Design and Implementation of
A Pomset Automaton Based Runtime Verifier for

Distributed Jade Programs

Yan Liu

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

June 2008

© Yan Liu, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-42533-6
Our file Notre référence
ISBN: 978-0-494-42533-6

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

Abstract

Design and Implementation of

A Pomset Automaton Based Runtime Verifier for Distributed Jade Programs

Yan Liu

Monitoring and checking the execution of a distributed program incur significant
overhead due to the large number of states that need to be considered when using
interleaving semantics to model the concurrency. In this thesis, we use partial order
semantics in modeling a distributed computation. Specifically, a Pomset automaton
model is used to specify all the allowable partial orders of a given design. The distinct
aspects of requirement are separately modeled: the ordering requirements among atoms
(a set of source code statements that are expected to be performed atomically) and the
correctness of each atom. And atomization is introduced into the abstraction to map the
correspondence between events in the design layer and events in code space. Therefore,
ordering requirements are specified among the so called abstract atoms; then, these atoms
in the design space are mapped into the code space using atom variables. The correctness
of an atom is specified by using predicates on a state that is reached upon the completion
of an atom. In our Pomset model, the ordering is explicit and easily checkable, which is

different from the more traditional model checking.

il

The proposed methodology is mechanized in a runtime verification tool on a multi-agent
platform (Jade) to demonstrate its effectiveness. The runtime verifier accepts a
user-specified Pomset automaton and the associated atom predicates for a given Jade
source program. Implemented in Aspect], the verifier monitors and checks both ordering
requirements and atom requirements on-the-fly, and echoes appropriate results to the user

for debugging and testing.

Acknowledgments

I would like to thank my supervisor Dr. R. Jayakumar and Dr. H. F. Li for their
continuous support and valuable suggestions for this research work. Their insights on the
topic of my project helped me a lot; especially their guidance and feedback drove me in

the proper direction of this research all the time.

I am very thankful to my parents for constantly supporting and encouraging me. I am

grateful to them for all they have given me throughout my life.

I would like to thank my husband and my daughter for their moral support and

encouragement.

I would also like to thank all of my friends for all kinds of help and support.

Finally, I am very thankful to everyone who has directly or indirectly helped me, in any

way, to accomplish this research.

Table of Contents

LSt Of FIGUYES..cvucrieraineseseensnsnisnessnisssnnsansnssansssssnossssnessesssonsssssnssasssesnsssssnsorssnssssensonsorssns ix
LSt Of TaDIeS cciissseecsssssnnescssnnasessansrsssssnssacssnsansssssssesssssnnsssssansansssssnsassssssnnasssssassssssonsasessasans xi
Chapter 1 INtroduction.......ceinenninmmninienienienisimemssisssnsenesseesoe 1
1.1 IMOTIVALION. ...eeiiriresireereeree e st sab e sbe s s s sbn e sbb s b sbaesebasneas 1

1.2 Research Goal ... 2

1.3 CONTIDULIONS. ... e s 4

1.4 Organization 0f the TRESIScvvvveiiiiiiiiiiiiiii e 6
Chapter 2 Background and Related WoOrKcuiinienniennnininneinneeienieenene. 8
2.1 Lamport’s Atomicity TheOre€m......c.cccvvvererriviniirinininiciiicniieeesenens 8

2.2 Pomset MOAEL......ccuiviivriniiiiniiienee e 8
221 Model of Distributed Computation............cccvivirnininnininininin 9

222 Specification and Checking of Ordering Requirementsc.... 11

223 Specification and Checking of Computational Requirements.......... 13

23 Multi-agent System in PractiCe..........cocvvvreiivinerineicnniecrre e 13

2.4 Relevant TOOIS......ccevirririniiinine ettt ennens 17
24.1 EaGle .o e s 18

242 HaWK ..o e e 20

243 MOP .t 22
Chapter3 Pomset automaton modeloccvvvineinveinrnessnensnnisnneinsniennesnecsssesssiosnens 26

vi

3.1 Pomset automaton MOGEL........oevvvrrvirererersssisisiiisrsrarsrersrerersrermrererereresersrseren 26

3.1.1 Partial order model.........ccviiriiimiiiinionionen 26

3.12 Semantics of Pomset automatoncocovvevvrervereeneireeneneeseennesieenens 34

3.1.3 Unfolding of the automaton.........c.cevenvierireneenicnicnenneeneeiennnes 38

3.14 Checking the run against the automaton............cccccvvvevvivienninicninnann 39

3.1.5 Specification 1anguage.........cveerivirrerneninnini s 39

3.2 Correctness 0f an atOM......cvveviveiininiiiiie e 42
3.2.1 The MOdE] ...ccviiiiriciiceiieecc e 42

3.2.2 Specification 1anguage.........occevveviieiriiinicii 43
Chapter4 System Design and Algorithm Designcccuvvvnersinisnnsnsnnsencsassnnssnessnens 44
4.1 Design of the distributed monitor.........c.ccvievenenininini 47
4.1.1 Distributed monitor module architecture.......c.ocovnirninniniiniinns 47

4.12 Atom time stamp Protocolccvviviniviniiiiii e 48

413 Implementation asSUMPLIONSoovverrerrverreereeruesraerencrerinenienessaessanes 49

4.2 Design 0f the CheCKer........cocviviiiiiiicierie e 51
42.1 Ordering ChecKing........coevrinerinmiiiiiiiesereesenens 51

422 Predicate CheCKINgcoceviviiriiiniiieinrenesenesr oo nesesnenens 59

4.3 Complexity of the checker.......ccocviviiiiniinieni e 61
Chapter 5 A sample use of the tool......cccoccvviririniirirssnerssennisnnnnssininenssieiinenenes 62
5.1 Deriving Design SpecifiCation.......ccovvvvrivviriireeniieeniesieesineseeesnesneesreesseeens 62

52 ALOIMIZALION. .1eeuvveeireeirrreceeesre e er et eesreessbressereesvnesssresssrbeeesebessrneesssnesns 63

5.3 Pomset Automaton SpecifiCation.......covvvvieriivniiniiiniiniienmemerren 67

5.4 Atom 1abeliNng....ccciviiiniiiiiiiiii 70

55 Predicate SPeCifiCationcvviveiriiviienieriineinese e e enes 76

5.6 Error reporting by the checker ..o 77
5.6.1 A test case with a bug in ordering.......c.cccvvvvevvivivievineccnennnnnesneennen. 77

5.6.2 A test case with a bug in computationccoeevvevieerernenieneniennens 77
Chapter 6 Conclusions and Future WorKcccicuiinnesnninnnicnneennesnes - 79
BIbDLIOGrapRhy c..cccvieiinsisinissesisicrisinissssssnsssssnssisnsssssssisssssssssssssssossssssnsssssnssssessssnssssnsassnsns 85

viii

List of Figures

Figure 1: An example run and its resulting atoms/well-formed atoms. [LMO07].............. 10
Figure 2: (a) Atomized run (b) Atom slice [LMO7]c.ccoeviimininicrninininnreecnereenennne 11
Figure 3: (a) An atom slice that satisfies S, (b) An atom slice that is stricter than §, (c) An

atom slice that fails S. [LMO7]...cccvviviirirrieireeereee e ssesssesessesssssenns 13
Figure 4: Sequence diagram of Iterated Contract Net Interaction Protocol...................... 15
Figure 5: Eagle Architecture [AHOS] ..ot 19
Figure 6: Eagle interface [BGHSO04]......c.coccceviiiiniiiinineiiiriincee et 20
Figure 7: An example of Hawk specification [AHOS].......cccccovveviviiniiicienionioneninneniens 21
Figure 8: The Architecture of JavaMOP [CROO]cccvcvvririniirienieirireienreneesrenenneseesseneos 23
Figure 9: Car controller class [CROO].........coovverrireenieiiiieneieriie e 24
Figure 10: MOP specification for cruise control [CRO6]coceeevivvrviiiiniincninneninninns 25
Figure 11: Role diagram of the E-market application.........c.cccovvviviiniiiniininncninnnnnnne, 28
Figure 12: Interaction Protocol Diagram (Client-Broker)cccoviviniiiniinnniinnnn. 30
Figure 13: The complete interaction protocols diagram for the E-market application..... 30
Figure 14: A run of the E-market applicationcccveivnierncinienncinneneeneennne 31
Figure 15: Another run of the E-market application.........c.cccoevvvvvivreninincncncnceennnene, 33
Figure 16: Combination 0f tWO TUNScccevuerieririierinienineniniseseereseeiesseseesresssssessossenss 34

Figure 17: The POMSET automaton used to model the ordering requirements of the
PIOQUCE DUYET. ..cvvvveirieririririeriereieresinreseeseeresiseresseeneaseesnesesssessensessessessessensens 37

Figure 18: Behavior tree of partial orders in the product buyer application by unfolding

1S AULOIMIALON. ...couviviieiririietert ettt et e e sbe e b s 38
Figure 19: An example of an atomized run of “product buyer”.cccecnvvivvvinniennes 39
Figure 20: System ArchiteCtureccoivviviniiiiniiiin e 45
Figure 21: Distributed Monitor Moduleccoceviviniininiiieiiinciesieesnecsnenees 48
Figure 22: Reported atOm SEt.........cccviviirerireniiiinironieiiininorennesnesseseesesoressessassessseessens 56

Figure 23: The atomized interaction protocols diagram of the E-market application. 64

Figure 24: An example of an atomized run of the E-market application............c..ccvevenen, 68
Figure 25: The POMSET automaton of the E-market application.c..ccccecevvrerrnnenne. 69
Figure 26 the corresponding consistent cut of the checked property.........coccovereevininnne. 81
Figure 27: Atom state lattice of one run of product buyer application........c.ccceeevvverernens 82
Figure 28: Atom state lattice of another run of product buyer application.........c.cc.ccceene. 83

Figure 29: Atom state lattice checked by Java PathFinderc.ccccvvvvinincnnininnennnnn, 83

List of Tables

Table 1: Roles in E-Market application and their responsibilities..........cceerervirererrernnne

Table 2: The set of atoms executed by the E-market applicationc.ccevvvererviineriennns

Table 3: Atom labeling of E-market application

xi

Chapter 1 Introduction

1.1 Motivation

Runtime verification is a testing/debugging technique that combines monitoring and
formal verification during program execution. Runtime verification checks a program run
against safety properties, unlike traditional testing techniques such as unit testing which
are ad hoc and informal. The focus of this thesis is runtime verification of distributed
programs. In order to verify that a run of a distributed program is correct or not, it is
required to specify both the correct concurrent behavior of the distributed program and
the correctness of the computation performed by it. There are different techniques
reported in the literature to specify concurrent behavior of a distributed program like Petri

nets, interleaving models and partial order models.

As we trace back into the distributed computing literature, Petri net is a very powerful
model that people developed many years ago, and it is a means to represent concurrent
systems with explicit concurrency and nondeterminism [Mu89]. It is very powerful due
to the generality and permissiveness inherent in Petri nets. However, it is a tradeoff
between modeling generality and analysis complexity. Although the power is there, the

significant cost in analysis prevents Petri nets from wide-spread use [Mu89].

In adopting the interleaving semantics to model concurrency and use a state machine

representation of a concurrent system, state explosion became an issue [God96].
Fortunately, recent results in formal verification have introduced same powerful
partial-order reduction techniques [Pel96] to overcome such state explosion in large
spectra of scenarios. Indeed it is possible to check a large class of temporal logic
properties (LTL-X) in polynomial time [Spin]. However, the difficulty of formalizing a

requirement in temporal logic is still a problem [CDHRO1].

On the other hand, to specify the necessary ordering requirement in partial order semantic
is easier [LMO07]. For example, in agent protocols, the ordering in the interaction diagram
is explicit. We can easily specify the ordering between events using recurrent partial

orders in partial order semantics.

Then, we ask ourselves how nice it would be to develop a model using partial order
semantic so that we can take advantage of the attractive benefit of usability from partial

order without suffering the humongous cost in analysis as in Petri nets?

1.2 Research Goal

Generally speaking, runtime verification of a distributed program involves two parts of
work: modeling the distributed computation formally; and specifying the properties to be
verified at runtime. In order to do that, in the past twenty years, interleaving model
inherent in temporal logic has successfully augmented model checking with concurrency

in the form of partial reduction techniques [Pel96]. It uses the temporal logic to represent

both the ordering requirements and the property requirements successfully. Several
runtime verification tools have been developed correspondingly, like Eagle, Hawk, MOP,
Java Pathfinder, etc. All of them model the distributed computation as a state lattice, and

specify the properties by temporal logic.

However, the logic formulas are not natural to use and it is very expensive to specify the
ordering among events in the code space [CDHRO1]. To overcome this problem, we
explore the partial order model which separates concerns in checking the necessary
ordering among abstract events and the property requirements of each abstract event.
Therefore, predicates can be used at each abstract action. This thesis tries to use the
partial order model with the atomization technique to achieve this goal. It sets out to
develop an interface specification of the partial order requirements and the computational
requirements to be checked in the execution of a distributed program, together with an

implementation that checks these requirements against a run on-the-fly.

We choose to check the execution on-the-fly, rather than off-line; because through
on-the-fly verification, the program behavior is analyzed during its execution so that
errors are detected and reported as they occur during the run. Hence there can also be an
on-the-fly error recovery. Moreover, since the execution will stop when the error is
detected, no more resources are needed. On the other hand, offline verification collects a
log of events that occur during a program’s execution and post-process the log to detect

errors. The main disadvantage is that execution logs can be very large for parallel and

3

distributed programs.

1.3 Contributions

The objective of this thesis is to develop a tool to check the partial order requirements
and the computational requirements against the execution of a distributed program. In
order to do that, we have modeled a distributed computation using partial order semantics
by a Pomset automaton model. The Pomset automaton model allows us to specify all the
allowable partial orders in the system. The complete specification involves two parts: the
ordering requirements and the computation correctness requirements. In the literature,
there are different techniques people have used to identify and capture relevant
information in order to verify the execution [CR06] [AHO5] [JPF]. We will review some

existing runtime verification tools for introducing these techniques in Section 2.4.

After we successfully model the distributed computation and specify the requirements, in
order to check the execution against these specifications, we will define atoms as abstract
events and predicates of each atom as property requirements. An atom is a set of
statements of the program that are expected to be performed atomically. The concept of
atoms has been proposed as an effective state space reduction mechanism [LMGO7].
Moreover, to capture information related to the atoms and the predicates, we will define
relevant variables, including atom variables, which are relevant in detecting atoms for the

purpose of ordering checking; and predicate variables which are relevant in representing

the global states for the purpose of predicate checking. Finally, the tool performs ordering

checking and predicate checking separately.

In order to keep the complexity of checking as little as possible, we use maxi atoms in
our model, which could contain more than one relevant statement. A relevant statement is
a statement in the source code whose execution may change the value of relevant
variables. By using maxi atoms the number of states that need to be considered in

property checking can be significantly reduced.

At runtime the monitor extracts the atoms through the execution of the instrumented code.
The source code can be hand-instrumented by ourselves or automatically instrumented by
other existing tools. We simply use Aspect], a well-developed Aspect Oriented
Programming (AOP) tool, which seamlessly extends aspect-oriented programming to the
Java language [Aspect]], to do the instrumentation. AOP is a software development
technique that aims to increase modularity of orthogonal programming concerns [Kic97].
An aspect is a module that characterizes the behavior of “cross-cutting concerns”. It
defines behavior that crosscuts different abstractions of a program, avoiding scattering
code that is related to a single concept at multiple places of the program, and as a
consequence, protecting the encapsulation of modules. The atom variables and the
predicate variables are used as the inputs to Aspect] for the purpose of catching the

relevant events from the atoms to be monitored.

It should be noticed that we choose multi-Agent systems just for the purpose of
representing a specific platform of distributed systems to implement our tool. We do not
fall into the field of the multi-agent systems testing and debugging. Our model can be
used to facilitate the debugging of multi-agent systems to some extent; however, there are

characteristics specific to agent systems that could be addressed but ignored here.

Thus, this research involves the design and implementation of a runtime verification tool
for distributed programs written in the agent-based Jade platform. The ordering
requirement of the concurrent program is modeled by a Pomset automaton specifying the
correct partial order behaviors of the computation. The correctness of the computation
performed by a set of source code statements that are expected to be performed
atomically (an atom) is specified by a predicate on variables modified by the atom. The
user is required to provide the Pomset automaton and the predicates to the tool using
appropriate input files. The user also identifies appropriate atoms and atom variables in
the computation so that the tool can observe the atoms using the specified atom variables
at run time and check the validity of the predicates at the end of the atoms to verify the
correctness of a run on-the-fly. The observation of atoms and variables is done through

Aspect].

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 reviews the related research and

relevant tools in the literature. Chapter 3 introduces the Pomset Automaton model to
capture the correctness requirements. This model involves two parts: the ordering
requirements among atoms and the correctness of each atom. Section 3.1 presents our
Pomset automaton model that allows different behaviors of the system to be checked, and
explains how to define the atoms in the requirement space and map them into the code
space using atom variables. Section 3.2 defines the correctness of an atom using

predicates on a state that is reached upon the completion of an atom.

Chapter 4 contains the details of the system and algorithm design of our tool for the
purpose of monitoring and checking. It describes the critical issues in the design; for
example, how to map from design space to code space, how we use Aspect] to take care
of the monitoring, how to unfold the input automaton properly, how we allow for
indexing in the model to overcome the capability problem, and how to allow the merging

of atoms in the run, etc.

Chapter 5 gives a sample use of the tool through a multi-agent E-market application
program. By giving a well selected snapshot of some part of the code, we explain how to
relate the code to the atoms, and how to write the user input file. We also give two sample

outputs of the tool at the end. Finally, Chapter 6 concludes the thesis.

Chapter 2 Background and Related Work

2.1 Lamport’s Atomicity Theorem

Lamport has developed an atomicity theorem to simplify verification of distributed
systems [Lam90]. Lamport adopted the common approach of formally defining an
execution of a distributed program to be a sequence of atomic actions. At the lowest level
of abstraction in the code level each event that results from executing a statement in the
distributed program is considered an atomic action. Reducing the number of atomic
actions makes reasoning about a concurrent program easier because there are fewer
interleaving to consider. This is the main goal of Lamport’s atomicity theorem.
According to this theorem, a sequence of statements in a distributed program can be
grouped together and be treated as a single atom under some stated conditions.
Informally, an atom may receive information from other processes, followed by at most
one externally visible event (for instance, altering a variable relevant to some global
property), before sending information to other processes. This theorem allows a
distributed program to be abstracted into a reduced distributed program with more
general and possibly larger atoms. As a result, the cost of program verification can also

be reduced.

2.2 Pomset model

An important issue in runtime verification of distributed programs is the model used to

specify the distributed computation. In [LMO07], H. F. Li and E. Al-Maghayreh proposed a
runtime verification methodology that exploits the concept of atoms and the partial order
semantics of a distributed computation. According to this methodology, a distributed
computation is modeled as a partially order multi-set (Pomset). Pomsets are attracting
more attention in modeling and analyzing distributed programs due to the fact that they
model true concurrency [LRGO04, LL94, PL93, PL91b, PL91a, Pra86]. The Pomset
model promotes the separation of two different concerns in specifying and checking
properties: (i) the necessary ordering among the atoms and (ii) the correct execution of
each atom (in its effects on the global state). In this section, we review this Pomset

model.

2.2.1 Model of Distributed Computation

A distributed computation is modeled by an atomized run. An afomized run is a Pomset
of well-formed atoms. Each atom can be labeled with the set of relevant variables
associated with its relevant events. A well-formed atom is an atom in which there is no
receive event after a relevant event, and no relevant or receive event after a send event,
and the atom is maximal in length. Thus, if a well-formed atom is extended by including
either a preceding event or a succeeding event in the same process then the extended
sequence of events is no longer a well-formed atom. A well-formed relevant atom is called

a mini atom if it contains at most one relevant event. Otherwise it is called a maxi atom.

For example, the run in Figure 1 is partitioned into five atoms {£1, ..., Es}. Rectangles
are used to depict atoms, and circles and black squares are used to depict events. The
events in process P are split into two atoms: £ and E;, the events in process P, are split
into two atoms: E3 and E4, whereas all the events in process P; form a single atom Es.
Atom E; is not well-formed since there is a receive event after the relevant event x.
Hence, E; must be split into two well-formed atoms E», and Ejyp, separated by a dashed
vertical bar in the figure. Similarly, atom £s must be split into two well-formed atoms Es,
and Esp. Since Es, contains two relevant events, it is a maxi atom, whereas the rest of the

well-formed atoms are mini atoms.

PIEEQ o E, . X

By

‘q\\o mn% Pusss—“~-.
E; [7

Py— R Y o A @{_;.z
ESa :‘E.Rh

Atoms: {E1, E2, E3, E4, E5) Relevant Variables: {x, u,y, z}

Wellformed atoms: {E1, E2,, E2,, E3, E4, E5,, E5,}

L{E2.) = {x}, L(E4) = {u}, L(ES.) = {y.2}, L(ES,) = {2},
label of rest of atoms = {)

P,

Non-Relevant event [Relevant event

Figure 1: An example run and its resulting atoms/well-formed atoms. [LM07]

The atom slice of a run is the projection of the atomized run onto the set of relevant

atoms.

Figure 2: (a) Atomized run (b) Atom slice [LM07]

For example, Figure 2(a) shows the atomized run (Pomset) involving the relevant
variables {u, x, y, z} of the run in Figure 1. Each node represents a well-formed atom and
is labeled with its relevant variables. Figure 2(b) shows the corresponding atom slice,
which corresponds to the projection of the atomized run onto {u, x, y, z} and contains
only those atoms with non-empty labels. This slice contains atoms that are relevant to the

required order checking and computation checking of atoms.

2.2.2 Specification and Checking of Ordering Requirements

A representation of a Pomset based on a set of recurrent sequences $ = {S, Ss, . . ., Su}
was proposed in [LMO7]. Each recurrent sequence S; is of the form
(@) [41; 425 ... ;Ap]*or

(b) [A1 + Az +. ..+ A]*

Form (a) uses the sequence operator *“;”. For any two atoms 4 and B, (4 ; B) means that

atom A should be causally ordered before atom B in any run. Atom A4 is causally ordered

11

before atom B (denoted by, A 2° B) if there exists an event in 4 that happened before an
event in B. The “*” denotes the recurrence operator; it indicates that the sequence can be
repeated any number of times. Each A4; corresponds to the label of an atom in the Pomset.
Semantically, [A;; 42; . .. ; A¢]* represents the recurrent sequence A;; 425 ... Ak
Ay A2y ... 3 A .. . etc. Hence form (a) recurrence represents a fixed ordering
among a recurrent set of atoms. In other words, all occurrences of atoms in the Pomset

whose labels belong to the set {4;, 4y, . . ., A;} must be ordered according to 4; =>°

A2, . DA D A2 4,>° . . . ete.

Form (b) recurrence [A; + Ay + ... + Ax]* uses “+” as a dynamic choice operator among

the atoms whose labels belong to the set {4, A2,. . ., 4¢}. As a result, all occurrences of
atoms in the Pomset whose labels are in {4, 43,. . ., A} must be serialized in arbitrary
order. For example, 412>° A32>° 4;>° 4, A; . . . is a possible serialization. So “+”

€6,

allows for dynamic ordering of atoms whereas “;” allows for fixed ordering of atoms. It
should be noted that 4; need not be distinct. For example, S; = [X; Y¥; X; Z]* is a valid

recurrent sequence where atom X appears two times.

An atomized run is an allowable run with respect to a set of recurrent sequences S if the

ordering among its atoms satisfies the ordering specified by S.

As an example, S = {S| = [X; 4; Y; B; Y]*, S, = [X; C; Y; D; Y]*} is satisfied by both the

atom slices (Pomsets) shown in Figure 3(a) and (b). In both Pomsets, the ordering among

the atoms satisfies the requirements in S; and §,, although the one in Figure 3(b) contains
more ordering (such as C 2° A) than is required. However, the atom slice in Figure 3(c)

fails §; C ° Y is required by S, but is not satisfied by the slice.

Figure 3: (a) An atom slice that satisfies S, (b) An atom slice that is stricter than S,
(c) An atom slice that fails S. [LMO07]

2.2.3 Specification and Checking of Computational Requirements

Assuming that the ordering requirements among atoms are satisfied, the next step is to
check the computational requirements. The computational correctness of an atom is
modeled by an invariant that should be satisfied at each minimal state of each instance of

the atom in the atom slice. The minimal state is the state reached upon executing the atom

itself and all the atoms that are causally ordered before it.

2.3 Multi-agent System in Practice

The Java Agent DEvelopment Framework (JADE) is a software Framework fully

implemented in Java language [JADE]. We choose JADE programs as the programs

13

under test for our verification tool and choose JADE platform to implement the tool for

several reasons. First, JADE simplifies the implementation of multi-agent systems

through a middleware that complies with the FIPA specifications [FIPA]. So it is widely

used by the multi-agent community. Furthermore, JADE supports many possible

application areas, such as

1) Mobile applications, which could use personal agents to support users on the
move (personal agents facilitate search and discovery of information through
interaction with peers (people or service providers);

2) Internet applications that enable end users to deal with available resources’
complexity and to allow seamless access to remote resources and services;

3) Corporate applications to simplify collaboration and cooperation between systems
and people to achieve better results; and

4) Machine-to-machine applications, such as automatic control or traffic

management systems.

Second, JADE implements all basic FIPA specifications which makes it a normative
framework. FIPA promotes agent-based technology and the interoperability of its

standards with other technologies.

Moreover, FIPA provides AUML as a standard agent-oriented modeling technique and
methodology based on the agent software development process [AUML]. From AUML

diagrams, the user can easily and intuitively extract the ordering requirement

14

specification to use our tool. AUML Sequence Diagrams were initially adopted by FIPA
to express agent interaction protocols. Sequence diagrams are defined as a diagram that
shows interactions among agent roles arranged in time sequence. In particular, it shows
synchronization among roles via message exchanges. Two parts can be considered in
sequence diagrams: a frame, which delimits the sequence diagram and the message flow
between roles through a set of lifelines and messages. Figure 4 shows the sequence
diagram of Iterated Contract Net Interaction Protocol in FIPA Interaction Protocols

specifications.

FIF'A-Iterated-ContmctNe:—Pro:ocod

l Initiator ‘ ‘ Participant

1 .
cfp-1 : cfp ~,
I ~
}
1
) s
HES A L
I refuse
L n
i dead-
! < ling
t 1
] I
-
{ }
! propose
reject-proposal-1:
{honfinal reject-proposal e
iteration] k-
‘ cp-2 . cip
reject-proposal-2;
reject-proposal
kP “1]
i
[finat accept-proposal i
iteration] 0%p2k -

inform

T
s

failure

Figure 4: Sequence diagram of Iterated Contract Net Interaction Protocol

15

In the FIPA Contract Net Interaction Protocol, the Initiator issues m initial calls for
proposals with the c¢fp act [FIPA]. Of the n Participants that respond, & are propose
messages from Participants that are willing and able to do the task and the remaining j are

from Participants that refuse.

Among the k& proposals, the Initiator may decide this is the final iteration and accept p of
the bids (0 < p < k), and reject the others. Alternatively the Initiator may decide to
re-iterate the process by issuing a revised ¢fp to / of the Participants and rejecting the
remaining .-/ Participants. The intent is that the Initiator seeks to get better bids from the
Participants by modifying the call and requesting new (equivalently, revised) bids. The
process terminates when the Initiator refuses all proposals and does not issue a new c¢fp, or

accepts one or more of the bids or the Participants all refuse to bid.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the interaction
must tag all of their ACL messages with this conversation identifier. This enables each
agent to manage its communication strategies and activities; for example, it allows an
agent to identify individual conversations and to reason across historical records of
conversations. Additionally, the messages may specify other interaction related
information such as a timeout in the reply-by parameter that denotes the latest time by
which the sending agent would like to have received the reply message in the protocol

flow.

16

We choose to translate the AUML requirement to Pomset rather than use AUML itself to
specify the ordering requirement for the reason that AUML is visual notation which is not

suitable for automatic checking.

Class diagrams, collaboration diagrams, sequence diagrams, and the interaction overview
diagrams all are the design artifacts specified by AUML notation that contains the
ordering requirement for run-time error detection. We choose sequence diagrams to
achieve our goal in this demonstration because it is the most intuitive and natural one
from which we can capture the ordering easily. After we capture the ordering
requirements among the abstract actions in the design space, these abstract actions can be

mapped into the code space using relevant variables.

A sample use of our tool to illustrate how interaction protocols specified using AUML
notation is translated to the ordering requirement of Pomset using relevant variables will

be presented in Chapter 5.

2.4 Relevant Tools

In this section, we will review some existing runtime verification tools from the usage

perspective. Generally, in order to monitor safety properties against a trace of events
emitted by the running program, users need to specify safety properties in some temporal

logic and instrument the program for event identification.

17

24.1 Eagle

Eagle is a rule-based runtime verification framework [AHOS5]. Rules, which are the
properties that need to be satisfied by the program, can be parameterized with formulas
and data-values; thus supporting specifications that can reason about data which can span
over an execution trace. Given a finite sequence of program states and a set of rules
written in temporal logic, Eagle checks if the trace satisfies the set of rules. Monitoring is

done on a state-by-state basis.

The user is responsible for specifying the rules and monitors, and identifying relevant
events of the program to be verified. The monitors define the points at which the rules
should be checked. The relevant events are identified by an instance of a record having a
pre-specified schema, using a set of relevant variables. For example, LoginLogoutEvent
{userld: string, action: int, time: double} is the schema of an event and {userld = "Bob",
action = login; time = 18.7} is an event representing the fact that user "Bob" has logged
in at time 18:7. This set of relevant variables represents the current state of the program,
denoted by a user-defined Java object. In order to capture the relevant events, the source
code needs to be hand-instrumented in a few places. When an instrumentation point is hit
during program execution, the EAGLE state is updated (shown as Step 1 in Figure 5).
The instrumentation point actually maps to a block of code, which could contain several
relevant statements, and captures a relevant event. Then, the observer corresponding to

the specified properties (Spec) is notified (Step 2). In response, the observer evaluates the

18

formulae in the current state (Step 3) and derives new obligations for the future which are

stored in its internal state.

3) evaluate formulae in

Spec the current sate
E Eagle Observer » Auxiliary State
written in Java written in Java
V\ P
\ AN //’/
2)\n0tg'ﬁz 1) ypd&te
. yd

Instrumented program in
Java, C, C++, etc.

Figure 5: Eagle Architecture [AHO0S]

As an example, consider the temporal property: “whenever at some point x = k > 0 for
some k, then eventually y = k”. This can be expressed as follows in quantified LTL:
ox>0=2ak:(x=k"=2y=k)).
Eagle uses a parameterized rule to state this property, capturing the value of x when x > 0
as a rule parameter.
min R(int k) = Eventually(y = k)
mon M = Always(x > 0= R (x))
Rule R is parameterized with an integer %, and is instantiated in M. The detailed Eagle
interface is shown in Figure 6. Besides a set of temporal rules and a set of monitoring
formulas (M1, M2), the user needs to define the relevant variables (x, y) as class data

members to present a state of the program. The source code has to be first instrumented so

19

that the assignments of x and y will form an event. During the execution, those events are

captured, recording the values of x and y. Only when x > 0, M1 and M2 apply on the state.

User defines

these classes

\ class Observer{ class State{
\ Monitors mons; int x, y;
\ State state; gpdate (Event e){
ele2ed.. | . eventHandler(Evente){ | """ X =ex;
v | stateupdate(®); ey
class Eventf—" paate(®) e
. mons.apply(state);)
intx,y;0 |, X
} })
} .
A class Monitor{
\\\\\\\\\ Formula M1, M2;
“4ppy (State s){
Ml.appy (s);
ML.appy (s);
}
}
Figure 6: Eagle interface [BGHS04]
2.4.2 Hawk

HAWK is built on top of EAGLE [AH05]. HAWK specifications are ultimately translated
to EAGLE monitors. HAWK follows an event-based approach to runtime verification in
contrast to EAGLE which is state-based. It extends EAGLE with event expressions that
allow one to bind data values from parameterized program events. Event expressions

actually are expressions of methods; these methods can have parameters and return

20

values, etc.

Hawk integrates EAGLE with Aspect] to realize automatic instrumentation. The
integration of Eagle with Aspect] is by supporting temporal cutpoints. Temporal EAGLE
formulae now become part of the Aspect] cutpoint language, and can function as triggers
for actions to be executed. However, the Hawk specification becomes more complex,

from which Eagle specification and instrumentation aspects are generated.

To use Hawk, the user needs to identify relevant methods (events), and specify monitors

(properties). Figure 7 illustrates the format of a logic observer specification in HAWK.

observer BufferObserver {

classPath = C:/downloads/src
targetPath = C:/downloads/src
terminationMethod = befferexample.Barrier.end()

var Buffer b;
var object 0,
var object k;

mon B =
Always ([b?.put(0?)]
Eventually (<b.get() returns k?>(o ==Kk)))

Figure 7: An example of Hawk specification [AHO05]

In Figure 7, monitor B states the property that whenever an object o is inserted into a

buffer b, eventually it is taken out from that buffer. The put and get methods are events.

21

The actual parameter of the put method and the return value of the get method can be
captured. In Hawk, the states of the program are checked through the captured parameters
of method invocation unlike the relevant variables in Eagle. Thus, Hawk is event-based.
Hawk compiles the Hawk specification to generate the Eagle specification and Eagle

state, and Aspect] aspects. Then the Eagle monitoring engine runs on a trace.

24.3 MOP

Monitoring-Oriented Programming (MOP) is a formal framework for software
development and analysis [CR06]. Like Hawk, Aspect] is integrated into JavaMOP to
realize automatic instrumentation, aiming at reducing the gap between formal
specification and implementation via runtime monitoring. JavaMOP is a MOP
development tool for Java. In MOP, the developer specifies properties using definable
specification formalisms. The MOP framework automatically generates monitors from
the specified properties and then integrates them together with the recovery code into the

original system.

The user is responsible for identifying relevant fields and methods, specifying temporal
logic, and specifying validation handlers and violation handlers in MOP specification. In
Figure 8, the specification processor extracts MOP specifications from the program and
dispatches them to appropriate modules on the lower layer to process, and then collects

the monitoring code generated from the lower layer and integrates them into the original

22

program. Aspect-Oriented Programming (AOP) plays a critical role here: the
specification processor synthesizes AOP code and invokes AOP compilers to merge the
monitors within the program. The instrumented program applies the logic along with the

validation handlers and violation handlers on a trace.

Local or Remote
Communication

Logic Server

Figure 8: The Architecture of JavaMOP [CR06]

The following example is a simplified cruise control system whose behavior only
concerns the actions of setting and canceling the cruise mode. The specification can be
informally described as follows: “Once the cruise control has been set, the speed of the

car should not be 5 miles more than or less than the selected cruise speed until the cruise

23

control is released.”

Suppose that the car control system is implemented in the CarController class in
Figure 9, which contains the operations for starting/stopping cruise control
(setCruiseControl () and releaseCuriseControl ()), as well as the fields
for recording speeds. Then Figure 10 gives the FTLTL-based specification to formally

specify the desired behavior of the system.

class CarController {
int currentSpeed;

int targetSpeed = 0;
void setCruiseControl(){

... targetSpeed = currentSpeed; ...
}

void releaseCruiseControl(){
... targetSpeed = 0; ...

}
void doBrake();

Figure 9: Car controller class [CR06]

24

I*@

scope = class

Logic =FTLTL

{

Event setCC : end(exec(* setCruiseControl()));

Event releaseDD : end(exec(* releaseCruiseControl));

Predicate upperBounded : currentSpeed < (targetSpeed + 5);

Predicate lowerBounded : currentSpeed > (targetSpeed + 5);

Formula : o (setCC => ((upperBounded A lowerBounded) U releaseCC));

}

Violation Handler :
@this.releaseCruiseControl();
@Reset;

@/

Figure 10: MOP specification for cruise control [CR06]

We can see that MOP specifies the mapping from the design-level events that represent
the actions of starting and stopping the cruise mode to the method execution in the code
space, and the mapping from two predicates defined to check the proper range of the car

speed to the relevant variables in the code space.

In the instrumentation, the monitoring code will be inserted after the two cruise mode
related methods to get every update of currentSpeed and targetSpeed, and check the

predicates.

25

Chapter 3 Pomset automaton model

The Pomset automaton model promotes the separation of two different concerns in
checking a distributed computation: the ordering between the executed atoms and the
correctness of the computation performed by each atom. Therefore, the model falls into
two separate subsections. In the first subsection (Section 3.1), we will introduce Pomset
automaton which generates the set of allowable behaviors of a distributed program. In the
second subsection (Section 3.2), we will present the correctness of an atom by using

predicates on a state that is reached upon the completion of an atom.

3.1 Pomset automaton model

3.1.1 Partial order model

A partial order model explicitly models the ordering among events or atoms. In our work,
an event is the execution of a program statement; an atom is a sequence of statements
executed, which can be treated as an atomic action under some stated conditions. Using
partial order model, ordering requirements involve a set of allowable partial orders, each
representing a run of the distributed program. The set of partial orders is generated by a

partial order automaton.

We will illustrate the partial order model through the following example of E-Market

application. Table 1 summarizes the different roles in this application and describes their

26

responsibilities and objectives, according to the system specification. The role diagram is

shown in Figure 11.

Table 1: Roles in E-Market application and their responsibilities

ROLE DESCRIPTION

Client The person who conducts a purchase with the help of a broker

and an accounts manager.

Broker People who broker a purchase for a client with a wholesaler.

Wholesaler A wholesaler sells an item through a broker and informs the
accounts manager to complete the transaction (receipt of money

and delivery of product).

Account Manager An accounts manager completes a transaction with the client, as

instructed by a wholesaler.

Interaction Protocols are used for maintaining relationships between roles. In this
application the FIPA Iterated ContractNet Protocol is used. For example, Figure 12 shows
the interaction protocol diagram between the client and broker roles. These diagrams can
be combined to create a single diagram that depicts all the interaction protocols used

between different roles in the application.

27

Client‘
C

Accolints
Manager-
A

: Broker

B\.

WholeSaler
W

Figure 11: Role diagram of the E-market application.

Figure 13 shows that complete interaction protocols diagram for the E-market application

described below.

1.

Initially a client C (who wants to purchase a product P) will send a call for proposal
to all of the known brokers (Bj, ..., Bn). We call this protocol session as session 1.

As protocol session 1 is evolving, when a broker receives a call for proposal from
Client C, he will send a call for proposal to all of the wholesalers he knows (¥, ...,
W,). This will embed another protocol session identified as session 2_broker(i).
During session 2_broker(i), when a wholesaler receives a call for proposal from a
broker B, he will check his catalogue to see if product P is available and now he has

the following two choices: if the product is available, the wholesaler will send a

28

propose message to the broker (Step 3a), otherwise the wholesaler will send a refuse
message to the broker (Step 3b).

. If the broker receives a non-empty set of proposals he will choose the best one
(session 2_broker(i) pause, but the session 1 keeps evolving.) and send it in a propose
message to the client C (Step 4a), otherwise he will send a refuse message to the
client (Step 4b).

. If the client receives a non-empty set of proposals from the brokers known to him, he
will choose the best one and send a purchase order to the corresponding broker (Step
S5a: session 1 keeps evolving.); otherwise the client will send another call for
proposals (Step Sb: session 1 ends and a new session starts).

. When the broker receives a purchase order, he will forward it to the corresponding
wholesaler (session 2_broker(i) proceeds).

. When the wholesaler receives a purchase order, he will check his catalogue and send
an inform message to the accounts manager.

. When the accounts manager receives an inform message from a wholesaler, he will
send a bill to the corresponding client if the purchase has been approved by the
wholesaler (Step 8a), otherwise he will send the client a failure message (Step 8b).

. When a client receives a bill from an accounts manager he will send the specified
amount to the accounts manager (Step 9a); if the client receives a failure message
from the accounts manager, he will send another call for proposal (Step 9b: session 1

ends and a new session starts).

29

10. When the accounts manager receives the payments he will deliver the product to the

client (all sessions end).

Propose/Refuse

Client CFP Broker

Purchas

Figure 12: Interaction Protocol Diagram (Client-Broker)

Inform/Failure
4 Infor

Deliver AM

Payment

Propose/Refuse

Propose/Refuse

Client Purchase

Broker

Purchase

CFP

Figure 13: The complete interaction protocols diagram
for the E-market application.

According to the protocol, a run of the E-Market application could be as shown in Figure

14, where a node is an abstract event in the protocol space and an edge represents the

30

ordering requirement between two events. In the figure, some events are un-ordered. For

example, 2 and 2’, and 3, 3’ and 3” are allowed to be concurrent.

Figure 14: A run of the E-market application

In this case, the client has two brokers. Brokerl has three wholesalers and broker2 has

31

one. Wholesalerl and wholesaler2 sent a propose message to brokerl in Step3; while
wholesaler3 sent a refuse message. And wholesaler4 sent a propose message to broker2.
In Step 4 brokerl sent a propose message to the client, while broker2 sent a refuse
message to the client. Then client sent a purchase order to one of the brokers, the broker
forwarded it to the corresponding wholesaler, the wholesaler sent an inform message to
the accounts manager, the accounts manager sent a bill to the client, the client sent the
specified amount to the accounts manager, and the accounts manager received the

payments he delivered the product to the client at the end.

Another run of the application could be a little different from the above one as shown in
Figure 15: in Step 4, broker2 also sent a propose message to the client; and in Step 8,
however, the purchase had not been approved by the wholesaler, the account manager
sent the client a failure message, and the run ended. This different run leads to the

required ordering shown in Figure 15.

The two runs form a subset of all allowable runs from the nested protocol sessions. When
viewed together, such a set can be represented by a behavior tree. Each path in the
behavior tree contains an allowable partially ordered run, such as the one in Figure 14 or

Figure 15.

32

(&)
@)
(&)
9
(1)
@‘

Figure 15: Another run of the E-market application

33

OO --&)

Figure 16: Combination of two runs

3.1.2 Semantics of Pomset automaton

Observably, the set of partial orders in the ordering requirement can be viewed as a
behavior tree of partial orders. The initial states of the program are the root of the tree.
The tree will grow as the program is executing. Some nodes lead to a choice 'condition’

34

from where different 'branches' of the behavior may be followed, this is where branching
in the partially ordered behavior tree occurs. We denote such instances of branches with a
'+' as exemplified in Figure 16. When a run gets to a choice condition, it will choose one

of the choices/branches and follow that path, until the next condition.

With the view that the ordering of atoms is represented by a behavior tree of partial
orders, we need to derive a finite representation of the behavior tree. In general, the
behavior tree can be infinite for a non-terminating system. This is accomplished by
identifying ‘slot’ or conditions in a path of the behavior tree which recur: the same
subtree of behaviors will emanate from such slots whenever a run reaches these slots. For
example, a call-for-proposal (slot) in the former example may repeat indefinitely,

generating an arbitrarily expanding subtree of partial orders.

The finite representation we have developed makes use of such recurrent conditions,
which can be choice (such as the + in Figure 16) or non-choice conditions in a behavior
tree to form a partial order automaton, which will be referred to as a Pomset automaton.
The Pomset automaton model has a starting condition denoting the initialization of all
involved processes. As these processes progress forward, atoms relevant to ordering
requirements are idgntiﬁed. Their required ordering is specified in the form of a set of
transition rules, each rule containing a finite Pomset emanating from a set of slots and
ending at a set of slots. Since a set of slots can represent a recurring condition which can

have multiple choice rules to be applied, the automaton will lead to a behavior tree.

35

An execution (run) satisfies the ordering required by a specified Pomset automaton only
if every order in the specification is satisfied in the execution. Hence it is conceivable that
monitoring and checking an execution against the specification is fairly straightforward
and can be done simply in polynomial time, provided that the identification of atoms is

instrumented properly in the code space.

We will provide an informal description of the Pomset automaton below. The basic
entities in a Pomset automaton include: (i) a set of slots, and (ii) a set of transition rules.
A transition rule includes: (a) one or more start slots, (b) one or more end slots, and (c) a
finite Pomset concatenating the start slots to the end slots. To illustrate this, let us
consider a simplified scenario of the previous E-market example by slicing the role
diagram and focusing on the sub-space involving a buyer agent and two seller agents. As
a result, the buyer agent conducts the contract net protocol with the two seller agents,

which is captured by the Pomset automaton shown in Figure 17.

In Figure 17, transition 7 involves (a) start slot S, (b) end slot S;, and (c) the finite
Pomset connecting S to Sj, representing the call-for-proposal (4), the replies (D and D),
and the processing of the replies (B). In the figure, slots are drawn in circles and atoms

are drawn in squares.

Multiple rules can emanate from the same set of start slots, in which case, the slots form a

choice condition. When a choice condition is reached, the behavior will evolve forward

36

with choice, by following one of the rules in the automaton. In Figure 17, §) is a choice
condition (set of start slots) from which three rules, 75, 73 and 74, may follow, depending
on the runtime choice made. Via I, the call-for-proposal repeats. Via T3, the contract is
struck and committed, involving the purchase acceptance (E;) and final commit (C). Via
T}, the contract is struck and committed, involving the purchase acceptance (E5) and final

commit (C).

D,

D,

D,

D,

T3: @—> E, C

Ty (s E » C

5 &

Figure 17: The POMSET automaton used to model the ordering requirements of the
product buyer.

37

3.1.3 Unfolding of the automaton

Given a Pomset automaton, it is rather apparent that a behavior tree can be unfolded from
the initial slot of the automaton by applying every rule whose start slots have been
reached in the unfolding performed so far. For example, the unfolding of the automaton
in Figure 17 can lead to a behavior tree partially shown in Figure 18. The partial behavior

tree in Figure 18 actually shows eleven distinct partially ordered behaviors of the system.

Figure 18: Behavior tree of partial orders in the product buyer application by
unfolding its automaton.

38

3.1.4 Checking the run against the automaton

Generally, checking a run against a Pomset automaton is easy: the run Pomset must
contain more ordering than the requirement Pomset. Mechanization of this will be rather

straight forward, and its details will depend on the details of the automaton syntax.

Putting this into practice, Figure 19 shows an example run of a “product buyer”.

Seller,

Buyer

Seller,

Figure 19: An example of an atomized run of “product buyer”.

The example run shown in Figure 19 can be produced by the automaton by firing

transition 7; then transition 73. So, it is an admissible run.

3.1.5 Specification language

The Pomset model specifies a set of allowable partial orders of a program; however, the
atoms in the partial orders depend on the atomization of the program. In our work, the

atomization of a run uses maxi atoms.

A relevant variable is a program variable which is used to define a global property of the

39

distributed program. The identification of an atom is by means of ‘relevant variables’,
which are variables modified within an atom. The correspondence between atoms in the
Pomset automaton and atoms in the execution of program code is established by means of
relevant variables. Specifically, an atom in an execution run is identified with a label
corresponding to the set of relevant variables that are modified by the relevant events in
the atom. In the instrumentation, a user of the monitoring and checking tool is expected

to specify the Pomset automaton using labels with relevant variables.

For example, relevant variables for the E-market atoms in Figure 17 are:
A: {Buyer. currentOrder},
D {Seller_1. receivedOrder},
Dy: {Seller_2. receivedOrder},
B: {Buyer. purchaseOrder},
E): {Seller_1. payment},
Ey: {Seller 2. payment},

C: {Buyer. purchased}.

As an implementation language, the finite Pomset fragment contained in each rule of the
Pomset automaton is specified as a set of linearized threads which when weaved together
(via union of sets) form the Pomset fragment. For example, the Pomset fragment in 77 of
Figure 17 is expressed as the following two threads between the start slot S and end slot

S, as follows:

40

Thread 1: S: 4;Di; B . 81

Thread 2: S: 4; DB . S

Together, these two threads weave together to form the transition rule 73. This thread
decomposition of each Pomset fragment enables arbitrary partial orders to be used within

each transition rule.

As a result, the Pomset automaton of Figure 17 can be equivalently expressed in the form

of a list of decomposed threads, as shown below:

Start Slot Set Rule Threads Ending Slot
{0} 1 4;Dy; B 1
1 4;D2; B 1
{1} 2 A;Dy; B 1
2 A;D2; B 1
{1} 3 EL C 0
3 E2; C 0

Using labels with relevant variables, the user is expected to specify the Pomset automaton

as follows.

41

Start Slot Rule Threads Ending Slot

{0} 1 {Buyer. currentOrder} ;{ Seller 1. receivedOrder}; 1
{Buyer. purchaseOrder}

1 {Buyer. currentOrder} ;{ Seller_2. receivedOrder}; 1
{Buyer. purchaseOrder}

{1} 2 {Buyer. currentOrder}; {Seller 1. receivedOrder}; 1
{Buyer. purchaseOrder}

2 {Buyer. currentOrder}; {Seller 2. receivedOrder}; 1
{Buyer. purchaseOrder}

{1} 3 {Seller 1. payment}; {Buyer. purchased} 0

3 {Seller_2. payment}; {Buyer. purchased} 0

3.2 Correctness of an atom

3.2.1 The model

The key emphasis in our approach is a clear distinction of two separate concerns: the
causal requirement among atoms, and the correctness in computation arising from each
atom. With this separation of concern, we do not have an exponential number of states
with which correctness must be checked. Instead, the requirement involves only a number

of states equal to the number of atoms in the specification.

Assuming that the ordering between atoms is satisfied separately as modeled in Section
3.1, the computational correctness of an atom can be specified using a predicate on the

state reached upon execution of each atom, without taking into account the execution of

42

other atoms that are not ordered before it. This is our basis for reasoning about the

correctness of the coding of an atom.

3.2.2 Specification language

We specify the computational correctness through predicates, which involve getting the
value of the predicate variables (relevant variables that define predicates). Therefore, the
specification language involves the user input to specify the predicates, and the user input
to provide the set of predicate variables in the code space. It should be noted that
predicate variables are different from atom variables used in identified atoms. In fact,

predicate variables may be modified outside relevant atoms in the Pomset automaton.

In the implementation, a predicate to be satisfied upon completion of an atom is a Java
expression to be evaluated at the (minimal) global state associated with that atom in the
run. As an illustration, consider atoms B and D; in the product buyer example. The
corresponding predicates are listed below:

Atom Predicate

D; Seller_i. product = = Buyer. product
{Seller_i. receivedOrder}

B Buyer. price = =min (Sell_1.price, Seller 2.price)
{Buyer. purchaseOrder}

E; Seller_i. price = = Buyer. price
{Seller_i. payment}

43

Chapter 4 System Design and Algorithm Design

The tool we have developed is for monitoring and checking program codes during their
runtime execution. This chapter contains the details of the algorithms and system design
of the tool for the purpose of monitoring and checking. Given a Pomset automaton as the
ordering requirement and a set of predicates written in Java expressions as computational

requirements, the tool checks if a run satisfies both requirements.

We start the description of the high-level design by introducing several assumptions in
our design. First, we assume that programs under test are in JADE. Second, atoms are
detected at runtime by user defined atom variables. Third, ordering requirements are
specified by user defined automaton. Last, the automaton is scalable and allows nesting
of protocol sessions. That means our automaton can specify dynamically growing

systems rather than statically determined set of agents.

Based on the above assumptions, the tool is composed of two parts: the distributed
monitor module, and the global checker module. The system architecture is shown in

Figure 20.

44

Distributed Monitor Module Global Checker Module

Automaton
unfolding

Tl

~ Atoms Ordering
Atorn —Report— se?;?:?on dispatch and | | apd R System
report Run Predicate recovery

reconstruction checking
/ l
State update

Jade Platform

Time stamp

Atom detection

Predicate record

Figure 20: System Architecture

The Distributed Monitor is located in each agent object, and maintains a global time
stamp. It is responsible for the detection of atoms and the recording of predicate variables.
It reports to the global checker the detected atoms with the values of updated variables.
The Distributed Monitor is designed to be event driven. Relevant events include
time-stamp events, message tagging events, predicate events, atom start/end events, and
atom and states report events. Time-stamp events modify the global timestamp of each
atom, which involve the receive events and the first atom variable modification events in
the atom. Message tagging events tag the time stamp to each atom, which involve the
first send event in an atom. In the case of no send event in an atom, the first receive event
of the next atom would be the message tagging event. Predicate events are the events that
change the values of the predicate variables, which involve the execution of predicate

statements. Atom start/end events are the receive events and the send events. Atom and

45

states report events report the relevant atoms with their time stamp and the values of
predicate variables to the global checker, which involve the first atom variable

modification events in the atom.

As shown in Figure 20, the Distributed Monitor is composed of the time stamp
component, the atom detection component, the predicate record component, and the atom
report component. The time stamp component is responsible for maintaining the global
time stamp and tagging them to the atoms. The atom detection component is responsible
for detecting the start and the end of the atoms and the identification of those atoms using
atom variables. The predicate record component is responsible for recording the values of
the predicate variables. Taking the information from the time stamp component, the atom
detection component, and the predicate record component, the atom report component is
responsible for reporting the atoms with the time stamp, and the values of predicate

variables to the global checker.

The Global Checker receives reports from the distributed monitors, performs the
checking for both ordering and predicates on-the-fly. It is composed of the atom selection
component, the automaton unfolding component, the atom dispatch and run
reconstruction component, the state update component, the ordering and predicate
checking component, and system recovery component. The atom selection component is
responsible for choosing the ready atoms from the received atoms and sending them to

the atom dispatch and run reconstruction component. We assume our automaton can have

46

arbitrary number of starters. The atom dispatch and run reconstruction component is
responsible for dispatching the ready atoms to their corresponding starters and
reconstructs the run for each starter. Upon the receiving of the atoms, the state update
component updates the values of predicate variables with the corresponding time stamp
in the maintained database; the ordering and predicate checking component selects the
atom set to be checked along with the unfolded the automaton to run the ordering
checking. If the ordering requirement is satisfied, the automaton unfolding component
unfolds the automaton by the allowable atoms and selects the enabled transition rules; the
ordering and predicate checking component runs the predicate checking using the
updated values of predicate variables. Whether there is an atom check failure or a
predicate check failure, the system recovery component is responsible for taking recovery

actions to avoid crashes of the system.

4.1 Design of the distributed monitor

4,1.1 Distributed monitor module architecture

The distributed monitor maintains a global time stamp locally, and is responsible for

atoms detecting and variables recording. Its architecture is shown in Figure 21.

47

atom variables;
Predicate variables

Instrumentation
Jade specification
program (Atom time-stamp protocol)

NS

AspectJ
compiler

Instrumented Atomized Report 1o
byte code —Execute— trace I——global checker——>

Figure 21: Distributed Monitor Module

The user provides the atom variables and predicate variables along with the source code
(Jade program) for the local monitors. An atom time-stamp protocol is designed for the
purpose of identifying all the atoms according to the atom variables provided by the user,
and detecting the time stamp of the atoms as well as the values of predicate variables with
their respective time stamps. The monitors take the atom time-stamp protocol as the
instrumentation specification to be implemented in an AspectJ class. Then with the help
of Aspect] compiler the Aspect] class will be weaved into the source codes and the
instrumented byte codes are generated. After the execution of the instrumented byte

codes, the local monitors report the atomized trace to the global checker.

4.1.2 Atom time stamp protocol

The critical part of the distributed monitor module design is the design of the atom

time-stamp protocol as the instrumentation specification, which is implemented in the

48

Aspect] class. Algorithm 1 involves an atom time stamp protocol with the detection of
relevant atoms and causal relationship among detected atoms. The input of the algorithm
is the source code of the program with the user defined atom variables and predicate
variables. The output is the atoms labeled by a set of atom variables, their time stamps,
and the value of predicate variables with their respective time stamps. The time stamp is
defined for the purpose of identifying the potential causality among the detected atoms

and identifying the minimal state of each atom.

To identify the minimal state of an atom, the atom should be reported together with the
values of the predicate variables that it owns with the time stamp. So in Algorithm 1, we
report the previous atom, not the current one, when a new atom is detected. Therefore at
the atom state, it records any changed value of the predicate variables. In the algorithm 1,
the global time stamp T is designed as a two-tuple so that n in <t1,.., tn>isa variable

that can dynamically grow.

4.1.3 Implementation assumptions

User provides the class name and the variable name of each atom variable in the atom
variables input file, and the class name and the variable name of each predicate variable
in the predicate variables input file. In the current implementation, we assume that these
relevant variables only could be data members of a class and their types could be

primitive variables and reference variables. If the relevant variables are local variables of

49

methods, user needs to make them global.

Algorithm 1 Atom time-stamp protocol with detection of a relevant atom.

Process i:

Initialization:
T =<tl,..., ti,.., tn> = <0,0,..0>;
new_atom = true;

Repeat:
before a current (caught) event is performed do case of

atom event:

{
record variable;
if new_atom then

{
<tl,.., ti, .. tn> = <tl, .. ti + 1, .. tn>;

new_atom = false;
report T* and values of relevant variables;
}

}

predicate event:

{record variable;}
send (m) :

{

if T is never tagged on a message via this
channel then send (m, T) instead of just send(m);
if new_atom = false then T* = T;
new_atom = true;
}

receive(m, T'):

{

if new_atom = false then T* = T;
new_atom = true;

T = max(T, T');

}

until termination of process;
report T* and values of relevant variables;

In the above T* is the timestamp of the previous relevant atom (not current one). A relevant
atom is reported when either a new relevant atom is detected or when the process has

terminated.
Another constraint is that the assignment statements of the relevant variables should be

50

outside of the field declaration and the constructor of Behavior class because before the
Behavior constructor is executed the Behavior object cannot get the reference of its agent

which calls the behavior.

4.2 Design of the checker

The global checker runs the checking algorithm upon receiving the atoms, and reports
any errors in either ordering or predicates. The checking algorithm involves two parts of

checking: ordering checking and predicate checking.

4.2.1 Ordering Checking

4.2.1.1 Ordering checking algorithm

Ordering checking is to check a run of a program against its Pomset automaton. If the run
Pomset contains more ordering than the requirement Pomset, the run is admissible.
Otherwise, the run is not admissible. Algorithm 2 shows the ordering checking algorithm.
The input of the algorithm is a run Pomset and a Pomset automaton. The output of the
algorithm is an ordering error which is reported if the run Pomset is not admissible. We
use this checker algorithm to unfold the automaton by keeping track of all activated slots
and transitions rules. Notice that with the semantics chosen for the automaton, each

enabled start slot set can unfold exactly one of its transition rules.

51

Algorithm 2 ordering checking algorithm.

Let I be the run pomset and P be the given automaton.

Let I° be the current set of enabled atoms in I.

Let P° be the current set of enabled atoms (that can evolve from the automaton P, according to
the pomset fragment/slot semantics).

repeat
if I’ is contained in P°
then prune I° from I and advance I° in P
else report error and terminate
until I =null or error has been reported

4,2.1.2 Some difficulties and their solutions

i. Scaling and nesting of protocol sessions

The scalability of an automaton means that the automaton can specify programs in which
the interactions can scale up in agents, including the nesting of protocol sessions. In other
words, we have dynamically growing systems rather than statically determined set of

agents. The dynamic changing of agents requires the automaton to be scalable as well.

For example, when the previous product-buyer application (which involves a buyer and
two seller agents) is improved to be a dynamically growing program, it will require our
automaton to be scalable. In other words, the buyer agent calls for proposal from a set of
seller agents (Selleri, i < n) instead of two, and accepting one of these before completing
the rest of the protocol. The scaling has to do with the fact that the set of broker agents

may grow (and is decided only at runtime), and the automaton has to be able to specify it.

Hence, we can not specify the automaton by specific agents and slots; instead, we

52

incorporate index variables with slots so that a slot can scale up to allow for a variable
degree of concurrency in the specification. These index variables will get their values
during the run. And then using these runtime-determined information, we can unfold the

automaton properly and do the checking.

For example, in Section 3.1.5, the Pomset automaton of product-buyer application has
been specified in the form of a list of decomposed threads. However, this automaton is
not scalable since the involved agents are statically determined (Buyer, Sellerl, and

Seller2).

To improve the automaton to be dynamically scalable, we incorporate an index variable (i)

to be associated with the end slot in Rule 1. As a result, Rule 1 is specified as follows:

Start Slot Set Rule Threads Ending Slot

0 1 A; Dy B 1. (1)

The above Rule 1 represents undetermined number of transition rules. The index (i) will
be determined by a set of seller agents when the program is executed. And each seller
agent will conduct an instance of Rule 1. Correspondingly, Rule 2 and Rule 3 are

specified as follows (where “+” is used to represent a conjunctive slot):

Start Slot Set Rule Threads Ending Slot
1. (@). + 2 4; Dy B 1. (1)
1. (). + 3 E; C 0

53

Moreover, we assume that the scaling has to do with multiple levels of nesting of
protocols too. For example, when the brokers receive the call for proposal from the client
agent, they may propose different sale prices and the client agent accepts one of these
prices before completing the rest of the protocol; or they call for proposals from other
wholesalers through separate protocols. Then, after accepting one of the proposed prices
offered by the wholesalers, the brokers propose their prices to the client agent, and the
client agent accepts one of these prices (from brokers) before completing the rest of the
protocol. In this case, the program involves two levels of nesting of protocol sessions:
one is between the client agent and its brokers, and the other is between a broker agent
and its wholesalers. By incorporating indexing of slots, we can solve this nesting of
protocol sessions problem as well. As a result, protocols can be bound with their nested
protocol in a specification too. A more complex example to illustrate it is given in

Chapter S.

In addition, our automaton can have arbitrary number of starters. In other words, the
initial slot S is actually a set < So1, So2, So3, ..., Son>, Which could have as many number
of initial slots as a program needs to use. Therefore, the automaton has a scalable set of

transition rules initially, and different runs fire different starters and follow separate rules.

ii. Getting the concurrent atom set

Why do we need to get the concurrent set of enables atoms I°, and check the entire set in

54

Algorithm 2? This issue concerns the correctness of the checking algorithm. The

following simple example will reveal the reason.

Suppose the run contains two atoms, 4 || B, and the specification automaton contains two
ordered atoms, [4; B]. If the checker selects 4 from the run and checks it against the
automaton, it will not report an error and proceed to check B without reporting any error.
Obviously, the run does not satisfy the specification; but the checker fails to report the
error. The correct checker algorithm should identify the set of enabled atoms in the run.
In the example, it will be {4, B} and check if the entire set is enabled in the specification
(without doing so one at a time). Then it will reveal that 4 but not B is enabled in the

specification and report the failure of the run.

This algorithm is implemented without any problem in a previous off-line version of the
checker because the entire concurrent atom set is easy to get using the time stamp since
all the atoms of the run are known. However, when we want to do it on-the-fly, we can
not ensure that the atom set obtained using time stamps among the reported atoms is an

entire set of the concurrent atoms.

For example, the ordering requirement in Figure 22 is: @ = b; b = (¢ || x). In run (a) and
in run (b), x’ and x” are reported after 5. In scenario (a), ¢ and x’ are received by the
checker as a concurrent set to be checked. The checker reports no error and the run does

satisfy the specification. But in scenario (b), ¢ and x” are received by the checker as a

55

concurrent set to be checked. The checker reports no error. Obviously, the run does not
satisfy the specification. So the checker has failed to report the error. To avoid that, the
checker must get all the concurrent set members in the run Pomset at the checking point,
and check them together. In scenario (b), the checker does not check b until x” is received,

and then it should check b and x” together as a set.

(@) (b)

Figure 22: Reported atom set

Algorithms 3 detailed order checking algorithm

In each run, while the automaton is unfolded, when multiple rules
are enabled, we get a set of concurrent enabled atoms, setl =
{atoml, atom2 ..}, set2 = {atom3, atom4 ..}, set3 = {atomb}.

Get an atom from runAtoms (partial ordered):
If the atom belongs to any of the above set,

Then
If the set is completely attained,
Then check the set, and delete the set;
Else store the atom.

Else
If the atom concurrent with the stored atoms,

Then check it;
Else leave it in the runAtoms

56

The detailed ordering checking algorithm is shown above as Algorithm 3 which ensures

to check the complete set of the concurrent atoms of the run Pomset.

iii. Unfolding the automaton

Algorithm 4 is a more detailed ordering checking algorithm than Algorithm 3. It gives the
detailed design to solve the problem of how we prune an atom of the run Pomset and how
we advance the transition rules. In Algorithm 4, when an atom has been checked to be an
enabled atom, the automaton will be updated. As a result, some atoms are identified with
its agent id and its sender ids, and some index variables in the start slot may be identified
by the agent ids. Algorithm 5 gives the details of the updateAutomaton () method.
The input of the algorithm is an atom which has been checked to be an enabled atom, and

the output of the algorithm is an updated automaton.

iv. Merging of atoms in a run

In some situations we need to break an atom into a sequence of atoms to specify the
automaton generally; for example, to specify the choices. But an actual run may have
more ordering than the specification. The checker must be able to do the checking
correctly under such scenarios. For example, let the specification be {x} = {z} weaved
with {x}=> {y}. The actual run {x, y} = {z} satisfies the specification in this case and the
checker should not report error. In order to do this correctly when checking {x, y}, if {x}
is enabled, then decompose the atom {x, y} into two atoms {x} and {y} and check them.

57

Algorithm 4 detailed ordering checking algorithm with the unfolding of the automaton

Repeat:

Get an atom from the atom set;

isEnabledAtom = false;

Prune one atom from runAtoms;

If the atom has predicate variables, record it with the vector clock;
if the atom is not a choice atom

then {

else |

)

get enabled atoms from the enabled Rules;
if the atom is one of the enabled atoms

then{
isEnabledAtom = true;
updateAutomaton (atom) ;
if the atom is the last atom in the thread of enable rule
then {
remove the enabled rule;
get the enabled slot;
if the enabled slot is a conjunctive slot
then {
record the enabled slot;
if any conjunctive start slot set is satisfied
then get enabled rule;
}
elsa get enabled rule from the enabled slot:
}
else {

remove the atom from the thread of the enable rule;
specify the next atom's agentID and senderID;
}
}

get enabled atoms from the enabled choice rules;
if the atom is the only atom in the enabled rule

then {
if the atom is one of the enabled atoms
then |
isEnabledAtom=true;
updateAutomaton (atom) ;
if the end slot contains wildcard, replace it;
add the enabled the rule from the end slot;
remove the choice slot set;
break;
}
}
else
if the atom is one of the enabled atoms
then{

isEnabledAtom=true;

updateAutomaton (atom) ;

prune the atom from the rule;

specify the next atom's agentID and senderID;

add the enabled choice rule to the enabled rules;
remove the choice slot set;

break;

}

if (isEnabledAtom)

then{

else {

checkPredicate (atom);
updateEnabledRules (atom) ;
}

report ordering error;
throw an ordering error exception;

58

Algorithm 5 automaton update algorithm upon checking of an enabled atom

If the atom is the last atom in the rule
Then
If multiple receivers
Then {
Specify the next atom's senderlID;
Specify the next atom's agentlD;
Specify all the wildcard in the start slot;
Specify this atom's receiverlIDs;

}
Else {

Specify the next atom's senderID;
Specify the next atom's agentID;
Specify this atom's receiverlD;

}
Else

Specify this atom's receiverlD;
Specify next atom's agentID and senderID.

4.2.2 Predicate checking

For an atom to be pruned, the predicate associated with it (specified in the input file)
should be checked with the recorded values of the relevant variables. The predicate is
specified by Java Boolean expressions. Therefore, our strategy for predicate checking is
simple cut and paste. In practice, these predicates take the form of method calls on the
corresponding atoms and are accomplished via the Java reflection mechanism. The

method calls take the predicate variables as their parameters.

59

4.2.2.1 Predicate checking algorithm

Algorithm 6 is the predicate checking algorithm. The input of the algorithm is a run

Pomset and a predicate input file. And the output of the algorithm is predicate error.

Algorithm 6 Predicate checking algorithm

Produce the Methods class from predicate input file
Get values of the predicate variables

Pass the values and invoke the corresponding method
If the method call returns false, report error.

4.2,2.2 Some difficulties and their solutions

The main difficulty lies in the correct requirement of predicate checking, This involves
two issues. One is how to select the proper relevant atoms among the atoms with the
same ID, in the case of a scalable automaton (in other words, how to determine the causal
cone of the concerned atom). The other issue is how to collect most recent values of the
predicate variables. The solution to the first issue lies in the semantics of the model. As
we know the scalability of the automaton is attained by producing different instances of a
rule. The correspondence between ordering checking and predicate checking is that they
follow the same transition rule. Thus the correct requirement to choose the proper
predicate variable is to choose the one which is in the same rule as the checked atom. To
solve the second issue, we maintain a database associating each agent process with its

predicate variables’ value and the corresponding time stamps.

60

4.3 Complexity of the checker

The complexity of our checking algorithm is composed of three parts: the complexity of
the atom time-stamp protocol, the complexity of predicates checking and the complexity
of the reachability checking. Suppose N is the number of the atoms, m is number of
relevant variables which are modified inside or outside of each atom, and E is the number
of edges in the complexity graph. The complexity of the atom time-stamp protocol would
be O(mN+E). Suppose p is the complexity of the predicate of each atom. The complexity
of the predicates checking would be O(pN). During the unfolding of the automaton, we
visit every node (atom) once and visit every edge once in the partial order behavior tree
in order to check the ordering. Therefore, the complexity of the reachability checking is

O(N+E). As a result, the complexity of our checking algorithm is O((m+p)N + E).

61

Chapter 5 A sample use of the tool

This chapter shows a sample use of our tool through the example E-market application.
By showing a well selected snapshot of some parts of the code, we explain how to choose
the atom variables for the purpose of identifying the atom in design space. We also
explain how to specify the predicates to be checked using predicate variables. Finally, we
give two sample screenshots of the output to show the information users can get from the

result of checking.

In order to use the tool, the user needs to specify the distributed computation as a Pomset
automaton and the properties as predicates. In order to do that, the user has to identify the
atom variables and predicate variables. Specifically; first of all, the user has to derive the
design specification of a program in terms of the roles and their relationships; second,
identify all the atoms in the program; third, specify the Pomset automaton; fourth,
identify the atom variables to label the atoms; finally, identify the predicate variables and

specify the predicates.

5.1 Deriving Design Specification

The example E-market application has already been described in Section 3.1.1.
According to the design specification, Table 1 summarizes the roles and describes their

responsibilities and objectives, and Figure 11 is the role diagram of the application.

62

5.2 Atomization

The atoms that can be executed by an application can be identified by constructing the atomized
interaction diagram based on the design specification.

Figure 23 shows the atomized interaction protocol diagram for the E-market application.

Rectangles are used to depict atoms; each atom has a corresponding label.

63

AM ws Broker Client

i CEP A
D
CFI ‘ B [_
C
Propose/
o Refuse (] Propose/
L Ii D Refuse)
b R
" ___ Purchase [;F
I' Purchase LG 1
) Inform H .
1 Inform/
Failure '[0
J
Payment
Delivery
L

Figure 23: The atomized interaction protocols diagram of the E-market application.

Once this is done, we have the set of all atoms that can be executed by the application.
Table 2 lists the set of atoms that can be executed by the E-market application along with

a brief description of the functionality performed by each atom.

Table 2: The set of atoms executed by the E-market application

Atom | Agent Description

A Client Sending a call for proposal to brokers.

64

Bi

Broker

The i™ Broker receives the client call for proposal and

sends a call for proposal to wholesalers.

Wholesaler

The j™ wholesaler of the i™ broker receives the broker
request; if the requested product is available, the
wholesaler will send a proposal for the broker, otherwise

he will send him a refusal message.

D;

Broker

In this atom, the ;™ broker receives all the proposal/refusal
messages from the wholesalers and sends a proposal/

refusal message to the client accordingly.

Client

The client receives all the proposal/refusal messages from

the brokers and selects the best proposal if any.

Client

The client sends a purchase message to the broker who

has provided the best proposal.

Broker

The broker receives a purchase order from the client and

forwards it to the corresponding wholesaler.

Wholesaler

The wholesaler receives a purchase order from the broker;
if the requested product is available he will approve the
purchase order, otherwise he will reject it; in any case he

will forward the result to the account manager

Account

The account manager will receive the purchase order; if it

65

Manager

(AM)

is approved, he will send an invoice to the client,

otherwise he will send a Failure message to the client.

J Client

The client receives a message from the AM, this message
can be an inform message or a failure message. If it is a
failure message then the client will make another call for
proposal in the next atom. If the message is an inform
message, the client will pay the amount specified in the
invoice and will send a proof of payment to the AM. (The

payment issues are not handled in the application)

The AM receives the proof of payment and delivers the

confirmation to the client.

L Client

The client receives the confirmation.

Figure 24 shows an example of an atomized run of the E-market application. In this run
we have assumed that there are two brokers B1 and B2 known to client C. Brokers B1 and
B2 can contact wholesalers W1 and W2. In the first round of the run the client sent a call
for proposals to the brokers but he did not receive any proposal, so he sent another call
for proposals, and this time he has received some proposals. The client proceeded and

sent a purchase order. The run continued according to the described interaction protocols

until the client received the purchased product.

66

5.3 Pomset Automaton Specification

The atomized interaction protocol of the E-market application is captured by the Pomset
automaton shown in Figure 25. We assume that there are ;i Brokers known to the client,
and for each broker knows j wholesalers. There are 8 transitions in this Pomset automaton.
The three vertical dots appearing in some of the transitions indicate that some of the atoms
or slots are not depicted in the transition. For example in transition T there are three
vertical dots between atoms B; and B;, this indicates that transition 77 also involves atoms
{Ba, ...,Bi-1}. Moreover, there is an edge between atom 4 and each atom in {B,, ...,
Bi_1}, and there is an edge from each atom in {B», ..., B} to its corresponding slot , as is

the case for the two atoms B; and B, that are already depicted in transition 7.

The Pomset automaton of Figure 25 can be expressed equivalent in the form of a list of

decomposed threads, as shown below:

67

0

- C—
Ca
O,

1]
(
<l % !
L d : i cL
> o o 72}
2 O == M 3 B

Figure 24: An example of an atomized run of the E-market application.

68

G

Bl‘_@
T, @—M d Ty: @<
O
S3 S4;
T3:E D @ T, E E_,@
83 S4;
Ts: @—#F oGl H I
Iy: @——»F MG HI I}
Ty: K L——#@

Figure 25: The POMSET automaton of the E-market application.

Start Slot Set Rule Threads Ending Slot
1 1 A; Bj; 2. (i)

2. (i) 2 Gy 3. (). ()

3. (). §).+ 3 D, 4. (i)

4. (i).+ 4 E 5

5 5 1

5 6 F, G H, I, J, 6

6 7 1

6 8 K; L, 1

69

5.4 Atom labeling

Each atom in

Figure 23 includes a label corresponding to the subset of atom variables that trigger
relevant events in the atom. One of the difficulties in the use of our tool is choosing these
atom variables properly so that the atoms labeled by the atom variables can be detected

and checked during the run.

For the purpose of identifying the atom variables, we use the following selected
snapshots of some parts of the source code to explain how to relate the code to the atoms
in the specification. Atom A is responsible for sending a call for proposal to the brokers.

It corresponds to the following code block in the Client .RequestPerformer class.

70

case 0O:
/¢ SBend the ofp to all brokers

try {

c¢fp = new ACLMessage (ACLMessage, CFD):;
r=new Order (myAgent..getAID (} ,currentOrderID++) ;
r . setOrderItems (Product)
warker currentOrder items=1;
cfp.setContentChiect (¢ rder) ;
for (int i = 0; i < Brokerdgents.length; ++i}) {

cfp.addReceiver (Brokerigents([i])
}
cfp.sectConversationld {"Product-trade");
cfp.setReplyWith("cfp"+System. currentTimeMillis()) ;
wyigent.send (cfp);
}
catch (IOExXception ex) {

ex.printStackTrace() ;

}

mt = MessageTemplate.or(MessageTemplate.MatchPerformative (ACLNessage,PROPOSE),
HessageTemplate.MatchPerformative (ACLNessage . REFUSE)) ;

step = 1;

break;

There are several variables involved (cfp, currentOrder, mt, step)inthe code
block. Any single variable or combination of them could be chosen as atom variables.
However, there are some guidelines that can help the user to make a correct and efficient
choice: (1) According to our definition of maxi atom, an atom may receive information
from other processes, followed by relevant events, before sending information to other
processes. In other words, the potential relevant statements should be between the receive
event and the send event. Therefore, variables mt and step are not suitable to be the
atom variables. (2) Consider class data members prior to local variables, so that the user
saves the effort to make them global. Therefore, since cfp is a local variable in the try
block, it is not the first choice. (3) Choose the variable set that can identify the atom and
make the set as small as possible. At first, the user can try to choose one variable to

identify the atom as long as this variable can identify this atom. This attempt may fail,

71

when any single variable between the receive event and the send event in the atom is also
modified in other atoms. Therefore, the user can not use it alone, but choose another
variable together with it to identify the atom. In the worst case, when all variables in the

atom can not identify the atom, the user has to use auxiliary variables.

Based on the above analysis, the user can choose the class data member,
currentOrder which is before the send event, as atom variable to identify atom A.
Then, the execution of the assignment statement of currentOrder is a relevant event
which is captured by Aspect] during the run, and the variable name is recorded as the
identification of atom A at the same time. The send event is captured by Aspect] too as
an indication of the end of the atom. Therefore, abstract atom A in the design space is
mapped to the atom variable Client .RequestPerformer.currentOrder in the
code space. As a result, atom {Client.RequestPerformer.currentOrder} is

the actual atom which the monitor receives during the checking.

As another example, Atom B is responsible for receiving the client call for proposal and
sending a call for proposal to wholesalers. It corresponds to the following code block in
the Broker «class. The receiving event is in the behavior class
ClientRequestsServer. If the received message does not equal to null, the
behavior ProcessClientRequest (in which some variables are assigned followed

by a send event) is also involved.

72

fww
Inner clazs ClientRegquestsiervear.
Thiz iz the behavicur used by broker agents
Lo serve incoming requests for offer from Clisnt agents.
w7
private class Cl

ecquestsServer extends CyclicBehaviour {

pubklic void action() {
MessageTemplate mt =
HessageTemplate.MatchPerformative (ACLMessage. CFP) ;
ACLMessage msg = myigent.receive(mt):
if (msg != nuall) {
addBehaviour (new Proce

]
’

else {
blockl():

}
Yy /4 End of inner class ClientReguestsierver

73

private class ProcessClientRequest extends Behaviour {
private AID bhestSeller;
private int bestPrice;
private int repliesCnt=0;
private MessageTemplate mt;
private int step=0;
private ACLMessage msgl, BestProposal;
Order &) ey,
ACLNessage replyToClient:;

public ProcessClientRequest {ACLMessage mg) {
nmsgl = mg;
}

public veid action() {
switch (step) {
case 0:
/7 Sand the ofp to all whole salsrs
ACLMessage cfp = new ACLMessage (ACLMessage.CFFP);
for (int i = 0; i < WholeSaleriAgents.length; ++1i) |
cfp.addReceiver (VholeSalerdgentsa[i])

= new Order (null,0):
2y = (Order) msgl.getContentObject(}:

catch (UnreadableException exl} {
exl.printStackTrace():
}
try {
cfp.setContentObject (ge
}
catceh (IOException ex) {
ex.printStackTrace() !
}
cfp.setConversationld("Product-trade’);
cfp.setReplyWith{"cfp"+System, currentTimeMillis()); /¢ Unigque walus
mylAgent.,send{cfp);
mt = MessageTemplate, axnd(MessageTemplate.MatchlonversationId("Product-trade”),
MessageTemp late . MatchInReplyTo(cfp.getReplyWith())

step = 1;
break;

Based on the previous guidelines, a good choice is to choose the class data member
receivedOrder as atom variable to identify atom B. Then, the execution of the
assignment statement of receivedOrder is a relevant event which is captured by
Aspect] during the run; and the variable name is recorded as the identification of atom B
at the same time. The send event is captured by Aspect] too as an indication of the end of

the atom. Therefore, abstract atom B in the design space is mapped to the atom variable

74

Broker.ProcessClientRequest.receivedOrder in the code space. As a
result, atom {Broker.ProcessClientRequest.receivedOrder} is the actual

atom which the monitor receives during the checking.

The mapping from the abstract atoms of the atomized protocol into the set of atom

variables in the code space is shown in Table 3.

Table 3: Atom labeling of E-market application

Atom | Atom variables

A {Client.RequestPerformer.currentOrder }

B; {Broker.ProcessClientRequest.receivedOrder}

Cy {wsaler.BrokerRequestsServer.receivedOrder}

D; {Broker.ProcessClientRequest.replyToClient}

E {Client.terminate}

F {Client.RequestPerformer.PurchaseOrder}

G {Broker.ClientPurchaseOrdersServer.receivedOrder}
H {wsaler.BrokerPurchaseOrdersServer.receivedOrder}
I {AccountsManager.WholeSalerRequestsServer.receivedRequest}
J {Client.RequestPerformer.Payment}

K {AccountsManager.PaymentOrdersServer.Payment}

L {Client.RequestPerformer.Purchased}

75

5.5 Predicate specification

From the design specification, we can identify the predicate that captures the correctness

of the incremental function performed by each atom.

Suppose the application needs to check, at the end of atom K, when a Client sends a
proof of payment to the AM after receiving an inform message from the Account
Manager (Atom J), it must be that incrementally, the acceptance item of the Client should
be equal to the acceptance item of the Account Manager. And the predicate specification
should be as follows:

Atom:

Client.RequestPerformer.Payment

Predicate variables:

Client.RequestPerformer.Payment.items;

AccountsManager .WholeSalerRequestsServer.
receivedRequest.items;

Predicates:

Client.RequestPerformer.Payment.items == AccountsManager.

WholeSalerRequestsServer.receivedRequest.items;

76

5.6 Error reporting by the checker

The run of the application involves two clients; each client has two brokers, and each

broker associates with two wholesalers.

5.6.1 A test case with a bug in ordering

We made up the bug by changing the source code. For example, we changed Atom F as
follow. The client sends a purchase message to the account manager instead of the broker
who has provided the best proposal. Therefore, Atom I will be the next atom in the run.
However, it will violate the ordering requirement which specifies that Atom G should be

the next atom. The checker reports the error shown below.

May 18, 2008 10:38:51 PH jade.core,PlatfornManagerlnpl$l nodelrdden
INFO: »-- Node <Container-5> ALIVE ~--

%Involved Processes of this atom: [WiBdisco2:1099/JADE, BlBdisco2:1099/JADE, AMRdiscoZ:1099/JADE, ClRdiscoZ:1099/JADE, W2Bdiscol:1099/JADE, BzB@discol:

?checking terminates due to the ordering error.
htem: AMBdimcoz:1095/JADE,C1ldineo? 1 1099/ JADE, C1RdisceZ s 1093/ JADE, Aecount stanager . Who lefnlerRequestoSecyer . raneivedRequest: the order is error.

5.6.2 A test case with a bug in computation

In this test case, we set Client.RequestPerformer.Payment with item “Q” in
Atom J. Since the original purchase item is “P”, the check reports errors for both

transactions shown below.

77

Hay 18, 2008 11:21:83 P ijade.core.PlacformfanagerInplil nodelddded
INFQO: —-- Node <Container-5% ALIVE ——-
/wuw
Predicate needs to be checked at this atom.,
involved variakles:
C1@disco2:1099/JADE:Client.RequestPerformer . Payment. items:Q;
AM@disco2:1099/JADE: Accountstanager . TholeSalerRequestsServer .. receivedRequest. itens:P;
through method:
atomd

The predicate is not satisfied.
wrw/

The transaction ends.
AL
Predicate needs to be checked at this atom.
involved variables:
C20disco2:1099/JADE: Client.RequestPerformer.Payment.items: Q;
AMRdisco2:1099/JADE: AccountsHanager . TholeSalerRequestsServer,.receivedRequest. items:P;
through method:
atom0

The predicate is not satisfied.
www/

The transaction ends.

78

Chapter 6 Conclusions and Future Work

This thesis reported the design and implementation of a runtime verification tool for
distributed programs written in the agent-based Jade platform. The ordering
requirement of the concurrent program is modeled by a Pomset automaton specifying the
correct partial order behaviors of the computation. The correctness of the computation
performed by a set of source code statements that are expected to be performed
atomically (an atom) is specified by a predicate on variables modified by the atom. The
user is required to provide the Pomset automaton and the predicates to the tool using
appropriate input files. The user also identifies appropriate atoms and atom variables in
the computation so that the tool can observe the atoms using the specified atom variables
at run time and check the validity of the predicates at the end of the atoms to verify the
correctness of a run on-the-fly. The observation of atoms and variables is done through

Aspect].

Most importantly, the critical difference between our tool versus the other tools using
interleaving semantics (e.g. Eagle, Hawk, MOP, and Java Pathfinder), which we have
introduced in Chapter 2, is that we allow separate specification of the ordering and the
correctness. This intrinsically permits checking them more efficiently without
considering all the states during the computation which leads to a lot of problems (like
the state explosion). In addition, we relieve the user from specifying the properties by

temporal logic.

79

Another critical difference is that we use the minimal state of each atom for the purpose
of identifying the values of predicate variables to be used, and check the predicates upon
the completion of an atom. The other tools, in terms of message passing, have to specify
the sliced states globally. In that case, each detected local event will update the global
states and apply the formulas on them. Obviously, the global states used by the other

tools are much more than the minimal states we need to check.

Moreover, we allow an atom to be a single event. This is possible because we are doing
the abstraction of the events in the code space versus the event in the abstracted
requirement space. Requiring a user to point to exact statement or exact event is a little
bit restrictive because we could have the multiple set. In other words, not every
occurrence of these statements or methods corresponds to the event, could be a
combination of them. If any of the other tools hand-instruments the source code, like
Eagle, it can have an event involving several statements or methods. But if the tool
instruments the source code automatically, like Hawk and MOP, its event can only have
one relevant statement or method. In addition, Hawk and MOP capture all the methods
which have the same name as specified in the specification, although some of them may

not be relevant to the properties.

To illustrate the differences more clearly, we give parts of the requirements specification
of product-buyer application specified in Hawk. For example, a user needs to check the

run in Figure 19 against the property that the required product the seller processed is

80

equal to the product the buyer called for proposal.

In this application, send () and receive () methods are the only two methods that can be
specified to capture the events. Obviously, these two methods can not identify all the
events. Therefore, in order to identify all the events, the user needs to identify the send

and receive methods first. As a result, the corresponding consistent cut is shown in Figure

26.

3 . N
Seller, receive(Py send(_I receive()_ 2 send()_2
Buyer sendO_ . .

send()_2 receive()_2
Seller, o
receive() Iy send()_1
.
@

Figure 26 the consistent cut of the checked property

Hawk specification:

Var Sellerl si;

Var Seller2 s2

Var Buyer b;

var ACLMesssage msg_b_sndl;
var ACLMesssage msg_sl_xrcvl;
var ACLMesssage msg_s2_rcvl;

mon F =

81

Always (

Until ([sl.receive_1() returns msg sl _rcvl?] false,

<b.send_1(msg_b_sndl?)> true) (msg_b_sndl = = msg_sl_rcvl)

/\

Until ([s2.receive_1() returns msg_s2_rcvl?] false,

<b.send_1l(msg_b_sndl?)> true) (msg_b_sndl = = msg _s2_rcvl)

As a runtime verification tool, Eagle and Hawk check a run of the product-buyer
application, whose state lattice may be the one shown in Figure 27 or the one shown in
Figure 28. While Java Pathfinder can do more, it can simulate non-determinism. As a
result, it checks all the possible paths of a program with the help of two capabilities:
backtracking and state matching [JFP]. The state lattice of the program that is checked by

Java PathFinder is shown in Figure 29.

Seller2

Buyer
Buyer.receive_1 Seliert

Seller2.send

Buyer.send 2

Seller1.receNg_2

Seller1 .sendt\ Seller1.send_
— N

Figure 27: Atom state lattice of one run of product buyer application

82

Seller2

Buyer
Buyer receive_1 Seller1 Buyer.receive_2

Seller2. send Seller2.send

Seller2.recei
Buyer.send 2 .

Seller2.receiyé

Seller1 send

Figure 28: Atom state lattice of another run of product buyer application

Seller2
Buyer
Buyer.receive_1 Seller! Buyer.receive_2
Seller2.send \ Seller2.send
. iye Seller2.recei
d_1 Buyer.send 2
. Seller1 .rece\gz
Sellert .send}\ Sellert.send_2\
—

Figure 29: Atom state lattice checked by Java PathFinder

By integrating Aspect], we can insert the recovery code into the original system. The
recovery code is executed when the captured events violate the specified properties. So,
the system can take recovery actions to correct the execution at runtime to avoid crashes
of the system. In such a way, our tool improves software reliability via recovery, which is
highly desirable for the critical systems. On the other hand, the gap between dynamic

events for monitoring and static monitor integration based on Aspect] can lead to some

83

limitations. The same problem exists in Hawk, JavaMOP, and our tool. Ideally, for
variable update events, these tools should instrument all the updates of involved variables.
But, statically locating all such updates requires precise alias analysis. In addition, static

instrumentation may cause extra performance penalty in monitoring.

As a future work, the approach used in this thesis can be extended to general Java
programs. In this case, the source code of the given Java program should be hand-
instrumented to report the values of predicate variables to the monitor which can check

the predicates at run time.

84

Bibliography

[Aspect]] Aspect] crosscutting objects for better modularity. Retrieved May 18, 2008,

[AHO5]

[AUML]

from The Aspect] project. Web Site: http://www.eclipse.org/aspectj/

d'Amorim, M. and Havelund, K. 2005. Event-based runtime verification of
java programs. In Proceedings of the Third international Workshop on
Dynamic Analysis (St. Louis, Missouri, May 17 - 17, 2005). WODA '05. ACM,

New York, NY, 1-7. DOI= http://doi.acm.org/10.1145/1083246.1083249

The FIPA Agent UML Web Site. Retrieved May 18, 2008, from AUML Web

Site. Web Site: http://www.auml.org/

[BGHS04] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime

Verification. In Proceedings of the 5™ International Conference on
Verification, Model Chacking, and Abstract Interpretation (VMCAI'04),

volume 55(2), 70(4), 89(2) of LNCS, Venice, Italy, Jan 2004. Springer.

[CDHRO1] J. Corbett, M. Dwyer, J. Hatcli , and Robby. Expressing Checkable Properties

[CRO6]

of dynamic Systems: the Bandera Speci cation Language. Technical Report
200104, Kansas State University, Department of Computing and Information

Sciences, 2001.

Feng Chen and Grigore Rosu. MOP: Reliable Software Development using

Abstract Aspects. University of lllinois at Urbana-Champaign, Department of

85

[FIPA]

[God96]

[JADE]

[JPF]

[Kic97]

[Lam90]

[LL94]

[LMO07]

Computer Science Tec,Technical report UIUCDCS-R-2006-2776, October

2006

Foundation for Intelligent Physical Agents (FIPA). FIPA interaction protocol
library specification. Available from www.fipa.org, 2001. Document number

XC00025D, version 2001/01/29.

Godefroid, P. 1996 Partial-Order Methods for the Verification of Concurrent
Systems.: an Approach to the State-Explosion Problem. Springer-Verlag New

York, Inc.

Java Agent DEvelopment Framework. Retrieved May 18, 2008, from Jade -

Java Agent DEvelopment Framework. Web Site: http://jade.tilab.com/

Java PathFinder. Retrieved May 18, 2008, from Java PathFinder. Web Site:

http://javapathfinder.sourceforge.net/

G. Kiczales and et al. Aspect-Oriented Programming. In ECOOP, volume
1241. Springer-Verlag, 1997.

L. Lamport. A theorem on atomicity in distributed algorithms. Distributed
Computing, 4(2):59-68, 1990.

S. C. Leung and H. F. Li. A syntax-directed translation for the synthesis of

delay-insensitive circuits. IJEEE Trans. VLSI Syst., 2(2):196-210, 1994.

H. F. Li and Eslam Al Maghayreh. Checking distributed programs with

86

[LMGO07]

[LRGO04]

[Mus89]

[Pel96]

[PL91a]

[PLO1b]

partially ordered atoms. In APSEC 07 Proceedings of the 14th Asia-Pacific
Software Engineering Conference, pages 518-525. IEEE Computer Society,

2007.

Li, H. F.,, Maghayreh, E. A., and Goswami, D. 2007. Using Atoms to Simplify
Distributed Programs Checking. In Proceedings of the Third IEEE
international Symposium on Dependable, Autonomic and Secure Computing
(September 25 - 26, 2007). DASC. IEEE Computer Society, Washington, DC,

75-83. DOI= http://dx.doi.org/10.1109/DASC.2007.30

H. F. Li, Juergen Rilling, and Dhrubajyoti Goswami. Granularity-driven
dynamic predicate slicing algorithms for message passing systems. Automated

Software Engg., 11(1):63-89, 2004,

T. Murata. Petri Nets: Properties, Analysis and Applications. In: Proceedings

of the IEEE, Vol. 77, No. 4, pages 541-580. April 1989,

Doron Peled. Partial order reduction: Model-checking using representatives. In
MFCS ’96: Proceedings of the 21st International Symposium on Mathematical
Foundations of Computer Science, pages 93-112, 1996.

David K. Probst and H. F. Li. Partial-order model checking: A guide for the

perplexed. In CAV, pages 322-331, 1991.

David K. Probst and H. F. Li. Using partial-order semantics to avoid the state

87

[PL93]

[Pra86]

[Spin]

explosion problem in asynchronous systems. In CAV '90: Proceedings of the
2nd International Workshop on Computer Aided Verification, pages 146155,
1991.

David K. Probst and H. F. Li. Verifying timed behavior automata with
input/output critical races. In CAV '93: Proceedings of the 5th In- ternational
Conference on Computer Aided Verification, pages 24437, London, UK,

1993. Springer-Verlag.

Vaughan R. Pratt. Modelling concurrency with partial orders. International

Journal of Parallel Programming, 15(1):33-71, 1986.

ON-THE-FLY, LTL MODEL CHECKING with SPIN. Retrieved May 18,
2008, from Spin — Formal Verification.

Web Site: http://spinroot.com/spin/whatispin.html

88

