Typically, the circuits designed for devices dedicated to nerve 

stimulation applications need a certain amount of stimulating current which requires a 

large voltage supply to drive the electrodes. This is due to the fact that the equivalent 

tissue impedance is in the range of several tens of kilo-Ohms and need significant amount 
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of power for stimulation. However, such devices normally contain a number of 

analog/digital circuitry (e.g. control/logic circuitry) that are designed to operate using low 

voltage supplies, in order to minimize the overall power consumption. Therefore, at least 

two level supply voltages are desired in such applications. The proposed integrated power 

recovery system is shown in Figure 5.3 [26]. The system is capable of providing dual 

regulated output voltages i.e. Vw^, Viow, to the stimulator output stages and other 

circuitry respectively. 
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rgulator 

|_J L_| 

V, High 
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& Control logic 

Circuitry 

Figure 5.3 Power recovery system [26]. 

5.3.1.1 CMOS Full-wave Bridge Rectifier 

The wirelessly transmitted power signal that is received through the coil/antenna 

of the implant device is rectified using a bridge rectifier (see Figure 5.3) and fed to the 
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other stages of the power recovery system. An applicable sample of a CMOS full-wave 

bridge rectifier is proposed in [27] (see Figure 5.4). Employing a full-wave bridge 

rectifier as compared to a half-wave rectifier significantly reduces the implant size and 

also helps the regulator to achieve better AC-DC conversion efficiency. In the circuit of 

Figure 5.4, diode connected pMOS transistors Mpi and MP2 and the diode connected 

nMOS transistors Mni and Mn2, form a bridge for the received signal from the coil. 

Transistors MP3 through MP6 are auxiliary transistors which facilitate the function of Mpi 

and Mp2. Transistors Qi and Q2 help the transistors Mni and Mn2 to return current from 

grounded substrate to the coil. 
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Figure 5.4 Integrated CMOS full-wave bridge rectifier [27]. 
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5.3.1.2 Dual-Output Low-Dropout Voltage Regulator 

As mentioned earlier, the wirelessly received energy must be rectified and 

regulated. This regulation can be achieved by using the regulator structure proposed in 

[26] known as low-drop-out (LDO) linear voltage regulator (see Figure 5.5). Typically, 

linear regulator consists of a voltage reference, a pass device, an error amplifier, and a 

resistive feedback network. It is mainly divided into two categories according to the pass 

transistor device: p-type and n-type regulators. Each has its own advantages and 

drawbacks. The latter structure is often preferred due to its less stability problems, better 

line load regulation, and naturally low-ohmic output impedance structure. However, the 

conventional nMOS regulator suffers from large dropout voltage problem, due to the fact 

that the gate potential voltage of the pass transistor needs at least one threshold voltage 

(Vth), higher than the regulated output. The problem can be mitigated by using a native 

transistor (i.e. NMi in Figure 5.5), available in many modern CMOS processes. The 

difference between a native CMOS and a usual CMOS is that a native CMOS is a 

transistor which skips the step of adjusting the threshold-voltage (Vth) during its 

fabrication process. Regulators using n-type pass devices show fewer stability problems, 

better regulation and lower output impedance characteristics compared to their p-type 

counterparts. 
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Figure 5.5 A typical dual output (LDO) voltage regulator from [26]. 

5.3.1.3 CMOS Bandgap Reference 

A bandgap reference circuit is desired to provide a reference voltage to both 

regulators in the system. A sample CMOS bandgap reference circuit is described in [26]. 

Unlike in most conventional bandgap reference applications, the requirement of 

temperature dependency for the circuit is relaxed. This is due to the fact that the circuit 

environment temperature (i.e. patient's body temperature) in the target application is not 

widely varied. 

5.3.1.4 Start up Circuit 

According to the fact that both the voltage regulator and the bandgap reference in 

the power recovery module are interdependent, meaning they need each other to function 

properly, a start up circuit is used to provide the bandgap reference with the rectified 

voltage on power up, and then switch to the regulated voltage when it becomes available. 
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The start-up circuit compares Vrec and Vnigh, and feeds the larger of the two to the 

bandgap reference. The schematic of the start up circuit is shown in Figure 5.6 [26]. 

Figure 5.6 Start up Circuit [26]. 

5.3.1.5 DC-DC Converter 

A DC-DC converter (level shifter) [27] can be used to supply and generate the 

desired voltages VLOW and VHigh to the regulators. A typical circuit for the level shifter is 

shown in Figure 5.7. The output voltage is simply equal to input voltage minus two gate-

source voltages i.e. Vovl = J/in-(PsGi + PsG2)- The circuit consumes very low power which 

is a significant advantage for the target application. 
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Figure 5.7 Level shifter circuit [27]. 

5.3.2 Communication System 

In this section, the desired building blocks of the communication system are 

introduced and in each case a sample circuitry is proposed. As described earlier, there is 

an external controller in the proposed implant system which is responsible for 

transmission of power and user commands to the implanted device via an inductive link. 

The inductive link between the two units is a bi-directional data link and is composed of 

two separate links for data transmission. The first link transmits the data from the 

external controller to the implanted device (i.e. downlink) and the second link transmits 

the data from the implanted device to the external controller (i.e. uplink). These links can 

be implemented using different circuit strategies aiming to meet a number of certain 

criteria (e.g. data transmission rate, power consumption, etc.) in different applications. In 

fact, bi-directional data transmission has become a trend in state-of-the-art design of 

wireless biomedical systems. Recently, a few wireless inductive link designs have been 
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reported. The main data communication characteristics of these works are summarized in 

Table 5.1. 

TABLE 5.1 RECENT DATA COMMUNICATION TECHNIQUES 
PROPOSED FOR IMPLANTABLE DEVICES 

References 
Downlink 

(rate) 
Uplink (rate) Carrier (Hz) Power 

Consumption 
Technology 

[28] 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

Packet 

detection 

PWM-ASK 

(250 kbps) 

ASK 

ASK (120 k) 

OOK (100 

kbps) 

OOK 

BPSK 

Burst of RF 

energy 

ASK 

PWM-ASK 

(125 kbps) 

BPSK (117-

234 k) 
No 

LSK 

(200kbps) 

BPSK 

2.5 M 

1-10 M 

4M 

10 M 

13.56 M 

5mW 

10-90 mW 

4.5 mA 

2 /an CMOS 

1.2 jum 

CMOS 

3 fiva. 

BiCMOS 

2.5 jum BiC 

5M 0.5 mA, 10 V 2/mi CMOS 

6.78 M <120mW 

652 /uW 

1.2 jum 

CMOS 

0.18/mi 

CMOS 

In this work the proposed link for the communication in implant system is known 

as binary phase shift keying (BPSK) [34]. BPSK is a process where the target binary 

signal shifts the phase of a carrier waveform between 0° and 180°. This is equivalent to 

multiplying the carrier with a bit stream o f 1' and ' - 1 ' representing high and low states 

respectively. As such, a BPSK modulator simply multiplies a target signal i.e. m{f) to a 

carrier i.e. sin(cyi/ + 6\). However the demodulation process is not as simple. Figure 5.8 
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illustrates the block diagram of the BPSK demodulator including a structure known as 

Costas loop. A brief description of the demodulator function follows. 

Data tn 

mf^sinfojii + ft,) 

Lowpass 
Filter 

I Branch Data Out 

mf t j cos^ - Bz) 

sin{&^\ + ft2) 

VCO Lowpass 
Filter 

Phase Shifter 

e o s ^ t + 02) 

Lowpass 
Filter 

2m2( t)sin2(e1-e2) 

Q Branch 

(a) 

Receiver 
Coil 

(b) 

Figure 5.8 Inductive link for transmitted data: (a) Costas loop demodulator (b) detailed 

demodulator block diagram [35]. 
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The input signal of the demodulator is the product of a data stream and a carrier. 

Here, the purpose is to obtain the data stream by separating it from the carrier signal. 

Assume that in Figure 5.8(a), the term m{i) represents the data stream in the input signal 

composed of either T or ' - 1 ' and the term s\n{w\t + d\) is the carrier. After passing 

through the low-pass filters, the outputs of the upper and lower branches are expressed as 

Vo\{t) = m(t)QOs{6\ - 62) and Voq(i) = m(t)sm{6\ - di). By means of an additional 

multiplier and a loop filter at the center branch, the control voltage of the VCO becomes 

only proportional to the phase difference (6>i - #2). In case there is no phase difference in 

that signal the required demodulated signal is achieved in the output. In other words, the 

system tries to make the phase difference (d\ - #>) equal to zero by finding the phase 6% 

equal to 9\. Consequently, the target signal m(t) is obtained from the upper branch in 

Figure 5.8(a). 

The detailed block diagram of the Costas loop demodulator is shown in Figure 

5.8(b) The multipliers are implemented using simple XOR gates and the low pass filters 

are RC low-pass filters. These low-pass filters are necessary in order to cancel any 

unwanted harmonics since the multiplication is a nonlinear process. In the following 

subsections a number of sample circuits for the demodulator building blocks are 

described. 

5.3.2.1 Comparator 

In the detailed diagram of Figure 5.8(b), there are two comparators located at the 

input and upper branch. The first comparator converts the input signal to the square 
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waveform. This allows using simple digital phase detectors in the circuit. The second 

comparator assures that the output signal is in the form of a data stream of' Is' and ' - I s ' . 

The comparator circuit is shown in Figure 5.9 [35]. The whole circuit consists of 

two parts. On part provides the reference voltages for the bias of the circuit and the other 

part is the high gain differential amplifier which does the comparison of the input signals. 

The reference voltage circuit is shown on the left side of the Figure 5.9. The nMOS 

transistors, Mi and IVk, are the differential input pair and form the main core of the 

comparator. Transistors M3 and M4, are current sinks to supply the required current for 

the differential pair. Transistors M5 - M12, are current mirrors as active loads for the 

differential pair to boost its gain. The output stage consists of transistors, M B - Mig, and 

M19 - M24. Two digital buffers are also put at the output for the isolation of the circuits. 

The employment of two current mirror transistors, Mi 7 and M23, eliminated the need of a 

common mode feedback circuit (CMFB), which has simplified the overall system. 
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Figure 5.9 Comparator for the demodulator [35]. 

5.3.2.2 Phase Detector and Multiplier 

The phase detector and multiplier circuit is shown in Figure 5.10 [35]. As the 

input carrier and the output of upper branch have been converted into the binary form, a 

fully differential exclusive OR is used as the center multiplier. This can be simply 

implemented by means of transmission gates shown in Figure 5.10. These multipliers can 

be simple AND gates implemented by CMOS technology. 
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Figure 5.10 Phase detector and multiplier circuit [35]. 

5.3.2.3 Voltage Controlled Oscillator (VCO) 

The structure of the voltage controlled oscillator for the demodulator is shown in 

Figure 5.11. The whole structure is made of two parts: a transconductance cell (left side) 

and oscillation cell (right side). The transconductance cell is designed to convert the 

applied input voltage to a control current effective to the oscillation frequency of the 

VCO. The oscillation cell is the core of the VCO which generates the oscillation 

frequency. Transistors (Mi, M2) operate as switches, which are turned on/off in turn in 

accordance with voltage potentials of their gate and source terminals. The frequency is 

controlled by a linear transconductance cell which generates a control current injected to 

the oscillation cell in Figure 5.11. This control current is proportional to the applied input 

voltage of the VCO. The oscillation is generated by turning on/off the transistors Mi and 
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M2 resulting charge/recharge of the capacitor C\. Any change in the control current is 

copied to the charging current of the capacitor thus results in the frequency of oscillation. 

M12 

o 
Itune 

Vinp 
p*> - | j _ 
Vinn M9 

Figure 5.11 VCO circuit [35]. 

5.3.2.4 Phase Shifter (Quadrature Signal Generator) 

As shown in Figure 5.8(b), there is a need to generate the quadrature of the 

oscillated signal in the lower branch of the demodulator. This task can be completed by a 

digital circuit consisting two D-flip flops as shown in Figure 5.12 [35]. The function of 

this circuit is to generate 90 degrees shift in phase of the input signal and convert the sine 

function to cosine function and vice versa. This is simply achieved by addition of a time 

delay in the function using D-flip flops. It should be noted that a reference with twice of 
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the carrier frequency has to be generated in the VCO with this circuit which results in a 

slightly more power consumption but still the best option for the desired application. 

! >OUT 

OOUTB 

OOUTQ 

\ > OUTQB 

Figure 5.12 Phase detector and multiplier circuit [35]. 

5.4 Summary 

In this chapter, an electrical engineering solution using circuit implementation for 

treatment of GERD has been proposed. The approach is based on the electrical 

stimulation of a sphincter located at the junction of the stomach and the esophagus in 

order to control the acid reflux. For the first time, a new idea for implementation of the 

approach using an electronic implantable device has been presented. Furthermore, a 

number of sample circuits for the implant structure from the literature have been 

described briefly. The objective has been to provide a framework for further research on 

the proposed idea of the implant for GERD treatment. 
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Chapter 6 

Conclusions 

6.1 Contributions 

Esophageal motility disorders (EGMDs) correspond to a group of widespread 

diseases with a rapidly increasing prevalence rate in North America. The diagnosis of 

EGMDs can be tedious, time consuming, and technically challenging. This thesis 

attempted to address the challenges of EGMDs diagnosis through the use of signal 

processing methods. The ultimate goal has been to develop new computer-based 

approaches that: 

i) Increase the accuracy of the diagnosis; 

ii) Reduce the amount of time required for diagnosis; 
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iii) Enhance the ability of the experts in diagnosis. 

In addition, a new circuit-based solution for treatment of GERD, i.e. the most 

common disease caused by EGMDs, using electrical neuro-stimulation methods is 

proposed. The main objective has been to provide a framework for further research 

regarding a potential GERD treatment based on electrical neuro-stimulation methods. 

The desire for development of engineering techniques applicable to diagnosis and 

treatment of EGMDs demands for a basic knowledge about the esophagus physiology 

and its motility. As such, chapter 2 of this thesis was devoted to an overview of the 

medical aspect. This chapter included a brief description of the esophagus anatomy, an 

explanation of EGMDs causes, as well as a brief overview of GERD. 

The key test for motility assessment of esophagus is EGM. EGM results are 

inspected visually by medical experts for diagnosis. However the visual inspection of the 

results by the doctors can be tedious due to the fact that the results are usually 

contaminated by noise and artifacts. As such, new signal processing-based approaches 

aiming at simplifying the EGMDs diagnosis are developed and described in chapters 3 

and 4 of this thesis. In chapter 3, a signal processing technique i.e. WD, is applied to the 

filtering of the EGM data. In chapter 4, a new NPDT is applied to the de-noised EGM 

data leading to identification and extraction of diagnostically important information. Such 

information is used to generate a statistical model, which can classify the EGM patterns. 

The proposed approach is computationally effortless, thus making it suitable for real-time 

application. Experimental results using measured EGM data from patients is presented in 

90 



each chapter. In addition, the results of the proposed techniques are compared with those 

techniques from existing literature where applicable. Such comparisons show the 

advantages of the proposed approaches over the existing techniques. 

In chapter 5, a new approach for treatment of GERD based on electrical neuro-

stimulation methods has been proposed. The approach involves the design of an 

implantable device dedicated to electrical stimulation of a sphincter at the junction of the 

esophagus and the stomach. The proposed approach is an effective tool for GERD 

treatment compared to the existing surgical methods and may permanently cure GERD. 

The main structure of the implant system as well as a group of state-of-the-art analog 

circuits from existing literature have been described in order to provide a framework for 

the design and implementation of the idea. 

6.2 Future Work 

The proposed approaches for EGMDs diagnosis offer a scope for future work in 

terms of additions and improvements. Further research towards the development of more 

efficient techniques for filtering and detection of key EGM data can provide more 

practical tools for medical experts in EGMDs diagnosis. For instance, in case of WD 

filtering technique, further research towards development of a new optimum wavelet for 

the EGM data analysis to replace the symlets may increase efficiency and accuracy of the 

WD. In addition, in case of NPDT, the detection of EGM pulses can be improved by 

defining the algorithms that are more accurate/efficient in finding the CPs. Ultimately, 

the proposed SPM for EGM pulse modeling can be modified and completed through 
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addition of new features that take account of the EGM pulses' coordination in addition to 

the pulses' shape information. 

The proposed approach for GERD treatment demands future work in terms of 

extensive study towards the implementation of the implant system. Such study may 

include the detailed analysis of the LES motor function along with the best ways of its 

stimulation, the development of control algorithms based on the defined responsibilities 

of the implant and the design of the specific circuits in the implant system. 
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