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ABSTRACT 

A Methodology for the Optimization of Building Energy, Thermal, 

and Visual Comfort 

Jerome Conraud-Bianchi 

Buildings are under the scope of environmentalists since they are the biggest energy 

consumers and polluters. Building performance could be greatly improved thanks to 

optimization. Yet, optimizing for different aspects of a building's performance is a 

conflicting process and building designers have to rely on their experience to make 

decisions. 

The present work proposes a method to assess the optimal configuration for a 

building in terms of energy and indoor environment performances. The method relies 

on the good performance of Genetic Algorithms (GA) for complex optimization 

problems. However, GAs require extensive computations. Artificial Neural 

Networks (ANN) were used to alleviate the computational burden. The main concern 

has been to make this method as universal and easy to use as possible, resorting to 

widely used tools only. 

The method was first successfully tested on a small-scale, four-room section of an 

office building and on a full-scale school. In both cases, the ANN model performed 

well with prediction errors in the order of 5%. Finding a better design for the school 

building was rather difficult since the building performed well already, but thermal 

comfort could be improved without increasing the energy demand or decreasing 

visual comfort. The limits of the method were tested by playing with the number of 



inputs and outputs. The ANN performed well though its performance decreased as 

the number of design parameters increased. The limits of the method were 

established regarding the performance of the ANN and the number of cases required 

to train and validate the ANN. 
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CHAPTER 1 

1. INTRODUCTION 

1.1. On the State of Energy and Buildings 

Ever growing pressure on the environment begs for solutions and considerable 

changes in the way buildings are designed and operated. The US National Petroleum 

Council, lead by Exxon Mobil's former CEO, Lee Raymond, affirmed in a July 2007 

public report that the world's energy demand is expected to increase by 50% to 60% 

by 2030 at which time the world oil production will no longer satisfy the market 

demand (AFP, 2007a). At the same time, one cannot deny anymore that humans are 

somewhat responsible for climate change, global warming, and all its entailments. 

North America accounts for more than 20% of the world primary energy consumption 

(Energy Information Administration, 2007). In Canada, 30% of this energy is 

typically consumed by buildings (including extraction and transportation of 

construction materials, construction, operation, demolition, and recycling). Buildings 

also account for as much as 20% of Canada's green house gas emissions, a figure 

close enough to other developed countries (NRCan, 2005). 

From the above statement, it can be observed that earth does not hold the capacity to 

sustain humankind at such a rate, and it is necessary that we, building engineers, 

urgently take some action to trigger dramatic changes in building practices to cut 

down on buildings' energy consumption. 
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The National Roundtable on the Environment and the Economy published a report in 

July 2006 setting drastic measures to improve buildings' energy efficiency (National 

Round Table on the Environment and the Economy, 2006). These measures reflect a 

global trend amongst governments and public energy agencies pressuring the building 

industry into more environmentally friendly design practices. The conclusions of this 

report were somewhat surprising: it is possible to reduce Canada's GHG emissions by 

70% by 2050 with the current available technologies. This statement relies on the 

assumption that 66% of the buildings standing in 2050 are already built and that 50% 

of commercial buildings as well as a yearly 2% to 3% of all residential buildings will 

undergo major retrofit by that date. 

1.2. The Issue: Buildings and the Environment 

This begs the question of how to mitigate buildings' harmful impact on the 

environment and how to achieve these goals to avoid the most undesirable scenarios 

predicted by scientists. In other words, how to make buildings more environmentally 

friendly without worsening occupants' comfort? 

Fortunately, the building community has started to explore the myriads solutions 

available to reverse the current trend. Studies also showed that improving the work 

environment results in healthier employees, and therefore, in a higher productivity as 

well as a positive work atmosphere and mindset (Fanger, 2000), which is beneficial to 

the development of any company. Likewise, green projects are blossoming all around 

the world and an increasing number of "green buildings" are brought to day. They 

use recycled or more environmentally friendly materials than traditional ones; they 
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are specifically designed to be energy efficient or even produce their own energy. 

For example, China illustrates this concept very well in the green city of Dongtang 

close to Shanghai (The Observer, 2008); big countries such as France and Sweden 

embedded the protection of the environment into their constitutions; in 2006, the 

Vatican State became the first carbon neutral country in the world (AFP, 2007b); in 

February 2006, Sweden announced it expected to become the first oil-free country in 

the world by 2020 (La Presse, 2006)—a quite edifying example for a country whose 

society and climate are not very different from Quebec's... 

Further to mitigating our impact on the environment, cities, buildings, and 

infrastructures are now seen as a vector to restore and help the earth's systems: some 

highways in Europe are now built with special coating absorbing pollutant molecules 

emitted by cars; green roofs are more numerous by the day. 

1.3. The Answer: Building Optimization 

As Prof. Haghighat once put it, "The first step to sustainability is optimization". This 

is the cornerstone of this work. Solutions exist and might even seem too numerous at 

time, especially when it comes to different design options for a building. 

Furthermore, buildings are very complex energy systems and the validity and 

applicability of some technologies were proved to perform very poorly when not 

integrated in an appropriate fashion. The building community has started to conduct 

research to provide guidelines based on building performance optimization to help 

designers with the challenge of integration. A review of this research is given in 

Chapter 2 of this thesis. However, very seldom did researchers take into account 

3 



environmental impact, energy consumption and cost as well as occupants' comfort 

altogether in their studies. 

1.4. Objective of this Work and Thesis Outline 

This study sets out to provide guidelines as how to approach whole-building 

optimization encompassing energy use, thermal comfort and visual comfort. 

Traditional optimization methods such as linear optimization or optimization 

techniques working on the gradient of the function to optimize are not indicated in the 

case of buildings due to buildings' inherent complexity. Instead, holistic methods 

have proven to work particularly well, with Genetic Algorithm ranking first in terms 

of applicability (Wetter and Wright, 2003). 

The objective of this work is to set up a method to aid designers choosing between 

different designs for a given building. Typical qualities to optimize are: the energy 

required to heat or cool the premises, occupants' thermal and visual comfort, the use 

of natural daylighting, the environmental impact of the building, indoor air quality 

etc. Emphasis is placed upon the simplification of the method to the utmost in a 

concern to make it usable and especially to make sure it is actually used by designers 

without a strong computer programming background. 

In a nutshell, the method should follow this very schematic diagram: 
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Inputs 
Design parameters 
taking on values 
within a certain 

range 

Objective Function 
Performance metrics 

to improve and 
weights 

Programs 

processing data 

and conducting the 

optimization 

Optimal Design 
For the chosen 
objectives and 

weights 

Figure 1 - Schematic Diagram of the Method 

This method will be based on three main programs: 

- ESP-r will be used to assess building performance; 

- MATLAB will be used to carry out the optimization search through its 

Genetic Algorithm interface. It will also be used to set up an Artificial Neural 

Network to replace the energy software to avoid heavy computations, as 

explained further into detail; 

- Perl was used to automate the batches of simulations necessary to train and 

test the ANN. 

The second chapter of this thesis presents a review of the history of optimization with 

emphasis placed upon building optimization and the most commonly-used 

techniques, as well as a brief section on building simulation. 

5 



The structure of the proposed method encompassing the different steps to carry out an 

optimization study is devised in Chapter 3. The proposed scheme is tested in Chapter 

4, showing the performance of the ANN compared to the building energy simulation 

program and documenting the results of the optimization study. Two sets of 

optimization studies on a large-scale building are documented in Chapter 5. Finally, 

Chapter 6 will close this work with conclusions and recommendations for further 

work. 
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CHAPTER 2 

2. BUILDING OPTIMIZATION AND BUILDING SIMULATION 

2.1. Global Definition 

Optimization1: The art of rendering optimal—i.e. most desirable possible under a 

restriction impressed or implied. 

Optimization2: An act, process, or methodology of making something (as a design, 

system, or decision) as fully perfect, functional, or effective as possible; specifically: 

the mathematical procedures (as finding the maximum of a function) involved in this. 

Many definitions can be found for the term optimization. What does it really stand 

for? What is the key concept of optimization? What are the assumptions and 

implications hidden behind this apparently well-known word? More precisely, what 

is building optimization and how has it been applied in the building community? The 

purpose of this literature review is threefold: 

- To address these questions, 

- To summarize what has been achieved so far in the field of building 

optimization, 

- And to determine what remains to be done. 

The definitions quoted above have one thing in common: the art of optimization aims 

at improving the quality of the considered system. Some definitions even go further, 

1 Definition from http://www.wordreference.com 
2 Definition from http://www.answers.com 
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stating that an optimal solution should be a feasible solution. This very statement 

implies that there exist some constraints to optimization, and that optimization is not 

an absolute but rather relative concept. One optimizes a function, a design, or a 

system under certain conditions, over a certain space defined by these conditions. 

The art of optimizing lies in this very concept: working on a system with a view to 

make it as perfect, as functional, or as effective as possible given some limiting 

conditions. 

2.2. History of Building Optimization 

Further to the first idea of optimization as the rendering of a system most desirable as 

possible, optimization is a scientific field, based on rules, rationales, and methods. 

The first optimization technique known is the steepest descent proposed by Gauss in 

the 18th century. However, Dantzig's linear programming was the first technique to 

be referred to as optimization, in the 1940s. It was first used by the US military for 

logistics and training schedules. Various techniques then blossomed in the following 

years and were applied directly to a wide range of fields: production and 

transportation engineering, risk analysis, and aerospace engineering, amongst others. 

Today, one can count tens of optimization techniques. Gradient-descent (a.k.a. 

steepest descent) algorithms, the simplex method, simulated annealing, and 

evolutionary algorithms (with, amongst others, genetic algorithms, evolutionary 

strategy, particle swarm optimization...) are just a few to name. Designers have 

encountered many barriers on their way: 
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- Inherent complexity of the practice of building design due to the great number 

of people and disciplines involved in the project; 

- Complexity of buildings as energy systems. There are a great number of 

parameters the influence of which cannot easily be forecast, such as weather 

patterns, the surrounding environment, occupancy, the aging of the building, 

changes of use of the premises, interactions with the surrounding buildings, 

just to name a few; 

- Rapid growth of the use of software for building simulations. Simulation 

tools were developed to meet specific requirements (e.g. more accurate 

prediction of energy consumption; integration of new technologies within 

buildings; commissioning of buildings; rising demand from clients to provide 

building occupants with satisfactory indoor climate conducive to productivity, 

etc.). In the process, software developers had little thought for the 

interoperability of such tools, which are consequently very difficult to link 

together, or with any other third party tool in order to use optimization; 

- Building optimization demands knowledge in optimization and sufficient 

computer programming skills that building designers do not necessarily have, 

and optimization has taken a long time to be introduced into university syllabi. 

In the late 1990s - early 2000s, the Generic Optimization Program was developed at 

the Building Technologies Department of the Lawrence Berkeley National 

Laboratory. It was specifically designed to minimize objective functions 

computationally expensive to calculate and for which no derivatives are available, 

which is appropriate in the case of energy simulation and building optimization. 
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Wetter (2001) presented a simple case introducing the optimization tool. Wetter and 

Wright (2004) used GenOpt for their comparison study of different optimization 

algorithms (cf. section on the main optimization techniques used in building 

simulation). The tool consists of an interface which proposes a collection of 

optimization techniques. Users can write their own code and use any external 

program they wish to evaluate the objective function; the only requirement is that the 

third party program should read text input and write text output. 

In the following section, an insight of the main methods used in building optimization 

is given in order to approach the last part of this literature review, i.e. Building 

Energy Management and Building Optimization, with a broader understanding. 

2.3. Design Parameters and Optimization Objectives 

Optimizing a system requires two main objects: 

- Design parameters, which can take on different values, and whose impact on 

the system is to be investigated; 

- And at least one objective function stating which qualities of the system are to 

be improved. 

Scores of parameters have been studied in building optimization, depending on the 

purpose of the study. Examples of optimization studies are given in the next section. 

As far as objective functions are concerned, most of the time, they are: 

- The financial cost of the project; 

- The energy performance of the system; 
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- The environmental impact of the building; 

- And occupants' comfort. 

One may encounter combinations of these objective functions as well, such as 

thermal comfort and energy performance (Chouhdary et al. 2004), or environmental 

and financial cost (Wang et al. 2004). A combination of all these aspects would be 

the most desirable target, of course, but this would require a deep understanding of 

how the system to be optimized works and a non-negligible number of data, which 

are not always available. 

2.4. Main Building Optimization Techniques 

There exist two main approaches to optimization: the first option is to work on the 

objective function directly using mathematical tools under the guidance of gradient 

information in order to determine the optimal value of the function over a given 

search space (so called gradient-based methods). The second option is to scan the 

search space in a discrete fashion (i.e. try different values of the input vector of the 

objective function) and determine via any appropriate algorithm a near-optimal 

solution. The latter methods are referred to as stochastic techniques; they require a 

termination criterion since chances of reaching the exact target are very slim. 

Gradient-based methods work well with second order differentiable functions, and in 

some cases, with more complex but smooth objective functions. In building 

optimization, however, the objective function is often estimated by using energy 

simulation programs which contain features that make the objective function highly 

non linear and non smooth. This is due to some approximations made by the tool, 
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thus making the objective function discontinuous for some parameters. In this event, 

deterministic methods fail poorly whereas stochastic techniques are particularly well 

suited since they allow for the exploration of the whole search space, eventually 

focussing on regions of interest only, and finally converging toward a near-optimal 

solution. For this reason, stochastic techniques are more fit to the purpose of this 

study since very detailed simulations will be required. 

2.4.1. Comparing the Performance of Different Optimization A Igorithms 

Wetter and Wright (2004) proposed a very interesting case study comparing the most 

commonly used algorithms in building optimization. Their study dealt with nine 

algorithms that could be classified under three categories: direct-search algorithms, 

stochastic population-based algorithms, and gradient-based algorithms. 

Direct Search Algorithms 

As far as direct-search algorithms are concerned, the performance of two Generalized 

Pattern Search (GPS) algorithms, and two simplex algorithms—a coordinate-search 

method—was studied. The main strength of direct search is that it does not require 

any information on the derivatives of the objective function. A GPS algorithm 

defines some points around the current point and aims at the point with an objective 

function more desirable than the current point's. If such a point exists, it will become 

the new current point at the next iteration. If none of the points have a better 

objective function, then the algorithm will try some points located closer to the 

current point. The algorithm stops when the value of the mesh (i.e. the ensemble of 
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the points being investigated around the current point) reaches a certain threshold 

preset by the user. 

Population-Based Algorithms 

Two population-based algorithms were also investigated: a Particle Swarm 

Optimization (PSO) algorithm and the Simple Genetic Algorithm (simple GA). Both 

belong to the now very well-known family of evolutionary algorithms. According to 

Eiben and Smith (1998), evolutionary algorithms are all based on the same 

underlying concept: given a population of individuals, the environmental pressure 

causes natural selection (survival of the fittest), which causes a rise on the fitness of 

the population. Given a quality Junction to be maximized, we can randomly create a 

set of candidate solutions [...] and apply the quality function as an abstract fitness 

measure - the higher the better. Such methods are inspired from Darwin's theory of 

evolution. Candidates, or individuals, are feasible solutions; they have a genome, 

made of genes representing their characteristics. This genome can be interpreted as a 

fitness function, describing the quality of the individual. In order to represent 

selection pressure—the principle that drives evolution according to Darwin's 

theory—individuals undergo mutation and recombination to seed the next generation 

of individuals. With appropriate parameters defined for the algorithm, the fitness of 

the individuals should improve with each generation and eventually converge toward 

a near-optimal value. 

Particle Swarm Optimization was developed by Eberhart and Kennedy (1995). It is a 

technique inspired by the social behaviour of flocks of birds or schools of fish. 
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Individuals are here called particles, and they fly through the search space. Particles 

are represented by their position in the space, their velocity, and their fitness value. 

An important aspect of the algorithm is the fact that all particles keep track of their 

positions and fitness values throughout the optimization process. The swarm of 

particles is randomly initialized and the algorithm searches for optima by updating 

particles at each generation. Each particle will update its position and velocity by 

following two best values: the best fitness value it achieved so far and the best value 

achieved by the whole swarm. The algorithm stops when a predefined maximum 

number of iteration is reached, or when minimum error criteria are reached, i.e. when 

the particles converge toward the near-optimal solution. The main difference 

between PSO and GA is that particle swarm optimization does not use crossover. As 

well, there is no exchange of information between the individuals of the swarm since 

the best particle is the only one to give out information to the rest of the swarm. 

Genetic Algorithm under Scope 

Before presenting the results of Wetter and Wright's study, let us focus on the most 

widely used optimization algorithm: the Genetic Algorithm. The GA was conceived 

by Holland in the 1970s though a couple of scientists had worked on some 

evolutionary programs before him (Baricalli simulated evolution automata that played 

a simple card game in 1954; from 1957 onwards, Fraser published a series of papers 

on the simulation of natural selection; Fraser and Burnell then published a book 

summarizing the different studies on computer simulation of evolution carried out 
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through the 1960s.)3 Even though GAs are mostly used for optimization, their 

application range is much wider; Nassif and Zmeureanu (2006) presented a study in 

which they set up and trained a grey-box model to approximate HVAC components. 

The grey-box models were trained using GAs. 

The simple GA is the implementation of the aforementioned definition of 

evolutionary strategies. Most evolutionary algorithms, and more specifically the GA, 

are based on the following pseudo-code: 

BEGIN 
INITIALIZE population with random 
EVALUATE each candidate; 
REPEAT 

1 
2 
3 
4 
5 

END DO 

candidate 

UNTIL (TERMINATION CONDITION is 
SELECT parents; 
RECOMBINE pair of parents; 
MUTATE the resulting offspring; 
EVALUATE new candidates; 
SELECT individuals for the next 

solutions; 

satisfied) 

generation 

DO 

Figure 2 - Basic Evolutionary Algorithm Pseudo-code 

Here follows a quick overview of the simple GA: 

- Representation: Representation 

is one of the crucial steps in 

setting up an evolutionary 

algorithm. It enables to link 

the real world to the world in 

which the algorithm works. In other words, any building in the real world 

could be represented by an individual which possesses a unique genome in the 

3 General facts from www.wikipedia.org (section on the Genetic Algorithm) 

1 0 1 0 0 0 0 1 

Figure 3 - Genome of a random individual. 

Each box represents a gene; the values that 

each box can take are alleles of the gene. 
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GA world. Mapping from the real world to the search space is a process that 

needs to be applicable to and the same for all the individuals of the algorithm; 

likewise, it needs to work both ways so that any individual generated by the 

program should correspond to one building case only and vice versa. In the 

case of the simple GA, individuals are represented by bit-strings. 

Evaluation Function: The performance of individuals has to be evaluated in 

order to rank individuals according to their performance and to allow for the 

survival of the fittest, in order to improve the quality of the population with 

each generation. Very often, the evaluation function is estimated via an 

external computer program assessing the energy performance of the building 

for example. 

- Population: In order to preserve diversity and avoid the collapse of the 

population, a minimum number of individuals are necessary. The underlying 

concept of diversity is that individuals which might not currently perform very 

well might yet have some genetic material that could come in handy later in 

the optimization process. Maintaining a certain population size helps mixing 

individuals' genetic materials and it thus prevents the population from 

collapsing—which is, in the biological world, the equivalent to species 

extinction. 

- Parent Selection Mechanism: This step of evolutionary algorithms has two 

roles: it favours fitter individuals, thus making sure the quality of the 

population improves over time while maintaining diversity by giving a small, 

but positive chance to less fit individuals to pass on their genes to the next 
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generation. Fitness-proportional selection is used in the simple GA; the more 

fit the individual, the more likely it will be chosen for the mating pool. 

Variation Operators: These operators are meant to create new individuals, and 

hence explore new possibilities. There are two main variation operators: 

mutation and recombination. Mutation is a mechanism that works on one 

parent and yields a slightly modified offspring. Recombination, on the other 

hand, works on two parents at least, and can yield more than one offspring. In 

the case of the simple GA, bit-flip mutation is applied and recombination is 1-

point crossover, with two parents resulting in two offspring. 

1 0 1 (1 0 0 0 1 0 0 0 0 

Figure 4 - Bit-flip Mutation 
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Figure 5 - One-point Crossover 

Survivor Selection Mechanism: In order to maintain a constant population 

size—which is not compulsory but very usual—a selection mechanism is 

applied to the population after it has undergone mutation and recombination. 

Survival individuals are chosen based on their quality and on their age. Age-
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based replacement or fitness-based replacement can be used. Elitism is also 

often used; this ensures that some of the fittest individuals be not discarded 

because of their age for example. 

- Initialization: The initial population is generally randomly seeded. The only 

condition is that all individuals should satisfy the optimization problem 

constraints, i.e. they have to be feasible solutions. 

- Termination Criterion: If the target objective is known, then the algorithm will 

stop once the error between the target objective and the fittest individual has 

reached a user-defined threshold. However, the target objective is not known 

in advance in most cases, and the termination condition should be one of the 

following (Eiben and Smith, 1998): 

o The maximum CPU time is reached; 

o The total number of fitness evaluations reaches a limit set by the user; 

o For a given period of time, the fitness of the population does not 

improve significantly; 

o The population diversity drops under a certain threshold. 

The simple GA is only one simple implementation of GAs. There exist a lot of 

representations, using real or integer numbers, or even combinations of different 

types. Likewise, several methods for mutation, recombination, and selection 

mechanisms are available; however, they will not be presented here for the sake of 

simplifying the literature review. They are nonetheless very well documented, as in 
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Eiben and Smith's Introduction to Evolutionary Computing in particular (Eiben and 

Smith, 1998). 

Other Algorithms Reviewed 

Further to the PSO algorithm and the simple GA, an upgraded version of the PSO and 

a hybrid PSO-Hooke Jeeves (a direct-search method) algorithm was investigated. A 

gradient-based method, namely the Discrete Armijo Gradient Algorithm, was also 

reviewed in the said paper. This method approximates gradients using finite 

differences. The method works well with smooth functions but has difficulties in 

case of discontinuities in the objective function on which it works. 

Performances of the Algorithms 

All algorithms were tested on both a simple case and a detailed case. The simple case 

only counted four parameters (the building azimuth, the width of the east and west 

windows, and the shading device transmittance.) For the complex case, thirteen 

independent parameters were defined (the glazing-to-wall area ratio for the four 

walls; the depth of the overhangs, the set point for the shading devices for the west, 

east, and south facades; the room air temperature set points for night cooling in 

summer and winter; and the cooling supply air temperature.) The objective function 

for both cases was the annual energy consumption set as the sum of the heating, 

cooling, and lighting energy consumptions. The heating and cooling loads as well 

as the electricity required to light the building were computed with EnergyPlus. The 

study concluded on thejbllowing points: 
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- With the detailed model, the simplex algorithm failed far from the minimum; 

- Both the GA and PSO algorithms performed well, with better results for the 

simple GA for equivalent numbers of generations; 

- The best optimization results were obtained with the hybrid PSO-Hooke 

Jeeves algorithm though it required a greater number of simulations than the 

simple GA or non-hybrid PSO, and it failed far from the minimum in one 

case; 

- The gradient-based method failed far from the optimal solution even for the 

simpler problem. 

The following graph, from Wetter and Wright (2003), shows the performance of the 

algorithms studied. For each algorithm, the distance between the optimization results 

and the best optimization results achieved with all the algorithms is plotted against 

the number of simulations required to reach the near-optimal solution. 
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Figure 6 - Performance of Several Optimization Algorithms 
From Wetter and Wright (2003) - Figure 2 b) 

Some salient points of this study are: 

- Setting up a hybrid algorithm using both a stochastic population-based 

algorithm and a direct-search algorithm is a good idea that benefits from both 

algorithms' assets. Indeed, in a first step, the population-based algorithm 

scans the whole search space and identifies the most promising region; then, 

the direct-search algorithm refines the search to identify the optimal result 

with a maximum accuracy; 

- However, if one is ready to make a trade-off between accuracy and 

computation time, the simple GA is a good alternative since it converges more 

rapidly. If a high accuracy is required, the GA parameters could be changed 

once the promising region of the search space has been identified in order to 

refine the search. Likewise, and as the authors proposed, when the latter 
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region is identified, a second hybrid algorithm could be used to further the 

search; 

- Gradient-based and direct-search algorithms are not appropriate for building 

optimization resorting to an external computer program to assess the fitness of 

individuals. This is mainly due to the discontinuity of the objective function 

with respect to some parameters. As a consequence, such algorithms fail 

poorly even on simple problems. However, a potential idea is to use 

stochastic population-based methods to identify regions of interest for the 

search. The function could be considered as rather smooth over small regions 

of the search space, thus enabling the use of direct-search functions, or even 

gradient-based functions in some cases, which could find the exact optimal 

solution over the regions they would scan. 

2.4.2. Artificial Neural Networks 

The last method presented here is Artificial Neural Networks (ANNs). Even though 

ANN techniques are not an optimization approach, they are often used in order to 

improve building energy management by modelling systems hard to model with 

traditional energy software. In that sense, it was included in this literature review. 

The different works leading to ANNs initiated in the late 1940s. ANNs as we know 

them nowadays were developed mostly in the 1980s4. They belong to the response 

surface approximation (RSA) algorithms. In a nutshell, ANNs are a simplified 

computer representation of the human brain. Different layers of neurons are given 

information input and process it to deliver an output. Several layers of neurons can 

4 General facts from www.wikipedia.org (Neural Network and Artificial Neural Network sections) 

http://www.wikipedia.org


be used in series. ANNs are said to have the capacity to approximate any function if 

properly parameterized. ANNs are used for classification, pattern recognition, 

function approximation, and data processing. The underlying concept of these 

paradigms is that they are able to learn. Sets of data are used to train the algorithm, 

and then to validate it. There are scores of training functions and several software 

tools have been developed to help users set up ANNs; the Matlab ANN Toolbox is 

one of them, as we will see in the following chapters of this thesis. 

More precisely, an ANN consists of a layer of input nodes, a layer of output nodes, 

and at least one hidden layer connecting the input and output layers. Each node, or 

neuron, of a given layer is linked to that of the following layer. Each hidden node 

works on the values it is given as inputs and delivers an output that can in turn be 

used as an input to the following layer. 

inputs Layer of Neurons 

""S 
Where 

» = number of 
elements in 
input vector 

S = number of 
neurons in layer 

Figure 7 - Typical ANN Architecture 
From the Neural Network Section, Matlab (2006) 



The previous sketch represents a one-hidden layer ANN (Matlab, 2006). pi's refer to 

input parameters. A weight wij and a bias bj transform the value of pi before it is 

input to function-' . The latter function produces an output, aj, which can in turn be 

fed to another layer of neurons. There are a many great deal of transfer functions-' ; 

the most commonly used are the Hard-Limit, Linear, and Log-Sigmoid transfer 

functions. Hidden layers can be added in series, and a two-layer network where the 

first layer is sigmoid and the second is linear is said to be potent enough to 

approximate any function with a finite number of discontinuities (Matlab, 2006). 

The network is trained the following way: 

- Inputs are presented to the network; 

- Output values are computed and compared to the output values expected— 

whence the need for a database with output values corresponding to vectors of 

input parameters to train the network; 

- Biases and weights are then updated in order to minimize the error between 

the expected output values and the values calculated by the network. Biases 

and weights can be updated after each input vector is presented to the 

network—i.e. incremental training—or after the whole set of inputs have been 

presented to the network—i.e. batch training. This step is repeated until the 

error value passes below a threshold defined by the user. 

Out of the training methods that can be used to optimize the weight and bias 

values, backpropagation is the one used most often. This is a gradient-

descent algorithm which updates bias and weight values along the negative of 

the gradient of the function to be approximated. 



In a nutshell, the following steps are necessary to construct an ANN to model a 

building: 

- Create a set of training data by running building energy simulations with ESP-

r in our case; 

- Create the network object (define the number of neurons and layers); 

- Train the network; 

Simulate the network response to new inputs to validate the network. 

Several software packages have been developed for ANNs. The price of commercial 

packages can range from a couple of hundreds dollars for a single module—ANN-

only, or ANN plus other optimization modules—to thousands of dollars. MATLAB, 

a tool widely recognized and used in the industry, recently developed a very user-

friendly Neural Network Toolbox. User codes to set up and train ANNs are available 

as well, but this demands advanced programming skills, as we noticed before, and 

one of the objectives of this methodology is to make it accessible and easy to use to 

the utmost. 

2.5. Building Simulation in Building Optimization 

Most of the time, building optimization algorithms resort to external software to 

assess the performance of buildings or building systems. The author of this work 

chose to work with ESP-r. The Energy Simulation Program - research Version was 

initially developed in the 1970s. The project was initiated by Joe Clarke who 

developed a program to assess energy use in buildings as part of his doctoral research 
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from 1974 to 1977. In the late 1980s, the Energy Systems Research Unit was created 

at Strathclyde University; one of the missions of this unit has been to keep on 

developing the program for British and European research projects. ESP-r now 

enables modelling for the assessment of acoustics, thermal comfort, and visual 

performance on top of energy usage. The software is equipped to model heat, air, 

moisture, and electrical flows. Further to its many useful modules such as the 

Sensitivity Analysis Module, work is under way to integrate ESP-r to Radiance, the 

reference tool to assess building lighting performance. Natural Resources Canada is 

now playing a major role in the development of ESP-r. 

ESP-r is thus one of the most potent tools to model the performance of buildings and 

it is therefore suited for the purpose of this study. Few optimization studies used 

ESP-r to assess buildings' performance, mainly due to the complexity to automate the 

simulation process. For example, GenOpt can work with any building simulation 

engine providing it reads text input and it yields text output readable by GenOpt 

(Wetter, 2004). This is feasible, but this requires the user to program a code to 

transfer input information from the GenOpt text file to ESP-r model files in a first 

step, and to extract ESP-r results from the ESP-r RES module to a proper output text 

file readable by GenOpt. This will be one of the challenges of using ESP-r to assess 

building performance within optimization algorithms. 

Information available from the ESRU website at http://www.esru.strath.ac.uk 

http://www.esru.strath.ac.uk


2.6. Building Optimization 

The different building optimization studies found in the literature could be classified 

under three categories: optimization of the design process; optimization of the three 

main elements of the building energy system (building structure, HVAC system, 

control strategies, and any combination of these); and ongoing optimization. 

2.6.1. Optimization of the Design Process 

Even though there is no optimization technique involved in this approach, it was 

judged to be relevant to this literature review because it is part of the current building 

practice and it aims at improving the design process; it was thus included for 

information purpose only. Optimization of the building process is a problem that 

touches more than one profession and discipline. As a matter of fact, many actors are 

involved in the design process, including architects, engineers (structural, mechanical, 

electrical), contractors, clients etc. Hence, the design process is made of many 

entwined links between the different actors and the different tasks to perform. A few 

optimization techniques relying on mathematical rationales have been developed. 

Choudhari et al. (2003) proposed a model which consists in dividing the design 

problem into subsystems hierarchically ordered and linked by mathematical 

functions. This approach relies on the individual optimization of each block 

superseded in turn by the optimization of the global process. Further to improving 

the building design, extensive work is carried out to make optimization technologies 

and tools accessible to designers whose field is not necessarily in relation with 

simulations or energy analysis, environmental impact assessment and so forth. Hobbs 



et al. (2003) documented the introduction of building energy tools within an 

architectural practice with a view to improve the performance of buildings designed 

by the practice. The paper highlights the importance to train designers—architects in 

this case—to use these tools adequately from the inception of the design process. 

2.6.2. Optimization of the Building Energy System 

A building energy system can be divided into three main systems: the structure of the 

building (building envelope mainly); the heating, ventilation, and air-conditioning 

(HVAC) system; and the control strategies (mainly control actions on the HVAC 

system, but also control of other elements such as solar panels, solar shading devices, 

etc.). The most natural approach consists in optimizing any of these elements 

individually and then integrating them once their optimal individual characteristics 

have been found. Nassif et al. (2003) worked on different algorithms to optimize the 

control set points of an HVAC system in their introductory work to online 

optimization of control strategies. 

The shortcoming of optimizing one aspect of the building energy system only is that 

elements which were designed to perform as efficiently as possible can in fact 

perform very poorly as a consequence of an ill-conducted integration of the different 

elements constituting a building. A way to overcome this limitation is to consider the 

building in its entirety and to search for its optimal configuration based on some 

parameters and for a given objective function. The parameters under discussion 

should make sense with respect to the objective function studied. Most of the times, 

parameters are chosen based on the designer's expertise and on some general trends 



within the profession. However, some studies were carried out recently in an attempt 

to choose these parameters in a more objective manner. For example, Wang et al. 

(2003) presented a sensitivity analysis in finding the optimal shape of a green 

building. They investigated the influence of the building shape, orientation, window 

ratio, structural system, and insulation level. The objective functions were the life-

cycle cost and life-cycle environmental impact; Pareto fronts were plotted in the 

performance space in order to assess the influence of each parameter on the 

buildings' performances. The authors noticed the influence of the window ratio: the 

higher the window ratio, the higher the life-cycle cost and life-cycle environmental 

impact. They also noted the strong linear relationship between the window ratio and 

the extreme life-cycle cost and life-cycle environmental impact values of the Pareto 

fronts. As far as the life-cycle cost is concerned, the smaller the building perimeter 

the better; on the other hand, best performances in terms of environmental impact 

were achieved for buildings with a longer edge on the south (in order to benefit from 

sun gains in winter, since the building was located in Montreal). Finally, the authors 

remarked that a higher insulation level did not necessarily result in more performing 

buildings. 

As far as objective functions are concerned, annual energy consumption is often used 

as criterion (Wetter 2001 and Hoist 2003) but some studies used exergy to account for 

the whole environmental impact of the building (Wang et al. 2003, Wang et al. 2005a, 

and Wang et al. 2005b). Wright and Farmani (2001) studied the simultaneous 

optimization of the building structure, HVAC system, and control strategies with 

respect to the operating energy cost of the HVAC system. Wright and Loosemore 



(2001) carried out a multi-criterion optimization of a building design and control 

options. They used parameters reflecting the three energy sub-systems: 

characteristics of the envelope, dimensions of the HVAC system, and set-point 

control temperatures. Wang et al. (2003) proposed the optimization of a green 

building envelope design based on the measure of the building exergy consumption. 

2.6.3. Ongoing Optimization 

The last trend in building optimization deals with continuously evolving features of 

the system so that it may adapt to continuously evolving patterns such as weather 

conditions or occupancy. This is ongoing optimization. Different methods were 

proposed, such as ANNs, Fuzzy Neural Networks, rule-based and method-based 

techniques. Yang et al. (2005) investigated different ways to train ANNs for the 

prediction of the energy consumption of an HVAC system. Yu and van Paassen 

(2003) proposed the use of fuzzy neural networks to detect malfunctions of an HVAC 

system; according to their study, malfunctioning and ill-adapted HVAC systems can 

actually result in a 30% increase in the energy consumption of buildings in North 

America. Madhavi et al. (2001) compared a model-based and a rule-based approach 

within the frame of so-called self-aware buildings—i.e. buildings adapting to certain 

changing conditions. The study concluded the use of a hybrid method combining the 

assets of both approaches. The conclusion remarks mentioned another possible 

approach, namely compartmentalization, whose underlying concept is to first treat the 

problem in a rough manner and then, to refine simulations for complex zones only. 

Nassif et al. (2003) proposed an online optimization of supervisory control in which a 



GA was coupled with a mathematical model to decide on the control strategy to 

follow in order to minimize the system energy consumption. Finally, Coffey et al. 

(2006) wrote an interesting summary of model-based control in responsive building 

systems. 

2.7. Summary 

2.7.1. The Limits of Building Optimization 

One of the salient facts of this review is that optimization algorithms very often rely 

on an external energy program to estimate how well candidate buildings perform in 

whole-building optimization. Depending on the desired level of accuracy, using an 

external energy program can be very time consuming. There exist different ways to 

assess a building energy consumption ranging from assessing the energy demand of a 

building for some typical design days in the year (Wright and Farmani 2001) to a 

complete yearly assessment. Furthermore, computational time is highly dependent on 

the level of accuracy desired, and for example, assessing the global energy demand of 

a building can be achieved in a couple of minutes whereas detailed simulations used 

for the assessment of visual comfort can take up to one day depending on the period 

simulated. Another issue lies in how hard it is to modify the building model in order 

to simulate myriads of cases necessary to the exploration of the search space to find a 

near-optimal solution. 

As mentioned earlier, genetic algorithms are robust at solving any type of simulation-

based building optimization problems, providing the GA is parameterized correctly. 



Therefore, they have been widely used and a number of studies have been carried out 

to investigate the influence of the algorithm parameters on the results and their 

limitations in solving such problems (cf. (Wetter and Wright 2003) presented in the 

first section of the literature review). Wright and Alajmi (2005) studied the 

robustness of GAs in solving unconstrained optimization problems. The influence of 

the algorithm parameters were tested by using GAs with different parameters 

(population sizes (5, 15, and 30), crossover rates (0.7 and 1.0) and mutation rates 

(0.01 and 0.02)). Even though no major differences were found between the results 

produced by the algorithms, the authors remarked that statistically, GAs with small 

population sizes (5 and 15) and high crossover (100%) and mutation (2%) rates 

performed better. Near-optimal solutions for the problem being solved were found 

with a competitive number of simulations (300). 

2.7.2. Addressing the Shortcomings ofGA 

The main limitations of GAs lie in the number of simulations required for the 

evolution process: increasing the level of accuracy of the simulations results in an 

increasing computational time. Optimization objectives are most of the time the 

energy consumption or the running cost of the system, with a few exceptions using 

environmental impact. Optimizing for these aspects only can be competing with 

occupants' comfort—such as thermal comfort and visual comfort. It is theoretically 

possible to add these aspects to the objective function and thus find the best trade-off 

to simultaneously optimize energy use, thermal comfort, and visual comfort. When 

significant levels of details are required the evolution process can be very time 



consuming and possibly fail due to the high number of evaluations required by GAs. 

To overcome this shortcoming, this works sets out to develop an ANN model of the 

building to mimic the building being studied. Using the optimization performance of 

GAs in conflation with rapid assessments obtained from ANNs, designers can get 

very close to the optimal solution in a fairly reasonable time. This approach has not 

been tested extensively, but it has some potential. Still, it is quite limited and not 

easily applicable by designers for the following reasons: 

- First, such an approach requires a substantial amount of data for the building, 

which does not reflect the real conditions under which designers operate in the 

early phase of a project; 

Second, an ANN is built to mimic the response of a building with respect to a 

pre-defined set of parameters whose allowable variation ranges are pre­

defined as well. This implies that in the event of any change in the building 

usage or in the environment of the building, the ANN model will not reflect 

the actual building response anymore; 

- Last but not least, creating the database to train and test the ANN is a very 

tedious and prohibitive process which could not be applicable in real 

situations such as architect practices and the like. 

This research project proposes to address the above issues, and first and foremost, to 

come up with a methodology as user-friendly and applicable as possible for 

designers. 



CHAPTER 3 

3. BUILDING OPTIMIZATION METHOD 

BASED ON GA AND ANN 

Based on the remarks and conclusions drawn from the review of building 

optimization and building energy management, the author proposes to investigate 

methods to optimize buildings. The very idea of gathering these methods into a 

methodology usable by designers begs the following question: For whom should this 

methodology be developed? At what stage of the design process should it be 

applicable? What would be the best trade-off between simplicity, flexibility, and 

accuracy? What qualities of the building does one seek to improve, and what are the 

relevant study parameters? 

This chapter presents the first sketch of the proposed methodology and the reasoning 

it stems from by analysing the different steps it is made of. The following chapter 

will present a simple study case to test the general concept. 

3.1. Sketch of the Method 

The goal is to optimize a building based on some parameters and with an objective 

function encompassing energy demand, thermal and visual comfort. The sequence is 

fairly simple and consists of the following steps: 

- Choose a building to optimize; 

- Define the objective function; 



- Define study parameters and their allowable ranges; 

Choose a cluster of cases to thoroughly represent the whole search space; 

Simulate all the cases to create a database of outputs corresponding to input 

vectors; 

Set up an ANN model of the building; train it and validate it with the database 

created in the previous step; 

- Set up a GA and use the ANN to estimate individuals' fitness. 

3.2. The Methodology in Detail 

3.2.1. Study Parameters 

Two different kinds of studies can be carried out depending on whether one tries to 

assess which are the most important parameters or aspects of a system—that is a 

sensitivity analysis, or whether one wants to investigate the impact of some specific 

design parameters on the system. The methodology proposed in this work bears in 

mind that it should assist designers in their decision making with respect to some 

design parameters for which there exist some constraints. Hence, the study 

parameters for the optimization analysis are usually known in advance, and one seeks 

to determine their most promising values with respect to the desired objective 

function. 

Allowable ranges are defined for each parameter; they are determined based on 

regulations in effect, such as building codes or other limiting factors applying to the 

building under discussion. 
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3.2.2. Objective Function 

The objective function represents the quality of the building the designer wishes to 

achieve. Its complexity can thus vary greatly depending on whether it is made of one 

element only (e.g. minimizing the energy consumption of the building) or of a 

combination of various aspects of the building (e.g. minimizing the energy 

consumption and environmental impact of the building while optimizing occupants' 

thermal and visual comfort). The complexity of the objective function lies in the fact 

that some objectives can be competing. For example, increasing the glazing area of 

the building in order to reduce the lighting energy consumption can result in 

increased heating and cooling loads and might not necessarily be beneficial to the 

building occupants' visual comfort. It is consequently very important to have 

powerful tools to one's disposal to estimate accurately each element of the objective 

function. 

In the light of this last statement, one of the main issues of building optimization is 

the complexity of the objective function and therefore, what tools to use to assess it. 

As discussed in the literature review, several methods can be used, ranging from 

simple equations to external software. The work proposed here will use ESP-r to get 

accurate estimates for several aspects of the building: energy, thermal comfort, and 

visual comfort. Since Genetic Algorithm will be used to search for the near-optimal 

solution to the problem, an extensive number of computations will be required. To 

alleviate the computational burden, a cluster of cases representing the search space 

will be simulated with the building simulation program and used to train an ANN to 

approximate the building simulation model. 



3.2.3. Design of Experiments 

Study parameters' allowable ranges constitute a design space on which the 

optimization algorithm will work. The objective function will not be determined by 

using an external program but rather via an ANN model of the building for the 

reasons previously established. ANN models are trained for a given search space, 

and they require finite databases to that purpose. The main challenge is thus to 

choose a limited number of sample cases to constitute the database and still represent 

the whole search space thoroughly; this step is called design of experiments. 

One of the most common methods encountered to address the above issue is referred 

to as the Latin Hypercube Sampling (LHS) method. The underlying concept of this 

method is pretty simple: let us consider two design parameters. The consequent 

search space could be represented by a square. M intervals can be defined for each 

variable, with the requirement that the number of intervals (M) be equal for both 

variables. A so-called Latin square corresponds to a square in which there is only 

sample per column and per row, as shown on figure 9. Sample points can also be 

chosen simultaneously so that the whole search space would be sampled in an 

equally-probable fashion, as shown on figure 8. 
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LHS is a technique that was first used for statistics. Several studies have concluded 

that for a study based on N parameters, a number M greater than twice the number of 

parameters is sufficient to correctly sample the search space for uncertainty and 

sensitivity analysis (Mackay 1988, and Yeh and Tung 1993). Fewer samples could 

result in a loose representation of the search space and too many more samples would 

result in onerous computations. 

Carrying out a sensitivity analysis also enables to search for those parameters that 

have a greater influence on the objective function. Once the said parameters are 

identified, the search space for these parameters can be sampled in a finer fashion. 

Likewise, the search space can be sampled in a coarser way for parameters which 

influence less the objective function. 

3.2.4. Simulations 

Simulation is one of the key steps of this methodology. Indeed, any miscalculation, 

any mistake in the files describing the building model would result in an erroneous 

database, which would in turn engender an ill-adapted ANN, finally leading to a final 

near-optimal result that could be far from the real one. The validity of the building 

simulation model is also of the essence. Examples used further in this study were 

validated by comparing ESP-r predictions with measured data as will be shown in 

chapter 4. Consequently, this step needs extra care and attention. It is very important 

that all the simulations be run under the same conditions, but for the changing 

parameters—that is, the study parameters. Likewise, all parameter values should be 

the ones defined as per the design of experiments so that the search space is sampled 
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effectively. These remarks might seem trivial, but when it comes to dealing with a 

significant number of files, mistakes can easily occur, and any rule breaking would 

compromise the success of the optimization search. Thus, this raises the question of 

the significance of manual simulations and file-handling. This issue will be 

addressed in the conclusion remarks of the next chapter. 

3.2.5. Setting up the ANN 

As we previously said, calling ESP-r to assess the fitness of each individual generated 

for the optimization search would imply heavy computations and would not be 

feasible in certain cases due to time constraints and computer resources. To 

overcome this limitation, an ANN model of the building will be used. Once properly 

trained, the ANN will give a quick and fairly accurate estimate of the function it was 

trained for. In the event of population-based optimization, which requires a lot of 

function estimations, ANNs look very promising. 

3.2.6. Optimization Search with the Genetic Algorithm 

A detailed description of the genetic algorithm was given in the previous chapter. In 

the case of building optimization, the great variety of parameters, which can be 

continuous, discontinuous, or Boolean—though the latter type is quite rare, makes 

representation, mutation, and crossover delicate operations. More details on these 

operations will be given in the next chapter. As we previously mentioned, the fitness 

of individuals will be assessed by the ANN model to approximate the building 

response. 
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Like for ANNs, several tools were developed for optimization algorithms and more 

specifically for genetic algorithms. However, user codes remained widely used 

because they are much easier to write than codes for ANNs, for example. MATLAB 

now has a General Algorithm and Direct Search Toolbox, which makes the software 

very interesting inasmuch as it has modules accommodating both GAs and ANNs. 

Further to MATLAB and other commercial programs, Microsoft's Excel also 

comprises a GA facility. Last but not least, scores of source codes in C/C++, Java, 

and Fortran can be found on the Internet. Once again, this begs the question of how 

much knowledge designers need to have in programming. GA might not be very hard 

to program; however, the choice of the algorithm's parameters and genetic operators 

(mutation, reproduction, and selection) is crucial to the success of the optimization 

search. Besides, such codes might not be flexible enough and consequently be hard 

to change for designers without advanced programming skills. Finally, the use of GA 

for building optimization is quite well documented and the conclusions of these 

various studies are quite easy to implement with commercial tools such as MATLAB, 

for example. 

3.3. Summary 

This methodology relies on methods that have been extensively used in building 

optimization and other fields. However, the use of ANNs in conflation with GAs has 

rarely been documented (Mengistu 2005, Chow et al. 2002, and Zhou 2007), even 

though it seems to be a very promising technique. Bearing in mind the limitations of 



the proposed technology, this works proposes to confront it to a small-scale case 

study in order to have more insights on the potential and shortcoming of each step of 

the method. 
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CHAPTER 4 

4. TESTING THE METHOD 

SMALL-CASE EXAMPLE 

4.1. Choosing the Model to Test the Methodology 

In order to test the efficacy and the applicability of the proposed methodology, a first 

study case was investigated. There is no real need for a complex case at this stage 

since the purpose was to test the methodology quickly in order to assess its strengths 

and weaknesses, thus getting better insights into the problem, and giving rise to a 

stronger methodology. 

The building used for the preliminary validation stage was chosen from the database 

of exemplars available from within the ESP-r program. The ESP-r model is a portion 

of an office building located in Ottawa, Ontario. 

Project: Office model tor network flow stndies 

Figure 10 - ESP-r Model of the Office 



As shown in this figure, the office is made up of four main zones; they represent 

actual rooms, namely: 

- Manager, i.e. the manager's office; 

- General, i.e. an open-space office; 

- Reception; 

- And Conference. 

Further to these four zones, a zone 'ceilvoid' represents the ceiling, and an extra 

fictitious zone 'mixing_box' is used to define a part of the HVAC operations. 

The exemplar is documented with the results of basic simulations carried out from 

April 8 to April 15 . Those results showed that cooling was required for this office 

space for outside temperatures greater than 6°C. 

General facts on the building are summarized in the following table. The load 

schedule is the one initially provided with the example and is supposed to account for 

the variation of loads depending on working hours and on room usage. 

Geometry of the building 

Geometry of the windows 

U value of the windows 

Internal loads 

Outside Temperature set points to 
activate the vents 

250 m2 

3 m high 
2.8 in wide 
1.9 m high 

2.81W/m2.K 

8 W/m2 for lights . . ^ f 
5 to 10W/m2 for equipment depending" -
on the rooms. 
From 0W to 500 W (latent) and 300W. 
(sensible) depending on the time and on; 
the room/ ', •, •••- "v. v"' ' v — ĉ-'-'̂ f̂eK.̂  
Lower bound: 13°C 
Upper bound: 28°C 

Table 1 - General Facts on the Original Building 
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The office has several windows. There are five in the Conference room; two in the 

Reception area; five in the General room; and one in the Manager room; which were 

probably installed for visual comfort concern even though they turned out to greatly 

influence the heating and cooling loads of the building. Vents were installed under 

each window. Preliminary studies recommend the use of a hybrid system based on 

mechanical ventilation assisted by natural ventilation through the vents located under 

the windows. 

Thus this case clearly is very suitable to our purpose. The first idea is to study the 

impact of the window dimensions, the louver inclination angle, and the temperature 

set points to activate the vents on the building energy consumption and on its 

occupants' thermal comfort. This is consequently a multi-objective optimization 

problem, whose objectives are: 

- Minimizing the annual heating load for each occupied zone; 

- Minimizing the annual cooling load for each occupied zone; 

- Minimizing the annual lighting energy consumption for each occupied zone; 

- And maximizing the cumulative frequency for which a maximum of 20% of 

the occupants of the zone are dissatisfied, for each occupied zone, during 

occupied hours. 

Each of these qualities was assessed with ESP-r for each room and for each of the 

five simulation seasons. These five simulation seasons are early winter (November 

and December), spring, summer, autumn, and late winter (January to March). Those 

values were then combined to assess the quality of each candidate building during the 

44 



optimization search. The optimization objective is a weighted sum of all individual 

objectives and it takes the following form: 

Fobi(X) = Min 

C, 

Y^HL.y.NDays, 
/=i 

"N ( » 
Y.CL^NDays, 
;=1 

TotalNDays 

( n 

+ C, 

\ f n \ \ 
YJLEixNDaysi 

TotalNDays 
+ C, 1=1 

TotalNDays 

V 

+ C 
• S O - r c ^ ^ ^ x J V D f l j a r , 
i=l 

S(l-7*CGCTera/ /.)xM)a^,. 
1=1 

+ C 

TotalNDays 

V 

+ c. TotalNDays 

i=\ 

TotalNDays 

\ ( n 

YV-TCcoference^NDayS, 

+ C7 '"' 
TotalNDays 

J) 

Equation 1 - Objective Function 

Where HLj, is the heating load of the building in kWhr. CZ, is the cooling load for 

the building in kWhr. To truly assess the energy demand of the building, these two 

metrics should be weighted to account for the efficiency and energy consumption of 

the heating and cooling systems respectively. However, since these weighting factors 

would be the same for all cases for the heating load and cooling load respectively, the 

author disregarded them. LEt is the lighting energy demand in kWhr of electricity. 

Subscript i refers to simulation period /. The year is divided into the five simulation 

periods previously mentioned—whence n=5. NDaysi is the number of days in period 

i. TotalNDays corresponds to the total number of days in the year under 

consideration. X is the vector of design parameters. TC, the parameter used to assess 

the performance of a given room in terms of thermal comfort, is the ratio of the time 
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for which the indoor air quality is acceptable—i.e. when PPD, the percentage of 

dissatisfied people, is less than 20%—out of the total time of occupancy for the room 

under consideration. ESP-r asks for the clothing level and metabolic rate to assess 

thermal comfort. The clothing level chosen was 1.0 clo in winter, 0.5 clo in summer, 

and 0.75 clo in fall and spring, which corresponds to typical clothing level values. As 

far as the metabolic rate is concerned, the value taken was 90 W/m2, which 

corresponds to typical clerical activities. To have the desired optimization objective, 

the designer should prescribe weights Ci to C2 are in kWhr"1, C3 in kWh of electricity 

"!, and C4 to C7 are dimensionless since our thermal comfort index is dimensionless. 

Weights are to the discretion of the user: if the user wishes to favour a certain aspect 

of the objective function, such as thermal comfort for example, then a greater weight 

will be given for the said aspect to drive the optimization search in the desired 

direction. The weights taken for the optimization were 10,000 kWhr"1 for Cj and 500 

kWhr"1 for C2. These two values are in the order of magnitude of the heating load and 

cooling load calculated for each season for the office section. The lighting energy 

was disregarded in the optimization search as explained further in this section. As far 

as the other weights are concerned, a value of 1 was taken for each of them in order to 

give to thermal comfort equal importance over the optimization search. 

4.2. Identifying the Study Parameters 

The study parameters are the ones that most greatly influence the objective function 

under consideration, that is, the energy consumption and occupants' comfort, in our 



case. By considering the general structure of the building, the building envelope and 

first hand observations, three items are assumed to have a significant impact on the 

energy consumption of the building and are chosen to carry out the optimization. 

Those parameters are the window sizes, the inclination of the external shading 

devices and the outside temperature set points to activate the vents and thus, use 

natural ventilation. These selected parameters give rise to ten design variables: 

- The width and height of the windows for the south, east and north facades 

(resulting in six parameters); 

- The inclination of the shading devices on the south and east facades (resulting 

in two parameters); 

- And the lower and upper outside temperature set points to activate—open or 

close—the vents (resulting in two parameters). 

4.3. Determining the Search Space 

This works tries to reflect reality to the utmost; thus, for each parameter, the range of 

allowable values was defined in order to represent real conditions as faithfully as 

possible. There are many limiting factors in the design of buildings; usually, 

allowable ranges are determined based on designers' experience, in consultation with 

building codes, recommendations, design handbooks, rules of thumb, or any other 

appropriate limit inherent to the building's location. 



4.3.1. Dimensions of the Windows 

As far as the windows are concerned, the geometry of the building clearly shows that 

the glazing area could not be increased. On the other hand, it could be decreased 

providing that the total glazing area, exclusive of skylights, is not less than 10% 

(Ontario Building Code 1997) of the floor area of the room in which it is located. 

The limiting factor here is 'Reception' which has a total glazing area of 17.5 % of the 

floor area of the room. For aesthetic purposes, it was decided that all windows should 

have the same dimensions, as in the original design; this sets the lower range for the 

windows to be 85.0 % of their current value. 

4.3.2. Inclination of the Louvers 

The inclination angle of the louvers is defined from the horizontal plane 

corresponding to the roof. A 0° angle corresponds to the horizontal position and the 

inclination of the louvers can vary from 20° to 160° with a 10-degree step5. 

4.3.3. Outside Air Temperature Lower and Upper Bounds to Actuate the 

Vents 

The lower and upper bounds for the outside temperature can vary from 12°C to 28°C 

(Allard and Santamouris 1998). Hence, lower temperature set points between 10°C 

and 15°C, and upper temperature set points from 23°C to 28°C were investigated. 

Extreme temperature set points seldom used for natural ventilation were considered; 

however, if using such temperatures does not lead to satisfactory conditions for the 

5 In the literature, values usually vary from 0° to 90°, but the scope of these studies is to optimize the 
luminance level of the room. Few studies consider angles whose values goes beyond 135°. 



occupants of the building, they will be automatically disregarded by the optimization 

process which seeks to reach the best trade-off between energy consumption and 

occupants' thermal comfort. 

In summary the following table shows the ranges for the selected variables: 

Variable 

Width of windows on the south.facade 

Height of windows on the south facade 

Width of windows on the north facade 

Height of windows on the north facade] 

Width of windows on the east facade 

Height of windows on the east facade 

Louver angle on the south facade 

Louver angle on the east facade 

Lower bound for the outside temperature 
set point for the control of ventilation 
Upper bound for the outside temperature set 
point for the control of ventilation 

Name 

WinSW 

WinSH 

WinNW 

WinNH 

WinEW 

WinEH 

AngS 

AngE 

TOsetL , 

TOsetU 

Nominal 
Value 

2.8 • 

1.9 

2.8 

1.9 

2.8 

1.9 

90 

13 , 

28 

Lower 
Value 

2.380 

1.615 

2.380 

1.6151 

2.380 

1.615 

20 

20 

10 

23 

Upper 
Value 

2.8 

1.9 

2.8 

1.9 

2.8 

1.9 

160 

160 

15 

28 

Unit 

[ml 

[m] 

[mj 

[m] 

{mj 

[m] 

[deg] 

[deg] 

[°C] 

[°C] 

Table 2 - Allowable Ranges for the Selected Parameters 

4.4. Design of Experiments 

One of the goals of the present work is to develop a simple approximation model, fast 

to compute and accurate enough over a certain design space, to make up for time-

consuming building simulation programs. Building approximations involve choosing 
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an experimental design to sample the region of interest and then construct the 

approximation model. The present building model consists of ten parameters, 

assuming each of which can take on ten different values, one would need 1010 runs 

for a complete model evaluation, which is totally inappropriate to designers' use. 

Thus, the design of experiments is a necessary step to minimize the number of runs 

required and to select a few but representative sample runs within the design space. 

With 10 parameters, twice as many samples would be enough to sample the search 

space, according to MacKay (1988). However, due to the complexity of the objective 

function, 50 sets of samples were selected to represent the design space for training 

and 20 sets of data for testing the ANN. The sample cases were determined using the 

Latin Hypercube Sampling (LHS) method presented in the previous section. 

Sampling points are listed in Appendix A. 

4.5. Running the Simulations 

The simulations were performed with the ESP-r energy simulation tool. The software 

enables the analysis of energy and mass flows within the built environment. Thermal 

simulations can be run in conflation with nodal network mass flow simulations. The 

selected building has four rooms, each represented by a thermal zone and a mass flow 

node, plus one thermal zone representing the plenum ('ceiljvoid'), and another 

fictitious thermal zone representing a mixing box ('mixingbox'). The boundary 

conditions are set to 'exterior' for exterior walls; 'adiabatic' for the rear walls of the 

room; and 'similar' for the floor and the upper surface of the ceiling zone. A mass 



flow network represents the airflow between different interior zones and with the 

exterior environment. 

The simulations were run for a whole year which was divided into 5 simulation 

periods: 

- Early winter (from January 1st until April 3rd); 

- Spring (from April 4th until May 8th); 

- Summer (from May 9th until August 28th); 

- Autumn (from August 29th until October 16th); 

- And late winter (from October 17th until December 31st). 

These typical seasons were determined through the automated climate module of 

ESP-r. Three control files—for winter; spring and autumn; and summer—define 

different temperature set points for weekday and weekend building occupancy times. 

Each simulation period was preceded by a 21-day pre-simulation. Typically, a 

whole-year simulation took approximately 1.25 hours (CPU time). 

With ESP-r, a building model is mainly described by: 

- Some geometry files which comprise information on the structure of the 

building. Each file contains information on one specific zone; 

Some files which describe objects casting shadow on the building—such as 

louvers, trees, or even surrounding buildings. Thermal and mass-flow 

calculations are not performed for such shading objects, but their influence on 
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the solar process is taken into account in calculations of the building zones. 

As for the previous case, each file contains information on one specific zone; 

- An operation file which defines building operations, that is, mainly, HVAC 

strategies for different seasons with, amongst others, details on how and under 

what conditions to activate the vents. This file is unique and contains the 

information for all the zones and all the seasons of the year. 

Prior to running a simulation for a building case, all these files have to be changed 

according to the input vectors given by the design of experiments. In the case of this 

preliminary study, all the files were changed manually, which proved to be a very 

long and tedious process, not to mention errors occurring occasionally. This will be 

further discussed in the conclusion remarks of this chapter. 

Running the fifty simulations took three weeks6 with a Pentium II 733 MHz 

computer. 

4.6. Constructing the Artificial Neural Network 

Once the database of simulation results was constructed, an artificial neural network 

ANN was set up and trained in order to approximate the building's response. After 

going through the database of results, some of them clearly looked erroneous, and 

were consequently discarded from the database in order to avoid inducing mistakes in 

6 The author ran simulations over a period of three working weeks; in other words, simulations did not 
take three CPU-time weeks. 
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the training of the ANN. 38 cases were used, 30 for training, and 8 for testing the 

ANN. Here follow some specifics on the ANN: 

- Ten input nodes, representing the study parameters defined in Table 1; 

Seven output nodes, representing each element of the objective function 

defined earlier; 

- 21 nodes in the hidden layer. The number of nodes was obtained by trial and 

error; 

- The ANN was trained using a backpropagation method, using a user code 

developed by Dr. Mengitu with whom the author collaborated on this 

example; 

Training the ANN took approximately three hours with a Pentium IV 2.2 GHz 

computer. 

Once the ANN was trained, a couple of cases were simulated with the ANN and 

compared with the simulation results given by ESP-r. These cases were obviously 

not included into the pool of data used to train the ANN. The average error was 

found to be less than 5% for all the outputs but for the lighting energy consumption, 

as shown on the following figures (Fig. 11-15). 
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Figure 11 - Relative Error for the Heating (HE) and Cooling (CE) Loads 
ANN vs BS 
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Cases 

Figure 14 - Validation of the ANN - ANN vs BS Results 
Average Annual Thermal Comfort Index for the Reception 
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Figure 15 - Validation of the ANN - ANN vs BS Results 
Average Lighting Energy Consumption [kWhr] 

Figures 11 to 14 show that the ANN approximation is in good concordance with the 

actual results, that is, the ones given by ESP-r, for the cooling and heating loads as 

well as for occupants' thermal comfort. However, Figure 15 shows there are 

important discrepancies between the ANN and ESP-r for the lighting energy 

consumption. As a matter of fact, the author decided to define some control strategies 



to reduce the use of artificial lights in the rooms when the illuminance level inside the 

room reaches a certain level defined by general regulations in effect in Canada. After 

looking into this problem more seriously, and after consulting the ESP-r community 

online, the author realized that the calculations given by ESP-r were not correct. 

ESP-r developers are confident that solar processes are correctly taken into account in 

the energy balance of the different zones, and consequently that the corresponding 

heating and cooling loads are computed correctly. However, the heat gains and thus 

the lighting energy associated with control actions on the lights available from the 

result files are not correct for some reason. All the results associated with the lighting 

energy consumption for each room are thus erroneous, and this accounts for the 

mismatch between the ANN model estimates and the ESP-r calculation results. The 

author got confirmation, however, that the impact of the lighting on the heating and 

cooling loads were correctly accounted for. Consequently, the lighting energy will be 

disregarded for this part of the study. 

4.7. Using the ANN for the Optimization Search 

With the ANN model ready for use, the last step was the optimization search per se. 

The ANN model was indeed meant to be used in conflation with a genetic algorithm 

(GA) to replace energy tools which would not have made possible the use of 

population-based stochastic optimization algorithms due to expensive computations, 

as we already pointed out. 



The GA was developed under C++ by Mengistu (2005). The latter gentleman worked 

in cooperation with the author of this work and provided him with assistance 

regarding all the technical problems—only for this introductory example—related to 

optimization, including the ANN artificial neural network, and the GA. As explained 

earlier, the genetic algorithm generates potential solutions and evaluates their 

performance—also referred to as 'fitness'—in order to let the fittest individuals 

survive and get close to the near-optimal solution. The evaluation function is used to 

determine how well buildings perform, and in the case of this study, it is the trained 

ANN model of the building. Using the ANN within the GA proved to be quite easy. 

o 
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2000 4000 
No. of function call 

Figure 16 - Optimization Search - Number of Function Calls 



The optimization search took less than ten minutes. Figure 16 shows the evolution of 

the objective value, as defined in Equation 1, along the search. It is common practice 

to use the number of function calls, that is, the number of candidate buildings 

evaluated by the objective function, as a time scale. This figure also shows the total 

number of function calls necessary for the search to converge. The authors calculated 

that without using the ANN model, the optimization search would have taken more 

than a year to converge. 

Table 3 shows the values of the design parameters for the near-optimal solution 

compared to that of the existing building. 

Parameter 
Window south (WxHt 
Window north (WxH) 
Window east (Wxtt) " 
Louver angle south 
I^uyCT^gleeasr "T 
Lower and upper 
bounds for outside 
temperature set point 

Unit 
'1MMBP 
[m]x[m] 

50n$$fii] 
[deg] 

,'f4lM,i& 

[°C, °C] 

Original Value 
8$&^.&$ffi$£ 
2.8x1.9 
2.8x1.9 
90 

KS&iSi 

[13,28] 

Optimal Value 

^swi^^c 
2.4 x 1.7 
2.4x1.7 
139 
135 

[13,26] 

Change [%] 
>23%', ,, . J i , 
- 23% 
- 23% " 
+ 54% 
+ .50% 

[0%, -7%] 

Table 3 - Design Parameter Values 

The optimization advocates a decrease in the glazing area and an increase in the 

louvers' angle. This is sensible since decreasing the glazing area would enable to 

decrease both the heating load in winter and the cooling load in summer. Likewise, 

the optimal louver angle proves to be the best way to reduce the cooling load 

7 Global change in the glazing area. 
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associated with direct sun beams. However, since the lighting energy consumption 

was not taken into account for the optimization search, one cannot draw any 

conclusion as to what the best trade-off would be between decreasing the cooling load 

and an extensive use of artificial light in the workspace. Figure 17 shows the 

comparison between the optimized and the original buildings' heating demand. The 

heating and cooling loads were thus reduced by 12% and 4.8%, respectively for the 

whole building. The value of the thermal comfort index was, on the other hand, 

increased by 1% to 4% on average, depending on the room. 
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Figure 17 - Energy Savings for the Building and 
Thermal Comfort Improvement for the 'Manager' and 'Conference' Zones 

It was finally decided that windows should all have the same dimensions regardless 

their orientation. This is a purely arbitrary choice in order to respect the original 

structure of the building for which all the windows were the same size. Since the 

ANN has been trained for different window dimensions, had the authors decided to 

allow for different windows for the three facades, all they would have needed to do is 

run another optimization search, and determine the new near-optimal building. 
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4.8. Conclusion on the Preliminary Study 

This preliminary work proved that the methodology yields sensible results. The ANN 

faithfully models the building's energy consumption and occupants' thermal comfort. 

The GA identified the best trade-off for the defined research parameters, and the 

building could potentially be improved. 

However, the methodology also clearly showed its limits: 

- Preparing all the simulation files for the database by hand is not a viable 

solution. As a matter of fact, further to being a very time-consuming process, 

it is also a very likely source of errors since users could easily make mistakes 

while changing the parameters' values in the ESP-r files. 

- ESP-r also proved to be a limiting factor to this methodology as far as the 

lighting energy consumption is concerned. However, this is partly due to the 

fact that the tool is under continuous development, and new versions will 

probably be available in a near future to address the current shortcomings. 

For the time being, it was decided to use Radiance simulations in parallel to 

ESP-r in order to estimate occupants' visual comfort for later studies, as 

documented in the following section. 

- Last but not least, it is our hope that this methodology will be flexible and 

simple enough to be actually used by designers. This last remark begs for a 

dramatic simplification, or at least automation, of all the file-handling process. 

Based on the conclusions drawn from this preliminary study, the author devised an 

improved methodology meant to address the limitations of the first sketch. 



CHAPTER 5 

5. CONFRONTING THE PROPOSED METHOD 

TO A LARGE-SCALE EXAMPLE 

Chapter 4 showed evidence of the validity and applicability of the methodology for a 

section of a building. The present chapter documents the optimization study of a full-

scale building and different sets of design parameters and objective functions will be 

studied. The two main issues encountered during the validation stage of the 

methodology are also handled as follows: 

- The author of this work wrote a program in the Perl programming language in 

order to automate the whole simulation process. This language is quite 

straightforward and free software exists to program in Perl under most 

operating systems. The role of the program is manifold. 1) It updates the 

ESP-r model for each case defined by the design of experiments; 2) it runs the 

simulation by invoking of ESP-r; 3) it extracts the simulation results from the 

ESP-r files and writes them into an output text file later used to train the 

ANN; and finally 4) it deletes all the temporary files. 

- An attempt was made to use Radiance to assess visual comfort more 

comprehensively. Unfortunately, this proved to be a tedious process and after 

consulting ESP-r developers at Strathclyde's University Energy Systems 

Research Unit (ESRU) and at National Research Council Canada (NRCC), the 

author got the confirmation that work was under way to calculate daylighting 



metrics within ESP-r. Unfortunately again, the Beta version of the software 

was not yet available at the time this thesis was written. 

The first section of this chapter presents the building used for the optimization study 

as well as a summary of a preliminary sensitivity analysis conducted by another 

researcher. The objective function is discussed in the following section with 

emphasis put on the different metrics used to evaluate the building. Finally, two 

optimization study cases are documented in the remaining two sections. 

5.1. Presenting the Building Model 

The building selected is a school located in 

Grong, Norway, whose main feature is a hybrid 

ventilation system. An ESP-r model of the 

building was developed by Wachenfeldt (2003). 

This building was designed with a concern to 

reduce the heating and ventilation energy Figure 18 - Global View of the 
Mediaa School 

consumption and to provide pupils with optimal 

indoor air quality conditions. Energy-saving measures include extensive use of 

natural ventilation and natural daylight, and an underground duct through which the 

air passes before being injected into the classrooms. The culvert enables the 

preheating or pre-cooling of the air, depending on the season. The main classrooms 

are connected to an extract chamber. The extract chamber has a large glazing area as 

shown on Figure 18. Its purpose is twofold: first, it acts as a buffer space containing 
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a large mass of warm air, thus enhancing natural ventilation; it also allows for an 

extensive use of natural daylight in two of the classrooms. This extract chamber is in 

turn connected to an exhaust tower whose purpose is to create draft, hence 

participating to the natural ventilation of the building. 

In the final section of his thesis, Wachenfeldt documented a sensitivity analysis he 

conducted after having set up an ESP-r model of the premises (Wachenfeldt 2003). 

After discussing with Dr. Wachenfeldt and one of his colleagues from the Norwegian 

Technology University in Trondheim, it seems that the building design has two main 

shortcomings: 

- From a general perspective, the geometry is too complicated. On top of 

increasing the price of construction, the geometry favours heat loss as well as 

pressure drop, thus reducing the potential for natural ventilation. 

- Further to thermal bridges, both gentlemen agreed on the fact that floor 

insulation was not sufficient in most of the classrooms and that energy 

performance was quite poor. 

These two aspects notwithstanding, the school works relatively well since it provides 

pupils with a very satisfactory work environment. According to Dr. Wachendfeldt, 

the pre-cooling potential of the duct is unfortunately very little used, since the school 

is left unoccupied throughout summer. In light of this, and bearing in mind the 

introductory comments to this thesis on building rehabilitation, studying the potential 

of the building for summer usage and thus investigating the optimal design of the 

school, should it be used in summer, is an interesting challenge. 
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For the purpose of this work, major changes were made to the original ESP-r model 

of the building. In order to operate under more constraining conditions, the exhaust 

and intake fans were removed, thus leaving natural ventilation as the only driving 

force in the building. 

Figure 19 shows a cross section view of the school with the underground intake duct 

to preheat or precool the air connected in turn to the underground distribution duct, 

located under the corridor. Air is then distributed to the classrooms, collected by the 

extract chamber and finally exhausted outside by the exhaust tower. 

Exhaust tower 

Figure 19 - Cross-sectional View of the Ventilation System 

Finally, Figure 19 shows a bird view of the ESP-r model of the school with the three 

main classrooms. 
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Oafs Nmtb«ut (dNE) 

Figure 20 - Bird View of the Model 

5.2. Identifying the Metric Function 

It would be convenient to have a performance metric to rate buildings and which 

would encompass environmental impact, energy performance, occupants' comfort (in 

terms of thermal comfort, indoor air quality, visual comfort, acoustic comfort etc.) as 

well as financial considerations altogether. However, such a performance metric does 

not exist and is very unlikely to see the day. It has already taken much time for the 

international building community to reach consensus as to what metrics to use to 

evaluate thermal comfort, for example, and some aspects such as daylighting are still 
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under discussion (Reinhart et al. 2006). As already mentioned, the ESP-r energy tool 

was used for the simulation part of this work; consequently, the metrics chosen to 

assess the performance of the building are those easy to compute with the software. 

Let us have a brief review of the indices used to assess building performance in this 

study: 

5.2.1. Energy Performance 

Energy performance is already taken into account in the environmental performance 

metric, but since the energy bill happens to be one of the most important driving 

forces pushing clients to buy more energy-wise homes, it is of the essence. The 

heating demand, cooling demand, and lighting energy are the most commonly used 

metrics. However, more detailed metrics are also used at time, such as the energy 

efficiency of a heat recovery system for example. Scores of energy tools have been 

developed since the first oil crisis. TRNSYS, Energy Plus, and ESP-r are some of the 

most widely used tools. 

5.2.2. Thermal Comfort 

Unlike visual comfort, thermal comfort has been thoroughly studied for a couple of 

decades and there exist guidelines as to what metrics to use, how to measure them, 

and provisions on acceptable values. ASHRAE standards 1993 (55-2204) list a 

couple of metrics usable for the purpose of assessing thermal comfort in a room. 

PMV, the predicted mean vote, as well as PPD, the predicted percentage of 

dissatisfied people are two very popular metrics. PMV is the predicted mean vote of 



a large population exposed to a given environment. The PMV value is derived from 

the physics of heat transfer and empirical correlations; it ranges between -3, for which 

the environment is considered to be "too cold" and +3, where the environment is "too 

warm". Obviously, any environment should ideally score around zero. PPD is 

derived in turn from the PMV value. When the PMV value deviates away from the 

neutral value (i.e. zero) then the value of PPD starts increasing. Software tools such 

as ESP-r can now accurately predict these values too. 

5.2.3. Indoor Air Quality 

Indoor Air Quality is a domain that deals with the presence of contaminants in the 

indoor air such as microbes, chemicals, allergens etc. Several indices are used to 

assess the quality of indoor air, such as the mean age of air or the concentration of 

gases, just to name a few (ASHRAE 2001). They usually require a substantial 

amount of detail and thus, computational effort. 

5.2.4. Visual Comfort 

Some provisions exist as far as the minimum lighting level is concerned, but as of 

today, there is no general consensus as to what metrics to use to evaluate the quality 

of daylighting. As a matter of fact, daylighting, or the use of natural light instead of 

artificial light, is gaining in popularity due to the significant cost associated with 

artificial lighting. Most countries have regulations with respect to the level of light 

on work planes. For example, Human Resources and Social Development Canada 

recommends 300 lx to 500 lx on the work space for typical clerical work (HRSD 
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1989). Provisions are also given regarding how to take measurements. In spite of 

this, it is quite hard to assess the performance of a building in terms of visual comfort, 

especially when it comes to natural daylight. Reinhart conducts extensive research to 

determine what metrics to use to assess daylight performance in sustainable buildings 

(Reinhart et al. 2006). Daylight factor is by far the most used metric to estimate the 

performance of a building in terms of visual comfort. It is defined as the "interior 

horizontal daylight illuminance expressed as a percentage of the horizontal daylight 

illuminance available to an unobstructed site". Due to its definition, it is a static 

metrics based on the geometry of the building and therefore does not account for 

changes in outside daylight illuminance. According to a researcher at the NTNU 

University, the next update of the Norwegian building code will advocate for a 

daylight factor of at least 2% at a point located one meter from the side wall, halfway 

through the room from the window. Several other metrics were proposed to assess 

dynamic daylight performance. Daylight autonomy for example can be defined as the 

percentage of occupied time per year when target illuminance can be maintained by 

daylight alone. This proves to be quite a useful and intuitive metrics since it can be 

expressed as the percentage of lighting electricity saved by a lighting system ESP-r 

developers are working on improving the interface to perform Radiance calculations 

from within ESP-r. Reinhart's team is also working on linking their tool for 

calculation of dynamic daylight performance to Radiance and ESP-r. 
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5.3. Performance Metrics under the Scope of this Study 

5.3.7. Energy Usage 

For the first example, the heating energy consumption in the classrooms, bathrooms, 

corridor, and heating battery was used to assess the energy performance of the 

building. In the second example, a cooling capacity was added to each of the rooms 

to investigate the need for air conditioning in summer and the optimal cooling 

capacity to install. Determining the GHG emissions due to the operation of the 

building would be straightforward. Software to calculate GHG emissions does exist, 

such as the Athena program in Canada for instance, but the lack of data for Norway 

would impede the calculations and it was thus decided not to take GHG emissions 

into account. 

5.3.2. Thermal Comfort 

As in the previous chapter, thermal comfort is here represented by the cumulative 

frequency of time for which the PPD is the classroom is below 20%. Clothing levels 

of 1.0 clo in winter, 0.75 clo in autumn and spring, and 0.5 in summer were used, as 

previously. The metabolic rates used were 100 W/m2 to account for children's 

activity. 

5.3.3. Visual Comfort 

Finally, visual comfort is represented by the average of daylight factors estimated at a 

series of points located halfway through the room from the windows, and one meter 
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away from the side walls, to compare it to the provisions given by the Norwegian 

Building Code. 

5.3.4. Objective Function 

The optimization seeks to minimize the heating energy consumption while 

maximizing the thermal and visual comfort factors. 

5.4. First Case - Testing the Method on a Large-scale Example 

5.4.1. Design of Experiments and Choice of Parameters 

In this first example, only a limited number of parameters are studied to test the 

applicability of the method with a complex case. Thus, the influence of the size of 

the extract chamber windows and the height of the exhaust tower on the energy, 

thermal, and visual performance of the building is investigated in this first example. 

Changing the glazing area of the extract chamber has an impact on both the building 

energy consumption and the occupants' thermal and visual comfort. These aspects 

are conflicting since increasing the glazing area results in more daylight in the rooms, 

but a worse thermal comfort, as some preliminary studies showed. The height of the 

roof tower was allowed to change in order to help natural ventilation. 

Three design parameters were perturbed to study their impact on the energy 

consumption, and thermal and visual comfort. This defines three inputs that 

correspond to the fifteen outputs for the first case. The upper-bound values were 



arbitrarily chosen following the Norwegian building code which recommends a 

minimum daylight factor of 2% halfway through the room from the window, and one 

meter from the side walls. There is no restriction as to the size of the exhaust tower; 

however, the architect who designed the school would need to give his consent prior 

to any modification in the building envelope. 

Design parameter 
Extract chamber window facing 
south - height [m] 

Extract chamber window facing 
southwest - height [m] 

Exhaust tower - height [m] 

Lower bound 
0.4 

(25% of original value) 
0.4 

(25% of original value) 
2 

(original value) 

Upper bound 
1.7 

(original value) 
1.7 

(original value) 
6 

(arbitrarily chosen) 

Table 4 - Parameters Maximum and Minimum Values 

As for the previous case, LHS was used to sample the search space as efficiently as 

possible. As already mentioned, though several studies have concluded that for a 

study based on N parameters, a number M greater than twice the number of 

parameters is sufficient to correctly sample the search space for uncertainty analysis, 

by experience, more samples are required when dealing with energy simulations. 

Due to the number and different natures of outputs, 250 cases were simulated, that is 

approximately five times the product between the number of inputs and the number of 

outputs. LHS allows for an optimal coverage of the search space. The cases are 

reported in Appendix B. 
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5.4.2. Simulations 

As mentioned in the introduction to the current chapter, and based on the conclusions 

drawn from the preliminary case study, it is necessary that the simulations be 

automated, if only to avoid human errors. A lot of attention was thus placed on the 

writing of a program to prepare the ESP-r model, run the simulation, extract and save 

the simulation results, and erase all temporary files. One of the main concerns of this 

work is to devise a method usable by building designers. It thus needs being fairly 

simple to understand and to implement, regardless of the computational background 

of the user. The Perl programming language is a simple language whose syntax is 

similar to that of the most commonly used programming languages such as C, C++, 

Java and the like. Furthermore, it is free of charge and rather well documented. 

Hence, it appeared to be well suited to the purpose of this work. Any designer 

acquainted with the basics of programming should be able to didactically write a 

program with Perl to automate energy simulations. 

The performances of the different building cases previously defined were computed 

with ESP-r. Each case—which involves changing and updating the model files, 

running the simulations, and saving the results—required approximately 5 minutes 

CPU time for a total of 1,250 minutes—i.e. 20 hours. 



5.4.3. Training the ANN 

The ANN was trained with the MATLAB Neural Network Toolbox using 200 cases. 

The 50 remaining cases were used to validate it. MATLAB's Neural Network 

Toolbox is easy to use and fairly well documented. A feedforward network with one 

hidden layer was trained with the Baysian regularization backpropagation training 

function available within MATLAB. There are 25 neurons in the hidden layer. 

The two following figures illustrate how well the ANN performed in general. Figure 

21 shows the relative error between the ANN model and ESP-r for the energy 

consumption. Figure 22 shows the relative error between the ANN model and ESP-r 

for visual comfort (referred to as VC) and the thermal comfort (referred to as TC). 



Heating battery 

WCwest 

WC central 

WC east 

Class S 

Class NE 

Corridor 

Class NW 

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 
(ESPr - ANN) / ESP-r [%] 

3.50% 4.00% 4.50% 

Figure 21 - Absolute Relative Error - Heating Energy Consumption 
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Figure 22 - Absolute Relative Error - Thermal Comfort (TC) and Visual Comfort (VC) 
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As far as the heating energy consumption is concerned, the average difference 

between the ANN predictions and ESP-r simulations remained below 0.5% in all 

cases but one. Likewise, the maximum relative error between the ANN model and 

ESP-r is slightly above 1%. For the Corridor thermal zone, however, the average 

relative error is slightly greater than 1%, and the maximum error is above 4%. This 

might be due to the fact that the corridor is connected to the three main rooms of the 

building and to the outside as well, and thus it is more complex to model. More 

training cases might have yielded a better approximation for this output, but a 

maximum error of 4% is still very good. Another ANN with 30 neurons instead of 25 

in the hidden layer of the ANN was trained; the maximum error was decreased to 3% 

but the computation time to train the ANN increased significantly. 

The ANN model and ESP-r are, as well, in very good agreement as far as visual 

comfort (referred to on this figure as VC) and thermal comfort (referred to on the 

figure as TC) are concerned. Consequently, there is more discordance between the 

ANN model and ESP-r as far as visual comfort is concerned, since visual comfort is 

harder to model, but the maximum error is still below 2.50%. The ANN was thus 

validated and used as the evaluation function of the Genetic Algorithm. 

5.4.4. Optimization Search 

In order to evaluate which aspect of the objective function had the most potential for 

optimization, three optimization studies were carried out. In the first case, the 

objective function was the global heating demand of the building only. For the 



second case, only the thermal comfort factors were taken into account. Finally, only 

visual comfort was studied in the last case. Optimizing each aspect of the building 

separately yields different optimal designs. Indeed, optimizing for the energy 

consumption only results in maximizing the extract chamber glazing area and 

increasing the height of the exhaust tower. Maximizing for occupants' visual comfort 

yields similar changes. On the other hand, maximizing for the thermal comfort in the 

rooms results in decreasing both the size of the glazing area and the height of the 

tower. The parameters' original and optimal values as well as the building 

performance improved values are listed in Table 5. Optimization results given by the 

GA were counter checked with the Generalized Pattern Search (GPS) algorithm also 

available with Matlab and for all cases the GPS corroborated the GA's results. 

Performance 

Factor 
Heating Energy 
Consumption 
Thermal Comfort 

Visual Comfort 

Original input 

[m mm] 

[1.7 1.7 2.0] 

[1.7 1.7 2.0] 

[1.7 1.7 2.0] 

Optimized input vector 
[m m m] 

[1.7 1.7 4.9] 

[0.4 0.4 2.0] 

[1.7 1.7 2.9] 

Improvement 

[%] 

0.58% 

50.44% 

0.14% 

Table 5 - Results of the Three Single-Objective Optimizations 

These preliminary results show that thermal comfort has the greatest improvement 

potential. It also evidences the obvious: simultaneously optimizing different aspects 

of a building is conflicting. 



Reducing the extract chamber glazing area improves, according to the preliminary 

single-objective optimization results, the thermal comfort in the classrooms a great 

deal, but this also results in a poorer visual comfort and an increase in the energy 

consumption for this period of the year. The first requirement of a building is to 

protect its occupants from the outdoor and to provide them with optimal indoor 

conditions, conductive to their daily activities. In light of this, it was decided to give 

in a first step equal weights to energy consumption, thermal comfort, and visual 

comfort in the objective function to optimize. In general, no single optimal solution 

can simultaneously yield an optimal value for all the single-objective functions. Our 

purpose here is to use a single objective function combining all the aspects to 

improve—energy demand, thermal comfort, and visual comfort. Scaling each 

component of the aggregated objective function between zero and one is a way to 

ensure that all aspects will equally drive the optimization search. This can be 

achieved by using the Lp norm, as in Malard et al (2004): 

minZ,z?(jc) = min 

Equation 2 - Objective Function: Minimizing the Lp Norm 

Where: 

- JC is an input vector belonging to the search space Q, delimited by the lower 

and upper bounds as defined in the Design of Experiments; 

f\ to f3 are, for each of the classrooms, the ratio of time out of the whole 

occupancy time for which PPD is less than 20%. This value is multiplied by 

-1 to actually maximize thermal comfort; 

m 

5>,' 
up 

y;.(x)-miny;.(x) 
maxy;.(x)-miny;.(x) 



/ 4 t o / n are the heating energy consumption of class NW, corridor, class NE, 

class S, the three bathrooms, and the heating battery respectively, in kWhr of 

electricity; 

fn t o /is a r e m e average daylight factors, in %, for the side walls of the 

classrooms facing northwest and northeast; 

a>. are the weights associated to these functions. They are dimensionless 

since all the aggregates of the objective function are dimensionless; 

1 < p < oo. The greater p, the more importance is given to the deviation in the 

metric function. 

Table 6 summarizes the results of the first optimization, for which equal weights were 

given to the three main performance indices of the building. As for the previous 

results, the near-optimal solutions were validated using a GPS algorithm as shown in 

Table 7. The GPS and GA both lead to the same conclusion. 

Performance 

Factor 
Metric Function 
L*(x) 
Heating Energy 
Consumption 
Thermal Comfort 

Visual Comfort 

Improvement 

+45.53% 

-8.26% 

+30.31% 

-33.05% 

Original input 

[m mmj 

[1.7 1.7 2.0] 

Optimized input vector 
[mm m] 

[0.4200 1.1468 4.5278] 

Table 6 - Optimization Results with Equal Weights 



Performance 

Factor 
Metric Function 

Heating Energy 
Consumption 
Thermal Comfort 

Visual Comfort 

Improvement 

+45.53% 

-8.26% 

+30.31% 

-33.05% 

Original input 

[m m m] 

[1.7 1.7 2.0] 

Optimized input vector 
[m m m] 

[0.4200 1.1568 4.5278] 

Table 7 - Verification of the Optimization Results with GPS 

These results are not very surprising. Indeed, the individual optimizations showed 

that in the case of this building, and for the conditions defined, only thermal comfort 

had a strong potential for improvement. As a consequence, it is not surprising that 

the best solution should be one that favours thermal comfort over visual comfort, and 

to a lesser extent, over the energy performance of the building. It was then decided to 

change the weights «, for each function according to their improvement potential. 

Visual comfort will thus be favoured over energy performance which will in turn be 

favoured over thermal comfort. The results of this second optimization are listed in 

the following table. 

Performance 

Factor 
Metric Function 
LJx) 
Heating Energy 
Consumption 
Thermal Comfort 

Visual Comfort 

Improvement 

[%] 

+23.77% 

-3.05% 

+12.90% 

-23.22% 

Original input 

[m m m] 

[1.7 1.7 2.0] 

Optimized input vector 
[m m m] 

[0.6558 1.7400 2.000] 

Table 8 - Optimization Results with Different Weights 

83 



For this optimization, weight values of 1, 1/3, and 3 were defined for the energy 

performance, thermal comfort, and visual comfort respectively. Thermal comfort and 

visual comfort are clearly the most conflicting aspects in this optimization problem. 

Just by changing the geometry of the envelope of the building, one could not improve 

one of these two aspects without seriously worsening the other one. After running a 

few simulations with ESP-r, it appeared that the rooms were indeed too hot for most 

of the time, from June onward. This accounts for why the optimization tends to 

recommend a smaller glazing area on the south facade; the maximization of the 

southwest glazing area might stem from the need to make up for the reduction in the 

global glazing area of the extract chamber to guarantee satisfactory ventilation flow 

rates. However, the optimization does not seek to increase the height of the tower, 

thus reducing the draft, and limiting the airflow rates in the rooms, which causes 

occupants' discomfort. This is contradictive with the positive action a bigger tower 

would have, allowing more fresh air to flow into the rooms, and improving thermal 

comfort. After analysing the climate data, it appeared that the ambient air was 

unusually warm for Norway—i.e. over 25°C—for most of the summer. Since the air 

is only cooled through the underground duct, and since the ambient temperature is so 

high, low flow rates are favoured for they allow the air to cool more before being 

injected into the rooms. Changing the geometry of these three parameters only will 

not improve thermal comfort sufficiently and other options should be investigated, 

such as those proposed in the second example. 



Using other weight values, such as 10, 1, and 1/10, yielded a global improvement of 

0.03% and 0.10% in the energy and visual performance of the building, and to a drop 

of 0.33% in the thermal performance for an input vector of [1.6932 1.7400 3.2479]. 

However, the main conclusion to draw here is that such variations are to take with 

precaution, mainly because they are of the same order than the ANN's relative errors. 

Care should thus be given to avoid choosing too disparate weights. Besides, there is 

no interest in an optimization that advocates so little changes. When designers face 

problems, decisions have to be made. Reducing the size of the south window and, to 

a lesser extent, that of the southwest, is a solution to improve thermal comfort. 

However, other measures should be taken in order to make up for the loss in visual 

comfort. 

The choice of the weighting factors can be based either on a trial and error approach 

or left to the user's discretion. Some optimizers put forward the argument that 

building energy performance should be as important as occupant comfort, and 

therefore would tend to allocate similar weights to both scalars. 

5.5. Second Case - Testing the Limits of the Method 

5.5.7. Design of Experiments and Choice of Parameters 

This case study set out to investigate more parameters such as night setback 

temperatures, adding cooling capacity to the system, adding shading devices on 

windows, changing the sizes of other windows, adding an insulation layer to the 

floors in the classrooms. Adding these parameters will give more insights on the 
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influence of each of those on the global performance of the building. It will as well 

permit to test the limits of the method by having a more complex objective functions 

and more design parameters. Table 9 lists the parameters studied as well as their 

lower and upper bounds. 

Zone 

FAtract Chamber 

I'vlianst hmer 

Class Northeast 

Class Northwest 

Class South 

Class Northeast 
Class Northwest 
Class South 

Class Northwest 

Class South 

Corridor 

* " ' V . - " ' • . '•". ' ' . 

Variables 

Window SoutlmeM Height 
Window South Height 
Height 
Window- Length 
Window- Height 
Window - Length 
Window - Height 
Window Sl? Length 
Window SI- - Height 
Window SW Length 
Window SW- Height 
Insulation lliuknev. 
Insulation Thickness 
Insulation Thicknebs 
^^^^^^^^^^^^^^w * * 

Cooling Capacity 
Temperature Setpoint 
Cooling CjpjLity 
TempcrJlurc Setpoint 
Cooling Capacity 
Temperature Setpoint 

:<sm&mi^f&s&u 
Temperature Setpoint . 

Upper 
Bound 
1.7 m 
1.7 m 
(' in 

5 m 
1.7m 
17m 
1.7 m 
12.2 m 
1.7 m 
18.78 m 
1.7 m 
M (.m 
15 cm 
15 cm 

Lower Bound 

50% (0.85 m) 
50%(O.S5m) 
2 in 
50"o (2.5 in) 
50% (0.85 m) 
50% (8.5 m) 
50% (0.85 m) 
5U°i'.(h.l in) 
50% (0.85 m) 
50% (9.39 in) 
50% (0.S5 m) 
5 i in 

5 cm 
5 cm 

™ : , ~ ~ " \ r, 6x?^-

3,000 kW 
30°C 
S 000 kW 
30 t* ' 
1,000 kW 
30°C 

;%Q0QX»^ 
30?C .••/••: 

0,0 kW 
25°C 
0,(1 kW 
25-C 
0,0 kW 
25°C 
D^JcW^^v':^. 
-25°C •- . '*'• '• ' 

Conditions 

Continuous 

{5,10,15} 

Continuous 

Table 9 - Study Parameters and Their Lower and Upper Bounds 

As previously mentioned, the size of the main windows for each classroom was 

investigated on top of the dimensions of the extract chamber and tower. Likewise, 

the floor insulation for the main classrooms was allowed to take on three values, 

namely 5cm, 10 cm, or 15 cm. Small cooling capacities were allowed in the 
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classrooms, corridor, and distribution duct in an attempt to make up for the times 

when the duct could not meet the cooling requirements. 

Using the same sampling method as for the previous cases, 1,500 simulation cases 

were defined; a quite significant number of simulations. This number is justified by 

the number of input parameters, namely 24, and the number of outputs, 8. The 

outputs for this case are, as previously, the cumulative frequency of time for which a 

maximum of 15% of the people in the room are dissatisfied for each of the three 

classrooms; the average daylight factors for each of the three classrooms, estimated at 

the same measuring points; and the heating and cooling demand for the system. 

5.5.2. Simulations 

The same Perl program was used to automate the simulations and the 1,500 

simulations took about 5 full days to run. The reason is twofold: firstly, of course, the 

great many number of simulations implied more computations. Secondly, Radiance 

calculations were assessed for three classrooms instead of two, which significantly 

increased the global computation time. (Note that in the first case, the extract 

chamber had but a limited impact on the level of daylight in the classroom facing 

south; hence, it was not taken into account in the optimization.) 

5.5.3. Training the ANN 

The MATLAB toolbox was used for the ANN training and its validation. Training 

the ANN proved more tedious this time. A network with 15 neurons in the hidden 

layer was trained overnight. As shown in Table 8, the ANN performed rather well as 
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far as the heating demand, thermal comfort, and daylight factors are concerned with 

an average relative error below 2%. However, the ANN performed less well at 

predicting the cooling demand and the south daylight factor for a few cases. 

Table 10 - Relative Error between BS and ANN 

For the south daylight factor, the relative error was well below 10% for 90% of the 

cases, as shown on Figure 23. On the other hand, figure 24 shows that for 90% of the 

cases, the relative error on cooling demand was below 15% only. 

South Daylight Factor Relative Error - Cumulative Frequency 
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0.00% 

Figure 21 - Cumulative Frequency of the Relative Error between BS and ANN for the 
South Visual Comfort Metric 
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Cooling Load Relative Error - Cumulative Frequency 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Relative Error [%] 

Figure 22 - Cumulative Frequency of the Relative Error between BS and ANN for the 
Cooling Demand 

Despite this mediocre performance for both these aspects, the quality of the ANN 

could not be improved by adding more neurons in the hidden layer: the number of 

neurons in the hidden layer could not be increased least heavy computations would 

make the method totally unpractical. Adding a second hidden layer would result in as 

heavy computations. The solution would be to increase the number of simulations to 

train the ANN, and thus to run again a whole new set of simulations. This option was 

not chosen because in a real situation, more time-consuming simulations would mean 

the project would be given up. Besides, this second example set out to test the limits 

of this methodology, and this is clearly one of them. This issue will be further 

addressed in the concluding remarks of this thesis. In the meanwhile, the author 
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decided to use the ANN in spite of its mild performance regarding the south daylight 

factor and the cooling demand. 

5.5.4. Optimization Search 

As for the previous cases, GA was used to determine the optimal design for the 

building given the chosen study parameters. The global performance metric used for 

the optimization is the same as in the previous case, namely: 

minZp(jc) = min 

Where: 

- JC is an input vector belonging to the search space Q, delimited by the lower 

and upper bounds as defined in the Design of Experiments; 

f\ to fi are m e thermal comfort factors for the classrooms facing northwest, 

northeast, and south respectively; 

/ 4 and/5 are the total heating energy demand and total cooling energy 

demand; 

- / 6 to f7 are the average daylight factors for the classrooms facing northwest, 

northeast, and south respectively; 

By applying similar weights, i.e. 1.0, the optimization yielded the results presented in 

Table 11 while the original and the near-optimal vector are listed in Table 12. 

2>,' 
/=! 

up 

fi{x)-mmfi{x) 
maxy;.(x)-miny;.(x) 
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Performance Improvement 

Factor 
Metric Function 

Energy 
Consumption 
Thermal Comfort 
Visual Comfort 

[%] 

25.73% 

-1.78% 

7.64% 
-1.46% 

Table 11 - Result of the Optimization Search - Rate of improvement 

Zone Variables Original 
vector 

Near-optimal 
solution 

Global 
change 

Extract Chamber Window Southwest Height 1,70 1,69 
Window South Height mo 

l-'\li:iuvt Tower Ik-iulil 2.00 6.00 

Class Northeast Window -1 cnglh i-5;00 
Window - Height",' 

Class Northwest Window - Length 17.00 17.00 
Window - Height 1.70 1.70 

\M\t2& Window SE^.Effla$fo;: 

Class South 
Window SW^' iT^" 

"tmm: 
"S5't2t19 

;.-:u& 
•smm 
','*& '&&-14.06 

Window SW£] ^ J f t S W 1.69 
Class Northeast Insulation Thickness 0.05 0.15 

M | M M H P | | | ^ • H M H N I 
Class South Insulation Thickness 0.05 0.15 

Class Northwest 
Cooling Capacity 

Corridor 

Distribution Duct 

Cooling Capacity 
Temperature Setpoint 
Cooling Capacity.. -:-. 
Temperature Setpoint •• 

0.00 
25.00 

• •. o.op 
. 25.00 

0.06 
25.07 

* - 2.999.99 
:='i 29.98 

= 
= 
+ 
+ • 

Table 12 - Result of the Optimization Search - Original Vector vs Near-optimal 
Solution 
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5.5.5. Discussion 

The most salient fact of this optimization is the increase in the exhaust tower height 

from 2.0 m to the maximum value allowed, 6.0 m. The bigger the tower, the more 

draft there is and it thus helps natural ventilation, bringing more fresh air to the 

classrooms. This can explain in part the improvement in the thermal comfort metric. 

Adding small capacity air-conditioning units of 3,000 W would also make up for the 

hot days when natural ventilation alone cannot provide occupants with fully 

satisfactory thermal comfort conditions. This results in greater energy consumption, 

but adding extra insulation layers of 15 cm in the floor of the classrooms 

counterbalances the negative impact of air-conditioning by decreasing the heating 

demand for the cool summer days when heating is required. It is interesting to note 

that the glazing area of the extract chamber remains the same, most likely to help 

natural ventilation and visual comfort. However, the glazing area in the north east 

classroom is decreased by 50%. This is the classroom that gets least sun and this 

window surely is a path to heat loss by radiation heat transfer with the sky. A smaller 

glazing area, however, results in a worse visual comfort and one could replace it for a 

more energy-wise window instead of decreasing the area of the window. Last but not 

the least, the south west glazing area in the south classroom is decreased by 25%; this 

makes sense inasmuch as this is the facade of the building that gets most sun and 

there is overheating in the south classroom during the bright summer days. Thermal 

comfort is thus improved albeit for a loss in visual comfort. 

From a more general perspective, the building performed already very well, which 

accounts for the overall mild improvement in the building performance. 



5.6. Conclusion 

This set of examples proved that ANNs can faithfully represent the performance of 

complex buildings in terms of energy demand, thermal comfort, and visual comfort. 

In the first case, the influence of three parameters only was studied, and the ANN 

gave accurate predictions with less than 5% maximum errors when compared to the 

ESP-r predictions. In the second example, however, more cases were required to 

train the ANN and the ANN also required a greater number of neurons in the hidden 

layer. The cooling demand and the visual comfort metrics were the two hardest 

aspects to predict. On average, error between the ANN and ESP-r's predictions 

remained below 5% but for one case—6.5% for the cooling demand. The global 

performance could be increased by adding more samples to the training pool and 

another hidden layer to the ANN. On the other hand, this would substantially 

increase the computational time. This is clearly one limit of this method: the more 

design parameters and objectives in the objective function, the heavier the 

computations. 

The GA found near-optimal results in a matter of a couple of minutes. These results 

were corroborated by a GPS algorithm available within Matlab. The Matlab 

Optimization Toolbox thus offers the possibility to verify the results of an 

optimization search with seemingly performing algorithms. 

One of the most salient facts is that the 2*N (two times the number of design 

parameters) law does not seem to hold when it comes to building simulations 

involving thermal simulations, fluid mechanics, and visual simulations. It would be 

interesting to study for example the relationship between the number of input over the 
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number of output ratio and the minimum number of cases to sample the search space 

efficiently in the case of building simulations. 

In terms of results, this set of examples showed the complexity of optimizing for 

conflicting aspects of a building such as thermal comfort and energy demand, or 

thermal comfort and visual comfort. The first example gave the best trade-off 

between improvement in thermal comfort and loss in visual comfort by playing on 

three parameters only. This first example also showed that the three parameters were 

not the most important ones since playing on them only did not yield any satisfying 

results. The second example was more comprehensive and different solutions were 

proposed at the same time to test their viability. The optimization results are 

interesting since adding a cooling capacities in the class rooms did not have a too 

negative impact on the overall energy demand over the summer and it improved 

occupants' thermal comfort. The optimization also showed the importance of 

improving floor insulation, which is in accordance with remarks made by NTNU 

researchers who worked on the building. Likewise, it validated the general agreement 

that the exhaust tower ought to be increased to help natural ventilation, and thus, the 

energy performance of the building. 



CONCLUSION 

6. REMARKS, TEACHINGS, 

AND RECOMMENDATIONS FOR FURTHER WORK 

6.1. Remarks on Building Optimization 

The literature review preparatory to this study showed there has been confusion 

between 'improvement' and the field of optimization for a long time within the 

building community. Yet, much has been done over the past decades and various 

optimization techniques were successfully applied to buildings. GAs have been 

extensively studied and have proven to perform well at solving building optimization 

problems. GAs' only flaw is that they require a significant number of simulations to 

find a near-optimal solution. As a result, building optimization studies with GAs 

have used fairly simple objective functions only. To this day, very few studies dealt 

with comprehensive objective functions encompassing aspects as diverse as energy 

demand, thermal comfort, and visual comfort for example, mainly because of the 

computational challenge this would pose. However, optimizing for a single objective 

function only may result in poorly integrated buildings. As a matter of fact, different 

aspects of a building are often competing such as energy usage and thermal comfort. 

From this stemmed the idea of using an ANN to replace the building simulation 

program, and thus, alleviate the computational burden. Resorting to an ANN enables 

to optimize for more complex objective functions using evolutionary algorithms such 

as GAs. 



6.2. Conclusions on the Present Work 

The method proposed was tested with a set of examples to different extents. It was 

first successfully tested on a small-case example: a four-room portion of an office 

building in Ottawa. The ANN performed well with prediction errors below 5% 

compared to ESP-r. The GA found a near optimal solution yielding a 1 % to 4% 

increase in thermal comfort, 12% reduction in the heating load, and 4% in the cooling 

load. For the second set of examples, a full building was used: a school located in 

Norway. More design parameters were added to test the limits of the method. As 

well, visual comfort was added to the objective function on top of energy and thermal 

comfort. More cases were required to train the ANN but with sufficient training it 

performed well with average prediction errors below 5% except for one aspect: the 

cooling demand for which the average prediction error was 6.5%. The Mediaa 

School case proved much harder to optimize; it was indeed designed to be a high-

performance building using natural ventilation and providing optimum indoor air 

quality. It was extensively studied by NTNU researchers within the frame of the 

International Energy Agency's research programs. Therefore, it was hard to improve, 

whence the mitigated optimization results. 

The study showed that ANNs can faithfully represent very complex functions to 

assess the performance of a building in terms of energy, thermal comfort, and visual 

comfort. Besides, it was shown that using an ANN embedded within a GA was 

feasible and the process is fairly straightforward with Matlab. It would thus be easy 

to use for any designer with minimum knowledge in programming, which was one of 



the main concerns of this work: to propose a methodology easy to implement with 

accessible tools. 

On the other hand, the method also showed its limits, namely the number of inputs 

(design parameters) versus the number of outputs (aggregates of the objective 

function). Likewise, the two times the number of inputs rule of thumb does not hold 

for complex cases: the more complex the objective function, the more samples are 

required for the ANN training. The empirical relation between the number of inputs 

and the number of simulation cases for the sampling method should perhaps take into 

account the number of outputs. 

6.3. Recommendations for the Future - Building Optimization 

It seems essential to study the optimal number of sample cases to train the ANN as a 

function of the complexity of the outputs, i.e. the functions to approximate. The 

relation does seem to hold when only energy equations (thermal and mass flow) are 

taken into account, as in our first example. There were ten inputs for six outputs. 35 

cases were used to train the ANN and 15 to test it. 

The introduction of lighting equations requires a much greater number of samples to 

train and validate the ANN, as shown in the second example. With three inputs and 

15 outputs, 200 cases were required to train the ANN and 50 to validate it. The last 

example comprised 24 inputs and eight outputs. 1,200 cases were used to train the 

ANN and 300 to validate it. The average prediction error for this last trained ANN 

was below 5% for seven of the eight outputs but for one case with a 6.5% average 

error. Such great numbers require a significant amount of computational time, even 
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with an automated process. It is therefore essential to have a precise idea of the 

number of cases necessary to the ANN training and validation in order to avoid losing 

time and having to start simulations again with another training pool. 

In the case of building simulations, the minimum number of cases to train and 

validate an ANN seems to depend not only on the number of inputs, but also on the 

number of outputs and possibly on the complexity of the output to calculate. 

Other sampling methods might be more appropriate in the case of lighting 

simulations. 

6.4. Potential of ESP-r 

From an ESP-r perspective, it would be interesting to use the sensitivity analysis 

module to estimate parameters of interest. This module could also be developed so 

that it could generate the ANN training pool in an automated fashion. 

There is a need to investigate the lighting simulation capacity within ESP-r once the 

tool is made available, and to test the ability of ANNs to approximate these 

simulations. 

ESP-r works with GenOpt, one of the most promising building optimization tools. 

When using population-based optimization algorithms, GenOpt calls the building 

simulation program for fitness evaluation. The use of these potent algorithms with 

ESP-r is thus reduced for the moment due to the extreme computation time required, 

whence the need to approximate the building simulation program and to exploit its 

strengths with an ANN. In that sense, this aspect could possibly be included to 



GenOpt to be able to build a response surface approximation model of a complex 

building evaluation function in a first step, and then use it for the optimization search. 
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Annex A 

Design of Experiment 

Small-Case Example - Office Building in Ottawa 

Case 
Number 

1 

2 

3 
4 

5 
6 
7 
8 
9 

10 

11 

12 
13 

14 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

25 
26 
27 
28 
29 
30 
31 
32 

Window 
South 
Width 

[m] 
2.4682 

2.4346 

2.5858 
2.6362 

2.5774 
2.5018 
2.653 

2.3926 
2.6446 
2.779 

2.6698 
2.5942 
2.7874 

2.5438 

2.4766 
2.5522 

2.6866 
2.7538 
2.6614 
2.6194 
2.4514 

2.569 
2.7118 
2.611 

2.5354 
2.4178 
2.3842 
2.6026 
2.4262 
2.527 

2.7958 
2.7622 

Window 
South 
Height 

[m] 
1.79455 

1.71475 

1.83445 
1.82875 

1.70905 
1.84015 
1.76035 
1.70335 
1.74895 
1.82305 
1.84585 

1.81735 

1.65205 
1.72045 

1.77175 
1.69195 

1.74325 
1.63495 
1.85725 
1.78315 

1.73185 
1.73755 
1.66915 

1.65775 
1.64635 
1.64065 
1.80025 
1.88005 
1.62925 
1.81165 
1.86865 
1.62355 

Window 
North 
Width 

[ml 
2.695 

2.5018 

2.4598 
2.7118 

2.6866 
2.5522 
2.401 
2.527 

2.7874 
2.5774 
2.5102 

2.3926 
2.485 

2.6782 

2.4346 
2.6698 

2.4766 
2.7202 
2.5186 
2.4094 

2.7286 
2.7706 
2.4682 

2.6026 
2.7958 
2.6446 
2.7538 
2.779 

2.4178 
2.7622 
2.6278 
2.4514 

Window 
North 
Height 

[m] 
1.73185 

1.75465 

1.64065 

1.78885 
1.70335 
1.85725 
1.82875 
1.65205 
1.86865 
1.63495 

1.81165 

1.65775 
1.79455 

1.80025 

1.69195 
1.74895 
1.85155 
1.62925 
1.77175 
1.88005 

1.67485 
1.68625 
1.66915 
1.84585 

1.78315 
1.83445 
1.88575 
1.80595 
1.89145 
1.68055 
1.62355 
1.70905 

Window 
East 

Width 

[m] 
2.5606 

2.611 

2.527 
2.7874 

2.4346 
2.6194 
2.3842 
2.4094 
2.779 
2.737 

2.7454 

2.4178 
2.5774 

2.5018 

2.695 
2.7202 
2.6866 
2.5438 
2.7118 
2.4682 

2.7622 
2.6278 
2.653 

2.4766 
2.6782 
2.5102 
2.7958 
2.569 

2.5942 
2.5186 
2.7706 
2.6446 

Window 
East 

Height 

tm] 
1.68055 

1.61785 

1.85725 
1.82305 

1.80595 
1.72045 
1.73755 
1.73185 
1.89715 
1.77745 
1.64065 

1.78315 
1.86865 
1.72615 

1.71475 
1.62355 

1.81165 
1.66345 
1.66915 
1.84015 

1.81735 
1.89145 
1.67485 

1.63495 
1.76605 
1.78885 
1.74895 
1.79455 
1.86295 

1.74325 
1.69195 
1.76035 

Louver 
Angle 
South 

tdeg.] 
30 

120 

40 
30 

80 
120 
50 
90 

110 
140 
100 

90 
120 

50 

100 
40 
20 

140 
80 

150 
70 
60 
70 
70 

130 
130 
70 

140 
30 

160 
40 

110 

Louver 
Angle 
East 

[deg.] 
40 

50 

40 
120 

70 
140 
120 
100 
20 

160 

120 
160 
100 

150 

60 
150 
90 

120 
30 
50 

70 
150 
110 
40 

130 
30 
80 

130 
90 
50 
90 
40 

Lower 
Outside 
Temp 

Setpoint 

rci 
10 

11 

12 
11 

15 
14 
11 
14 

13 
13 
12 

13 

10 
11 

14 
15 

15 
12 
13 

13 
13 
11 
12 
14 

12 
12 
13 
14 
12 
15 
13 
14 

Upper 
Outsidt 
Temp 

Setpoin 

[°C] 
2-

2: 

2-
2 

2; 
2 
2 
2 
2 
2 
2; 

2 
2 

2 

2 
2 

2 
2 
2 
2: 
2 
2 
2 
2 
2 
2 
2 
2 

_ 2 
2 
2 
2 
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33 
34 

35 

36 

37 
38 

39 

40 
41 
42 

43 
44 

45 

46 
47 

48 

49 

50 

2.7202 

2.695 

2.4094 

2.5102 

2.5606 

2.401 

2.4934 

2.485 

2.7286 

2.5186 

2.6278 

2.6782 

2.7454 

2.7034 

2.7706 

2.4598 

2.443 

2.737 

1.77745 

1.69765 

1.89715 

1.76605 

1.67485 

1.86295 

1.66345 

1.80595 

1.88575 

1.68625 

1.85155 

1.72615 

1.87435 

1.68055 

1.61785 

1.89145 

1.78885 

1.75465 

2.5858 

2.6614 

2.4262 

2.5606 

2.3842 

2.653 

2.569 

2.5438 

2.7034 

2.443 

2.737 

2.6194 

2.6362 

2.5942 

2.611 

2.5354 

2.7454 

2.4934 

1.61785 

1.66345 

1.71475 

1.72045 

1.86295 

1.76035 

1.73755 

1.84015 

1.74325 

1.64635 

1.89715 

1.77745 

1.81735 

1.82305 

1.76605 

1.87435 

1.69765 

1.72615 

2.7286 

2.4934 

2.7538 

2.3926 

2.4262 

2.4598 

2.6614 

2.4514 

2.485 

2.5858 

2.5522 

2.6362 

2.443 

2.7034 

2.5354 

2.6698 

2.6026 

2.401 

1.84585 

1.80025 

1.75465 

1.82875 

1.69765 

1.88005 

1.87435 

1.68625 

1.64635 

1.77175 

1.65205 

1.65775 

1.83445 

1.70905 

1.85155 

1.88575 

1.70335 

1.62925 

120 
90 

20 

140 
110 

50 
150 

60 

80 
60 
150 
160 
50 

40 

90 
100 

130 
110 

30 

70 
130 

110 

140 

110 
110 

70 
140 
60 
90 
60 
80 

50 

140 
80 

100 
20 

11 

10 
12 

10 

14 

13 
14 

13 
14 
11 
11 
14 

11 

10 

15 
11 

12 
12 

2 
2: 

2 
2: 
2 

2: 
2 

2 

2 
2. 
2: 

2 
2 

2i 

2 
2i 

2 
2 



Annex B 

Design of Experiments 

Inputs for the First Large-Scale Example - Mediaa School 

Case 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Extract 
Chamber 
South 
Window 
Height 

[m] 
0.694903 

0.499039 

1.44154 

1.45405 

0.543088 

1.234819 
0.739251 

1.503149 
1.138462 

0.840565 

0.746959 

0.438895 

1.632976 

1.286096 J 

1.091188 
1.618735 
0.593998 

1.136257 

0.512483 

0.673377 

0.624679 

0.92417 

0.520701 

1.05317 

1.552719 
0.886622 

0.44533 
1.44856 
1.601729 

1.120914 
0.828764 

0.769273 

1.53961 

1.459726 

Extract 
Chamber 
Southwest 
Window 
Height 

[m] 
0.714651 

1.046237 

0.601498 
1.65967 

1.089361 

0.68644 

1.326071 

1.362879 
1.33735 

1.054636 

1.451033 

1.614707 

0.694345 

1.37483 

1.106923 
1.132104 

0.874281 

0.624598 
1.686402 

0.553342 

1.155232 

0.697486 

1.562806 

1.101813 

1.308123 
1.312711 

1.224187 
0.755047 
1.210257 

1.543302 
1.725607 

1.488189 
0.474407 

1.195079 

Exhaust 
Tower 
Height 

[m] 
4.256061 

4.443211 

4.695622 
5.750887 

4.11244 

3.740518 
4.781923 

5.208132 

2.251663 

4.498902 

5.423155 
4.949741 

3.556667 

5.49781 

4.563552 
4.527649 
2.677329 

5.450187 

5.40591 

5.637789 

5.766668 

4.391136 

3.223432 

4.541628 

4.767736 
5.009182 

3.780033 
2.365938 
3.304078 

4.834973 
2.877043 

3.914138 

2.484699 

4.426533 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

0.465796 

1.634539 

0.754622 

1.596294 

0.525112 

1.433154 

0.681313 

0.837982 
0.606378 

0.632435 

1.272578 
1.20324 

1.211911 
0.980232 

0.557075 

0.927924 

1.543322 

1.474595 
0.715416 

1.646715 
0.959372 

1.248309 
0.492737 

0.573877 

1.672068 

0.517447 

1.300186 

0.659844 

0.883797 

0.863034 

0.818367 
1.331449 

1.043171 
1.49779 

1.207919 
1.125895 

0.629736 

1.625408 
0.873913 

1.403452 

0.585588 

1.680809 

0.743796 

0.559472 

0.680377 

1.076944 

0.49606 

1.114815 
0.648972 

1.202189 
1.699172 

0.993803 

1.056643 

0.731366 
1.30359 

1.391064 

1.168361 

0.445791 

0.926902 

0.746582 

0.655756 
1.228013 

1.625006 
1.325058 

0.630998 

1.55573 

0.52009 

0.526003 

1.636688 

0.5443 

1.143147 
1.319835 
0.981398 
0.43415 
0.621183 
1.242953 

0.966046 

1.159846 

1.608234 

1.677829 

3.961591 

5.028189 

2.012778 

3.155609 

5.6775 

5.256777 

3.39018 

5.970975 
3.533172 

2.454673 

3.052086 

4.36062 

3.003751 

3.637085 
2.073264 

2.54668 

4.611025 

2.189655 
3.321251 

4.547525 
2.470198 
5.560064 

2.951429 

5.325722 

4.318938 

5.994725 

3.491555 

3.189241 

4.109352 

2.622537 

3.138275 
5.462195 
5.379231 
3.948534 

2.631383 
3.094645 
5.928559 

2.924072 

2.502813 

4.494768 
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75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 

1.536974 

1.056779 

0.795488 
0.458463 

0.731284 

0.786149 
0.456634 

1.445194 

1.187576 

1.563595 

0.707296 

1.040984 

1.239912 
0.635543 

1.268386 

0.595619 
1.471964 

0.99819 
0.804474 

0.42425 

1.507497 

0.81314 
1.324027 

0.798701 

1.385759 
1.015164 

1.074463 

1.365627 

0.482461 
0.902941 

0.50441 

1.143235 
1.496491 

1.663753 

1.107025 

1.020976 

1.170791 

1.688731 
0.577974 

1.28035 

0.450762 
1.665115 

1.158231 
1.655632 

1.376288 

1.114555 
1.572963 
1.151799 

1.275595 

1.500554 

1.601256 

1.348479 

0.94238 
0.598093 

1.712061 

0.911223 

1.434963 

1.083493 

0.991065 

1.070641 

1.044813 

0.639278 

0.898326 

1.009818 

1.412095 

1.68906 
0.836234 

0.489905 

0.958249 

1.418566 

0.787939 

0.921694 

1.58272 
1.462706 
0.873156 

0.799313 
1.06453 

1.199887 

0.523808 

1.342881 
1.420702 

1.430282 

0.884355 

0.592038 

0.801361 

1.479122 
0.831771 

0.455917 

0.774511 
0.971978 
1.183598 

1.705418 
0.95354 

0.79264 
1.444131 

0.664032 

2.780402 

3.107442 

4.064892 

4.7211 
5.722404 
5.425764 

2.931013 

3.477522 

5.118048 

3.828767 

2.884195 

3.855534 

4.198461 
5.591984 

3.433657 

3.760116 
5.899461 

4.591113 

5.549568 

5.800516 

3.540141 

2.565613 
5.044371 

4.343741 

2.131713 
4.448693 

5.915449 
5.961418 

5.284478 

2.669092 
5.512624 

5.188811 
4.991125 

5.601394 

514397 

2.228966 

4.974726 

5.304879 

5.818196 

3.621278 
2.046636 
3.58842 

3.895228 
2.602407 

5.839785 
4.912364 

3.130743 
2.391673 

123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 

0.667815 

1.177077 

1.590528 

1.426765 
1.253068 

0.992981 

0.69728 

0.536633 

0.773267 

0.564174 

1.515616 

0.853671 

0.916923 
1.034089 

1.342325j 
1.188355 

1.487253 

1.387855 

1.000743 

0.548348 

1.525081 

1.130036 
1.295695 

0.654853 

1.076857 
0.436125 
1.554278 

1.650546 
1.062964 

1.029368 

1.167303 

0.976843 
0.486671 

1.325391 

0.852329 
0.617564 

0.640548 

1.346011 

0.661395 
1.262473 

0.943828 
1.48406 

1.255086 

1.465997 

1.418843 

0.678084 
1.083805 
1.276299 

0.900994 

1.445529 

0.711571 

1.6699 

0.565594 

1.574926 
0.811139 

1.266782 

1.254759 

1.54222 

1.111355 

0.890477 

1.039368 

1.030476 

0.937461 
0.763681 

0.920159 

1.61619 

0.930957 

1.281284 

0.501555 

1.239182 

1.595216 

1.248905 

1.549175 
1.259518 
0.440354 

1.468542 

0.534634 

1.394966 

0.672325 

1.144337 
1.644307 

1.218753 

1.485398 

1.007831 

0.8619 

1.406613 

0.579165 
1.126726 

1.212516 
1.491853 
0.606116 

1.28471 

1.715322 

1.368167 
0.725248 
0.750432 

2.58512 

4.788407 

2.371303 

2.115766 

3.084101 
2.539976 

3.977089 

2.277211 

4.99713 

5.356998 

4.683009 

4.645687 

2.789625 
4.744415 

5.48473 

2.963195 
3.986965 

3.469393 

3.509619 

5.846532 

2.990447 

4.248606 

4.30273 

3.014585 

2.652122 
3.212959 

2.048059 
3.339495 

4.899639 
4.161849 
2.434779 

5.274586 
5.621518 

4.82959 

5.784326 

2.704661 

2.175925 
5.233057 

2.100816 

3.696279 

4.219779 
2.346336 
3.031547 

2.803267 

3.25705 

4.016989 
4.130728 
3.234273 
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171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 

0.583059 

1.009259 

1.363956 

0.93108 

1.51858 

0.98691 

1.574229 

1.60483 

1.218686 

0.473284 

0.792605 

0.42993 

1.372475 
1.643809 

0.778913 

1.3122 

0.914247 

1.480895 

1.612859 

0.904699 
0.891622 
1.623847 
0.718674 

0.871962 

0.898851 

1.070836 

0.951597 

1.227519 

1.393285 

0.688532 

0.530018 

1.585199 
1.561524 

0.55275 
0.767187 

0.648689 

1.104489 

1.309431 

0.963582 

1.317558 
0.758324 
0.495889 

1.410805 
1.047124 

1.424039 

1.582833 
1.41489 

0.974807 

1.456692 

0.458594 

1.569483 

1.024307 

0.571841 

0.689499 

1.634988 

0.46625 

1.381815 

1.095934 

1.335405 

1.398567 

0.868212 

0.766187 

0.849816 

1.588417 

0.974349 

0.854943 

1.511834 

0.449758 
1.298538 
0.511105 
1.516447 

1.666851 

0.509891 

1.591372 

1.023614 

0.844903 

1.529197 

1.015029 

0.778106 

1.502273 
0.641974 

1.427083 
1.291268 
0.821654 

1.65237 
0.480524 

1.723975 

1.626895 

1.650999 
0.826027 
1.526977 

0.839589 
0.71854 

0.985726 
1.27287 

0.666662 

3.649336 

4.93405 

5.688597 

2.818997 

5.086206 

3.714698 

3.803461 

3.392918 

4.176042 

4.374342 

2.215763 

4.32635 

4.409671 

5.868654 

2.850892 

4.035002 

4.473798 

2.901047 

2.256915 

5.364694 
2.328134 

5.569335 
3.360735 
3.691783 

4.662051 

3.448281 

4.158422 

4.238085 

4.806708 

5.735467 

2.754447 

3.175303 
2.724652 

2.406666 
3.271601 
3.872648 

5.711867 
4.598074 

4.060064 

3.745106 
4.848721 
3.280346 
4.713042 

3.581029 
4.001635 

5.103242 
5.133344 

4.63822 

219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 

1.683165 

1.01828 

0.825406 

1.217032 

0.600628 

1.180138 

1.229174 

1.676561 

0.844969 

0.75071 

0.701599 

1.352205 

1.098316 
0.7347 

0.724946 

1.400958 

0.587509 

1.52951 

1.338488 

0.812074 
1.291567 

1.358556 
0.948642 

0.471064 

1.19453 

1.153381 

0.567756 
0.96739 

0.614653 

0.863914 

1.093118 

0.937042 

0.488938 

0.998524 

0.655583 

0.617955 

0.949546 

1.17407 

1.117724 

0.546937 
0.816149 

1.176151 

1.233444 

0.613982 

1.534206 
1.187585 

1.38742 

1.470541 

0.572794 

0.703152 

0.883938 

0.905028 
0.735389 
1.357739 
0.469451 

1.138074 

0.537613 

1.149869 

1.567911 

1.073805 

1.520094 

0.782602 

1.696131 

1.354999 

3.823573 

3.351833 

2.419799 

4.871768 

2.844302 

2.742627 

2.028088 

2.088176 
3.062049 

4.284124 

2.198911 
2.307832 

5.227522 

5.069542 

3.93346 

3.862902 

2.523277 

5.879787 

5.657085 

5.941933 
3.615155 

3.671801 
5.178796 
2.303874 

5.163961 

4.095673 

4.895322 
5.521917 

2.699852 

5.335228 
2.150542 

3.414585 



Annex C 

Design of Experiments 

Outputs for the First Large-scale Example - Mediaa School 

Case 
number 

1 

2 

3 
4 

5 

6 

7 

8 
9 

TCnwest 
[%] 

24.09 
23.27 

22.26 

17.62 
22.87 

22.39 
21.31 
18.67 
20.02 

TCneast 

[%] 
28.12 

27.3 
25.91 

20.9 

26.8 

26.49 

24.56 
22.12 

23.2 
... 

Tcsouth 
[%] 

29.74 

28.79 
28.01 
23.92 

28.46 

28.12 

26.9 
24.8 

25.88 
... 

Hnwest 
[kWhrJ 

150.05 
142.71 

132.59 
111.67 

139.41 

135.7 

126.94 

116.28 
121.27 

Hcor 
[kWhr] 

4.15 
3.86 
3.35 

2.37 

3.63 

3.59 

3.06 
2.55 
2.81 

Hneast 
[kWhr] 

242.41 

233.65 
224.8 

195.56 

231.46 

227.06 

218.2 
200.76 

208.93 
... 

Hsouth 
[kWhr] 

110.79 

107.51 
104.6 

94.22 
107.79 

106.04 
102.77 

96.22 
98.27 

Case 
number 

1 
2 

3 
4 

5 
6 
7 
8 
9 

... 

Hwc_east 
[kWhr] 

110.46 
108.97 
107.26 

100.15 
108.43 
107.81 

105.6 
101.86 

103.9 
... 

Hwc_c 
[kWhr] 

106.99 
105.41 

103.55 
96.59 

104.77 
104.16 
101.8 
98.15 

100.11 
... 

Hwc_west 
[kWhr] 

117.01 
115.21 

113.07 

105.07 
114.48 
113.76 
111.02 
106.75 
108.99 
... 

Hdist 
[kWhr] 

2169.42 
2145.07 

2123.26 

2052.76 
2134.61 
2123.04 
2113.46 
2079.69 
2077.07 

... 

Case 
number 

1 

2 
3 
4 
5 
6 
7 

8 
9 

... 

DFnw 01 

[%1 
1.5520416 

1.3152719 
2.4211827 
2.4223054 
1.3889991 
2.2178812 
1.6105816 
2.4793056 
2.1087194 

DFnw_02 

[%] 

1.27144 

1.1044296 
1.7426478 
1.7344268 
1.1470623 
1.6375527 
1.3012833 
1.787405 

1.5689652 

... 

DFne 01 
[%] 

0.4085028 
0.4872119 
0.3831163 
0.5997282 
0.5024035 
0.410565 

0.5496077 
0.5506164 

0.5498311 

DFne 02 

[%] 

1.9581672 

2.06534 
1.9245827 
2.1986784 
2.0736576 
1.9478381 
2.1177446 
2.1368186 
2.124089 

... 



Annex D 

Design of Experiments 

Inputs for the Second Large-scale Example - Mediaa School 

Extract Chamber 

Window 
Southwest 

Height 
[m] 

1.70 
0.92 
1.05 
1.07 
1.24 
1.29 
1.00 
1.13 
1.57 
1.40 
1.19 

... 

Window 
South 
Height 

[m] 
1.15 
1.46 
1.54 
1.58 
1.59 
1.01 
1.05 
1.34 
0.94 
1.52 
1.08 

... 

Exhaust 
Tower 

Height 

[m] 
4.00 
2.98 
2.67 
5.53 
4.19 
4.74 
4.88 
5.42 
5.43 
4.52 
5.50 

... 

Class Northeast 

Window 

Length 
[m] 

4.18 
4.99 
3.06 
3.70 
3.37 
3.06 
4.44 
4.74 
3.48 
3.46 
2.76 

... 

Window 

Height 
[m] 

1.50 
1.49 
1.37 
1.24. 
1.58 
1.04 
1.29 
1.25 
0.93 
1.52 
0.94 

Class Northwest 

Window 

Length 

[ml 
8.59 

10.06 
10.62 
15.99 
11.70 
13.32 
15.85 
14.15 
13.48 
16.13 
15.43 
... 

Window 

Height 

N 
1.21 
0.99 
1.01 
1.18 
1.28 
1.11 
1.03 
1.18 
1.54 
1.61 
1.43 

... 

Class South 

Window 
S E -

Length 
[ml 
10.03 
6.89 
7.24 
7.55 
8.38 

11.95 
8.04 

11.15 
9.38 
9.51 
7.63 

... 

Window 
S E -

Height 
[mj 

0.94 
1.22 
1.23 
1.22 
1.52 
1.37 
1.57 
1.48 
1.33 
1.36 
1.68 

... 

Window 
S W -
Length 

[m] 
13.39 
12.26 
15.05 
13.59 
12.22 
11.50 
14.80 
14.94 
12.90 
14.17 
12.59 
... 

Window 
SW-

Height 
[m] 

1.19 
1.35 
1.53 
0.89 
1.08 
1.11 
1.01 
1.49 
1.55 
1.53 
0.92 

... 

Class 
Northeast 

Insulation 
Thickness 

[cm] 
15.00 
10.00 
15.00 
5.00 

15.00 
10.00 
10.00 
10.00 
10.00 
15.00 
10.00 
... 

Class 
Northwest 

Insulation 
Thickness 

[cm] 
5.00 

15.00 
5.00 
5.00 

15.00 
5.00 

15.00 
5.00 
5.00 
5.00 
5.00 

... 

Class 
South 

Insulation 
Thickness 

[cm] 
15.00 
10.00 
10.00 
10.00 
5.00 
5.00 
5.00 

15.00 
15.00 
15.00 
15.00 
... 



Class Northeast 

Cooling 
Capacity 

[kW] 
2,859.83 
2,554.89 

185.68 
2,289.09 
2,269.00 

427.73 
1,604.67 
2,589.28 
2,640.54 
1,504.24 

401.87 
... 

Temp. 
Setpoint 

[°C] 
27.86 
26.67 
29.18 
25.17 
26.12 
26.98 
29.23 
29.26 
27.15 
26.30 
29.18 
... 

Class Northwest 

Cooling 
Capacity 

[kW] 
722.59 
346.93 
759.38 

1,315.26 
944.42 
686.79 
728.77 

2,104.78 
1,912.52 
1,752.62 
1,460.15 

... 

Temp. 
Setpoint 

rcj 
28.60 
28.32 
28.26 
26.07 
27.03 
27.98 
25.12 
28.35 
25.27 
29.80 
28.50 
... 

Class South 

Cooling 
Capacity 

[kW] 
2,140.85 
2,286.99 

836.93 
3,696.31 
4,683.07 
2,148.74 
1,238.33 
1,330.53 
1,908.37 

307.90 
2,906.82 

... 

Temp. 
Setpoint 

[°C] 
29.93 
25.74 
26.67 
27.92 
26.07 
28.37 
28.62 
27.63 
29.87 
26.66 
26.24 
... 

Corridor 

Cooling 
Capacity 

fkW] 
820.30 
368.73 
804.51 
719.22 
95.36 

529.60 
711.67 
235.31 

4.93 
944.62 
846.65 

... 

Temp. 
Setpoint 

[°C] 
28.46 
25.39 
28.88 
29.79 
29.46 
29.36 
28.27 
27.44 
28.61 
26.31 
26.88 
... 

Distribution Duct 

Cooling 
Capacity 

[kW] 
748.19 

4,728.74 
584.35 

4,721.54 
2,895.31 
3,388.48 
3,435.32 
1,676.98 
4,958.94 
3,713.40 
2,232.07 

... 

Temp. 
Setpoint 

[°C] 
29.95 
27.04 
28.97 
25.57 
25.89 
26.38 
27.69 
26.48 
28.99 
25.63 
25.32 
... 



Annex £ 

Design of Experiments 

Outputs for the Second Large-scale Example - Mediaa School 

TCnwest 
[%] 
59.35 
60.54 
60.81 
63.92 
58.77 
60.33 
60.33 
59.04 
63.96 
56.54 
59.59 

TCneast 
[%] 
61.04 
65.45 
62.80 
68.46 
64.46 
63.65 
63.96 
62.64 
63.55 
61.72 
64.23 

TCsouth 
[%] 
59.32 
65.79 
60.94 
64.63 
66.46 
61.96 
62.67 
57.66 
59.18 
57.89 
62.84 

Htot 
[kWh] 

7,516 
7,875 
7,679 
8,080 
7,778 
7,852 
7,776 
7,589 
7,623 
7,462 
7,811 

Ctot 
[kWh] 

-364 
-1,448 

-385 
-1,502 
-1,775 

-351 
-649 
-488 

-1,273 
-800 

-1,020 

DFnw 
[%1 

1.75 
1.20 
1.34 
1.56 
1.56 
1.64 
1.43 
1.56 
1.96 
1.99 
1.73 

Dfne 
[%1 

0.26 
0.29 
0.29 
0.30 
0.30 
0.24 
0.25 
0.28 
0.23 
0.29 
0.24 

DFs 
[%] 

0.57 
0.36 
0.62 
0.42 
0.52 
0.89 
0.46 
0.95 
0.62 
0.68 
0.44 



Annex F 

Verification of the GA Optimization Results with a GPS Algorithm 

Second Large-Scale Example 

Performance Improvement 

Factor 
Energy 
Consumption 
Thermal Comfort 
Visual Comfort 

[%] 

-1.83% 

7.74% 
-1.61% 

Zone Variables Original 
vector 

Near-optimal 
solution 

Global 
change 

Kxtract Chamber Window Southwest Height mo SW.7G 
Window South Height 1.70 

l<\li:iiis( lower lii'i'ihl 2.00 6.00 

Class Northeast Window I englh 
Window Height mm 

Class Northwest Window - Length 17.00 17.00 
Window - Height 1.70 1.70 

Class South'.. t 
,l -

Window SL' length' . 12 20 12.20 
WindowSI -Height , 1.70 4 "f.70 

| Window SW-̂ T i * \* •'-' 18.78[ - ? M3.90 
Window SW-Height 1.70 1.70 

Class Northeast Insulation Thickness 0.05 0.10 

Class Northwest 

Class South 

Corridor 

Distribution Duct 

Cooling Capacity 
Temperature Setpoint 
Cooling Capacity 
'Icnijicratiuc Setpoint 
Cooling Capacity 
Temperature Setpoint 
Cin.iBngCliWtas^!!j"-'"r' ' 
TempcratufeSelpoiht -- :" 

0.00 
25.00 
0.00 

25.00 
0.00 

25.00 
*.'• "0.130 
o : V i 25-00 

3,000 
25.00 

11 0.00 
•" 25.00 

0.00 
25.30 

"''••'&??;-$000" 

•:v.!W-3aoo 

+ 

= 
= 

• * = -

= : 
= 

<fNI M W ' l t A ^ i V 1 

•^•UK^y 



Annex G 

Original Performance vs Optimization Search Solution 

First Large-scale Example 

Thermal Comfort Index'' NI*. 
1 IK-IHUII (.'omffrt Index1 S 

Thermal Comfort Index NW 
lk\ilinu l)eni;ni«l [k\Vli| 
Daylight Factor NW¥1 
l>;i\lidil I'.ictoi NW -2 
Daylight Factor Nli if 1 
Daylight Factor NE #2 

Original 
Performance 

17% 
20".. 
24% 

2,720 
2.6% 
1 8'V 
0.6% 
2.2% 

Result of the 
Optimization 
Search 

23% 
27% 
29% 

2.951 
1.2% 
1 0"{. 
0.5% 
2.1% 

Thermal Comfort Index is here the cumulative frequency of time with a PPD less than 20% 



Annex H 

Convergence of the GA 

First Large-scale Example 

-}• Genetic Algorithm 

File Edit View Insert Tools Desktop Window Help 
St •& 4tJ*# *+ i, to- 3&r**v . . , - ' C M * 

1 
> 

I 

Best -7 2659 Me.™ -7 2587 
45 

-5 5 

•6 

-6.5 

-7h 

H 

• • • 

. " ' i t h i u i M M t N » :» . • :«» 

• Best fitness 
• Mean fitness 

JU 
| 0 10 2D 30 40 50 60 70 60|: 

^1op 1 * Generation I 
100 

• • & 

115 



Annex I 

Original Performance vs Optimization Search Solution 

Second Large-scale Example 

9 Thermal Comfort Index is here the cumulative frequency of time with a PPD less than 20% 
10 Daylight Factor Index is here defined as the average of daylight factors taken at two different 
locations in the room. 


