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Abstract 

Production planning and scheduling play significant roles in manufacturing system 

operations and different techniques have been used to enhance their performance. Lot 

streaming has been studied for decades and is shown to accelerate production flow. This 

research deals with lot streaming in hybrid flow shops. Multiple products are processed in 

a multi-stage hybrid flow shop with non-identical machines. Sublots can be constant or 

consistent and intermingling is not allowed. Setups are attached and sequence 

independent. The problem is to simultaneously determine product sequence and sublots 

sizes so that the makespan is minimized. The model presented in this thesis is a mixed 

integer linear programming formulation for solving this problem. Several variations of 

the model are presented to incorporate different problem settings such as exploitation of 

variable sublots in the single product problem. Numerical examples are presented to 

validate the proposed model and to compare it to similar example problems in the 

literature. Furthermore, an example of a lot streaming problem in a general multi-stage 

hybrid flow shop is concerned and discussions and analysis are presented. 

Keywords: Production planning; Scheduling; Lot streaming; Hybrid flow shop; Integer 

programming 
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Chapter One Introduction 

1.1 Foreword 

In today global manufacturing competition, several strategies are considered by managers to 

improve company's performance. Although many functions can be optimized in a company, 

production decisions directly affect the manufacturing performance. Customers' needs and 

expectations are increasing rapidly and companies compete to better meet their requirements; 

therefore, it is a success key to make the right product at the right time, to shorten production 

life cycles and to lower production costs. 

1.2 Production planning and scheduling 

Planning is crucial in production which is often complex due to occurrence of unexpected 

events in manufacturing environment. It is the coordination of activities and resources over 

time to optimize resource allocation and to achieve organization's goals. Production planning 

is facilitated by various techniques such as manufacturing resource planning (MRP II) and 

just-in-time (JIT) which are most popular methods. Nervousness and infeasible schedules 

which lead to high work in process and dissatisfaction of due dates, are some characteristics 

of MRP II (Biskup et al, 2006). Considerable research work is done to improve inefficiency 

of these systems. Modifying and rearranging the floor schedules which mean adding, resizing, 

or replacing the existing lots have been regarded to be much effective. 

Scheduling, workforce planning, facility planning, and cost planning are four elements of 

manufacturing planning. Scheduling is allocating limited resources to tasks to optimize 

objectives and to satisfy customers' demand with on-time delivery and has an important role 

in total quality management (Lee et al. 1997). Production planning and scheduling should be 
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often incorporated in a single structure to manage manufacturing processes from getting the 

order until shipping the products. 

Most production systems involve multiple products that are processed by multiple production 

stages, having inventories in between and utilizing different means of transportation. These 

operations are very complex since the system should decide how to allocate jobs to machines. 

As such, scheduling problems are optimization problems where the objective can be 

developing a job allocation so demand is satisfied, costs are minimized and profit is 

maximized. Scheduling becomes more complex in dynamic and stochastic production 

environments with unpredictable demand and stochastic factory output. 

1.3 Types of scheduling problems 

Based on certain characteristics, scheduling problems are categorized and studied by 

researchers in different types. 

Flow shop scheduling 

In this type of scheduling problem, jobs are processed in more than one stage. Each machine 

processes one job at a time and all jobs must be processed by all the machines in the same 

order; therefore, number of operations of a job is equal to the number of machines. This 

scheduling problem, except certain simple cases, is NP-hard and complexity increases with 

number of machines and jobs. 

Hybrid flow shop (HFS) scheduling 

Hybrid flow shop scheduling is the generalization of flow shop scheduling problems where a 

stage may have multiple processing machines. Researchers have been interested in this type of 

scheduling because of the nature of relevance to manufacturing and computer systems. This 

type of problem is concerned in situations where average processing times of jobs in some 
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stages are rather high. Parallel machines can be an alternative in these stages to accelerate 

production rate and reduce WIP by eliminating or smoothing bottle necks. Flexible flow shop 

(FFS) scheduling is a type of hybrid flow shop scheduling where jobs may skip some stages 

so it is also called hybrid flexible flow shop problem. 

Job shop scheduling 

Job shop scheduling is different from flowshop scheduling in that each job may have specific 

processing order and might not necessarily meet all the stages. A job may require multiple 

processing on a single machine. Open shop scheduling is a type of job shop scheduling when 

the processing order is arbitrary. The solution to this type of scheduling problem comprises 

total order of operations of a job as well as total order of operations on a machine. 

1.4 Objectives of scheduling problems 

• Minimizing makespan 

Makespan or total completion time is the amount of time required for jobs/products to 

complete processing on certain sets of machines. This objective is concerned wherever the 

emphasis is on increasing the production rate and meeting the demand. By minimizing 

makespan in scheduling problems production flow is accelerated and more jobs may be 

produced in less amount of time. 

• Minimizing mean weighted tardiness 

Tardiness is the amount of time a job finishes processing after its due date. Minimizing the 

mean weighted (by job priority) tardiness is an objective in multi-job scheduling problems. 

Considering penalty on late delivery, this objective is considered to minimize costs and satisfy 

customers. 
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• Minimizing mean weighted earliness 

Jobs may finish processing earlier than their due date. In lean production systems one of the 

goals is to produce jobs on time; any early delivery has inventory holding cost. Therefore, in 

multiple-job scheduling problems minimizing mean weighted earliness is sometimes 

considered as an objective. 

• Minimizing maximum tardiness / earliness 

It is another goal in scheduling problems which deals with number of tardy/early jobs rather 

than the time. Considering this objective function, a schedule of jobs is achieved to minimize 

maximum tardiness / earliness or to minimize number of tardy / early jobs. 

Based on the problem characteristics, each of these objectives is considered in scheduling 

problems. Some of them may also be combined together in a single structure to cover 

different requirements of a company. 

1.5 Lot streaming 

Lot streaming, introduced by Reiter (1966), is a method to split a production lot into sublots 

and then scheduling sublots on machines in order to accelerate the process of a job in 

production line. In production systems, without lot streaming, the whole lot is transferred to 

the next stage in its schedule with a fixed size; when processing a part is finished on a 

machine it has to wait in the output buffer until the whole lot is completed whereas the 

successive machine might be idle. By splitting the lots into sublots and overlapping processes, 

the next machine starts processing even though its predecessor machine has not finished the 

whole lot. Most researchers consider number and size of sublots as decision variables in lot 

streaming problems. Lot streaming is an alternative which improves schedules and 

assignments and facilitates shop floor decision making. Moreover, this technique is less costly 
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and less time consuming because it can be implemented in the current production line without 

any need to change facilities and production processes. 

1.5.1 Lot streaming categories 

Chang and Chiu (2004) divide existing lot streaming problem into four categories of single 

product, multiple-product, time-related, and cost-related problems. As illustrated in Figure 1-

1, these categories are based on number of products and performance measurements in lot 

streaming problems. Few research works consider both lot-sizing and sequencing issues to 

optimize cost and time together. Potts and Van Wassenhove (1992) study the interaction of 

time and cost and allow trade-offs in integrating batching, lot-sizing and scheduling in a 

complex environment. 

dumber of 
products 

''Single product 

Multiple Product 

I Performa 
i measurem 

nee 1 
ents / 

^r Time-related 

Cost-related 

Figure 1-1 Four categories of lot streaming problems 

1.5.2 Lot streaming terminology 

In this section different terms used in presenting and solving lot streaming problems are 

explained. 
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Constant, consistent and variable sublots 

Three types of sublots exist in lot streaming problems. When sizes of sublots between 

stages i and i+l are not equal to those between stages z'+l and i+2, sublots are variable 

(Trietsch and Baker, 1993). In other words, if we consider qy as the size of subloty at stage i, 

in an m-stage production system with k sublots, qy ^ qi(/+i), i=\,...,m, j=\,...,k-\ and qy ^ 

qa+\)j, i=l, ...,m-l,j=l, ...,k concerning variable sublots (Chang et al, 2004). 

Consistent sublots have the same size in all the stages of their sequence which means: qy = 

qjiH-i, i=\,...,m-\,j=l,...,k. 

As the name states, size of constant sublots is the same in all the stages. 

Continuous and discrete version of sublots 

Different versions of sublots exist in various production environments. In some 

industries such as chemical industry, normally sublots are continuous and take real numbers; 

however, sublots can only be integer numbers of produced jobs in discrete part or product 

production systems. 

Intermittent idling and non-idling 

Machines can have idling while processing sublots of different jobs if intermittent 

idling is allowed. On the other hand, non-idling means that sublots should be processed 

consecutively on machines. Trietsch and Baker (1993) in an example show that intermittent 

idling corresponds to better solutions; however, in practice, this issue depends on different 

factors such as management point of view and problem definition. 

No-waiting and waiting 
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No-waiting concerns the system in which jobs must be immediately transferred to the 

succeeding machine after their processing on the current machine. In wait schedules, sublots 

can wait between consecutive stages in a considered buffer (Feldmann and Biskup, 2006). 

Intermingling / non-intermingling 

When intermingling is allowed, sublots of one job can be mixed with those of other 

jobs. In other words, sublots of a particular job may be processed in the sublot sequence of 

another job. When non-intermingling exits, sequence of sublots of one product is started when 

processing of all sublots of the previous product are finished in that stage. 

Permutation flow shop 

In a permutation flow shop, sequence of jobs is the same in all the stages. In these 

problems, when the processing order of jobs is determined, it is followed throughout all the 

stages. 

Attached and detached setups 

In some production systems, setup of a job requires its arrival on a particular machine. 

In this case the setup is called attached. On the contrary, in detached setups we may setup a 

machine for a job in its idle time before the availability of the job. 

Sequence dependent / independent setups 

In a multiple-product flowshop setting, setups may be dependent on the change of one 

product to another. A machine needs to be equipped when the sublot of a new product is 

going to be processed. Therefore, setup time incurred for changing from job i to job j might be 

different from that of / to k. Moreover, no machine setup is needed between two consecutive 
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jobs of one family in a job shop environment (Potts and Van Wassenhove, 1992). It is called 

independent setups when setups are required between any two contiguous sublots on a 

particular machine. 

1.6 Research in this thesis 

Hybrid flow shop scheduling is one of the most common problems in manufacturing. This 

study contributes to scheduling and lot streaming of multiple products in a multi-stage hybrid 

flow shop in order to minimize the makespan. 

1.6.1 Scope and objectives of this thesis 

The purpose of this research is to develop a mixed integer programming formulation to 

optimize the sequence of jobs and determine sublot sizes at the same time so that the 

makespan is minimized. Sublots of each job/product which can be continuous or discrete are 

considered to be consistent while intermingling is not allowed. The problem is studied under 

various settings and takes into account sequence independent setup times. The efficiency of 

the model is evaluated by carrying out several experiments and comparing the results with 

those of previous studies. 

1.6.2 Research contributions 

This study presents a model that is an extension to the one of Biskup and Feldmann (2006) in 

lot streaming a single product in a multi-stage flow shop with variable sublots and their most 

recent work Feldmann and Biskup (2006); it deals with lot streaming of multiple jobs in flow 

shops. Zhang et al. (2005) develop two heuristic methods to solve the problem of streaming 

multiple jobs in a hybrid flow shop with two stages. Another heuristic method is presented in 

Liu (2008) for lot streaming of a single product in a two-stage hybrid flow shop. Both of the 
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two studies consider identical parallel machines for the first stage and a single machine for the 

second stage. The proposed model in this study is the first mathematical model that 

incorporates lot streaming multiple products in a hybrid flow shop with multiple stages. The 

determination of sublot types based on the problem characteristics is studied. Moreover, the 

multiple-product problem is decomposed into single-product problems and the influences are 

analyzed. The main contribution of this thesis is to take into account any combination of 

parallel and single non-identical machines in hybrid flow shops which enables analyzing the 

corresponding makespan for selecting the best setting. 

1.6.3 Organization of the thesis 

Chapter 2 presents a review on the literature of lot streaming in different categories. In chapter 

3, the proposed mathematical model is presented and discussions on different problem settings 

are given. Chapter 4 deals with extensive numerical examples and comparison with similar 

studies to illustrate the efficiency of the method. Lastly, concluding remarks and directions for 

future research are presented in chapter 5. 
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Chapter Two Literature Review 

2.1 Introduction 

While traditional scheduling problems consider fixed lot sizes for products to transfer between 

stages in a production system, other approaches have been developed to accelerate the 

production flow. Reiter (1966) introduces lot streaming to allow overlapping of processes. 

This method increases efficiency of production systems, minimizes completion time, reduces 

lead time, and makes faster delivery to customers. Lot streaming related to manufacturing 

resources planning (MRP) and optimized production technology (OPT) is discussed in 

Lundrigan (1986). OPT combines MRP II and just-in-time systems and emphasizes on 

planning and controlling the resources. This technique has been studied and used in industry 

and shown to be effective for compressing manufacturing lead time. Kher et al. (2000) study 

the impacts of push and pull lot streaming approaches on material handling in stochastic flow 

shops. In implementing lot splitting, instead of push approach they apply pull approach which 

is more likely to be used in practice and show its benefits regarding inventory and customer 

service performance. 

Lot streaming has been studied extensively in the last decade to best deal with real problems 

in industry. Bridging the gap of lot sizing and traditional scheduling problems, contribution of 

lot sizing and sequencing problems and flow-time reduction are important goals in industry 
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that motivate researchers for implementing lot streaming problems (Bukchin et al. 2002). 

Various methods and approaches have been carried out to handle difficulties in lot streaming 

problems. 

2.2 Problem structure and notation set definition 

Existing lot streaming problems can be classified by their types. Potts and Van Wassenhove 

(1992) present a structure of three main dimensions and seven sub-dimensions. Sub-

dimensions are categorized into several levels as well. Chang and Chiu (2004) introduce these 

classifications and notations that are used in the literature to denote different characteristics of 

lot streaming problems. Table 2-1 illustrates this classification. 

Table 2-1 Classifications of lot streaming problems 

Main dimension 

System configuration(a) 

Sublot-related feature 

(0) 

Performance 
measurement (y) 

Sub-dimension 

Production type (ai) 

Number of products (a2) 

Sublot type(/?/) 

Divisibility of sublot size 

Operation continuity(#j) 

Activities involved (fi^ 

Performance criterion (yi) 

Level 

Flow shop (Fm) 
Job shop (Jm) 
Open shop (Om) 
Single product (Z,/) 
Multiple-product (Ln) 
Equal sublots (E) 
Consistent sublots (C) 
Variable sublots (V) 
Continuous version (R) 
Discrete Version (A) 
No idling case (Ino) 
Idling case (I) 
Setup (5) 
Transportation (M) 
For the time model: 
Makespan (Cmax) 
Total flow time (X F) 
Mean tardiness (T) 
Number of tardy jobs (nj) 
For the cost model: 
Total cost (TQ 
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The three field descriptor a\P\y presented by Potts and Van Wassenhove (1992) includes a, 

machine environment, /?, job characteristics, and y the objective function. As depicted in Table 

2-1, the seven sub-dimensions as {ai, a.2, Pi, P2, Pi, /?* yi). If an activity is excluded from the 

problem, "-" replaces its notation. If a certain sub-dimension comprises number of levels (e.g., 

no idling (I„0) and idling (/)), then fi$= I„0/I. 

As an example, Fm, Ln I V I Cmax, represents a multiple-product lot streaming flow shop 

problem with variable sublots to minimize the total completion time. 

2.3 Single-product problems 

Trietsch and Baker (1993) introduce various models for solving different lot streaming 

problems. Continuous and discrete sublots, intermittent idling, consistent and variable sublots 

and capacitated transporter are discussed in their paper. They summarize the literature of the 

subject in each category and present related models and problem definitions; furthermore, 

they develop new linear programming formulations for two and three machines and generate 

new results. They claim that minimal makespan is achieved with variable sublots and 

intermittent idling. 

Chen and Steiner (1997) study a discrete lot streaming problem in single-product multi-stage 

flow shops. Batches are assumed to be available at time zero and sublots are consistent. 

Network representation is used for the problem and the objective is to determine sublot sizes 

to minimize the length of the critical path of the network. Two approximation algorithms are 

developed and examples are presented to verify the tightness of the problem bounds. They 

demonstrate the effectiveness of their solution approach and solve the problem in O(s) time, s 

as number of sublots; it represents very good quality approximations for consistent sublots. 
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The two approximation procedures can be applied for the reverse type of the presented flow 

shop problem as well. They claim that the solution is very good in practice since it yields little 

machine idle time in the schedule. 

Chen and Steiner (1998) study a single product lot streaming problem to minimize the 

makespan in multi-stage flow shops. Attached and detached setups are considered in their 

model. Batch availability is assumed, that is, a batch is transferred to the successive stage 

when the whole batch is finished processing in that stage. Based on the problem definition 

they develop a network representation to find sublot sizes that minimize the longest path, sum 

of weights of the vertices, in the network. A solution is given for a simple reduced auxiliary 

problem which considers detached setups. Further on, optimal sublot sizes are determined in a 

general problem of three machines. They introduce a complex problem considering detached 

setups solved in O(s) time. 

Chen and Steiner (1999) present a lot streaming problem to minimize makespan of a single 

job in a two-machine flow shop. They assume discrete sublots that are available at time zero. 

Considering no preemption between jobs, multiple-product problems are decomposed into 

single-product problems; therefore their single product model can be applied to a multiple-

product lot streaming problem as well. They show that an optimal solution can be derived 

from the continuous problem and be solved in O(s) time. Considering consistent sublots, a 

network representation is given and the objective is to minimize the longest path by 

determining the sublot sizes. They synchronize the schedules of the two machines which is 

desirable in practice in automated systems. Moreover, it is shown that increasing the number 

of sublots results in smaller makespan. 
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Sen and Benli (1999) study the problem of lot streaming with consistent sublots, they present 

models for single-job and multiple-job problems in open shops with two machines. For the 

single job problem they introduce two cases; single routing models where sublots of the 

product have the same routing (the order in which they are processed in machines) and 

multiple routing models when this routing varies. Where the routing is pre-defined, the 

problem turns into a flow shop lot streaming problem and the decision is to determine sublot 

sizes. On the other hand, when sublot sizes are given, the objective is to determine the routing 

of the job. They study and synthesize the models of the two types of routings for single and 

multiple products and evaluate their effects on reducing the makespan. 

Sriskandarajah and Wagneur (1999) study a two-machine no-wait flowshop problem to 

minimize makespan with lot streaming. Single-product and multiple-product problems are 

studied and a heuristic method is developed to find a close-to-optimal solution. They develop 

a model for continuous sublots when the product lot is large and number of sublots is fixed. 

Based on this model they develop another model for a restrictive no-wait problem with 

discrete sublots. Furthermore, they extend their model to a more general lot streaming 

problem where number of sublots is also a decision variable. They solve a real world problem 

in an anodizing line, a flow shop of chemical processing tanks. They solve the problem for 

continuous size of sublots polynomially. 

Kalir and Sarin (2001) consider the problem of lot streaming in a single batch flow shop. They 

discuss various limitations in applying lot streaming problems in reality and try to relax some 

of these constraints in their model. They put the number of sublots as a decision variable and 

incorporate both time and cost objectives in the problem. They also give a polynomial 

solution procedure for discrete sublots and consider the effects of attached setups on the 
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makespan. The impact of transfer time on the time-based and cost-based objectives is also 

studied. Their solution approach enables the management to verify the number of sublots in a 

lot when machine setups are considered. Other objectives can also be adapted in their model 

such as minimizing mean flow time and work-in-process inventory as well as minimizing 

makespan in a cost model. 

Bukchin et al. (2002) consider a single job lot streaming problem in a two-machine flow shop 

with detached setups. The objective is to minimize the total flow-time. The applications of 

their study with detached and attached setup times are mainly in semiconductor industry 

where setup is incurred when the whole sublot is available. To solve their non-linear model, 

they develop a procedure based on SMB, single machine bottleneck, an intuitive solution 

structure which can produce optimal or near optimal solutions. 

Chen and Steiner (2003) discus the problem of single-job lot streaming in m-machine flow 

shop. They consider discrete consistent sublots with no-waiting between consecutive stages 

while their model can also have waiting constraints. An integer programming model is 

developed and minimizes the makespan. Since no polynomial-time solution is known for this 

solution, they use network representation to determine sublot sizes to minimize the longest 

path in the network. A solution for m-machine problem for two sublots is presented. They also 

present two polynomial-time approximation methods for the general case of discrete sublots. 

Computational results show that these methods are effective. 

Chiu et al. (2004) consider a single product lot streaming problem in a multi stage production 

system. Transportation cost is incurred and objective is to determine batch sizes in order to 

minimize makespan and transportation cost. They discuss different lot streaming policies in 

the literature. They study the allocation of variable sublots and consider multiple transporters 
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as well as simultaneous attached and detached setups. A general mathematical model is 

developed to determine the allocation of variable sublots. Since their binary mixed integer 

programming model is difficult to solve, they develop two heuristic methods. Results show 

that the heuristic methods are effective and efficient. 

Chiu and Chang (2005) study a single-product multi-stage cost-related lot streaming problem 

in flow shops. They consider costs of raw material, WIP (work-in-process) and finished-

product inventories to minimize the total annual cost by determining optimal batch sizes and 

propose two optimization models. The first model assumes costs of various inventory types as 

well as setup, transportation and finished product shipment costs. The cost of reducing the 

makespan is of great significance and is added up to build the second model which is more 

general. Two solution methods are presented to search for the optimal solution with an integer 

number of sublots. From the analysis of examples and computational results, inventory holing 

costs, setup costs and unit-processing-time show greater impact on the total cost than sublot 

transportation and shipment of finished products. 

Biskup and Feldmann (2006) study the lot streaming problem of single product in an m-

machine flow shop. Sublot availability is assumed and sublots can be constant, consistent or 

variable. They introduce their problem as MVS (multi-stage, variable sublots, sublot 

availability) and develop a mixed integer programming formulation. This is the first integer 

programming formulation for lot streaming with variable sublots. They also formulate 

attached and detached setups in the problem. The objective is to minimize makespan by 

determining sublot sizes for a given maximum number of sublots in all stages. In an example 

of five production stages, they show a better performance in applying variable sublots instead 
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of constant and consistent sublots. This approach can lead to significant improvements 

especially when setups are incurred. 

2.4 Multiple-product problems 

Lee et al. (1997) considers lot streaming as one of the new trends in scheduling theory to 

extend classical algorithms to more closely related models to real problems. They indicate that 

in spite of difficulties in applying these results, they are motivated by industries. Some 

extensions and classifications of lot streaming with more practical constraints are presented as 

a part of deterministic scheduling in this paper. Various neighborhood search techniques and 

constraint-guided heuristic search techniques are reviewed as well. Simulated annealing, Tabu 

search and genetic algorithm are studied for NP-hard problems discussed in their paper. 

Cetinkaya and Kayaligil (1992) study a multiple product two-machine lot streaming flow shop 

problem. Setups are sequence independent and separate from processing times. Transportation 

time between stages is negligible and the objective is to minimize the completion time. They 

construct a model similar to Johnsons' algorithm and generate an optimal solution. 

Vickson and Alfredsson (1992) study the effect of lot splitting in a two and three machine 

multiple-job problem. Simple modifications are applied to Johnson's algorithm to develop a 

model for minimizing the makespan. Non-preemption schedule is assumed and jobs finish 

processing the whole sublot before transferring to the next stage. Transportation time and cost 

are not considered and setup times between jobs are negligible. They present empirical study 

to show the improvement of makespan in applying sublot transfer. The problem may be 

solved by branch and bound without backtracking, local neighborhood search or LIT 

heuristic. Examples are given to show the better performance of job splitting. 
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Cetinkaya (1994) consider the lot streaming problem in two-stage flow shops for multiple 

products. Job sizes are not necessarily equal but have a maximum number of allowable 

transfer batches. Batches are available at time zero and are transferred from the first to the 

second stage. Preemption is not allowed. They integrate sublot size decisions and scheduling 

decisions when setups are independent of job sequence and the objective is to minimize the 

maximum flow time (makespan). In order to do that, they decompose the problem to a 

sequencing problem and a batch sizing problem to find optimal solutions for both sub-

problems. Afterwards, an algorithm is proposed for the combined problem which is solvable 

in polynomial time. 

Baker (1995) studies a multiple-job lot streaming problem in a two-machine flow shop. All 

jobs consist of identical items processed in machines without preemption. Sublots are equal in 

size while unit-size sublots are also considered. Setup settings comprise both types of attached 

and detached setups and time lags can be applied to the problem as well. The objective is to 

minimize the makespan and gives the best response for transfer batches of unit size. They 

review and synthesis the existing flow shop solutions to develop an approach for getting the 

optimal solution for the considered lot streaming problem. 

Vickson (1995) study a multiple product lot streaming problem in a two-machine flow shop. 

Setups are assumed to be sequence independent which can be attached as well as detached. 

Transfer times of sublots are finite and sequence independent. He considers limited material 

handling capacity. In case of no preemption and when the objective is makespan 

minimization, the sequencing problem for two machines is solvable by Johnson's algorithm. 

They develop closed form solutions for continuous sublots considering setups. A linear 
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integer programming model is presented for discrete sublots which is solvable in polynomial 

time. The procedure for the two types of setups is almost the same. 

Sriskandarajah and Wagneur (1999) consider the lot streaming problem with multiple 

products in two-machine no-wait flow shops. Sublots are both assumed to be integer and 

continuous. The objective is to determine sublot sizes and sequence the jobs simultaneously. 

They develop a heuristic method for optimal scheduling and lot sizing multiple products and 

results are shown to be close to optimal. The model is extended to solving problems where the 

number of sublots is also a decision variable. 

Subodha et al. (2000) consider lot streaming problems for multiple products in m-machine 

flowshops. The objective is to minimize the makespan. They present a linear programming 

model for the single product problem assuming fixed number of continuous sublots. For 

integer size of sublots an existing heuristic is used to determine sublot sizes. As they move on 

to the multiple product and continuous-sized sublots, a TSP (Traveling salesman problem) 

formulation is presented as one of the approaches for obtaining local optimal solutions. 

Another heuristic algorithm is proposed for the integer size of the sublots. For the interacting 

decision of lot streaming and sequencing multiple products, a genetic algorithm is developed 

which is shown not to yield a strong solution; however, this meta-heuristic is also used to 

optimize the number of sublots. 

Kalir and Sarin (2001) consider lot streaming problems for multiple products in multi-stage 

flow shops. Sublots are considered to be equal and intermingling of sublots is not allowed. 

The objective is to minimize the makespan by optimizing the job sequence. A heuristic 

method is developed to achieve a near-optimal solution for this problem. The "bottleneck 

minimal idleness" heuristic maximizes the time buffer before the bottleneck and at the same 
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time sequences the larger sublots earlier in the sequence. An example problem in surface 

mount technology (SMT) is given to illustrate the impact of sequencing in lot streaming 

problems. They show the efficiency of the model in an experimental study and compare it to 

another heuristic method named FIH (fast insertion heuristic). 

Yoon and Ventura (2002) study a lot streaming problem in flow shops to minimize the mean 

absolute deviation from due dates for multiple products. Sublots can be either constant or 

consistent. Buffer capacities between successive stages can be limited or infinite. A linear 

programming formulation for infinite buffer capacity is developed to find optimal completion 

times of sublot. The model is then extended to finite capacities and no-wait flow shop. 

Afterwards, they apply several pairwise interchange methods to find near-optimal solutions. 

They use computational experiments to illustrate the effect of different types of buffers and 

sublots in solving the lot streaming problem. Consistent sublots and infinite buffers are shown 

to yield better results. 

Yoon and Ventura (2002) apply genetic algorithms to multiple-product multi-stage lot 

streaming problems. Sublots are assumed equal in size and buffer capacity is infinite. The 

objective is to minimize the mean weighted absolute deviation from due date. Given an initial 

job sequence to the developed linear programming formulation, start and completion times of 

sublots are obtained. Since genetic algorithm has some weaknesses such as premature 

convergence, a hybrid genetic algorithm (HGA) is used to search among different sequences 

and find the best solution. This meta-heuristic applies a Non-Adjacent Pairwise Interchange 

(NAPI) method as well as the LP formulation to obtain the optimal solution. Lastly, the 

efficiency of the method is compared with similar heuristic methods. The proposed HGA is 

shown to perform well for this type of problems. 
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Feldmann and Biskup (2006) study multiple-product multi-stage lot streaming in a 

permutation flow shop. Sublots are assumed consistent and can intermingle. The objective is 

to minimize makespan and a mixed integer programming formulation is proposed. The model 

determines optimal sublot sizes and optimal job sequence at the same time. They compare the 

results of lot streaming problem when intermingling is allowed versus non-intermingling. It is 

shown to be beneficial allowing sublots of different products to intermingle. This integer 

programming model is capable of solving medium size problems. 

2.5 Hybrid flow shop scheduling problems 

Gupta and Tunc (1991) study the problem of scheduling multiple jobs in a two-stage hybrid 

flow shop. The first stage is assumed to have one machine while the second stage has parallel 

identical machines. The objective is to determine the sequence of jobs in order to minimize 

the makespan. They solve the problem for two cases: 1) the number of jobs is equal to or less 

than the number of machines in the second stage; 2) the number of jobs exceeds the number of 

machines in the second stage. For the first case, the longest processing time (LPT) scheduling 

rule is applied which yields an optimal solution. Two heuristic algorithms are presented to 

minimize the total throughput time of all jobs in two stages. These approximate algorithms are 

polynomially bounded. Computational results indicate that the efficiency of the proposed 

algorithms increases by the increment of number of jobs and can be used in solving large-size 

problems. 

Yalaoui and Chu (2003) study a parallel machine scheduling problem with multiple jobs when 

lot splitting is allowed. Setups are sequence-dependent and objective is to minimize the 

makespan. They develop a heuristic method of two parts. First, a reduced single machine 
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problem is presented and transformed to a Travelling Salesman Problem (TSP). Second, the 

results of the TSP problem are used as an initial solution which is improved step by step. 

Logendran and Subur (2004) study the scheduling problem of multiple jobs in unrelated 

parallel machines when job splitting is applied to minimize total weighted tardiness. Sublots 

of a batch have the same release time, weight and due date. Preemption is allowed and 

machine idleness without any cost is permitted as well. A mixed integer linear programming 

model is developed to incorporate constraints for tight due dates, high priority and high 

workload of products in a just-in-time manufacturing system. They present a solution 

algorithm that first identifies the initial solution and then uses Tabu search to determine the 

near-optimal /optimal solution. A variable Tabu list for small size problems and a fixed Tabu 

list for large size problems are proposed in their paper. They show a good quality of results 

for their method with short computational time. 

Zhang et al (2005) study multiple-product lot streaming problems in two-stage hybrid flow 

shops. The first stage has m identical machines while the second stage has a single machine. 

Sublots are consistent and intermingling is not allowed. The objective is to minimize mean 

completion time through determining the number of sublots of the jobs, their sizes and the 

sequence. Two heuristics are proposed with the same strategy that first sequence the jobs and 

then split and schedule them. To determine the lower bound of the solution a mixed integer 

linear programming model is formulated. Further on, they evaluate the performance of the 

methods by conducting extensive experiments. 

Liu (2008) study the lot streaming problem of a single product in a two stage hybrid flowshop. 

First stage has m identical machines while the second stage has one machine. Sublots are 

considered to be equal and processed in both stages. Optimizing sublot sizes is done by a 
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linear programming formulation. It is transformed to a convex optimization problem which is 

solved by two heuristics. Their heuristics can provide close to optimal solutions in a wide 

range of experiments. 

Ruiz and Maroto (2006) consider a complex scheduling problem that could be a 

generalization of other problems such as permutation flowshop or flowshop with multiple 

processors (FSMP). They propose a genetic algorithm for a hybrid flowshop with unrelated 

parallel machines. Setups are sequence dependent and machine eligibility is considered, that 

is, not all products may be processed by all the machines at a given stage. The genetic 

algorithm presents new characteristics and new crossover operators. To evaluate the efficiency 

of the method they carry out extensive experiments and perform adaptations of some other 

meta-heuristics that show better performance in similar production environments. Since the 

studied problem contributes to a common problem in textile and ceramic tiles production, they 

also conduct experiments given real data to their model and demonstrate improvement in the 

makespan of schedules. 

2.6 Concluding Remarks 

Lot streaming has been studied for decades as a technique in lot sizing and scheduling 

problems to improve the performance of production lines. Various approaches have been 

carried out to overcome the difficulties in solving lot streaming problems and make them 

capable of solving large-size problems. 

There has been much research work for single-product lot streaming problems, assuming 

several assumptions and objectives and presenting linear programming formulations as well as 

heuristic methods. Few recent studies have been conducted to present integer programming 

models for multiple-product problems and more general heuristic methods are yet to be 
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developed for large-size problems. Few research works consider lot streaming in parallel 

machine or hybrid flow shops. Some researchers study the two-machine hybrid flow shop 

problems and methods need to be discovered to solve general lot streaming problems in 

hybrid or flexible flow shops. 

In the following chapter an integer programming model is developed for multiple-product lot 

streaming problem in hybrid flow shops. Products may skip some stages. Optimal sublot 

sizes as well as an optimal sequence of sublots and products are determined to minimize the 

makespan. 
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Chapter Three Model Formulation and Solution Approach 

3.1 Problem introduction 

Assume that in a manufacturing flow shop J jobs/products are processed in S stages. Jobs 

consist of several identical items which have the same processing time on each stage. All jobs 

have the same sequence of processing and are processed by the order of stages (i.e. 1,2, ..., 

S). Lot streaming is applied to accelerate the flow of the line and to decrease the makespan. 

Chang et al. (2004) illustrate the advantages of lot streaming using an example. There are 

three stages in a flow shop. Processing times on stages 1, 2 and 3 are 2, 3, and 5 minutes, 

respectively. A batch of 120 units is processed on these stages and setup cost is negligible. 

Five scenarios are considered: without splitting, splitting into 2 constant sublots, splitting into 

3 constant sublots, consistent sublots, and variable sublots named as schedules 1, 2, 3, 4 and 5, 

respectively. As depicted in Figure 3-1, makespan of the first schedule is 1200 time unit while 

it is reduced to 900 and 800 by applying constant sublots. In this example for schedules 4 and 

5 which are consistent sublots and variable sublots, respectively, the completion time is 

slightly increased; however, generally these scenarios have better responses in lot streaming 

problems. In this example we see the improvement of 33.33% in makespan of schedule 3 by 

applying lot steaming technique. 
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Figure 3-1 An example of lot streaming problem with different types of sublots 

Based on the problem characteristics and implementation concerns, different types of sublots 

are considered in lot streaming problems. Variable sublots might be efficient where setups are 

incurred for processing sublots on machines. The advantage of applying variable sublots is 

that sublots may be split less on machines with high setup time so that the completion time is 

decreased. On the other hand, there are several disadvantages that discourage researchers in 

using variable sublots such as increased computational time with insignificant solution 

improvement and difficulties of implementation in solving real world problems. 
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In hybrid flow shops stages have either single or parallel processing machines. Parallel 

machines are used to overlap processes in stages with low production flow. Sublots 

which are not allowed to be overlapped on a single machine in lot streaming problems 

might be processed simultaneously on parallel machines. In other words the constraint to 

prevent overlapping of sublots is relaxed on parallel machines and the chance of reducing 

the makespan is increased. 

Researchers consider various methods to assign sublots to hybrid stages and to sequence 

their processing. A method called "rotation" is used by Liu (2008) to sequence the 

sublots of a product in a two stage hybrid flow shop. In the considered problem, the first 

stage has parallel identical machines whereas the second stage has a single machine. In 

this method, sublots are assigned to parallel machines based on the order of machines; 

sublot 1 to machine 1, sublot 2 to machine 2,..., sublot i to machine m, sublot /+1 to 

machine 1, and so on. These sublots are transferred to stage 2 and are processed on the 

single machine in the same order. Rotation method is shown to find the optimal solution 

in this type of hybrid flow shop problem. Figure 3-2 illustrates this sublot assignment for 

eight sublots. 
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Figure 3-2 Sublots assignement by rotation method 
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3.2 Mathematical model 

3.2.1 Problem description 

As discussed in previous chapters, we intend to increase the scope of studies in hybrid 

flow shop lot streaming problems. Consider multiple products that are processed in a 

multi stage hybrid flow shop. Machines are non-identical and number of them in parallel 

stages is determined. The problem is to decide sublot sizes of products and sequence 

them on machines so that the completion time of the last sublot in the last stage is 

minimized. As such, optimum number and size of sublots as well as optimum sequence 

of products are to be decided in our model. 

3.2.2 Model assumptions 

In lot streaming problems, researchers consider several assumptions based on their 

problem descriptions. We consider following assumptions in this study: 

1. Discrete or continuous sublots are consistent and available at time zero. 

2. Sublots of a particular product are assigned to machines and are processed where 

a machine in that stage is eligible and ready for setup and processing. 

3. Each sublot is processed on only one machine at a time in parallel stages. 

4. Each product may have different number of sublots. 

5. Intermingling is not allowed, that is sublots of different jobs are not mixed while 

being processed on machines. 

6. Permutation flow shop is assumed and jobs have the same processing order in all 

the stages. 
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7. Each machine can process at most one job at a time and each job cannot be 

processed on more than one machine at a time. 

8. Setups are attached and sequence independent. 

3.2.3 Model notations 

Indices: 

j , k Indices for products, j , k = 1,..., J, where J is number of products. 

i, t, r Indices for sublots, /, t, r - 1,..., SPj, where SPj is maximum number of sublots 

for product/ 

s Indices for stages, s= l,...,S, where S is number of stages. 

m, f Indices for machines in each stage, m,f= 1,..., M, where M is maximum number 

of machines in all the stages. 

Parameters: 

Uj Number of identical items of product y 

SMS Number of machines available in stage s 

Pjsm Processing time for one unit of product_/ in stage s on machine m 

STjSm Setup time for product./ in stage s on machine m 

G Sufficiently large number 

Variables: 

Cjism Completion time of ith sublot of product/ in stage s on machine m 

Ljism Sublot size of ith sublot of product/ produced in stage s on machine m 

(1, if sublot i of product/ is produced in stage s on machine m 
jism lO, otherwise 

1, if sublot i of product/ is sequenced prior to sublot t of product k (1, if sublot i o 
jikt (0, otherwise 
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Z Maximum completion time of all the products 

3.2.4 Model 

In this study the model is formulated as: 

Minimize Z subject to 

Z £ Cjism: J = 1 J,i = 1 SPj.m = 1, ...,M (3-1) 

2J( lam^jism Uj* J — 1, ... ,j,S — l,...,o \3~^j 

Ljism = 0; ;' = 1, ...J, i = 1, ...,SPj, s = 1, ...,S, m > SMS (3-3) 

^jism — "jsm'-'jism ' ^'jsm"jism> ) ~ *-> •••ilA ~ •!•# •••>^"j> S — 1, . . . , . J , 771 = 

1,...,M (3-4) 

L-jism ~ Pjsm^jism ~ ^^jsm"jism — ^jrsm'i J ~ *•> •••>J>l>r ~ 1# •••>^>"ji T <. l,S = 

1,...,S, m=l,...,M (3-5) 

^klsm ~~ "ksm^klsm ~ $' ksm^klsm — ^jism ~ \*- ~ ^jikt)^1'' J>^ = *•> —•}•) < 

k,i = l,..., SPj, t = 1,..., SPk, s = 1,..., S, m = 1,..., M (3-6) 

Ljlsm ~ Pjsm^jlsm ~ ^'jsm^jism — ^ktsm ~ "jikt"' J> * = -*-> •••>}>J < K, I — 

1 SPj, t = 1 SPk> s = l S, m = 1,..., M (3-7) 

L'jism ~~ 'jsm'-'jism ~ •-* * jsm"jism — ^jis-l,f'> J ~ *•> ••• '7 ' * — •*•» • • • » ^ • • 7 / ^ — ' " ' ' ' 

m,f = l,...,M (3-8) 

A-yffct < Jf/t-LM-i; M = 1, - J , ; ' <k,i = 2, ...,3^,1 = 2, ...,SPk (3-9) 

E&fysm < 1; / = 1 /,i = 1 SPy.s = 1 S (3-10) 

fy*n ^ BJismG; j = 1 J,i = l,...,SPj, s = l,...,S, m- 1,...,M (3-11) 

l^m^jism — Zjm^jis-l,m'> J = ± , ••• , J , 1 = ±, ••• ,$"j,S — £, ...,b (3-12) 

Bjism e {0,1}; ; = l,.. . ,/,i = l,...,5Py,s = l, . . . ,S, m = l,...,M (3-13) 
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XjiM e (0,1); j,k = 1,...,],) <k, i = l SPj.t = 1, ...,SPk (3-14) 

Constraint (3-1) defines the completion time of the last sublot in the last stage S. This 

completion time is minimized in the objective function. Constraint (3-2) ensures that the 

total number of items produced in each stage for product j should be equal to Uj. 

Constraint (3-3) sets the sublot size L/«m to 0 if a machine does not exit in a stage. In our 

mathematical model M is taken as the maximum number of machines available in all the 

stages; on the other hand, attribute SMS defines the exact number of machines in stage s 

so when machine index m exceeds SMS the corresponding lot size is set to 0 to avoid 

infeasible sublots. Completion time of each sublot should be at least greater than its 

processing time plus the required setup time. When a sublot is not assigned to a machine 

the binary variable BjjSm is 0 to prevent the equation from adding the corresponding setup 

time; this is defined by constraint (3-4). With (3-5) overlapping sublots of products on 

machines is prevented whereas sublots may be processed simultaneously on parallel 

machines. As such, sublot i on machine m should be processed after its required setup 

time and completion of any predecessor sublot r. We assume r less than / to avoid 

occurrence of cross-precedence and consider only possible alternatives. Constraints (3-6) 

and (3-7) determine the sequence of sublots of products. (3-6) is binding as long as Xjat 

takes the value 1. In a permutation flow shop, no index of stages or machines is needed 

for this variable since the product sequence is determined only once, regardless of stages 

and machines. Sublots are not intermingled and when product/ precedes product A: on a 

particular machine, first sublot of product k is started after its required setup time and 

completion of sublots of product j . (3-6) and (3-7) are complementary constraints. 

Constraint (3-8) ensures that sublots of the same product do not overlap on any of the 
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machines in consecutive stages; in other words, sublot i of product j is started in a 

particular stage when the required setup is completed and its process on any of the 

machines of the predecessor stage is finished. Constraint (3-9) controls binary variable 

Xjtkt, if a sublot of product j is not processed prior to that of product k, the successor 

sublot of each product should not be processed either. By controlling binary variable Bjism 

in constraint (3-10) we ensure that a sublot is processed on at most one machine in each 

stage; it is not efficient, from management point of view, to setup parallel machines for 

processing a sublot of a certain product in a stage. Moreover, the optimal solution may 

consider less number of sublots for a product than SPj and set the binary variable BjiSm to 

0 for sublot i in stage s. Constraint (3-11) relates sublot sizes to Bjism and sets them to 0 

when a sublot is not processed on a particular machine. Constraint (3-12) is necessary for 

consistency of sublots and keeps the size of sublot i of products consistent in consecutive 

stages. 

To the best of our knowledge, the problem under study is most probably NP-hard 

(Trietsch and Baker, 1993; Biskup and Feldmann, 2006). Computational time increases 

by the number of sublots, the number of machines and stages, and the number of 

products. Sublots are usually considered continuous in lot streaming literature, however, 

discrete sublots can be generated by non-negative integer values for Ljism,j= 1,..., J, i= 

1,..., SPj, s= 1,..., S, m= 1,..., M. In this model, non-idling can be dealt with by 

changing the inequalities to equalities in constraint (3-5). In this case, a sublot starts its 

process on a certain machine right after the predecessor sublot is completed. 
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3.3 Model variations 

The proposed model can be varied by changing some constraints and/or defining new 

variables so that other goals or problem assumptions are covered. The model can also be 

relaxed slightly to speed up and ease the calculation. 

3.3.1 Minimizing the mean completion time 

As previously introduced, several objective functions are considered in scheduling 

problems. Mean completion time has also been studied by researchers in multiple product 

lot streaming problems. In our proposed formulation we can use the variable Zj to 

determine the completion time of each product and substitute the first constraint for: 

Zj ^ CjismJ = 1 J.i = 1. ...,SPj,m = 1, ...,M (3-15) 

The average of Zy is minimized in the objective function of the mean completion time as 

follow: 

Min Ylfj (3-16) 

3.3.2 Variable sublots in single product hybrid flow shop lot streaming problem 

Another variation of the model enables us to consider variable sublots. This setting is 

advantageous where high setup time is incurred for processing parts on machines. By 

changing some constraints and adding new constraints concerning a new binary variable 

we develop a new formulation for the lot streaming problem of single product in 

multi-stage hybrid flow shops. This model is an extension to the integer programming 

formulation in Biskup and Feldmann (2006) for single product lot streaming problem in 

flow shops. 
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f 1, if sublot i in stage 5 is started after sublot t in stage s - 1 is finished 
llst otherwise 

We take into account all the assumptions of the model in Section 3.2, and introduce the 

new binary variable as below: 

lo, 

Product index/ is removed from variables in all the constraints. As such, for instance Qsm 

is the completion time of processing sublot i in stage s on machine m. Constraints (3-1) to 

(3-5) hold for the single product model while constraints (3-6) and (3-7) for determining 

sequence of products are removed. Constraint (3-8) substitutes for: 

'-'ism *sm'-'ism ^'sm^ism — ^ts-l,f v-t ^ist)^> l>t 1, ..., 1 ,S — L,...,o, 

m,f = l M (3-17) 

To prevent overlapping sublots in consecutive stages sublot i in the current stage should 

be started after completion of sublot t in the preceding stage on any machine/ Therefore, 

this constraint is binding when YiSt is equal to one. (3-9) is removed, (3-10) and (3-11) 

hold for controlling binary variable BjiSm. Following constraints are necessary to control 

binary variable Y. 

Yisl = l,i = l I,s = 2,...,S (3-18) 

Yist+i ̂  Yist, i = 1 /. t = 1 / - 1,5 = 2, ...,S (3-19) 

Any sublot in stage 5+1 should start after at least the completion of the first sublot in 

stage s. Furthermore, if sublot t in stage s is not started after completion of f1 sublot in 

stage 5-1, the consecutive sublot, t+\, should not be started either. 

To determine the size of a particular sublot we cannot relate it simply to the size of other 

sublots in other stages as we do for constant or consistent sublots. For this purpose, 

another constraint should be concerned. If sublot / in stage s is started after sublot t in 

stage 5-1, its size should not exceed the sum of all sublots that are processed before the tth 
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sublot in stage s-l and sum of sublots produced in the current stage prior to i sublot. 

This can be defined by the following constraint: 

'-'ism — 2juljm*Jus-l,m ~ 2JU Ltm^usm ' v-*- ~" 'ist "•" ' i s t + 1 / " ' t = 1 , . . . , / , t = 

l , . . . , / - l , s = 2,...,S (3-20) 

Regarding the setup time on a certain machine, this model determines the number and the 

size of sublots in each stage; to minimize the makespan, the whole batch may not be split 

due to the high setup time on a particular machine. Although the single product problem 

is less complex, it can be N-P hard when the number of stages, machines and sublots is 

increased. 

3.3.3 Contributions to the developed models 

In developing a mathematical model, where possible, we may relax some constraints to 

speed up calculations. However, relaxation must be performed in a way so that the 

applicability of the model is not destroyed. In the presented model in Section 3.2 we may 

relax constraint (3-10) and consider only producing fixed number of sublots per product 

and substitute it for: 

ZmBjism = 1; J = 1 J,i = 1 SPj,s = 1 S (3-21) 

Determining the exact number of sublots instead of maximum number of them per 

product, a sublot is only built on one machine in a particular sage and is transferred to the 

consecutive stage. The advantage of this relaxation is reducing the computational time of 

the model while the decision on the optimal number of sublots is not made by the model 

any more. 
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Developed models in Sections 3.2 and 3.3.2 do not consider the rotation method; on the 

other hand, they assign sublots to machines based on the eligibility of machines rather 

than the order of machines. 
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Chapter Four Numerical Examples and Analysis 

In this chapter we present several examples to illustrate and validate the mathematical 

models presented in the previous chapter. We also analyze the proposed models under 

various problem settings based on sample input data. The data used in the examples are 

hypothetical and some of them are based on those from the literature. Several 

comparisons are performed to the existing problems in the literature of lot streaming. The 

model is programmed and solved by LINGO optimization software, version 8, on 

Compaq Pentium 4, CPU 2.93GHz. 

4.1 Lot streaming single product in two-stage hybrid flow shop 

An example problem is presented in Liu (2008) to verify the heuristic method introduced 

in that paper. The hybrid flow shop has two stages; two parallel identical machines in the 

first stage and a single machine in the second stage. A batch of 4000 identical items of a 

product is processed in the two stages. Processing time in the first stage is 1 and setup 

time is negligible while in the second stage, processing time is negligible and setup time 

is 2000. Sublots are considered constant as well as consistent and are greater than 1000 

units. Rotation method is used to sequence sublots in this hybrid flow shop. 

Figure 4-1 shows the Gant charts for global optimum solutions when constant and 

consistent sublots are used. Sublot sizes of 2000 are built in the problem with constant 

sublots. Assuming consistent sublots, sublot sizes are 1000 and 3000, respectively, for the 
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first and second sublots. Improvement in makespan, Cmax, from 6000 to 5000 is achieved 

by applying consistent sublots instead of constant sublots. 

Stage 1 
Machine 1 
Machine 2 

Stage 2 

1 
i 

Constant sublots 

i 

1 1 1 
2000 4000 6000 

Stage 1 
Machine 1 
Machine 2 

Stage 2 

1 

i 

1000 
"" T " 

3000 

Consistent sublots 

1 
5000 

Figure 4-1 Constant and consistent Sublots 

4.1.1 Impact of variable sublots 

We intend to study the effect of applying variable sublots in this example. The data is 

input into our proposed model in Section 3.3.2 and the model is run without taking into 

account the lower bound of 1000 for sublot sizes. Global optimal solution in Figure 4-2 

depicts that the two sublots of 2000 processed simultaneously in the first stage are 

combined together in one lot of 4000 due to the high setup time in the second stage. As a 

result, the makespan is decreased to 4000. It shows that the proposed model performs 
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better and advantage of 33.3% in solution is achieved by applying variable sublots versus 

constant sublots. 

Stage 1 
Machine I 
Machine 2 

Stage 2 
2000 4000 

Figure 4-2 Decrease in makespan by applying variable sublots 

4.1.2 Optimum number of sublots by using different types of sublots 

Increasing the number of sublots may have various effects on the objective function value 

concerning different types of sublots in the example under study. In this Section we 

increase the number of sublots, holding other parameter values constant, and run the 

proposed model in Section 3.3.2. Experiments are implemented considering 3, 4, 5, and 6 

as the maximum number of sublots for constant, consistent and variable sublots. Global 

optimum objective function values with their corresponding advantage over the original 

problem without lot streaming are illustrated in Table 4-1. 

Table 4-1 Comparison of constant, consistent, and variable sublots 

Sublots 

3 
4 
5 
6 

Constant 

Objective 
7333.33 

9000 
10800 

12666.67 

Advantage % 
-22.22% 
-50.00% 
-80.00% 

-111.11% 

Consistent 

Objective 
5000 
5000 
5000 
5000 

Advantage 
16.67% 
16.67% 
16.67% 
16.67% 

% 

Variable 

Objective Advantage % 
4000 
4000 
4000 
4000 

33.33% 
33.33% 
33.33% 
33.33% 
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The advantage percentage is calculated as the makespan difference of original problem 

and each alternative over makespan of the original problem, multiplied by 100. For 

consistent and variable sublots the optimal solution will not change; sublot of 1000 and 

3000 will be built for the first and second consistent sublots, respectively, while two 

sublots of 2000 in the first stage combine together in one lot of 4000 in the second stage 

using variable sublots. Conversely, if we limit our model to constant sublots, the 

objective function value increases drastically when the number of sublots is increased and 

the corresponding advantage percentage is negative. In general, the makespan is 

decreased by increasing number of sublots, although it is opposite in this problem 

because of the high setup time in the second stage. Therefore, it is optimal to produce the 

whole lot splitting into only two sublots. The trend of the advantage is depicted in Figure 

4-3. 
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Figure 4-3 Comparing advantages of using different types of sublots 

4.1.3 Impact of using consistent and variable sublots 

To further study the impact of using different types of sublots in this type of hybrid flow 

shop lot streaming problem processing a single product, we introduce another example 
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and analyze the results. A production line consists of two hybrid stages with 3 parallel 

identical machines in the first and a single machine in the second stage. A product of 

6000 units is processed in the two stages. Processing times for each unit of the product 

are 3 and 1 in the first and second stages respectively. Setup times of sublots on machines 

are 3 and 5, respectively, in stages 1 and 2. Sublots are considered constant, consistent, or 

variable and maximum number of sublots is 3. 

Optimal objective function values are: 12018 using constant sublots, 10924.36 for 

consistent sublots and 10919.36 for variable sublots. Figure 4-4 shows the schedules for 

consistent and variable sublots in this example. Consistent sublots of 1635.5, 2182.3, and 

2182.3 are produced as the first, second and the third sublots respectively. The second 

and third sublots in stage 1 are combined together in one sublot of 4364.5 when variable 

sublots are considered. It is shown that applying variable sublots in hybrid flow shop lot 

streaming problems improves the optimal solution by varying number and size of sublots 

in different stages. 
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Consistent Sublots 

1635.5 
2182.3 
21823 

1635.5 I 2182.3 | 2182.3 | 
4909.4 6549.8 8737.1 10924.4 

Variable Sublots 

21 K2T.1~ | 

21S2X | 

R 635.5 4364.5 
4909.4 6549.8 10919.4 

Figure 4-4 Gant charts considering consistent sublots and variable sublots 

Selecting types of sublots in lot streaming problems is related to problem characteristics; 

as studied in a prior example, setup time on a particular machine influences sublot size 

determination. If we change the setup time on the single machine of stage 2 in the 

example, different makespan values can be generated by decreasing the setup time from 5 

to 0 using consistent and variable sublots. Advantage over the problem without lot 

streaming is calculated and results are shown in Table 4-2. 

Stage 1 

Machine 1 
Machine 2 
Machine 3 

Stage 2 

Stage 1 

Machine 1 
Machine 2 
Machine 3 

Stage 2 
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Table 4-2 Comparing the results by decreasing the setup time 

Setup 
Time 

5 
4 
3 
2 
1 
0 

Consistent 
Makespan 
10924.36 
10921.91 
10919.45 

10917 
10914.55 
10912.09 

Advantage % 
54.50% 
54.51% 
54.51% 
54.52% 
54.53% 
54.54% 

Variable 
Makespan 
10919.36 
10917.91 
10916.45 

10915 
10913.55 
10912.09 

Advantage % 
54.52% 
54.52% 
54.53% 
54.53% 
54.53% 
54.54% 

Advantage 
A% 

0.021% 
0.017% 
0.012% 
0.008% 
0.004% 
0.000% 

We notice that the negligible out performance of variable sublots versus consistent 

sublots diminishes when setup time is lowered on the second machine. In this example, 

no difference is observed between using variable and consistent sublots when no setup is 

needed for processing sublots on machines. Therefore, in real world problems where 

setups are negligible, consistent sublots might be more desirable due to easy 

implementation in the production line. 

4.2 Lot streaming multiple products in two-stage hybrid flow shop 

The problem studied in Zhang et al. (2005) is also a two stage hybrid flow shop with m 

identical machines in the first stage and a single machine in the second stage. Sublots are 

consistent and the number of sublots per job/product is a decision variable in that study. 

The authors use the rotation method to sequence sublots in the second stage. In their 

example, jobs 1, 2, and 3 with 8000, 10000, and 13000 identical units, respectively, are 

processed in two stages. The values of parameters are given in Table 4-3. 
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Table 4-3 Parameter values in the example 

Jobl 

U,= 8000 

Job 2 

U2= 10000 

Job 3 

U3= 13000 
Processing Setup Processing Setup Processing Setup 

Stage 1 
Stage 2 

50 
50 

1 
0.5 

20 
5 

1 
0.3 

10 
1 

A lower bound of 800 is assumed for sublot size to decrease computational time in large 

size problems. The objective function value of 12637.67 is achieved as the mean 

completion time of all the three jobs as illustrated in Figure 4-5. 

Stage-2 
machine 

5870 14070 17973 

Figure 4-5 The optimal schedule of the three jobs [] 

The optimal solution schedules jobs 2, 1, and 3 in that order and processes them in 10, 4, 

and 3 sublots, respectively. 

In this thesis we assume 10 as the maximum number of sublots per product and run the 

model in Section 3.2 with parameter values in this example. The same global optimum 

results are attained and only 4 and 3 sublots are produced for jobs 1 and 3 respectively 

instead of 10. 

The mathematical programming model is solved to optimality in 8 minutes for this 

example problem. Computational time is high for larger size problems; therefore, we use 

the relaxed model for our further experiments as discussed in chapter 3 Section 3.3.3. As 

such, we determine the number of sublots per products manually. 

44 



By removing the lower bound in this example, optimal objective function value of 

12617.71 is achieved. This change has increased the computational time while small size 

problems are still solvable. 

As mentioned before, rotation method is not used in solving our model yet global optimal 

solutions are achieved. 

4.2.1 Decomposing the multiple-product problem into single-product problems 

Some researchers decompose the multiple-product lot streaming problem into 

single-product problems and solve the single product model for each product separately. 

In this Section we study the efficiency of such approach. It is of great importance to 

determine the advantage of the proposed model in this research over the single product 

model. As such, we run the model for each of the three products in the example one at a 

time. Given completion time of the last sublot of a product on each machine we can 

sequence the next product and continue this procedure until the last product completes 

production in the last stage. In the example under study we attain the optimal solution for 

the first product, give the required completion times to the model and solve it for the 

second product and so on. In other words we sequence products 1,2, and 3 in that order 

manually and calculate the total makespan. Figure 4-6 shows the solution using the 

decomposing approach. 
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Machine 1 
Machine 2 

Stage 2 

Product 1 
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Figure 4-6 Optimal solution for the decomposed problem 
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The makespan is 21146.1 and is greater than the optimal solution, 17973 considering the 

three products together in the multiple-product model. It is concluded that the quality of 

the optimal solution is strongly related to sequencing products and the proposed model 

enhances the makespan in multiple-product lot streaming problems. The makespan might 

be even more reduced where intermingling is concerned and sublots of a product mix 

with those of other products. 

4.2.2 Effects of adding parallel machines to the production line 

In this step we study the effects of adding parallel machines in the two stages on the 

mean completion time. We perform experiments with increased number of machines in 

the first stage while keeping the single machine in the second stage. Consider identical 

parallel machines which enable overlapping of processing the parts in the first stage. The 

same lower bound of 800 is considered for sublot sizes and the number of sublots for 

products is the same 4, 10, and 3, respectively, for products 1, 2, and 3. 

The rest of the assumptions hold in all the experiments. We input the values of 

parameters in the example and run our model in Section 3.2 for 3, 4, 5, and 6 parallel 

machines in the first stage. Global optimum results show that by using three and four 

machines in the first stage the objective function value reduces by 9.68% and 11.33% 

respectively. However, no further advantage is observed in using more than four 

machines in the first stage. 

It is obvious that the bottleneck of the production is in stage 2 since rising production 

flow in the first stage has no impact on the objective function of the problem. Therefore, 

secondly we utilize parallel machines in the second stage. In this step, experiments are 

performed for 2, 3, and 4 parallel machines in stage two. The objective function is further 
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improved with increased number of machines in stage two. However, as illustrated in 

Figure 4-7 the advantage becomes less significant when more than three machines are 

used in stage two. In other words, utilizing more machines in the production line may not 

necessarily decrease the completion time of production. 
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•1 machine in stage 2 
while adding parallel 
machines in stage 1 
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Figure 4-7 Improvement in the objective function by adding up parallel machines 

Figure 4-8 shows the result of using two parallel machines in both stages and keeping the 

same number of sublots per product in the example under study. The mean completion 

time is reduced to 10865.77, an advantage of 14.1 %, and global optimal results are 

achieved. This solution is obtained in a few minutes of computation in solving the model. 
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Stage 1 
Machine 1 
Machine 2 

Stage 2 
Machine 1 
Machine 2 

Figure 4-8 Utilizing parallel machines in the second stage 

Figure 4-8 shows noticeable gaps in the second stage and machines are idle during 

processing sublots of the third product in the first stage. This situation is quite 

challenging in solving lot streaming problems. We intend to increase the number of 

sublots and carry out an experiment considering 5 consistent sublots for the third product 

instead of 3 sublots. The mean completion time achieved in this step is 10601.1, a global 

optimal solution, and the objective function is decreased by 16.12% as shown in Figure 

4-9, by splitting lot and overlapping the processes, idling is less and completion time of 

all the products is reduced to 16048.3. 

Stage 1 
Machine 1 
Machine 2 

Stage 2 
Machine 1 
Machine 2 

Figure 4-9 Improved schedule by applying more sublots for the third product 
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4.2.3 Increasing the number of sublots for each product at a time 

We assume also constant number of machines in parallel stages and changed the number 

of sublots per product to study the effects on the objective function. 

We consider two machines in the first stage and three machines in the second stage. We 

start from the first product and perform experiments with 3, 4, and 5 consistent sublots 

while the other two products have 2 sublots. We then considered the situation that 

products 2 and 3 have 3, 4, and 5 sublots each time with other products having 2 sublots. 

Experiments are performed using these settings and optimal solutions are obtained as 

shown in Table 4-4. 

Table 4-4 The advantages by increasing the number of sublots for each product at a 
time 

Number of sublots 
Product 1 

2 
3 
4 
5 
2 
2 
2 
2 
2 
2 

Product 2 
2 
2 
2 
2 
3 
4 
5 
2 
2 
2 

Product 3 
2 
2 
2 
2 
2 
2 
2 
3 
4 
5 

Objective 

12400.67 
11892 

11636.8 
11528.04 

12050 
11839.9 
11761.82 
12111.8 
11886.7 
11857 

Advantage % 

1.88% 
5.90% 
7.92% 
8.78% 
4.65% 
6.31% 
6.93% 
4.16% 
5.94% 
6.18% 

Increasing the number of sublots normally decreases the mean completion time of 

production. Figure 4-10 depicts the advantage trend in the objective function value with 

the data given in Table 4-4. 
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Figure 4-10 The advantage trend in the objective value by increasing number of 
sublots 

4.3 Lot streaming multiple products in a multi-stage hybrid flow shop 

In this section we use another example problem to verify the proposed integer 

programming model in Section 3.2. In this example, 3 products are produced in a four 

stage hybrid flow shop with non-identical machines. Products are transferred from stage 

1 to stage 4 after completion of their process on each machine. Stage 1 and stage 4 each 

has a single machine while stages 2 and 3 have two and three parallel machines, 

respectively. In this problem, sublots are transferred along a general type of hybrid flow 

shop. A single machine stage can either succeed or follow a parallel machine stage. These 

parallel machine stages can be placed in sequence as well. The objective is to determine 

continuous and consistent sublot sizes so that the completion time is minimized. Table 

4-5 shows the values of the parameters of this example. 
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Table 4-5 Values of parameters in a four stage hybrid flow shop 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

Machinel 

Machinel 

Machine2 

Machinel 

Machine2 

Machine3 

Machinel 

Ui 

Product 1 

= 2000, SP] = 

Processing 

Pm 

Pl21 

Pl22 

Pm 

Pm 

Pm 

PHI 

1 

2 

2 

3 

2 

3 

0.5 

•2 

Setup 

ST„, 

ST,2i 

STI22 

ST,3i 

ST/32 

ST133 

ST141 

2 

3 

3 

4 

3 

4 

1 

u2-

Product 2 

= 2500,5^ = 

Processing 

Pm 

P221 

P222 

Pin 

P232 

P233 

P241 

2 

2 

2 

4 

3 

4 

1 

4 

Setup 

ST21, 

ST22, 

ST222 

ST23I 

ST232 

ST233 

ST241 

1 

1 

1 

2 

1 

2 

0.5 

Ui-

Product 3 

= 1800,£Pj = 3 

Processing 

P311 

P321 

P322 

P331 

P332 

P333 

P341 

2 

1 

1 

2 

1 

2 

1 

Setup 

STin 2 

ST32, 2 

ST322 2 

ST331 3 

ST332 2 

ST333 3 

STMI 1 

Machines in stage 2 are identical while the third stage has different machines with 

different processing and setup times. Assume that a factory has bought a new processing 

machine which works faster with less setup time. Since the goal is to minimize the 

completion time of all products, it is logical to use the faster machine as much as 

possible. In our example, it is expected that more sublots are assigned to machine 2 in the 

third stage. 

We input the parameter values and solve the integer programming model by Lingo. 

Global optimal results are obtained in few minutes and sublot sizes are shown in Table 

4-6. 

Table 4-6 Size of consistent continuous sublots 

Product 1 

Size of sublots 
1 2 

992.12 1007.88 
1 

823.45 

Product 2 

Size of sublots 
2 3 

617.4 540.17 
4 

518.98 

Product 3 

Size of sublots 
1 2 3 

666.30 647.97 485.73 

As seen in the Gant chart shown in Figure 4-11, sublots of different products do not mix; 

they start processing as the predecessor product has completed its process. Second 
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machine of the third stage has been assigned more sublots for processing as expected. 

Machines 1 and 4r have less idle times and production flow is slow on them. 

Stage I 
Stage 2 

Machine 1 
Machine 2 

Stage 3 
Machine 1 
Machine 2 
Machine 3 

Stage 4 

n 2 2 ~ T " 3 T T 

1 I I 2 3 13 

I r 

~2 | 

2 13 13 i m 

T l 2 2 2 2 3 3 3 

7555.32 10273.18 12076.18 

Figure 4-11 Final schedule of the hybrid flow shop lot streaming example 

The minimum completion time achieved is 12076.18 and the optimal sequence is product 

1, product 2, and product 3 consecutively. 

It is of great interest to study which combination of parallel machines in the stages can 

yield the best response in solving hybrid flow shop lot streaming problems. We consider 

all the possible combinations of machines in the four stages in our example with 

maximum number of 2 machines in each stage. Where needed, another identical machine 

is utilized in stages 1 and 4. In the third stage, machine 3 is removed and machine 1 is 

kept when only one machine is used. The rest of the assumptions hold and parameter 

values are input in our model to perform the experiments. Sixteen possible combinations 

are illustrated in Table 4-7. The model is run in Lingo and global optimal solutions are 

achieved. Table 4-7 shows the corresponding makespan, computational time and 

sequence of products for each alternative. 
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Table 4-7 Different combinations of machines and the responses 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Number of machines in stages 
Stage 1 

1 
1 
1 
1 
2 
1 
1 
1 
2 
2 
2 
1 
2 
2 
2 
2 

Stage 2 
1 
1 
1 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
2 
2 
2 

Stage 3 
1 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
2 

Stage 4 
1 
2 
1 
1 
1 
2 
2 
1 
2 
1 
1 
2 
2 
2 
1 
2 

Makespan 

20994.18 
20976.25 
13704.83 
20994.18 
20532.27 
12860.66 
20976.25 
20994.18 
20514.35 
13538.75 
20532.27 
11851.39 
12773.17 
20514.35 
10610.59 
10335.86 

Time 
(Seconds) 

12 
14 
27 
26 
31 
31 
46 
38 
77 
170 
214 
408 
499 
550 
600 
4620 

Sequence of 
Products 
2-3-1 
2-3-1 
1-2-3 
2-3-1 
2-3-1 
1-2-3 
2-3-1 
2-3-1 
2-3-1 
1-3-2 
2-3-1 
1-2-3 
2-1-3 
2-3-1 
2-3-1 
2-3-1 

This model is solved within few seconds for small size problems and up to 77 minutes for 

problems with 2 parallel machines in each of the four stages; this setting yields the 

minimum makespan out of all. As illustrated in Figure 4-12, computational time of 

solving the model increases by the cumulative number of machines in stages. In this 

figure, the computational time is taken as the average of the time corresponding to 

settings with the same number of machines. 
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4-12 Increase of computational time by the number of machines 

By analyzing the results, we can conclude that using more machines in particular stages 

may not necessarily decrease the completion time of products. Setting 1, which is a pure 

flow shop, and setting 8 have the same objective value therefore the combination of 1, 2, 

2, and 1 machine in stages 1, 2, 3, and 4 respectively can be disregarded. Moreover, 

setting 16 has the minimum makespan with the highest computational time. Taking into 

account all these alternatives in hybrid flow shop problems enables the management to 

balance between costs and time in manufacturing systems. 

4.4 Summary 

The mixed integer programming formulation developed in Chapter Three is programmed 

and run using Lingo optimization software. The data used in the experiments is either 

hypothetical or from the similar example problems in the literature. The model is used to 

solve lot streaming problems in multi-stage hybrid flow shops. The obtained results are 

reasonable and the performed comparisons to the similar existing studies validate the 
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proposed model. The solution approach is adequate for solving problems with various 

settings. 

In this chapter, insights are gained into the effects of changing different model parameters 

and problem characteristics on the objective function. Experiments are performed and 

problems are solved giving parameter values in three different example problems. 

Changing the number of machines in each stage, the number of sublots per product, and 

type of sublots are discussed and influences on the makespan are analyzed. 

From the first example problem in Section 4.1, we observe that by applying variable 

sublots instead of consistent and constant sublots, the makespan is reduced due to high 

setup time in stage 2. It also shows that when setup time is negligible, there is no 

difference between using consistent sublots and variable sublots. This is studied in 

another example problem considering a single product in a hybrid flow shop of three 

parallel machines in the first stage and a single machine in the second stage. 

Some researchers decompose the multiple-product lot streaming problem into single-

product problems and solve them separately. In the example problem in Section 4.2, we 

observe that this approach increases the makespan. The best solution may be achieved by 

sequencing decision and sublot size determination simultaneously in a multiple-product 

model. Moreover, influences of increasing the number of sublots each at a time on the 

makespan are analyzed. 

Further analysis is carried out in an example problem of lot streaming multiple products 

in a multi-stage hybrid flow shop in Section 4.3. The results show that the optimal 

solution assigns more sublots to the faster machine among the parallel machines in the 
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third stage, as expected. This model incorporates different combinations of non-identical 

parallel machines or single machine in different stages. 
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Chapter Five Conclusions and Future Research 

This chapter presents a summary of the research conducted in this thesis. Several 

concluding remarks are also presented based on the problem modeling and results 

analysis. Future research directions on this study are also discussed. 

5.1 Concluding Summary 

This research extends the work of Biskup and Feldmann (2006) and Feldmann and 

Biskup (2006). They present integer programming formulations for lot streaming 

problem of single product and multiple products in flow shops. Zhang et al. (2005) and 

Liu (2008) develop mathematical and heuristic methods to solve the problem of lot 

streaming in two-stage hybrid flow shops for single and multiple products. This research 

incorporates lot streaming multiple products in multi-stage hybrid flow shops. A mixed 

integer programming model is proposed solve this problem. We assume consistent 

sublots that do not intermingle while processing on machines. Machines are non-identical 

and setups on the machines are independent of the sequence of sublots. The solution 

approach determines the number and the size of sublots as well as product sequence so 

that the makespan is minimized. The presented model is capable of handling lot 

streaming problems with various settings; nevertheless, it may not yield optimal results 

for large size problems in short computational time. 

Numerical experiments are carried out to validate the proposed model. Problem 

characteristics and parameter values are varied to analyze their influences on the 

objective function value. Comparisons are performed to similar example problems in the 
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studied literature. It is illustrated that using parallel machines in some stages of the 

production line may not necessarily reduce the objective function value. Generated 

optimal solutions verify the accuracy of the proposed mixed integer linear programming 

model. The presented approach can help the shop manager to decide the best combination 

of parallel and single machines corresponding to the best objective function value in 

hybrid flow shops. 

5.2 Future directions for research 

Although this research provides interesting and useful results, the underlying research 

possibilities in lot streaming problems exist. Some of the possible extensions to this work 

include: 

• Developing a mathematical model for solving the multiple-product lot streaming 

problem in multi-stage hybrid flow shops considering variable sublots 

• Considering sequence-independent setup time 

• Considering intermingling 

• Evaluating the efficiency of decomposition approach when intermingling is 

allowed 

• Developing heuristic methods to decrease computational time of solving large 

size lot streaming problems 
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Appendix A: Lingo Code for Multiple-Product Model 

SETS: 
product/1..3/:U,SP; 
sublot/1..4/; 
stage/1..4/:SM; 
machine/1..3/; 
prodmach(product,stage,machine):P,ST; 
compsize(product,sublot,stage,machine):C,L,B; 
prosub(product,sublot,product,sublot):X; 
link(sublot,machine); 
Link2(product,sublot,stage); 

ENDSETS 
DATA: 
U = 2000 2500 1800; 
S M = 1 2 3 1; 
SP = 2 4 3; 
G= 10000000; 

END DATA 

! OBJECTIVE FUNCTION; 

MIN= Z; 

! SUBJECT TO; 

!#1; 
@FOR(compsizeO,i,s,m)|i #LE# SPG): Z >= C(j,i,4,m)); 

!#2; 
@FOR(product(j):@for(stage(s): @SUM(link(i,m)|i #LE# SPG):L(j,i,s,m))=UG))); 

!#3; 
@FOR (compsizeG,i,s,m)|m #GT# SM(s) #AND# i #LE# SPG): 

LG,i,s,m)=0); 
!#4; 
@FOR(compsizeG,i,s,m) |i #LE# SPG): CG,i,s,m)>= PG,s,m)*LG,i,s,m)+ 
STG,s,m)*BG,i,s,m) ); 

!#5; 
@FOR(CompsizeG,i,s,m)|i # L E # SPG):@for(sublot(r)|r # L T # i # A N D # r # L E # S P G ) : 

CG,i,s,m)-PG,s,m)*LG,i,s,m)-STG,s,m)*BG,i,s,m)>=CG,r,s,m))); 

U,k; 
.1,1,1, 

!s; 
!m,f; 
!j,s,m; 
!j,i,s,m; 
!j,i,k,t; 
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!#6; 
@FOR(machine(m): @for(stage(s): 

@for(Prosub(j,i,k,t)[j#LT#k #AND# i #LE# SP(j)#AND# t #LE# SP(k): 
C(k,l,s,m)-P(k,s,m)*L(k,l,s,m)-ST(k,s,m)*B(k,l,s,m) >= C(j,i,s,m) - (1-

xa,i,k,t))*G))); 

!#7; 
@FOR(machine(m): @for(stage(s): 

@for(ProsubG,i,k,t)[j#LT#k #AND# i #LE# SP(j)#AND# t #LE# SP(k): 
C(j,l,s,m)-P(j,s,m)*L(j,l,s,m)-ST(j,s,m)*B(j,l,s,m) >= C(k,t,s,m) -

XO,i,k,t)*G))); 

!#8; 
@FOR(Compsize(j,i,s,m)|s#GT#l #AND# i #LE# SP(j): 

@for(machine(f): C(j,i,s,m)-P(j,s,m)*L(j,i,s,m)-ST(j,s,m)*B(j,i,s,m)>= 
CO,i,s-l,f))); 

!#9; 
@FOR(ProsubG,i,k,t)|i#GT#l #AND# t#GT#l #AND# i #LE# SP(j)#AND# t #LE# 
SP(k)#AND#j#LT#K: 

XG,i,k,t)<=XG,i-l,k,t-l)); 

! Control of the binary B; 
!#10; 
@FOR (link2G,i,s)|i #LE# SPG): 

@sum(machine(m) :BG ,i5s,m))= 1); 
!#11; 
@FOR (compsizeG,i,s,m)|i #LE# SPG): LG,i,s,m) <= BG,i,s,m)*G); 

! Consistent; 
!#12; 
@FOR (link2G,i,s)|s #GT# 1 #AND# i #LE# SPG): 

@sum(machine(m):LG,i5s5m))=@sum(machine(m):LG,i,s-1 ,m))); 

!#13; 
@FOR(ProsubG,i,k,t)LJ#LT#k:@BIN(XG,i,k,t))); 

!#14; 
@FOR (compsizeG,i,s,m): @BIN(BG,i,s,m))); 

64 



Appendix B: Lingo Code for the Model with Variable Sublots 

SETS: 
sublot/1..2/; 
stage/1..2/:stam; 
machine/1.. 2/; 
process(stage,machine) :p,st; 
compsize(sublot,stage,machine):C,L,B; 
submasub(sublot,stage,sublot):y; 
link(sublot,machine); 
Link2(sublot,stage); 

ENDSETS 
DATA: 
U=4000; 
P = 11 

0 0; 
st = 0 0 2000 2000; 
stam= 2 1; 
G-l 000000; 

END DATA 

! OBJECTIVE FUNCTION; 

MIN=Z; 

! SUBJECT TO; 

!#1; 
@FOR(compsize(i,s,m): Z >= C(i,2,m)); 

!#2; 
@FOR(stage(s):@SUM(link(i,m):L(i,s,m))=U); 

!#3; 
@FOR (compsize(i,s,m)|m #GT# stam(s):L(i,s,m)=0); 

!#4; 

@FOR(compsize(i,s,m) : C(i,s,m)>= P(s,m)*L(i,s,m)+ st(s,m)*B(i,s,m) ); 

!@FOR(compsize(i,s,m): C(l,s,m)>= P(s,m)*L(l,s,m)+ st(s,m)*B(l,s,m) ); 

!#5; 
@FOR(Compsize(i,s,m):@for(sublot(r)|r #LT# i: 

C(i,s,m)-P(s,m)*L(i,s,m)-st(s,m)*B(i,s,m)>=C(r,s,m))); 
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!i,t,u; 
!s; 

!m,f; 
!s,m; 
!i,s,m; 
!i,s,t; 



!#6; 
@FOR(Compsize(i,s,m)|s#GT#l:@for(sublot(t): 

@for(machine(f): C(i,s,m)-P(s,m)*L(i,s,m)-st(s,m)*B(i,s,m)>== C(t,s-1 ,f)-
(l-y(i,s,t))*G))); 
[Control of the binary B; 
!#7; 
@FOR (link2(i,s): 

@sum(machine(m):B(i,s,m))<=l); 
!#8; 
@FOR (compsize(i,s,m): L(i,s,m) <= B(i,s,m)*G); 

!#9; 
@FOR (submasub(i,s,t)| s #GT# 1 : 

Y(i,s,l)=l); 
!#10; 
@FOR (submasub(i,s,t)|t#LE#l #and# s#GT#l: 

y(i,s,t+l)<= y(i,s,t)); 

!#11; 
@FOR (compsize(i,s,m)| s #GT# 1 : 
@FOR(sublot(t)|t#LE#l: 

L(i,s,m) <= @sum(link(u,m)|u #LE# t: L(u,s-l,m))- @sum(link(u,m)| u#LE#i-
1: L(u,s,m)) 

+ (l-y(i,s,t) + y(i,s,t+l))*G)); 

[Consistent; 
!#12; 
@FOR (link2(i,s)|s #GT# 1: @sum(machine(m):L(i,s,m))=@sum(machine(m):L(i,s-
l,m))); 
[Constant; 
@FOR (link2(i,s)|i #GT# 1: @sum(machine(m):L(i,s,m))=@sum(machine(m):L(i-
l,s,m))); 

!#13; 
@FOR(compsize(i,s,m):@BIN(B(i,s,m))); 

!#14; 
@FOR(submasub(i,s,t):@BIN(y(i,s,t))); 
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