
Ergonomic Analysis of Selected Lifting Tasks 

Saba Pasha 

A Thesis 
in 

The Department 
of 

Mechanical and Industrial Engineering 
Concordia University 

Presented in Partial Fulfillment of the Requirements 
for the Degree of Master of Applied Science (Mechanical Engineering) at 

Concordia University 

Montreal, Quebec, Canada 

July 2008 

© Saba Pasha, 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-42525-1 
Our file Notre reference 
ISBN: 978-0-494-42525-1 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Ergonomic Analysis of Selected Lifting Tasks 

Saba Pasha 

Lifting is a common task that many people face every day. Some jobs, like 

manual garbage collecting, require considerably more frequent lifting. Heavy weight, 

improper posture and repetition can apply excessive forces to different body parts, 

especially on the lower back, which is one of the most affected parts during lifting. 

The current study focuses on infrequent, symmetric lifting. A box, weight 2, 60, 

or 130 N, is picked up from the floor and lifted to different heights using either knee or 

hip lifting. Ergonomic checklists are used to evaluate these lifts. They typically take into 

account body posture, weight lifted and frequency. WISHA determined that all lifting 

tasks were acceptable, REBA identifies most as medium or high risk. 

Biomechanical analyses, using LifeMOD, 3DSSPP and CATIA, are used 

determine loading of the lower back and shoulder when a female lifts 2 or 60 N. 

OptiTrack hardware and software were used to obtain 3D body marker coordinates 

during these lifting tasks. LifeMOD calculates higher lumbar moment and compression 

force in hip lifting compared to knee lifting. 3DSSPP shows that lumbar moment, 

compression force and shear force are all higher in hip lifting than in knee lifting. CATIA 

calculates lower compression forces and higher shear forces in hip lifting than in knee 

lifting, while there is little change in the lumbar moment. LifeMOD, 3DSSPP and 

CATIA all show that when a heavier load is lifted, lumbar moment, compression force 

and shear force increase. 
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1 Introduction 

Lower back pain is a common problem for people from all ages and social groups. 

Various methods have been used to recognize the main factors that cause disorders of the 

spine. Frequent lifting in daily activities is a well-known cause of lower back pain. 

Improper postures and methods during lifting tasks can result in serious back pain for 

short or long periods and influence the normal life of the affected person. Individuals that 

are faced with more frequent lifting tasks are more at risk of lower back pain and losing 

work hours. 

The objective of this study is to analyze the lifting task by focusing on the job of 

garbage collectors, as a group that is more involved with lifting tasks in awkward 

situations. To satisfy this objective, predetermined load magnitude, load size and origin 

and destination levels used. Specifically, this study is based on a hypothetical paper-

recycling task, using blue recycling boxes and mobile bins as the emptying site. 

Many methods are used to investigate the body movement and analyze joint and 

muscle forces during the lifting task, considering knee lifting and hip lifting methods for 

different hand loads and different load destination levels (waist or shoulder level). 

Various biomechanical software programs are currently on the market. These computer 

programs are able to calculate joints forces and torques for different static postures or 

dynamic movement. In the present study, different software packages and checklist 

solutions are examined. Static postures in 3D static strength prediction program 

(3DSSPP) and biomechanical static analysis in CATIA are used to analyze different body 

position during the lifting task and joint forces and torques are calculated. For dynamic 

analysis of the task, LifeMOD software is used. This software is able to simulate the 
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body movement by getting joint coordinates in different frames during the task. Finally, 

ergonomic checklists are used to simply evaluate the job hazard level, for both knee 

lifting and hip lifting methods. 

1.1 Thesis outline 

Chapter 2 reviews the garbage collector duties and relative occupational problems 

and dangers and gives overall information about this job. Lifting task as a frequent 

activity in this job is discussed later. The nature of lower back pain as a widespread 

problem is studied thereafter. In the next section, different methods that are used to study 

the lower back pain from invasive methods and non-invasive methods are discussed. In 

this study, checklists and biomechanical modeling are chosen as non-invasive methods to 

study. 

Chapter 3 is devoted to the methodology discussion. First, the lifting task is 

defined by predicting the load magnitude, size and transferring distance. The lifting task 

is performed using either knee lifting or hip lifting using specific weights. Four methods 

are chosen to look into the lifting task and related lower back disorders. The first method 

uses quick checklists (WISHA, REBA, Liberty Mutual and NIOSH equation) to estimate 

the hazard level. The other methods use joint coordinates obtained during an actual lifting 

task using an OptiTrack 3D motion capture system. The joint coordinates are input into 

LifeMOD, which performs a dynamic analysis of the lifting task. Three postures in lifting 

are selected from a model generated in LifeMOD by using the same joint angles to create 

static postures in 3DSSPP and CATIA. These three postures are initial posture (the 

picking up moment), the final posture (holding the load) and one middle posture to study 

the lower back forces in static postures. In each section the result of these four methods 
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for both knee lifting and hip lifting using certain loading magnitudes are presented. 

Comparisons between methods are shown in tables. 

Chapter 4 presents conclusions of this study and offers suggestions for future 

work. 

3 



2 Background and literature review 

The aim of this study is to evaluate the lower back forces during a task. To satisfy 

this goal, garbage-collecting job selected as a task, which is involved by high frequent 

lifting activity. After examining this specific job, a study has done to show that lower 

back pain is a most probable problem that may occur during the lifting. Methods and 

material that other researchers used to study the lumbar region pains are discussed 

afterward. Two non-invasive methods, checklists and biomechanical modeling are used 

to analyze the lower back forces. 

2.1 Garbage collector work 

Garbage collectors perform different activities as a part of their job. This job is 

classified in "Helpers, Handlers and Laborers" according to the Department of Labor in 

the United States. The job mainly contains lifting garbage and handling materials, 

dumping garbage from containers into the truck that may be accompanied by throwing 

plastic bags into the back of the truck. In occupational classification system, the garbage 

collector driver and truck driver sort at the same group (Department of Labor in the 

United States). For a single personnel collecting system where a single worker performs 

the driving and collecting task, the occupational problems for truck drivers such as whole 

body vibration and awkward postures can be taken into account as garbage collectors 

problems. In the Occupational Classification System Manual for United States Labor 

Department, the garbage waste collecting job is defined as "H875 Garbage collectors" 

that are responsible for collecting refuse on a designated route and dump refuse from 

containers into the truck (Bureau of Labor, October 2001). It also includes transportation 
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and material moving occupations and motor vehicle operators' job as a truck driver as 

explained in labor library 2001 in single worker task (U.S. Department of Labor, Bureau 

of Labor Statistics, October 2001). 

Among the most frequent work-related fatal events for a garbage collector are 

highway incidents, struck by object and falls. As figure 1 shows these groups of work-

related problems caused the most number of fatalities in 2005 for all ages (Centers for 

Disease Control and Prevention, 2005). Garbage collectors usually work alone, so they 

have to drive, get off the truck at any station and collect garbage, carry carts from their 

place to truck for a distance and empty those in truck compartment. In some places, they 

have to run behind the truck for about 30 km to accomplish the task. Heavy cans are 

another part of the job, which compels a huge body stress on the workers. What makes 

the situation worse is that, garbage collectors do not know what situation they may face: 

slippery floor, bags and cans with very different weight and size and unexpected 

dangerous materials and hazardous smells are some of these unforeseen conditions 

(Kuijer and Frings-Dresen, 2004). 

16-19 20-24 25-34 35-44 45-54 SS-64 ySS 

Age group (yrs) 

Figure 1 Fatal occupational injuries, United States, 2005 
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The National Institute for Occupational Safety and Health (NIOSH,1994) 

publication regarding fatal occupational accidents shows that between 1980 and 1992, 

450 garbage collectors died in incidents related to the garbage collecting truck. Most of 

these accidents were caused by their own vehicle when they were struck or ran over by 

the truck after falling down (Kuijer and Frings-Dresen, 2004). 

That is why, in 2004, NIOSH reported waste collecting job is in the top six 

riskiest jobs considering number of fatalities. Musculoskeletal disorders are probable in 

this job. Because of high risk in this activity, the solid waste collectors are two times 

more likely to loose working day than the average service sector workers (Bureau of 

Labor Statistics, Census of Fatal Occupational Injuries Summary, 2004). 

2.1.1 Residential Refuse Collectors: Risk Factors and Tasks of Concern 

Domestic garbage collectors in Quebec distribute work in 350 companies, some 

rent and others own their truck and hire workers as garbage collector. Trash collector's 

salary has a flat rate and, because the system of garbage collecting is not totally 

mechanized, workers are in direct contact with garbage (Cloutier, 2004). 

Each truck has an assigned territory for a workday. The amount of garbage piles 

changes in different days and seasons and affects the workers work burden. An 

experienced worker usually trains new workers in the real work place. To estimate the 

job load for workers for a 9 hour work shift per day 16 tones of load is carried and for a 6 

hours work shift they walk 11 kilometers and the total energy expenditure is at least 2500 

kilocalories (Cloutier, 2004), that is much higher than energy consumption for miners, 

forestry workers and material handlers (Spitzer and Hettinger, 1966). 
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Occupational problems for garbage collectors can be listed in two groups: 

musculoskeletal problems caused by different activities in this job and accidental 

problems because of unsafe devices and a nonstandard working station. 

The most vulnerable parts of the body at risk of injury during the task are the 

lower limbs due to falling, hitting solid objects in non-transparent plastic bags, hitting 

street barriers or different parts of the truck during loading garbage or getting in or out of 

the truck cab (McHugh, 2006). 

Upper limb problems happen during grabbing plastic bags, handling material with 

sharp edges and using extra forces while handling because of thick gloves. The most 

involved body part in the lifting task which repeats frequently in this job is the back. 

Lifting and handling materials are the main activity in this job so the spine is always of 

concern during the task. The most affected part in the spine is the lumbar region; 

therefore, lower back pain (LBP) is the most prevalent occupational disease in this job. 

Twisting while lifting amplifies the back forces (An et al., 1999). 

An unprotected face can cause problems too, especially eyes when the collector 

works by the compactor auger part of the collecting truck to compact the garbage. Extra 

tension in the hands during reaching out of reach material in bins or handling heavy 

materials (over 60 lbs) and jumping causes ligaments injury in extremities, back and 

neck. Most frequent injuries are wounds and cuts caused by handling sharp materials. 

Trauma, contusion, hematomas and bleeding, can happen because of falling or slipping 

(Robazzi et al., 1997). Some dangerous behaviors such as handling more than one 

garbage bag at the same time with hands, under arms or chest may increase the severity 
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of these types of the problems. Also poor hand and foot protection can cause cutting and 

bruising of bare parts. 

These problems can cause by devices and materials that workers are working with 

or the street problems that can be assumed as workstation for this job. The following 

problems describe the hazardous sides of the work briefly (Faria and Silva, 1986). 

1. Garbage packaging: This may cause cutting and piercing, awkward handling, unsafe 

walking and carrying postures because of bulky or heavy garbage. 

2. Collecting truck: Compactor auger (used for compacting garbage) shavings from this 

part can cause injury for eyes. Workers usually stand in an unstable situation behind the 

truck. 

3. Picking up recycle bins from low heights and emptying them at a high level, happens 

frequently with heavy bins. 

4. Hazardous materials (chemical and biological wastes). 

5. Awkward neck postures while looking at mirrors or camera monitors when operating 

joystick controls. 

6. Street accidents: holes, street barriers and street water drains are unexpected obstacles 

in the street. 

7. Animal bites: garbage piles are good places for animal congestion. Animal bites can 

cause different infectious diseases. 

8. Rain makes open bins, especially paper bins, heavier. 

From a group of 251 manual solid waste collectors, 75% reported being injured 

and 70% reported illness in a year (An et al., 1999). National Institute for Occupational 

Safety and Health (NIOSH) published a report showing that between 1980 and 1992, 450 
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garbage collectors died in incidents related to garbage collecting truck. Their own 

vehicles caused most of these problems when they slipped or fell down (NIOSH Alert, 

1997). 

Some suggestions were published in late 70's to decrease the hazard level in this 

job. Avoid large pushing and pulling forces when not necessary, for example manually 

moving dumpsters, particularly in the case that they are not wheeled. To accommodate 

75% of male workers the maximum initial push force is 62 lbs (275 N) and the maximum 

initial pull force is 47 lbs (209 N) (Snook et al., 1978). 

Even in the safest conditions, lifting heavy loads at a high frequency is an 

unavoidable task for manual garbage handling. Serious lower back pain and spine 

deformation can appear because of awkward posture, one hand lifting, force shock or 

heavy load lifting that may all occur during this task. 

2.1.2 Job hazard evaluation 

Garbage collectors are exposed to all sorts of toxic odors and materials and 

perform a repetitive work in high frequency, so it has named as the third hazard work as a 

NIOSH report reveals (Kuijer and Frings-Dresen, 2004). 

Solid waste haulers ranked third on the list of the riskiest jobs in the United States 

(An et al., 1999). 90 deaths per 100,000 workers annually, shows the high risk in this task 

that comes just behind timber cutting (178 deaths) and fishing (178 deaths) and this 

mortality rate is 100 times higher considering any acceptable standard. The death rate for 

garbage collectors is 5 to 7 times higher than average workers in other industries (An et 

al., 1999). The nature of work contains high frequency lifting and lowering that causes 

the most significant problems in this job. Back injuries and lacerations are highly 
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prevalent among workers. In more details, risk factors for this job, from ergonomic point 

of view, can be categorized in five major parts (Eppes, 2004): 

• Awkward posture: workers have no idea about the weight and homogeneous load 

distribution in plastic bags or recycling boxes, they must be prepared to change their 

posture on purpose to keep their balance. Rapid changes in posture cause muscle 

extension in involved body parts and more significantly, in the back region ends in lower 

back pain. In this case the load is not necessarily heavy or bulky, but just rapid changes in 

posture are problematic. 

• Highly repetitive motion: repetition of tasks causes muscle fatigue in certain parts 

and means overusing a body part. 

• High hand forces: there is no limit for the weight of plastic bags and recycling 

boxes. People fill them up as much as possible and it can get to 60 kg for compact paper 

in a 15 gallon recycle box (Anjos et al., 2007). Lifting is often done one-handed, 

especially for plastic bags. 

• Lifting task: lifting is the main activity in this job. Garbage collectors lift plastic 

bags and recycle boxes from floor level to higher than waist level in order to empty them 

into trucks or dumpsters. 

• Whole body vibration: standing at the back of the truck causes whole body vibration 

for garbage collectors. Truck drivers face vibration too and because in most cases all the 

tasks is done by one person (single worker), the driver can be assumed as the garbage 

collector. Standing position for driving causes more whole body vibration (Maeda and 

Morioka, 1998). 
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The level of hazards is very high. As an ergonomic solution in some countries, 

automated systems have replaced manual garbage handling. 

As a conclusion, lifting task in manual solid waste collecting is a repetitive, 

unavoidable activity and causes many problems from back muscle tensions to spinal 

disorders. 

2.2 Lifting task 

Lifting manually is known as a hazardous activity. The risk is more serious if the 

origin is lower than the knee (Sedgwick, 1997). Lifting materials, which are located out 

of the sagittal plan and placed on ground level, is the worst case in back muscle tension. 

7.7% of the medical diagnoses in garbage collecting jobs is related to the spine injuries 

that mainly happens during lifting task (Robazzi et al, 1997). Training for a suitable 

lifting method and load magnitude limitation are two factors that can reduce the 

musculoskeletal problems in task. 

The National Institute of Occupational Safety and Health (NIOSH) published 

guidelines in 1980 to limit the allowed lifting load. It recommended a hand loading which 

produce L5/S1 compression force not more than 6361 N and for loading which this 

amount rise to 3425 N administrative controls are required. In addition, it recommends 

for the entire lifting task, more than 25% of population must be able to perform the task 

(NIOSH, 1981). 

Using a proper technique is a preventive method for reducing lower back pain. A 

suitable method can be used for a wide range of population and an unsuitable method 

increase a risk in occupational disorders (Hsiang, 1995). Therefore training specifically 
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for certain lifting tasks has a significant effect on occupational injuries and disorders and 

researchers have carried out extensive studies in this field. They tried to find methods and 

postures, which help workers to reduce undesirable excessive stresses, strains in back 

muscles, ligaments and joints, and as a result reduce the occupational disorder problems. 

Biomechanical and physiological research concerning body performance and energy 

consumptions are developed to find an optimized method for this certain task. 

Various methods for lifting have been suggested to reduce muscle force 

expenditure and joint forces. Lifting methods can be categorized by which body part 

initiates movement during the lifting task: stoop lifting and squat lifting, in which torso 

and leg are primary mover respectively (Garg and Herrin, 1979; Kumar, 1984; Toussaint 

et al., 1992). Sedgwick's (1997) considered three lifting methods: leg lift, semi squat and 

stoop lift. His experience of different methods for lifting on a group of workers shows 

that 80-90% of the participants suggest the lifting method in the following order as an 

appropriate model for training: leg-lift (80-90%), semi squat (25%) and stoop lift (10%), 

as shown in Figure 1. Table 1 shows a comparison between these different lifting 

methods. 
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Figure 2 Three methods for lifting 
1. leg lift 2. semi squat 3. stoop lift (Sedgwick, 1997) 

Table 1 Lifting method comparison (Sedgwick, 1997) 

~"-~--^^^ Lifting method 

Factor ^~~~~--\^^ 

Center of gravity height 
Heel location 
Trunk inclination 
Knee flexion 
Knee protruding from shoulder line 

Leg lift 

Low 
Raised 
Low 
High 

In front 

Semi-Squat lift 

Moderate 
Grounded 
Moderate 
Moderate 
Same line 

Stoop-lift 

High 
Grounded 

High 
None 

Behind 

During lifting, bending torque in lumbar affect intervertebral discs and ligaments. 

Excessive bending torque may result in ligament injuries (Dolan et al., 1994). In the same 

posture fatigue failure of disks occurs if the compressive force exceeds 3.5 kN (Adam 

and Hutton, 1985). Back lifting posture consumes the least level of energy and the least 

amount of strength in the lower extremities (Troup, 1977). In contrary back lifting or hip 

lifting method causes ligamentous injuries because of hyper-flexion in back or muscle 
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strain, (Adams and Hutton, 1982) and causes disk injuries due to high acceleration forces 

caused during the truck flexion (Troup, 1977). 

Anderson and Chaffin (1986) studied different lifting techniques by focusing on 

required strength in lower back disc compression (L5/S1 disc) and low-back ligament 

strain. Different lifting strategies are obtained by feet placement on ground, knee flexion, 

back curvature and hand placement on the load. One healthy male performed the 

experiment using two load types, bulky and compact for 5 lifting methods and 3 

repetitions for each lifting. The subject after training by watching videotapes, 

photographed in sagittal plane by speed of three frames per second for each task and from 

a 5 meter distance. These five lifting methods are listed in the following table. 

Table 2 Five alternative lifting techniques (Anderson and Chaffin, 1986) 

Method 
Stoop 
Parallel/Flat (Squat) 
Parallel/ Curved 
Straddle/Flat 
Straddle/Curved 

Foot Placement 
Parallel 
Parallel 
Parallel 
Straddle 
Straddle 

Knee orientation 
Straight 

Bent 
Bent 
Bent 
Bent 

Back orientation 
Curved 

Flat 
Curved 

Flat 
Curved 

Markers were placed on hands, center of gravity, elbow, shoulder, hip, knee and 

ankle and angular orientation were digitized for different body segments to be used in 

biomechanical modeling. Lifting in a slow and controlled manner means that inertia and 

acceleration can be ignored and the lifting method can be considered static. 

For compact loading, L5/S1 disc compression is almost twice in stoop lifting to 

squat lifting but for the bulky loading magnitudes are almost at the same level for both 

methods. Straddle/flat back shows lowest L5/S1 disc compression and lowest 
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lumbodorsal fascia strain, which is found the most vulnerable ligament in this task 

because of high flexion level in bending posture. Lifting methods which have a curved 

back posture can raise the ligaments strains and increase the risk. The authors suggest 

avoiding stoop lifting even for bulky loads because of high percentile tension in back 

ligaments. 

For foot placement, Imrie (1983) suggested a posture that one foot is located behind the 

load and another one beside that to provide more stability. 

Comparing two most known lifting methods, squat and stoop lifting, reveals some 

advantages for knee lifting versus back lifting in presenting lower back pain (Adam and 

Hutton, 1982). Shifting load during lifting from the back to the legs, which are stronger, 

is one advantage of leg lifting. Troup et al. (1983) named less load distance from body for 

squat lifting. For bulky loads stoop lifting is preferred because the moment arm is 

reduced. From postural point of view, squat lifting causes less tension in the back 

ligaments (Anderson, 1983). 

Some studies indicate a specific hand location for lifting a box. Coury and Drury 

(1982) suggested a hand position to make balance in handling load. One hand is located 

on upper outer side and another on inner lower part to provide a good balance on the box. 

The problem with this posture is applying more force to the lower hand and providing 

asymmetric lifting. 

All these studies insist on keeping the load near to the body to decrease the 

moments on lower back and keep the back aligned like the back posture neutral position. 

Finding maximum acceptable force in lifting and lowering for different lifting 

methods and different frequency can protect worker from lower back problems by 
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avoiding extra tension in back ligaments and muscles and intense compression force in 

lower back region. 

Aghazade et al. (1993) developed a formula to get the maximum acceptable force 

in lifting task. This formula needs to get a rating factor by using operator feeling during 

lifting. The strain at the first phase was rated 100. Depending on the magnitude of stress 

that worker feels during lifting with a defined frequency, a certain amount will add to or 

subtract from the 100 in percentile. The following equation indicates the method. 

Maximum acceptable weight=Base (kg)* [1 ] 

The following table shows suggested rating amount in different frequency (from 

1 to 5 lifting or lowering per minutes). 

Table 3 Rating values for different frequencies 
Frequency (lifts/min) 
Lifting 
Lowering 

1 
70.46 
61.36 

2 
79.55 
73.64 

3 
100 
90 

4 
120.46 
115.91 

5 
136.36 
128.18 

Knowing these rating values, the multiplying amounts are calculated in table 4. 

Frequency (lifts/min) 
Lifting 
Lowering 

Table 4 Basic weig 
1 

1.3 
1.4 

2 
1.2 
1.3 

it multiple 
3 
1 

1.1 

4 
0.8 

0.84 

5 
0.64 
0.72 

The maximum amount in lowering is about 7% more than lifting and maximum 

amount changes from 16 kg to 7 kg in 1 lift/min and 17 kg to 9 kg for 1 lowering/min. 

They used students for this study and long distance (61 cm) for lifting and lowering task. 

These two factors result lower suggested weight respect to Snook and Ciriello (1993). 

Sharp et al. (1995) did the same research for lifting load limitation at different 

frequencies and continuing by carrying 7.2 meter. Their study group was a group of male 
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and female soldiers. Following table shows the maximum load in lifting for two different 

frequencies. Using soldiers as the study group, results in higher limitation for lifted load. 

Table 5 Maximum load in lifting (Sharp, 1995) 

Frequency (lifts/min) 
Men 
Women 

1 
35.7 N 
23.7 N 

4 
25.5 N 
18.4 N 

Davis (1996) tried to find the maximum tolerable load in L5/S1 for two eccentric 

and concentric loads by applying electromyogram electrodes. They categorized the task 

in concentric lifting, which muscles are shortening for generating force, and eccentric 

lowering which muscles are lengthening to generate the force. The following table shows 

the results of their study. 

Table 6 Maximum imposed force in spine L5/S1 region (Davis, 1996) 

Maximum Load 

Eccentric 
Concentric 

Sagittal moment on 
spine (N-m) 

140 
120 

Anterior posterior 
shear force (N) 

700 
800 

Compression force 
(N) 

3500 
2600 

Karwowski (1996) suggests another method as a worker-self- report to determine 

the maximum load that worker feels it is safe for an 8 hours shift period. He used a 

weight adjustable box by removing or adding weights to the box and considering workers 

abilities and skills. He used two definitions. Maximum acceptable weight of lift (MAWL) 

derived by Snook and Irvine (1967) and maximum safe weight of lift (MSWL) presented 

by himself in 1995 to preserves the worker safety and prevents lower back pain. For a 

group of 10 male students, the mean value for MAWL was 46.02 lb (20.87 kg) and for 

MSWL the mean value was 38.3 lb (17.36 kg). 
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As a result, studies show that lifting task affects the lumbar region and causes 

occupational disorders in lower back pain. In the next section different method that used 

to study the lower back pains has reviewed. 

2.3 Lower back pain, an occupational disorder 

Lower back pain is a common problem for all ages. Acute lower back pain is the 

fifth most physical problems that make people to visit a physician (Patel and Ogle, 2000). 

Fymoyer and Cats-Baril in 1987 revealed that 5% of American adult faced with LBP 

problems each year. This amount is higher in working population and reaches to 50% 

(Patel and Ogle, 2000). Frymoyer and Cats-Baril, continuing their study in 1991, showed 

a highly increasing rate in LBP from 1960 to 1980, which is 14 times more than 

population rise. For a certain number of employees (100 full-time workers) lower back 

pain rate have decreased by 70% and occupational injuries rate decreased by 40% from 

1986 to 1994 (Koda and Ohara, 1999). 

Back strain, acute disc herniation, spinal stenosis and spondylolisthesis 

(displacement of a vertebra) are some disorders which involve different parts of the spine 

like discs in spinal column or ligaments and muscles. Lower back pain, as a widespread 

problem in workstations, is one of the employer's concerns. Depending on the type of 

pain (acute or chronic pain) it can take from weeks to three months for rehabilitation and 

causes 50 million working days lost which costs industry $11 billion annually (Snook and 

Jensen, 1984). 

A wide range of occupational and non-occupational facts are reported as a cause 

of lower back pain. Handling heavy and bulky materials, which can get worse by 

improper lifting methods, unsuitable humidity and temperature situations, fatigue effects 
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and whole body vibration as occupational problems and on the other hand aging, workers 

relation and family situation as non-occupational risk factors affect LBP and 

consequently the worker performance (Riihimaki, 1991). 

Aging and degradation are key problems, which can increase the possibility of 

LBP. Muscle elasticity, ligament strength and discs flexibility decreases by aging and can 

end in more risk for sprain during lifting. When comparing young people to people age 

60 and over, trunk axial rotation decreases by 15%, neck extension by 41% and trunk 

lateral flexion by 29%. (Doriot and Wang, 2006). For garbage collector the falling rate 

increases from 1.6 for workers younger than 35 years to 2.8, a 75% increase, for 35 years 

and older workers (Cloutier, 1994). 

Lower back pain can occur during different activities, which are associated with 

flexion, bending and twisting in spinal column and lumbar. Lifting is one of these sorts of 

activities that applies a combination of forces on back and lower back pain (LBP) is 

frequently reported in this task (Snook et al., 1978). 

Lifting task applies both compression and bending to spinal column. Most 

affected part in vertebrae in this task is intervertebral discs (Dolan et al., 1994). The 

combination of loads on spine increases the risk of lower back disorders (Fathallah et al., 

1998) but does not affect the intradiscal pressure. Load combination mostly affects the 

shear strain especially in posterolateral area (Schmidt et al., 2007). Intervertebral discs 

pressure shows the maximum amount in the combination of flexion and rotation (Steffen 

et al., 1996). This posture is highly frequent in lifting task. 

Invasive and noninvasive methods are available for measuring the forces in the 

spine. Invasive methods cannot be used in many dynamic activities that apply critical 
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loads to erector spinea in vivo experiment. Nachemson (1981) used a pressure sensitive 

needle for disk pressure measurement in the lumbar region. As muscles generate most 

compressive force in back, speed and posture have a significant effect on back tension 

and forces (Adam et al., 1994). Hence, invasive methods are not always applicable for 

studying the joint forces in real performance. 

Another method applied in measuring complex spinal muscle load during 

dynamic activities is electromyography. Fathalla et.al. (1998), used force plate and 

electromyogram assisted free dynamic lifting model in vivo study to provide a 

quantitative, 3 dimensional pattern of applied load to spinal column in lifting task as a 

specific dynamic activity. Velocity, acceleration and 3D positions of trunk accompanied 

by 3D external forces and torques in the L5-S1 region derived from force plate data. 

Trunk location and L5-S1 orientation are determined by two electrogoniometers. This 

device estimate the internal moments for balancing equilibrium conditions by balancing 

the external moment around L5-S1 by internal moment of musculature. The method 

applied to male object and effects of asymmetric and symmetric lifting, performance 

speed and weight magnitude in force and torque generated on L5/S1 facet studied. The 

study group contained 11 male subjects with no back disorder background, performing 

the task. They used 3D diagram to show the quantities in spinal load combination. They 

did the study in three categories to cover different lifting in industry: lifting method, 

speed and load magnitude. For method, they present two techniques of lifting: symmetric 

loading (sagittal loading) as used in low risk activities in industry and asymmetric 

loading to model complex loading as appears in medium or high risk lifting tasks. For 

different speeds, three levels were used: 2 seconds per lift as slow lifting, 1.5 seconds per 
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lift as medium lifting and 1 second per lift as rapid lifting to replicate three risk levels in a 

job. As a result of their study, they introduced the loading rate as a better indicator of 

applied load to spine to show both duration and magnitude of spinal loading during task 

and instead of statistical terms such as average and maximum spinal loading, investigated 

to find the conjunct occurrence effect 

Marras et al. (1993) suggested hand loads of 22, 67 and 156 N, representative of 

low, medium and high load percentile respectively, located just above the knee. Spinal 

loading at L5/S1 in three different terms of compression, anteroposterior shear and 

mediolateral shear were studied. Their study result showed that shear force in the worst 

case (heavy load, asymmetric lifting and rapid lifting) exceeded 1800 N and the 

compression force was about 7000 N. The loading rate at high speed was reported to be 

twice that at low speed. This study is fully depended on the subject performance and 

electromyograms did not get all the internal muscle forces that contribute to the lifting 

task and therefore their effect was neglected. 

Dolan et al. (1994) did a similar study to find the bending and compressive stress 

and risk factors in lifting task in a large group of 21 men and 18 women .They considered 

lifting methods (squat or stoop), weight, handle distance from sagittal plane and trunk 

speed. To find the maximum spinal compression the maximum extensor moment 

generated by back muscles and fascia was calculated. 

The result showed 10% lower peak for extensor moment for stoop lifting 

compared to squat lifting but 75% more for bending torque. These two factors increases 

by non-sagittal lifting, hand loading, bulkiness and distance from leg. Speed only affects 

the peak in extensor moment but not in bending torque. Flexion moments on the lumbar 
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spine are measured by '3-space Isotrak' which give estimation for bending moment 

applied to intervertebral discs and ligaments . By connecting the Isotrak device to the 

skin surface in the L5-S1 location back curvature can be found. Other bioelectrical 

electrodes are attached to the erector spinae at the T10 and L3 level. Lumbar curvature is 

established to find the lumbar flexion. Some correction is done for EMG electro-

machinery delay and different velocity for muscle contraction. They indicate three peaks 

in lumbar curvature, the first one at the end of forward bending moment second one at 

picking up moment and the third one at the trunk extension. Dolan et al. (1994) showed 

that trunk extension is accompanied by rapid shortening of erector spinae so muscle 

contraction velocity correction which was used for all muscle velocity decreases in this 

case therefore the peak in the picking up moment is the largest one. Maximum bending 

torque and extensor moment occur at the same time and the peak in flexion and extensor 

moment differ only 10-20%. Their experimental results for male subjects are compared in 

table 7. For the twisting experiment, the peak bending point increases by 30% for 90 

degree twisting to the left or right. Table 7 also shows the results under different 

conditions. Considering the extensor moment, more accurate comparisons can be made 

between lift methods rather than the compressive force (Dolan et al., 1994). 

Table 7 Maximum lumbar loading for different conditions (Dolan et al., 1994) 

Peak bending 
torque 

Peak extensor 
moment 

Mass from 
0-30 kg 

50% 
increase 

100% 
increase 

Stoop to 
squat 

75% 
increase 

10% 
decrease 

Bulkiness 

20 - 25% 
increase 
20 - 25% 
increase 

Distance 
from feet 

95% increase 
30 - 60 cm 

90% increase 
0 - 60 cm 

Speed from -
quasi static to 

fast 
slight decrease 

60% increase 
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There are several self-reporting methods using checklists, diagrams or 

questionnaires, filled out by subjects to find the peak values of forces in different parts. 

Andrews et al. (1996) used a non-invasive method to estimate the peak force in 

L4/L5 lumbar spine compression by self-report forms filled out by the participants. 27 

persons did the lifting tasks with different complexity. The lifting tasks were 

photographed or videotaped to get the joint coordinates and used as input data into a 

biomechanical program to analyze the compression force in the lower back. Subjects 

chose the more realistic posture in the more complex lifting task from a series of 

diagrams, which were used to calculate the joint coordinates. 

Participant did different tasks repetitively and at the end they were asked to 

identify the most difficult posture. Slides which were taken from right side in the statical 

holding position. After that the subject filled out a questionnaire to report different body 

parts posture. The slide showing the posture for the most difficult instant is used to get 

the metatarsal, ankle, knee, hip, shoulder, elbow, wrist, hand, L4/L5 joint and C7 joints 

coordinate by using a 2D digitizing table .These coordinates are used as an input into a 

standard static biomechanical model to get the L4/L5 compression force. 

For 90 percentile person and hand loading of 13.4 kg, L4/L5 bending moment and 

compression is calculated in the worst posture about 237.8 (N-m) and 4280 N for 

downward straight hand. Reliable and repeatable results with minor differences were 

obtained in self-reported and criterion posture. 

Results from these groups of studies help to understand human body mechanical 

properties and the effect of external forces in creation of internal forces in joints and 

ligaments and help to the development of biomedical analysis programs. 
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2.4 Non-invasive methods for studying the lumbar force 

Ergonomic checklists and biomechanical modeling can be used to study lumbar 

forces. Because they are the focus of the current research they are introduced briefly in 

this section, and they are explained in greater detail in the next chapter. 

2.4.1 Ergonomic checklists 

Checklists are useful tools to identify potential ergonomic problems. These work 

sheets help managers to consider some hidden problems that affect the job performance 

quality and employee's health. Ergonomic checklists offer a simple and quick method 

that let the employer and employee understand potential ergonomic problems of a certain 

work activities. While checklists do not offer a solution about how to remove the risky 

condition, they make supervisors and workers aware of the need to change their working 

environment in a way that reduces the risks. 

WISHA, REBA, Liberty Mutual tables for manual material handling, or formerly 

Snook tables, and the NIOSH lifting equation are some of the most popular checklists. 

They are presented and used in the following chapter. The WISHA checklist is discussed 

below as an example of these checklists. 

Washington State's occupational safety and health program was established in 

1973 by the Washington State Legislature to ensure that the entire worker in a 

workstation have a safe and healthy working condition. This program forces the 

employer to control the working condition. WISHA present some standards about 

workstation arrangement and worker health and safety by considering the accidental 

problem, employees complain about safety in a certain working area. WISHA examines 

the report of work place hazard that cause death or serious musculoskeletal harm to the 
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employee, they try to eliminate the problem and control the working condition and 

personal health after removing the problematic situation (WISHA, 2008). 

Safety and health core rules provided by WISHA explain the minimum 

requirement that must be applied to provide a safe environment for the workers during 

the working hour. These rules are about employers' responsibility to keep the place safe 

considering the work station arrangement, controlling use of hazard material and devices, 

apply appropriate personal protective equipments and preventive program to train the 

workers. The aim of this study is to eliminate the hazard condition before accidents occur 

(WISHA, 2008). 
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The following figure shows the WISHA lifting analysis checklist: 

WISHA Lifting Analysis 

Job 

Notes 

Date 

Anaiystjs) 

Hie HRintu anaV^-'s on fhe following page is pertained when one or more of the Caution Level job risk factors in the 
following cfieeMast is present TMs checkist is taken front ihe adapted WISHA checklist 

Heavy, Frequent or Awfawarcl l i f t ing 

Body Part 

Back and 
shoulders 

Physical Risk Factor 

lifting 75 or more 
pounds 

Lifting 55 or rnore 
pounds 

Lifting more than tO 
pounds 

Lifting, more than 25 
pounds 

Combitved with 

No other risk factors 

No other risk factors 

Mere than 2 times per 
mmuie. 

.Above t i e sboiidere 
Below the knees 
At arm's length 

Duration 

One or more times per day 

More than 10 f ines per 
day 

More. Sian 2 hours total 

More than 25 times per 
day 

WISHA Uftirsg Analysis — Perform if any CauSon condition exists. 
Actual Weight {Step 1) is greater than the Weight Limit (Step 4) 
fSee separate w o * sheet) 

Check {/'\ as 
applicable 

Caution 

Q 

Cauion 

Q 

Caution 

Caution 
QJ 

Hazard 

Q 

Adapted from Stale of Washington Department of Later and Iredastries Ergonomics R ufe 

This version focuses on file l f ing : section. See w»iw..h5c.its.f..edyl~iternar{l/erBafc»ls for electronic copy of form. 

After the lifting checklist is filled out a lifting analysis is performed using 

form shown in the following figure to determine if there is a hazard: 

Figure 3 WISHA lifting checklist 
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WISHA lifting Analysis 
This analysis pertains to jobs where employees IB 10 Bis. or mots. 

Find out the actual weight of 
objects that the employee Sifts. 

Actual Weight = lbs. 

StepS J Find the Limit Reduction Modifier. Find out how many 
limes t ie employee lite per minute and the total number 
of hours per day spent Ming. Use fiiis informafimi to 
took up the Limit Reduction Modifier in the table below. 

"step*?"*) Determine the Unadjusted 
-—.—Z*^ Weight Limit. Where are the 

employee's hands wSien they begin to 
fft or lower the object? Mark that spot 
on the diagram below. The number in 
that box is the Unadjusted Weight limit 
in pounds;. 

Above 
• " shoulder ( v6«|40! 30 

Waist to 

•/- ,v i~ 4 -

shoulder \ >, L*>-"l1~->"I'"•"'"'" 
... / . S r - ^ - r - i ^-f.. .. 

I ! • ! • 
•} ' I . 

Knee to \ ; ,m j.6& 40 
waist 'i f" I I 

7 I I T ' 
BelOW •', | ] j : 
knee 'i f | T 0 | M ^ 

0" 7" 12" 
Hem Mid- Extended 

rang* 

Unadjusted Weight Limit:. lbs, 

How many Sifts 
per minute? 

1 lift every 25 irins. 

1 lift every min 

2-3 lifts estery ran 

4-5 litis every rah 

S-Tiffseveiymin 

Shifts every nan 

IS-t-lifceretytws 

For how many hours per 

1 hrorfess 1hrto2.krs 

t.O 

0J» 

as 

15.SS 

0.73 

Q.« 

i J 

a.ss 

DJB 

0.35 

0.7 

as 

0.35 

02 

day? 
2hrscrmore 

0.8S 

0.75 

0.&5 

0.45 

0.25 

D.1S 

OLD 

Note: For liling done less than snee evsy fee minutes, ase 1J3 

Limit Reduction Modifier: . 

/'"step^T"'-') Calculate the Weight LimrL Stan by copying ike 
V^__ _^s Jnad.iL<s:eo Weigh: Lirw fron S:ep 2 

Unadjusted Weight Limit: = lbs. 

If the employee tests mare 'Start 45 degrees 
while lifting, recuse "he Unadjusted Weight Limit 
by muisiplyirts by 8,85. Otherwise, «se rise 
Unadjusted Weight Limit 

Twisting Adjustment: = 

Adjusted Weight Limit: = 

IMiply Hie Atfssted Weight Limit by the Limit 
ReducSon. Mcdiier from Step 3 to get the 
Weigl* Limit X 

Limit Reduction Modifier: 

lbs. 

Weight Limit: = _ lbs. 

Is this a hazard? Compare the Weight Limit calculated i 
Slep 4 with t ie Actual Weight Red tan Step 1. if t ie 
.Actual Weight lited is greater than fce Weight Limit 
calculated, then She lifting is a WMSD hazard. 

Note: If fee job irwsfces lifts of objects wM? a lumber of different weights androc from a rBmberofdiflereBiteattons,Bse Steps 1 
through 5 aixwe to: 
1. Ajalyze the two worst case lifts - the heaviest, object iBed and the iift done in the must asAnard postae. 
2. A"3 yze the moss. coran-.o-.iy perfamed iifi in Step 3, use the frequency and duration te aj of the Stag done in a typical 

Adapted from State of Washington Department of Labor and Industries Ergonomics Rute 
See http •''•vww. n-.w.a.qowwis'ia'e'aj'erao'ule.'iftTi 
This version focuses on tne lifting section. See wowhsiusf edftberrardieroc tools for electronic copy of form:. 

Figure 4 WISHA lifting analysis 

2.4.2 Biomechanical modeling 

The first biomechanical model, based on interconnected links, was developed by 

Braune and Fischer in 1889. Whitsett (1962) shows in the figure below how the complex 
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three-dimensional shape of the human body can be approximated by simple geometric 

structures. 
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u 
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Figure 5 Human body segments and models (Whitsett, 1962) 

Chaffin (1969) developed a seven link two dimensional model to calculate joint 

forces and moments. This model was later extended for three dimensional static strength 

prediction (3DSSPP) (Chaffin, 1977). 3DSSPP can be used to predict the posture, given 

the location of the hands relative to the feet and the loading of the hands. It also 

calculates various muscle forces and joint loads. A limitation is that 3DSSPP can only be 

used for static analysis. 

CATIA is a software package that is used extensively for design in especially 

aerospace and automotive industries. It has an ergonomic module that can be used to 

evaluate, for example, if an operator can reach certain controls. This module also allows 

for biomechanical analyses. 

Today biomechanical modeling and movement simulation plays an important role 

in studying the kinematics and dynamics of the body. LifeMOD is one of the programs 
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that can be used for this. It requires specific joint coordinate data as input. This means 

that a 3D motion capture system must be used to obtain the required 3D joint coordinates 

while a subject performs the activity that needs to be analyzed. LifeMOD uses this 

coordinate information together with anthropometric data to perform kinematic and 

dynamic analyses of the body. 

In this research, LifeMOD, 3DSSPP and CATIA are used to analyze selected 

lifting tasks during manual paper recycling. The following chapter describes these tasks, 

as well as the motion capture system used to obtain the 3D joint coordinates. 
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3 Analysis of selected lifting tasks during manual paper 

recycling 

In this chapter, different methods used to study the garbage-collecting job in 

lifting are discussed. As the loads, size and weight vary over a wide range in this task, 

collecting paper from blue recycling box by using large mobile bins for emptying chose. 

By knowing the containers size and material weight, the box weight, size, and destination 

level estimate to define the task. 

3.1 Garbage weight and volume in recycling 

Regular garbage containers have different weight depending on material and 

container volume. The weight normally varies from 10 to 22 kg in domestic sites but can 

weigh as much as 30 kg when completely filled. The volume of garbage containers that 

need to be emptied manually is typically 100 liters or less. 

Usually, in residential use, there is no compact packing in containers. The 

restriction for using blue recycling boxes is that they must not hold more that 18 kg with 

recyclable materials for manual garbage collecting. 

The study presented here uses recycling containers commonly used at Concordia. 

They are a blue recycling box, 51 x 38 x 34 (cm), used for paper recycling, a storage box, 

39 x 31 x 24 (cm), used to file/store papers, and a wheeled mobile dumpster, about 1100 

liters capacity, with a height of 113 cm when the lid is open. These containers are shown 

in the figure below. 
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Figure 6 Blue recycling box, storage box and wheeled mobile dumpster 

3.2 Methodology 

Two sets of experiments were performed. One whereby a female subject of 

average height lifted, and then lowered, an empty storage box, weighing 2 N, and a 

storage box filled with papers, weighing 60 N, from ground level to waist level and from 

ground level to shoulder level. Two different lifting techniques were used: knee lifting 

and hip lifting. This task was analyzed using ergonomic checklists as well as 

biomechanical analyses under quasi-static and dynamic conditions, focusing on the 

loading of the back and shoulders. In the second set of experiments male subjects of 

average height lifted, and then lowered, a recycling box weighing 130 N from ground 

level to a height of 113 cm. This task too was analyzed using ergonomic checklists, while 

the biomechanical analysis focused on kinematic analysis. All lifts were carried out using 

symmetric, two handed lifting. 
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The ergonomic checklists can be filled out easily through observation of the task 

together with some basic measurements, such as hand location at the origin and end of 

the lifting task. For the biomechanical analyses, however, more detailed information of 

the posture during the lifting task is required. A motion capture system, acquired in 

winter 2008, was used to obtain 3D coordinates of selected body marker positions as a 

function of time while the subject performed the lifting task. 

The following sections in the chapter describe the ergonomic checklists used for 

the analysis, give a description of the motion capture system used and the procedure 

followed to obtain the necessary data, and describe the biomechanical analyses programs 

used. Results and discussions are presented in the following chapter. 

3.3 Analysis using ergonomic checklists 

Ergonomic checklists can be used for a rapid evaluation of hazard factors in the 

work place. They help employers and employees to recognize ergonomic problems in the 

job. The checklists can also be used to evaluate any change in hazard level if a certain 

task is performed in another way or learn to apply the ergonomic aspects in their job. 

There are many different quick checklists that can be used to verify the job hazard 

level. WISHA, REBA, Liberty Mutual tables and the NIOSH lifting equation are some of 

the most popular ones. 

3.3.1 WISHA checklist 

The WISHA checklist for work related musculoskeletal disorders was developed by the 

Washington State Department of Labor and Industries. It is shown in Figures 7 and 8. 
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WISHA Checklist tor Wot-Retated Musculostetetai Disorders 1 

Lifting task 

Notes 

lifting paper recycling box -full shift 

Date 
10/04Q008 

Ana%siCs) 

Saba Pasha 

Reading across the page, deietnmine if any of #ne conditSons are present in the work, aciviies. For many of the rtsfc 
factors, too conditions are presented, v,hi;h are the indicator; lor Caution {a lower level of risk) and Hazard !> 
higher level of risk}. Most of the conditions are based, on duration. If t i e lower threshold 'Condition is not met. no 
box is sheeted, if the lower condition is met but the Wgher is not, (tiers Caution is stacked. If the higher condition 
is met {generally a, longer period of time), then Hazard is dier i tet i 

If crsfy Caution boxes are. checked", fce risk is present but imraecitats acton {further analysis or interventions) are 
not recommended. 1 is warihwhfle to continue to monitor Caufto ievet jobs far changes i ta t might increase the 
risk and for injuries or symptoms that smay occur. 

If one or more Hazard boxes are checked, a vrork-ralaied musculoskeletal disorder {WMSO) hazascf exists, and 
further acSon is recommended. 

Awkward Posture 

Body Part 

Shoulders 

Neck 

Physical iRisk Factor 

Working with t i e hanclfs) above t i e 
head or t i e elbowfs) above fte 
shoutderfs) 

Repetitively raising the handlfsj above 
the head or t i e eibowfs) above the 
shoulders) more than once per 
minute 

Working wriHi the neck bent more than 
45° (wBwut support or t i e ability to 
vary posture) 

Duration 

fcfare than .2 hours 
total per day 

Pore Shan 4 hours 
total per day 

More than. 2 hours 
total per day 

Mare than 4 hours 
total per day 

More Shan 2 hours 
total per day 

More than 4 hours 
total per day 

Visual Aid 

A 

ri 
i ; 

•J.L 

n 
( \ 

h&jo. 

! 

Check ( • } as 
applicable 

Caution 

Q 
Hazard 

3 
Caution 

Q 
Hazard 

Q 
Caution 

Q 
Hazard 

Q 

Adapted from State of Washington Department of Labor and Industries Bionomics Rule 
See h:to ','www Ir .wa.acv/vwsKa'ergO'erci'.fe.rl'' 
Thts version ir.cs-jdes some forrtat changes, inclusion of oauton zones and revisions to filling and isbration 
sections. S w vtav.-www hsc. .ttf.etk.. -frg-Tva'ii'fc'y.tenk far elgetronic copy pf form. 

Figure 7 WISHA checklist for musculoskeletal disorders 
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W1SHA Checklist for Worl«-Re6ited Musculoskeletal Disorders 

Awkward Postae (continued) 

Body Part Physical Risk Factor Duration Visual Aid 

C h e c k s > as 
applicable 

Back Working wHh Ihe bad. bent forward 
more t ian 30s (without support, or ttie 
aibiBy to vary posture) 

itfore than 2 hours 
total per day 

More than 4 hours 
total per day 

Working with the. ba t * bent forward 
more than 45° (wthouf support, or the 
abiliy to war/ posture) 

More Shan 2 hours 
total .per day 

Caution 

Q 
Hazard 

Q 

Hazard 
o 

Krsses Squalling 

Kneeling 

More than 2 tours 
total per day 

More than 4 hours 
total per day 

More than 2 hours 
total per day 

More than 4 hours 
total per day 

iV4 

St
iff— 

X 
\J CC3 

Caution 

Hazard 

o 
Cautta • 
Hazard 

a 

Adapted from State of Washington Department of Labor and Indusiries B jonowos SiJs 
Se&W^^gvs^wJr;iVl^a.ao¥l'wisrsyergatersarule•htlTl 
This version includes some, format changes, restusfon. of caufan zones and revisions to fifSng and vibration 
sections. See hm:ihmmMmiiist.mfaMh®mardtmqaiaa\<, for eteofasrsic copy of fawn. 

Figure 7 WISHA checklist for musculoskeletal disorders (cont.) 
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WISH A Checklist for' Work-Related Musculoskeletal Disorders 

High Hand Force - Pinch 

Body Part 

Arms. 
wrists. 

Physical Risfc Factor 

Pinching ar» 
unsupported objects} 
weighing 2 or more 
pounds per hand, or 
pinching with s ioroe 
of 4 or mare pounds 
per hand {comparaMe 
to pinching half a ream 
of paper) 

Combined with 

Higiiy repeiilwe 
motion 

Wrisis seat in 
flexion 30" or 
more, or in 
extension 45* or 
more, or in ulnar 
deviation 30° or 
mora 

No oihsr risk 
factors 

Duration 

More than 3 
hours total per 
cay 

More than 3 
hours total per 
Omy 

hours tola! per 
day 

More than 4 
hours total per 
day 

Visual Aid 

fe«fl*RSlt»t 

Iff 
1 i • M d W t 

'' 'ii 

Cfjeck f</) as 
applicable 

Hazard 

Q 

Hazard 

Q 

Caution 

a 
Hazard 

Q 

Adapted from State of Washir^ion Department ©f Labor and Industries Ergonomics Rtfe 
See hslo:i/www.lra,wa,ge¥/wtsriia,%raalergoryle,hte!i 
This version includes some format changes, inclusion of caution zones and revisions to M a g and wbration 
sections. See fife#W?<W,tlSS,»Sf.adttH,bern@r#eartMte for eleotrorie copy of few. 

Figure 7 WISHA checklist for musculoskeletal disorders (cont.) 
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WfSHACheckftst far Wort-Related Musculoskeletal Disorders 

High Hand Force - Grasp 

Body Part 

Aims, 
wrists, 
t l3BdS 

Physical Risk Factor 

Gripping art 
unsupported otjjeefCs) 
weighing 10 or more 
pounds per hand, or 
gripping with a force of 
10 pounds or mors per 
hand (comparable to 
damping light duty 
automotive jymper 
cables onto a battery) 

Combined with 

Highly rspefitswe 
motion 

Wrists bent in 
flexion 30* or 
mors, or « 
extension 45" or 
more, or in ulnar 
deviation 30s or 
mare 

No other risk 
factors 

Duration 

More than 3 
hours total per 
day 

More than 3 
hours total per 
day 

More ttisn 2 
hours total per 
day 

More than 4 
hours total per 
day 

Visual Aid 

r_̂ _̂ 

^ 

Check ( • ) as 
applicable 

Hazard 

Q 

Hazard 

Q 

Caution 

u 
Hazard 

Q 

Adapted from State of Washington Oepa*troept of Laoor and Industries Ergonomics Rule 
See h"j> ,'wwwlr .wa..acv.'»Kisha''erca''&ipo.*jte,H'~ 
This version includes some format ch anges. inclusion c* caution zores and revisions to Iflirtg awl vibraf on 
sections. Se-e jiSoy.Tfflmai.hsc. jaf.adJU,'-Ag,ma,rd.'ft^Ctt3l5 for electronic copy of <bcm. 

Figure 7 WISHA checklist for musculoskeletal disorders (cont.) 
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WISHA Checklist far Wort-Related MuscutosKelelai Disorders 5 

Highly Repetitive Motion 

Sody Part Physical Risk Factor Combined with Duration 

Neck, 
sftmiders, 
elbows. 
nsriste, 
hands 

Using, the sarne 
motion witts Hfle or no 
variation every few 
seconds {excluding, 
keying activities) 

No oiher risk factors More than 2 tews total 
per day 

More than 6 hours total 
perday 

Using fie. same 
motion ufih Sttle or no 
variation every few 
seconds (excluding 
keying adiviiies| 

Wrists bent in flexion 38s 

or mere, or in extension 
4S8 or more, or in ulnar 
deviaSon 30* or more 

AND 
High, forceful exertions 
with the hands! 

fctore than 2 hours total 
perday 

Intensive keying Asafawd posture, 
inducfeg wrists bent in 
flexion 3D* or more, or in 
extension 45° or more, or 
in ulnar deviation 30s or 
mors 

Mora than 4 notes total 
per day 

No other risk factors More than 4 tews total 
perday 

More than 7 boms total 
perday 

Repeated impact 

Body Part 

Hands 

Knees 

Physical Risk Faster 

Using file band {heel/base of palm) as 
a hammer more than 10 times per hr 

Using the hand fieel/ttase of pata) as 
a hammer mere than 60 times per hr 

Usirsg the knee as a hammer more 
than 10 times per hour 

Using the knee as a hammer more' 
than 60 times per hour 

Duration 

More than 2 hours 
total per day 

More than 2 hours 
total per day 

Visual Aid 

Check (•/} as 
applicable 

Caution 

u 
Hazaiti 
• 

Caution 

o 
Hazard 
a 

Adapted from State of Washington Department of L a t a and industries Ergonomics Rule 
See:h'lp:ilW^*^lra,wa,gov '̂»isha^eriEt'̂ erggfy^e,^^lt^^^^ 
This version, includes some format changes, inclusion of caution zones and revisions to ifting and vibration 
sections. See hte/fw^W.hs&asf.WitfHtertaTtfefagiwIa for electronic copy of form. 

Figure 7 WISHA checklist for musculoskeletal disorders (cont.) 
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WISHA Checklist for Worts-Related Musculoskeletal Disorders 6 

Heavy, Frequent or Awkward Lifting 

Body Part 

Back and 
shoulders 

Physical Risk Factor 

Lifting 75 or more 
pounds 

tiffing 66 or more 
pounds 

Liffcg more than 10 
pounds 

LifBng: more tha i 25 
pounds 

Combined with 

No ether risk factors 

Mo other risk factors 

More than 2 l ines per 
minute 

Above the shoulders 
Below f i e knees 
At arm's length 

Duration 

One or more times per day 

More than 10' Smes per 
day 

More tfcars 2 hours total 
perday 

Mow Shan 25 imes per 
day 

WISHA Lifting Analysis - Perform if mny Caution condition exists. 
Actual Weight is greater than f i e ¥feight Limit 
(See separate work sheet) 

Check (V) as 
applicable 

Caulcm 

a 

Caution 

• 
Caution a 
Gaulon 

a 
Hazard 

Q 

Moderate to High Bancf-Arm Vibration 

Body Part 

Hands, 
wrists, and 
elbows 

Physical Risk Factor 

Using Impact wrenches, carpet strippers, chain 
saws, percussive tools §ack hammers, scalers, 
riveting or (Shipping hammers} or other hand tools 
that iypicaly have high visrafion levels 

Usirtg grinders. Sanders, f g saws or other hand 
tools that typically have moderate vibration levels 

Duration 

'More than 30 minutes total 
per day 

More ttsas 2 hours total 
perday 

WISHA. HAV Analysis - Perform if any Camfen condition exists. 
Aoijjal exposure time is greater than the Hazard Lewei Exposure Time 
(See separate work sheet) 

Check ( V ) as 
applicable 

Caulom 

Q 

Caution 

Q 

Hazarf 

Adapted from State of Washington Department of Labor and Industries Ergonomics Rule 
See h:to ;,www l!1•,w3,3C•v '̂wist̂ a''en>3•'erQ^^•[le.l̂ t'', 

This version includes some format changes, inclusion of caution zones and revisions to lifting and wbraiort 
sections. Saa i t e ^ a w tun. jsf.erfi./~thg-fi.5-d,'K-jpti-/rik for elastforfe cnpy of fawn 

Figure 7 WISHA checklist for musculoskeletal disorders (cont.) 
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fWISHA Lifting Analysts 1 

Job Lifting recycling box 

Notes 

lifting paper recycling box -full te shift 

Date 
1OTO4/2O08 
Anaiystjs) 

Saba Pasha 

The fiRing analysis on the felowwig page is perferwjed: when one or rwre of t i e Caution Level Job risk factors in the 
following checklist is present This ohes*fet is taken from ihe adapted WISHA eheottst. 

Heavy, Frequent or Awkward Lifting 

Body Part 

Bscfcartd 
shasiders 

Physical Rls* Factor 

tiffing 75 or mere 
pounds 

tifSFsg 55 or more 
pounds 

lifting more than 10 
pounds 

Ufiing m « than 25 
pounds 

Combined with 

No other risk factors 

No sifter risk factors 

More than 2 times per 
minute 

Above the shoulders 
Below t i e (treees 
At arm's length 

Duration 

One w more limes per day 

More than 10 times per 
day 

More JtiBn 2 hours total 
.per day 

More than 25 times per 
day 

WISHA USing Analysis - Perform If any Caution eccjdlion exists. 
Aetoal Weight (Step 1J» greater fhari the Weight Limit {Sep 4) 
(See separate work sheet} 

Check ( / ' ) as 
applicable 

Cauloo 

Q 

Caution 

Q 

Caution 

a 
Caution 
o 

Hazard 

a 

Adapted from. State of Washington Department of Laser and Industries Brgonwiscs M e 
Seehlto:#wwwtff.wa.gprf»isha%ri»ferBOfUte.ritm 
This version focuses on (he Wing sedan. See w<y<^hsc.ugf.eriwMb6mardferaatoois for efecirccjic copy of form. 

Figure 8 WISHA lifting analysis 
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WISHA Lifting Analysis 
This analysis pertains to jobs a#iere employees lift 1Q lbs. or more. 

Find out the actual weight of 
objects that the employee lifts. 

Find the Limit Seduction Modifier. Find out how raany 
times the employee lite per minute and Ihe total raun*er 
of hours per day sperti Sifting. Use this information to 
look up she Limit Reduettort Modifier h the table below.. 

Actual Weight = lbs. 

Determine the Unadjusted 
Weight Limit , Where are the 
employee's hands when ihey begin to 
Kfl or lower the object? Mark that spot 
on the diagram below. The number in 
that box is the Unadjusted Weight Limit 
in pounds. 

Above 
shoulder 30 

! , , | | 7 « SO! 40 

Waist to \ ( '[/,[ j 4 T ; 

I' ?-h 
K n * « to 'j / }90 |B6-
waist 11 I i| 

Below :., 
kiw» '\ ' 170! 50 

Unadjusted Weight Limit. lbs. 

How many lifts 
per minute? 

1 lift every 2-5 mins. 

1 lift every irir> 

2-3 Jrte e w y rrih 

4-Siifeweiymlrt 

6-? ids ewsy rrfc 

8-8 Kite every nwt 

10+ lifts every mm 

For how many hours per 

1 hroriiess 

1.0 

085 

0.8 

085 

0.75 

Q.8 

D.3 

1hrto.2itrs 

0.06 

0.8 

0.85 

0.7 

0.5 

0.35 

02 

day? 

2 hrs or more 

0.S5 

0.75 

0J85 

0.45 

0.25 

0.15 

(M9 

Note; For iffeg done fess. than once every five use 1.0 

/ ' ' " s t a P i ' S Calculateth-eWeight 
V^~_3- -~ ' ' Unadjusted Weight l en t 

Limit. Start by copying Hie 
fromS*ap2. 

If t ie 

Unadjusted Weight Limit: =_ 

ists mwe than 45 degiees 
_ .reduce the Unadjusted Vtfe^ht Limit 

by multiplssig fey B.8&. (Mmmms, «se f ie 
Unadjusted Weight limit 

Twisting Adjustment: = 

likrtlply lite Adjusted Weight Lirsiit by Ihe Unit 
Reduction Rfcdiier font Sep 3 to get ihe 
Weight LirtL X 

Limit Reduction Modifier: _ 

Weight Limit: = 

j ^ w ^ s " * ^ Is this a hazard? Compare the Weight Unit calculated in 
»_^ZL-»^ Step 4 with Ihe ActoalWeigW lifted frora Step t . If the Step 4 with the Actual Weight lifted from Step 1 

Actual Weight lifted is greater than the Weight Limit 
cafcylsled. then the lifting is a WM5D hazard. 

Mote: If l ie jofe involves lifts of objects 
i above to: 

vtfharMriberof am*or fccei a number of d 

1. AnJjyze Ihe two worst case His 
2, Analyse ihe most commonly 

Ihe heaviest object lifted ami. 8ie lit done in the roast awkward posture. 
' l i . in Step 3, use f ie frequency and suraton for al[ of t ie tiffing dane a a typical 

Adapted from State of Washington Department of Labor and industries Economies UtM. 
.Seehtto://www..lrtiwa.acyrfawsri^'«j)»/ergafyle.hto 
This, version focuses on the liSing section. See www.fase.ysf,.eduf~tfesrriar^%raotoels far ele.otrorao copy of form. 

Figure 8 WISHA lifting analysis (cont.) 
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Table 8 shows the result for lifting a 60 N box from the ground, 7" in front of the body, to 

above shoulder level, 7" in front of the body and lifting a 130 N load, 7" in front of the body, to 

between knuckle and shoulder height, 12" in front of the body. The task is considered as 

infrequent and symmetric lifting. Only the starting and ending positions are analyzed. 

Table 8 WISHA lifting analysis 
Analysis steps 

Stepl: Actual weight 
Step2: Unadjusted weight limit 
Step3: Limit reduction modifier 
Step4: Weight limit 
Step5: Is this a hazard 

60 N 
Start 
131b 
70 
1 

70 
No 

End 
131b 
40 
1 

40 
No 

130N 
Start 
301b 

70 
1 

70 
No 

End 
301b 

40 
1 

40 
No 

As the results show, the WISHA lifting analysis determines no hazard condition 

for these certain lifting tasks. If the lifting is 1 lift/minute for 2 hours or more the limit 

reduction modifier is 0.75 and the weight limit of 40 changes to 30 lb, which is still 

considered no hazard. The WISHA lifting analysis does not take into account body 

posture. Destination, origin and actual weights are the most important factors. The same 

conclusion can be drawn from the Heavy, Frequent or Awkward lifting section of the 

WISHA checklist. 

3.3.2 REBA worksheet 

The Rapid Entire Body Analysis (REBA) employee assessment worksheet was 

developed by Hignett and McAtamney in 2000. It takes into account the postures of the 

neck, trunk and legs to calculate a trunk posture score, the posture of the arms and wrists 

to calculate an upper arm score as well as force, coupling and activity score to determine 

the REBA score. The higher the REBA score the higher the risk. The REBA worksheet is 

shown in the following figure. 
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The various angles that are used in the REBA analysis were determined based 

upon visual observation. During all lifting tasks the head remains more or less neutral 

relative to the trunk. When picking up the box, the trunk is almost horizontal and the legs 

straight during hip-lifting, while the trunk is in the 20-60° range and the knees completely 

bent during knee lifting. Leg flexion in knee joint is more than 60 degrees in knee lifting 

but straight knee for hip lifting method. In the ending position trunk and legs are about 

vertical. 

The knee lifting and hip lifting tasks analyzed. Forearm, upper arm and wrist 

position for upper limb analysis and leg flexion for lower limb studied. Depending on the 

bin height and the performer anthropometrics data, arm flexion angle changes. For a 

mobile garbage collecting bin, upper arm flexion is between 20-45 degrees and forearm 

position is between 60-100 degrees from vertical position. Wrist flexion is in the range of 

±15 degrees in frontal plane in the ergonomic posture. 

Finding the scores in tables A, B and C result the final scores. Table 9 shows the 

scores for the knee lifting and hip lifting methods with a 60 N hand load picking up the 

box at ground level and ending just above shoulder level, and for lifting a 130 N load 

using the knee lifting method applied from ground level to between knuckle and shoulder 

height. 
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Table 9 REBA analysis 
Analysis steps 

Step 1: neck score 
Step 2: trunk score 
Step 3: leg score 
Step 4: table A score 
Step 5: load score 
Step 6: score A 
Step 7: upper arm score 
Step 8: lower arm score 
Step 9: wrist score 
Step 10: table B score 
Step 11: coupling score 
Step 12: score B 
Step 13: activity score 
Table C score 
REBA score 
risk 

60 N 
Start, knee lifting 

2 
3 
3 
6 
1 
7 
2 
2 
2 
3 
0 
3 
1 
7 
8 
high 

Start, hip lifting 
2 
4 
1 
5 
1 
6 
1 
2 
1 
1 
0 
1 
1 
6 
7 

medium 

End 

2 
4 
2 
2 
6 
0 
6 
1 
4 
5 

medium 

130 N, 
Start 

2 
3 
3 
6 
2 
8 
2 
2 
2 
3 
0 
3 
1 
8 
9 
high 

cnee lifting 
End 

1 
1 
1 
1 
2 
3 
3 
2 
2 
5 
0 
5 
1 
2 
3 
low 

The REBA analysis shows that the risk at the start is always higher than at the end 

of the lift. The knee-lifting and hip lifting methods at the starting posture have a high risk 

and the lifting task should be changed. Also the weight increases at the second task but 

ending posture for lifting the 130 N load has lower risk because of lower destination 

level. 

3.3.3 Library Mutual manual material handling tables 

The Liberty Mutual checklists (Liberty Mutual, 2008) are used to determine what 

percentage of the male or female working population can perform a manual material 

handling task. Tables are defined based on the task characteristics as lifting, lowering, 

carrying, pulling and pushing, with separate tables for males and females. To analyze a 

lifting task, one must first determine where the lift ends, e.g. between knuckle and 
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shoulder height or above shoulder height. Next the distance of the hands in front of the 

body, the object weight and the vertical distance travelled must be determined. Finally, 

the frequency of lift must be specified. The average female is lifting a 60 N (13 lb) 

storage box to an ending position above the shoulders. The average male is lifting a 130 

N (30 lb) recycling box to a level just below the shoulders. The Liberty Mutual tables for 

lifting do not list object weight of 13 lb for females and 30 lb for males, so values of 14 

lb and 32 lb respectively are used. The table below shows an extract of the Liberty 

Mutual tables for these values. 

Liberty Mutual Manual Materials Handling Guidelines 

TABLE 2M - MALE POPULATION PERCENTAGES FOR LIFTING TASKS 
EHOWe BETWEEN KMUCKLE AND SHOULDER HEIGHT (231" AND <57"J 

KAMD 
DISTANCE 

FREQUENCY 
QUE LIFT EVERY 

7 IHOHES 

15s 33 s tia Sm 8t> 

W INCHES 

tSs 33 * W 9m tts 

15 INCHES 

15s 30 s Ira $m a t 

Object weight D 39 
21! 
10 

5-
87 
+-

87 

* 
* 

* 
• 

* 

+ 
+ 

* 

+ 
+ 
f 

77 
81 
SS 

« 
u 
+ 

85 
+ 
+ 

m 
+ 
+ 

* 
* 
- * • 

53 
61 
7 i 

W 
69 
82 

70 
79 

m 

7* 

m 
+ 

37 
+ 
+ 

Liberty Mutual Manual Materials Handling Guidelines 

TABLE 3F - FEMALE POPULATION PERCENTAGES FOR LIFTING TASKS 
EMDIMQ ABOVE SHOULDER BEISHT {>53") 

HAND 
DISTANCE 

FREQUENCY 
ONE LIFT EVERY 

7 INCHES 

is* 30» tra SRI as 

10 INCHES 

15* 331 1m Sis S3 

15 INCHES 

19B 30 s SHI 5 B S I 
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Figure 10 Liberty Mutual manual materials handling guidelines for specified task 

If the lifts occur once every 5 min or less frequently and the hand distance is 10" 

or less 100% of the female population is able to perform this task. If the hand distance is 

15", and taking the maximum travel of 30", 73% of the female population can perform 

this task. The same conclusions can be drawn for the male subjects lifting the higher 
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weight, except that 74% of the male population can perform the lifting task at 1 lift per 5 

min and a hand location of 15". 

Table 10 Liberty Mutual analysis 

Object weight (Pounds) 
Lifting distance (inches) 
Hand distance (inches) 
Frequency (one lift every) 
Population capable (percentile) 

Female 
14 
30 
15 
5 min 
73 

Male 
32 
30 
15 
5 min 
74 

3.3.4 NIOSH lifting equation 

The NIOSH Work Practices Guide for Manual Lifting was first published in 1981 

and revised in 1994. (NIOSH, Applications Manual For the Revised NIOSH Lifting 

Equation, 1994) The NIOSH lifting equation uses object weight (L), hand location at 

origin and destination (H and V), total vertical load translation (D), asymmetric twisting 

of the back (A), frequency, duration and object coupling with the hands to calculate the 

recommended weight limit (RWL) for a lifting task. The lifting index (LI) is evaluated by 

dividing the original weight (L) by RWL. The lifting index is calculated separately at the 

origin and the destination. For RWL higher than 1, more caution is needed. 

The NIOSH lifting equation can be expressed as follows: 

RWL= LC*HM*VM*DM*AM*FM*CMand LI = L/RWL 

where LC is the load constant (23 kg), HM is the horizontal multiplier, VM is the 

vertical multiplier, DM is the distance multiplier, AM is the asymmetry multiplier, FM is 

the frequency multiplier and CM is the coupling multiplier. All multipliers have values 

between 0 and 1. In the case of infrequent lifting FM = 1. Since the storage box and the 

recycling box have good handles, CM = 1. The table below evaluates the multipliers and 
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calculates the lifting index for the case where an average female lifts the 60 N storage 

box and an average male lifts the 130 N recycling box. Note that H is the horizontal 

distance in front of the ankles. 

Table 11 NIOSH lifting analysis 

L,kg 
H, cm 
V, cm 
D = Vend - Vgtart, Cltl 

A, degrees 
LC,kg 
HM = 25/H 
VM = 1 - 0.003 V-75 
DM = 0.82 + 4.5/D 
AM = 1 - 0.0032A 
FM 
CM 
RWL 
LI = L/RWL 

Start 
6 

35 
20 

End 
6 

35 
150 

130 
0 

23 
0.71 
0.84 
0.85 

1 
1 
1 

11.65 
0.52 

0 
23 

0.71 
0.78 
0.85 

1 
1 
1 

10.82 
0.55 

Start 
13 
35 
27 

1] 
0 

23 
0.71 
0.86 
0.85 

1 
1 
1 

11.94 
1.09 

End 
13 
70 
140 

13 
0 

23 
0.36 
0.81 
0.85 

1 
1 
1 

5.70 
2.28 

As can be seen in the table, only the ending position of the 130 N lift is cause for 

concern, mostly because of the long forward reach at that point. The NIOSH lifting 

formula presents the same results for knee lifting and hip lifting because all the factors 

remain the same. That is a drawback when using the NIOSH method for different 

methods of lifting because it does not consider body posture; only hand locations at the 

start and the end. 

3.3.5 Comparison of the checklists results 

Four checklists were used to evaluate the lifting of a 60 N storage box above the 

shoulder level by an average height female and a 130 N recycling box between shoulder 

and knuckle by average height males. The table below summarizes the results: 
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Table 12 Checklist comparison 

WISHA 
REBA 
Liberty 
Mutual 
NIOSH 

60 N load, female 
Start, knee lifting 
OK 
High risk 

Start, hip lifting 
OK 
Medium risk 

End 
OK 
Medium risk 

Acceptable for 73% of female workers 

OK OK 

130N 
Start 
OK 
High risk 

oad, male 
End 
OK 
Low risk 

Acceptable for 74% of 
male workers 

OK Caution 

Above table shows that the ergonomic checklists give very different results. The 

NIOSH and WISHA lifting analyses show that there are no problems. This is also 

confirmed by the Liberty Mutual analysis, which indicates that about three quarters of the 

workers can perform the specific lifting task. The REBA analysis, on the other hand, 

shows medium or high risk for most cases. This is because REBA puts a lot of emphasis 

on the posture. 

The following table shows the differences between these checklists and compares 

the sensitivity level for different worksheets. 

Table 13 Checklists comparison table 
sensitivity 
WISHA 
REBA 
Liberty Mutual 
NIOSH 

Gender 
poor 
poor 
excellent 
poor 

Population 
poor 
poor 
excellent 
poor 

Posture 
good 
excellent 
poor 
poor 

Task frequency 
good 
good 
good 
excellent 

Weight 
excellent 
good 
good 
excellent 

3.4 Biomechanical Analyses 

A number of different software packages were used to do a biomechanical 

analysis of the experiments performed. LifeMOD allows for a dynamic analysis and is 

used to determine the lumbar loading and shoulder load while an average female lifts 2 or 

60 N using the knee or hip lifting method. LifeMOD also calculates joint angles as a 

function of time during the lifting activity. These joint angles are used as input to 
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3DSSPP (3D Static Strength Prediction Program) and CATIA to do a quasi-static load 

analysis at the start and the end of the lift. In order to do an analysis in LifeMOD the 3D 

coordinates of specific body markers needs to be supplied. An OptiTrack system, 

acquired in winter 2008, was used to capture these data. The following section describes 

the motion capture using this system. The sections thereafter present and discuss the 

results of the analysis using LifeMOD, 3DSSPP and CATIA. In the final section 

LifeMOD is used to do a kinematic analysis of average males lifting a 130 N recycling 

box. 

3.4.1 Motion capture using the OptiTrack system 

The OptiTrack system, acquired in winter 2008, can be used to obtain 3D 

coordinates of body markers from a subject while the subject performing a certain task. 

The cameras are synchronized and collect data at the rate of 100 frames per second. The 

following figure shows a typical experiment set up, cameras and connections, a subject in 

a body suit with markers and a recycling box used as the weight during the experiment. 

The frame in the picture indicates the height that the box must be lifted. The following 

figure shows the set up. 
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'A 

Figure 11 Experiment set up 

Following figure presents a close-up of an OptiTrack camera, a 1.5" 

Velcro base with a 7/16" spherical reflective marker, and the calibration wand and 

calibration square. 

Figure 12 Calibration devices 

a-Calibration wand, b- Calibration square, 
c- OptiTrack camera, d- Marker with Velcro base 

50 



Description of the experimental setup 

At least three cameras are necessary to obtain the 3D coordinates of a marker. 

Because markers are placed on the front, the back, the left side and the right side of the 

subject a total of six cameras is used. The six cameras are located in a rectangular area, 

510 by 420 cm, to create the work space. Their height, orientation and tilt angle are 

selected such that the work volume contains all the markers during the lifting task. As can 

be seen in figure 11 the cameras are placed on tall tripods which vary in height from 195 

cm for the back and front cameras to 230 cm for side cameras. Because the cameras have 

a wider field of view (FOV) in the horizontal than in the vertical position, the horizontal 

position is used for the motion capture. The camera head tilt angle chooses depends on 

the camera location and the area that is supposed to cover. This angle varies from 30 to 

50 degrees depending on the camera. The cameras are connected by external 

synchronizing cables in such a way that the output (sync out) of the first camera connects 

to the input (sync in) of the second camera and so on. Note that no connection is made 

from the last one back to the first one. The connection between each camera and the 

computer is by a USB cable via a standard USB hub. 

System Calibration 

After the cameras have been positioned and all the connections have been made, 

the cameras must be calibrated to be ready for motion capturing. The OptiTrack point 

cloud calibration software is run to calibrate the cameras. There are two steps to calibrate 

the cameras. In the first step the calibration wand (see figure 12) is moved around to 

define the work volume. The wand should move in along the path at a medium speed to 
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cover all the performance area. In the next step the calibration square is placed on the 

ground, making sure the square is level, to define the coordinate system. 

Procedure for data collection 

First the subject must put on the black body suit. Next reflective markers are 

attached to the suit through Velcro bases. For the lifting experiments carried out as part of 

this research 18 marker positions were chosen to define the movement as follows: 

shoulders, elbows, wrists, T4, L5, hips (actually ASIS), knees, ankles, heels and the first 

metatarsal joints provide this set of markers. 

The OptiTrack rigid body software monitors the marker movement as bright dots 

on the screen. The following figure shows the screen output and the subject in the 

standing position with 18 markers. 

Figure 13 Subject with 18 markers 
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During data capture problems may arise. These include losing markers or 

observing extra markers. An extra marker may appear because the cameras may pick up 

the reflection of an object other than one of the 18 markers in the screen. Covering these 

reflective points can help to get better results. Sometimes poor calibration provides extra 

shiny points in the screen. In this case recalibrating the cameras is the solution. 

Losing markers is another problem. Markers may be covered by the recycling 

box, bar or other body parts or two markers may overlap and thus seen as one. 

Rearranging the cameras can help get better results, though this also requires 

recalibration. In some cases, the cameras are not able to get all the markers during the 

task even by changing the camera position. In this case, the spline interpolation in 

MATLAB is applied to obtain good estimates for the X, Y and Z coordinates of the lost 

marker. Three interpolations need to be applied for each lost marker, namely between 

time or frame number and X and Y and Z coordinate separately. 

After data collection, the marker coordinates can be output using the comma 

separated format. However, there is no guarantee that the markers appear in the same 

order from one frame to the next. Because the cameras sample at 100 Hz and the 

movements are relatively slow, there is little change in marker coordinates from one 

frame to the next. To get these data in order, a code used in the MATLAB to compare the 

x, y and z coordinates in sequential frames for a single marker. Depending on the 

movement speed, a number of the order of 0.1 is chosen as the maximum allowable 

difference of the coordinates of a single marker coordinates in two sequence frame. If the 

markers are not in the same order, the difference is usually much larger than 0.1 and the 

marker order must be switched. 
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Real time tracking of the subject is one of the advantages of this equipment. The 

recorded movement can be saved and played back frame by frame and unnecessary 

frames can be deleted. Markers attachments do not cause any limitation on object 

movement and the task can be done in a natural way. The possibility of replaying the 

motion in the software can help to define and verify the movement. 

3.4.2 Biomechanical analysis using LifeMOD 

To do a biomechanical analysis in LifeMOD, it requires as input 3D coordinate 

data of specific body markers as a function of time. For the lifting experiments carried 

out as part of this research, 18 marker positions were chosen, namely: shoulders, elbows, 

wrists, T4, L5, hips (actually ASIS), knees, ankles, heels and the first metatarsal joints 

provide this set of markers, as discussed in the previous section. The OptiTrack package 

(cameras and software) was used to record the body movement during the lifting tasks 

and obtain the required marker/joint coordinates. Two methods for load lifting were 

studied: knee lifting and hip lifting and for each two sets of hand loads, 2 and 60 N, were 

studied, and two destination levels, waist level and above shoulder level. The lifting 

occurred in the sagittal plane and the total hand load was divided equally over the two 

hands. The study can be categorized in four groups: 

Results A: Knee lifting destination waist level, 2 N and 60 N hand load. 

Results B: Hip lifting, destination at waist level, 2 N and 60 N hand load. 

Results C: Knee lifting, destination above shoulders, 2 N and 60 N hand load. 

Results D: Hip lifting, destination above the shoulders, 2 N and 60 N hand load. 

Dolan et al. (1994) showed that the greatest peak in back muscle activity during 

the lifting task occurs when the person picks up the weight. The current research studies 
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the lumbar compression force and torques, as well as shoulder torques. All the graphs 

show high error values and many unrealistic peaks especially at the end of the task, which 

is performed at a higher speed compared to the rest of the task. The following sections 

present the LifeMOD results. During the first part of each graph the subject bends down 

from a standing position. The vertical line plotted in the figure shows the moment that the 

box is picked up. This picking up time was derived by running the animation in the 

LifeMOD software. The value immediately after this line is the time when the lumbar 

force and torques or the shoulder torques were evaluated. 

Results A: Knee lifting method, floor to waist level 

The knee lifting method with waist destination has been modeled in this section. Two 

different hand loads are used. A 2 N hand load is used as a light load for lifting and 60 N 

is chosen to represent heavy hand loading. 

Knee lifting, floor to waist level for 2 N hand load 

Compression force, lumbar moments in all planes and shoulder torques are shown 

in the following graphs. The picking up happens at 2.3 seconds, indicated by the vertical 

line. 
JOINTS 
force 

Figure 14 Lumbar compression force-knee lifting method, 2 N hand load 
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The next plot shows the lumbar torques in three planes. 
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Figure 15 Lumbar sagittal, transverse and frontal torque- knee lifting method, 
2 N hand load 

The sagittal torque is presented as a continuous line and the transverse and frontal 

torques are shown as big and small dashed lines respectively. At the picking up moment, 

the sagittal torque is 50 N-m. The frontal and transverse torques are 20 and 5 N-m, as 

shown in the graph. The sagittal torque has the greatest value. 

The following graph shows the shoulder torques in the sagittal, transverse and 

frontal planes. 

20.0 

JOINTS 
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Figure 16 Sagittal, frontal and transverse torque at right shoulder, knee lifting 
method, 2 N hand load 
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The total torque at the shoulder joint is calculated from these three vector 

components. The sagittal torque is presented as a continuous line and the transverse and 

frontal torques as big and small dashed line respectively. 

At the picking up moment, the sagittal torque is 5 N-m. The frontal and transverse 

torques are 12 and 2 N-m as shown in the graph. The frontal torque has the greatest 

value. 

Knee lifting, floor to waist level for 60 N hand load 

Compression force, lumbar moments in all planes and shoulder torques are shown 

in following graphs. The picking up happens at almost the third second. The vertical line 

in the middle shows the moment that the lifting task started. The peak value at the 

picking up moment shows the greatest lumbar compression force. 
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Figure 17 Lumbar compression force-knee lifting method, 60 N hand load 

The torque in the sagittal plane has the greatest value among lumbar torques in 

three planes. There is no clear peak at the third second for transverse and frontal torques. 

The lumbar torques in the three planes are 100, 20 and 25 N-m respectively. 
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Figure 18 Lumbar sagittal, transverse and frontal torque-knee lifting method, 
60 N hand load 

The next graph presents the shoulder torque in three planes. The maximum torque 

appears in the frontal plane and the magnitude is 20 N-m. 
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Figure 19 Sagittal, frontal and transverse torque at right shoulder, knee lifting 
method, 60 N hand load 
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Comparison of knee lifting, floor to waist level 

The next table shows lumbar torques and forces and shoulder torques at the pick 

up moment for two different hand loads for the knee lifting method. 

Table U 
Force 
and 
torque 

2N 
60 N 

Knee lifting method lifting to waist level, 
Lumbar 

compression, 
N 

560 
820 

Lumbar torque, N-m 
sagittal, transverse, 

frontal —> vector sum 

50, 5,20-> 54.1 
100,20,25-^105 

values at pickup moment 
Shoulder torque, N-m 

sagittal, transverse, frontal 
—» vector sum 

5,2, 12-> 13.2 
5, 3,25-> 25.7 

When the load increases, lumbar compression force, lumbar torques and shoulder 

torques all increase. The sagittal torque is the greatest component for the lumbar moment, 

while for shoulder torque the frontal torque is largest. 

Results B: Hip lifting method, floor to waist level 

The hip lifting method with waist destination is modeled in this section for 2 and 

60 N hand loads. 

Hip lifting, floor to waist level for 2 N hand load 

Compression force, lumbar moments in all planes and shoulder torques are shown 

in following graphs. The picking up happens at 3.75 s. The vertical line in the middle 

shows the moment that the lifting task starts. The peak value at the picking up moment 

shows the greatest lumbar compression force. 
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Figure 20 Lumbar compression force-hip lifting method, 2 N hand load 

Lumbar sagittal torque after the vertical line is equal by 50 N-m. Compared to the 

knee lifting method, the sagittal torque does not change. The transverse torque is 10 N-m 

which is two times greater than transverse torque for knee lifting method and the same 

hand loading. The frontal torque increases 20%. 
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Figure 21 Lumbar sagittal, transverse and frontal torque, hip lifting method, 2 N 
hand load 
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Shoulder torques are plotted in the following graph. 
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Figure 22 sagittal, frontal and transverse torque at right shoulder, hip lifting 
method, 2 N hand load 

Hip lifting waist level for 60 N hand load 

Compression force, lumbar moments in all planes and shoulder torques are shown 

in following graphs. The picking up happens at 3.7 seconds. The vertical line in the 

middle shows the moment that lifting task started. The peak value at the picking up 

moment shows the greatest lumbar compression force. 
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Figure 23 Lumbar compression force-hip lifting method, 60 N hand load 
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The sagittal torque at pick up moment is about 75 N-m. The transverse lumbar 

torque is about 30 N-m. Another peak appears at 0.5 second and is about 45 N-m in 

positive direction. The frontal lumbar torque is about 45 N-m. 
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Figure 24 Lumbar sagittal, transverse and frontal torque-hip lifting method, 
60 N hand load 

The sagittal torque at pick up moment is about 10 N-m. The transverse torque is 

about 1 N-m. The frontal torque has the maximum value which is about 25 N-m. 
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Figure 25 Sagittal, frontal and transverse torque at right shoulder, hip lifting 
method, 60N hand load 
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Comparison of knee lifting, floor to waist level 

The next table shows lumbar torques and forces and shoulder torques at the pick 

up moment for two different hand loads for the knee lifting method. 

Table 15 Hip lifting method lifting to waist level, values at pickup moment 
Force 
and 
torque 

2N 
60 N 

Lumbar 
compression, 

N 

680 
800 

Lumbar torque, N-m 
sagittal, transverse, frontal 

—> vector sum 

50,10,25-> 56.8 
75, 30, 45 -* 92.4 

Shoulder torque, N-m 
sagittal, transverse, frontal 

—> vector sum 

3,1,8 -> 8.6 
10, 1,20-> 22.3 

When the load increases, lumbar compression force, lumbar torques and shoulder 

torques all increase. The sagittal torque is the greatest component for the lumbar moment, 

while for shoulder torque the frontal torque is largest. 

Result C -Knee lifting destination level above the shoulders 

The knee lifting method for destination above the shoulders in this section. Two 

different hand loads are used. A 2 N hand load is used as a light load for lifting and 60 N 

is chosen to represent heavy hand loading. Having higher destination level in this lifting 

task, the subject chooses a higher acceleration at pickup moment. 

Knee lifting above the shoulder level for 2 N hand load 

Compression force, lumbar moments in all three planes and shoulder torques are 

shown in following graphs. The picking up happens at 3 seconds. In this movement, the 

subject performs the lifting task at a higher speed and the box is located 5 cm farther 

from the tip of the feet compared to the situation where the box was lifted to the waist 

level. 
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Figure 26 Lumbar compression force, knee lifting method, 2 N hand load 

The second graph shows a larger peak after picking up moment for sagittal 

lumbar torque. It might be caused by an unusual movement during the capturing data. 

The lumbar sagittal torque is 75 N-m when lifting task starts but the maximum value at 

the middle posture is almost 110 N-m. The peak value for transverse torque is 10 N-m. 

For the lumbar frontal torque, the torque is about 15 N-m at the lifting moment. 
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Figure 27 Lumbar sagittal, transverse and frontal torque, knee lifting method, 
2 N hand load 
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The sagittal torque at pick up moment around the shoulder joint is about 10 N-m. 

The transverse torque is almost zero. The frontal torque has a value about 8 N-m. 

Time (sec) 

Figure 28 sagittal, frontal and transverse torque, knee lifting method at right 
shoulder, 2 N hand load 

Knee lifting destination above shoulder level for 60 N hand load 

Compression force lumbar moments in three planes and shoulder torques are 

shown in following graphs. The picking up happens at 2.70 seconds. 
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Figure 29 Lumbar compression force, knee lifting method, 60 N hand load 
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The sagittal torque at pick up moment is about 80 N-m. The transverse torque is 

10 N-m and the frontal torque has a value about 15 N-m. 
JOINTS 
torque 

— — - j.ymbar-torque»s<a3ittai 
~~ "—• _Lumbar-torque-transverse 
" " ~ ~ J..ufribar-torque-f rontfli 

Figure 30 Lumbar sagittal, transverse and frontal torque, knee lifting method, 
60 N hand load 

The sagittal torque at pick up moment around the shoulder joint is about 10 N-m. 

The transverse torque is almost zero. The frontal torque has a value about 20 N-m, which 

is the only torque magnitude that significantly has changed comparing to the last loading. 

Time (sec) 

Figure 31 Sagittal, frontal and transverse torque at right shoulder, knee lifting 
method, 60 N hand load 
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Comparison of knee lifting, destination above the shoulder 

The next table shows lumbar torques and forces and shoulder torques at the pick 

up moment for two different hand loads for the knee lifting method. 

Table 16 Knee lifting method lifting to shoulder level, values at pickup moment 
Force 
and 
torque 
2N 
60 N 

Lumbar 
compression, 

N 

650 
750 

Lumbar torque, N-m 
sagittal, transverse, frontal 

—> vector sum 

70, 10, 15-> 72.3 
80, 10, 40-> 90 

Shoulder torque, N-m 
sagittal, transverse, 

frontal —> vector sum 

1,1, 10-> 10.1 
12,2, 18-> 21.7 

When the load increases, lumbar compression force, lumbar torques and shoulder 

torques all increase. The sagittal torque is the greatest component for the lumbar moment, 

while for shoulder torque the frontal torque is largest. 

Result D - Hip lifting destination level above the shoulders 

The hip lifting method for destination above the shoulders in this section. Two 

different hand loads are used. A 2 N hand load is used as a light load for lifting and 60 N 

is chosen to represent heavy hand loading. 

Hip lifting above shoulder level for 2 N hand load 

Lumbar compression force and lumbar and shoulder torque in three planes are 

shown in following graphs. The picking up happens at 4.6 seconds. The vertical line in 

the graph indicates this moment. The peak value at 4.6 seconds is not the greatest value. 

Surprisingly, two greater peaks appear before the lifting task start. Rapid movement and 

marker dislocation especially at spine area causes this kind of errors. 
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Figure 32 Lumbar compression force, hip lifting method, 2 N hand load 

Lumbar torques in sagittal, transverse and frontal planes are presented in the 

following figure. In sagittal plane, two peaks appear almost at 0.5 second before and after 

the first second that evidently shows an abnormal trend in graph behavior. 
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Figure 33 Lumbar sagittal, transverse and frontal torque, hip lifting method, 

2 N hand load 

These peak values occur at the same times as in lumbar compression force graph. 

The lumbar sagittal torque at picking up moment is 110 N-m. As seen before the 
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transverse torque has the smallest value among lumbar torques, which in this case is 

almost zero. The frontal torque does not show a clear torque at peaking up moment. 

Next graph presents the shoulder torques. The sagittal torque increases by 

increasing the elbow flexion. The frontal torque has the greatest value in shoulder torques 

as seen before. Transverse torque has almost a uniform trend and the value at the picking 

up moment is near zero. 
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Figure 34 Sagittal, frontal and transverse torque at right shoulder, hip lifting 
method, 2 N hand load 

Hip lifting destination above shoulder level for 60 Nhand load 

Lumbar compression force and lumbar and shoulder torque in three planes are 

shown in following graphs. The picking up happens at 4.65 seconds. The vertical line in 

the graph indicates this moment. Lumbar compression force is shown in the following 

graph. At the moment which lifting task starts, the graph shows a high peak (850 N) that 

decreases gradually and by end of the task reaches 450 N. 
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Figure 35 Lumbar compression force, hip lifting method, 60 N hand load 

Next graph presents the lumbar torques in three planes. The sagittal torque right 

after the pick up moment is about 130 N-m. The transverse torque is 20 N-m and the 

frontal torque has a value about 30 N-m. Again, it is noticed that frontal torque does not 

show any clear peak at picking up moment. 

100.0 

0.0 

-100.0 

-200.0 

-300.0 

JOINTS 
torque 

_Lumbar-torc(ue-saglal 
_Lumbar-torque-transverse 
...Lumtar-torque-frorital 

3.0 4.0 
Time (sec) 

Figure 36 Lumbar sagittal, transverse and frontal torque, hip lifting method, 60 N 
hand load 
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Shoulder torques at peak up moment are 15, 8 and 2 N-m respectively in frontal, 

sagittal and transverse planes. 
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Figure 37 Sagittal, frontal and transverse torque at right shoulder, hip lifting 
method, 60 N hand load 

Following table presents the result for hip lifting method and the destination level 

above the shoulder for three different hand loading. This movement performs at a higher 

speed comparing to the lifting task with destination at the waist level, which help the 

subject to provide enough force to accomplish a longer lifting task. 

Comparison of hip lifting, destination above the shoulder 

The next table shows lumbar torques and forces and shoulder torques at the pick 

up moment for two different hand loads for the knee lifting method. 

Table 17 
Force 
and 
torque 
2N 
60 N 

Hip lifting met 
Lumbar 

compression, 
N 

800 
860 

lod lifting to shoulder leve 
Lumbar torque, N-m 
sagittal, transverse, 

frontal —> vector sum 
110, 5, 30-> 114.1 

130, 20,30-> 134.9 

, values at pickup moment 
Shoulder torque, N-m 

sagittal, transverse, 
frontal —> vector sum 

3, 3,10-> 10.8 
8,3, 15-> 17.2 
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When the load increases, lumbar compression force, lumbar torques and shoulder torques 

all increase. The sagittal torque is the greatest component for the lumbar moment, while 

for shoulder torque the frontal torque is largest. 

For the lumbar compression force, when the weight increases from 2 to 60 N 

lumbar compression force increases 7.5%. For the lumbar torque, by increasing the 

weight from 2 to 60 N the sagittal torque increases 18%, the transeverse torque 300% and 

at the total lumbar torque 18%. Overall shoulder torque shows a 59% increase. 

3.4.3 Biomechanical analysis using 3DSSPP 

3DSSPP is a static strength prediction program that calculates the internal body 

forces at different body postures. To model the mannequin in this software joint angles 

need to be specified in the horizontal and vertical planes for the upper arm and forearm, 

upper and lower leg and back. The posture can be symmetric or asymmetric. In order to 

model the lifting task, three postures are selected: the start of the lift at the picking up 

moment, the end of the lift and about halfway in between. The required joint angle inputs 

for these postures were obtained from LifeMOD. The hand location in the posture 

prediction section provides the exact location for the hand especially at the moment that 

lifting task starts. The box dimensions are 40*18*32 cm. A 1 N vertical force is applied 

to each hand as a light weight and 30 N to each hand to simulate the heavy weight. 

Anthropometric data for the subject in this experiment are as follows. 

Table 18 Antl 
Gender 
Female 

iropometric data for the subject 
Height 
163 cm 

Weight 
48 kg 
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Joint angles in the sagittal and transverse planes in LifeMOD are used for 

modeling the body in 3DSSPP. Joint angles in the sagittal plane in LifeMOD represent 

the horizontal angles in 3DSSPP and data in the transverse plane in LifeMOD indicate 

the joint angles in the vertical plane in 3DSSPP. Because of the differences in definition 

of the origin for joint angels in LifeMOD and 3DSSPP, it is necessary to convert the joint 

angles obtained from LifeMOD to a new set that can be used by 3DSSPP. For example, -

100 degrees for back flexion in LifeMOD is equal to 10 degrees for back flexion in 

3DSSPP. 

The following six graphs show the LifeMOD joint angles in the sagittal and 

transverse planes for 2 and 30 N hand loads using either the knee lifting method or the 

hip lifting method. The vertical lines show the angles at the beginning of the lift, at the 

end of the lift and about halfway in between. 
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Figure 38 Joint angles in sagittal plane, knee-lifting method, 2 N hand load 
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Figure 39 Joint angles in transverse plane, knee lifting method, 2 N hand load 
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Figure 40 Joint angles in sagittal plane, hip lifting method, 2 N hand load 
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Figure 41 Joint angles in transverse plane, hip lifting method, 2 N hand load 
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Figure 42 Joint angles in sagittal plane, knee-lifting method, 60 N hand load 
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Figure 43 Joint angles in transverse plane, knee lilting method, 60 N hand load 
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Figure 44 Joint angles in sagittal plane, hip lifting method, 60 N hand load 
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Figure 45 Joint angles in transverse plane, hip lifting method, 60 N hand load 

The following tables show the LifeMOD joint angles for elbow, shoulder, knee 

and hip in two planes, sagittal and transverse, for the knee and hip lifting methods and for 

the three marked postures. Note that the ending posture is the same for knee lifting and 

hip lifting. The total hand force of 2 and 60 N is divided equally over both hands. 

Table 19 Joints angles at starting posture, picking up moment 

Force/hand 
Knee 

Lifting 
Hip 

Lifting 

Sagittal 
Transverse 

Sagittal 
Transverse 

Ell 
I N 
20 
0 

25 
2 

)OW 

30 N 
25 
2.5 
25 
2 

Shoulder 
I N 
35 
0 

50 
0 

30 N 
30 
0 
75 
0 

Knee 
I N 
115 
0 
0 
0 

30 N 
120 
0 
0 
0 

H 
I N 
100 
0 

75 
0 

tip 
30 N 
100 
3 
85 
5 

Table 20 Joint angles at middle posture 

Force/hand 
Knee 

Lifting 
Hip 

Lifting 

Sagittal 
Transverse 

Sagittal 
Transverse 

Ell 
I N 
25 
2 
75 
5 

)OW 

30 N 
30 
5 

30 
2 

Shoulder 
I N 
30 
0 

25 
0 

30 N 
30 
0 

60 
0 

Knee 
I N 
8(T 
0 
0 

~o~^ 

30 N 
60 
0 
0 
0 

H 
I N 
80 
5 

25 
2 

tip 
30 N 
60 
8 

80 
4.5 
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Table 21 Joints angles for ending posture 

Force/hand 
Knee 

Lifting 
Hip 

Lifting 

Sagittal 
Transverse 

Sagittal 
Transverse 

Elbow 
I N 
65 
12 
75 
20 

30 N 
50 
8 

50 
3 

Shoulder 
I N 
15 
0 
18 
0 

30 N 
30 
0 

25 
0 

Knee 
I N 
0 
0 
0 
0 

30 N 
0 
0 
0 
0 

Hip 
I N 
10 
5 
10 
2 

30 N 
20 
6 

25 
5 

Using above sets of joint angles three postures are modeled in 3DSSPP to 

simulate the lifting task. Joint forces and moments are calculated for each static posture 

by 3DSSPP. 

The figure below shows the initial posture for the knee and hip lifting methods. 

3DSSPP verifies if the centre of pressure is located between the feet, in which case the 

posture is balanced and warns if the posture is not balanced. It was sometimes necessary 

to make small adjustments to the posture to ensure proper balance. 
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Figure 46 Initial posture for knee and hip lifting method 
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The following table compares joint forces and torques results in the lumbar and 

shoulder regions for two lifting methods for weights of 2 and 60 N, or 1 N and 30 N per 

hand. 

Table 22 Force and torque comparison at initial posture 

Force/hand 
Knee lifting 
Hip lifting 

Compression 
force at L5/S1,N 

I N 
1250 
1829 

30 N 
2015 
2128 

Shear force at 
L5/S1,N 

I N 
206 
349 

30 N 
247 
406 

L5/S1 moment, 
N-m 

I N 
74.8 
119.8 

30 N 
99.5 
141.3 

Shoulder 
moment, N-m 

I N 
0.8 
0 

30 N 
3.7 
0 

The results show higher compression, shear force and moment at L5/S1 for hip 

lifting compared to the knee lifting method in the static posture. The shoulder torque is 

almost zero in hip lifting method because of the vertical arm position distance. 

By increasing the hand load from 2 N to 60 N, the lumbar compression force 

increases by 61% in knee lifting and 16% in hip lifting. The hip lifting method shows less 

sensitivity to increasing the load. The results show that the shear force at L5/S1 has 

higher values in hip lifting which increases by 16% for heavy load. 

The following figure shows the middle posture with the hands about 80 cm above 

the ground for knee and hip lifting. 

Figure 47 Middle posture for knee and hip lifting method 
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The following table shows the joint forces and moments at the middle posture for 

different hand loads. 

Table 23 Force and torque comparison at middle posture 

Force/hand 
Knee lifting 
Hip lifting 

Compression 
force at L5/S1,N 

I N 
845 
934 

30 N 
1209 
1224 

Shear force at 
L5/S1.N 

I N 
158 
169 

30 N 
195 
212 

L5/S1 moment, 
N-m 

I N 
37.5 
43.5 

30 N 
55.3 
58.2 

Shoulder 
moment, N-m 

I N 
2.1 
1.9 

30 N 
10.4 
2.8 

For different hand loading, the result shows that hip lifting applies more force to 

lumbar part. As before, the shear force is higher in hip lifting method and the shoulder 

torque shows a lower magnitude. Lumbar compression force increases 43% in knee 

lifting and 31% in hip lifting when hand loads increase from 1 N to 30 N which shows 

less load sensitivity in hip lifting method. 

The next figure shows the body in a holding position. This posture is the same for both 

lifting methods. 

Figure 48 Holding posture 
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The table below compares the forces and torques at this position. 

Table 24 Force and torque comparison for holding position 

Force/hand 
Holding position 

Compression 
force at L5/S1.N 

I N 
340 

30 N 
667 

Shear force at 
L5/S1,N 

I N 
197 

30 N 
229 

L5/S1 moment, 
N-m 

I N 
3.8 

30 N 
20.7 

Shoulder 
moment, N-m 

I N 
1.6 

30 N 
10.2 

Compression force in lumbar decreases significantly compared to the previous 

postures, but L5/S1 shear force and shoulder torque are almost the same compared to the 

middle posture. The lumbar moment decreases sharply. 

For heavy load, the L5/S1 moment decreases by 62% from middle posture to the 

holding posture for knee lifting and 64% for hip lifting. Total L5/S1 compression force is 

340 N for 2 N load handling and 667 for 60 N, which shows a 96% increase. 

In the final posture the hands are above the shoulders in front of the face, as 

shown in the figure below. 

Figure 49 Hands higher than shoulder position 
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The following table shows the joint forces and torques for the two hand loads. 

Table 25 Force and torque comparison for hand above the shoulder position 

Force/hand 
Hand above 
shoulder position 

Compression 
force at L5/S1.N 

I N 
407 

30 N 
890 

Shear force at 
L5/S1.N 

I N 
142 

30 N 
178 

L5/S1 moment, 
N-m 

I N 
6.0 

30 N 
36.9 

Shoulder 
moment, N-m 

I N 
12.4 

30 N 
18.3 

By increasing the overall load from 2 N to 60 N, the lumbar compression force 

increases 119%. The shear force shows a total increase of 25.3%. Lumbar moment and 

shoulder moment increases 515% and 48% respectively. 

To find out how force and torque in the lumbar spine change during the lifting 

task, plots have been prepared to show the change from one posture to the next, starting 

from the picking up moment and ending with the hands above the shoulder. The L5/S1 

shear, moment and compression force are shown in the three following figures. In each 

graph, both knee lifting and hip lifting methods for the two different hand loads are 

plotted. 

As the figure below shows, the maximum shear force in the four postures in 

lumbar area occurs at the picking up moment. It decreases to the middle posture and after 

that increases for the holding posture. At the posture with the hands above the shoulder, 

shear force has the lowest magnitude. At the beginning of the lift shear force is higher in 

hip lifting for both hand loads. 
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L5/S1 shear force 
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Figure 50 L5/S1 shear force 

The next figure shows the L5/S1 moment during the lifting task. Knee lifting 

causes a higher moment in L5/S1 in the initial posture. The moment decreases from the 

initial posture to the holding posture and after that increases to the final posture with 

destination above the shoulder, where the moment is still much lower than at the 

beginning. 

t J U 
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L5/S1 Moment 
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Figure 51 L5/S1 moment 

As the L5/S1 compression force graph in the figure below shows, knee lifting 

applies more force especially during heavy load lifting to the lumbar area at the starting 

point. Hip lifting for heavy load shows lower compression force before middle point. 

Raising the load above the shoulders provides higher compression in the lumbar area 

compared to the holding posture. The increase is more noticeable for the heavy hand 

load. 

L5/S1 Compression force 
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posture 
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Lifting task steps 

Figure 52 L5/S1 compression force 
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As the study of the static postures of the lifting task using the 3DSSPP software 

shows, the initial posture is the riskiest posture in the lifting task for both lifting methods, 

because lumbar moment, compression force and shear force are maximum. Lumbar 

forces and moment increase and L5/S1 shear force decreases when the destination height 

changes from holding posture to hand above shoulder posture. 

3.4.4 Biomechanical analysis using CATIA 

CATIA is the second software selected to study the static postures during the 

lifting task in this study. The anthropometric data and postures/joint angles used in 

3DSSPP were also used in CATIA. Those data can thus be found in the previous 

section. However, it was not always possible to generate the identical posture because 

CATIA has limitations in maximum joint angles. 

Two following figures show the hip lifting and knee lifting at initial posture. The 

hand location is almost at the same level in both figures. 

Figure 53 Initial posture for knee lifting and hip lifting methods 
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While 3DSSPP calculates the loading of the lower back at L5/S1, CATIA 

calculates the compression and shear forces and moment at L4/L5. The following table 

presents the lumbar force and torque, and shoulder torque for the initial posture. 

Table 26 Force and torque comparison for picking up moment 

Force/hand 
Knee lifting 
Hip lifting 

Compression 
force at L4/L5, N 

I N 
1037 
1012 

30 N 
1522 
1303 

Shear force at 
L4/L5, N 

I N 
107 
151 

30 N 
123 
187 

L4/L5 moment, 
N-m 

I N 
53 
59 

30 N 
83 
73 

Shoulder 
moment, N-m 

I N 
0 
0 

30 N 
5.0 
3.1 

Compression force in L4/L5 is higher for knee lifting but shear force in lumbar 

and lumbar 3D moment are higher in hip lifting method in light load lifting. 

The same procedure is applied for the heavy load and the same trend in term of 

lumbar force obtained. For this hand loading the lumbar moment has a bigger value for 

knee lifting comparing to the hip lifting method. The compression force increases by 46% 

in knee lifting method and by 28% for hip lifting when hand loading increases from 2 N 

to 60 N. In knee lifting method higher moment applied to the shoulder joint. 

The following figure shows the middle postures for both lifting methods. 

Figure 54 Middle posture for knee lifting and hip lifting methods 
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Force and moment in lumbar region are calculated in heavy hand loading and 

light hand loading for knee-lifting and hip-lifting methods. The results are presented in 

table 27. 

Table 27 Force and torque comparison for middle posture 

Force/hand 
Knee lifting 
Hip lifting 

Compression 
force at L4/L5, N 

I N 
817 
684 

30 N 
1126 
1118 

Shear force at 
L4/L5, N 

I N 
61 
65 

30 N 
82 
183 

L4/L5 moment, 
N-m 

I N 
36 
28 

30 N 
53 
53 

Shoulder 
moment, N-m 

I N 
1.1 
1.0 

30 N 
3.7 
2.5 

Knee lifting method causes a higher lumbar compression force than hip lifting. 

L4/L5 moment is the slightly higher in the knee lifting method for light hand load. Shear 

force is higher in hip lifting, as observed in initial posture. 

The figure below shows the holding posture. In this position, the subject holds the box at 

the waist level. For the heavy load, the trunk is straight upward but for the heavy hand 

loading the trunk leans slightly backward. 

Figure 55 Holding position, hands at waist level 
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The following table compares forces and torques for different hand loads at the holding 

position. 

Table 28 Force and torque comparison for holding position 

Force/hand 
Holding position 

Compression 
force at L4/L5, N 

I N 
271 

30 N 
328 

Shear force at 
L4/L5, N 

I N 
15 

30 N 
58 

L4/L5 moment, 
N-m 

I N 
0 

30 N 
0 

Shoulder 
moment, N-m 

I N 
1 

30 N 
6.5 

When the hand load changes from 2 to 60 N, L4/L5 compression increases by 

21% and shear force by 287%. The lumbar moment is zero. The shoulder moment 

increases by 550% by increasing the hand load. 

The figure below shows the posture when hands are above shoulder level. In this 

posture, the body is straight and leans back somewhat when holding the heavy load. 

Figure 56 Hands higher than shoulder level 
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Table 29 shows the force and torque comparison when the hands are higher than the 

shoulder. 

Table 29 Force and torque comparison for hand above the shoulder position 

Force/hand 
Hand above the 
shoulder position 

Compression 
force at L4/L5, N 

I N 
438 

30 N 
885 

Shear force at 
L4/L5, N 

I N 
30 

30 N 
67 

L4/L5 moment, 
N-m 

I N 
10 

30 N 
33 

Shoulder 
moment, N-m 

I N 
5.8 

30 N 
16.7 

In this posture, lumbar compression force increases by 102% by increasing the 

load. Similarly, lumbar shear force increases 123% and lumbar moment by 230%. 

To compare the loading in the four different postures, three graphs are plotted. 

These plots present the shear force, bending moment and compression force at L4/L5. In 

each graph knee lifting and hip lifting methods for both light and heavy hand loading are 

presented. 

The first graph in this series, figure 57, presents the lumbar shear force at L4/L5. 

Shear force in L4/L5 

200 
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•X—nip lifting light 

kneelifting heavy 

—« -h ip lifting heavy 

1 Picking up posture 
2 Middle posture 
3 Holding posture 
4 Hands above shoulder 
posture 

2 3 

lifting steps 

Figure 57 L4/L5 shear force 
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Hip lifting method results in higher shear force in back. The initial posture is the 

most critical one, as it has a higher shear force than the other postures. A higher 

destination level increases the lumbar shear force. 

The following graph shows the lumbar moment for different postures. 

L4/L5 moment 

5 50 

• - knee lifting light 
-X—hip lifting light 
•*—kneelifting heavy 
•" -hip lifting heavy 

1 Picking up posture 
I Middle posture 
3 Holding posture 
1 Hands above shoulder posture 

2 3 
lifting task steps 

Figure 58 L4/L5 moment 

For the lumbar moment, CATIA shows that the initial posture is still the riskiest 

posture, because it has the highest moment. The lumbar moment reaches zero in the 

holding position at waist level. After that point, the lumbar moment increases for higher 

destination level. 

The following figure shows the compression force at L4/L5. 
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Figure 59 L4/L5 compression force 

For lumbar compression force, CATIA shows higher compression force in the 

initial posture compared to the other postures. In the first posture, knee-lifting method 

shows higher compression force magnitude. 

As a summary, the initial posture always has higher loading than the other 

postures for the same hand load. 

3.4.5 Comparison of results from LifeMOD, 3DSSPP and CATIA 

The comparison between these three softwares can be defined as comparing the 

dynamic and static analysis of the lifting task. The postures analyzed using the different 

softwares were similar. The small differences in postures were due to the different ways 

the postures are created in these sofwares. Also, 3DSSPP and CATIA use slightly 
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different locations to calculate the lumbar loading, namely L5/S1 for 3DSSPP and L4/L5 

for CATIA, while LifeMOD does not specify where the lumbar load is calculated. 

All investigated softwares shows higher or almost equal shoulder torque in knee 

lifting compared to the hip lifting method. For destinations higher than shoulder level, the 

initial acceleration increases to provide the adequate force for longer distance 

displacement. The vertical acceleration levels were derived from the 3D coordinate data 

of the wrists. The difference in acceleration is more significant for the heavy load. The 

task duration is shorter in squat lifting, but the initial acceleration is almost 10 times 

higher in hip lifting. 

The study showed the positive effects of knee lifting in terms of lower lumbar 

moment and compression force. Dynamic and static analysis shows lower compression 

force at the pick up moment for the knee lifting method. The shear force is higher in hip 

lifting method. 

Because the initial posture has the highest loads, that posture is used to compare 

the lumbar loads. The following table shows the changes in lumbar torque between the 

two lifting methods for heavy and light load, rapid and slow lifting, static (3DSSPP and 

CATIA) and dynamic (LifeMOD) analyses. 

Table 30 Lumbar moment, comparing different situations 
Lumbar moment 

3DSSPP,L5/S1 
CATIA, L4/L5 
LifeMOD Rapid 
LifeMOD Slow 

Knee to hip 
lifting, 2 N 
60% increase 
11% increase 
58% increase 
5% increase 

Knee to hip 
lifting, 60 N 
42% increase 
12% decreases 
49% increase 
6% decrease 

2 to 60 N, knee 
lifting method 
32% increase 
57% increase 
25% increase 
94% increase 

2 to 60 N, hip 
lifting method 
18% increase 
24% decrease 
18% increase 
61% increase 

Similarly, the next table compares changes in lumbar compression for the 

conditions studied. 
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Table 31 Lumbar compression force, comparing different situations 
Lumbar 
compression 
3DSSPP, L5/S1 
CATIA, L4/L5 
LifeMOD Rapid 
LifeMOD Slow 

Knee to hip 
lifting, 2 N 
46% increase 
2.4% decrease 
23% increase 
21% increase 

Knee to hip 
lifting, 60 N 
5% increase 
14%o decrease 
15%) increase 
2.5%) decrease 

2 to 60 N, knee 
lifting method 
61%o increase 
46%) increase 
15% increase 
46%o increase 

2 to 60 N, hip 
lifting method 
16%> increase 
29%o increase 
7.5% increase 
18%> increase 

For slow dynamic analysis, the difference between the two lifting methods is less 

compared to rapid lifting. The hip lifting method shows less sensitivity to increasing the 

load. Differences between the two lifting methods are more significant for light weight 

compared to heavy load lifting. 

When comparing the actual values of the lumbar loading the following 

observation can be made: 

•3DSSPP always calculates the highest lumbar compression force and moment. 

•The static (3DSSPP) compression force is 1.9-2.7 times the dynamic (LifeMOD) one. 

•The variation in lumbar moment using the different analysis methods is less for knee 

lifting (48% for 2 N, 27% for 60 N) than for hip lifting (111% for 2 N, 94% for 60 

N). 

•Both compression force and lumbar moment for rapid lifting are higher than for slow 

lifting except for lifting 60 N using knee lifting. 

•For the same lifting method, lumbar compression force and moment are always higher 

for the 60 N hand load compared to the 2 N hand load. 

•3DSSPP and LifeMOD show that compression force and lumbar moment are always 

larger for hip lifting than for knee lifting. 

The fact that LifeMOD, 3DSSPP and CATIA calculate different lumbar loads for 

similar postures is probably because the anatomical structures are modeled differently. 
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The very high compression force calculated by 3DSSPP is possibly due to higher muscle 

cocontraction. 

3.5 Kinematic analysis of lifting and lowering 

Three male subjects performed the lifting and lowering task using two hands. The 

load is a recycling box 50x40x35 cm loaded with paper for a total weight of 13 kg. The 

experimental setup was already shown in Figure 11. This load is lifted from ground level 

to 113 cm height, which is the dumpster height that is used as the emptying container for 

the paper-recycling box. The subject is free to choose the lifting method and body posture 

during the lifting and lowering of the box. The subject starts standing straight, then bends 

down to pick up the recycling box from the floor. Next, the subject lifts the box, places it 

on the 113 cm high bar and holds it there for about 3 seconds. Finally, the subject picks 

up the box again, lowers it to the floor and stands up with empty hands. The objective of 

this study is to study the individual variability in choosing the posture when performing 

the lifting task. The anthropometric data for three subjects are presented in the following 

table. 

Table 32 Am 
Subject 
Subject 1 
Subject2 
Subject3 

thropometric data for three male subjects 
Height, cm 

189 
173 
166 

Weight, kg 
80 
74 
70 

The shoulder and hip joint angles are presented in two planes to show flexion and 

abduction. For the shoulder, the sagittal plane angle indicates shoulder flexion and the 

frontal plane angle shoulder abduction. For the elbow, knee and ankle the joint angle 

presented in the sagittal plane indicates flexion or extension. The joint angles for the left 

and right sides are very similar. Therefore, only joint angles of the right side are shown. 
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3.5.1 Subjectl 

Subject 1 chose the knee lifting method for lifting the box. Shoulder and hip 

angles in two planes and elbow, knee and ankle in one plane are presented in the 

following graphs. The first graph presents the arm angles and the second one the hip, 

knee and ankle angles. 
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3.5.2 Subject2 

Subject 2 chose the knee lifting method for lifting the box. Shoulder and hip 

angles in two planes and elbow, knee and ankle in one plane are presented in the 

following graphs. Figure 62 presents the arm angles and figure 63 the hip, knee and ankle 

angles. 
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3.5.3 Subject3 

Subject 3 chose the knee lifting method for lifting the box. Shoulder and hip 

angles in two planes and elbow, knee and ankle in one plane are presented in the 

following graphs. The first graph presents the arm angles and the second one hip, knee 

and ankle angles. 
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3.5.4 Comparison of joint angle ranges 

All subjects chose the knee lifting method. Following table presents the joint 

angle ranges for all three subjects. 

Table 33 Joint angle range for different subjects 

Shoulder Sagittal 
Frontal 

Elbow 
Hip Sagittal 

Transverse 

Knee 
Ankle 

Subject 1 
tall 

-75 to 25° 
-25 to 25° 
-105 to 0° 
-122 to 10° 

-25 to 0° 

0 to 77° 
-5 to 5° 

Subject2 
average 
-75 to 5° 
-20 to 0° 
-100 to 0° 

-100 to 25° 
-5 to 5° 

5 to 110° 
-25 to 0° 

Subject3 
short 

-75 to 0° 
-50 to 0° 

-80 to -25° 
-100 to 20° 

-20 to 0° 

10 to 120° 
-30 to 0° 

Compared to the average and short subject, the tall subject has a decreased range 

for the knee and ankle and an increase range in the shoulder. All subjects have the similar 

range for the hip. The tall and average subjects fully extend their elbow while the short 

subject maintains the elbow in the flexed position. Above table shows that different 

subjects assume different postures when performing the same task. 
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4 Conclusion and future work 

This research analyzes selected lifting tasks during manual paper recycling. 

Various ergonomic checklists are used to estimate the hazard level of the lifting task. 

3DSSPP and CATIA are used to study the body forces in static postures and LifeMOD is 

used to create the motion and analyzes the internal body forces by considering body part 

acceleration and momentums. An OptiTrack motion capture system and software were 

used to determine 3D coordinates during the lifting task. Weights of 2 and 60 N were 

lifted from ground level to different heights by a female subject. A weight of 130 N was 

lifted from ground level to 113 cm by male subjects. The subjects used the knee lifting or 

hip lifting method. 

The checklists show many hazardous postures and awkward positions during the 

task. Waist position, neck flexion and lumbar bending under heavy load are the most 

repeated postures that provide this hazard evaluation. The WISHA lifting analysis shows 

no hazard for any of the lifting tasks since the lifted load is lower than the load limit. The 

NIOSH lifting equation shows caution for the posture where 130 N is lifted higher than 

shoulders. The REBA final scores indicate a medium to high risk level at the starting and 

ending positions of all lifts except for the lowest weight. The Liberty Mutual MMH 

tables show that about 75% of male and female workers are able to perform the selected 

tasks. 

The kinetic analysis using LifeMOD shows that knee lifting results in a higher 

back compression force compared to hip lifting. Knee lifting shows lower values for 

lumbar torque but shoulder torque is less in hip lifting method in most postures. For the 

destination level above the shoulder, the lumbar forces and torques are higher. This 
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results show the effect of speed and acceleration. When the destination of the lifting task 

changes from waist level to shoulder level, acceleration at the picking up moment is 100 

times higher (10"7 m/s2 for waist level destination and 10"5 m/s2 for shoulder level 

destination). 

The 3DSSPP analysis shows that compression and shear forces and lumbar 

moment are higher in hip lifting method in initial posture. CATIA calculates a higher 

compression force for knee lifting and a higher shear force and moment for hip lifting. 

Both 3DSSPP and CATIA show higher shoulder torque using knee lifting compared to 

the hip lifting. The hip lifting method shows less sensitivity to increasing the load. 

LifeMOD, 3DSSPP and CATIA calculate different lumbar loads for similar 

postures and hand loads. This means that no reliable estimate of the actual load can be 

obtained. 

4.1 Future work 

The following are some suggestions for future work: 

1. Use more different subjects to cover a wider range of the population 

2. Study other lifting methods including non-symmetric lifting 

4. Study the forces and moment of the knee, hip and wrists. 

5. Develop a human body model in other biomechanical softwares, define the joint and 

muscle properties and use it to study the dynamic behavior while a subject performs a 

certain task. 
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