
The Verification of MDG Algorithms in the HOL 
Theorem Prover 

Sa'ed Rasmi H. Abed 

A Thesis 

in 

The Department 

of 

Electrical and Computer Engineering 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy at 

Concordia University 

Montreal, Quebec, Canada 

June 2008 

© Sa'ed Rasmi H. Abed, 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-42548-0 
Our file Notre reference 
ISBN: 978-0-494-42548-0 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



ABSTRACT 

The Verification of MDG Algorithms in the HOL Theorem Prover 

Sa'ed Rasmi H. Abed, Ph. D. 

Concordia University, 2008 

Formal verification of digital systems is achieved, today, using one of two main 

approaches: states exploration (mainly model checking and equivalence checking) 

or deductive reasoning (theorem proving). Indeed, the combination of the two ap­

proaches, states exploration and deductive reasoning promises to overcome the limi­

tation and to enhance the capabilities of each. Our research is motivated by this goal. 

In this thesis, we provide the entire necessary infrastructure (data structure + algo­

rithms) to define high level states exploration in the HOL theorem prover named as 

MDG-HOL platform. While related work has tackled the same problem by represent­

ing primitive Binary Decision Diagram (BDD) operations as inference rules added to 

the core of the theorem prover, we have based our approach on the Multiway Decision 

Graphs (MDGs). MDG generalizes ROBDD to represent and manipulate a subset of 

first-order logic formulae. With MDGs, a data value is represented by a single variable 

of an abstract type and operations on data are represented in terms of uninterpreted 

function. Considering MDGs instead of BDDs will raise the abstraction level of what 

can be verified using a state exploration within a theorem prover. The MDGs em­

bedding is based on the logical formulation of an MDG as a Directed Formulae (DF). 

The DF syntax is defined as HOL built-in data types. We formalize the basic MDG 

operations using this syntax within HOL following a deep embedding approach. Such 

approach ensures the consistency of our embedding. Then, we derive the correctness 

iii 



proof for each MDG basic operator. 

Based on this platform, the MDG reachability analysis is defined in HOL as 

a conversion that uses the MDG theory within HOL. Then, we demonstrate the ef­

fectiveness of our platform by considering four case studies. Our obtained results 

show that this verification framework offers a considerable gain in terms of automa­

tion without sacrificing CPU time and memory usage compared to automatic model 

checker tools. 

Finally, we propose a reduction technique to improve MDGs model checking 

based on the MDG-HOL platform. The idea is to prune the transition relation of 

the circuits using pre-proved theorems and lemmas from the specification given at 

system level. We also use the consistency of the specifications to verify if the reduced 

model is faithful to the original one. We provide two case studies, the first one is the 

reduction using SAT-MDG of an Island Tunnel Controller and the second one is the 

MDG-HOL assume-guarantee reduction of the Look-Aside Interface. The obtained 

results of our approach offers a considerable gain in terms of heuristics and reduction 

techniques correctness as to commercial model checking; however a small penalty is 

paid in terms of CPU time and memory usage. 

IV 



To My Family 

v 



ACKNOWLEDGEMENTS 

I would like to express my gratitude to my supervisor, Dr. Otmane Ait Mo-

hamed, whose expertise, understanding, and patience, added considerably to my grad­

uate experience. I am deeply grateful for his support and encouragement throughout 

my Ph.D. studies. 

I would like to thank the other members of my committee, Dr. Sofiene Tahar, 

Dr. Rachida Dssouli, and Dr. Asim J. Al-Khalili for the assistance they provided 

at all levels of the research project. Finally, I would like to thank Dr. El-Mostapha 

Aboulhamid from Montreal University for taking time out from his busy schedule to 

serve as my external examiner. 

Very special thanks go out to my colleagues in the Hardware Verification Group 

(HVG), without their help, motivation and encouragement I would not have reached 

this point in my research. I have spent three years and half in the HVG labs and 

will never forget the great moments, and achievements we had together during these 

years. Also, I would like to thank Dr. Ghiath Al Sammane, a post doctoral in our 

(HVG) group, for many discussions and helpful suggestions, which are invaluable to 

this thesis. 

Last but not least, I would like to reserve my deepest thanks for my parents, 

sisters and brother, for their support and encouragement. My wife, who has been 

with me in every moment of my PhD tenure, is my source of strength and without 

her support this thesis would never have started much less finished. I would like to 

mention my children, Bara', Baha and Lina, for bringing joy and fun in my life and 

for their sacrifices and patience. I can never thank them enough. 

vi 



TABLE OF CONTENTS 

LIST OF TABLES xi 

LIST OF FIGURES xii 

LIST OF ACRONYMS xiv 

1 Introduction 1 

1.1 Formal Verification Techniques 4 

1.1.1 Theorem Proving 5 

1.1.2 Model Checking 7 

Binary Decision Diagrams 9 

SAT Based Methods 10 

1.2 Related Work 11 

1.2.1 Hybrid Approach 11 

1.2.2 Deep Embedding Approach 15 

Embedding of Model Checking Algorithms in Theorem Provers . 16 

Correctness Proof of Model Checking Algorithms 18 

1.3 Proposed Methodology 21 

1.4 Thesis Contributions 24 

1.5 Thesis Organization 25 

2 Preliminaries 27 

2.1 The HOL Theorem Prover 27 

2.2 Multiway Decision Graphs 31 

2.2.1 Formal Logic 31 

2.2.2 Abstract State Machines 33 

vii 



2.2.3 Structure 34 

2.2.4 The MDG-Tool 36 

2.2.5 MDGs Model Checking 37 

3 Formalization of MDG Syntax 39 

3.1 Transition Relation: Graph or Formula 39 

3.2 Embedding Directed Formulae in HOL 41 

3.3 Well-formedness Conditions 47 

3.4 MIN-MAX Example 51 

4 Formalization of MDG Operations 55 

4.1 The Conjunction Operation . 55 

4.1.1 The Conjunction Constraints: 56 

4.1.2 The Conjunction Embedding: . 58 

4.2 The Relational Product (RelP) Operation 63 

4.2.1 The RelP Constraints: 64 

4.2.2 The RelP Embedding: 65 

4.3 The Disjunction Operation 66 

4.3.1 The Disjunction Constraints: 67 

4.3.2 The Disjunction Embedding: 68 

4.4 The Pruning by Subsumption (PbyS) Operation 71 

4.4.1 The PbyS Constraints: 72 

4.4.2 The PbyS Embedding: 72 

4.4.3 The PbyS Performance: 75 

4.5 The Correctness Proof 76 

4.6 Embedding and Proof Discussion 79 

viii 



5 Formalization of MDG Reachability Analysis 81 

5.1 Reachability Analysis Algorithm . 81 

5.2 Formalization of Reachability Analysis 83 

5.3 Example: The MIN-MAX revisited 86 

5.4 The MDG-HOL Platform 87 

6 Applications and Case Studies 91 

6.1 Model Reduction Techniques 93 

6.2 SAT-MDG Reduction Verification 95 

6.2.1 Boolean Satisfiability 95 

6.2.2 Combining SAT and MDG Methodology 97 

6.2.3 Abstracting CNF from DF 97 

6.2.4 Extracting Variables from Properties 99 

6.2.5 Island Tunnel Controller (ITC) 100 

System Description 100 

Verification 102 

6.3 The Assume-Guarantee Reduction Verification in MDG-HOL . . . . . . 103 

6.3.1 The Assume-Guarantee Reduction Methodology 103 

6.3.2 Generation of Directed Formulae 105 

From High Level Language 105 

From the Properties 108 

6.3.3 Verification of the Reduction Soundness 108 

The Reduction-Soundness Algorithm 110 

Correctness of the Algorithm I l l 

The False Negative 112 

The RAM Example 113 

ix 



6.3.4 Case Studies . 114 

Look-Aside Interface (LA-1) 114 

Island Tunnel Controller (ITC) 119 

7 Conclusions and Future Work 122 

7.1 Summary 122 

7.2 Future Research Directions 124 

Bibliography 127 

A The MDG-HOL Platform 139 

A.l The MDG Syntax 139 

A.2 The Conjunction Operation 142 

A.3 The RelP Operation 145 

A.4 The Disjunction Operation 146 

A.5 The PbyS Operation 147 

A.6 The Reachability Analysis 149 

x 



LIST OF TABLES 

1.1 Deductive theorem proving vs. state exploration method . 3 

1.2 Raising the Abstraction Level 10 

2.1 Terms of the HOL Logic 29 

3.1 Well-Formedness (WF) Inference Rules 49 

4.1 The PbyS Performance 76 

5.1 MDG-HOL Benchmarks 88 

5.2 FormalCheck Benchmarks 88 

6.1 Comparing the Original MDGs Model Checking Results with the Re­

duced MC and Soundness Verification Results 103 

6.2 Comparing the Original MDGs Model Checking Results with the Re­

duced MC and Soundness Verification Results 119 

6.3 Comparing the Original MDGs Model Checking Results with the Re­

duced MC and Soundness Verification Results 120 

XI 



LIST OF FIGURES 

1.1 Theorem Proving and Model Checking Interface . 12 

1.2 Embedding Model Checking inside Theorem Proving Tool 15 

1.3 Overview of the Embedding Methodology in HOL . 22 

2.1 Example of Multiway Decision Graphs Structure . 35 

2.2 The Structure of the MDGs-tool 36 

3.1 MIN-MAX State Machine 51 

4.1 The conjunction operation 56 

4.2 MDG1 and MDG2 63 

4.3 MDG1 CONJ MDG2 64 

4.4 MDG1 RelP MDG2 66 

4.5 The disjunction operation 66 

4.6 MDG1 and MDG2 70 

4.7 MDG1 DISJ MDG2 70 

4.8 The PbyS operation 71 

4.9 The PbyS Performance 77 

4.10 Correctness Methodology 78 

5.1 MDG-HOL and FormalCheck Small Benchmarks 89 

5.2 MDG-HOL and FormalCheck Big Benchmarks 89 

6.1 Overview of the Methodology 98 

6.2 The Island Controller 101 

6.3 Island Tunnel Controller Structure 101 

xii 



6.4 Overview of the Reduction Methodology 104 

6.5 Overview of the Soundness-Verification Methodology 108 

6.6 Look-Aside Interface 116 

6.7 Look-Aside Interface Design 117 

xin 



LIST OF ACRONYMS 

CAD 

ASM 

BDD 

ROBDD 

SAT 

DF 

DAG 

FSM 

HDL 

MDG 

MC 

BMC 

STE 

LTL 

CTL 

HOL 

ATP 

LCF 

ML 

FL 

CNF 

QFB 

RTL 

Computer Aided Design 

Abstract State Machine 

Binary Decision Diagram 

Reduced Ordered Binary Decision 

Satisfiability Checking 

Directed Formulae 

Directed Acyclic Graph 

Finite State Machine 

Hardware Description Language 

Multiway Decision Graph 

Model Checking 

Bounded Model Checking 

Symbolic Trajectory Evaluation 

Linear time Temporal Logic 

Computational Tree Logic 

Higher-Order Logic 

Automatic Theorem Prover 

Logic of Computable Function 

Meta Language 

Functional Language 

Conjunctive Normal Form 

Quantified Boolean Formulae 

Register Transfer Level 

Diagram 

xiv 



LHS Left Hand Side 

RHS Right Hand Side 

VLSI Very Large Scale Integration 

ITC Island Tunnel Controller 

LA-1 Look-Aside Interface 

RelP Relational Product 

PbyS Pruning by Subsumption 

xv 



Chapter 1 

Introduction 

With the increasing complexity of the design of digital systems and the size of the 

circuits in VLSI technology, the role of design verification has gained a lot of impor­

tance. Serious design errors and bugs take a lot of time and effort to be detected and 

corrected especially when they are discovered late in the verification process. This 

will increase the total cost of the chip. In order to overcome these limitations, formal 

verification techniques arose as a complement to simulation for detecting errors as 

early as possible, thus ensuring the correctness of the design. 

Formal techniques are the application of applied mathematics in order to prove 

that the design implementation satisfies its specifications, and entail reasoning in some 

formal logic. In general, formal verification of digital systems is achieved, today, using 

one of two main approaches: states exploration [49] (mainly model checking and 

equivalence checking) or deductive reasoning (theorem proving). It is accepted that 

both approaches have complementary strengths and weaknesses. 

State exploration approaches use states space traversal algorithms on finite-state 

models to check if the implementation satisfies its specification. They are focused 

mostly on automatic decision procedures for solving the verification problem. In case 

1 



the verification fails, the user can track with the counter example produced as to why 

it failed. 

Model checking is an automatic approach for verifying finite-state systems and 

mainly used in hardware and protocol verification. The circuit is described as a state 

machine with a transition to describe the circuit behavior. The specifications are de­

scribed as properties that the machine should satisfy. Furthermore, they can produce 

a counterexample when the property does not hold, which can be very important 

for correcting the corresponding error in the implementation under verification or in 

the specification itself. Traditionally, model checkers used explicit representations of 

the state transition graph, for all but the smallest state machines. However, model 

checking suffers from the state explosion problem [19]: the number of the explored 

states grows exponentially in the size of the system description. 

Equivalence checking is used to prove functional equivalence of two design rep­

resentation modeled at the same or different levels of abstraction. It can be divided 

into combinational equivalence checking and sequential equivalence checking. Com­

binational equivalence checking is based on the canonical representations of Boolean 

functions or Binary Decision Diagrams (BDDs). Equivalence checking verifies for all 

input sequences that an implementation has the same outputs as the specification, 

both modeled as Finite State Machines (FSM). Sequential equivalence checking is 

used to verify the equivalence between two sequential designs at each state. Sequen­

tial equivalence checking consider only the behavior of two designs while ignoring 

their implementation details such as register mapping. It can verify the equivalence 

between Register Transfer Level (RTL) and netlist or RTL and the behavioral model 

which is very important in design verification. The disadvantage of sequential equiva­

lence checking is that it cannot handle large design because it enumerates state space 

2 



explosion problem very fast. 

In deductive reasoning approach, the correctness of a design is formulated as 

a theorem in a mathematical logic and the proof is checked using a general-purpose 

theorem-prover. Based on first-order and high-order logic, these theorem provers are 

known for their abilities to express relationships over unbounded data structures. 

Therefore, theorem proving tools are not sensitive to the state explosion problem 

when used to reason formally about such data and relationships. Unfortunately, if the 

property fails to hold, deductive methods do not give a counterexample. Furthermore, 

this frequent situation requires skilled manual guidance for verification and human 

insight for debugging. Yet theorem provers, today, provide feedback, but only expert 

user can track the proof trace and determine whether the fault lies within the system, 

the property being verified, or within the failed proof tactic. 

There has been a great deal of work over the past decade to combine the two 

approaches to gain the strengths of both, and alleviate the weaknesses. Successful 

combinations of this kind have been achieved in [2, 44, 46, 48, 57, 75, 78]. The 

strengths and weaknesses of model checking and deductive theorem proving, as dis­

cussed above, are summarized in Table 1.1. 

Table 1.1: Deductive theorem proving vs. state exploration method 
Method 

Automation 

Domain size 

Debugging 

State exploration method 

completely automatic 

finite system 

(large) 

generates 

counter-example 

Deductive method 

interactive 

infinite system 

(complex) 

expert based 

Hybrid method 

semi-automatic 

finite system 

(very large) 

rarely generates 

counter-example 

The combination of the two approaches can be performed either by adding a 

3 



layer of deduction theorems and rules on top of the model checking tool (hybrid ap­

proach) or by embedding model checking algorithms inside theorem provers (deep 

embedding approach). Our research is motivated by using the deep embedding ap­

proach to blend the best of model checker and theorem prover. 

The structure of the rest of this chapter is as follows: In Section 1.1, we briefly 

introduce the formal verification techniques. Section 1.2 surveys the literature and 

presents the related work. An overview of the research and the contribution of this 

thesis is explained in Sections 1.3 and 1.4, respectively. Finally, the outline of the 

thesis is presented in Section 1.5. 

1.1 Formal Verification Techniques 

Formal verification problem consists of mathematically establishing that an implemen­

tation behaves according to a given set of requirements or specification. To classify 

the various approaches, we first look at the three main aspects of the verification 

process: the system under investigation (implementation), the set of requirements to 

obey (specification) and the formal verification tool to verify the process (relationship 

between implementation and specification). 

The implementation refers to the description of the design that is to be verified. 

It can be described at different levels of abstraction which results in different veri­

fication methods. Another important issue with the implementation is the class of 

the system or circuit to be verified, i.e., whether it is combinational/sequential, syn­

chronous/asynchronous, pipelined or parameterized hardware. These variations may 

require different approaches. The specification refers to the property with respect to 

which the correctness is to be determined. In practice, one needs to model both the 

implementation and the specification in the tool, and then uses one of the formal 

4 



verification algorithms of the tool to check the correctness of the system or in some 

cases give a trace of error (counter-example). 

Formal techniques have long been developed within the computing research com­

munity as they provide sound mathematical foundation for the specification, imple­

mentation and verification of computer system. Thus, formal verification is proposed 

as a method to help certify hardware and software, and consequently, to increase con­

fidence in new designs. A correctness proof cannot guarantee that the real device will 

never malfunction; the design of the device may be proved correct, but the hardware 

actually built can still behave in a way unintended by the designer. Wrong specifica­

tion can play a major rule in this, because it has been verified that the system will 

function as specified, but it has not been verified that it will work correctly. Defects 

in physical fabrication can cause this problem too. In formal verification a model of 

the design is verified, not the real physical implementation. Therefore, a fault in the 

modeling process can give false negatives (errors in the design which do not exist). 

Although sometimes, the fault covers some real errors. 

Formal verification approaches can be generally divided into two main categories: 

theorem proving methods and state exploration methods such as model checkers as 

described in the following subsections. 

1.1.1 Theorem Proving 

Theorem proving is an approach where the specification and the implementation are 

usually expressed in first-order or higher-order logic. Their relationship is formed as 

a theorem to be proved within the logic system. This logic is a set of axioms and a 

set of inference rules. Steps in the proof appeal to the axioms and rules, and possibly 

derived definitions and intermediate lemmas. The axioms are usually "elementary" 

5 



in the sense that they capture the basic properties of the logic's operators [32]. 

Theorem proving utilizes the proof inference technique. The problem itself is 

transformed into a sequent, a working representation for the theorem proving problem. 

Then a sequent holds if the formula / holds in any model: 

A proof system is collection of inference rules of the form: 

Pi... Pn (name) -^ 

where C is a conclusion sequent, and P /s are premisses sequents. The meaning of 

an inference rule is, if all the premisses are derivable, then the conclusion is guaranteed 

to hold. Some inference rules may have no premisses, in which case their conclusion 

automatically holds. Such rules are also called axioms, and they are the only means 

to complete the proof derivation. 

Traditionally, the logic used in theorem proving is the classical First- or Higher-

Order logic (FOL and HOL respectively). Some other kinds of logics are also used, 

but since all of them can be expressed in the higher-order logic, the latter is used 

much more often as a general property language. 

Theorem proving methods have been in use in hardware and software verifi­

cation for a number of years in various research projects. Some of the well-known 

theorem provers are HOL (Higher-Order Logic), ISABELLE, PVS (Prototype Verifi­

cation System), Coq and ACL2 [23, 36, 42, 47, 66]. These systems are distinguished 

by, among other aspects, the underlying mathematical logic, the way automatic deci­

sion procedures are integrated into the system, and the user interface. Even though 

they are powerful, they require expertise in using a theorem prover. User is expected 

to know the whole design leading to a white box verification approach. It is not fully 

6 



automated and requires a large amount of time to verify the system. Another short­

coming is the inability to produce counter-examples in the event of a failed proof, 

because the user does not know whether the required property is not derivable or 

whether the person conducting the derivation is not ingenious enough. The advan­

tage of the deductive verification approach is that it can handle very complex systems 

because the logics of theorem provers are more expressive. In the next chapter, we 

will overview the HOL theorem proving system, which we intend to use in this thesis. 

1.1.2 Model Checking 

Model checking is a state exploration based verification technique developed in the 

1980s by Clarke and Emerson [19] and independently by Quielle and Sifakis [68]. In 

model checking, a state of the system under consideration is a snapshot of the system 

at certain time, given by the set of the variables values of that system at that time. 

The system is then modeled as a set of states together with a set of transitions between 

states that describe how the system moves from one state to another in response to 

internal or external stimulus. Model checking tools are then used to verify that desired 

properties (expressed in some temporal logic) hold in the system. 

Model checker has two important advantages. First, once the correct design of 

the system and the required properties has been fed in, the verification process is fully 

automatic. Second, in the event of a property not holding, the verification process 

is able to produce a counter-example (i.e. an instance of the behavior of the system 

that violates the property) which is extremely useful in helping the human designers 

pinpoint and fix the flaw. On the other hand, model checkers are unable to handle 

very large designs due to the state space explosion problem [19]. Another drawback is 

the problematic description of specifications as properties, this description sometimes 

7 



may not give full system coverage. 

Model checkers such as SPIN [40], COSPAN [51], SMV [54], and MDG [88] take 

as input, essentially, a finite-state system and temporal property in some variety or 

subset of Computation Tree Logic (CTL*), and automatically check that the system 

satisfies the property. Moreover, the model is often restricted to a finite-state tran­

sition system, for which finite-state model checking is known to be decidable. The 

design or model is formalized in terms of a state machine (Transition System), or a 

Kripke structure: 

M = (P, S, I, R, L) 

where M is a state machine (model) with a transition to describe the circuit behavior, 

P is a set of atomic propositions, S is a finite set of states, / C S is a set of initial 

states, R C SxS is a transition relation that must be total (i.e. for every s £ S there 

exists s' £ S such that (s' £ R)), and L : S —> 2P maps each state to the set of atomic 

propositions true in that state. The property </> is formalized as a logical formula that 

the machine should satisfy. The verification problem is stated as checking the formula 

(j) in the model M: 

M\=<f> 

If the model M is represented explicitly as a transition relation, then the size 

of the model is limited to the number of states that can be stored in the computer 

memory, which are a few million states with the current technology. To increase the 

size of the model, more efficient state representations can be used to manipulate these 

formulae using BDDs or SAT solving techniques. 

8 



Binary Decision Diagrams 

Binary Decision Diagrams (BDDs) [13] are data structures used as a compact repre­

sentation for the Boolean function which improves the capacity of the model checker. 

BDDs have several useful properties. Many common functions have small BDDs in 

addition to the fact that the BDDs are easy to manipulate. Also a function can be 

evaluated in linear time in the number of variables and also can be existentially or 

universally quantified (Boolean) variables in time quadratic in the size of the BDD. 

Moreover, the order in which the variables appear can be fixed and hence the BDD 

is a canonical representation for the Boolean function. 

BDDs are used to overcome the capacity limitation of the model checkers, differ­

ent representations of ROBDDs (Reduced Order Binary Decision Diagrams) [14] are 

used to manipulate the state transition relations as diagrams and this allows model 

checkers to verify larger systems. Still, most model checkers face the state space explo­

sion problems [19] even using Symbolic Model Checking. To be able to apply model 

checking to larger designs, state reduction techniques are used that exploit some fea­

tures of the model, the properties, or the problem domain to reduce the state space to 

a tractable size. Examples include partitioned transition relation, dynamic variable 

reordering, cone of influence reduction, abstraction, problem-specific techniques, e.g. 

when the original design is rewritten in a simpler way, omitting the irrelevant details, 

but preserving the important behavior for the property being verified. 

In this thesis, we intend to use the Multiway Decision Graphs (MDGs), a new 

class of decision graph. MDG was proposed as a solution to the state space explosion 

problem [21]. In MDGs based model checking approach, data signals are denoted 

by abstract variables, and data operators are represented by uninterpreted function 

symbols. As a result, a verification based on abstract-implicit-state-enumeration can 

9 



be carried out independently of datapath width, substantially lessening the state 

explosion problem. Table 1.2 shows the abstraction level of MDG corresponding to 

traditional methods. 

Table 1.2: Raising the Abstraction Level 

Conventional Method 

ROBDD [14] 

Finite State Machine (FSM) 

Implicit state enumeration 

CTL based model-checking 

Multiway Decision Graphs 

MDGs [21] 

Abstract State Machine (ASM) 

Abstract state implicit enumeration of ASM 

Based on first-order abstract CTL* 

SAT Based Methods 

An alternative for decision graphs is to represent the transition relation in CNF and 

use Satisfiability Checking (SAT) [26, 81] with several properties that make them 

attractive compared to BDDs. SAT solvers can decide satisfiability of very large 

Boolean formulae in reasonable time, but they are not canonical and require additional 

efforts to check for equivalence of formulas. As a result, various researchers have 

developed routines for performing Bounded Model Checking (BMC) [3, 11, 30] using 

SAT. The common theme is to convert the problem of interest into a SAT problem, 

by devising the appropriate propositional Boolean formula, and to utilize other non-

canonical representations of state sets. However, they all exploit the known ability of 

SAT solvers to find a single satisfying solution when it exists. Moreover, SAT solver 

technology has improved significantly in recent years with a number of sophisticated 

packages now available. Well known state-of-the-art SAT solvers include CHAFF [59], 

GRASP [52] and SATO [89]. Since state sets can be represented as Boolean formulae, 

10 



and since most model checking techniques manipulate state sets, SAT solvers have 

enormously boosted their speed and applicability. 

1.2 Related Work 

Model checking is automatic while theorem proving is not. On the other hand, theo­

rem proving can handle complex systems while model checking can not. Today, there 

exist a number of integration tools of theorem proving and model checking. The moti­

vation is to achieve the benefits of both tools and to make the verification simpler and 

more effective. In this section, we explore two approaches of linking proof systems to 

external automated verification tools. The approaches can be divided in two kinds: 

1. Hybrid approach: adding a layer of deduction theorems and rules on top of 

Decision Diagrams tool, i.e. combining theorem provers with other powerful 

model checking tool. 

2. Deep embedding approach: adding Decision Diagrams algorithms to theorem 

provers. 

We first review the most related work to every approach and then, we contrast between 

them according to their efficiency, complexity and feasibility. 

1.2.1 Hybrid Approach 

The hybrid approach implements a tool linking model checking and theorem proving. 

During the verification procedure, the user deals mainly with the theorem proving tool. 

Verification using hybrid approach proceeds as shown in Figure 1.1. The user starts 

by providing the theorem proving with the design (specification or implementation), 

the property and the goal to be proven. If the goal fits the required pattern, the 

11 



theorem proving tool generates the required model checking files (sub-goals). The 

latter are sent to the model checking tool for verification. If the property holds, a 

theorem is created (Make-Theorem). Otherwise, the proof is performed interactively. 

Theorem Prover 
I t 

Sub-goals 

Interface L-

Property 

Model Checker 

*i 

Vlake-Thec >rei 

True 

Counter example 

Figure 1.1: Theorem Proving and Model Checking Interface 

The linkage between both tools is carried out using scripting languages (trans­

lators) to be able to automatically verify small subgoals generated by the theorem 

prover from a large system. The disadvantage of this approach lies in achieving an 

efficient and correct translation from theorem prover logic to a model checker and 

from model checker to theorem prover (import the result or give a counter-example). 

Successful combinations of this kind have been achieved in [46, 48, 57, 75, 78]. 

Rajan et al. [74, 75] described an approach where a BDD-based model checker 

for the propositional /f-calculus has been used as a decision procedure within the 

framework of PVS. An extension of the //-calculus, which consists of Quantified 

Boolean Formulae (QFB), is defined using PVS higher-order logic. The temporal 

operators are then defined using the //-calculus. These temporal operators apply to 

12 



arbitrary state spaces. In the case where the state type is constructed in a heredi­

tarily finite manner, ^-calculus expressions are translated into input acceptable by a 

/^-calculus model checker. This model checker can then be used as a decision proce­

dure to prove certain subgoals. The model checker accepts the translated input from 

/i-calculus expression. The generated subgoals are verified by the model checker and 

the results are used in the proof process of PVS. 

Schneider et al. [46] used higher order hardware formulae to express the safety 

and liveness properties hierarchically. They proposed an approach of invoking model 

checking within HOL where properties are translated from HOL to temporal logic. A 

new class of higher-order formulae was presented, which allows a unified description of 

hardware structure and behavior at different levels of abstraction. Datapath oriented 

verification goals involving abstract data types can be expressed by these formula 

as well as control dominated verification goals with irregular structure. To ease the 

proofs of the goals in HOL, a translation procedure was presented which converts the 

goals into several Computational Tree Logic (CTL) model checking problems, which 

are then solved outside HOL. 

Schneider and Hoffmann [78] linked the SMV model checker to HOL using 

PROSPER. It provides an open proof architecture for the integration of different ver­

ification tools in a uniform higher-order logic environment. They embedded the linear 

time temporal logic (LTL) in HOL and translated LTL formulae into o;-Automata, 

a form that can be reasoned about within SMV. The translation is completely im­

plemented by means of HOL rules. HOL terms are exported to SMV through the 

PROSPER plug-in interface. On successful model checking, the results are returned 

to HOL and turned to theorems. This integration tool allows SMV to be used as a 

HOL decision procedure. The deep embedding of the SMV specification language in 

13 



HOL allows LTL specifications to be manipulated in HOL. 

In [67], Pisini and Tahar proposed a hybrid approach for formal hardware ver­

ification which uses the strengths of the HOL theorem prover and the advantages 

of the automated tool MDG which supports equivalence and model checking. They 

developed a linkage tool between HOL and MDG which uses the specification and im­

plementation of a circuit written in HOL to automatically generates all required MDG 

files. The implementation of the methodology is achieved by building a linkage tool 

using Moscow ML to translate from HOL to MDG. It then calls the MDG equivalence 

checking procedure and reports the MDG verification results back to HOL. 

The MDG-HOL system [48] is a hybrid system which links the HOL interactive 

proof system and the MDG automated hardware verification system. It supports a 

hierarchical verification approach and fits the use of MDG verification naturally within 

the HOL framework for a compositional hierarchical verification. The HOL system is 

used to manage the proof. The MDG system is called to verify the submodules of a 

design. When the MDG-HOL system is used to verify a design, the design is modeled 

as a hierarchy structure with modules divided into submodules. 

An extension of the above work was presented in [57] to link HOL and the MDG 

model checker. They described a hybrid tool that links the HOL theorem prover and 

the MDG model checker. For this purpose, they developed an interface which reads 

a HOL goal, generates the required MDG files, calls the MDG model checker, and 

generates the HOL theorem on successful verification. The interface between the two 

tools is implemented using ML. 

14 



1.2.2 Deep Embedding Approach 

In this approach, the emphasis is to establish a secure platform for new verification 

algorithms. The performance penalty will be compensated by the secure infrastruc­

ture. The approach implements a model checking inside a theorem proving tool. As 

shown in Figure 1.2, the design and the property are fed to the model checking to 

check if the property holds and create a theorem. Otherwise, the proof cannot be 

performed. 

Figure 1.2: Embedding Model Checking inside Theorem Proving Tool 

The result of the model checker is correct by construction, since both of the 

theory and the implementation are proved correct in the theorem prover. Thus a high 

assurance of soundness is guaranteed because more work is backed up by mechanized 

fully-expansive proof. The price for the extra proof and flexibility is in increased 

development effort. This approach differs from the hybrid approach in the way the 

verification is performed. In fact, we do not use an external checking tool, instead 

we deeply embed the model checker algorithms inside the theorem prover. Thus the 

criteria of correctness by construction, efficiency, flexibility and expressiveness can be 

met. Successful works have been achieved in [7, 34, 35, 37, 44, 56]. 

The " deep embedding" approach [69] introduce the model checker syntax as a 

15 



new higher order logic type and then define the operations and algorithms based on 

this syntax within the theorem prover. This contrasts within a "shallow embedding" 

where the syntax is not formally represented in the logic, only in the meta-language. 

In general, a deep embedding allows one to reason about the language itself rather 

than just the semantics of programs in the language. 

We consider two categories of related work: the first category regarding embed­

ding of model checking algorithms in theorem provers. The second category regarding 

correctness proof of the model checker algorithms. 

Embedding of Model Checking Algorithms in Theorem Provers 

Model checkers [54] are usually built on top of BDDs [13], or some other set of 

efficiently implemented algorithms for representing and manipulating Boolean for­

mulae. The closest work, in approach to our own is that of Joyce and Seger [79], 

Gordon [34, 35] and later Amjad [7]. 

Voss system [79], an implementation of Symbolic Trajectory Evaluation (STE), 

was implemented in a lazy Functional Language (FL). In [44] Voss was interfaced 

to HOL and the verification using a combination of deduction and STE was demon­

strated. The HOL-Voss system integrates HOL88 deduction with BDD computations. 

The BDD tools are programmed in FL as a built-in datatype. The assertion language 

of Voss was formalized in HOL and a HOL tactic, which can make an external calls 

to the Voss system, checks wether an assertion is true. Then the proved assertion 

was returned as a HOL theorem. The early experiments with HOL-Voss suggested 

that a lighter theorem prover component was sufficient, since all that was needed is 

a way to combine results obtained from STE. A system based on this idea, called 

Voss-ThmTac, was later developed by Aagaard et al. [2]; combination of the ThmTac 

16 



theorem prover with the Voss system. Then the development of HOL-Voss evolved 

into a new system called Forte [1]. More recently, with industrial take-up at Intel, 

Forte [55] has become one of the most mature formal verification environments based 

on tool integration. 

Gordon integrated the BDD based verification system BuDDy (BDD package 

implemented in C) into HOL by implementing BDD-based verification algorithms 

inside HOL, the embedding is built on top of provided primitives. The aim of using 

BuDDy is to get near the performance of C-based model checker, whilst remaining 

fully expansive, though with a radically extended set of inference rules [35]. 

In [37], Harrison implemented BDDs inside the HOL system without making 

use of external oracle. The BDD algorithms were used by a tautology-checker. How­

ever, the performance was about thousand times slower than with a BDD engine 

implemented in C. Harrison argued that by re-implementing some of HOL's primitive 

rules, the performance could be improved by around ten times. 

Amjad [7] demonstrated how BDD based symbolic model checking algorithms 

for the propositional n-calculus (L^) can be embedded in HOL theorem prover. This 

approach allows results returned from the model checker to be treated as theorems in 

HOL. By representing primitive BDD operations as inference rules added to the core 

of the theorem prover, the execution of a model checker for a given property is modeled 

as a formal derivation tree rooted at the required property. These inference rules are 

hooked to a high performance BDD engine [35] which is external to the theorem 

prover. Thus, the HOL logic is extended with these extra primitives. Empirical 

evidence suggests that the efficiency loss in this approach is within reasonable bounds. 

The approach still leaves results reliant on the soundness of the underlying BDD tools. 

A high assurance of soundness is obtained at the expenses of some efficiency. Thus 

17 



the security of the theorem prover is compromised only to the extent that the BDD 

engine or the BDD inference rules may be unsound. 

Our work, deals with embedding MDGs [21] rather than BDDs. In fact, while 

BDDs are widely used in state-exploration methods, they can only represent Boolean 

formulae. By contrast, MDGs represent a subset of first-order terms allowing the 

abstract representation of data and hence raising the level of abstraction. Another 

major difference is that it implements the related inference rules for BDD operators 

in the core of HOL as a plugged in code, whereas we implement the MDG operations 

inside HOL itself. 

Mhamdi and Tahar [56] follow a similar approach to the BuDDy work [35]. The 

work builds on the MDG-HOL [48] project, but uses a tightly integrated system with 

the MDG primitives written in ML rather than two tools communicating as in MDG-

HOL system. In their work, the syntax is partially embedded and the conditions for 

well-formedness must be respected by the user. By contrast, we provide a complete 

embedding of the MDG syntax and the conditions could be checked automatically in 

HOL. 

Correctness Proof of Model Checking Algorithms 

Verification of BDD algorithms has been a subject of active research using different 

proof assistants such that HOL, PVS, Coq, and ACL2 [23, 36, 42, 47]. A common 

goal of these papers is to extend the prover with a certified BDD package to enhance 

the BDD performance, while still inside a formal proof system. Moreover, there is a 

general consensus in the formal verification community that correctness proofs should 

be checked, partly or wholly, by computers. Some efforts have been made to verify 

model checkers and theorem provers. 

18 



In [71], the authors successfully carried out the verification task of the RAVEN 

model checker. RAVEN is a real-time model checker which uses time-extended finite 

state machines (interval structure) to represent the system and a timed version of 

CTL (CCTL) to describe its properties. The specification and the correctness proof 

were carried out using an interactive specification and verification system KIV. 

In [62], the author showed a mechanism of how certifying model checker can 

be constructed. The idea is that, a model checker can produce a deductive proof on 

either success or failure. The proof acts as a certificate of the result, since it can be 

checked independently. A certifying model checker thus provides a bridge from the 

model-theoretic to the proof-theoretic approach to verification. The author developed 

a deductive proof system for verifying branching time properties expressed in the //-

calculus, and showed it to be sound and relatively complete. Then, a proof generation 

in this system from a model checking run is presented. This is done by storing and 

analyzing sets of states that are generated by the fixpoint computations performed 

during model checking. 

Krstic and Matthews [50] provided a technique for proving correctness of high 

performance BDD packages. In their work, they adopted an abstraction method 

called monadic interpretation for verifying an abstraction of the BDD programs with 

the primitives specified axiomatically. The method is suitable for higher order logic 

theorem provers such as Isabelle/HOL. The monadic interpreter translates source 

programs of input type A and output type B into function of type A => MB in the 

target functional language, where the type constructors M is a suitable monad that 

encapsulate the notion of computation used by the source language to describe BDD 

programs. At this level, they modeled the BDD programs as a function in higher order 

logic in the style of monadic interpreters. Then the correctness proof was carried out 

19 



on the BDD abstract model. 

Wright [86] described an embedding of higher order proof theory within the logic 

of the HOL theorem proving system. Types, terms and inferences were represented as 

new types in the logic of the HOL system, and notions of proof and provability were 

defined. Using this formalization, it was possible to reason about the correctness of 

derived inference rules and about the relations between different notions of proofs: a 

Boolean term is provable if and only if there exists a proof for it. The formalization 

is also intended him to make it possible to reason about programs that handle proofs 

as their data (e.g., proof checker). 

Harrison [38] answered a question concerning the correctness of the theorem 

prover itself. The author verified formally that the abstract HOL logic is correct 

and that the OCaml code does correctly implement this logic. The verification is 

conducted with respect to a set-theoretic semantics within the HOL Light itself. 

The authors in [85] implemented and proved the correctness of BDD algorithms 

using Coq. One of their goals was to extract a certified algorithm manipulating BDDs 

in Caml (the implementation language of Coq). BDDs were represented as DAGs and 

maps were used to model a state of the memory in which all the BDDs are stored. 

The authors used reflection to prove a given property P applied to some term t where 

the program is described and proved in Coq. This means that writing a program ix 

that takes t as an input and returns true exactly when P(t) holds. Then, to show TX 

is correct with respect to P they needed to be sure that whenever ir(t) returns true 

P(t) holds and this is done inside the Coq proof assistant itself (i.e. the proof of P 

has been replaced by the computation of -K and reflect this by allowing the system to 

accept meta-level computation as actual proof). 

Another concept to prove the program correctness using Hoare logic as described 

20 



by Ortner and Schirmer [64]. The principle of this logic is to annotate the program 

with pre- and post-conditions and to observe the changes made by each statement 

of the program. Ortner and Schirmer modeled the graph structure of the BDD as a 

kind of heap and presented the verification of BDD normalization. They follow the 

original algorithm presented by Bryant in [13]: transforming an ordered BDD into a 

reduced, ordered and shared BDD. The work is based on Schirmer's research on the 

Verification Condition Generator (VCG) to generate the proof obligations for Hoare 

Logic. The proofs are carried out in the theorem prover Isabelle/HOL. 

Haiyan et al. [87] verified formally the linkage between a simplified version of 

MDG tool and the HOL theorem prover. The verification is based on the importing of 

MDG results to HOL theorems. Then, they combined translator correctness theorems 

with the linkage theorems in order to allow low level MDG verification results to be 

imported into HOL in terms of the semantics of MDG-HDL. The work was concerned 

with ways of increasing trust in the linked systems. 

Our work follows the verification of the Boolean manipulating package, but using 

MDG instead. We provided a complete formalization of the MDG logic and its well-

formedness conditions as DFs in HOL mechanically. Based on this infrastructure we 

formalized the basic MDG operations in HOL following a deep embedding approach 

and proved their correctness. Our work focuses more on how one can raise the level 

of assurance by embedding and proving formally the correctness of those operators in 

HOL to use them as an infrastructure for MDG model checker. 

1.3 Proposed Methodology 

The intention of our research is to provide a secure platform that combines an auto­

matic high level MDGs model checking tool within the HOL theorem prover. While 

21 



related work has tackled the same problem by representing primitive Binary Deci­

sion Diagrams (BDD) operations [13] as inference rules added to the core of the 

theorem prover [35], we have based our approach on the Multiway Decision Graphs 

(MDGs) [21]. MDG generalizes ROBDD to represent and manipulate a subset of 

first-order logic formulae which is more suitable for defining model checking inside 

a theorem prover. With MDGs, a data value is represented by a single variable of 

an abstract type and operations on data are represented in terms of uninterpreted 

functions. Considering MDG instead of BDD will rise the abstraction level of what 

can be verified using a state exploration within a theorem prover. Furthermore, an 

MDG structure in HOL allows better proof automation for larger datapaths systems. 

In this thesis, we provide the entire necessary infrastructure (data structure + 

algorithms) to define a high level state exploration in the HOL theorem prover named 

as MDG-HOL platform. 

MDG 

The MDG Syntax 

Directed Formulae & Well-formedness Conditions 

1 

M D G Opera t ions 

1 1 ' 1 ! 
Conjunction ReiP Disjunction PbyS 

' 

Correctness Proof 

for each operation 

• 

MDG Reachability Analysis 

Figure 1.3: Overview of the Embedding Methodology in HOL 

22 



Firstly, as shown in Figure 1.3, we define the MDG structure inside the HOL 

theorem prover to be able to construct and manipulate MDGs as formulae in HOL. 

This step implies a formal logic representation for the MDG Syntax. This representa­

tion is based on the Directed Formulae DF: an alternative vision for MDG in terms 

of logic and set theory [6]. Secondly, a HOL tactic is defined to check the satisfaction 

of the well-formedness conditions of any directed formula.This step is important to 

guarantee the canonical representation of the MDG as a DF. Then, the definition of 

each MDG operations is defined and a correctness proof is derived within HOL. 

Based on this platform, the MDG reachability analysis is defined in HOL as a 

conversion that uses the MDG theory within HOL.Then, we demonstrate the effective­

ness of our platform by considering four case studies.Our obtained results show that 

this verification framework offers a considerable gain in terms of automation without 

sacrificing CPU time and memory usage compared to automatic model checker tools. 

Finally, we propose a reduction technique to improve MDGs model checking 

based on the MDG-HOL platform. The idea is to prune the transition relation of 

the circuits using pre-proved theorems and lemmas from the specification given at 

system level. We also use the consistency of the specifications to verify if the re­

duced model is faithful to the original one. We provide two case studies, the first 

one is the reduction using SAT-MDG of an Island Tunnel Controllerand the second 

one is the MDG-HOL assume-guarantee reduction of the Look-Aside Interface. The 

performance penalty in the case of SAT-MDG reduction verification is acceptable as 

compared with commercial model checking tools. In the case of assume guarantee in 

MDG-HOL, the reduction strategy results still satisfactory in terms of heuristics and 

reduction techniques correctness, however a small penalty is paid in terms of time and 

memory. 

23 



1.4 Thesis Contributions 

The objective of our research is to explore a way of increasing the degree of trust of the 

MDG system by embedding the MDG system in HOL. In light of the above related 

work review, proposed methodology, and discussions, we believe the contributions of 

the thesis can be specified as follows: 

• We have provided a secure platform (data structure + algorithms) of MDG 

system in HOL. This step consists of the following phases: 

1. Embedding of the MDG formal logic underlying the abstract state machines 

in HOL. 

2. Defining the notion of well formed HOL terms. These terms could be 

represented canonically by MDGs. 

3. Embedding the MDG algorithms (conjunction, relational product (RelP), 

disjunction, and pruning by subsumption (PbyS)) following deep embed­

ding approach. Also, we have two kinds of theorems: one theorem regard­

ing the correctness proof of each MDG operation, and the other one for 

preserving the well-formedness of the operation results. 

• The MDG based reachability analysis is then defined in HOL as a conversion 

that uses the MDG-HOL platform and a fixpoint theorem is then proven for 

some particular circuits. 

• We have evaluated the performance of the MDG-HOL platform using a set of 

benchmarks to ensure the applicability of our approach. 

• We have proposed a reduction methodology to improve the MDGs model check­

ing as well as to verify the soundness of model checking reduction techniques. 

24 



• We have provided two case studies, the first one is the reduction using the SAT-

MDG technique of the Island Tunnel Controller (ITC), and the second one is the 

MDG-HOL assume-guarantee reduction technique of the Look-Aside Interface 

(LA-1). 

In summary, we have created a new formal theory for MDGs (data structure + 

operations) inside the HOL theorem prover which provides us with several theoretical 

advantages without too high performance penalty. We used this theory or platform 

to verify the soundness of model checking reduction techniques. We thus hope that 

this work will be of interest to the research community and also be of use to industrial 

practitioners. 

1.5 Thesis Organization 

The rest of the thesis is organized as follows: 

• In Chapter 2, we review the basics of the HOL theorem prover. We also 

introduce the basic concepts of Multiway Decision Graphs (MDGs). 

• Chapter 3 presents the formal logic underlying MDGs as well as well-formedness 

conditions and its embedding inside HOL. 

• In Chapter 4, we formalize the MDG basic operations and prove the correctness 

of each operation. 

• In Chapter 5 , we show the formalization of the MDG reachability analysis 

and the proposed conversion for proving a fixpoint. We also consider four case 

studies to measure the performance of the MDG-HOL platform. 

25 



• Chapter 6 considers the applications and case studies for the proposed reduction 

techniques. 

• Chapter 7 concludes the thesis and indicates the future work. 

26 



Chapter 2 

Preliminaries 

In this chapter, we give a brief description to the HOL theorem prover as well as to 

the Multiway Decision Graphs (MDGs) system. The intent is to familiarize the reader 

with the main concepts and notations that are used in the rest of the thesis. Section 

2.1 starts by a basic description of higher-order logic concepts. Then, we describe the 

syntax and semantics of the particular logical system supported by HOL notation, as 

well as the proof methods supported by the HOL theorem prover. 

Section 2.2 describes the underlying formal logic of MDGs, the MDGs structure, 

the Abstract State Machine (ASM), the MDG tool and the MDG model checker. 

2.1 The HOL Theorem Prover 

The HOL system is an LCF [33] (Logic of Computable Functions) style proof system. 

Originally intended for hardware verification, HOL uses higher-order logic to model 

and verify variety of applications in different areas; serving as a general purpose 

proof system. We cite for example: reasoning about security, verification of fault-

tolerant computers, compiler verification, program refinement calculus, software and 

27 



algorithms verification, modeling, and automation theory. 

HOL provides a wide range of proof commands, including rewriting tools and 

decision procedures. The system is user-programmable which allows proof tools to be 

developed for specific applications; without compromising reliability [36]. 

The set of types, type operator, constants, and axioms available in HOL are 

organized in the form of theories. There are many theories, which are arranged in a 

hierarchy, have been added to axiomatize lists, products, sums, numbers, primitive 

recursion, and arithmetic. On top of these, users are allowed to introduce application-

dependent theories by adding relevant types, constants, axioms, and definitions. 

The HOL system supports higher order logic with three main expressions: 

• Variables can range over functions and predicates. 

• The logic is typed. 

• There is no separate syntactic category of formulae. 

The HOL syntax contains syntactic categories of types and terms whose elements are 

intended to denote respectively certain sets and elements of sets. The types of the 

HOL logic are expressions that denote sets (in the universe IX). There are four kind of 

types in HOL logic. Type variables stand for arbitrary sets in the universe, they are 

part of the meta-language and are used to range over object language types. Atomic 

types denote fixed sets in the universe. For example, the standard atomic types 

bool denotes the distinguished two-element set 2. Compound types have the form 

(<7i, • • •, an)op, where o\, • • •, an are the argument types and op is a type operator 

of arity n. Type operators denote operations for constructing sets. Function types 

denote the set of all (total) functions from the set denoted by its domain to the set 

denoted by its range [32]. 

28 



The terms of the HOL logic are expressions that denote elements of the sets 

denoted by types. There are four kinds of terms in HOL logic. The variables are 

sequences of letters or digits beginning with a letter. The constants have the same 

syntax as variables, but stand for fixed values. The function applications or combina­

tions have the general form t\(t2) where tx is called the operator and t2 is the operand. 

The result of such a function application can itself be a function. The lambda terms 

(A-terms) or abstractions denote for functions. Such a term has the form Xx.t (where 

t is a term) and denotes the function / defined by f(x) = t. The syntax and seman­

tics of the particular logical system supported by HOL notation used in this paper is 

summarized in Table 2.1. Note that the cons infix operator (::) is used to represent 

an enumerated list (hd :: tl) and the (t) notation is used to instantiate the value of 

the term t as shown in the bottom of the table. 

Kind of term 

Truth 

Falsity 

Negation 

Disjunction 

Conjunction 

Implication 

Equality 

V-quantification 

3-quantification 

e-term 

Conditional 

List Type 

Antiquotations 

HOL notation 

T 

F 

t 

h\/t2 

h/\t2 

*i ==> t2 

U=h 

\x.t 

Ix.t 

@x.t 

if t then t\ else t2 

h::t 

1 

Standard notation 

T 

1 

- i f 

ti v t2 

h M2 

h=>t2 

t\andt2 

Vxi 

3x.t 

ex.t 

( t - > t i , t 2 ) 

[h;t] 

t 

Description 

true 

false 

not t 

t\ or t-i 

ti and t2 

ti implies t2 

ti equal t2 

for all x:t 

for some x:t 

an x such that:t 

if t then ti else t2 

[hd;tl] 

Evaluates to the 

ML value of t 

Table 2.1: Terms of the HOL Logic 

29 



The basic interface to the system is a Standard Meta Language (SML) inter­

preter. SML [65] is both the implementation language of the system and the Meta 

Language in which proofs are written. The HOL system supports two main different 

proof methods: forward and backward proofs in a natural-deduction style calculus. 

In forward proof, the steps of a proof are implemented by applying inference rules 

chosen by the user, and HOL checks that the steps are safe. All derived inference rules 

are built on top of a small number of primitive inference rules. This approach has 

some limitations since it is hard to know where to state the proof and, for large proofs, 

to determine which sequence of rules to apply. The results are strong and the user 

can have great confidence since the most primitive rules are used to prove a theorem. 

In backward proof, the user sets the desired theorem as a goal. Small programs 

written in SML called tactics and tacticals are applied to break the goal into a list of 

subgoals. Tactics and tacticals are repeatedly applied to the subgoals until they can 

be resolved. In practice, forward proof is often used within backward proof to convert 

each goal's assumptions into a suitable form. 

Theorems in the HOL system are represented by values of the ML abstract 

type thm. There is no way to construct a theorem except by carrying out a proof 

based on the primitive inference rules and axioms. HOL system has many built-in 

inference rules and ultimately all theorems are proved in terms of the axioms and basic 

inferences of the calculus. By applying a set of primitive inference rules, a theorem 

can be created. Once a theorem is proved, it can be used in further proofs without 

recomputation of its own proof. In this way, the ML type system protects the HOL 

logic from arbitrary construction of a theorem, so that every computed value of the 

type-representing theorem is a theorem. The user can have a great deal of confidence 

in the results of the system. 

30 



The applications of the HOL system can be found in hardware verification, 

reasoning about security, verification of fault-tolerant computers, and reasoning about 

real-time systems. It is also used in compiler verification, program refinement calculus, 

software and algorithms verification, modeling, and automation theory. 

HOL also has a rudimentary library facility which enable theories to be shared. 

This provides a file structure and documentation format for self contained HOL de­

velopments. Many basic reasoners are given as libraries such as mesonLib, bossLib, 

and simpLib. These libraries integrate rewriting, conversion and decision procedures 

to free the user from performing low-level proof. 

2.2 Mult iway Decision Graphs 

2.2.1 Formal Logic 

The formal logic underlying MDG is many-sorted First Order Logic (FOL). The vo­

cabulary consists of sorts, constants, variables, and function symbols or (operators). 

Constants and variables have sorts. An n-ary function symbol (n > 0) has a type 

Qi x a2 x • • • x a„ —> a„+i, where ct\ • • -an+\ are sorts. Two kinds of sorts are 

distinguished: concrete and abstract: 

• Concrete sort: is equipped with finite enumerations, lists of individual constants. 

Concrete sorts are used to represent control signals. 

• Abstract sort: has no enumeration available. A signal of an abstract sort rep­

resents a data signal. 

The enumeration of a concrete sort n is a set of distinct constants of sort a. We refer 

to constants occurring in enumerations as individual constants, and to other constants 

31 



as generic constants. An individual constant can appear in the enumeration of more 

than one sort a, arid is said to be of sort a for each of them. Variables and generic 

constants, on the other hand, have unique sorts. 

The terms and their types (sorts) are defined inductively as follows: a constant 

or a variable of sort a; and if / is a function symbol of type «i x a2 x • • • x «„ -» 

a n + i , where cvi • • • an + 1 , n > 1, and Ai, • • •, An are terms of types a\ • • • an+i, then 

f{Ai • • • A J + I ) is a term of type an+\. A term consisting of a single occurrence of 

an individual constant has multiple types (the sorts of the constant) but every other 

term has a unique type. 

We say that a term, variable or constant is concrete (resp. abstract) to indicate 

that it is of concrete (resp. abstract) sort. A term is concretely reduced iff it contains: 

(i) the individual constants; (ii) the abstract generic constants; (iii) the abstract 

variable; and (iv) the terms of the form f(Ai • • • An+i) where / is an abstract symbol 

and A\, • • •, An are concretely-reduced terms. Thus, the concretely-reduced terms are 

those that have no concrete sub terms other than individual constants. A term of the 

form f(Ai • • • An+i) where / is a cross-operator and Ai,---,An are concretely-reduced 

terms is called cross-term. An equation is an expression A\, • • •, An where A\ and An 

are terms of same type a. Atomic formulae are the equations, plus T (truth), and F 

(falsity). Formulae are built from the atomic formulae in the usual way using logical 

connectives and quantifiers. 

An interpretation is a mapping $ that assigns a denotation to each sort, constant 

and function symbol such that: 

1. The denotation ty(a) of an abstract sort a is a non-empty set. 

2. If a is a concrete sort with enumeration o,i, a2, • • •, an then 

*(o j = *(«!), \J>(a2), • • •, $(a„) and *(«,) ^ *(%) for 1 < i -< j < n. 

32 



3. If c is a generic constant of sort a, then \P(c) e ^/(a). If / is a function symbol 

of type a.\ x ct2
 x • • * x otn —>• a„+i then \&(/) is a function from cartesian product 

*(«i ) x • • • $(an) into the set ^ ( a n + i ) . 

Let X be a set of variables, a variable assignment with domain X compatible 

with an interpretation $ is a function <p that maps every variable x £ X oi sort a 

to an element ip{x) of \P(a;). We write <£* for the set ^-compatible assignments to 

the variables in X, ty,<p \= P if P denotes truth under an interpretation $ and a 

^-compatible variable assignment tp to the variables that occur free in P, and (= P 

if a formula P denotes truth under every interpretation \P and every "^-compatible 

variable assignment to the variables that occur free in P. Two formulae P and Q are 

logically equivalent iff |= P <=$> Q. 

2.2.2 Abstract State Machines 

Abstract description of State Machines (ASMs) is a model used for describing hard­

ware designs at the Register Transfer Level (RTL). It was introduced by Corella et 

al. [21, 91]. In MDGs, a state machine is described using finite sets of input, state 

and output variables, which are pair-wise disjoint. The behavior of a state machine 

is defined by its transition/output relations including a set of reset states. Using 

ASMs, a data value can be represented by a single variable of abstract type, rather 

than by a vector of Boolean variables, and a datapath operation is represented by an 

uninterpreted function symbol. As ROBDDs are used to represent sets of states and 

transition/output relations for finite state machines (FSM), MDGs are used to com­

pactly encode sets of (abstract) states and transition/output relations for ASMs. This 

technique replaces the implicit enumeration technique [22] with the implicit abstract 

enumeration [21, 91]. 

33 



2.2.3 Structure 

MDGs are graph representation of a class of quantifier-free and negation-free first-

order many sorted formulae. It subsumes the class of Bryant's (ROBDDs) [13] while 

accommodating abstract data and uninterpreted function symbols. It can be seen as 

a Directed Acyclic Graph (DAG) with one root, whose leaves are labeled by formulae 

of the logic True (T)[21], such that: 

1. Every leaf node is labeled by the formula T, except if the graph G has a single 

node, which may be labeled T or F. 

2. The internal nodes are labeled by terms, and the edges issuing from an internal 

node v are labeled by terms of the same sort as the label of v. 

Then, a graph G can be viewed as representing a formula defined inductively 

as follows: (i) if G consists of a single leaf node labeled by a formula P , then G 

represents P; (ii) if G has a root node labeled A with edges labeled B\,---, Bn leading 

to subgraphs G\, • • •, Gr
n, and if each G\ represents a formula P(, then G represents 

the formulae Vi<;<n((^ = Bi) A P*)-

Figure 2.1 shows two MDGs example GO and Gl. In GO, X is a variable of the 

concrete sort [0,2,3], while in Gl, X is a variable of abstract sort; a,/3 and f(9) are 

abstract terms. 

MDGs are canonical representations, which means that an MDG structure has: 

a fixed node order, no duplicate edges, no redundant nodes, no isomorphic subgraphs, 

terms concretely reduced that have no concrete subterms other than individual con­

stants, disjoint primary (nodes label) and secondary variables (edges label). 

34 



Figure 2.1: Example of Multiway Decision Graphs Structure 

MDGs represent and manipulate a certain subset of first order formulae, which 

we call Directed Formulae (DFs). DFs can represent the transition and output rela­

tions of a state machine, as well as the set of possible initial states and the sets of 

states that arise during reachability analysis. 

The MDG operations and verification procedures are packaged as a tool and 

implemented in Prolog [20]. We show below the basic MDG operations: 

Conjunction Operation: The conjunction operation performs conjunction for 

two DFs not having any abstract variables in common. 

Relational Product Operation (RelP): The RelP operation performs con­

junction and existential quantifying for a two DFs. It is used for image computation. 

Disjunction Operation: The disjunction operation performs disjunction for 

two DFs having the same set of abstract primary variables. 

Pruning By Subsumption Operation (PbyS): The PbyS operation used 

to approximate the logical difference operation between two sets represented as DF. 

It removes all the paths of a DF P from another DF Q. 

35 



2.2.4 The MDG-Tool 

The MDG-tool [90] provides facilities for invariant checking, verification of combina­

tional circuits, sequential verification, equivalence checking of two state machines and 

model checking. 

The input language of the MDGs tool is a Prolog-style hardware description 

language called (MDG-HDL) [21], which supports structural specification, behavioral 

specification or a mixture of both. A structural specification is usually a netlist of 

components connected by signals, and a behavioral specification is given by a tabular 

representation of transition/output relations or a truth table. 

Property 
Specification 

Algebraic 
Specification 

Variables 
Order 

Behavioral 
Model 

MDG Construction 
Model Checking 

Equivalence Checking 
Invariant Checking 

Structural 
Model 

Yes/No(Counterexample) 

Figure 2.2: The Structure of the MDGs-tool 

As shown in Figure 2.2, in order to verify a design with the tool, we first need to 

specify it in MDG-HDL (design specification and design implementation). Moreover, 

an algebraic specification is to be given to declare sorts, function types, and generic 

constants that are used in the MDG-HDL description. Rewrite rules that are needed 

to interpret function symbols should be provided here as well. Like for ROBDDs, a 

symbol order according to which the MDG is built could be provided by the user. 

This symbol order can affect critically the size of the generated MDG. Otherwise, 

36 



MDG can use an automatic dynamic ordering. 

2.2.5 MDGs Model Checking 

The MDGs model checking is based on an abstract implicit state enumeration. The 

circuit to be verified is expressed as an Abstract State Machine (ASM) and properties 

to be verified are expressed by formulae in CMDG [88]. The ASM describes digital 

systems under verification at a higher level of abstraction. 

C-MDG atomic formulae are Boolean constants (True and False), or equations 

of the form (t\ = t2), where ti is an ASM variable (input, output or state variable) 

and t2 is either an ASM system variable, an individual constant, an ordinary vari­

able or a function of ordinary variables. Ordinary variables are defined to memorize 

the values of the system variables in the current state. The basic formulas (called 

Next Jet-formulas) in which only the temporal operator X (next time) is defined as 

follows [6]: 

• Each atomic formula is a Next Jet-formulas; 

• If p, q are Next Jet-formulas, then so are: !p (not p), p&q (p and q), p|q (p 

or q), p —> q (p implies q), Xp (next-time p) and LET (v=t) IN p, where t is a 

system variable and v an ordinary variable. 

Using the temporal operators A G (always), A F (eventually) and AU (until), 

the supported CMDG properties are defined in the following BNF grammar: 

37 



Property ::= A(Next Jet-formula) 

| AG (Next Jet-formula) 

| AF (Next Jet-formula) 

| A(NextJet-f'orrnula) U (Next Jet-formula) 

| AG (Next Jet .formula) => F(Next Jet-formula) 

\ AG ((Next Jet-formula) => 

((Next Jet-formula) U Next Jet-formula))) 

Model checking in the MDGs system is carried out by building automatically 

additional circuit that represents the Next Jet-formulas appearing in the property 

to be verified, compose it with the original circuit, and then check a simpler property 

on the composite machine [88]. 

38 



Chapter 3 

Formalization of MDG Syntax 

In this chapter, we describe the way we used to represent the transition relation from 

graph representation to Directed Formulae DF. Then, we justify the embedding of 

the DF and the well-formedness conditions in HOL. Finally, we provide an example 

to illustrate our embedding. 

3.1 Transition Relation: Graph or Formula 

Different approaches have been used to formalize transition relations either as terms 

and formulae or as Directed Acyclic Graphs (DAGs). The first is a formal logic 

representation using data type definitions [7, 35], while the latter is a graphical 

representation using trees and graphs [64, 85]. 

First of all, the graph is represented as a data structure in the theorem prover. 

This representation should reflect the abstract properties of graphs and should be flex­

ible to be suitable for different domains and for many applications to model complex 

designs. Several examples can be cited: to model communication networks (railway 

39 



track network [8]), also in transport industry, the problem of finding the most econom­

ical route of delivering goods and the problem of maximizing the network capacity 

can be solved using graphs. 

Chou [15] gradually formalized a considerable amount of graph theory in the 

HOL theorem proving. The theory of undirected graphs is formalized in HOL notions 

as the empty graphs, single-node graphs, finite graphs, subgraphs, paths, reachability, 

acyclicity, trees, subtrees, and merging disjoint subgraph of a graph. Based on this 

formalization, the correctness of distributed algorithms is verified in HOL [16]. 

Ridge [72] mechanized some results concerning graphs and trees. His formal­

ization is very close to that found in [15]. The edges are sets of vertices in the case 

of Ridge while [15] takes edges as atomic objects, and uses an incidence relation to 

describe when an edge connects two vertices. The main objective of the work is to be 

able to handle infinite graphs and trees. 

Modeling the decision diagram as a decision tree or graph is motivated by re­

ducing memory space and computation time needed to build a BDD: by eliminating 

redundancy from the canonical representations as described by [64, 85]. The main 

difficulties are caused by data structure sharing and by the side-effects resulted in the 

computation. The algorithms usually mark the processed nodes or store the results 

calculated for a subtree or subgraph in a hash-table to avoid recalculation. The defi­

nition of such a mechanism is quite complex for automatic reasoning. The advantage 

of course is that there is a little work in this area so probably much scope for research. 

On the other hand, modeling the transition relations as terms and formulae is 

smoother for proofs especially those based on induction. Also, in applications like 

model checking, one would deal with several terms, and any efficient implementation 

must define sharing. The work presented in [7, 35, 37, 44] is an example of the logical 

40 



approach. 

The choice between the two approaches depends on the objectives. If we want 

to reason about the implementation itself and its correctness, then its better to define 

transition relations as graphs and do sharing of common sub-trees. Clearly this makes 

the development and the proofs complex. On the other hand, if we are only interested 

in a high-level view of the algorithms, then a logical representation is preferred. This 

is why, we choose the logical representation in terms of Directed Formulae (DF) to 

model the MDG syntax in HOL. 

3.2 Embedding Directed Formulae in HOL 

Let T be a set of function symbol and V a set of variables. We denote the set of 

terms freely generated from JF and V by T(J7, V). The syntax of a Directed Formula 

is given by the grammar below [88]. The underline is used to differentiate between 

the concrete and abstract variables. 

41 



Sort S 

Abstract Sort S 

Concrete Sort S_ 

Generic Constant C 

Concrete Constant C_ 

Variable X 

Abstract Variable V 

Concrete Variable V_ 

Directed formulae DF 

Disj 

Conj 

::= 

::= 

::= 

::= 

::= 

::= 

::= 

::= 

::= 

::= 

::= 

s 1 
a | 

a | 

a | 

a | 

^ 1 
x | 

2i 1 

Disj 

S 

(i 1 7 

^ 1 1 

& | c 

& 1 S 

z 
2/ 1 z 

y 1 i 

| T 

Conj V Dis j 

Eg/N Conj 

Eq ::= A = C {AeT{T,V)) 

\V = A (AeT{T,X)) 

The vocabulary consists of generic constants, concrete constants (individuals), ab­

stract variables, concrete variables and function symbols. DFs are always disjunctions of 

conjunctions of equations or T (true) or ± (false). The conjunction Conj is defined to be 

an equation only Eq or a conjunction of at least two equations. Atomic formulae are the 

equations, generated by the clause Eq. Equation can be an equality of concrete terms and an 

individual constant, equality of a concrete variable and an individual constant, or equality 

of an abstract variable and an abstract term. 

DFs are used for two purposes: to represent sets (viz. sets of states as well as sets of 

input vectors and output vectors) and to represent relations (viz. the transition and output 

relations). 

In order to illustrate the MDG. we consider the following example DF of type {ui, u-i} — 

42 



{v\,V2], where u\ and v\ are variables of a concrete sort 600/ with enumeration {0,1} while 

«2 and V2 are variables of an abstract sort a, 3 is an abstract function symbol of type 

a —» a and / is a cross-operator of type a —> 600/. Then, the Figure below shows the MDG 

representing this example as well as its corresponding DF formula. 

((/(«2) = 0) A (v2 = u2)) V 

ci> CJE> ((/(W2)=1} A (ui=0) A {vi=0) A {v2=g{u2))) v 

((/(«2) = 1) A (« : = 1) A («! = 1) A (v2 = g{u2))) 

Using HOL recursive datatype, the MDG sorts are embedded using two constructors 

called Abst_Sort and Conc_Sort. This is declared in HOL as follows: 

Sort : := Abst_Sort of 'alpha | Conc_Sort of s t r ing —> s t r ing l i s t 

The Abst_Sort takes as argument an abstract sort name of type alpha (which means that 

the sort is actually abstract and hence can represent any HOL type). For example, if wordn 

is an abstract sort, then it is defined in HOL as: 

-def wordn = Abst_Sort "wordn" 

The Conc_Sort takes a concrete sort name and its enumeration of type string as an input 

argument. For example, if bool is a concrete sort with ["0";"1"] as enumeration, then it is 

defined in HOL as: 

\-def bool = Conc_Sort "bool" ["0";"1"] 

To determine whether the sort is concrete or abstract, we define predicates over the con­

structor called Is_AbstJ3ort and Is_Conc_Sort. 

43 



In the same way, constants are either of concrete or abstract sort. An individual 

constant can have multiple sorts depending on the enumeration of the sort, while an abstract 

generic constant is identified by its name and its abstract sort. We use the Ind.Cons and 

Gen_Cons constructors to declare constants in HOL as follows: 

Ind_Cons : := Ind_Cons of s t r ing —» 'alpha Sort 

Gen_Cons : := Gen_Cons of s t r ing —» 'alpha Sort 

Also a variable (abstract or concrete) is identified by its name and sort. In our 

embedding, an abstract variable is declared using Abst_Var constructor and the ConcVar 

constructor is used to declare a concrete variable. As shown below, oone is defined as an 

individual constant, max is defined as a generic constant and m is defined as an abstract 

variable: 

\-daf oone = Ind_Cons " 1 " bool 

\~def m a x = Gen_Cons "max" wordn 

\~def m = Abst_Var "m" wordn 

Similarly, wc use some predicates to determine whether a constant is an individual or a 

generic and a variable is concrete or abstract. 

Functions can be either abstract or cross-functions. Cross-functions are those that 

have at least one abstract argument. Note that concrete functions are not used since they 

can be eliminated by case splitting. Abstract function is declared using Abst_Fun constructor 

and the Cross_Fun constructor is used to declare a cross function. 

Abst_Fun : := Abst_Fun of s t r ing —> 'alpha Var l i s t —> 'alpha Sort 

Cross_Fun : := Cross_Fun of s t r ing —» 'alpha Var l i s t —> 'alpha Sort 

If eqz-Fun is a cross-function takes m as an input and produces a concrete output of sort 

bool, then, eqzJFun is defined as: 

\~def eqz_Fun = Cross_Function "eqz_Fun" [~m] bool 

44 

file:///~def
file:///~def
file:///~def


Wc have defined a da ta type D_F . T h e D F can be True or False or a disjunction of 

conjunction of equations. Equat ions arc defined as an equality of Left Hand Side (LHS) and 

Right Hand Side (RHS) based on the D F grammar given earlier and could be one of the 

following cases: 

• LHS is a concrete variable = RHS is an individual constant 

• LHS is an abst ract variable — RHS is a cross-function, or abstract variable or generic 

constant . 

• LHS is a cross-function = RHS is an individual constant 

Then we define the type definition of a directed formula: 

D_F : : = DF1 of ' a lpha DF | TRUE | FALSE 

DF : : = DISJ of ' a lpha MDG_Conj -> DF | C0NJ1 of ' a lpha MDG_Conj 

MDG_Conj : : = Eqn of ' a lpha Eqn | CONJ of ' a lpha Eqn -> MDG_Conj 

Eqn : : = EQUAL1 of 'a lpha Conc_Var —> 'a lpha Ind_Cons 

| EQUAL2 of ' a lpha Abst_Var —> 'a lpha Abst_Fun 

| EQUAL3 of ' a lpha Cross_Fun —> ( 'alpha Abst_Var) l i s t 

—> 'a lpha Ind_Cons 

| EQUAL4 of ' a lpha Abst_Var -> ' a lpha Abst_Var 

| EQUAL5 of ' a lpha Abst_Var -» ' a lpha Gen_Cons 

DF1, DISJ, C0NJ1, Eqn, and CONJ are distinct constructors and the constructors EQUAL1, 

EQUAL2, EQUAL3, EQUAL4, and EQUAL5 arc used to define an atomic equation. The type 

definition package re turns a theorem which characterizes the type D_F and allows reasoning 

about this type. Note t ha t the type is polymorphic in a sense t ha t the variable could be 

represented by a str ing or an integer number or any user defined type : in our case we have 

used the str ing type. 

Internally, the D F is implemented as a list to simplify the checking of well-formedness 

conditions and the embedding of M D G operations. However, th is representat ion is com­

pletely t ransparent for the user of the embedded MDG operations later. Then it is sufficient 

45 



to input the DF as formulae and the transformations (proved correct) is done automatically. 

The DF representation as a list having the following format: 

equ eqin eqmi eqmn 

, " S / * S /• " s. , * N 

[[[lhsn;rhsu};---;[lhs 
v v ' s v ' 

disjuncti disjunctm 

where a DF is given as: 

DF = equ A e(/12 A 

eq2i A eq22 A 

eqml A eqm2 A • • • A eq 
run 

We extract the DF using the STRIP_DF_list function: 

h d e / ( S T R I P _ D F _ l i s t (DF1 (C0NJ1 (CONJ E M ) ) ) = 

[ ( b o t h _ s i d e _ e q E ) ] : : STRIP_DF_ l i s t (DF l (C0NJ1 M))) A 

( S T R I P _ D F _ l i s t (DF1 (DISJ (Eqn E) D)) = 

[ ( b o t h _ s i d e _ e q E ) ] : : STRIP_DF_ l i s t (DF l D) ) A 

(STRIP_DF_l i s t (TRUE) = [ [ [ " T R U E " ] ] ] ) A 

(STRIP_DF_l i s t (FALSE) = [ [ [ " F A L S E " ] ] ] ) A 

(STRIP_DF_l i s t (DF1 a ) = S T R I P _ D I S J _ l i s t a ) 

STRIP_DISJ_list function is used to extract each disjunct and store it in a list, while 

STRIP-CONJ_list function is used to extract both side of equations and store them in the 

inner sublist. Similarly, STRIP_Fun function is used to extract the arguments of abstract 

and cross functions and store them in a list. The HOL definitions of the mapping functions 

and the well-formedness conditions are included in Appendix A. This mapping simplifies our 

implementation and enables us to automate MDG operations by using the infrastructure of 

the predefined List Theory in HOL to inherit all definitions and theorems. 

On the other hand, we defined a STRIP_INV_DF function (Appendix A) to map lists 

to DF format. We proved a theorem to show that our mapping from any well-formed DF 

to list format and from lists to DF is correct as shown by the following theorem: 

46 

• • • A eqln V 

• • • A eq2n V 



Theorem 3.2.1 DF Mapping Correctness 

DF Mapping Correctness h V df. Is- WelLFormed.DF df = > 

STRIPJNV-DF (STRIP-DFJist df) = df) 

PROOF: 

The proof is conducted by structural induction on df. D 

3.3 Well-formedness Condit ions 

MDGs provide efficient representation to a class of well-formed first-order formulas 

defined on well-typed equations. A well-typed equation is an expression A\ = A2, 

where A\ and A2 are terms of the same sort. Given two disjoint sets of variables 

U and V, a Directed Formulae of type U —> V is a formula in Disjunctive Normal 

Form (DNF). Just as ROBDD must be reduced and ordered, DFs must obey a set of 

well-formedness conditions given in [21] such that: 

1. Each disjunct is a conjunction of equations of the form: 

A = a, where A is a term of concrete sort a containing no variables other than 

elements of U, and a is an individual constant in the enumeration of a, or 

u = a, where u E (U U V) is a variable of concrete sort a and a is an individual 

constant in the enumeration of a, or 

v = A, where v E V is a variable of abstract sort a and A is a term of type a 

containing no variables other than elements of U; 

2. In each disjunct, the LHSs of the equations are pairwise distinct; and 

3. Every abstract variable v E V appears as the LHS of an equation v = A in each 

of the disjimcts. (Note that there is no need of an equation v = a for every 

concrete variable v E V). 

47 



Intuitively, in a DF of type U —> V, the U variables play the role of independent 

variables (secondary variables), the V variables play the role of dependent variables 

(primary variables), and the disjuncts enumerate possible cases. In each disjunct, the 

equations of the form u = a and A = a specify a case in terms of the U variables, 

while the other equations specify the values of (some of the) V variables in that case. 

The cases need not be mutually exclusive, nor exhaustive. 

The predicate Is_Well_Formed_DF is defined as: 

\-def Vdf. Is_Well_Formed_DF df = 

Condit ion2 (STRIP_DF df) A 

Condit ion3 (FLAT(STRIP_ABS_DF df ) ) (STRIP_DF df ) ) 

where Condition2 and Condition3 represent the well-formedness conditions (Ap­

pendix A.l). STRIP_ABSJDF function extracts the abstract variables of a DF and 

STRIP_DF extracts the LHS variables of each disjuncts of a DF. 

We derive a set of inference rules which guarantees if a given DF is well formed 

according to the definition given before. The recursive data type package automat­

ically returns the following theorems which characterize each condition separately. 

Table 3.1, gives these inference rules since it is more adequate to DF, and indepen­

dent from the logic of HOL. We translate these inference rules as theorems in HOL. 

48 



Table 3.1: Well-Formedness (WF) Inference Rules 

WFJTrue: 
WF(T) 

WF_False: 
WF(F) 

WF_E1: 
WF{V_ = C) 

WF_E2J:4_E5: ; (A G T(F, X)) 
WF{V = A) 

WF_E3: ; (A e T(T, V)) 
WF(A = C) 

i n ? / , . WF{Eqi) WF(Eq2) (LHS(Eqi) + LHS(Eq2)) 
WF_Conj: 

WF{Eqi A Eq2) 

WF(C<mJ!) WF(Conj2) (Abst.Var(Conji) = Abst.Var{Canj2)) 
WFJDisj: 

WF(Conji V Conj2) 

The well-formedness conditions can be summarized as: 

Condition 1: The condition is satisfied by construction following the DF syn­

tax. The axiom WF_E1 represents the equality between a concrete variable and 

a concrete individual constant. Axiom WF_E2_E4_E5 shows the equality of an 

abstract variable and an abstract term (abstract variable, abstract generic con­

stant and abstract function symbol). Finally, axiom WF_E3 expresses the equality 

of concrete term and concrete individual constant. The theorems needed for the 

inference rule representing this condition are given by: 

49 



WF.True: h Is_Well_Formed_DF (TRUE) 

WF_False: h Is_Well_Formed_DF (FALSE) 

WF_Ei: h VConc_Var Ind_Con. 

Is_Well_Formed_DF (DFl(CONJl(Eqn(EQUALl Conc_Var Ind_Con)))) 

WF.E2: I- VAbst_Var Abst_Fun. 

Is_Well_Formed_DF (DFl(C0NJl(Eqn(EQUAL2 Abst_Var AbstJFun)) ) ) 

WF_E3: h VCrs_Fun Ind_Con. 

Is_Well_Formed_DF 

(DFl(C0NJl(Eqn(EQUAL3 Crs_Fun Abs_Var Ind .Con) ) ) ) 

WF.E4: I- VAbst_Var Abst_Var. 

Is_Well_Formed_DF (DFl(C0NJl(Eqn(EQUAL4 Abst_Var Abst_Var))) ) 

WF_E5: h VAbst_Var Gen_Con. 

Is_Well_Formed_DF (DFl(C0NJl(Eqn(EQUAL5 Abst_Var Gen_Con)))) 

• Conditions 2: We add the LHS (lef t_eq function) which extracts the Left Hand 

Side variable of a given equation. The assumptions needed for this condition 

are: the two well-formed equations and the LHS of each equation should not be 

equal. We prove a HOL theorem (WF_Conj) that states the correctness of the 

inference rule related to this condition: 

WF.Conj: h VE1 E2. (Is_Well_Formed_DF(DFl(CONJl(Eqn E l ) ) ) A 

Is_Well_Formed_DF(DFl(CONJl(Eqn E2)) ) ) A ->(left_eq E l = l e f t _ e q E2) = > 

Is_Well_Formed_DF (DF1(C0NJ1(C0NJ El (Eqn E2) ) ) ) 

• Condition 3: The assumptions needed for this condition are: the two well-formed 

conjuncts and the abstract variables of each conjunct should be equal. We prove 

the theorem (WF_Disj) that states the correctness of the inference rule related 

to this last condition: 

50 



WFJ)isj : h Vconjl conj2. Is_Well_Formed_DF (DF1(C0NJ1 c o n j l ) ) A 

Is_¥ell_Formed_DF (DF1(C0NJ1 conj2)) A 

(FLAT(STRIP_ABS_DF) (DF1(C0NJ1 conjl))=FLAT(STRIP_ABS_DF (DFl(C0NJl c o n j 2 ) ) ) ) 

= > Is_Well_Formed_DF (DF1(DISJ conj l (C0NJ1 con j2 ) ) ) 

We have implemented a HOL tactic to automate the checking of well-formedness 

conditions based on the function Is_Well_FormecLDF defined above. 

3.4 MIN-MAX Example 

We consider the MIN-MAX circuit described in [21]. The MIN-MAX state machine 

shown in Figure 3.1 has two input variables X = {r; x} and three state variables Y = 

{c; m; M}, where r and c are of the Boolean sort B, a concrete sort with enumeration 

{0; 1}, and x, m, and M are of an abstract sort s. The outputs coincide with the 

state variables, i.e. all the state variables are observable and there are no additional 

output variables. 

r=1 , {n_m=max, n_M=min} 

r=0, 
{n_m=if leq_Fun(x,m) then x else m. 
n_M=if teq_Fun(x,M) then M else x} 

Figure 3.1: MIN-MAX State Machine 

The transition labels specify the conditions under which each transition is taken 

and an assignment of values to the abstract next state variables rum and n-M. The 

machine stores in m and M, respectively, the smallest and the greatest values pre­

sented at the input x since the last reset (r = 1). When the machine is reset, m 

is loaded by the maximal possible value max and M by the minimal possible value 

51 



rnin. The min and max symbols are uninterpreted generic constants of sort s. The 

smallest and greatest values are computed using an operator leq-Fun such that for 

any two values a and b of sort s, leq..Fun(a, b) = 1 if and only if a is less than or 

equal to b. The transition relation can be described by a set of individual transition 

relations, one associated with each next state variable. The DFs of these individual 

transition relations, for a particular custom symbol order, are shown below: 

Tr.c 

Trjm 

TTM 

((r = 0) A (n„c = 0)) V 

(r = 1) A (n„c = 1))] 

((r = 0) A (c = 0) A (rum = m) A (leqJFun(x, m) = 0)) \J 

(r = 0) A (c = 0) A (rurn = x) A (leq-Fun(x, m) = 1)) V 

(r = 0) A (c = 1) A (rum = x)) \J 

(r = 1) A (rum = max))] 

{((r = 0) A (c = 0) A (n-M = x) A (leq„Fun(x, M) = 0)) V 

((r = 0) A (c = 0) A (n_M = M) A (leq^Fun(x, M) = 1)) V 

(( r = 0) A (c = 1) A (n.M - x)) V 

[(r = 1) A (yiM = mm))] 

The DF of the system transition relation Tr is the conjunction of these individual 

transition relations. We illustrate with this example how the directed formula is 

defined and how the well-formedness conditions are checked. We just give some of the 

definitions for concrete and abstract sorts, constants, variables and abstract function 

and cross-function. 

52 



hdef bool = Conc_Sort "bool" ["0";"1"] 

hdef wordn = Abst_Sort "wordn" 

\-def zzero = Ind_Cons "0" bool 

\-def r = Conc_Var "r" bool 

l~de/ x = Abst_Var "x" wordn 

\-def m = Abst_Var "m" wordn 

\~ def n_m = Abst_Var "n_m" wordn 

hdef leq_Fun = Cross_Fun "leq_Fun" [ "x";"m"] bool 

Also, We define some equations and disjuncts: 

h(ie/ eql = EQUAL1 "r "zzero 

\~dcf eq4 = EQUAL1 ~n_c "oone 

hdef eq9 = EQUAL3 "leq_Fun ["x;"m] "zzero 

hdef eqll = EQUAL5 ~n_m "max 

Vdef mdgl = CONJ "eq2 (CONJ "eq4 (CONJ "eqll (Eqn "eql6))) 

\-def mdg2 = CONJ "eql (CONJ ~eq5 (CONJ "eq3 (CONJ "eq7 

(CONJ ~eql3 (Eqn "eq9))))) 

Then, the directed formula Tr is defined as: 

\-def Tr = DF1 (DISJ "mdgl (DISJ "mdg2 (DISJ "mdg3 

(DISJ "mdg4 (DISJ "mdg5 (C0NJ1 "mdg6))))) ) 

Applying the predicate Is3/ellJ7ormed_DF(conversion tactic) returns the theo­

rem below: 

I- Is_Well_Formed_DF Tr (3.1) 

Stating that the directed formula Tr us well-formed. 

An example of applying (WF) inference rules given in Table 3.1, is presented 

below. Since the top symbol is a disjunction then WFJDisj rule splits the goal 

W(Tr=(eq2 A eqA A egll A egl6) V (mdg2 V rndg3 V mdgA V rndgb V mdgQ)) into 

53 

file:///-def
file:///~dcf


two subgoals WF(Trl=(e<?2 A eq4 A eqll A eg 16)) and WF(Tx2=mdg2 V mdgZ V mdgA V 

mdgb V mdg6)). Trl is a conjunct, the WF.Conj will be applied until an axiom (final 

result) is applied. 

- WF-E1 WF(eqi A e q l l A eq!6) Cond2 
ffffr = oone) WF_Conj WF(mdg2 V . . . V rndgS) Cond3 

WF_Disj 
WF(eq2 A eqA A e q l l A eql6) 

WF{(eq2 A eq4 A ecjll A eql6) V (mdg2 V mdg3 V mdg4 V mdgb V mdg6)) 

where: 

eq2 = (r — oone) 

Cond2 = (LHS(eq2) yt LHS(eqA) jt LHS(eqll) ^ LHS(eql6)) 

Ccmd'i = (AbstJVar(eq2 A eq4 A e q l l A eql6) = Abst.Var(mdg2 V mdg'A V mdg4 V mdgb V md</6)) 

54 



Chapter 4 

Formalization of MDG Operations 

In fact, HOL provides predefined logical operations that perform conjunction and 

disjunction of formulae. However, if the inputs of these operations are well-formed 

DF, the outputs will not necessarily be a well-formed DF. Also, as the DF repre­

sent a canonical graph, the variables order must be preserved, which is not satisfied 

when applying HOL operations. Our embedding is built to address specifically these 

concerns. In this chapter, we provide a formal definitions of MDG basic operations, 

the correctness and the well-formedness proof. The detailed embedding can be found 

in [4]. 

4.1 The Conjunction Operation 

The conjunction operation is performed over MDG structures; examples of MDG 

conjunction is shown in Figure 4.1. In F l , the two top variables of P and Q are the 

same concrete variables or cross-terms. In F2, the top variable of P is a concrete 

variable or cross-term A, and order (A) < order(top variable of Q). Finally in F3, P 

and Q have different primary abstract variables, and order(A) < order(top variable 

55 



of Q). However, it is not a well formed MDG (canonical), and % must be substituted 

for A having secondary occurrences in Q. 

Figure 4.1: The conjunction operation 

In terms of DF's, the conjunction operation takes as inputs two DFs Pi, I < i < 

2, of types Ui —• Vt, and produces a DF R = Conj ( { P J } I < K 2 ) °f type 

(Ul<i<2^)\(Ul<i<2K-) - (Ul< (<2^) S U c h t h a t : 

l< i<2 

Note that for 1 < i < j < 2, Vi and V̂  must not have any abstract variables in 

common; otherwise the conjunction cannot be computed. 

4.1.1 The Conjunction Constraints: 

There are two sets of constraints over the conjunction operation: one set is needed 

to be respected in order to execute the algorithm (pre-conditions), and the second is 

related to the execution nature of the algorithm itself. The first takes as inputs a set 

of well-formed DFs and a list that represents the union of the DF order lists. The 

second type can be summarized as: 

56 



1. If the two DFs have a common root label of abstract sort, the conjunction of 

the two DFs cannot be computed. For example, it is easy to see that there is 

no DF representing a formula that is logically equivalent to (x = a) A (x = b), 

if x is an abstract variable and a and b are distinct generic constants. This case 

never occurs in the reachability analysis algorithm, because the conjunction is 

always performed between DFs having mutually disjoint sets of primary abstract 

variables. 

2. If the root label of dfl comes before the root label of df2, and the label of dfl 

is an abstract variable x, the resulting DF may not be well-formed. This is 

justified because x may have secondary occurrences (LHS) in df2, and hence 

it may have secondary occurrences in the result. Therefore, x may have both 

primary (RHS) and secondary occurrences in the result, contradicting the well-

formedness conditions. Symmetrically, the same situation for df2. 

The result of the operation must be a well-formed DF representing the con­

junction of dfl and df2 (post-condition). Thus, it suffices to eliminate x from df2 by 

substitution for x in df2 or replacing the secondary occurrences of x in df2 with the 

respective terms. 

The outlined method for computing the conjunction is applicable when the sets 

of primary variables of the two DFs are disjoint. The resulting DF has primary vari­

ables that are among the primary variables of the conjuncts, including all abstract 

variables that have primary occurrences in any of the conjuncts. The abstract vari­

ables having secondary occurrences in the result are among those having secondary 

occurrences in the conjuncts, excluding those having primary occurrences in any of 

the conjuncts. 

57 



4.1.2 The Conjunction Embedding: 

In the next step, we define the conjunction operation in HOL. The operation accepts 

two sets of DFs (dfl and df2) and the order list L of the node label. The detailed 

algorithm is given in Algorithm 1. 

Algorithm 1 CONJ_ALG (dfl, df2, L) 

1 

2: 

3 

4: 

5: 

6 

7: 

8: 

9 

10 

11 

12 

if terminal DF then 
return result; 

else 
for (each disjunct e dfl) do 

DF_CONJUNCTION (disjl_dfl,df2,L) recursively 
for (each disjunct € df2) do 

HD_SUBST (HD_DISJUNCT (disjtl_dfl,disjtl_df2,L)) recursively 
end for 
append the result of the HD_DISJUNCT; 

end for 
append the result of the DF.CONJUNCTION; 

end if 

Algorithm 1 starts with two well formed DFs and an order list L. The resulted 

DF is constructed recursively and ended when a terminal DF (true or false) is reached 

(lines 1 and 2). Lines 4 to 11 recursively applies the conjunction between dfl and df2 

using the DF_C0NJ function. Note that "_" means "don't care". 

hdef (DF_C0NJ [] _ _ L3 = [] ) A 

(DF_C0NJ _ [] _ L3 = [] ) A 

(DF_C0NJ ( h d l : : t l l ) ( h d 2 : : t l 2 ) LI L3 = 

DF_C0NJUNCTI0N (hdl) ( h d 2 : : t l 2 ) Ll L3 : : DF_C0NJ ( t i l ) ( h d 2 : : t l 2 ) LI L3 ) 

The DF_C0NJUNCTI0N function determines the conjunction of the first disjunct 

of dfl(disjl_dfl) and df2 as shown in line 5 and defined as: 

58 



hdef (DF_CONJUNCTION [] _ _ L3 = [] ) A 

(DF_CONJUNCTION _ [] _ L3 = [] ) A 

(DF_CONJUNCTION ( h d l : : t l l ) ( h d 2 : : t l 2 ) LI L3 = 

if (IS_EL [] (HD.DISJUNCT ( h d l : : t l l ) (hd2) L3) ) t hen 

DF_CONJUNCTION (hdl : : t l l ) ( t l 2 ) LI L3 

e l s e 

HD_SUBST (HD_DISJUNCT ( h d l : : t l l ) (hd2) L3) LI : : 

DF_CONJUNCTION ( h d l : : t l l ) ( t l 2 ) LI L3 ) 

The HD_DISJUNCT function determines the conjunction between the first disjunct 

of both DFs (lines 6 to 8). Then, we apply the substitution by taking the disjunct 

and check that the LHS of each equation (primary variable) does not appear in any 

equations in the RHS (secondary variable) of the same disjunct. If it appears then 

we apply substitution by replacing its RHS by the other RHS to respect the well 

formedness conditions. For instance, in the case of abstract edge label (x = y) A (y = 

a) the resulting substitution is (x = a). The substitution is carried out using the 

RTLSUBST function: 

59 



h d e / (HD_SUBST [] = [ ] ) A 

(HD_SUBST L = SPLIT1 L L ) 

\-def (SPLIT1 _ [] ( hd3 : : t l 3 ) = [] ) A 

(SPLIT1 [] _ ( h d 3 : : t l 3 ) = [] ) A 

(SPLIT1 ( h d l : : t i l ) (hd2: : t l 2 ) []=SPLIT (hd l : : t l l ) (hd2: : t l 2 ) ) A 

(SPLIT1 ( h d i : : t l l ) ( h d 2 : : t l 2 ) ( h d 3 : : t l 3 ) = 

i f (IS_EL (HD(TL h d l ) ) (HD_list (hd2: : t l 2 ) ) ) then 

i f ( HD(TL hdl ) = (HD hd2) ) then 

(HD hdl: : (TL hd2)): :SPLIT1 t i l ( h d 2 : : t l 2 ) ( h d 3 : : t l 3 ) 

e l s e 

SPLIT1 ( h d l : : t l l ) ( t l 2 ) (hd3: : t l 3 ) 

e l s e i f (IS_EL(HD( h d l ) ) (FLAT(FLAT(TL_list(hd3: : t l 3 ) ) ) ) ) then 

SPLIT1 t i l ( h d 2 : : t l 2 ) ( h d 3 : : t l 3 ) 

e l s e 

hdl : : SPLIT1 t i l ( h d 2 : : t l 2 ) ( h d 3 : : t l 3 ) ) 

Line 9 recursively appends the result and moves to the second disjunct of dfl. 

In line 11, the DF.CONJUNCTION function recursively performs the conjunction of the 

second disjunct of dfl with df2 and append it to the result. The detailed algorithm 

describing the HD-DISJUNCT function is given in Algorithm 2. 

The HD_DIS JUNCT function tests if the two equations of the two disjuncts have 

the same order, by checking the position of the head of both equations (lines 1 and 2) 

using pos i t ion function. Line 3 adds the equation to the result and move to the next 

equation, in both disjuncts, and call HD_DISJUNCT recursively (line 4). Otherwise if 

the head of both equations are equal but the tail (RHS) are not equal, then the result 

will be empty and we stop and move to the next disjunct in df2 (lines 5 and 6). If the 

first equation of dfl comes before df2, then append it to the result and move to the 

next equation in the same disjunct and repeat the process recursively (lines 8 to 10). 

Otherwise, if the first equation of df2 comes before dfl, then append the equation of 

60 



Algorithm 2 HD_DISJUNCT (disjl-dfl, disjl_df2, L) 

1: if (position(LHS(Eql_dfl),L) = position(LHS(Eql_df2),L)) then 
2: if (RHS of both Eqs are equal) then 
3: append Eql to the result; 
4: call HDJDISJUNCT(tail(disjl_dfl), tail(disjl_df2), L); 
5: else 
6: empty the list and quit the HD_DISJUNCT; 
7: end if 
8: else if (position(LHS(Eql_dfl),L) < position(LHS(Eql_df2),L)) then 
9: append Eql_dfl to the result; 

10: call HD_DISJUNCT(tail(disjl_dfl), disjl_df2, L); 
11: else 
12: append Eql„df2 to the result; 
13: call HD_DISJUNCT(disjl_dfl, tail(disjl_df2), L); 
14: end if 

df2 to the result and repeat the process recursively (lines 11 to 13). The HDJDISJUNCT 

function is defined in HOL: 

\-def (HD_DISJUNCT [] L2 L3 = L2) A 

(HD_DISJUNCT ( h d l : : t l l ) [] L3 = ( h d l : : t l l ) ) A 

(HD_DISJUNCT ( h d l : : t l l ) ( h d 2 : : t l 2 ) L3 = 

if (HD hdl = HD hd2) then 

i f ( TL hdl = TL hd2) then 

hdl :: HD_DISJUNCT til tl2 L3 

else 

[] : : HD_DISJUNCT [] [] L3 

else if (position L3 (HD hdl)<position L3 (HD hd2)) then 

hdl :: HD_DISJUNCT til (hd2::tl2) L3 

else 

hd2 :: HD_DISJUNCT (hdl::tll) tl2 L3 ) 

where the pos i t ion function is used to check the order as described in Appendix A.2. 

Finally, the conjunction operation is embedded in HOL as: 

61 



\-def Vdfl df2 L. CONJ_ALG df l df2 L = 

(if d f l = TRUE then STRIP_DF_list df2 

e l s e ( i f df2 = TRUE then STRIP_DF_list d f l 

e l s e ( i f d f l = FALSE then STRIP_DF_list d f l 

e l s e ( i f df2 = FALSE then STRIP_DF_list df2 

e l s e TAKEJTO DF_CONJ (STRIP_DF_list d f l ) (STRIP_DF_list df2) 

(union (STRIP_Fun d f l ) (STRIP_Fun df2)) L ) ) ) ) ) 

We mentioned that the function STRIP_DF_list is used to translate a DF into a list 

format, while the function STRIP_Fun is used to extract the arguments of cross-term 

and store them in a list. 

E x a m p l e 

The following example is used for illustration. The circuit consists of two abstract vari­

ables count and n-count, three symbol functions inc-Fun, dec-Fun and eqz^Fun. The 

inc-Fun and dec^Fun take as an input count of abstract sort and produce inc_Fun(count) 

and dec_Fun(count) an abstract output. The cross-function eqz^Fun takes count as an 

input and produces a concrete output of sort boot The input y of the circuit and count 

is the output of the circuit as represented by MDG1. MDG2 represent another circuit 

similar to MDG1 in addition to an input /of concrete sort and an abstract variable w 

as shown in Figure 4.2. The order list given as: [" / " ; "y"; " eqz-Fun"; " wn;" n-count" ]. 

Our objective is to apply the conjunction on dfl and df2. We defined the directed 

formulae dfl and df2 representing MDG1 and MDG2 in HOL, respectively. 

va l d f l = "DF1(DISJ "mdgl (DISJ ~mdg3 (C0NJ1 ~mdg8) ) ) " 

va l df2 = "DF1 (DISJ "mdg7 (DISJ ~mdg9 (C0NJ1 ~mdglO)) )" 

After this step, applying the CON.LALG on both DFs will result: 

[[[" / " ! " 0"]; [" if;" 0"]; [" w";"inc-Fun"}: ["n..count";"inc-Furi"}]; 

62 



MDG1 

dfl = ((y^O) A (n_count - inc_Fun{count))) V 

((y=1) A (eqz_Fun(count) = 0) A (n_coimt " dec_Fun(count))) V 

((y=1) A (eqz_Fun(count) = 1) A (n_count = count)) 

MDG2 

df2 = ((f=0) A (y=0) A (n_count = inc_Fun(counl))) V 

((f=0)A(y=1) A (eqz_Fun(count) = 0) A (w = dec_Fun(count))) V 

((f=0)A(y=1) A (eqz_Fun(count)=1) A (w = count)) 

Figure 4.2: MDG1 and MDG2 

[P7";"0"]; C'y";"l"]; ["eg,z_FW;"0"]; ["tw";"dec_FW']; ['n^c-unf;" dec„Fun"}}; 

[["/";"0"]; ["y";"l"]; ["egz_Frm";"l"]; ['w";"count"]; ["n^ount";" count"}}} 

and its MDG is shown in Figure 4.3: 

4.2 The Relational Product (RelP) Operation 

The RelP operation is used to compute the sets of states reachable in one transition 

from one sets of states (image computation). It combines conjunction and existential 

quantification. 

In terms of DF's, the RelP takes as inputs two DFs Pi, 1 < i < 2, of types 

U-i —> V% a n d a s e t of variables E to be existentially quantified, and produces a DF 

63 



dft l\ <S2 = (jf^O) A f y=0) A (w = incFun(counl) A (n_count = inc_Fun(court))) V 

((f=0)A(y=1) A (eqz_Fun(count)=G) A (w=dec_Fun(count))A(n_coun!=dec_Fun(counl)\/ 

((1=0)A(y=1) A (eqzFun(count) = 1) A (w = count)A(n_count=coiint)) 

Figure 4.3: MDG1 CONJ MDG2 

R = RelP ({Pi}i<i<2,E) such that: 

\=R*((3E)( A P^ (4.2) 
Ki<2 

The operation computes the conjunction of the Pi and existentially quantifies the 

variables in E. For 1 < i < j' < 2, Vt and Vj must not have any abstract variables in 

common. The result of computing conjunction and existentially quantification would 

be a DF of type (|J1<i<2 C/ i ) \ ( lU< 2 V) - ( ( I U < 2 K)\E). 

4.2.1 The RelP Constraints: 

The RelP constraints will be the same as mentioned in the conjunction operation. 

A new condition is added: the set of variables to be existentially quantified must 

64 



be primary variables of at least one of the DFs. The result of the operation must 

be a well-formed DF representing the conjunction of dfl and df2 and existentially 

quantifies with respect to the set of variables (post-condition). 

4.2.2 The RelP Embedding: 

In order to formalize the RelP operation, we are going to use the embedded conjunc­

tion operation in Section 4.1 to get the conjunction of two DFs. Then we embed 

the extra condition regarding the set of variables E to be existentially quantified over 

the result of the conjunction operation by calling the function EXIST_QUANT as shown 

below: 

\-def (EXIST_QUANT [] (hd2 : : t l 2 ) = [ ] ) A 

(EXIST_QUANT ( h d l : : t l l ) [ ] = ( h d l : : t l l ) ) A 

(EXIST_QUANT ( h d l : : t l l ) ( h d 2 : : t l 2 ) = 

EXIST.QUANT (EXIST_QUANT1 ( h d l : : t l l ) [ h d 2 ] ) t l 2 ) 

where EXIST_QUANT1 is a function used to quantify one variable over the conjunction 

result. Then, the RelP function is defined as: 

\~def Vdfl df2 LI L2. (RelP_ALG dfl df2 LI L2 = 

EXIST.QUANT (CONJ_ALG dfl df2 LI) L2) 

Using the embedding of the conjunction operation simplifies the formalization 

and shows the reusability of our embedding and proof. 

Example 

Lets back to the example in Section 4.1.2. The set of variables to be quantified is 

given as: [" fr'-."n-count"]. Our objective is to apply the relational product on dfl 

and df2. Applying the RelP_ALG on both dfl and df2 will result: 

65 

file:///-def


[[["y";"0"];["w";"mc_FW']]; 

[[" y";" 1" ]; [" aqz-Fun"; " 0" ]; [" wn; " dec-Fun" ]]; 

[ [ V ; " l " ] ; p 'e^_Fwn";"l"]; ["«;"; "couni"]]] 

and its MDG is shown in Figure 4.4: 

RelP(df1 ,df2,(I.n_Counl)) = ((y=0f A (w = inc_Fun(Counl|) V 

((y=1) A leqz Fun(counl)=0) A (w=dec Fun(count))) V 

((y=1) A (eqz Fon(count) ^ 1) A jw = count)) 

Figure 4.4: MDG1 RelP MDG2 

4.3 The Disjunction Operation 

The example shown in Figure 4.5 is for two MDGs with the same root label. We add 

a redundant concrete edge which requires that the same abstract primary variable is 

present along all paths. In terms of DF's, the disjunction operation takes as inputs 

Figure 4.5: The disjunction operation 

two DFs Pu \<i< 2, oft} rpes Ui —> V, and produces a DF R = Disj {{Pi}i<i<2 )of 

66 



type (Ui<i<2 Ui) -> v s u c h t h a t : 

(= R * ( \ / fl) (4-3) 
l< i<2 

The operation computes the disjunction of its n inputs in one pass and note that this 

operation requires that all the Pt, 1 < i < 2, have the same set of abstract primary 

variables. If two DFs Pi, P2 do not have the same set of abstract primary variables, 

then there is no DF R such that |= R o (Pi V P2). 

4.3.1 The Disjunction Constraints: 

Again, we have two types of constraints. The first type is the same as described in the 

conjunction constraints. The second type can be summarized in the following items: 

1. The abstract variables in both DFs must be the same otherwise, the disjunction 

cannot be computed. This condition can be checked by comparing the abstract 

variables in any disjunct of both DFs, since both DFs are well-formed. For 

example, there is no DF representing a formula that is logically equivalent to 

(x = a) V (y = b), where x and y are abstract variables and a and b are distinct 

generic constants. 

2. If the two DFs have different root labels, but the label that comes first in the 

node-label order is a concrete variable x or a cross-term, we can revert to the 

case where the labels are the same by adding a redundant node labeled x at the 

top of the DF (not labeled by x). 

Indeed, the roots of DFs must have the same label, otherwise the label that 

comes first in node-label ordering must be a concrete variable or cross-term; then the 

disjunction operation is applied recursively. The result of the algorithm must be a 

well-formed DF representing dfl and df2 disjunction (post-condition). 

67 



4.3.2 The Disjunction Embedding: 

Similarly, we embed the disjunction operation in HOL as we did in the conjunction 

operation. The detailed algorithm is given in Algorithm 3. 

Algorithm 3 DISJ-ALG (dfl, df2, L) 

1: if terminal DF then 
2: return result; 
3: else if (STRIP_ABS1_DF dfl = STRIP_ABS1_DF df2) t hen 
4: DF_DIS JUNCTION (dfl, df2, L) 
5: else 
6: return empty list; 
7: end if 

Algorithm 3 starts with two well-formed DFs and an order list L. The resulting 

DF is constructed recursively and ended when a terminal DF (true or false) is reached 

(lines 1 and 2). Line 3 checks the equality of the abstract variables in both DFs. 

If they are equal, then (line 4) determines the disjunction of two DFs by calling 

DF_DISJUNCTION. Otherwise, the algorithm returns empty list (line 6). The function 

DFJ)ISJUNCTION is defined in HOL as given below: 

Hde/ (DF_DISJUNCTION ( h d l : : t l i ) [] L = [] ) A 

(DF_DISJUNCTION [] (hd2: : t l 2 ) L = [] ) A 

(DF_DISJUNCTION ( h d l : : t l l ) ( h d 2 : : t l 2 ) L = 

union (FLAT(DF_DISJUNCT1 (hdl : : t l l ) (hd2: : t l 2 ) D ) 

(FLAT(DF_DISJUNCT1 ( h d 2 : : t l 2 ) ( h d l : : t i l ) L))) 

where the function DF.DISJUNCT1 applies the conjunction to find any similarity 

between the two DFs. Otherwise, it adds the disjuncts of dfl that does not appear in 

df2. DF_DISJUNCT1 is similar to HD_DISJUNCT used in conjunction operation. Again 

we re-apply DFJDISJUNCT1 on df2 and dfl to cover all disjuncts of both DFs. Then, 

we take the union of DF_DISJUNCTl(dfl, df2, L) and DF_DISJUNCTl(df2, dfl, L), where 

DF-DISJUNCT1 is defined as: 

68 



\-def (DF_DISJUNCT1 [] ( h d 2 : : t l 2 ) L = [ ] ) A 

(DFJHSJUNCT1 ( h d l : : t l l ) [] L = [] ) A 

(DF_DISJUNCT1 ( h d l : : t l l ) ( h d 2 : : t l 2 ) L = 

i f ( (pos i t ion L (HD (HD h d l ) ) ) = ( p o s i t i o n L (HD (HD hd2) ) ) ) then 

DF_DISJUNCT ( h d l : : t l l ) ( h d 2 : : t l 2 ) L 

e l s e i f ( (pos i t ion L (HD(HD h d l ) ) ) < (pos i t i on L (HD (HD h d 2 ) ) ) ) then 

(DF_DISJUNCT ( h d l : : t i l ) (FLAT(APPEND_LIST 

(UNION_HD_list(HD_list(hdl: : t l l ))) ( h d 2 : : t l 2 ) ) ) L) 

e l s e 

(DF_DISJUNCT (FLAT(APPEND_LIST 

(UNI0N_HD_list(HD_list(hd2: : t l 2 ) ) ) ( h d l : : t l l ) ) ) (hd2: : t l 2 ) D ) 

The disjunction operation is defined in HOL as: 

\-def Vdfl df2 L. DISJ_ALG df l df2 L = 

( if (dfl = TRUE) V (df2 = TRUE) then [[["TRUE"]]] 

e l s e ( i f (dfl = FALSE) A (df2 = FALSE) then [[["FALSE"]]] 

e l s e (if d f l = FALSE then STRIP_DF_list df2 

e l s e ( i f df2 = FALSE then STRIP_DF_list d f l 

e l s e (if FLAT (STRIP_ABS_DF df l ) = FLAT (STRIP_ABS_DF df2) then 

UNION_HD_list (DF_DISJUNCTION(STRIP_DF_list d f l ) (STRIP_DF_list df2)L) 

e l s e [ ] ) ) ) ) ) 

Example 

The following example is a subset of the circuit description in Section 4.1.2. Given 

MDG1 and MDG2 as shown in Figure 4.6. 

The order list given as: ["/";"y";"eg2_Ftm";"n_cotmf ]. Our objective is to 

apply the disjunction on both DFs. Applying the DISJ.ALG on both DFs will result: 

[[["/";"0"]; ["y";"0"]; [,njMunt";"incJ,unn]]; 

69 



= <<y=1> A (eqz_Fun(count) = 0) A (n_counl = d ec_Fun (count )>) V d12 = «f=0)A{y=0) A (n__count = inc_Fun{count)» V 
((y=1) A (eqz_ Fun (count) = 1) A (n_count = count)) t(f=0) A (y= l ) A (eqz_Fun (count) = 0) A (n_count = dec_Fun (count))) 

Figure 4.6: MDG1 and MDG2 

[[" / " ; " 0" ]; [" y";" 1" ]; [" eqz-Fun";" 0" ]; [" ruzount";" dee-Fun"}}; 

[["/";"0"]; [ V ; " l " ] ; [ " e^_FW; ' ' l " ] ; ['n-count';"count"]}) 

and its MDG is shown in Figure 4.7. 

dfl V df2 = ((f=0) A (y=0) A (n_count = inc_Fun(count))) V 

((t=0)A(y=1) A (eqz_Fun(count) = 0) A (n_coun! = dec_Fun(count))) V 

((f=0)A<y=1) A (eqz_Fun(count) = 1) A (n_coun - counl)) 

Figure 4.7: MDG1 DISJ MDG2 

70 



4.4 The Pruning by Subsumption (PbyS) Opera­

tion 

The pruning by subsumption operation is used in checking set inclusion (fixed point 

detection and in invariant checking); Frontier set simplification. In Figure 4.8 an 

example is shown: Q = PbyS(NS,R). In NS, the path of the concrete variable c, 

labeled by 0, is subsumed by R. Thus, it will be removed from Q. The other path, 

labeled by 1, cannot be removed and appears in Q. Informally, it removes all the 

paths of N from Q. In terms of DF's, the PbyS takes as inputs two DFs P and Q 

Figure 4.8: The PbyS operation 

of types U —• V\ and U —> V2 respectively, where U contains only abstract variables 

that do not participate in the symbol ordering, and produces a DF R = PbyS (P, Q) 

of type U —> Vi derivable from P by pruning (i.e. by removing some of the disjoints) 

such that: 

h R V (3E)Q O P V (3E)Q (4.4) 

The disjuncts that are removed from P are subsumed by Q, hence the name of the 

algorithm. 

Since R is derivable from P by pruning, after the formulae represented by R 

and P have been converted to DNF, the disjuncts in the DNF of R are a subset of 

71 



those in the DNF of P. Hence f= R => P. And, from (4.4), it follows tautologically 

that (= (P A ̂ {3E)Q) => R. Thus we have 

h (F A -.(3£)Q ^R)A(R=>P) 

We can then view i? as approximating the logical difference of P and (3E)Q, this 

approximation may lead to non-termination problem ( see [88] for more details). In 

general, there is no DF logically equivalent to P A ->(3E)Q. If R is F, then it follows 

tautologically from (4.4) that \= P => (3E)Q. 

4.4.1 The PbyS Constraints: 

Unlike the previous operations, the constraints for PbyS requires as inputs two well-

formed DFs of types U —> Vi and U —* V2, respectively. Also, an order list L 

that represents the union of the two DFs order lists (pre-conditions) is needed. The 

constraint related to the execution is: the list of variables U should contain only 

abstract variables that do not participate in L. The result of the algorithm must be 

a well-formed DF that represents the pruning by subsumption of dfl and df2, and of 

the same type as dfl U —> V\ (post-condition). 

4.4.2 The PbyS Embedding: 

The embedding of the PbyS is explained in Algorithm 4. It starts with two 

well formed DFs and order list L. The resulting DF is constructed recursively and 

ended when a terminal DF (true or false) is reached (lines 1 and 2). Line 3 checks the 

equality of both RHS abstract variables of dfl and df2. If they are equal, then the 

algorithm checks if those abstract variables are not included in the order list L using 

the function IS_ABS_IN_ORDER (line 4). Otherwise, it returns an empty list (line 10). If 

72 



Algorithm 4 PbyS-ALG (dfl, df2, L) 

l 
2: 

3 

4: 

5: 

6: 

7 

8: 

9: 

10 

11 

if terminal DF then 
return result; 

else if (STRIP_ABS_RHS_DF dfl = STRIP_ABS_RHS_DF df2) then 
if (STRIP_ABS_RHS_DF dfl £ L) then 

call DF_PbyS(dfl, df2); 
else 

return empty list; 
end if 

else 
return empty list; 

end if 

the condition is satisfied, then the algorithm determines the pruning by subsumption 

of the two DFs by calling DF.PbyS function (line 5). Otherwise, the algorithm returns 

an empty list (line 7). The DF_PbyS function is defined recursively in HOL as given 

below: 

\-def (DF_PbyS [] L = [ ] ) A 

(DF_PbyS ( h d l : : t l i ) [] L = ( h d l : : t l l ) ) A 

(DF_PbyS ( h d l : : t l l ) ( h d 2 : : t l 2 ) _ ( h d 4 : : t l 4 ) ( h d 5 : : t l 5 ) L = 

(DF_PbyS ( h d l : : t i l ) ( h d 2 : : t l 2 ) _ ( h d 4 : : t l 4 ) ( h d 5 : : t l 5 ) L = 

i f ((FLAT(hd4::tl4) = []) = (FLAT(hd5: : t l5)=[] ) ) then 

DF_PbyS ( h d l : : t l l ) (hd2: : t l 2 ) [] [] [] L 

e l s e 

PbyS_l ( h d l : : t l l ) ( h d 2 : : t l 2 ) (h'd4: : t l 4 ) ( h d 5 : : t l 5 ) ) A 

(DF_PbyS ( h d l : : t l l ) ( h d 2 : : t l 2 ) _ [] [] L = 

i f (IS_EL hdl ( h d 2 : : t l 2 ) ) then 

DF_PbyS t i l ( h d 2 : : t l 2 ) [] [] [] L 

e l s e 

hdl : : DF_PbyS t i l (hd2: : t l 2 ) [] [] [] L) 

The DF„PbyS function has two main cases: 

• The top symbol of dfl is not included in the symbols of df2, then df2 will not 

73 



subsumed dfl. 

• The top symbol of dfl and df2 are the same or the top symbol of dfl is included 

in the symbols of df2. We have three cases: 

— The common top symbol is a concrete variable, then its individual con­

stant (RHS) of every equation of dfl must be the same or included in df2, 

otherwise it will not subsumed by df2. 

— The common top symbol is an abstract variable, then its (RHS) will be 

either abstract variable, generic constant or abstract function. In this case, 

dfl will be subsumed by df2 with suitable substitution for the RHS and 

the arguments of the abstract function as specified in PbyS_l function. It 

checks the existence of the first disjunct of dfl in df2. If it exists then the 

function will discard it (subsumed by df2). Otherwise the disjunct is added 

to the result (cannot be subsumed): 

\-def (PbyS_l [] ( h d 2 : : t l 2 ) _ _ = [ ] ) A 

(PbyS_l ( h d l : : t l l ) [] _ _ = ( h d l : : t l l ) ) A 

(PbyS_l ( h d l : : t l l ) ( h d 2 : : t l 2 ) L4 ( h d 5 : : t l 5 ) = 

i f (PbyS_2 hdl (hd2: : t l 2 ) L4 ( h d 5 : : t l 5 ) = []) then 

PbyS_l t i l ( h d 2 : : t l 2 ) L4 ( h d 5 : : t l 5 ) 

e l s e 

PbyS_2 hdl ( h d 2 : : t l 2 ) L4 ( h d 5 : : t l 5 ) : : 

PbyS_l t i l ( h d 2 : : t l 2 ) L4 ( h d 5 : : t l 5 ) ) 

The function PbyS_2 is defined in Appendix A.5. 

— The common top symbol is cross-operator, then its individual constant 

74 



(RHS) of every equation of dfl must be the same or included in df2, oth­

erwise it will not subsumed by df2. Note that, the arguments of the cross-

operator might be substituted. 

Finally, the pruning by subsumption operation is: 

\-def Vdfl df2 L. PbyS_ALG df l df2 L = 

i f (dfl = TRUE) then [[["FALSE"]]] 

e l s e i f (df2 = TRUE) t hen [[["FALSE"]]] 

e l s e i f (dfl = FALSE) then [[["FALSE"]]] 

e l s e i f (df2 = FALSE) then (STRIP_DF_list d f l ) 

e l s e i f (IS_ABS_IN_ORDER(FLAT(STRIP_ABS_RHS_DF d f 2 ) ) L = [ ] ) then 

if (lS_ABS_IN_ORDER(FLAT(STRIP_ABS_RHS_DF d f l ) ) L = [ ] ) then 

DF_PbyS (STRIP_DF_list d f l ) (STRIP_DF_list df2) 

(union (STRIP_Fun d f l ) (STRIP_Fun df2)) 

(HD_l_abs(STRIP_DF_l_abs_list d f l ) ) 

(HD_l_abs(STRIP_DF_l_abs_list df2)) L 

e l s e 

[] 

e l s e 

[] 

4.4.3 The PbyS Performance: 

In this section, we present the performance of the PbyS operation. The results are 

carried out using a Sun server with Solaris 5.7 OS and 6 GB memory. We analyze the 

required time for generating a result from PbyS by applying it over two well-formed 

DFs. One DF has a size of 182 disjuncts with a 32 equations in each disjunct. For 

the results given in Table 4.1, in each run we increase the size of the disjunct and 

measure the execution time. 

75 



Table 4.1: The PbyS Performance 

Disjunct No. 

1 

2 

3 

4 

8 

16 

32 

64 

128 

182 

Execution Time (sec) 

6.3 

6.67 

7 

7.3 

8.3 

9.3 

11.3 

13 

14.3 

15.3 

As a result, the execution time is increased when the number of disjuncts is 

increased. This is due to the increase in the DF size in terms of the number of 

disjuncts. 

Figure 4.9 shows the results of the execution time vs. number of disjuncts. We 

note that the execution time is almost linear which emphasizes the effectiveness and 

the powerful of our embedding. The average execution time is 10.0. We consider this 

time is normal because of the overhead of the theorem prover. 

4.5 The Correctness Proof 

In general, we have two kinds of theorems: one theorem regarding the correctness 

proof of each MDG operation, and the other one for preserving the well-formedness of 

the operation results. The correctness represents a mathematical proof of consistency 

76 



200 

180 

160 

140 

120 

100 

80 

60 

40 

i 2 ° 
i 0 

• 

• 

• 

• 

•—;—•— t.i.f iiL 

PbyS Performance 

i No. of Disjuncts 

- Execution Time (sec) 

9 10 

Figure 4.9: The PbyS Performance 

between the operation specification and its implementation in HOL, while the well-

formedness to ensure the obtained MDG representation is canonical. 

Theorem 4.5.1 Operation Correctness 

ASSUME: 

1. dfl and df2 are well-formed DF. 

2. L is an order list equal to the union of dfl and df2 order lists. 

Then, the MDG operation of dfl and df2, and HOL logical operation of dfl and df2, 

are equivalent. 

Operation Correctness \- V dfl df2. 3L. Is-WelLFormed-DF dfl A 

Is-WelLFormed-DF df2 A (ORDER-LIST dfl df2 = L) =^ 

(LogicaLHOL-Opr dfl df2 = MDG.Opr.HOL dfl df2 L) 

77 

http://MDG.Opr.HOL


PROOF: 

By structural induction on dfl and df2 and rewriting rules. The goal is to prove the 

equivalence of MDG operation and HOL logical operation for these DF. However, 

the proof strategy is systematic as shown in Figure 4.10. It consists of feeding the 

same inputs to the logical HOL predefined operations and to the embedded MDG 

operations. The output of the embedded MDG operation MDG_0pr_H0L is well-formed 

DF. This DF will be compared with the output formulae of logical HOL operation 

Logical_H0L_0pr. We check the equivalence of both and prove it as a theorem using 

structural induction and rewriting rules. Moreover, this goal generates hundreds of 

subgoals since the proof takes all the cases of DF. The terminal cases are directly 

proved by applying the rewriting rule. Many base cases are generated, for example, 

in the case of the conjunction operation, the proof when both dfl and df2 are just an 

equation is shown by Lemma 1 in Appendix A.2. • 

HOL 

<DF>: Well-formetlDF 

Logical 
HOL Operation 

<DFI>,<DF2>, 
L, E 

in DF format 

<DF1>, <DF2>, 
L,E 

in list format 

Result 
Logicall lOLOpr 

Embedded MDG 
Operation in HOL 

Equivalence 
Analysis 

Result as Formula 
MDGOprJIOL 

Result 
<MDG_Opr_HOL> 

Figure 4.10: Correctness Methodology 

78 



Lets back to our conjunction example in Section 4.1.2. It is easy to prove the 

correctness of the result by instantiating Theorem 4.5.1 to prove the below goal: 

V dfl df2. 3L. ((L= "f"; "y" ; "eqz_Fun" ; "n_count"; "w"]) A 

(dfl=~dfl) A (df2=~df2)) = > 

(Is_Well_Formed_DF dfl) A (Is_Well_Formed_DF df2) A 

(ORDER_LIST dfl df2 = L) ==> 

((C0NJ_L0GIC dfl df2 L) = DISJ_LIST(CONJ_ALG dfl df2 L) ) 

Theorem 4.5.2 Well-formedness Preservation 

ASSUME: 

1. dfl and df2 are well-formed DF. 

2. L is an order list equal to the union of dfl and df2 order lists. 

Then, the result of the MDG operation of dfl and df2 is well-formed. 

Preserving Well-formedness t- V dfl df2. 3L. Is.WelLFormed^DF dfl A 

Is.WelLFormed^DF df2 A (ORDER-LIST dfl df2 = L) => 

(Is-WelLFormed (MDG.Opr^HOL dfl df2 L)) 

PROOF: 

The goal is to prove that the result of the embedded MDG operation in HOL is well-

formed. The proof is conducted by structural induction on dfl and df2 and rewriting 

rules. D 

4.6 Embedding and Proof Discussion 

Technical difficulties may raise at this stage. To respect the formal logic of HOL, 

the formalization of the Directed Formulae in [88] has been modified. The new DF 

formalization is more suitable for HOL and avoid potential infinite loops. It ensures 

the reachability analysis termination when it should occur [6]. In fact, applying 

79 



induction on DF, with this modifications, ameliorate the reasoning with the MDG 

structure in HOL. This is one of the contributions of our work. Also, because the 

number of subgoals generated is big, modifying one definition may change the flow 

of the proof as shown in Appendix A.2. Finally, the proof goes through all the 

operational definitions of each operation and gives us more confidence about our 

embedding. 

In fact, the conjunction operation has consumed most of the proof preparation 

effort. Most of the definitions and proofs were reused in the proof of the other oper­

ations, especially the relational product operation. The embedding of MDG syntax 

and the verification of MDG operations sums up to 14000 lines of HOL codes. The 

complexity of the proof is related mainly to the MDG structure, and the recursive 

definitions of MDG operations. 

Moreover, some useful properties can be proved based on our formalization. For 

example, to check whether a set of states is a subset of another set of states, we used 

the PbyS operation to prove this equality as shown in Lemma 2 in Appendix A.5. 

Other properties can be proved over the conjunction and disjunction operations such 

as associativity and commutativity. 

80 



Chapter 5 

Formalization of MDG 

Reachability Analysis 

In this chapter, we present a HOL formalization of the MDG reachability analysis. 

This formalization is based on our embedding of MDG syntax and operations in HOL. 

First, we review the MDG reachability analysis [21]; followed by its definition in HOL 

along with a discussion on the technical challenges.Then, we use the MIN-MAX as 

an illustrative example for our reachability analysis embedding. Finally, a set of 

benchmarks has been conducted to ensure the applicability and the performance of 

the MDG-HOL platform. 

5.1 Reachability Analysis Algorithm 

The presence of uninterpreted symbols in the logic means that we must distinguish 

between a state machine M and its abstract description D in the logic. We call Ab-

stract State Machine a state machine given an abstract description in terms of DFs, 

or equivalently MDGs, as defined in [21]. 

81 



Definition 1. An abstract description of a state machine M is a tuple D = 

{X, Y, Z, Yr, IS, Tr, Or), where: 

• X : finite set of input variables, 

• Y : finite set of state variables, 

• Z : finite set of output variables, 

• Yr: finite set of next-state variables, 

• 75 : MDG of type [/0 —>• V, where UQ is a set of disjoint abstract variables, IS 

is the abstract description of the set of initial states, 

• Tr : MDG of type Xl)Y ^Yr. Tr is the abstract description of the transition 

relation, 

• Or : MDG of type X U Y —> Z. Or is the abstract description of the output 

relation. 

Algorithm 5 shows how the analysis of the reachable states of M can be per­

formed based on the abstract description D. 

Algorithm 5 MDG Reachability Analysis 

2 
3 
4 
5: 

6 

7: 

8. 

9 

10 

R := IS; 
Q := IS; 
i := 0; 
while Q ^ F d o 

i := i + 1; 
IN := newJnputs(i); - Produce new inputs 
NS := nextstates(IN, Q,Tr); - Compute next s ta te 
Q := frontier(NS, R); - Set difference 
R := union(R, Q); Merge with set of s ta tes reached previously 

end while 

82 



Lines 1-3 initialize the algorithm by constructing the initial MDG structure. In 

line 4-10, the set of reachable states is computed within the while loop. The while loop 

terminates when the frontier set (Q) becomes empty (F). In line 6, a new MDG input is 

produced. In line 7, the function nextstate computes the next state using the RelP 

operation which takes as assignment the MDGs representing the set of inputs, the 

current state and the transition relation, respectively. The function frontier, in line 

8, computes the set difference using the PbyS operation. This operation approximates 

the set difference between the newly reachable state in the current iteration from the 

reachable state in the first iteration. Finally, in line 9, the set of all reachable states 

so far is computed. 

5.2 Formalization of Reachabili ty Analysis 

We show here the steps to formalize the set of reachable states of an abstract state 

machine in HOL. The important difference is that we are using our embedded DF 

operators at a higher level. At this stage, the proof expert reasons directly in terms 

of DF, the internal list representation that we have used in the proof of operations is 

completely encapsulated. 

Since reachability analysis may not terminate in general, it's impossible to prove 

a general theorem which states the existence of a fixpoint for all circuits. However, we 

defined a conversion which returns a goal to be proven interactively using induction 

for a given circuit (DF). If we succeed to prove the goal, then we can conclude that the 

reachability analysis terminates. The general fixpoint goal has the following format: 

3n0. Vn. (n>nO) = > 

(Re_An (SUC n) I Q Tr E Ren L R = Re_An n I Q Tr E Ren L R) 

where nO is the number of iterations needed to reach a fixpoint and the Re„An function 

83 



represents the MDG reachability analysis with the following parameters: the set of 

input variables / , the set of initial states Q, the transition relation TV, the set of 

variables to be quantified E, the state variables to be renamed Ren, the order list L 

and the initial reachable states R. 

The function Re_An is defined in HOL (Appendix A.6) by calling the recursive 

function RA_n with the circuit parameters. The function RA_n represents the set of 

reachable states and includes the following functions: 

• The Next_State function: computes the set of next states reached from a set of 

given states with respect to the transition relation of the circuit. The result is 

obtained using the DF relational product operator RelP(Q,Tr). 

• The Front ier .Step function: checks if all the states reachable by the machine 

are already visited. The is done by using the PbyS(RelP(Q,Tr) ,R) operator. If 

the result is the empty set, then the reachability analysis terminates. Otherwise, 

it returns the new frontier set. 

• The Union_Step function: merges the output of Frontier_Step with the set of 

states reached previously using the PbyS and disjunction operators. 

Those functions are encapsulated in one function called Reach_Step to represent the 

first iteration of the MDG reachability analysis algorithm. 

Then, the ReJm terminates if we reach a fixpoint characterized by an empty 

frontier set. That for some particular n, say n=nO, eventually: 

RA_n (n+l) Circuit_Parameters = RA_n (n) Circuit_Parameters 

This condition is tested at each stage and raise an exception (fixpoint not yet reached) 

or return a success (the set of reachable states). 

84 



The proof of the reachability fixpoint depends on the structure of the circuit and 

cannot be considered as a general solution because of the non-termination problem. 

Indeed, the abstract representation and the uninterpreted function symbol may not 

lead the reachability analysis algorithm to terminate [21]. Thus, the MDG reacha­

bility computation is theoretically unbounded. Meanwhile, several practical solutions 

have been proposed to solve the non-termination problem. The authors in [6] related 

the problem to the nature of the analyzed circuit. Furthermore, they have character­

ized some mathematical criteria that leads explicitly to non-termination of particular 

classes of circuits. 

The reachability analysis conversion is general and can be applied to any DF 

of a circuit. What will change are only the DF and the set of initial states, if we 

consider the order list is given. The conversion shown by Algorithm 6 encapsulates 

the following steps: 

Algor i thm 6 Re_An Conversion (I, Q, Tr, E, Ren, L, R) 

1: Formalize the circuit parameters in terms of DF and check for WF: 
WF(Tr); WF(Q); WF(fl) 

2: Compute Reach_Step. 
3: Generate a fixpoint goal of Re_An. 

The algorithm takes as an input the circuit parameters. In line 1, we for­

malize those parameters in terms of DF and then check the well-formedness of all 

DFs (Tr, Q, R). In line 2, we compute one reachability computational step using the 

Reach_Step function. Finally, in line 3, we generate a fixpoint goal of Re_An. The ad­

vantage of this approach is that we compute the reachable states only for one iteration 

and then relying on the induction power in HOL we prove the existence of a fixpoint. 

However, this fixpoint may not exist for some particular circuits. Furthermore, the 

selection of nO is based on the knowledge and the heuristic of the circuit since the 

85 



induction is not explicitly identified as illustrated by the MIN-MAX example. 

5.3 Example: The MIN-MAX revisited 

The MIN-MAX state machine has two input variables: / = [[["x"; "r"]]], set of initial 

states: 

Q — [((c = 1) A (m = max) A (M = min))} 

three state variables to be renamed: Ren = [[" c";" n^c"]; [" m";"rum"]; [" M";" n^Mr'}], 

set of variables to be quantified: E = ["r"; "c"; "m"; "M"], the order list: L = 

["r";"c";"n_c";"m";"n_m"; "M"; "nJd"; "x"; nleq.Fun"] and the initial reachable 

state R = Q. 

Then, we applied the reachability analysis conversion steps mentioned in Algo­

rithm 6: 

The first step: formalize the MIN-MAX circuit in terms of DF and check the 

well-formedness conditions by applying the predicate Is_Well_Formed_DF (conversion 

tactic) on (TV, Q, R) as shown in 3.4. 

The second step: we apply only one Reach_Step to compute the next reachable 

state as explained in Algorithm 6, the reachable states are: 

Rl = [((c = 0) A (TO = xl) A (M = xl)) V 

((c = 1) A (m = max) A (M = min))] 

The third step: the MDG reachability analysis Re_An is performed by calling 

RA_n with the MIN-MAX parameters. Re_An terminates if we reach a fixpoint char­

acterized by an empty frontier set. That for some particular n, say n=nO, eventually: 

86 



RA_n (n+1) MinMax_Parameters = RA_n (n) MinMax_Parameters 

We prove how a fixpoint is reached after nO iterations by instantiating the pa­

rameters of MIN-MAX. We achieve a fixpoint after three Reach_Step calls (n0= 2) 

as shown by the following theorem: 

Fixpoint h 3n0. Vn. (n>nO) = > 

(Re_An (SUC n) "I ~Q ~Tr "E "Ren "L ~R = Re_An n "I ~Q ~Tr ~E "Ren "L ~R) 

The base step is straightforward and the induction step is carried out by rewriting 

rules. 

Finally, the reachable states at the third iteration is the same as R2: 

R2 = [((c = 0) A (m = xl) A (M = x2)) A {leq„Fun(xl,x2) = 0) V 

((c = 0) A (m = x2) A (M = xl)) A (leq.Fun(x2) xl) = 1) V 

((c = 1) A (m = max) A (M — rnin))} 

5.4 The MDG-HOL Platform 

We support our platform by experimental results executed on different benchmarks. 

Indeed, our results shows that such an embedding offers a considerable gain compared 

to the automatic approach of model checking tool. However, a huge investment in 

time should be spent in developing the theory and proving the necessary theorems in 

theorem provers. 

We consider four cases from the MDG benchmark suites in order to measure 

the performance of MDG-HOL. The case studies cover two small benchmarks: MIN-

MAX and Abstract Counter, one intermediate benchmark: Look-Aside Interface (LA-

1) [63], and one large benchmark: Island Tunnel Controller (ITC) [91]. The perfor­

mance is measured in terms of full reachability analysis for these models. Tables 5.1 

87 



and 5.2 compare the number of nodes, number of functions the memory usage, reach­

ability analysis time, and human effort generated by MDG-HOL and FormalCheck 

(V2.3) [17] model checking, respectively, run on a Sun enterprize server with Solaris 

5.7 OS and 6.0 GB memory. The reachability time is measured in FormalCheck by 

estimating the average reachability time for the set of all properties associated with 

the design. 

Table 5.1: MDG-HOL Benchmarks 

Example 

MIN-MAX 

Abstract 

Counter 

LA-1 

ITC 

MDG-HOL 

No. of 

Nodes 

54 

46 

1682 

118035 

No. of 

Funcs 

3 

3 

66 

27 

MEM 

(MB) 

0.533 

0.318 

0.613 

0.47 

RA 

(sec) 

7 

7 

8 

9 

Human 

Effort (H) 

120 

120 

216 

480 

Table 5.2: FormalCheck Benchmarks 

Example 

MIN-MAX 

Abstract 

Counter 

LA-1 

ITC 

FormalCheck 

No. of 

Nodes 

256 

128 

4096 

1.76E+12 

No. of 

Funcs 

6 

14 

19 

179 

MEM 

(MB) 

3.67 

3.43 

4.02 

9.07 

R A 

(sec) 

6 

1 

12 

29 

Human 

Effort (H) 

1 

1 

2 

4 



Discussion 

• FormalCheck 
• M D G - H O L 

. of Nodes No. of Funcs Memory (MB) RA Time (sec) Human Effort 
(Hours) 

Figure 5.1: MDG-HOL and FormalCheck Small Benchmarks 

Figure 5.1 shows that the number of nodes and number of functions of the MDG 

are smaller than its corresponding generated by FormalCheck for small benchmarks 

(i.e. MIN-MAX and Abstract Counter). This is due to the absence of Boolean 

encoding, i.e. we don't encode the values of model variables. On the other hand, the 

computation time for the reachability analysis is better in the case of FormalCheck. 

This is normal because of the overhead of the theorem prover. 

0 0 % 

9 0 % 

8 0 % 

7 0 % 

6 0 % 

5 0 % 

4 0 % 

3 0 % 

2 0 % -

1 0 % 

0 % 

-----^_ • • • • • • • • • • 
^^ |̂ • 
~^^^B~ 

| 
No. of Nodes No of Fur 

• FormalCheck 1 
O M D G - H O L I 

Memory (MB) RA Time (sec) Human Effort 

Figure 5.2: MDG-HOL and FormalCheck Big Benchmarks 

89 



As the size of the benchmark increases, the MDG-HOL gives much better results 

since it does not take a lot of time to load the fixpoint theorem and also the memory 

usage is negligible as shown in Figure 5.2. However, the number of Formal Check 

allocated nodes tends to be greater and hence have a negative impact on computation 

reachability analysis time and memory usage. The trade off between MDG-HOL 

and FormalCheck is the human effort since it took almost five days to prove fixpoint 

for small benchmarks and three weeks for the 1TC benchmark compared to few hours 

using the FormalCheck. This comes from the fact that theorem provers are interactive 

while model checkers are automatic. 

In fact, the performance of the MDG-HOL is considerable, but it cannot replace 

current model checking tools as it fails to obtain fixpoint proof without major human 

efforts. However, a huge investment in time should be spent in developing the theory 

and proving the necessary theorems in theorem provers. 

90 



Chapter 6 

Applications and Case Studies 

The last decades has seen a remarkable advancement in model checking technology. 

Still in todays hundreds million gates designs, the size of the over all model is beyond 

the capability of any model checking tool. The solution is to develop synergies between 

various verification methodologies, and between design and verification, in order to 

achieve high level coverage. 

Model reduction approaches are used to reduce the model size prior to verifi­

cation. These approaches are based on abstract interpretation which supports the 

reduction of a system under verification to a more abstract and smaller one. This 

means if the property holds for the reduced system, it holds for the original one as 

well. 

The tendency in design methodologies is to define new paradigms based on 

higher level of abstraction. The design is described using different level of details: 

system level, process level, communication level before the implementation at RTL 

level [18]. The assume-guarantee paradigm, among other techniques, is a known 

reduction technique [19] that has been used in several paradigm to reduce model 

checking CPU and memory usage. 

91 



Paradoxically, the effort and advancement in formal verification tools is, for the 

first time, against the concept of rising the abstraction level. In fact, most of the 

efforts today are spent on developing Satisfiability Checking (SAT) based tools to 

perform several forms of model checking as they are less sensitive to the problem sizes 

and the state explosion problem of classical BDDs based model checkers. However, the 

concept of verification by SAT is a pure low level paradigm. In fact, the transition 

relation is encoded with the property in Conjunctive Normal Form (CNF); every 

individual bit of very data signal must be encoded by a separate Boolean variable, 

causing the size of CNF to grow considerably with the number of variables. The 

next step is to apply a search algorithm that tries to prove the SAT or the UNSAT 

of the CNF formula through variant and mutation of the Davis-Putnam-Loveland-

Logemann (DPLL) algorithm [26]. The limit of SAT solvers is annually pushed with 

more and more smart tricks and heuristics with SAT solvers competition that feed 

this tendency. The result is a remarkable advancement that have been achieved by 

bit-blasting of high level designs into CNF in order to apply SAT as shown in [12]. 

The center of interest of all these methods is performance, they don't provide 

any guarantee that the reduction or optimization heuristics are sound and applied 

correctly. In fact, most of the abstraction techniques steps for SAT bit-blasting or 

heuristics steps to optimize SAT solvers are not derived though proof theory or logical 

operations which is considered as a gap between the sound model checking concept 

and these optimized tools. At this stage, Automatic Theorem Prover (ATP) are more 

advantageous. In fact, in the ATP each lemma should be derived from existing lemmas 

and theorems before using it inside the ATP system. However, the use of ATP is still 

considered difficult and time consuming because of the undecidability problem. Some 

solutions aims to define model checking automatic verification inside ATP for example 

92 



Amjad in [7]. 

In this chapter, we propose a reduction methodology based on our MDG-HOL 

platform that combines an automatic high level model checking tool within the HOL 

theorem prover. The idea is to use the consistency of the specifications to verify if 

the reduced model is faithful to the original one. We use the MDG-HOL platform to 

prune the transition relation of the circuits to produce a smaller one that is fed to the 

MDG model checker. Then, using High Order Logic we check automatically if the 

reduction technique is soundly applied. The methodology verifies the soundness of the 

verification output and not the reduction algorithm itself (non-decidable problem). 

In Section 6.1, we give a background of the model reduction techniques and the 

related work to ours. In Section 6.2, we overview the SAT-MDG reduction methodol­

ogy of the Island Tunnel Controller. Finally, the verification of assume-guarantee in 

MDG-HOL of the Look-Aside Interface and the Island Tunnel Controller are presented 

in Section 6.3. 

6.1 Model Reduction Techniques 

Model reduction techniques attempt to reduce the size of the model to be checked. 

There has been extensive research on state space reduction either for both hardware 

and software systems. For example, we cite reduction compositional reasoning [53], 

the symbolic representation of states and states transitions [82], state abstraction 

[61], partial order reduction [83], symmetry reduction [27] or hybrid techniques (com­

binations of these methods). Those issues and others are surveyed in [19]. 

Another category of techniques are property-based reduction techniques. Such 

techniques target the property being checked by using it to simplify the design under 

verification [43]. SAT techniques are lower-level techniques that seek to improve the 

93 



execution of the underlying BDDs engine or SAT solver by exploiting the structure 

of the model and/or the property [45]. 

The reduction techniques mentioned above come mostly from the model checking 

world. From theorem proving world and from the point of view of temporal specifica­

tions, there are two types of induction that can be applied. One is induction on time, 

and the other is induction on the data structures. Safety properties in theorem prov­

ing are often proven by induction on time. First, one proves that the property holds 

in the initial states (the base of the induction), and then, assuming that the property 

holds in some arbitrary state, one proves that all the states in its transition image also 

satisfy this property (inductive step). Since the original property is rarely inductive 

(not strong enough to satisfy the inductive step), it is often necessary to strengthen 

the invariant before it can be proven. In fact, the theorem prover expert manages 

this step by re-defining the system in an abstract manner where the model is param­

eterized and reduced in order to ease the induction proof. This task is usually the 

hardest and the not-automatic step in theorem proving based verification. Nowadays 

there are few tools that help compute inductive invariants automatically [10, 73]. 

We have chosen to concentrate on the hybrid reduction techniques. In this 

direction, Hazelhurst et al. presented in [39] an approach relying on the use of two 

industrial tools, one for symbolic trajectory evaluation (STE) [80] and one for symbolic 

model-checking. STE performs user-supplied initialization sequences and produces a 

parametric representation of the reached states set. The result must be systematically 

converted into a characteristic function form, before it can be fed to the model-checker 

[39]. 

In [77], the authors proposed a technique to construct a reduced MDGs model 

for circuits described at system level in VHDL. The simplified model is obtained using 

94 



a high level symbolic simulator called TheoSim [76], and by running an appropriate 

symbolic simulation patterns. Later, the authors proposed another technique based 

on SAT solver. They used a rewriting based SAT solver to produce a smaller model 

that is fed to the MDGs model checker. The work presented in this chapter provides 

a verification technique based on MDGs operations and the rewriting engine of the 

HOL theorem prover to verify the soundness of the reduced model. 

All these related work concentrate only on the optimization of the model checker 

performance. Even if some of these reduction techniques has been proven sound them­

selves, they do not provide any guarantee that the reduced model of a specific circuit 

is logically compliant to the original non-reduced one. In another word, they don't 

provide a way to verify that we have applied the reduction technique correctly. Our 

approach provides an answer for this particular problem by checking the compliance 

of the original and reduced model inside the theorem prover. According to our knowl­

edge, this is the first time that the theorem prover is used for this objective. 

6.2 SAT-MDG Reduct ion Verification 

6.2.1 B o o l e a n Satisfiabil ity 

The Boolean Satisfiability (SAT) problem is a well-known constraint satisfaction prob­

lem with many applications in computer-aided design, such as test generation, logic 

verification and timing analysis. Given a Boolean formula, the objective is to either 

find an assignment of 0-1 values to the variables so that the formula evaluates to true, 

or establish that such an assignment does not exist. The Boolean formula is typically 

expressed in CNF, also called product-of-sums form. Each sum term (clause) in the 

CNF is a sum of single literals, where a literal is a variable or its negation. An n-clause 

95 



is a clause with n literals. For example, (vi + v', + Vk) is a 3-clause. In order for the 

entire formula to evaluate to 1, each clause must be satisfied, i.e. evaluate to 1. 

The complexity of this problem is known to be NP-Complete [31]. In practice, 

most of the current SAT solvers are based on the Davis-Putnam algorithm [26]. The 

basic algorithm begins from an empty assignment, and proceeds by assigning a 0 or 1 

value to one free variable at a time. After each assignment, the algorithm determines 

the direct and transitive implications of that assignment on other variables, typically 

called Boolean Constraint Propagation (BCP). If no contradiction is detected during 

the implication procedure, the algorithm picks the next free variable, and repeats the 

procedure. A conflict occurs when implications for setting the same variable to both 1 

and 0 are produced. Otherwise, the algorithm attempts a new partial assignment by 

complementing the most recently assigned variable for which only one value has been 

tried so far. This step is called backtracking. The algorithm terminates either when 

all clauses have been satisfied and a solution has been found, or when all possible 

assignments have been exhausted. The algorithm is complete in that it will find a 

solution if it exists. 

The modern SAT solvers GRASP [52] and rel-sat [9] independently contributed 

techniques for conflict analysis and conflict-driven learning. The SAT solvers SATO [89] 

and Chaff [59] improved the basic data structures for performing Boolean constraint 

propagation and making implications, which constitutes the computational core of 

Davis-Putnam based SAT solvers. The main idea was to avoid visiting all clauses 

that a variable appears in by keeping track of two watched literals that are non-false 

in each clause. 

96 



6.2.2 Combining SAT and MDG Methodology 

The SAT-MDG reduction technique uses an external rewriting based SAT engine 

developed within Mathematica to simplify DF by applying functional partitioning 

and synchronization detection [77]. The method starts with a system level design and 

a set of properties written in CMDG- AS shown in Figure 6.1, the transition relation is 

translated in terms of DF. Then an abstraction technique is applied to create a CNF 

formula and a set of associated truth assignments constraints is introduced: BDp. 

During this step a Boolean variables for every clause in the transition relation with 

suitable arguments (primary variables (LHS) and uninterpreted function arguments). 

Also additional constraints are specified between clauses with similar arguments in 

order to be mutual. From the properties, the set of reduction variables is extracted 

and fed with the BDF to the rewriting based SAT solver which will decide the truth 

assignment and the implication of this assignment and produce a reduced transition 

relation: Reduced BDF. Then, the Reduced BDF is translated to DF reduced transition 

relation. The obtained DF with the CMDG properties will be fed to the MDG Model 

Checker. The formal verification is performed then on this obtained reduced MDG 

using the existing MDG package. 

6.2.3 Abstracting CNF from DF 

Algori thm 7 C R E A T E C N F F O R M U L A ( S Y S T E M ) 

1: Formula = CreateLogicFormula(System); 
2: BoolFormula = replace each term in Formula with a predicate; 
3: Infer constraints between predicates: 
4: Transform predicate to Boolean variable; 
5: CNFFormula = ConvertToCNF(BoolFormula); 
6: Return CNFFormula; 

Algorithm 7 shows a sketch on how to obtain a transition relation in CNF. It 

97 



System Level Design 

Transition Relation 
DF 

Transition Relation 

Variables 

Figure 6.1: Overview of the Methodology 

first creates the transition relation in a general format at line 1. Assume the formula 

is 

((x = 3) A (y = 2)) V (Or = 5) A (y = 4)) (6.1) 

Line 2 will then introduce n predicates for every clause with LHS argument, so in the 

above formula four predicates are needed and the formula becomes (b\(x) A 62 (y)) V 

(63 (x) A 64(2/)). Line 3 introduces additional constraints such that clauses with a sim­

ilar LHS argument must be mutual. In this example we know that bi(x) and b3(x) 

cannot be true at the same time. Meanwhile, one of them has to be true, otherwise 

the formula cannot be satisfied (fri(x) © 63(x)). Similar constraints can be applied to 

b2(y) and 64(y). Therefore, the Boolean formula B{TrDF) and the truth assignment 

constraints are shown below: 

98 



B{TrDF) : {h{x) A b2{y)) V (h{x) A bA(y)) 

Constraints : {h{%) © h{x)) 

(My) ©Ms/)) 

In line 4, all dependencies are resolved and the predicates will be transformed to 

Boolean variables (i.e. b\(x) becomes bix). Note the Boolean formula is not in CNF 

yet. There exists linear algorithm to convert any Boolean formula to CNF [84], with 

additional variables introduced. As mentioned in line 5, the CNF representation for 

the above formula is: 

B(TrDF) : (6lx V b3x) A (b2y V b3x)A 

{bix V b4y) A {b2y V b4y) 

Constraints : (Uix V b'lx) A (bix V b3x) 

K V b'2y) A (b2y V b4y) 

6.2.4 Extracting Variables from Properties 

The approach to select a variable and assign it a value is based on (assumption) 

extracted from the dependent variables on the property and hence the resulting tran­

sition relation will be much smaller. In fact, SAT-MDG approach gives the possibility 

to assign a concrete variables to the inputs of the system. Thus, an important reduc­

tion is gained on the resulting transition relation which improves the performance of 

the MDG model checker in terms of memory and CPU time. 

Just as an example, if we assume that PI is dependent on 6 lx, then if the SAT 

solver decides blx to be true, then the implication we can get is: 

B(TrDF) : b2y 

Constraints : (b'4y V b'2y) A {b2y V b4y) 

99 



which represents a very small transition relation consisting of only 1 clause 

compared to the original one of 4 clauses, and hence improve the performance. 

6.2.5 Island Tunnel Controller (ITC) 

System Description 

The SAT-MDG technique has been demonstrated on the example of the Island Tunnel 

Controller (ITC) in [91], which was originally introduced by Fisler and Johnson [28]. 

The ITC controls the traffic lights at both ends of a tunnel based on the in­

formation collected by sensors installed at both ends of the tunnel: there is one lane 

tunnel connecting the mainland to an island. At each end of the tunnel, there is a 

traffic light as depicted in Figure 6.2. There are four sensors for detecting the presence 

of cars: one at tunnel entrance on the island side (ie), one at tunnel exit on the island 

side (ix), one at tunnel entrance on the mainland side (me), and one at tunnel exit on 

the mainland side (mx). In [28], the following constraint is imposed: at most sixteen 

cars may be on the island at any time. It is assumed that all cars are finite in length, 

that no car gets stuck in the tunnel, that cars do not exit the tunnel before entering 

the tunnel, that cars do not leave the tunnel entrance without traveling through the 

tunnel, and that there is sufficient distance between two cars such that the sensors 

can distinguish the cars. 

As shown in Figure 6.3, the specification of ITC is composed of three commu­

nication controllers and two counters: The Island Light Controller (ILC), the Tunnel 

Controller (TC), the Mainland Light Controller (MLC), the Island Counter and the 

Tunnel Counter (refer to [28] for the state transition diagrams of each component). 

The Island Light Controller (ILC) has four states: green, entering, red and exiting. 

The outputs igl and irl control the green and red lights on the island side respectively; 

100 



Island 
ix 

ie 

igl 

irl 

> 
> 

Tunnel 

mgl 

mrl 

me 

nl
an

d 
M

ai
 

Figure 6.2: The Island Controller 

iu indicates that the cars from the island side are currently occupying the tunnel, and 

ir indicates that ILC is requesting the tunnel. The input iy requests the ILC to 

release control of the tunnel, and ig grants control of the tunnel from the island side 

as shown in Figure 6.3. A similar set of signals is defined for the Mainland Light 

Controller {MLC). 

mrl 
-4 

me„ 

• 

! Mainland 
1 Light 
'Controller 

*i (MLC) 

_mr_J 

mq 

L-mx-

Tunnel 
Controller 

(TC) 

'=4... jsL 
talnnd Counter 

-BL-J 

Island 
Light 

Controller 
(ILC) 

tc+| tc-j mtc+| mtc-j 

Tunnel Counter 

-jgi 

Figure 6.3: Island Tunnel Controller Structure 

The Tunnel Counter (TC) processes the requests for access issued by ILC and 

101 



MLC. The Island Counter and the Tunnel Counter keep track of the car's number 

currently on the island and in the tunnel, respectively. For the tunnel controller, the 

counter tc is increased by 1 depending on tc+ or decremented by 1 depending on 

tc- unless it is already 0. The Island Counter operates in a similar way, except that 

increment and decrement depend on ic+ and ic-, respectively: one for the island lights, 

one for the mainland lights, and one tunnel controller that processes the requests for 

access issued by the other two controllers. 

Verification 

Table 6.1 compares the verification results of the original MDG model checking and 

the reduced one with soundness verification for five properties, run on a Sun enterprize 

server with Solaris 5.7 OS and 6.0 GB memory. Note that the soundness verification 

of the PbyS took less than 1 second added to the verification time. 

We note that the reduction gain depends on the properties. The best gain in 

performance is obtained with property P3 where the time is reduced by 6.7 times the 

original one and the memory is reduced by a factor of 9.3 times. The worst case is the 

property PI where the time is reduced by 1.2 times the original one and the memory 

reduction is not profitable. 

In the case of property PI the assumptions and the functionality tested needs 

several runs (when using our SAT reduction as case splitting). The sum of these runs 

for this particular case is a little bit lower to a single run without reduction. For P3, 

case splitting was really much more efficient. These differences show the sensitivity of 

the reduction technique to the property verified. Note that the soundness verification 

using the PbyS operation took less than 10 seconds added to the average time. Despite 

these fluctuations, the gain average in performance is a factor of 1.4 which is considered 

102 



Table 6.1: Comparing the Original MDGs Model Checking Results with the Reduced 
MC and Soundness Verification Results 

Benchmark 

Properties 

PI 

P2 

P3 

P4 

P5 

Average 

Original MC 

Time 

65.35 

0.12 

65.45 

65.61 

65.89 

52.48 

Mem 

50.1 

0.57 

48.6 

46.4 

48.3 

38.79 

Nodes 

123080 

263 

123085 

123082 

123080 

98518 

Reduced MC 

Time 

54.65 

.10 

10.73 

36.05 

49.42 

30.19 

Mem 

47.6 

0.4 

5.24 

26.11 

34.95 

22.86 

Nodes 

121060 

211 

12292 

63419 

69966 

53389 

as a good result in the case of model checking approaches. 

6.3 The Assume-Guarantee Reduction Verification 

in MDG-HOL 

In this section, we present an algorithm to achieve the soundness of the assume-

guarantee reduction methodology. First, we present the assume-guarantee reduction 

methodology and how we generate a mathematical model in terms of DF from the 

design. Then, we provide the soundness verification of the methodology. Finally, 

we discuss the MDG-HOL assume guarantee technique for the ITC and LA-1 case 

studies. 

6.3.1 The Assume-Guarantee Reduction Methodology 

As shown in Figure 6.4, we generate from the behavioral design written in HDL 

language an abstract mathematical model in terms of DF. 

103 



From a set of properties written in CMDG-, we extract the representation of the 

properties in terms of DF and feed them with the design transition relation to the 

MDG-HOL platform. 

The reduction technique itself could be applied on the HDL description either 

using HOL or an external tool. However, the result of the reduction should be embed­

ded in HOL as DF or will be translated to MDG-HDL (the input language of MDGs 

tool). 

Then, the verification of the reduction soundness algorithm is applied using 

MDG operations and the rewriting engine of the HOL theorem prover. If the reduction 

is proved sound then the formal verification can be performed on the obtained reduced 

model. 

High Level Language 

CAbstract Mode l^N. 

Generation ' 

Reduced DF 

Soundness 

Verification 

DF 

MDG-HDL 

MDG 

Model Checking 

Properties 

1 Yes I ) No . „ 
Proved h———I Results I—-—^Counter-example 

Figure 6.4: Overview of the Reduction Methodology 

104 



6.3.2 Generat ion of D irec t ed Formulae 

From High Level Language 

When the model is too large, one may use abstraction to reduce the size of the model 

[24]. Some constraints are removed from the original model, making the model smaller 

(it has fewer constraints on the transitions). Therefore, if a property is true in the 

abstract model, then it must be true in the original model as well. Otherwise, a false 

negative is raised. In our case we use the MDGs since the data is represented in terms 

of abstract variables and the operations are represented in terms of uninterpreted 

function symbols. 

In this thesis, we concentrate on behavioral description written in MDG-HDL 

language. The authors in [25] were able to automatically generate a formal model 

from the design description. We were able to extract a DF model from the behavioral 

design (subset of VHDL or SystemC) based on some rules explained in [25, 58]. The 

following steps summarize partially the extraction method: 

1. First, we translate all simple assignment expressions (equations) to DF. The 

variable and expression propagation and algebraic simplification is done as: for 

any expression we need to propagate the variables and apply a simplification on 

them. The simplification includes Boolean algebraic where True and False can 

be removed. The example below explain this case: 

{ a = b+l; 

6 = 2* (6+1) 

2. In the second step, the set of sequential assignment is translated to a set of 

conjunct equations: eql: eq2: = > eq\ A eq2. 

3. In the third step, we handle if-then-else statement by the following steps: 

105 



(a) Variable and assignment expression: as described above. 

(b) Every statement written in the form x = if (condition, then-branch, elseJjranch) 

will be translated into a set of equalities of form: 

(condition A (x = thenJbranch))\J (-^condition f\(x = elseJbranch)), where 

the condition (cond) is of concrete type (has enumeration). 

4. In the fourth step, the uninterpreted functions are defined whenever it is nec­

essary. In this step, we translate any function between the operators in the 

right hand side of the equation to uninterpreted functions representation. For 

example, x' — x + 1 become x' — plus(x, 1). Also, for the bit vector and word 

level we expressed them as uninterpreted function symbols (abstraction). 

5. Finally, any other synthesizable statements and much more elements such as 

multiple clocks and unbounded integer are intended for system level modeling 

can be translated to if-then-else statements as presented in [25, 58]. 

Just as an example, consider a basic RAM element with two operations write 

and read (read one word or two words) defined at behavior level: 

Inputs:{reset, addA, addB, data, reg_one,write, read_one, output_enable} 

Outputs: {outputA, outputB} 

Registers: {reg[0].. . reg[n]} 

Writing Process 

if reset=l then 

reg[addA]=0 

reg[addB]=0 

else if (write=l) and (output_enable=0) then 

106 



regjaddA]—data 

end if 

Reading Process 

if (write=0) and (read_one=l) and (output_enable=l) then 

(output A=reg [add A]) 

else if (write=0) and (read_one=0) and (output _enable=l) then 

(output A=reg[addA]) 

(outputB=reg [addB]) 

end if 

The transition relations for the write operation in terms of DF WriteSTrp,F is 

written as follows: 

[(reset = 1) A (reg[addA\ = 0) A (reg[addB\ = 0)] V 

[(reset = 0) A (write = 1)A 

(output-enable = 0) A (reg[addA\ = data)] 

and for the read operation Read-TrDF: 

[(write = 0) A (read.one = 1)A 

(output^enable = 1) A (outputA = reg[addA])\ \J 

[(write = 0) A (readjone = 0) A (output-enable = 1)A 

(outputA — reg[addA]) A (outputB = reg[addB])] 

The transition relation for the design is the conjunction of both transition rela­

tions of the read and the write operations, in DF that will be written as follows: 

RAM-TrDp = Read-TrDF A WriteSTruF 

107 



From the Properties 

In large systems where the design can be expressed as a conjunction of individual 

transition relations of the state variables, it consumes large memory and time to 

verify a property. If the property to be verified is only affected by a part of the system 

behavior, we can use the corresponding subset of the transition relations to verify the 

property. In order to enhance the reduction of the design prior to verification, we use 

the precondition in the property (antecedent) and express them in terms of DF. Note 

that the property is written in CMDG and in the form of [Ante —> Cons], where both 

Ante and Cons are directed formulae called antecedent and consequent. 

Lets back to our previous RAM example, if we want to verify a property 

about the writing operation of the memory then the property can be expressed as 

AG ((write = 1) = = > X(reg[addA] = data)) and its DF will be PMriteJint = 

(write = 1). This DF will be then used to reduce the RAMJTrDp. 

6.3.3 Verification of t h e R e d u c t i o n Soundness 

MDG-HDL 

Extract 
DF 

DF 

Reduction 
Technique 

Soundness-Verification 

V 
(MDG-HOL) 

Reduced 

Model [ 

DFR *^dj 

Figure 6.5: Overview of the Soundness-Verification Methodology 

As shown in Figure 6.5, we start with a specification of a circuit design written 

108 



in Hardware Description Language (MDG-HDL) and extract a mathematical model 

in terms of Directed Formulae (DFspec)- After applying the MDG-HOL reduction 

technique on the DF of the design, the reduced model is generated and expressed in 

terms of Directed Formulae {DFRedUCed)-

Then, both DFs should be fed to the MDG-HOL platform where the soundness 

verification is checked. If the reduction is proved sound then the formal verification 

can be performed on the obtained reduced model. 

The powerful of our methodology is that it can be used with any verification 

tool. All what we need is to translate in a sound manner both the model and its 

reduction in order to embed them thereafter as DFs in HOL and then prove that the 

reduced model is derived correctly using high order logic. 

Next, we present an algorithm to achieve the verification. In verification world, 

the design transition relation Tr should satisfy the specification. Intuitively, we want 

TV to be a specification-consistent (not spec-contradictory) for any input and state 

combinations. In fact, spec-consistency does not depend on any upper level specifi­

cation and one can, in some sense, view the transition relation at high level as the 

specification (facts can be mapped into mathematical statements within the spec­

ification). Thus, we can determine whether a design is a spec-consistent without 

having a reference specification[70]. The section requires that TV and {v^i}i<i<n,j/i 

are embedded in HOL as Directed Formulae. 

Definition 6.3.1 The spec-consistency 

We suppose that the specification can be written as a set of n properties {y?i}i<i<n-

The spec-consistency ofTr can be defined as: 

Vj, 1 < j < n, Tr j= {ipi}i<i<nj^i => Tr (= <pj 

109 



The Reduction-Soundness Algorithm 

In fact, any reduction can be considered as a partial spec. Thus, if the reduction 

technique is sound then the specification of the reduced system should be consistent 

with the original one. Then, in order to verify that TV satisfies <pj, we assume that 

TV satisfies all other properties {(pi}i<i<n,jj£i- In this context, the following definition 

describes the reduction soundness: 

Definition 6.3.2 The reduction soundness 

Let M and M' be a two ASM models. We say that M' is soundly reduced model: 

M' <M if and only if: 

• for any property P such that: M' \= P then P holds in the original model M: 

M\=P. 

Our algorithm not only verifies the soundness of the reduction but also can 

determine a minimum set of sound property clauses (equalities). The algorithm is 

operating on the reduced DFs. We need one DF for Tr of the spec or the design 

under verification (DFspec) and a set of DFs for each property clause (DFPi), where 

DFPi represents the antecedent of the property. As shown in Algorithm 8, lines 1 and 

2 store the initial DFs. The variables </> and </? denote the DF of the original spec 

and the DF of the property clause, respectively. Lines 3-10 repeatedly execute a loop 

n times, where n still represents the number of property clauses. Line 4 computes 

the reduction step (Section 4.1) by evaluating the conjunction operation and then 

applying the propagation of the property clause as rewriting rule. The soundness of 

the reduction step is tested in line 5 by using the prune by subsumption operation 

(PbyS). If (PbyS((pi, DFspec) = F) then the behavior of the reduced model is included 

in the original model and thus, the reduction property is guaranteed to be correct 

110 



as shown in line 6. Otherwise, this property is removed from the properties clauses 

which mean that the system is not reduced without influencing the behavior (over 

reduction). This property will not be used in the reduction process. The algorithm 

returns the guarantee clauses as shown in line 11. 

Algorithm 8 SouND_REDUCE_DF({Z?Fspec} , {DFPi}Q<i<n) 

(po = DFspec; 

<A) = { } ; 
for i = 1 to n do 

4>i = Reduce (4>0,DFPi); 
if (PbyS(cf>z, DFspec) = F) then 

ifi = ipi-1{JDFpi; 
else 

fi = <Pi-i\ 

end if 
end for 
Guarantee-P = ipi. 

The algorithm is correct since it returns a unique set for the same inputs. Also, 

the algorithm terminates because we have a finite number of clauses executed n times 

in the loop. 

Correctness of the Algorithm 

Two theorems are stated to prove the correctness of the algorithm. The first one de­

scribes the correctness proof of the MDG operations which represents a mathematical 

proof of consistency between the operation specification and its implementation in 

HOL as explained in Section 4.5. 

The second theorem regarding that the PbyS itself is a checking for the sound­

ness of the reduction technique; guarantees that the reduced model is included in the 

original model for the same property. This means if the property holds for both the 

reduced and original model then the reduction is correct for the same property P: if 

111 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 



<j>' (= P then (j>\=P. 

Theorem 6.3.1 Pbys checks the Reduction Soundness 

ASSUME: 

1. M and M' be a two ASM models: M' <M. 

2. DFspec and Reduced-DF be the respective transition relation in terms of well-

formed DF of M and M'. 

Then the reduction approach is sound if: 

PbyS(Reduced.DF, DFspec) = F 

PROOF: 

Since Reduc.ed.DF represents the transition relation of the model M' which should 

be included in M, the Reduced_DF formula cannot be a T or F (see definition 6.3.2). 

The only interesting case is when Reduced^DF is not T or F. By applying the 

definition of PbyS as shown in (4.4), the result R is derivable from ReducedJDF by 

pruning. Hence |= i? =» Reduced^DF. And, from (4.4), it follows tautologically that 

hReduced_DFA-,(3£)JDFD =» R. Thus we have 

|= (Reduced _DF A ̂ (3E)DFD =*• R) A {R => Reduced J) F) 

which holds if and only if R is F, then it follows tautologically from (4.4) that f= 

Reduced-DF => (3E)DFn. We have thus proved the soundness the reduction. • 

The False Negative 

Our verification algorithm is not complete as it can provide false negative results. 

That means a correct reduction may not be proved to be sound. The situation can 

be compared to abstraction when data operations are viewed as black boxes, then 

the invariant is expected to hold for every interpretation. Hence, if the proof returns 

112 

http://Reduc.ed.DF


failure, then there must be an interpretation that gives the expected error. However, 

in the concrete model this interpretation is not achievable. 

Definition 6.3.3 False Negative 

Let M and M' be a two ASM models and M' is a soundly reduced model: M' -< M. 

Then the false negative occurs when a property P dose not hold on M': P ¥ M' but 

holds in the original model M: M \= P. 

Thus, our method can prove that the reduction technique is soundly applied 

but cannot prove the opposite. This due to the over-approximation nature of our 

generalized algorithm. For some special cases, we can prove the absence of these false 

negative depending on the applied reduction technique. However, this proof may not 

be automatic and needs an intervention from an ATP expert. 

The RAM Example 

If we want to verify a property to read from the RAM, then the property will include 

(write = 0). Then by using the MDGs operations and rewriting engine of HOL, 

the transition relations of the write operations will be eliminated from the design 

DF. Also, the reset input is eliminated by expressing this as a property: activating it 

once then always remains deactivated since the interesting properties does not include 

reset. 

Lets have the following property to read one word from the memory then the 

property can be expressed as: AG((write = 0 & read_one = 1) = = > X(outputA = 

reg[addA})) and its antecedent will be P jread-one-ant = (write = 0)Ik (read-.one = 

1). In this case, the new reduced RAMSTrDp will be: 

113 



[(write = 0) A (readjone = 1)A 

(output.enable = 1) A (outputA = reg[addA])] 

Then by applying Algorithm 8, it is easy to prove that the resulted DF is 

included in the original DF design. Finally, the reduced DF with the property can 

be mapped to the model checker. Thus, an important reduction is gained on the 

resulting transition relation which improves the performance of the model checker in 

terms of memory and CPU time. 

On the other hand, if we have a case such that the resulted DF is not included in 

the original DF design, then this may be regarding an improper property or a problem 

in the design itself. For example, lets have a property expressed as AG ((write .one = 

0) = = > X(outputA = reg[addA})). In this case, the antecedent of the property will 

not reduce the original design since the design has not a variable write^one. Using 

Algorithm 8, the PbyS operation will give a result other than F. Then, this property 

will be removed from the property clauses under the condition that our specification 

is consistent. 

6.3.4 Case Studies 

We have verified the reduction of the assume-guarantee method with two circuits: the 

Look-Aside Interface and the Island Tunnel Controller in order to measure the perfor­

mance of our approach. The results were carried out on a Sun enterprize server with 

Solaris 5.7 OS and 6.0 GB memory (refer to [5] for more details on each application). 

Look-Aside Interface (LA-1) 

System Description 

114 



The LA-1 interface [29], developed by the Network Processor Forum (NPF), 

is a memory mapped interface based on Quad Data Rate (QDR) and Sigma RAM 

technologies (SRAM). It targets look-up-tables and memory-based coprocessors and 

emphasizes as much as possible on the use of the existing technology. The LA-1 spec­

ification aims to accommodate other devices as well, such as classifiers and encryption 

co-processors. The major features of the LA-1 interface include: 

• Concurrent read and write operation. 

• Separate unidirectional read and write data buses. 

• Single address bus. 

• 18-bit DDR data output bus transfers 32 bits plus 4 bits of even parity per read. 

• 18-bit DDR data input bus transfers 32 bits plus 4 bits of even parity per write. 

• Byte write control for writes. 

The LA-1 interface transfers data between an Network Processor Unit (NPU) 

and memory or coprocessors. Figure 6.6 shows the LA-1 interface bus signals. LA-1 

requires a master-clock pair. The master clocks (K and K#) are ideally 180 degrees 

out of phase with each other, and they are outputs for the host device and inputs 

for the slave device. A write cycle is initiated by asserting WRITE SEL (W#) low 

at rising edge of K (K clock). The address of the Write cycle is provided at the 

following edge of K (K# clock which 180 degrees out phase from clock K). A read 

cycle is initiated by asserting READ SEL (R#) low at rising edge of K (K clock) 

and the read address is presented on the same rising edge. There is also 2-bit active-

low byte-write inputs (BW#) and a 16-bit synchronous data inputs (D) plus 2-bit 

synchronous data even inputs (DP) for write operations. Similarly, it has a 16-bit 

115 



synchronous data outputs (DO) plus 2-bit synchronous data even outputs (DPO) for 

reads. 

~"\ 

Network 

Processor 
(Host) 

_y 

Master Clock (K) 

Master Clock (K#) 

Address (A) [27:0] 

Data Input (D) [15:0) 

Parity Input (DP) [1:0] 

Read Select (R#) 

Write Select (W#) 

Byte Write Enable (BW#) [1:0] 

Data Output (DO) [15:0] 

Parity Output (DPO) [1:0] 

Memory' 

Coprocessor 

(Slave) 

Figure 6.6: Look-Aside Interface 

The MDG-HDL model for the LA-1 design is shown in Figure 6.7, where: 

• input signals: K, K#, W#, R#, DPO, DPI, BW0, BWl and pflag are of type 

bool, 

• input signals: D, A and CLTO are of abstract sort wordn, 

• output signals: me, bwe^mS, bwe-rn2, bwe-ml, bwe-m0, DPO0 and DPOl are 

of type bool, 

• output signals: d2m, add^r and DO are of abstract sort wordn, and 

• components: rnake^word, parity4, parityS, parity2, parity 1, msw and Isw are 

abstract function symbols. 

Note that an internal double frequency clock is used to generate the clock„2X 

and the control signal pflag is used to indicate the positive and negative edge of the 

clock. The function of makejword is to merge two input data into one output data. 

116 



LA-1 Interface 

fflMaster Clock ( 
Master Clock ( 

Network 

Processor 

(Host) 

»Clock Frequency^- £ L » ' 
••. Double' : f ' 3 * -
Write Select (W#) 

Data Input (D) [15:0] 

Parity Input (DP) [1:0] 
Byte Write Enable (BW#)[1 

Address (AU27:C 

d2m|[31:0] 

W r i t f t l W bwe^m[3:0] 

• * Gont f i j I add 

«K 

1 add 
Read Select (R#) imUMmr— 

Data Output (DO) [15:0] l l i i l p A ft m-ffl 

Parity Output (DPO) [1:0] «• 

w[31:i 

r [31:0] 

Memory/ 

Coprocessor 

(Slave) 

Figure 6.7: Look-Aside Interface Design 

The function of parity^, parityS, parity2 and parityl is to compute the parity of the 

input data. The function of msw and Isw is to strip the most and least significant 

word from the input data, respectively. 

Verification In following, we describe our results on the verification of the LA-1 

Interface using the MDG-HOL based reduction technique over some properties. We 

describe four properties that we extracted and verified from the design specifications: 

• Property 1 (Write Port): by asserting W# low at the rising edge of K, the 

active-low memory enable signal me will be set to low at the next rising edge of 

K: 

AG( (pflag=l & W=0) ==> (XX (me=l)) ) ; 

P rope r ty 2(Write Port): by asserting W# low at the rising edge of K, if the 

117 



byte-write control inputs BW#1 and BW0# are set to low, the full da ta input 

D will be written at the same cycle and at the rising edge of K and K# and 

sent to the memory through dm (data to memory). This scenario is known to 

be the pass through mode of the Write Port: 

AG( ( p f l a g = l & W=0 & BW1=0 k BW0=0) ==> 

(LET (vl=D) IN 

(X (LET (v2=D) IN 

(X (dm = f m a k e _ w o r d ( v l , v 2 ) ) ) ) ) ) ) ; 

• P r o p e r t y 3 (Read Port): by asserting R# low at the rising edge of K, the da t a 

from the memory d-.m will be sent through da ta even output DPO(l) after the 

next rising edge of K: 

AG( ( p f l a g = l & R=0)==> 

(XX (LET (vl=d_m) IN 

(XX (DP01=fpa r i t y2 (v l ) ) ) ) ) ) ; 

• P r o p e r t y 4 (Read Port): by asserting R# low at the rising edge of K, the da ta 

from the memory &_m will be sent through DO after the next rising edge of K: 

AG( ( p f l a g = l & R=0) ==> 

(XX (LET (vl=d_m) IN 

(X ( (D0=fmsw(vl)) 

& (X (DO = f l s w ( v l ) ) ) ) ) ) ) ) ; 

Table 6.2 compares the verification results of the original MDG model checking 

and the reduced one with soundness verification for four properties. The reduction 

t ime includes the verification of the reduction soundness. The CPU time is measured 

118 



Table 6.2: Comparing the Original MDGs Model Checking Results with the Reduced 
MC and Soundness Verification Results 

Benchmark 

Properties 

PI 

P2 

P3 

P4 

Average 

Original MC 

Time 

435.56 

63.82 

233.47 

245.21 

244.51 

Mem 

449.7 

70.6 

248.6 

269.1 

259.5 

Nodes 

1273027 

217043 

716544 

765434 

743012 

Reduced MC 

Time 

48.90 

1.32 

46.05 

36.62 

33.22 

Mem 

59.6 

2.84 

52.7 

51.7 

41.71 

Nodes 

168060 

4630 

172719 

111864 

114318 

in seconds and the memory is measured in MB. 

The first two properties are used to verify the write port while the last two 

properties are used to verify the read port. The best gain in performance is obtained 

with property P2 where the time is reduced by 48 times the original one and the 

memory is reduced by a factor of 24.8 times. The worst case is the property P3 where 

the time is reduced by 5 times the original one and the memory reduction is not 

profitable. We note that the reduction gain depends on the properties. Also, the read 

port circuit is bigger than the write port circuit and hence, the first two properties 

took much less time compared to the last two. 

Note that the soundness verification using the PbyS operation took less than 

7 seconds added to the average time. These differences show the sensitivity of the 

reduction technique to the property verified. Despite these fluctuations, the average 

of the gain in performance is a factor of 6.1 which is considered as a good result in 

the case of model checking approaches. 

Island Tunnel Controller (ITC) 

Verification 

119 



Table 6.3: Comparing the Original MDGs Model Checking Results with the Reduced 
MC and Soundness Verification Results 

Benchmark 

Properties 

PI 

P2 

P3 

P4 

P5 

Average 

Original MC 

Time 

121.12 

65.26 

81.73 

67.07 

66.08 

80.25 

Mem 

100.91 

48.6 

58.2 

48.8 

49.4 

61.18 

Nodes 

226070 

123080 

171060 

123080 

123080 

153274 

Reduced MC 

Time 

17.05 

0.03 

15.84 

9.28 

12.09 

10.86 

Mem 

10.92 

0.22 

10.24 

6.88 

8.01 

7.254 

Nodes 

26787 

44 

22278 

20125 

20278 

17902 

In following, we describe our results on the verification of the ITC. We have 

specified and verified a number of properties on the ITC. In the following, we describe 

five samples for illustration purposes: 

• Property 1: The cars at the island entrance will enterally pass the tunnel. 

• Property 2: The green light of ILC must be off if there is a car exiting the 

tunnel. 

• Property 3: The island will eventually release the control right of the tunnel 

controller requests. 

• Property 4: The tunnel counter keeps the old value if ordered to increment 

and decrement at the same time. 

• Property 5: The green light of MLC must be on if there is no request to yield 

control of the tunnel and the number of cars on the island are less than n. 

Table 6.3 compares the verification results of the original MDG model checking 

and the reduced one with soundness verification for seven properties. We give the CPU 

120 



time measured in seconds and the memory measured in MB that are used in building 

the reduced machine and checking the property. The best gain in performance is 

obtained with property P2 where the time is reduced by 2175 times the original one 

and the memory is reduced by a factor of 220 times. The worst case is the property 

P3 where the reduction in time and memory is 5 times the original one. In the case of 

property P2 the assumptions includes two global signals that causes a huge reduction 

on the complete transition relation which really was much more efficient. For P3, 

it was only one local signal in the assumption of the property which results a small 

impact on the global transition relation. 

The soundness verification using the PbyS operation took less than 10 seconds 

added to the average time. The average of the gain in performance is a factor of 

4.5 which is considered as a good result in the case of model checking approaches. 

Still, we have verified for each case the soundness of the verification. Moreover, the 

verification time and the soundness reduction time is still less than the model checking 

verification time. 

121 



Chapter 7 

Conclusions and Future Work 

7.1 Summary 

In this thesis, we have proposed a high level reachability approach using the MDG 

syntax and embedded operations using the HOL theorem prover. We have provided 

a link from the MDG graphs to formulae in high order logic using the Directed For­

mulae notations. Afterward, we have defined a tactic to check the satisfaction of 

the well-formedness conditions of these Directed Formulae. In order to follow the 

formal logic of HOL, the formalization of the Directed Formulae in [88] has been 

modified. Therefore, the modified DF formalization is more suitable for automatic 

reasoning and is helpful for avoiding potential infinite loops. Moreover, it ensures the 

termination when it should occur [6]. In fact, applying induction on DF, with these 

modifications, ameliorate the reasoning with the MDG structure in HOL. This is one 

of the contributions of our work. 

The formalization of MDG operations is built on top of our MDG syntax. In­

ternally, we have used a list representation for the DF that is more efficient for the 

embedding and for the correctness proofs. The verification was conducted using the 

122 



deep embedding approach, which ensures the consistency of our approach. Since we 

do everything in HOL, we expect higher security than other implementations in high 

level languages such as C. Also, the reachability analysis is performed using our plat­

form: we have shown how a fixpoint computation can be used to prove the existence 

of such a fixpoint, depending on the DF circuit structure. 

We have also presented some experimental results based on four benchmarks. 

From these experiments, combined with abstract sorts and uninterpreted functions, 

MDG-HOL platform provided a better performance than Formalcheck in terms of 

time, memory usage, number of nodes, and number of functions especially when the 

design is growing up. On the other hand, the human efforts are huge compared to 

the Formalcheck. The idea here is not to compete with the traditional model checkers 

but to show the performance of using our platform as well as the possibility of future 

integration. 

We have proposed a reduction technique for MDG model checking based on SAT 

and MDG-HOL integrated platform. Also, we have proposed a method to verify that 

the reduction techniques are applied soundly. The benefit of our approach is that it 

can be applied within any verification system to produce a sound reduced systems 

without major penalty over verification performance. The specification of the design 

described at system level language along with properties are used to verify the reduced 

model. The originality of our technique comes from combining an automatic technique 

(MDGs operations) and a non-automatic tool (HOL) to prove in High Order Logic 

that the reduced model is derived correctly in an automatic manner. 

We support our technique by experimental results executed on benchmark prop­

erties. The obtained performance in the case of SAT-MDG is acceptable as compared 

with commercial model checking tools. Even if bit-blasting tools can perform ten 

123 



times faster, our technique is safer as it provides proof that the results are derived 

correctly. In the case of assume guarantee in MDG-HOL, the reduction strategy was 

limited to the propagation of antecedents of the properties. The obtained results still 

satisfactory. 

In fact, our approach can be used to express more reduction techniques without 

any loss of generality, without loss of automatism, and more importantly, automatic 

soundness checking. 

7.2 Future Research Directions 

The work presented in this thesis is an important step, to define an algorithm for 

states exploration inside an inductive theorem prover; forward to tackle higher level 

of abstraction. Based on our previous work in this domain, we believe that the 

proceeding future work can be completed and expanded in the following manner: 

• MDG-HOL platform: 

1. Improving the performance of the MDG-HOL component by improving the 

existing code and adding standard optimizations. 

2. The work can be extended to implement a complete high level model check­

ing in HOL based on our infrastructure. Including the definition of each 

£-MDG [88] related algorithm as a tactic. The model checker will be a 

complete theory in HOL, but indeed more investigation and formalism is 

needed to this task. In this context, our reachability tactic can be used 

to make calls to our defined MDG algorithms, to check whether an LMDG 

property is valid. Here, we are not reducing the role of the proof expert, 

but we provide him with an automated tactics that reduces considerably 

124 



the time he spent. Also, the work can be seen as a formal proof for the 

MDG model checking approach; verifying a verification system using an­

other verification system. Also, building a parser to automatically extract 

the transition relation from HDL is another future step that we intend to 

do using ML. 

3. Performance is an important issue to convince industrial practitioners who 

are usually interested in absolute performance figures. As is evident from 

Chapters 5 and 6, much of current research is focused on enabling coop­

eration between various techniques. Though in theory we can implement 

any such technique in HOL, the absence of a general framework gives any 

implementation an ad hoc nature. All we have is a philosophy: do every­

thing fully-expansively for better assurance of soundness, closer integration 

and exploit the asymmetric cost of proof checking vs. proof search when­

ever possible for efficiency. Though, we have taken first steps, MDG-HOL 

framework that embodies this philosophy with an emphasis on combin­

ing technologies would be desirable. Whether or not this would be over-

engineering depends on the eventual domain of use. 

4. The approach of embedding MDG algorithms in a theorem prover carries 

a clear performance penalty. There are important issues about what kind 

of problems this approach is best suited to. There are also engineering 

issues about how to improve the performance without abandoning the fully-

expansive approach such as using the code generation of HOL to generate 

an ML code for the MDG-HOL platform and then embed the MDG model 

checking algorithm as a shallow embedding. This can be done by the 

invocation of emitML to generate an ML signature and structure files. And 

125 



finally, there is usage issue about just what is considered an acceptable 

penalty in a given situation. All these needed to be addressed at some 

point. 

• Reduct ion Techniques: 

1. Our approach can be easily generalized to any other verification tools such 

as commercial model checker (RuleBase) or SAT solvers. In this case, 

we need to build a parser to translate the reduced model to DF. Ideally, 

the reduction technique itself should be formalized in HOL on order to be 

verified with our method. 

2. One of the limitations of our approach is that we have a one way soundness 

proof (not bisimulation). Also the output of the reduction algorithm is a 

directed formula. Those limitations do not contradict the fact that we have 

better results as well as highlight some of the limitations to improve our 

approach. More work is needed to resolve those limitations. 

3. Future directions will concentrate on embedding more reduction techniques 

inside MDG-HOL platform. The most important, will be the embedding 

of SAT solvers advanced heuristics as the one used with miniSAT [60] and 

RSAT [41]. 

126 



Bibliography 

[1] M. Aagaard, R. B. Jones, R. Kaivola, K. R. Kohatsu, and C. H. Seger. Formal 

Verification of Iterative Algorithms in Microprocessors. In DAC '00: Proceedings 

of the 31th conference on Design automation, pages 201-206, New York, NY, 

USA, 2000. ACM. 

[2] M. D. Aagaard, R. B. Jones, and C. H. Seger. Combining Theorem Proving and 

Trajectory Evaluation in an Industrial Environment. In Proceedings of the 1998 

Conference on Design Automation (DAC-98), pages 538-541, Los Alamitos, CA, 

June 1998. ACM/IEEE. 

[3] P. Aziz Abdulla, P. Bjesse, and N. Een. Symbolic Reachability Analysis based 

on SAT-Solvers. In Proceedings of the 6th International Conference on Tools and 

Algorithms for the Construction and Analysis of Systems (TACAS'2000), 2000. 

[4] S. Abed, O. Ait Mohamed, and G. Al Sammane. On the Embedding and Ver­

ification of Multiway Decision Graphs in HOL Theorem Prover. Technical Re­

port 2007-1-Abed, ECE Department, Concordia University, Montreal, Canada, 

February 2007. 

127 



[5] S. Abed, O. Ait Mohamed, and G. Al Sammane. HOL based Reduction Tech­

niques for MDGs Model Checking. Technical Report 2008-1-Abed, ECE Depart­

ment, Concordia University, Montreal, Canada, January 2008. 

[6] O. Ait-Mohamed, X. Song, and E. Cerny. On the Non-termination of MDG-based 

Abstract State Enumeration. Theoretical Computer Science, 300:161-179, 2003. 

[7] H. Arnjad. Programming a Symbolic Model Checker in a Fully Expansive The­

orem Prover. In Proceedings of the 16th International Conference on Theorem 

Proving in Higher Order Logics, volume 2758 of Lecture Notes in Computer Sci­

ence, pages 171-187. Springer-Verlag, 2003. 

[8] M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors. A Simple Graph 

Theory and Its Application in Railway Signalling. IEEE Computer Society, 1992. 

[9] R. J. Bayardo and R. C. Schrag. Using CSP Look-Back Techniques to Solve 

Real-World SAT Instances. In Proceedings of the Fourteenth National Conference 

on Artificial Intelligence (AAAI'97), pages 203-208, Providence, Rhode Island, 

1997. 

[10] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A Tool for the Verification 

of Invariants. In Alan J. Hu and Moshe Y. Vardi, editors, Computer-Aided 

Verification, CAV '98, volume 1427, pages 505-510, Vancouver, Canada, 1998. 

Springer-Verlag. 

[11] P. Bjesse and K. Claessen. SAT-based Verification without State Space Traversal. 

In Formal Methods in Computer-Aided Design, pages 372-389, 2000. 

128 



[12] R. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. Brady. 

Deciding Bit-Vector Arithmetic with Abstraction. In Proc. TACAS 2007, March 

2007. 

[13] R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE 

Transactions on Computers, 35(8):677-691, August 1986. 

[14] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision 

Diagrams. ACM Comput. Surv., 24(3):293-318, 1992. 

[15] C.-T. Chou. A Formal Theory of Undirected Graphs in Higher-Order Logic. In 

T.F. Melham and J. Camilleri, editors, International Workshop on Higher Order 

Logic Theorem Proving and its Applications, volume 859, pages 144-157, Malta, 

1994. Springer-Verlag. 

[16] C.-T. Chou. Mechanical Verification of Distributed Algorithms in Higher-Order 

Logic. In T.F. Melham and J. Camilleri, editors, International Workshop on 

Higher Order Logic Theorem Proving and its Applications, volume 859, pages 

158-176, Malta, 1994. Springer-Verlag. 

[17] Cadence Design Systems. V2.3. ForrnalCheck Users Guide, August 1999. 

[18] L. Cai and D. Gajski. Transaction Level Modeling: An Overview. Hard­

ware/Software Codesign and System Synthesis, 2003. First IEEE/ACM/IFIP 

International Conference on, pages 19-24, 1-3 Oct. 2003. 

[19] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking. In Nato ASI, 

volume 152 of F. Springer-Verlag, 1996. 

[20] W. Clocksin and C. Mellish. Programming in Prolog. Springer Verlag, 1987. 

129 



[21] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway Decision 

Graphs for Automated Hardware Verification. In Formal Methods in System 

Design, volume 10, pages 7-46, February 1997. 

[22] O. Coudert, C. Berthet, and J. C. Madre. Verification of Synchrounous Sequen­

tial Machines based on Symbolic Execution. In J. Sifakis, editor, Automatic 

Verification Methods for Finite State Systems, volume 407 of Lecture Notes in 

Computer Science. Springer-Verlag, 1989. 

[23] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduction 

to PVS. http://www.dcs.gla.ac.uk/proper/papers.html. 

[24] D. Long. Model Checking, Abstraction, and Compositional Verification. PhD 

thesis, Pittsburgh, PA, USA, 1993. 

[25] D. Toma, D. Borrione, and G. Al Sammane. Combining Several Paradigms for 

Circuit Validation and Verification. In CASSIS, Selected Papers, LNCS, volume 

3362/2005, pages 229-249, Marseille, France, 2004. Springer-Verlag GmbH. 

[26] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-

Proving. Commun. ACM, 5(7):394-397, 1962. 

[27] F. Emerson and A. Sistla. Symmetry and Model Checking. Formal Methods in 

System Design, 9(1/2):105-131, August 1996. 

[28] K. Fisler and K. Johnson. Integrating Design and Verification Environments 

Through A Logic Supporting Hardware Daigrams. In Proc. IFIP Confer­

ence on Hardware Description Languages and their Applications (CHDL'95), 

Chiba,Japan, August 1995. 

130 

http://www.dcs.gla.ac.uk/proper/papers.html


[29] Network Processing Forum. Look-Aside (LA-1) Interface, Implementation Agree­

ment, Revision 1.1, April 15 2004. 

[30] M. K. Ganai and A. Aziz. Improved SAT-based Bounded Reachability Analysis. 

In ASP-DAC '02: Proceedings of the 2002 conference on Asia South Pacific 

design automation/VLSI Design, page 729, Washington, DC, USA, 2002. IEEE 

Computer Society. 

[31] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the 

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. 

[32] M. Gordon. From LCF to HOL: A Short History, pages 169-185, 2000. 

[33] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of Lecture 

Notes in Computer Science. Springer, 1979. 

[34] M. J. C. Gordon. Reachability Programming in HOL98 using BDDs. In Interna­

tional Conference on Theorem Proving in Higher Order Logics TPHOLs, Lecture 

Notes in Computer Science, pages 179-196, 2000. 

[35] M. J. C. Gordon. Programming Combinations of Deduction and BDD-based 

Symbolic Calculation. LMS Journal of Computation and Mathematics, 5:56-76, 

August 2002. 

[36] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem 

Proving Environment for Higher Order Logic. Cambridge University Press, New 

York, NY, USA, 1993. 

[37] J. Harrison. Binary Decision Diagrams as a HOL Derived Rule. The Computer 

Journal, 38:162-170, 1995. 

131 



[38] J. Harrison. Towards Self-Verification of HOL Light. In Ulrich Furbach and 

Natarajan Shankar, editors, Proceedings of the third International Joint Confer­

ence, IJCAR 2006, volume 4130, pages 177-191, Seattle, WA, 2006. 

[39] S. Hazelhurst, O. Weissberg, G. Kamhi, and L. Fix. A Hybrid Verification Ap­

proach: Getting deep into the Design. In DAC '02: Proceedings of the 39th 

conference on Design automation, pages 111-116, New York, NY, USA, 2002. 

ACM. 

[40] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice 

Hall, 1990. 

[41] SAT05 Competition Homepage, http://www.satcompetition.org/2005/. 

[42] G. Huet, G. Kahn, and C. Paulin-Mohring. The Cog Proof Assistant: A Tutorial. 

http://coq.inria.fr/doc/tutorial.html. 

[43] J. Hou and E. Cerny. Model Reductions in MDG-based Model Checking. In 13th 

Annual IEEE International ASIC/SOC Conference, pages 347-351. IEEE, 2000. 

[44] J. J. Joyce and C. H. Seger, editors. The HOL-Voss System: Model Checking 

inside a General-Purpose Theorem Prover, volume 780 of Lecture Notes in Com­

puter Science. Springer, 1994. 

[45] K. McMillan. Interpolation and SAT-based Model Checking. In Warren A., Hunt 

Jr. and Fabio Somenzi, editor, Proceedings of the International Conference On 

Computer Aided Verification, volume 2725, pages 1-13. Springer Verlag, 2003. 

[46] K. Schneider and T. Kropf. Verifying Hardware Correctness by Combining The­

orem Proving and Model Checking. Technical Report SFB358-C2-5/95, Institut 

fur Rechnerentwurf und Fehlertoleranz, 1995. 

132 

http://www.satcompetition.org/2005/
http://coq.inria.fr/doc/tutorial.html


[47] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An 

Approach. Kluwer Academic Publishers, June 2000. 

[48] S. Kort, S. Tahar, and P. Curzon. Hierarchal Verification using an MDG-HOL 

Hybrid Tool. International Journal on Software Tools for Technology Transfer, 

4(3):313-322, May 2003. 

[49] T. Kropf. Introduction to Formal Hardware Verification. Springer Verlag, 1999. 

[50] S. Krstic and J. Matthews. Verifying BDD Algorithms through Monadic Interpre­

tation. In VMCAI '02: Revised Papers from the Third International Workshop 

on Verification, Model Checking, and Abstract Interpretation, pages 182-195, 

London, UK, 2002. Springer-Verlag. 

[51] R. P. Kurshan and L. Lamport. Verification of a Multiplier: 64 Bits and Beyond. 

In C. Courcoubetis, editor, Proceedings of the 5th International Conference on 

Computer Aided Verification, volume 697, pages 166-179, Elounda, Greece, 1993. 

Springer-Verlag. 

[52] J. P. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm 

for Satisfiability. In Proceedings of IEEE/ACM International Conference on 

Computer-Aided Design, pages 220-227, 1996. 

[53] K. McMillan. Verification of Infinite State Systems by Compositional Model 

Checking. In CHARME '99: Proceedings of the 10th IFIP WG 10.5 Advanced Re­

search Working Conference on Correct Hardware Design and Verification Meth­

ods, pages 219-234, London, UK, 1999. Springer-Verlag. 

[54] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, 

Massachusetts, 1993. 

133 



[55] T. Melham. Integrating Model Checking and Theorem Proving in a Reflective 

Functional Language. In Eerke A. Boiten, John Derrick, and Graeme Smith, 

editors, Integrated Formal Methods: J^th International Conference, IFM 2004: 

Canterbury, UK, April 4~7, 2004: Proceedings, volume 2999 of Lecture Notes in 

Computer Science, pages 36-39. Springer-Verlag, 2004. 

[56] T. Mharndi and S. Tahar. Providing Automated Verification in HOL using MDGs. 

In Automated Technology for Verification and Analysis, pages 278-293, 2004. 

[57] R. Mizouni, S. Tahar, and P. Curzon. Hybrid Verification Incorporating HOL 

Theorem Proving and MDG Model Checking. Microelectronics Journal, 2006. 

[58] J. Moore. Introduction to the OBDD Algorithm for the ATP Community. Journal 

of Automated Reasoning, 12(l):33-46, 1994. 

[59] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En­

gineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation 

Conference (DAC'01), 2001. 

[60] N. Sorensson and N. Een. MiniSat vl.13 A SAT Solver with Conflict-Clause Min-

imizationn. In Eighth International Conference on Theory and Applications of 

Satisfiability Testing (SAT 2005), volume 3569, St. Andrews, UK, 2005. Springer-

Verlag. 

[61] K. Namjoshi and R. Kurshan. Syntactic Program Transformations for Automatic 

Abstraction. In CAV '00: Proceedings of the 12th International Conference on 

Computer Aided Verification, pages 435-449, London, UK, 2000. Springer-Verlag. 

134 



[62] K. S. Namjoshi. Certifying Model Checkers. In CAV '01: Proceedings of the 13th 

International Conference on Computer Aided Verification, pages 2-13, London, 

UK, 2001. Springer-Verlag. 

[63] Network Processing Forum. Look-Aside (LA-1) Interface, Implementation Agree­

ment, Revision 1.1. Kluwer Academic Publishers, April 15, 2004. 

[64] V. Ortner and N. Schirmer. Verification of BDD Normalization. In TPHOLs, 

pages 261-277, 2005. 

[65] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 

New York, NY, USA, 1991. 

[66] L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer Verlag, 1994. 

[67] V. Pisini, S. Tahar, P. Curzon, O. Ait-Mohamed, and X. Song. Formal Hardware 

Verification by Integrating HOL and MDG. In Proc. of IEEE GLS-VLSF00, 

Chicago, USA, Chicago, Illinois, USA, 2000. 

[68] J. Quille and J. Sifakis. Specification and Verification of Concurrent Systems in 

CESAR. In M. Dezani-Ciancaglini and Ogo Montanari, editors, Proceedings of 

the 5th International Symposium on Programming, volume 137, pages 337-351. 

Springer-Verlag, 1982. 

[69] R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, and J. van Tassel. Expe­

rience with Embedding Hardware Description Languages in HOL. In Proc. of 

the International Conference on Theorem Provers in Circuit Design: Theory, 

Practice and Experience, pages 129-156, Nijmegen, 1992. North-Holland. 

[70] R. Jones, C. -J. Seger, and D. Dill. Self-Consistency Checking. In M. Srivas 

and A. Camilleri, editors, First international conference on formal methods in 

135 



computer-aided design, volume 1166, pages 159-171, Palo Alto, CA, USA, 1996. 

Springer- Verlag. 

[71] W. Reif, J. Ruf, G. Schellhorn, and T. Vollmer. Do you Trust your Model 

Checker? In Warren A. Hunt Jr. and Steven D. Johnson, editors, Formal Methods 

in Computer Aided Design (FMCAD). Springer LNCS 1954, November 2000. 

[72] T. Ridge. Graphs and Trees in Isabelle/HOL. Technical report, 2005. 

[73] S. Graf and H. Saidi. Verifying Invariants using Theorem Proving. In Rajeev 

Alur and Thomas A. Henzinger, editors, Proceedings of the Eighth International 

Conference on Computer Aided Verification CAV, volume 1102, pages 196-207, 

New Brunswick, NJ, USA, / 1996. Springer Verlag. 

[74] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining 

Specification, Proof Checking, and Model Checking. In Rajeev Alur and Thomas 

A. Henzinger, editors, Proceedings of the Eighth International Conference on 

Computer Aided Verification CAV, volume 1102, pages 411-414, New Brunswick, 

NJ, USA, / 1996. Springer Verlag. 

[75] S. Rajan, N. Shankar, and M. K. Srivas. An Integration of Model Checking 

with Automated Proof Checking. In P. Wolper, editor, Proceedings of the 7th 

International Conference On Computer Aided Verification, volume 939, pages 

84-97, Liege, Belgium, 1995. Springer Verlag. 

[76] G. Al Sammane. Symbolic Simulation of Circuits Described at Algorithmic Level. 

PhD thesis, Joseph Fourier University, 2005. 

[77] G. Al Sammane, S. Abed, and O. Ait Mohamed. High Level Reduction Tech­

nique for Multiway Decision Graphs based Model Checking. In First International 

136 



Workshop on Verification and Evaluation of Computer and Communication Sys­

tems (VECoS 2007), Algiers, Algeria, May 2007. The British Computer Society. 

[78] K. Schneider and D. Hoffmann. A HOL Conversion for Translating Linear Time 

Temporal Logic to w-automata. In TPHOLs, volume 1690, pages 255-272, Nice, 

France, 1999. Springer-Verlag. 

[79] C. H. Seger. Voss - A Formal Hardware Verification System, User's Guide. 

Technical report, Nortel Networks, Ottawa, Canada, The University of British 

Columbia, December 1993. ftp ftp.es.ubc.ca:ftplocaltechreportsl993TR-93-45.ps. 

[80] S.Hazelhurst and C.-J.H. Seeger. Symbolic Trajectory Evaluation. In For­

mal Hardware Verification - Methods and Systems in Comparison, pages 3-78. 

Springer-Verlag, London, UK, 1997. 

[81] M. Sheeran, S. Singh, and G. Staalmarck. Checking Safety Properties using 

Induction and a SAT-Solver. In FMCAD '00: Proceedings of the Third Interna­

tional Conference on Formal Methods in Computer-Aided Design, pages 108-125, 

London, UK, 2000. Springer-Verlag. 

[82] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking 

for Real-Time Systems. In 1th. Symposium of Logics in Computer Science, pages 

394-406, Santa-Cruz, California, 1992. IEEE Computer Scienty Press. 

[83] A. Valrnari. A Stubborn Attack on State Explosion. In CAV '90: Proceedings of 

the 2nd International Workshop on Computer Aided Verification, pages 156-165, 

London, UK, 1991. Springer-Verlag. 

[84] M. Velev. Using Automatic Case Splits and Efficient CNF Translation to Guide 

a SAT-Solver when Formally Verifying Out-of-Order Processors. In AMAI, 2004. 

137 

ftp://ftp.es


[85] K. N. Verma, J. Goubault-Larrecq, S. Prasad, and S. Arun-Kumar. Reflecting 

BDDs in Coq. In Proc. 6th Asian Computing Science Conference (ASIAN'2000), 

Penang, Malaysia, Nov. 2000, volume 1961, pages 162-181. Springer, 2000. 

[86] J. Wright. Representing Higher-Order Logic Proofs in HOL. In Proceedings of 

the 7th International Workshop on Higher Order Logic Theorem Proving and Its 

Applications, pages 456-470, London, UK, 1994. Springer-Verlag. 

[87] H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Providing a Formal Linkage 

between MDG and HOL. Formal Methods in Systems Design, 29(3): 1-36, 2006. 

[88] Y. Xu, X. Song, E. Cerny, and O. Ait Mohamed. Model Checking for A First-

Order Temporal Logic using Multiway Decision Graphs (MDGs). The Computer 

Journal, 47(l):71-84, 2004. 

[89] H. Zhang. SATO: An Efficient Propositional Prover. In Proceedings of the Inter­

national Conference on Automated Deduction (CADE'97), volume 1249 of LNAI, 

pages 272-275, 1997. 

[90] Z. Zhou and N. Boulerice. MDGs Tools (VI.0) User's Manual. D'IRO, University 

of Montreal, June 1996. 

[91] Z. Zhou, X. Song, S. Tahar, E. Cerny, F. Corella, and M. Langevin. Formal 

Verification of the Island Tunnel Controller using Multiway Decision Graphs. 

In FMCAD '96: Proceedings of the First International Conference on Formal 

Methods in Computer-Aided Design, pages 233-247, London, UK, 1996. Springer-

Verlag. 

138 



Appendix A 

The MDG-HOL Platform 

This appendix includes the formalization details and proofs of the MDG-HOL plat­

form (data structure + operations). It is used for illustrating purpose. The complete 

embedding of the MDG syntax is available in [4]. 

A.l The MDG Syntax 

The STRIPJ)ISJ_list function is used to extract each disjunct and store it in a list: 

\-def (STRIP_DISJ_list (DISJ a (C0NJ1 b ) ) = 

(STRIP_CONJ_list a ) : : STRIP_DISJ_list (C0NJ1 b) ) A 

(STRIP_DISJ_list (DISJ c d) = (STRIP_CONJ_list c) : : STRIP_DISJ_list (d)) A 

(STRIP_DISJ_list (C0NJ1 b) = [(STRIP_CONJ_list b ) ] ) 

And STRIP_CONJ_list function is used to extract both side of equations and store 

them in the inner sublist as shown below: 

139 



\-def (STRIP_CONJ_list (CONJ a (Eqn b) ) = 

(both_side_eq a) : : (STRIP_CONJ_list (Eqn b ) ) ) A 

(STRIP_CONJ_list (CONJ c (d)) = 

(both_side_eq c) : : STRIP_CONJ_list (d)) A 

(STRIP_CONJ_list (Eqn b) = [ both_side_eq b] ) 

\~def both_side_eq a = [ l e f t _eq a; r i g h t _ e q a] 

The lef t_eq and right_eq functions extract the LHS and RHS of an equation. 

Similarly, STRIP_Fun function is used to extract the arguments of abstract and cross 

functions and store them in a list as defined below: 

hdef (STRIP_Abst_Fun a = STRIP_Abst(FLAT(STRIP_DF_Abst a ) ) ) 

hrfe/ (STRIP_Cross_Fun a = STRIP_Cross(FLAT(STRIP_DF_Cross a ) ) ) 

hdcf (STRIP_Fun a = FLAT([(STRIP_Cross_Fun a) ; (STRIP_Abst_Fun a ) ] ) ) 

The STRIP ÎNV_DF function is used to map a list of lists to a DF format and is 

defined as: 

Y~def (STRIP_INV_DF ( h l : : t l ) ( h 2 : : t 2 ) ( h 3 : : t 3 ) ( h4 : : t 4 ) = 

i f ( ( h l : : t l ) = [[["TRUE"]]]) then (TRUE) 

e l s e i f ( ( h l : : t l ) = [[["FALSE"]]]) then (FALSE) 

e l s e 

(DF1 (build_DISJ ( h l : : t l ) ( h2 : : t 2 ) ( h 3 : : t 3 ) ( h 4 : : t 4 ) ) ) ) A 

(STRIP_INV_DF ( h l : : t l ) ( h 2 : : t 2 ) [] ( h 4 : : t 4 ) = 

i f ( ( h l : : t l ) = [[["TRUE"]]]) then (TRUE) 

e l s e i f ( ( h l : : t l ) = [[["FALSE"]]]) then (FALSE) 

e l s e 

(DF1 (build_DISJ ( h l : : t l ) ( h2 : : t 2 ) [] ( h 4 : : t 4 ) ) ) ) A 

(STRIP_INV_DF ( h l : : t l ) [] [ [ [ ] ] ] (h4: : t4 ) = 

i f ( ( h l : : t l ) = [[["TRUE"]]]) then (TRUE) 

e l s e (FALSE)) 

where build_DISJ function is the inverse of the STRIP_DISJ_list function and used 

to build each disjunct from list as shown below: 

140 

file:///~def


\-def (build_DISJ ( h l : : t l ) (h2: : t2 ) ( h 3 : : t 3 ) (h4: : t4 ) = 

i f ( T L ( h l : : t l ) = []) then 

(C0NJ1 (build_CONJ h i h2 h3 h4)) 

e l s e 

((DISJ (build_CONJ h i h2 h3 h4)) ((build_DISJ t l t 2 t 3 t 4 ) ) ) ) A 

(build_DISJ ( h l : : t l ) (h2: : t2 ) [] ( h 4 : : t 4 ) = 

i f (TL(hl: : t l ) = []) then 

(C0NJ1 (build_CONJ h i h2 [] h4)) 

e l s e 

((DISJ (build_CONJ h i h2 [] h4)) ((build_DISJ t l t 2 [] t 4 ) ) ) ) 

Similarly, build_CONJ function is the inverse of the STRIP_CONJ_list function and 

used to build each conjunct from list format. Also, the build_eq function is used to 

build the equation from the list as defined below: 

\~def (build_eq [ vl;v2] [ al;a2] [] [ cl] = 

if (cl="EQUALl") then 

(EQUAL1 (Concrete_Variable vl al) (Individual_Constant v2 a2)) 

else if (cl="EQUAL4") then 

(EQUAL4 (Abstract_Variable vl al) (Abstract_Variable v2 a2)) 

else 

(EQUAL5 (Abstract_Variable vl al) (Generic_Constant v2 a2 ))) A 

(build_eq [ vl;v2] [ al;a2] [ bl;b2] [ cl] = 

if(cl="EQUAL2") then 

(EQUAL2 (Abstract_Variable vl al) (Abstract_Function v2 b2 a2)) 

else 

(EQUAL3 (Cross_Function vl b2 al) b2 (lndividual_Constant v2 a2))) 

The embedding of the well-formedness conditions can be defined straightforward 

by: 

141 



• The first condition is satisfied by construction following the Eqn type definition. 

• The second condition is embedded as: 

hdef (Condition2 [] = T) A 

(Condition2 ( h d : : t l ) = ALL_DISTINCT hd A Condit ion2 t l ) 

• The embedding of the third condition requires more work and needs an auxiliary 

function as shown below: 

\-def (Condition3 (hdl: : t l l ) [] = T) A 

(Condition3 [] ( h d 2 : : t l 2 ) = T) A 

(Condit ions ( h d l : : t i l ) ( h d 2 : : t l 2 ) = 

Condition_3 hdl ( h d 2 : : t l 2 ) A Condi t ions t i l ( h d 2 : : t l 2 ) ) 

hdef (Condition_3 hdl [] = T) A 

(Condition_3 hdl ( h d 2 : : t l 2 ) = IS_EL hdl hd2 A Condit ion_3 hdl t l 2 ) 

A.2 The Conjunction Operation 

In case of cross-function, SPLIT is used for substitution: 

hde/ (SPLIT _ [ ] = [ ] ) A 

(SPLIT [ ] _ = [ ] ) A 

(SPLIT (hdl::tll) (hd2::tl2)= 

if (IS_EL (HD(TL hdl)) (HD.list (hd2::tl2))) then 

if ( HD(TL hdl) = (HD hd2) ) then 

(HD hdl :: (TL hd2)) :: SPLIT til (hd2::tl2) 

else 

SPLIT (hdl: :tll) (tl2) 

else 

hdl :: SPLIT til (hd2::tl2)) 

142 



The position of RHS equation is specified by pos i t ion function to check the 

order: 

bdef ( P o s i [] x = 0) A 

(pos i ( h : : t ) x = i f h=x then (i+1) e l s e pos (i+1) t x) 

t~dc/ p o s i t i o n a l i s t = pos 0 a l i s t 

The logical conjunction HOL function: 

\-def Vdfl df2. C0NJ_L0GIC df l df2 = 

( if df 1 = TRUE then DISJ_LIST (STRIP_DF_list df2) 

e l s e (if df2 = TRUE then DISJ_LIST (STRIP_DF_list d f l ) 

e l s e (if d f l = FALSE then DISJ_LIST (STRIP_DF_list d f l ) 

e l s e (if df2 = FALSE then DISJ_LIST (STRIP_DF_list df2) 

e l s e 

DISJ.LIST (STRIP_DF_list d f l ) A DISJ_LIST (STRIP_DF_list d f 2 ) ) ) ) ) 

where the DISJ.LIST function is used to convert the list to DNF format. Then, the 

conjunction correctness is shown below in Theorem A.2.1. 

Theorem A.2.1 Conjunction Correctness 

ASSUME: 

1. dfl and df'2 are well-formed DF. 

2. L is an order list equal to the union of dfl and dfl order lists. 

Then, the correctness criteria for the proof of conjunction algorithm is shown in the 

following equation: 

CONJ.ALG(dfl, d/2, L) = dfl A dfl. 

and is proved in HOL as: 

143 



I- Vdfl df2. 3L. Is_Well_Formed_DF dfl A 

Is_Well_Formed_DF df2 A (ORDER_LIST dfl df2 = L) = > 

(CONJ_LOGIC dfl df2 = DISJ_LIST (CONJ_ALG dfl df2 D ) 

PROOF SKETCH: By structural induction on dfl and df2 and rewriting rules. The 

goal is to prove the equivalence of MDG conjunction and HOL logical conjunction for 

these DF. This goal generates hundreds of subgoals since the proof takes all the cases 

of DF. The terminal cases when either dfl or df2 TRUE or FALSE are directly proved 

by applying the rewriting rule. Many base cases are generated, for example, the proof 

when both dfl and df2 are just an equation is shown by Lemma 1. • 

Theorems regarding the terminal cases of conjunction algorithm: 

lem_CONJ_TRUE_df2: h Vdf2. 3L. Is_Well_Formed_DF TRUE A 

Is_Well_Formed_DF df2 A (ORDER_LIST TRUE df2 = L) = > 

(C0NJ_L0GIC TRUE df2 L = DISJ.LIST (C0NJ_ALG TRUE df2 D ) 

lem_CONJ_FALSE_df2: h Vdf2. 3L. Is_Well_Formed_DF FALSE A 

Is_Well_Formed_DF df2 A (ORDER_LIST FALSE df2 = L) = > 

(CONJ_LOGIC FALSE df2 L = DISJ_LIST (C0NJ_ALG FALSE df2 L)) 

lem_CONJ_DFl_TRUE: I- VD. 3L. Is_Well_Formed_DF (DF1 D) A 

Is_Well_Formed_DF TRUE A (ORDER_LIST (DF1 D) TRUE = L) = > 

(C0NJ_L0GIC (DF1 D) TRUE L = DISJ_LIST (C0NJ_ALG (DF1 D) TRUE L)) 

lem_CONJ_DFl_FALSE: h VD. 3L. Is_Well_Formed_DF (DF1 D) A 

Is_Well_Formed_DF FALSE A (ORDER_LIST (DF1 D) FALSE = L) =*• 

(C0NJ_L0GIC (DF1 D) FALSE L=DISJ_LIST (C0NJ_ALG (DFl D) FALSE D ) 

Another base case representing the conjunction of two equations: 

144 



Lemma 1: C0NJ1 (Eqn a) C0NJ1 (Eqn b) h Va b. 3L. 

Is_Well_Formed_DF (DF1 (C0NJ1 (Eqn a))) A 

Is_Well_Formed_DF (DF1 (C0NJ1 (Eqn b))) A 

(ORDER_LIST (DF1 (C0NJ1 (Eqn a))) (DF1 (CONJ1 (Eqn b))) = L) ==> 

C0NJ_L0GIC (DFl (C0NJ1 (Eqn a))) (DFl (C0NJ1 (Eqn b))) L = 

DISJ_LIST C0NJ_ALG (DFl (C0NJ1 (Eqn a))) (DFl (C0NJ1 (Eqn b))) L) 

A.3 The RelP Operation 

The logical RelP function is embedded as shown below: 

\-dcf Vdfl df2 L. (RelP_LOGIC d f l df2 L = 

EXISTS_LIST L (C0NJ_L0GIC d f l df2) ) 

where EXISTS_LIST function is similar to EXIST_QUANT. Then, the RelP correctness is: 

Theorem A.3.1 Relational Product Correctness 

ASSUME: 

1. dfl and df2 are well-formed DF. 

2. LI is an order list equal to the union of dfl and df2 order lists. 

3. L2 is the primary variables of both dfl and df2. 

Then, the correctness criteria for the proof of RelP algorithm is shown in the following 

equation: 

if R = (EXISTS.QUANT (dfl A df2) L2) then : 

RelP_ALG(dfl,df2:L) = R. 

and is proved in HOL as: 

145 



h Vdfl df2. 3L1. 3L2. 

(ls_Well_Formed_DF dfl) A (ls_Well_Formed_DF df2) A 

(ORDER_LIST dfl df2=Ll) A (IS_PRIMARY_VAR_LIST L2 dfl df2) ==> 

((RelP_LOGIC dfldf2 LI L2) = DISJ_LIST(RelP_ALG dfl df2 LI L2)) 

PROOF SKETCH: By structural induction on dfl and rf/2 and rewriting rules. The 

MDG RelP of dfl and d/2, and the HOL logical (EXISTS,QUANT (dfl A df2)L2), 

are equivalent. D 

A.4 The Disjunction Operation 

The logical definition for the disjunction algorithm is specified by DISJ_LOGIC func­

tion: 

h d e / Vdfl df2 L. DISJ_LOGIC d f l df2 L = 

( if d f l = TRUE then DISJ_LIST (STRIP_DF_list d f l ) 

e l s e ( i f df2 = TRUE then DISJ_LIST (STRIP_DF_list df2) 

e l s e ( i f d f l = FALSE then DISJ_LIST (STRIP_DF_list df2) 

e l s e ( i f df2 = FALSE then DISJ_LIST (STRIP_DF_list d f l ) 

e l s e (if FLAT (STRIP_ABS_DF d f l ) = 

FLAT (STRIP_ABS_DF df2) then 

DISJ_LIST (STRIP_DF_list dfl) V DISJ_LIST (STRIP_DF_list df2) 

else F))))) 

The disjunction correctness is: 

Theorem A.4.1 Disjunction Correctness 

ASSUME: 

1. dfl and rf/2 are well-formed DF. 

2. L is an order list equal to the union of dfl and dfl order lists. 

146 



Then, the correctness criteria for the proof of disjunction algorithm is shown in the 

following equation: 

DISJ-ALG(dfl,df2, L) = dfl V d/2. 

and is proved in HOL as: 

h Vdfl df2. 3L. Is_Well_Formed_DF d f l A 

Is_Well_Formed_DF df2 A (ORDER_LIST d f l df2 = L) = > 

(DISJ_LOGIC d f l df2 = DISJ_LIST (DISJ_ALG df l df2 D ) 

PROOF SKETCH: By structural induction on dfl and d/2 and rewriting rules. The 

MDG disjunction of dfl and dfl, and the HOL logical disjunction of dfl and df2, are 

equivalent. D 

A.5 The PbyS Operation 

The DF_PbyS2 function checks the existence of the first equation of dfl in df2. If it 

exists then the function will discard it (subsumed by df2). Otherwise the equation is 

added to the result (cannot be subsumed). 

hdef (PbyS_2 [] ( h d 2 : : t l 2 ) _ _ = [ ] ) A 

(PbyS_2 ( h d l : : t l l ) [] _ _ = (hdl : : t l l ) ) A 

(PbyS_2 ( h d l : : t l l ) ( h d 2 : : t l 2 ) L4 ( h d 5 : : t l 5 ) = 

i f ((PbyS_3 ( h d l : : t l l ) hd2 L4 hd5) = []) then 

[] 

e l s e 

PbyS_2 ( h d l : : t l l ) t l 2 L4 t l 5 

DF_PbyS3 function is similar to DF_PbyS2 function and defined as: 

147 



hdef (PbyS_3 [] (hd2::tl2) _ _ = [ ] ) A 

(PbyS_3 (hdl:: til) [] _ _ = (hdl:: til)) A 

(PbyS_3 (hdl::tll) (hd2::tl2) L4 (hd5::tl5) = 

if (IS_EL hdl (hd2::tl2)) then 

PbyS_3 til (hd2::tl2) L4 (hd5::tl5) 

else if (IS_EL (HD hdl) (HD_list (hd2::tl2))) then 

if (IS_EL (HD hdl) (hd5::tl5)) then 

PbyS_3 til (hd2::tl2) L4 (hd5::tl5) 

else 

(hdl::tll) 

else 

(hdl::tll)) 

The logical pruning by subsumption function is embedded as shown below: 

l-def Vdfl df2. PbyS_LOGIC dfl df2 = 

if (dfl = TRUE) then [[["FALSE"]]] 

else if (df2 = TRUE) then [[["FALSE"]]] 

else if (dfl = FALSE) then DISJ_LIST (STRIP_DF_list dfl) 

else if (df2 = FALSE) then (STRIP_DF_list dfl) 

else if (IS_EL LI L2) then 

F 

else 

DISJ_LIST (STRIP_DF_list dfl) A 

DISJ_LIST (STRIP_DF_list df2) 

To prove the correctness of PbyS operation, we need to verify Theorem A.5.1. 

Theorem A.5.1 Pruning by Subsumption Correctness 

ASSUME: 

1. dfl and df2 are well-formed DF. 

148 



2. L is an order list equal to the union of dfl and df2 order lists. 

Then, the correctness criteria for the proof of PbyS algorithm is shown in the following: 

if PI = PbyS.ALG(dfl,df2, L) and P2 = {EX I ST-QUANT df2 L2) 

then : DISJ.ALG(P1, P2, L) = dfl V P2. 

and is proved in HOL as: 

h Vdfl df2 . 3L1. 3L2. Is_Well_Formed_DF df1 A 

Is_Well_Formed_DF df2 A (ORDER_LIST d f l df2 = LI) = > 

((DISJ_LIST (STRIP_DF_list d f l ) V 

DISJ_LIST(EXISTS_LIST(STRIP_DF_list df2) L2)) = 

(DISJ_LIST (PbyS_ALG df l df2 LI) V 

DISJ_LIST(EXIST_QUANT(STRIP_DF_list df2) L2))) 

PROOF SKETCH: By structural induction on dfl and df2 and rewriting rules. The 

MDG disjunction of PbyS-ALG {dfl, df 2, L) and {EXIST.QUANTdf2L2), is equiv­

alent to the HOL disjunction of dfl and {EXISTS.QUANTdf2L2). • 

The PbyS operation is used to check whether a set of states is a subset of another 

set of states as shown in Lemma 2. Let dfl, df2 be two DFs of type U —> V, then we 

say that dfl and df2 are equivalent DFs if PbyS(df l ,df2,L) = PbyS (df-2, df 1,L). 

Lemma 2: Equivalence h Vdfl df2. 3L. Is_Well_Formed_DF dfl A 

Is_Well_Formed_DF df2 A (ORDER_LIST dfl df2 = L) A 

(DISJ_LIST(PbyS_ALG dfl df2 L) = DISJ_LIST(PbyS_ALG df2 dfl D ) 

==> (dfl = df2) 

A.6 The Reachability Analysis 

The MDG reachability analysis Re_An is defined in HOL by calling RA_n with the 

circuit parameters: 

149 



\~def (Re_An n I Q Tr E Ren L R= 

RA_n n (STRIP_DF_list I ) (STRIP_Fun I ) (STRIP_DF_list Q) 

(STRIP_Fun Q) (STRIP_DF_list Tr) 

(STRIP_Fun Tr) (HD_l_abs(STRIP_DF_l_abs_list Tr) ) 

E Ren L (rep_list(STRIP_DF_list R)) 

(STRIP_Fun R) (HD_l_abs(STRIP_DF_l_abs_list R)) ) 

where the variables (v=I I_F Q_F Tr Tr_F Tr_A In Ren L R R_F R_A) are extracted 

from the initialization step (algorithm inputs). 

The predicate RA_n n representing the set of states reachable in n or fewer steps 

is then defined recursively by: 

Hde/ (RA_n (0) I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A = R) A 

(RA_n (SUC n) I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A = 

(Reach_Step I I_F 

(Front ie r_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L 

(RA_n n I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A) R_F R_A) 

Q_F Tr Tr_F Tr_A E Ren L 

(RA_n n I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A) R_F R_A ) ) 

Then, to compute the set of reachable states we need to compute RA_n 0 v, RA_n 1 

v, RA_n 2 v etc. Note that the computation of RA_n (n+1) v needs the computation 

of RAJI n v. 

The Reach_Step computes the next reachable state by applying successively 

Union_Step which calls Next_State and Frontier-Step: 

h-def (Reach_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A = 

if (FLAT (Frontier_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A) = []) then 

R 

else 

DF_DISJUNCTION (Union_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A) 

(Frontier_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A) L) 

150 

file:///~def


The Next_State computes the set of next states by using the RelP operator: 

hdef (Next_State I I_F Q Q_F Tr Tr_F Tr_A E Ren L = 

Rename (EXIST_QUANT (rep_list (TAKE_HD (DF_CONJ 

I (rep_list (TAKE_HD (DF_CONJ Q Tr (union Q_F Tr_F) L))) 

(union (union I_F Q_F) Tr_F) L))) E) Ren) 

The renaming substitution and the set of inputs and state variables over the resulting 

DF are quantified (the NextJState function). 

The FrontierJStep is used to check if all the states reachable by the machine 

are already visited. The implementation uses the PbyS operator: 

\-def (Front ie r_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A = 

DF_PbyS (Next_State X X_F Q Q_F Tr Tr_F Tr_A E Ren L) R 

(union Tr_F R_F) Tr_A R_A L) 

Finally, UnionJStep merges the output of Frontier_Step with the set of states 

reached previously using the PbyS and disjunction operators: 

\-def (Union_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A = 

rep_list(DF_PbyS R 

(Front ie r_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A) 

(union Tr_F R_F) Tr_A R_A L)) 

For some particular n, say n=nO, eventually, Re_An terminates if we reach a 

fbcpoint characterized by an empty frontier set : 

RA_n (n+1) I I_F Q Q_F Tr Tr_F Tr_A In Ren L R R_F R_A = 

RA_n (n) I I_F Q Q_F Tr Tr_F Tr_A In Ren L R R_F R_A 

151 



Biography 

• Education 

- Concordia University: Montreal, Quebec, Canada 

Ph.D candidate, in Electrical and Computer Engineering, 09/03-present. 

- Jordan University of Science and Technology (J.U.S.T.), Jordan: 

M.Sc, in Electrical and Computer Engineering, 09/94 - 10/96. 

- Jordan University of Science and Technology (J.U.S.T.), Jordan: 

B. Eng., in Electrical and Computer Engineering, 09/89 - 02/94. 

• Work Experience 

- Research Assistant: 02/05-present 

Hardware Verification Group (HVG), Concordia University 

- Teaching Assistant: 09/04-present 

Department of Electrical and Computer Engineering, Concordia University, 

Montreal, Canada. 

- Lecturer: 11/97-09/03 

Computer Science Department, King Faisal University, Saudi Arabia. 

- Lecturer: 09/96-09/97 

Computer Engineering Department, Hijjawi Faculty, Yarmouk University, 

Jordan. 

- Teaching Assistant: 09/94-09/96 

Department of Electrical Engineering, Jordan University of Science and 

Technology (J.U.S.T.), Jordan. 

152 



- Computer Engineer: 02/94-09/94 

Spectra for Engineering & Computer Company (SEC), Jordan. 

• P u b l i c a t i o n s 

Journal Papers 

1. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, "Automatic 

Verification of Reduction Techniques in High Order Logic", Submitted to 

IEEE Transactions on Computers. 

2. Saed Abed, Otmane Ait Moharned and Ghiath Al Sammane, "Towards a 

Reachability Approach by Combining HOL Induction and Multiway Deci­

sion Graphs", Submitted to Journal of Computer Science and Technology 

(JCST). 

3. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, "On The Inte­

gration of Decision Diagrams in High Order Logic Based Theorem Provers: 

a Survey", Journal of Computer Science, Science Publication, Vol. 3, No. 

10, Dec. 2007, pp. 810-817. 

4. M. S. Ibbini and Sa'ed R. Alawneh, "Closed-Loop Control System Robust­

ness Improvement by Parameterized State Feedback", IEE Proc- Control 

Theory Appl, Vol. 145, No. 1, January 1998, pp. 33-40. 

Conference Papers 

1. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, "The Per­

formance of Combining Multiway Decision Graphs and HOL Theorem 

Prover", To appear In Proc. Languages for Formal Specification and Ver­

ification, Forum on Specification & Design Languages (IEEE FDL'08), 

153 



Stuttgart, Germany, September 23-25, 2008. 

2. Y. Mokhtari, Saed Abed, Otmane Ait Mohamed, S. Tahar and X. Song, 

"A New Approach for the Construction of Multiway Decision Graphs", 

To appear In Proc. 5th International Colloquium on Theoretical Aspects 

of Computing (ICTAC708), Lecture Notes in Computer Science, Istanbul, 

Turkey, September 1-3 ,2008. 

3. Saed Abed and Otmane Ait Mohamed, "LCF-style Platform based on Mul­

tiway Decision Graphs", In Proc. 17th Workshop on Functional and (Con­

straint) Logic Programming (WFLP'08), Siena, Italy, July 3-4, 2008, pp. 

139-153. 

4. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, "Multiway 

Decision Graphs Reduction Approach based on the HOL Theorem Prover", 

In Proc. Second International Workshop on Verification and Evaluation of 

Computer and Communication Systems (VECoS'08), The British Com­

puter Society, Leeds, U.K, July 2-3, 2008, pp. 1-10. 

5. Saed Abed and Otmane Ait Mohamed, "The MDG-HOL Platform for Au­

tomatic Verification", In Proc. 10th Maghrebian Conference on Software 

Engineering and Artificial Intelligence (MCSEAI'08), Algeria, April, 2008, 

pp. 659-664. 

6. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, "Reachability 

Analysis using Multiway Decision Graphs in the HOL Theorem Prover", 

In Proc. ACM SAC '08, Fortaleza, Brazil, March 2008, pp. 333-338. 

7. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, "Integrating 

SAT with Multiway Decision Graphs for Efficient Model Checking", In 

Proc. IEEE International Conference on Microelectronics (ICM), Egypt, 

154 



Dec. 2007. 

8. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, "A High Level 

Reachability Analysis using Multiway Decision Graph in the HOL Theorem 

Prover", International Conference on Theorem Proving in Higher Order 

Logics (TPHOLs'07): B-Track Proceedings, Kaiserslautern, Germany, Sep. 

2007, pp. 1-17. 

9. Ghiath Al Sammane, Saed Abed and Otmane Ait Mohamed, "High Level 

Reduction Technique for Multiway Decision Graphs Based Model Check­

ing", In Proc. First International Workshop on Verification and Evalu­

ation of Computer and Communication Systems (VECoS 2007), Algeria, 

May 2007, pp. 1-14. 

10. Donglin Li, Otmane Ait-Mohamed and Sa'ed Abed, "Towards First-Order 

Symbolic Trajectory Evaluation", The 37th International Symposium on 

Multiple-Valued Logic (ISMVL 2007), May 2007, Oslo, Norway, pp. 1-7. 

11. Saed Abed and Otmane Ait Mohamed, "Embedding of MDG Directed For­

mulae in HOL Theorem Prover", In Proc. 9th Maghrebian Conference on 

Software Engineering and Artificial Intelligence (MCSEAI'06), Morocco, 

Dec, 2006, pp. 659-664. 

Technical Reports 

1. Y. Mokhtari, S. Abed, O. Ait Mohamed, S. Tahar and X. Song, A New 

Approach for the Construction of Multiway Decision Graphs; Technical 

Report 2008-3-Abed, Concordia University, Department of Electrical and 

Computer Engineering, June 2008. 

155 



2. Saed Abed and Otmane Ait Mohamed, Formalizing MDGs Basic Opera­

tions as Inference Rules in the HOL Theorem Prover; Technical Report 

2008-2-Abed, Concordia University, Department of Electrical and Com­

puter Engineering, Jan. 2008. 

3. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, HOL Based 

Reduction Techniques for MDGs Model Checking; Technical Report 2008-

1-Abed, Concordia University, Department of Electrical and Computer En­

gineering, Jan. 2008. 

4. Saed Abed, Otmane Ait Mohamed and Ghiath Al Sammane, On the Em­

bedding and Verification of Multiway Decision Graph in HOL Theorem 

Prove; Technical Report 2007-1-Abed, Concordia University, Department 

of Electrical and Computer Engineering, Feb. 2007. 

Honors & Awards 

1. Dean Teaching Scholarship, ECE Dept., Concordia University: 2006-2007. 

2. Teaching Scholarship, ECE Dept., Jordan University of Science and Tech­

nology to get an M.Sc. in Computer Engineering: 1994 - 1996. 

3. Ministry of Higher Education Scholarship to get a B.Sc. in Computer 

Engineering at Jordan University of Science and Technology: 1989 - 1994. 

156 


