A Methodology for the Optimizatioh of Building

Energy, Thermal, and Visual Performance

Jéréme Conraud-Bianchi

A Thesis
in
The Department
| of

Building, Civil and Environmental Engineering

Presented in Partial Fulfillment of the Requirements
for the Master of Applied Science at

Concordia University

Montréal, Québec, Canada

September, 2008

© Jérome Conraud, 2008



Bibliothéque et
Archives Canada

I*. Library and
Archives Canada

Direction du

Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-45703-0
Qur file  Notre référence
ISBN: 978-0-494-45703-0
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



ABSTRACT
A Methodology for the Optimization of Building Energy, Thermal,

and Visual Comfort

Jérome Conraud-Bianchi
Buildings are under the scope of environmentalists since they are the biggest energy
consumers and polluters. Building performance could be greatly improved thanks to
éptimization. Yet, optimizing for different aspects of a building’s performance is a
conflicting process and building designers have to rely on their experience to make

decisions.

The present work proposes a method to assess the optimal configuration for a
bﬁilding in terms of energy and indoor environment performances. The method relies
on the good performance of Genetic Algorithms (GA) for complex optimization
problems. However, GAs require extensive computations. Artificial Neural
Networks (ANN) were used to alleviate the computational burden. The main concern
has been to make this method as universal and easy to use as possible, resorting to

widely used tools only.

The method was first successfully tested on a small-scale, four-room section of an
office building and on a full-scale school. In both cases, the ANN model performed
well with prediction errors in the order of 5%. Finding a better design for the school
‘building was rather difficult since the building performed well already, but thermal
comfort could be improved without increasing the energy demand or decreasing

visual comfort. The limits of the method were tested by playing with the number of

il



inputs and outputs. The ANN performed well though its performance decreased as
the number of design parameters increased. The limits of the method were
established regarding the performance of the ANN and the number of cases required

to train and validate the ANN.,
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CHAPTER 1

1. INTRODUCTION

1.1. On the Sfate of Energy and Buildings

Ever growing pressure on the environment begs for solutions and considerable
changes in the way buildings are designed and operated. The US National Petroleum
Council, lead by Exxon Mobil’s former CEO, Lee Raymond, affirmed in a July 2007
public report that the world’s energy demand is expected to increase by 50% to 60%
by 2030 at which time the world oil production will no longer satisfy the fnarket
demand (AFP, 2007a). At the same time, one cannot deny anymore that humans are
somewhat responsible for climate change, global warming, and all its entailments.

North America accounts for more than 20% of the world primary energy consumption
(Energy Information Administration, 2007). In Canada, 30% of this energy is
typically consumed by buildings (including extraction and transportation of
construction materials, construction, operation, demolition, and recycling). Buildings
also account for as much as 20% of Canada’s green house gas emissions, a figure

close enough to other developed countries (NRCan, 2005).

From the above statement, it can be observed that earth does not hold the capacity to
sustain humankind at such a rate, and it is necessary that we, building engineers,
urgently take some action to trigger dramatic changes in building practices to cut

down on buildings’ energy consumption.



The National‘ Roundtable on the Environment and the Economy published a report in
July 2006 setting drastic rﬁeasures to improve buildings’ energy efficiency (National
Round Table on the Environment and the Economy, 2006). These measures reflect a
global trend amongst governments and public energy agencies pressuring the building
industry into more environmentally friendly design practices. The concluéions of this
report were somewhat surprising: it is possible to reduce Canada’s GHG emissions by
70% by 2050 with the current available technologies. This statement relies on the
assumption that 66% of the buildings standing in 2050 are already built and that 50%
of commercial buildings as well as a yearly 2% to 3% of all residential buildings will

undergo major retrofit by that date.

1.2. The Issue: Buildings and the Environment

| This begs the question of how to mitigate buildings’ harmful impact on the
environment and how to achieve these goals to avoid the most undesirable scenarios
predicted by scientists. In other words, how‘ to make buildings more environmentally
friendly without woréenihg occupants’ comfort‘?
Fortunately, the building community has started to explore the myriads solutions
available to reverse the current trend. Studies also showed that improving the work
environment results in healthier employees, and therefore, in a higher productivity as
well as a positive work atmosphere and mindset (Fanger, 2000), which is beneficial to
the development of any company. Likewise, green projects are blossoming all around
the world and an increasing number of “green buildings™ are brought to day. They

use recycled or more environmentally friendly materials than traditional ones; they



are specifically designed to be energy efficient or even produce their own energy.
For example, China illustrates this concept very well in the green city of Dongtang
close to Shanghai (The Observer, 2008); big countries such as France and Sweden
embedded the protection of the environment into their constitutions; in 2006, the
AVatican State became the first carbon neutral country in the world (AFP, 2007b); in
February 2006, Sweden announced it expected to become the first oil-free country in
the world by 2020 (La Presse, 2006)—a quite edifying example for a country whose
society and climate are not very different from Quebec’s...

Further to mitigating our impact on the environment, cities, buildings, and
infrastructures are now seen as a vector to restore and help the earth’s systems: some
highways in Europe are now built with special coating absorbing pollutant molecules

emitted by cars; green roofs are more numerous by the day.

1.3. The Answer: Building Optimization
As Prof. Haghighat once put it, “The first step to sustainability is optimization”. This
is the cornerstone of this work. Solutions exist and might even seem too numerous at
time, especially when it comes to different design options for a building.
Furthermore, buildings are very complex energy systems and the validity and
applicability of some- technologies were proved to perform very poorly when not
integrated in an appropriate fashion. The building community has started to conduct
research to provide guidelines based on building performance optimization to help
designers with the challenge of integration. A review of this research is given in

Chapter 2 of this thesis. However, very seldom did researchers take into account



environmental impact, energy consumption and cost as well as occupants’ comfort

altogether in their studies.

1.4. Objective of this Work and Thesis Outline
This study sets out to provide guidelines as how to approach whole-building
optimization encompassing energy use, thermal comfort and visual comfort.
Traditional optimization methods such as linear optimization or optimization
techniques working on the gradient of the function to optimize are not indicated in the
case of buildings due to buildings’ inherent complexity. Instead, holistic methods
have proven to work particuiar]y well, with Genetic Algorithm ranking first in terms
of applicability (Wetter and Wright, 2003). |
The objective of this work is to set up a method to aid designers choosing between
different designs for a given building. Typical qﬁa]ities to optimize are: the energy
required to heat or cool the premises, occupants’ thermal and visual comfort, the use
of natural daylighting, the environmental impact of the building, indoor air quality
etc. Emphasis is placed upon the simplification of the method to the utmost in a
concern to make it usable and especially to make sure it is actually used by designers
without a strong computer programming background.

In a nutshell, the method should follow this very schematic diagram:



Inputs
Design parameters
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within a certain
range

A 4

Programs
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Figure 1 - Schematic Diagram of the Method

This method will be based on three inain programs:

- ESP-r will be used to assess building performance;

- MATLAB will be used to carry out the optimization search through its
Genetic Algorithm interface. It will also be used to set up an Artificial Neural
Network to replace the energy software to avoid heavy computations, as
explained further into detail;

- Perl was used to automate the batches of simulations necessary to train and
test the ANN.

The second chapter of this thesis presents a review of the history of optimization with
emphasis placed upon building optimization and the most commonly-used

techniques, as well as a brief section on building simulation.



The structure of the proposed method encompassing the different steps to carry out an
~ optimization study is devised in Chapter 3. The proposed scheme is tested in Chapter
4, showing the performance of the ANN compared to the building energy simulation
program and documenting the results of the optimization study. Two sets of
optimization studies on a large-scale building are documented in Chapter 5. Finally,
Chapter 6 will close this work with conclusions and recommendations for further

work.



CHAPTER 2

2. BUILDING OPTIMIZATION AND BUILDING SIMULATION

2.1. Global Definition
Optimization': The art of rendering optimal—i.e. most desirable possible under a
restriction impressed or implied.
Optimization’: An act, process, or methodology. of making something (as a design,
system, or decision) as fully perfect, functional, or effective as possible; specifically:

the mathematical procedures (as finding the maximum of a function) involved in this.

Many definitions can be found for the term optimization. What does it really stand
for? What is the key concept of optimization? What are the assumptions and
implications hidden behind this apparently well-known word? More precisely, what
is building optimization and how has it been applied in the building community? The
purpose of this literature review is threefold:

- To address these questions,

- To summarize what has been achieved so far in the field of building

optimization, |

- And to determine what remains to be done.

The definitions quoted above have one thing in common: the art of optimization aims

at improving the quality of the considered system. Some definitions even go further,

! Definition from http://www.wordreference.com
? Definition from http://www.answers.com


http://www.wordreference.com
http://www.answers.com

stating that an optimal solution should be a feasible solution. This very statement
implies that there exist some constraints to optimization, and that optimization is not
an absolute but rather relative concept. One optimizes a function, a design, or a
system under certain conditions, over a certain space defined by these conditions.
The art of optimizing lies in this very concept: working on a system with a view to
make it as perfect, as functional, or as effective as possible given some limiting

conditions.

2.2. History of Bui]ding Optimization

Further to the first idea of optimization as the rendering of a system most desirable as
possible, optimization is a scientiﬁc field, based on rules, rationales, and methods.

The first optimization technique known is the steepest descent proposed by Gauss in
the 18" century. However, Dantzig’s linear programming was the first technique to
be referred to as optimization, in the 1940s. It was first used by the US military for
logistics and training schedules. Various techniques then blossomed in the following
years and were applied directly to a wide range of fields: production and
transportation engineering, risk analysis, and aerospace engineen’ng, amongst others.
Today, one can count tens of optimization techniques. Gradient-descent (a.k.a. .
steepest descent) algorithms, the simplex method, simulated annealing, and
evolutionary algorithms (with, amongst others, genetic algoritﬁms, evolutionary
strategy, particle swarm optimization...) are just a few to name. Designers have

encountered many barriers on their way:



- Inherent complexity of the practice of building design due to the great number
of people and disciplines involved in the project;

- Complexity of buildings as energy systems. There are a great number of
parameters the influence of which cannot easily be forecast, such as wéather
patterné, fhe surrounding environment, occupancy, the aging of the building,
changes of use of the premises, interactions with the surrounding buildings,
just to name a few;

- Rapid growth of the use of software for building simulations. Simulation
tools were developed to meet specific requirements (e.g. more accurate
prediction of énergy consumption; integration of new technologies within
buildings; commissioning of buildings; rising demand from clients to provide
building occupants with satisfactory indoor climate conduc;ive to productivity,
etc.). In the process, software developers had little thought for the
interoperability of such tools, which are consequently very difficult to link
' together,vor_ with any other third party tool in order to use optimization;

- Building optimization demands knowledge in optimization and sufficient
computer programming skills that building designers do not necessarily have,
and optimization has taken a long time to be introduced into university syllabi.

In the late 1990s — early 2000s, the Generic Optimization Program was deye]oped af
the Building Techno].ogies Department of the Lawrence Berkeley ‘National
Laboratory. ,lt was specifically designed to minimize objective functions
computationally eﬁpensive to calculate and for which no derivatives are available,

which is appropriate in the case of energy simulation and building optimization.



Wetter (2001) presented a simple case introducing the optimization tool. Wetter and
Wright (2004) used GenOpt for their comparison study of different optimization
algorithms (cf. section on the main optimization techniques used in building
simulation). The tool consists of an interface which proposes a collection of
optimization techniques. Users can write their own code and use any external
program they wish to evaluate the objective function; the only requirement is that the

third party program should read text input and write text output.

In the following section, an insight of the main methods used in building optimization
is given in order to approach the last part of this literature review, i.e. Building

Energy Management and Building Optimization, with a broader understanding.

2.3. Design Parameters and Optimization Objectives
Optimizing a system requires two main objects:
- Design parameters, which can take on different values, and whose impact on
the system is to be investigated;
- And at least one objective function stating which qualities of the system are to
be improved.
Scores of parameters have been studied in building optimization, depending on the
purpose of the study. Examples of optimization studies are given in the next section.
As far as objective functions are concerned, most of the time, they are:
- The financial cost of the project;

- The energy performance of the system;

10



- The environmental impact of the building;

- And occupants’ comfort.
One may encounter combinations of these objective functions as well, such as
thermal comfort and energy performance (Chouhdary et al. 2004), or environmental
and financial cost (Wang et al. 2004). A combination of all these aspects would be
the‘most desirable target, of course, but this would require a deep understanding of
how the system to be optimized works and a non-negligible number of data, which

are not always available.

2.4. Main Building Optimization Techniques

There exist two main approaches to optimization: the first option is to work on the
6bjective function direcfly using mathematical tools under the guidance of gradient
information in order to determine the optimal value of the function over a given
search space (so called gradient-based methods). The second option is to scan the
search space in a discrete fashion (i.e. try different values of the input vector of the
objective function) and determine via any appropriate algorithm a near-optimal
solution. The latter methods are referred to as stochastic techniques; they require a
termination criterion since chances of reaching the exact target are very slim.

Gradient-based methods work well with second order differentiable functions, and in
some cases, with more complex but smooth objective functions. In building
optimization, however, the objective function is often estimated by using energy
simulation programs which contain features that make the objective function highly

non linear and non smooth. This is due to some approximations made by the tool,
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thus making the objective function discontinuous for some parameters. In this event,
deterministic methods fail poorly whereas stochastic techniques are particularly well
suited since they allow for the exploration of the whole search space, eventually
focussing on regions of interest only, and finally converging toward a near-optimal
solution. For this reason, stochastic techniques are more fit to the purpose of this

study since very detailed simulations will be required.

2.4.1. Comparing the Performance of Different Optimization Algorithms
Wetter‘ and Wright (2004) proposed a very interesting case study comparing the most
commonly used algorithms in building optimization. Their study dealt with nine
algorithms that could be classified under three categories: direct-search algorithms,

stochastic population-based algorithms, and gradient-based algorithms.

Direct Search Algorithms

As far as direct-search algorithms are concerned, the performance of two Generalized
Pattern Search (GPS) algorithms, and two simplex algorithms—a coordinate-search
method—was studied. The main strength of direct search is that it does not require
any information on the derivatives of the objective function. A GPS algorithm
defines some points around the current point and aims at the point with an objective
function m'(.)re desirable than the current point’s. If such a point exists, it will become
the new current point at the next iteration. If none of the points have a better
objective function, then the algorithm will try some points located closer to the

current point. The algorithm stops when the value of the mesh (i.e. the ensemble of
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the points being investigated around the current point) reaches a certain threshold

preset by the user.

Population-Based Algorithms

Two population-based algorithms were also investigated: a Particle Swarm
Optimization (PSO) algorithm and the Simple Genetic Algorithm (simple GA). Both
belong to the now very well-known family of evolutionary algorithms. According to

Eiben and Smith (1998), evolutionary algorithms are all based on the same

underlying concept: given a population of individuals, the environmental pressure

causes natural selection (survival of the fittest), which causes a fise on the fitness of
the population. Given a quality function to be maximized, we can randomly create a
set of candidate solutions [...] and apply the quality function as an abstract fitness
measure — the higher the better. Such methods are inspired from Darwin’s theory of
evolution. Candidates, vor individuals, are feasible solutions; they have a genome,
made of genes representing their characteristics. This genome can be interpreted as a
~ fitness function, describing the quality of the individual. In order to represent
selection pressure—the principle that drives evolution according to Darwin’s
.theory—individuals undergo mutation and recombination to seed the next generation
of individuals. With appropriate parameters defined for the algorithm, the fitness of
the ihdiyiduals should improve with each generation and eventually converge toward
a near-optimal value.

Particle Swarm Optimization was developed by Eberhart and Kennedy (1995). Itis a

technique inspired by the social behaviour of flocks of birds or schools of fish.
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Individuals are here called particles, and they fly through the search space. Particles
are represented by their position in the space, their velocity, and their fitness value.
An important aspect of the algorithm is the fact that all particles keep track of their
positions and fitness values throughout the optimization process. The swarm of
particles is randomly initialized and the algorithm searches for optima by updating
particles at each generation. Each particle will update its position and velocity by
following two Best values: the best fitness value it achieved so far and the best value
achieved by the whole swarm. The algorithm stops when a predefined maximum
number of iteration is reached, or when minimum error criteria are reached, i.e. when
the particles converge toward the near-optimal solution. The main difference
between PSO and GA is that particle swarm optimization does not use crossover. As
well, there is no exchange of information between the individuals of the swarm since

the best particle is the only one to give out information to the rest of the swarm.

" Genetic Algorithm under Scope

Before presenting the results of Wetter and Wn'ght’é study, let us focus on the most
widely used optimization algorithm: the Genetic Algorithm. The GA was conceived
by Holland in the 1970s though a coﬁpl,e of scientists had worked on some
evolutionary programs before him (Baricalli simulated evolution automata that played
a simple card game in 1954; frbm 1957 onwards, Fraser published a series of papérs
on the simulation of natural selection; Fraser and Burnell then published a book

summarizing the different studies on computer simulation of evolution carried out
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through the 1960s.)’ Even though GAs are mostly used for optimization, their
application range is much wider; Nassif and Zmeureanu (2006) presented a study in
which they set up and trained a grey-box model to approximate HVAC components.
The grey-box models were trained using GAs.

The simple GA is the implementation of the aforementioned definition of
evolutionary strategies. Most evolutionary algorithms, and more specifically the GA,

are based on the following pseudo-code:

BEGIN
INITIALIZE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO
SELECT parents;
RECOMBINE pair of parents;
MUTATE the resulting offspring;
EVALUATE new candidates;
SELECT individuals for the next generation

s WN

END DO

Figure 2 - Basic Evolutionary Algorithm Pseudo-code

Here follows a quick overview of the simple GA:

- Representation: Representation

1joj1ryjo0j0j0j0]1

is one of the crucial steps in

Fi gure 3 - Genome of a random individual.

settin an evolution
g W w Each box represents a gene; the values that

algorithm. It enables to link each box can take are alleles of the gene.

the real world to the world in

which the algorithm works. In other words, any building in the real world

could be represented by an individual which possesses a unique genome in the

3 General facts from www.wikipedia.org (section on the Genetic Algorithm)
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GA world. Mapping from the real world to the search space is a process that

needs to be applicable to and the same for all the individuals of the algorithm;

likewise, it needs to work both ways so that any individual generated by the
program should correspond to one building case only and vice versa. In the
case of the simple GA, individuals are represented by bit-strings.

Evaluation Function: The performance of individuals has to be evaluated in
order to rank individuals according to their performance and to allow for the
survival of the fittest, in order to improve the quality of the population with
~each generation. Very often, the evaluation function is estimated via an
external computer program assessing the energy performance of the building
for example.

Population: In order to preserve diversity and avoid the collapse of the
population, a minimum number of individuals are necessary. The underlying
concept of diversity is that individuals which might not currently perform very
well might yet have some genetic material that could come in handy later in
the optimization process. Maintaining a certain population size helps mixing
individuals’ genetic materials and it thus prevents the population from
collapsing—which is, in. the biological world, the equivalent to species
extinction.

Parent Selection Mechanism: This step of evolutionary a]gon'thnis has two
roles: it favours fitter individuals, thus making sure the quality of the
population improves over time while maintaining diversity by giving a small,

but positive chance to less fit individuals to pass on their genes to the next
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generation. Fitness-proportional selection is used in the simple GA; the more
fit the individual, the more likely it will be chosen for the mating pool.

Variation Operators: These operators are meant to create new individuals, and
hence explore new possibilities. There are two main variation operators:
mutation and recombination. Mutation is a mechanism that works on one
parent and yields a slightly modified offspring. Recombination, on the other
hand, works on two parents at least, and can yield more than one offspring. In

the case of the simple GA, bit-flip mutation is applied and recombination is 1-

point crossover, with two parents resulting in two offspring.

Figure 5 - One-point Crossover

Survivor Selection Mechanism: In order to maintain a constant population
size—which is not compulsory but very usual—a selection mechanism is
applied to the population after it has undergone mutation and recombination.

Survival individuals are chosen based on their quality and on their age. Age-
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based replacement or fitness-based replacement can be used. Elitism is also
often used; this ensures that some of the fittest individuals be not discarded
because of their age for example.

- Initialization: The initial population is generally randomly seeded. The only
condition is that all individuals should satisfy the optimization problem
constraints, i.e. they have to be feasible solutions.

- Termination Criterion: If the target objective is known, then the algorithm will
stop once the error between the target objective and the fittest individual has
reached a user-defined threshold. However, the target objective is not known
in advance in fnost cases, and the termination condition should be one of the
following (Eiben and Smith, 1998):

o The maximum CPU time is reached;

o The total number of fitness evaluations reaches a limit set by the user;

o For a given period of time, the fitness of the population does not
improve significantly;

o The population diversity drops under a certain threshold.

The simple GA is only one simple implementation of GAs. There exist a lot of
representations, using real or integer numbers, or even combinations of different

types. Likewise, several methods for mutation, recombination, and selection
mechanisms are available; however, they will not be presented here for the sake of

simplifying the literature review. They are nonetheless very well documented, as in
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Eiben and Smith’s Introduction to Evolutionary Computing in particular (Eiben and

Smith, 1998).

Other Algorithms Reviewed

Further to the PSO algorithm and the simple GA, an upgraded version of the PSO and

a hybrid PSO-Hooke Jeeves (a direct-search method) algorithm was investigated. A
gradient-based method, namely the Discrete Armijo Gradient Algorithm, was also
reviewed in the said paper. This method approximateé gradients using finite
differences. The mefhod wbrks wéll with smooth functions but has difficulties in

case of discontinuities in the objective function on which it works.

Performances of the Algorithms

All algorithms were tested on both a simple case and a detailed case. The simple case
only counted four parameters (the building azimuth, the width of the east and west
windows, and the shading device transmittance.) For the complex case, thirteen
independent parametei‘s were deﬁﬁed (the glazing-to-wall area ratio for the four
walls; the depth of the overhangs, the set point for the shading devices for the west,
east, and south fa_gades; the room air temperature set points for night cooling in
summer and winter; and the cooling supply air temperature.) The objective function
for both cases was the annual energy consumption set as the sum of the vheat‘ing,
cooling, and lighting energy consumptions. The heating and cooling loads as well
as the electricity required to light the building were computed with EnergyPlus. The

study concluded on the _following points:
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- With the detailed model, the simplex algorithm failed far from the minimum,;

- Both the GA and PSO algorithms perférmed well, with better results for the
simple GA for equivalent numbers bf generations;

- The best optimization results were obtained with the hybrid PSO-Hooke
Jeeves algorithm though it required a greater number of simulations than the
simple GA or non-hybrid PSO, and it failed far from the minimum in one
case;

- The gradient-based method failed far from the optimal solution even for the
simpler problem.

The following graph, from Wetter and Wright (2003), shows the performance of the
algorithms studied. For each algorithm, the distance between the optimization results
and the best optimization results achieved with all the algorithms is plotted against

the number of simulations required to reach the near-optimal solution.
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Figure 6 - Performance of Several Optimization Algorithms
From Wetter and Wright (2003) — Figure 2 b)
~ Some salient points of this study are:

- Setting up a hybrid algorithm using both a stochastic population-based
algorithm and a direct-search algorithm is a good idea that benefits from both
algorithms’ assets. Indeed, in a first step, the population-based algorithm
scans the whole search space and identifies the most promising region; then,
the direct-search algorithm refines the search to identify the optimal result
with a maximum aCcufacy;

- However, if one is ready t;) make a trade-off between accuracy and
computation time, the siinple GA is a good alternative since it converges more
rapidly. If a high accuracy is required, the GA parameters could be changed
once the promising region of the search space has been identified in order to

refine the search. Likewise, and as the authors proposed, when the latter



region is identiﬁed_, a second hybrid algorithm could be used to further the
search;

- Gradient-based and direct-search algorithms are not appropriate for building
optimization resorting to an external computer program to assess the fitness of
individuals. This is mainly due to the discontinuity of the objective function
with respect Vto some parameters. As a consequence, such algorithms fail
poorly even on simple problems. However, a potential idea is to use
stochastic population-based methods to identify regions of interest for the
search. The function could be considered as rather smooth over small regions
of the search space, thus enabling the use of direct-search functions, or even
gradient-based functions in some cases, which could find the exact optimal

solution over the regions they would scan.

2.4.2. Artificial Neural Networks

The last method presented here is Artificial Neural Networks (ANNs). Even though
ANN techniques are not an optimization approach, they are often used in order to
improve building energy management by modelling systems hard to model with
traditional energy software. In that sense, it was included in this literature review.
The different works leading to ANNSs initiated in the late 1940s. ANNSs as We know
them nowadays were developed mostly in the 1980s*. They belong to the response
surface approximation (RSA) algorithms. In a nutshell, ANNs are a simplified

computer representation of the human brain. Different layers of neurons are given

information input and process it to deliver an output. Several layers of neurons can

* General facts from www.wikipedia.org (Neural Network and Artificial Neural Network sections)
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be used in series. ANNs are said to have the capacity to approximate any function if
prbperly parameterized. ANNs are used for classification, pattern recognition,
function approximation, and data processing. The underlying concept of these
paradigms is that they are able to learn. Sets of data are used to train the algorithm,
and then to validate it. There are scores of training functions and several software
too‘lsvhave been developéd to help users set up ANNs; the Matlab ANN Toolbox is

one of them, as we will see in the following chapters of this thesis.

More precisely, an ANN consists of a layer of input nodes, a layer of output nodes,
and at leaét one hidden layer connecting the input and output layers. Each node, or
neuron, of a given layer is linked to that of the following layer. Each hidden node
, works on the values it is given as inputs and delivers an output that can in turn be

used as an input to the following layer.

S i

input vector

S = number of
neurons inlayer

a= fiWp+h)

Figure 7 - Typical ANN Architecture
From the Neural Network Section, Matlab (2006)
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The previous sketch represents a one-hidden layer ANN (Matlab, 2006). pi’s refer to

input parameters. A weight wi,) and a bias bj transform the value of pi before it is

input to function” . The latter function produces an output, aj, which can in turn be

fed to another layer of neurons. There are a many great deal of transfer functionsf ;

the most commonly used are the Hard-Limit, Linear, and Log-Sigmoid transfer

functions. Hidden layers can be added in series, and a two-layer network where the

first layer is sigmoid and the second is linear is said to be potent enough to

approximate any function with a finite number of discontinuities (Matlab, 2006).

The network is trained the following way:

Inputs are presented to the network;

Output values are computed and compared to the output values expected—
whence the need for a database with output values corresponding to vectors of
input parameters to train the network;

Biases and weights are then updated in order to minimize the error between
the expected output values and the values calculated by the network. Biases
and weights can be updated after each input vector is presented to tﬁe
network—i.e. incremental training—or after the whole set of inputs have been
presented to the network—i.e. batch training. This step is repeated until the
error vaiue passes below a threshold defined by the user.

Out of the training methods that can be used to optimize the weight and bias
values, backpropagation is the one used most often. This is a gradient-
descent algorithm which updates bias and weight values along the negative of

the gradient of the function to be approximated.
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In a nutshell, the following steps are necessary to construct an ANN to model a
building:

Create a set of training data by running building energy simulations with ESP-

T in Our case;
- Create the network object (define the number of neurons and layers);
- Train the network;

- Simulate the network response to new inputs to validate the network.

Several software packages have been developed for ANNs. The price of commercial
packages can range from a couple of hundreds dollars for a single modulé——-ANN-
only, or ANN plus other optimization modules—to thousands of dollars. MATLAB,
a‘ tool widely recognized and used in the industry, recently developed a very user-
friendly Neural Network Toolbox. User codes to bset up and train ANNs are available
as well, but this demands advanced programming skills, as we noticed before, and
one of the objectives of this methodology is to make it accessible and easy to use to

the utmost.

2.5. Building Simulation in Building Optimization
Most of the time, building optimization algorithms resort to external software to
assess the performance of buildings or building systems. The author of this work
chose to work with ESP-r. The Energy Simulation Program — research Version was
initially developed in the 1970s. The project was initiated by Joe Clarke who

- developed a program to assess energy use in buildings as part of his doctoral research
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from 1974 to 1977. In the late 1980s, the Energy Systems Research Unit was created
at Strathclyde University; one of the missions of this unit has been to keep on
developing the prbgram for British and Européan research projects. ESP-r now
enables modelling for the assessment of acoustics, thermal comfort, and visual
perfonnancevon top .of ehergy usage. The software is eqﬁipped to model heat, air,
moisture, and electrical flows. Further to its many useful modules such as the
Sensitivity Analysis Module, work is under way to integrate ESP-r to Radiance, the
reference tool to assess building lighting performance. Natural Resources Canada is

now playing a major role in the development of ESP-r.

ESP-r is thus one of the most potent tools to model the perfonnénce of buildings and
it is therefore suited for the purpose of this study. Few optimiéation studies used
ESP-r to assess buildings’ performance, mainly due to the complexity to automate the
simulation process. For example, GenOpt can work with any building simulation
engine providing it reads text input and it yields text output readable by GenOpt
(Wetter, 2004). This is feasible, but this requires the user to program a code to
transfer input information from the GenOpt text file to ESP-r model files in a first

step, and to extract ESP-r results from the ESP-r RES module to a proper output text

file readable by GenOpt. This will be one of the challenges of using ESP-r to assess

building performance within optimization algorithms.

Information available from the ESRU website at htgp://www.esru.strdth.ac.uk
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2.6. Building Optimization

The different building optimization studies found in the literature could be classified
under three categories: optimization of the design process; optimization of the three
main elements of the building energy system (building structure, HVAC system,

control strategies, and any combination of these); and ongoing optimization.

2.6.1. Optimization of the Design Process

Even though there is no optimization technique involved in this approach, it was
judged to be relevant to this literature review because it is part of the current building
practice and it .aims at improving the design process; it was thus included for
information purpose only. Optimizatioﬁ of the building process is a problem that
touches more than one profession and discipline. As a matter of fact, many actors are
involved in the design process, including architects, engineers (structural, mechanical,
electrical), contractors, clients etc. Hence, the design procesS is made of many
entwined links between the different actors and the different tasks to perform. A few
optimization techniques relying on mathematical rationales have been developed.
Choudhari et al. (2003) proposed a model which consists in dividing the design
problem into subsystems hierarchically ordered and linked by mathemétical
functions.  This .approach relies on the individual optimization of each block
superseded in turn by the optimization of the global process. Further to improving
the building design, extensive work is carried out to make optimization technologies
and tools accessible to designers whose field is not necessarily in relation with

simulations or energy analysis, environmental impact assessment and so forth. Hobbs
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et al. (2003) documented the introduction of building energy tools within an
architectural practice with a view to improve the performance of buildings designed
by the practice. The paper highlights the importance to train designers—architects in

this case—to use these tools adequately from the inception of the design process.

2.6.2. Optimization of the Building Energy System

A building energy system can be divided into three main systems: the structure of the
building (building envelope mainly); the heating, ventilation, and air-conditioning
(HVAC) system; and the control strategies (mainly control actions on the HVAC
system, but also control of other elements such as solar panels, solar shading devices,
etc.). The most natural approach consists in optimizing any of these elements
individually and then integrating them once their optimal individual characteristics
have been found. Nassif et al. (2003) worked on different algorithms to optimize the
control set points of an HVAC system in their introductory work to online

optimization of control strategies.

The shortcoming of optimizing one aspect of the building energy system only is that
elements which were designed to perform as efficiently as possible can in fact
perform very poorly as a consequence of an ill-conducted integration of the different
elements constituting a building, A way to overcome this limitation is to consider the
building in its entirety and to search for its optimal configuration based on some
parameters and fof a given objective function. The parameters under discussion
should make sense with respect to the objective function studied. Most of the times,

parameters are chosen based on the designer’s expertise and on some general trends

28



within the profession. However, some studies were carried out recently in an attempt
to choose these parameters in a more objective manner. For example, Wang et al.
(2003) presented a sensitivity analysis in finding the optifnal shapé of a green
building. They investigated the influence of the building shape, orientation, window
ratio, structural system, and insulation Ievgl. The ob‘jective.functions were the life-
cycle cost and life-cycle environmental impact; Pareto fronts were plotted in the
performance space in order to assess the influence of each parameter on the
buildings’ performances. The authors noticed the influence of the Window ratio: the
higher the window ratio, the higher the life-cycle cost and life-cycle environmental

impact. They also noted the strong linear relationship between the window ratio and

the extreme life-cycle cost and life-cycle environmental impact values of the Pareto -

fronts. As far as the life-cycle cost is concerned, the smaller the building perimeter
the better; on the other hand, best performances in terms of environmental impact
- were achieved for buildings with a longer edge on the south (in order to benefit from
sun gains in ‘winter, since the building was located in Montreal). Finally, the authors
remarked that a higher insulation level did not necessarily result in more performing

buildings.

As far as objective functions are concerned, annual energy consumption is often used
as criterion (Wetter 2001 and Holst 2003) but-some studies used exergy to account for
the whole environmental impact of the building (Wang et al. 2003, Wang et al. 2005a,

and Wang et al. 2005b). Wright and Farmani (2001) studiedv the simultaneous

optimization of the building structure, HVAC system, and control strategies with -

respect to the operating energy cost of the HVAC system. Wﬁght and Loosemore
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(2001) carried out a multi-criterion optimization of a building design and control
options. = They used parameters reflecting the three energy sub-systems:
characteristics of the envelope, dimensions of the HVAC system, and set-point
control temperatures. Wang et al. (2003) proposed the optimization of a green

building envelope design based on the measure of the building exergy consumption.

2.6.3. Ongoing Optimization

The last trend in building optimization deals with continuously evolving features of
the system so that it may adapf to continuously evolving patterns such as weather
conditions or occupancy. This is ongoing optimization. Different methods were
proposed, such as ANNs, Fuzzy Neural Networks, rule-based and method-based
techniques. Yang et al. (2005) investigated different ways to train ANNs for the
prediction of the energy consumption of an HVAC system. Yu and van Paassen
(2003) proposed the use of fuzzy neural networks to detect malfunctions of an HVAC
system; according to their study, malfunctioning and ill-adapted HVAC systems can
actually result in a 30% increase in the energy consumption of buildings in North
America. Madhavi et al. (2001) compared a model-based and a rule-based approach
within the frame of so-called self-aware buildings—i.e. -buildings adapting to certain
changing conditions. The study concludcd the use of a hybrid method éombining the
~ assets of both approaches. The conclusion remarks mentioned another possible
approach, namely compartmentalization, whose underlying concept is to first treat the
problem in a rough manner and then, to refine simulations for complex zones only.

Nassif et al. (2003) proposed an online optimization of supervisory control in which a
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GA was coupled with a mathematical model to decide on the control strategy to
follow in order to minimize the system energy consumption. Finally, Coffey et al.
(2006) wrote an interesting summary of model-based control in responsive building

systems.

2.7. Summary

2.7.1. The Limits of Building Optimization

One of the salient facts of this review is that opti‘mization>algon'thms very often rely
on an external energy program to estimate how well candidate buildings perform in
whole-building' optimization. Depending on the desired level of accuracy, using an
external energy program can be very time consuming. There exist different ways to
assess a building energy consumption ranging from assessing the energy demand of a
building for some typical design days in the year (Wright and Farmani 2001) to a
complete yearly assessment. Furthermore, computational time is highly dependent on
the level of accuracy desired, and for example, assessing the global energy demand of
a building can be achieved in a couple of minutes whereas detailed simulations used
for the assessment of visual comfort can take up to one day depending on the period
simulated. Another issue lies in how hard it is to modify the building model in order
to simulate myriads of cases necessary to the exploration of the search space to find a

near-optimal solution.

As mentioned earlier, genetic algorithms are robust at solving any type of simulation-

based building optimization problems, providing the GA is parameterized correctly.
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Therefore, they have been widely used and a number of studies have been carried out
to investigate the influence of the algorithm parameters on the results and their
limitations in solving such problems (cf. (Wetter and Wright 2003) presented in the
first section of the literature review). Wright and Alajmi (2005) studied t.he
robustness of GAs in solving unconstrained optimization problems. The influence of

the algorithm parameters were tested by using GAs with different parameters

(population sizes (5, 15, and 30), crossover rates (0.7 and 1.0) and mutation rates .

(0.01 and 0.02)). Even though no major differences were found between the results
produced by the algorithms, the authors’remarked that statistically, GAs with small
population sizes (5 and 15) and high crossover (100%) and mutation (2%) rates
performed better. Near-optimal solutions for the problem being solved were found

with a competitive number of simulations (300).

2.7.2. Addressing the Shortcomings of GA

The main limitations of GAs lie in the number of simulations required for the
evolution process: increasing the level of accuracy of the simulations results in an
increasing computational time. Optinﬁzation objectives are most of the time the
energy consumption or the running cost of the system, with a few exceptions using
environmental impa?:t. Optimizing for these aspects only cdn be competing with
occupants’ comfort—such as thermal comfort and visual comfort. It is theoretically
possible to add these aspects to the objective function and thus find the best trade-dff
to simultaneously optimize energy use, thermal comfort, and visual comfort. When

significant levels of details are required the evolution process can be very time

32



consuming and possibly fail due to the high number of evaluations required by GAs.

To overcome this shortcoming, this works sets out to develop an ANN model of the
building to mimic the building being studied. Using the optimization performance of
GAs in conflation with rapid assessments obtained from ANNSs, designers can get
very ciose to the optimal solution in a fairly reasonable time. This approach has not
been tested extensively, but it has some potential. Still, it is quite limited and not

easily applicable by designers for the following reasons:

- First, such an approach requires a substantial amount of data for the building,
which does not reflect the real conditions under which designers operate in the

early phase of a project;

- Second, an ANN is built to mimic the response of a building with respect to a
pre-defined set of parameters whose allowable variation ranges are pre-
defined as well. This implies that in the event of any change in the building
usage or in the environment of the building, the ANN model will not reflect

the actual building response anymore;

- Last but not least, creating the database to train and test the ANN is a very
~ tedious and prohibitive process which could not be applicable in real

_situations such as architect practices and the like.

This research project proposes to address the above issues, and first and foremost, to
come up with a methodology as user-friendly and applicable as possible for

designers.
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CHAPTER 3
3. BUILDING OPTIMIZATION METHOD

BASED ON GA AND ANN

Based on the remarks and conclusions drawn from the review of building
optimization and building energy management, the author proposes to investigate
methods to optimize buildings. The very idea of gathering these methods into a
methodology usable by designers begs the following question: For whom should this
methodology be developed? At what stage of the design process should it be
applicable? What would be the best trade-off between simplicity, flexibility, and
accuracy? What qualities of the buildiﬁg does one seek to improve, and what are the

relevant study parameters?

This chapter presents the first sketch of the proposed methodology and the reasoning

it stems from by analysing the different steps it is made of. The following chapter

will present a simple study case to test the general concept.

3.1. Sketch of the Method
The goal is to optimize a building based on some parameters and with an objective
function encompassing energy demand, thermal and visual comfort. The sequence is
fairly simple and consists of the following steps:

- Choose a building to optimize;

- Define the objective function;
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- Define study parameters and their allowable ranges;

- Choose a cluster of cases to thoroughly represent the whole search space;

- Simulate all the cases to create a database of outputs corresponding to input
vectors;

- Set up an ANN model of the building; train it and validate it with the database
created in the previous step;

- Set up a GA and use the ANN to estimate individuals’ fitness.

3.2. The Methodology in Detail

3.2.1. Study Parameters

Two different kinds of studies can be carried out depending on whether one tries to

assess which are the most important parameters or aspects of a system—that is a
sensitivity analysis, or whether one wants to investigate the impact of some specific
design parameters on the system. The methodology proposed in this work bears in
mind that it should assist designers in their decision making with respect to some
design parameters for which there exist some constraints. Hence, the study
parameters for the optimization analysis are usually known in advance, and one seeks
to determine their most promising values with respect to the desired objective
. function.

Allowable ranges are defined for each parameter; they are determined based on
regulations in effect, such as building codes or other limiting factors applying to the

building under discussion.
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3.2.2. Objective Function

The objective function represents the quality of the building the designer wishes to
achieve. Its complexity can thus vary greatly depending on whether it is made of one
element only (e.g. minimizing the energy consumption of the building) or of a
combination of various aspects of the building (e.g. minimizing the energy
consumption and environmental impact of the building while optimizing occupants’
thermal and visual comfort). The complexity of the objective function lies in the fact
that some objectives can be competing. For example, increasing the glazing area of
the building in order to reduce the lighting energy consumption can result in
ihcrcased heating and coolinbg IQadS and might not necessarily be beneficial to the
building occupants’ visual comfort. It is consequently very important to have
powerful tools to one’s disposal to estimate accurately each element of the objective
function.

In the light of this last statement, one of the main issues of building optimization is
the complexity of the objecﬁve function and therefore, what tools to use to assess it.
As discussed in the literature review, several methods can be used, ranging from
simple equations to external software. The work proposed here will use ESP-r to get
accurate estimates for several aspects of the building: energy, thermal comfort, and
visual comfort. Since Genetic Algorithm will be_ﬁsed to search for the near-optimal
solution to the problem, an extensive number of computations will be required. To
alleviate the computational burden, a cluster of cases representing the search space
will be simulated with the building simulation program and used to train an ANN to

approximate the building simulation model.
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3.2.3. Design of Experiments

Study parameters’ allowable ranges constitute a design space on which the
optimization algorithm will work. The objective function will not be determined by
using an external program but rather via an ANN model of the building for the
reasons previously established. ANN models are trained for a given search space,
and they require finite databases to that purpose. The main challenge is thus to
choose a limited number of sample cases to constitute the database and still represent
the whole search space thoroughly; this step is called design of experiments.

One of the most common methods encountered to address the above issue is referred
to as the Latin Hypercube Sampling (LHS) method. The underlying concept of this
method is pretty simple: let us consider two design parametefs. The consequent
search space could be represented by a square;_ M intervals can be defined for each
variable, with the requirement that the number of intervals (M) be equal for both
variables. A so-called Latin square corresponds to a square in which there is only
sample per column and per row, as shown on figure 9. Sample points can also be
chosen simultaneously so that the whole search space would be sampled in an

equally-probable fashion, as shown on figure 8.

Variable A Variable A

X : X

Yariable B
Variable B

X _ X

Figure 9 - Latin Hypercube Sampling - Figure 8 - Orthogonal Sampling



LHS is a technique that was first used for statistics. Several studies have concluded
that for a study based on N parameters, a number M greater than twice the number of
parameters is sufficient to correctly sample the search space for uncertainty and

sensitivity analysis (Mackay 1988, and Yeh and Tung 1993). Fewer samples could

result in a loose representation of the search space and too many more samples would

result in onerous computations.

Carrying out a sensitivity analysis also enables to search for those parameters that
have a greater influence on the objective function. Once the said parameters are
identified, the search space for these parameters can be sampled in a finer fashion.
Likewise, the search space can be sampled in a coarser way for parameters which

influence less the objective function.

.3.2.4. Simulatio’ns
Simulation is one of the key steps of this methodology. Indeed, any miscalculation,
any mistake in the files describing the building model would result in an erroneous
database, which would in turn engender an ill-adapted ANN, finally leading to a final
near-optimal result that could be far from the real one. The validity of the building
simulation model is also of the essence. Examples used further in this study were
validated by comparing ESP-r predictions with measured data as will be shown in
chaptéf 4. Consequently, this step needs extra care and attention. It is very important
that all the simulations be run under the same conditions, but for the changing
parameters—that is, the study parameters. Likewise, all parameter values should be

the ones defined as per the design of experiments so that the search space is sampled
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effectively. These remarks might seem trivial, but when it comes to dealing with a
significant number of files, mistakes can easily occur, and any ruie breaking would
compromise the success of the optimization search. Thus, this raises the question of
the significance of manual simulations and file-handling. This issue will be

addressed in the conclusion remarks of the next chapter.

3.2.5. Setting up the ANN
As we previously said, calling ESP-r to assess the fitness of each individual generated
for the optimization search would imply heavy computations énd would not be
feasible in certain cases due to time constraints and computer resources. To
overcome this limitation, an ANN model of the building will be used. Once properly
trained, the ANN will give a quick and fairly accurate estimate of the function it was
trained for. In the event of population-based optimization, which requires a lot of

function estimations, ANNSs look very promising.

3.2.6. Optimization Search with the Genetic Algorithm
A detailed description of the genetic algorithm was given in the previous chapter. In
the case of building optimization, the great variety of parameters, which can be
continuous, discontinuous, or Boolean—though the latter type is quite rare, makes
representation, mutation, and crossover delicate operations. Mofe details on these
operations will be given in the next chapter. As we previously mentioned, the fitness
of individuals will be assessed by the ANN model to approximate the building

response.

39



Like for ANNSs, several tools were developed for optimization algorithms and more
specifically for genetic algorithms. However, user codes remained widely used
because they are much easier to write than codes for ANNs, for example. MATLAB
now has a General Algorithm and Direct Search Toolbox, which makes the software
very int'ei‘esting inasmuch as it has modules accommodating both GAs and ANNSs.
Further to MATLAB and other commercial programs, Microsoft’s Excel also
comprises a GA facility. Last but not least, scores of source codes in C/C++, Java,
and Fortran can be found on the Internet. Once again, this begs the question of how
much knowledge designers need to have in programming. GA might not be very hard
to prOgram; however, the choice of the algorithm’s parameters and genetic operators
(mutation, reproduction, and selection) is crucial to the success of the optimization
search. Besides, such codes might not be flexible enough and consequently be hard
to change for designers without advanced programming skills. Finally, the use of GA
for building optimization is quite well documented and the conclusions of these
various studies are quite easy to implemeﬁt with commercial tools such as MATLAB,

for example.

3.3. Summary
This méthodology relies on methods that have been extensively used in building
optimization and other fields. However, the uSe of ANNSs in conflation with GAs has
rarely been documented (Mengistu 2005, Chow et al. 2002, and Zhou'2007), even

though it seems to be a very promising technique. Bearing in mind the limitations of
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the proposed technology, this works proposes to confront it to a small-scale case
study in order to have more insights on the potential and shortcoming of each step of

the method.
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CHAPTER 4
4. TESTING THE METHOD

SMALL-CASE EXAMPLE

4.1. Choosing the Model to Test the Methodology

In order to test the efficacy and the applicability of the proposed methodology, a first
study case was investigated. There is no real need for a complex case at this stage
since the purpose was to test the metﬁodology quickly in order to assess its strengths
and weaknesses, thus getting better insights into the problem, and giving rise to a
stronger methodology.

The building used for the preliminary validation stage was chosen from the database
of exemplars available from within the ESP-r program. The ESP-r model is a portion

of an office building located in Ottawa, Ontario.

Project: Office model for network flow sindies

Figure 10 - ESP-r Model of the Office
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As shown in this figure, the office is made up of four main zones; they represent
actual rooms, namely:

- Manager, i.e. the manager’s office;

- General, i.e. an open-space office;

- Reception;

- And Conference.
Further to these four zones, a zone ‘ceil _void’ represents the ceiling, and an extra

fictitious zone ‘mixing_box’ is used to define a part of the HVAC operations.

The exemplar is documented with the results of basic simulations carried out from
~ April 8™ to April 15™. Those results showed that cooling was required for this office

space for outside temperatures greater than 6°C.

General facts o n the building are summarized in the following table. The load

schedule is the one initially provided with the example and is supposed to account for

the variation of loads depending on working hours and on room usage.

2
Geometry of the building gsn(i ﬁ gh

Outside Temperature set points to Lower bound: 13°C
activate the vents Upper bound: 28°C

Table 1 - General Facts on the Original Building
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The office has several windows. There are five in the Conference room; two in the
Reception area; five in the General room; and one in the Manager room; which were
probably installed for visual comfort concern even though they turned out to greatly
influence the heating and cooling loads of the building. Vents were installed under
each window. Preliminary studies recommend the use of a hybrid system based on
mechanical ventilation assisted by natural ventilation through the vents located under

the windows.

Thus this case clearly is very suitable to our purpose. The first idea is to study the

impact of the window dimensions, the louver inclination angle, and the temperature -

set points to activate the vents on the building energy consumption and on its
occupants’ thermal comfort. This is consequently a multi—objective optimizatidn
problem, whose objectives areg

- Minimizing the annual heating load for each occupied zone;

- Minimizing the annual cooling load for each occupied zone;

- Minimizing the annual lighting energy conéumption for each occupied zone;

- And maximizing the cumulative frequency for which a maximum of 20% of
the occupants of the zone are dissatisfied, for each occqpied zone, during
occupied hours.

Each of these qualities was assessed with ESP-r for each room and for each of the
five simulation seasons. These five simulation seasons are early winter (November
and December), spring, summer, autumn, and late winter (January to March). Those

values were then combined to assess the quality of each candidate building during the
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optimization search. The optimization objective is a weighted sum of all individual

objectives and it takes the following form:

iHL,. x NDays, iCLi x NDays, iLE ; X NDays

i=1 i=1 i=1

+ +
TotalNDays 2T otalNDays T To talNDays

Z (1 - TCManageri) X NDays,. Z (] - TCGenerali) x NDaysi
F,.(X)=Min| +C,| = +C | =
: TotalNDays TotalNDays
Z (] - TCReception,-) X NDayS’- Z(l - TCConferencei) X NDaysi
" C, i=1 v +C, i=1
TotalNDays TotalNDays

Equation 1 - Objective Function

Where HL;, is the heating load of the building in kWhr. CL; is the cooling load for
the building in kWhr. To truly assess the energy demand of the building, these two
metrics should be weighted to account for the efficiency and energy consumption of
the heating and cooling systems respectively. However, since these weighting factors
would be the same for all cases for the heating load and cooling load respectively, the
author disregarded them. LE; is the lighting energy demand in kWhr of electricity.
Subscript i refers to simulation period i. The year is divided into the five simulation
periods previously mentioned—whence n=5. NDays; is the number of days in period
i. TotalNDays corresponds to the total number of days in the year under
consideration. X is the vector of design parameters. 7C, the parameter used to assess

the performance of a given room in terms of thermal comfort, is the ratio of the time
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for which the indoor air quality is acceptable—i.e. when PPD, the percentage of
dissatisfied people, is less than 20%—out of the total time of occupancy for the room
under consideration. ESP-r asks for the clothing level and metabolic rate to assess
thermal comfort. The clothing level chosen was 1.0 clo in winter, 0.5 clo in summer,
and 0.75 clo in fall and spring, which corresponds to typical clothing level values. As
far as the metabolic rate is concerned, the value taken was 90 W/m?, which
corresponds to typical clerical activities. To have the desired optimization objective,
the designer should prescribe weights C; to C, aré in kWhr", Cs in kWh of electricity
-1 and C, to C; are dimensionless since our thermal comfort index is dimensionless.

Weights are to the discretion of the user: if the user wishes to favour a certain aspect
of the objective function, such as thermal comfort for example, then a greater weight
will be given for the said aspect to drive the optimization search in the desired
direction. The weights taken for the optimization were 10,000 kWhr for C; and 500
kWhr'! for C,. These two values are in the order of magnitude of the heating load and.
cooling load calculated for each season for the office sectioh. The lighting energy
was disregarded in the dptimization search as explained further in thié section. As far
as the other weights are concerned, a value of 1 was taken for each of them in order to

give to thermal comfort equal importance over the optimization search.

4.2. Identifying the Study Parameters
The study parameters are the ones that most greatly influence the objective function

under consideration, that is, the energy consumption and occupants’ comfort, in our



case. By considering the general structure of the building, the building envelope and
first hand observations, three items are assumed to have a significant impact on the
energy consumption of the building and are chosen to carry out the optimization.
Those parameters are the window sizes, the inclination of the external shading
devices and the outside tefnperature set points to activate the vents and thus, use
natural ventilation. These selected parameters give rise to ten design variables:
- The width and height of the windows for the south, east and north fagades
(resulting in six parameters);
- The inclination of the shading devices on the south and east fagades (resulting
in two parameters); |
- And the lower and upper outside temperature set points to activate—open or

close—the vents (resulting in two parameters).

4.3. Determining the Search Space
This works tries to reflect reality to the utmost; thus, for each parameter, the range of
allowable values was defined in order to represent real conditions as faithfully as
possible. There are many limiting factors in the design of buildings; usually,
allowable ranges are determined based on designers’ experience, in con.sultation with
building codes, recommendations, design handbooks, rules of thumb, or any other

appropriate limit inherent to the building’s location.
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4.3.1. Dimensions of the Windows
As far as the windows are concerned, the geometry of the building clearly shows that
the glazing area could not be increased. On the other hand, it could be decreased
providing that the total glazing area, exclusive of skylights, is not less than 10%
(Ontario Building Code 1997) of the floor area of the room in which it is located.
The limiting factor here is ‘Reception’ which has a total glazing area of 17.5 % of the
floor area of the room. For aesthetic purposes, it was decided that all windows should
have the same dimensions, as in the original design; this sets the lower range for the

windows to be 85.0 % of their current value.

4.3.2. Inclination of the Louvers
The inclination angle of the louvers is defined from the horizontal plane
corresponding to the roof. A 0° angle corresponds to the horizontal position and the
inclination of the louvers can vary from 20° to 160° with a 10-degree step”.

4.3.3. Outside Air Temperature Lower and Upper Bounds to Actuate the

Vents

The lower and upper bounds for the outside temperature can vary from 12°C to 28°C
(Allard and Santamouris 1998). Hence, lower temperature set points between 10°C
and 15°C, and upper temperature set points from 23°C to 28°C were investigated.
Extreme temperature set points seldom used for natural ventilation were considered;

however, if using such temperatures does not lead to satisfactory conditions for the

> In the literature, values usually vary from 0° to 90°, but the scope of these studies is to optimize the
luminance level of the room. Few studies consider angles whose values goes beyond 135°.
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occupants of the building, they will be automatically disregarded by the optimization

process which seeks to reach the best trade-off between energy consumption and

occupants’ thermal comfort.

In summary the following table shows the ranges for the selected variables:

[ Variable

Height of windows on the south fagade

WinSH

Height of windows on the north fagade]

Height of windows on the east fagade

=

Louver angle on the east facade

point for the control of ventilation

Upper bound for the outside tempeture

WinNH

| Nominal

Value

1.9

19

1.9

28

Lower

1.615

1.6151

1.615

28

Table 2 — Allowable Ranges for the Selected Parameters

4.4. Design of Experiments

One of the goals of the present work is to develop a simple approximation model, fast

to compute and accurate enough over a certain design space, to make up for time-

consuming building simulation programs. Building approximations involve choosing
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an experimental design to sample the region of interest and then construct the
approximation model. The present building model consists of ten parameters,
assuming each of which can take on ten different values, one would need 10'° runs
for a complete model evaluation, which is totally inappropriate to designers’ use.
Thus, the design of experiments is a necessary step to minimize the number of runs

required and to select a few but representative sample runs within the design space.

With 10 parameters, twice as many samples would be enough to sample the search
space, according to MacKay (1988). However, due to the complexity of the objective
function, 50 sets of samples were selected to represent the design space for training
and 20 sets of data for testing the ANN. The sample cases were determined using the
Latin Hypercube Sampling (LHS) method presented in the previous section.

Sampling points are listed in Appendix A.

4.5. Running the Simulations
The simulations were performed with the ESP-r energy simulation tool. The software
enables the analysis of energy and mass flows within the built environment. Thermal
simulations can be run in conflation with nodal network fnass flow simulations. The
selected building has four rooms, each represented by a thermal zone and a mass flow
node, plus one thermal zone fepresenting the plenum (‘ceil void’), and another
fictitious thermal zone representing a mixing box (‘mixing box’). The boundary
conditions are set to ‘exterior’ for exterior walls; ‘adiabatic’ for the rear walls of the

room; and ‘similar’ for the floor and the upper surface of the ceiling zone. A mass
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flow network represents the airflow between different interior zones and with the

exterior environment.

The simulations were run for a whole year which was divided into 5 simulation

periods:

Early winter (from January 1% until April 3");
- Spring (from April 4™ until May 8");

- Summer (from May 9™ until August 28");

- Autumn (from August 29™ until October 16™);

- And late winter (from October 17™ until December 31%).

These typical seasons were determined through the automated climate module of
ESP-r. Three control files—for winter; spring and autumn; and summer—define
different temperature set points for weekday and weekend building occupancy times.
Each simulation period was preceded by a 21-day pre-simulation. Typically, a
whole-year simulation took approximately 1.25 hours (CPU time).
With ESP-r, a building model is mainly described by:
- Some geometry files which comprise information on the structure of the
building. Each file contains information on one specific zone;
- Some files which describe objects casting shadow on the building—such as
louvers, trees, or even surrounding buildings. Thermal and mass-flow

calculations are not performed for such shading objects, but their influence on
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the solar process is taken into account in calculations of the building zones.
As for the previous case, each file contains information on one specific zone;

- An operation file which defines building operations, that is, mainly, HVAC
strategies for different seasons with, amongst others, details on how and under
what conditions to activate the vents. This file is unique and contains the

information for all the zones and all the seasons of the year.

Prior to running a simulation for a building case, all these files have to be changed
accordihg to the input vectors given by fhe design of experiments. In the case of this
preliminary study, all the files were changed manually, which proved to be a very
long and tedious process, not to mention errors occurring occasionally. This will be
further discussed in the conclusion remarks of this chapter.

Running the fifty simulatibns took three weeks® with a Pentium II 733 MHz

computer.

4.6. Constructing the Artificial Neural Network
Once the database of simulation results was constructed, an artificial neural network
~ ANN was set up and trained in order to approximate the building’s response. After
| going through the database of results, some of them clearly looked erroneous, and

were consequently discarded from the database in order to avoid inducing mistakes in

® The author ran simulations over a period of three working weeks; in other words, simulations did not
take three CPU-time weeks.
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the training of the ANN. 38 cases were used, 30 for training, and 8 for testing the

ANN. Here follow some specifics on the ANN:

- Ten input nodes, representing the study parameters defined in Table 1;

- Seven output nodes, representing each element of the objective function
defined earlier;

- 21 nodes in the hidden layer. The number of nodes was obtained by trial and
error;

- The ANN was trained using a backpropagation method, using a user code
developed by Dr. Mengitu with whom the author collaborated on this
example;

- Training the ANN took approximately three hours with a Pentium IV 2.2 GHz

computer.

Once the ANN was trained, a couple of cases were simulated with the ANN and
compared with the simulation results given by ESP-r. These cases were obviously
not included into the pool of data used to train the ANN. The average error was
- found to be less than 5% for all the outputs but for the lighting energy consumption,

as shown on the following figures (Fig. 11-15).
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Figure 12 - Validation of the ANN - ANN vs BS
Average Annual Cooling Load [kWhr]
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Figure 15 - Validation of the ANN - ANN vs BS Results
Average Lighting Energy Consumption [kWhr]

Figures 11 to 14 show that the ANN approximation is in good concordance with the
actual results,' that is, the ones given by ESP-r, for the cooling and heating loads as
well as for occupants’ thermal comfort. However, Figure 15 shows there are
important discrepancies between the ANN and ESP-r for the lighting energy

consumption. As a matter of fact, the author decided to define some control strategies
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to reduce the use of artificial lights in the rooms when tﬁe illuminance level inside the
room reaches a certain level defined by general regulétions in effect in Canada. After
looking into this problem more seriously, and after consulting the ESP-r community
online, the author realized that the calculations given by ESP-r were not correct.
ESP-r developers are confident that solar processes are correctly taken into account in
the energy balance of the different zones, and consequently that the corresponding
heating and cooling loads are computed correct]j. HoWever, the heat gains and thus
the lighting energy associated with control actions on the lights available from the
result files are not correct for some reason. All the results associated with the vlighting
energy consumption for each room are thus erroneous, and this accounts for the
mismatch between the ANN model estimates and the ESP-r calculation results. The
author got confirmation, however, that the impact of the lighting on the heating and
cooling loads ’weré correctly accounted for. Consequently, the lighting energy will be

disregarded for this part of the study.

4.7. Using the ANN for the Opﬁhﬁzaﬁon Search
Witﬁ the ANN model ready for use, the last step was the optimization search per se.
The ANN model was indeed meant to be used in conflation with a genetic algorithm
(GA) to replace energy tools which would not have made possible the use of
population-based stochastic optimization algorithms ‘d'ue to expensive computations,

as we already pointed out.



The GA was developed under C++ by Mengistu (2005). The latter gentleman worked
in cooperation with the author of this work and provided him with assistance
regarding all the technical problems—only for this introductory example—related to
optimization, including the ANN artificial neural network, and the GA. As explained
earlier, the genetic algorithm generates potential solutions and evaluates their
performance—also referred to as ‘fitness’—in order to let the fittest individuals
survive and get close to the near-optimal solution. The evaluation ﬁll’lCﬁOl’l is used to
determine how well buildings perform, and in the case of this study, it is the trained

ANN model of the building. Using the ANN within the GA proved to be quite easy.
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Figure 16 - Optimization Search - Number of Function Calls
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The optimization search took less than ten minutes. Figure 16 shows the evolution of
the objective value, as defined in Equation 1, along the search. It is common practice
to use the number of function calls, that is, the number of candidate buildings
evaluated by the objective function, as a time scale. This figure also shows the total
number of function calls necessary for the search to converge. The authors calculated
that without using the ANN model, the optimization search would have taken more

than a year to converge.

Table 3 shows the values of the design parameters for the near-optimal solution

compared to that of the existing building.

_Paramet . ,. yale 3 () .
s 4 S .
Window north (WxH) | [m]x[m] |2.8x 1.9 24x 1.7

Louver angle south

S 1

Lower and uppér ,
bounds for outside [°C, °C] | [13,28] [13, 26] [0%, -7%]
temperature set point

Table 3 - Design Parameter Values

The optimization advocates a decrease in the glazing area and an increase in the
louvers’ angle. This is sensible since decreasing the glazing area would enable to
decrease both the heating load in winter and the cooling load in summer. Likewise,

the optimal louver angle proves to be the best way to reduce the cooling load

7 Global change in the glazing area.

61



associated with direct sun beams. However, since the lighting energy consumption
was not taken | into account for the optimization search, one cannot draw any
conclusion as to what the best trade-off would be between decreasing the cooling load
and an extensive use of artificial light in the workspace. Figure 17 shows the
comparison between the optimized and the oﬁginal buildings’ heating demand. The
heating and cooling loads were thus reduced by 12% and 4.8%, respectively for the
whole building. ‘The value of the thermal comfort index was, on the other hand,

increased by 1% to 4% on average, depending on the room.
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Figure 17 - Energy Savings for the Building and
Thermal Comfort Improvement for the 'Manager' and 'Conference' Zones

It was finally decided that windows should all have the same dimensions regardless

their orientation. This is a purely arbitrary choice in order to respect the original

structure of the building for which all the windows were the same size. Since the
ANN has been trained for different window dimensions, had the authors decided to
allow for different windows for the three fagades, all they would have needed to do is

run another optimization search, and determine the new near-optimal building.
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4.8. Conclusion on the Preliminary Study

This preliminary work proved that the methodology yields sensible results. The ANN

faithfully models the building’s energy consumption and occupants’ thermal comfort.

The GA identified the best trade-off for the defined research parameters, and the

building could poténtially be improved.

However, the methodology also clearly showed its limits:

Preparing all the simulation files for the database by hand is not a viable
solution. Asa matter of fact, further to being a very time-consuming process,
it is also a very likely source of errors since users could éasily make mistakes
while changing the parameters’ values in the ESP-r files. |

ESP-r also prbved to be a limiting factor to this methodology as far as the
lighting energy consumption is concerned. However, this is partly due to the
fact that the tpoi is under continuous development, and new versions will
probably be available in a near future to address the current shortcomings.
For the time being, it was decided to use Radiance simulations in parallel to
ESP-r in order to estimate occupants’ visual comfort for later studiesy‘, as
documented in the following section.

Last but not least, it is our hope that this methodology will be flexible and
simple enough to be actually used by designers. This last remark begs for a

dramatic simplification, or at least automation, of all the file-handling process.

Based on the conclusions drawn from this preliminary study, the author devised an

improved methodology meant to address the limitations of the first sketch.



CHAPTER 5
5. CONFRONTING THE PROPOSED METHOD

TO A LARGE-SCALE EXAMPLE

Chapter 4 showed evidence of the validity and applicability of the methodology for a
section of a building. The present chapter documents the optimization study of a full-
scale building and different sets of design parameters and objective functions will be
studied. . The two main issues encountered during the validation stage of the

methodology are also handled as follows:

- The author of this work wrote a program in the Perl programming language in
order to automate the whole simulation process. This language is quite
straightforward‘ and free software exists to program in Perl under most
operating systems. The role of the program is manifold. 1) It updates the
ESP-r model for each case defined by the design of experiments; 2) it runs the
simulation by invoking of ESP-r; 3) it extracts the simulation results from the
ESP-r files and writes them into an output text file later used to train the
ANN; and finally 4) it deletes all the temporary files.

- An attempt was made to use Radiance to assess visual comfort more
comprehensively. Unfortunately, this proved to be a tedious process and after
consulting ESP-r developers at Strathclyde’s University Energy Systems
Research Unit (ESRU) and at National Research Council Canada (NRCC), the

author got the confirmation that work was under way to calculate daylighting
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metrics within ESP-r. Unfortunately again, the Beta version of the software

was not yet available at the time this thesis was written.

The first section of this chapter presents the building used for the optimization study
as well as a summary of a preliminary sensitivity analysis conducted by another
researcher. The objective function is discussed in the following section with
emphasis put on the different metrics used to evaluate the building. Finally, two

optimization study cases are documented in the remaining two sections.

5.1. Presenting the Building Model
The building selected is a school located in
Grong, Norway, whose main feature is a hybrid
ventilation syétem. An ESP-r model of the
building was developed by Wachenfeldt (2003).
This building was designed with a concern to
reduce the heating and ventilation energy Figure 18 - Global View of the
Mediaa School

consumption and to provide pupils with optimal

indoor air quality conditions. Energy-saving measures include extensive use of
‘natural ventilation and natural daylight, and an underground duct through which the
air passes before being injected into the classrooms. The culvert enables the
preheating or pre-cooling of the air, depending on the season. The main classrooms

are connected to an extract chamber. The extract chamber has a large glazing area as

shown on Figure 18. Its purpose is twofold: first, it acts as a buffer space containing

66



a large mass of warm air, thus enhancing natural ventilation; it also allows for an
extensive use of natural daylight in two of the classrooms. This extract chamber is in
turn connected to an exhaust tower whose purpose is to create draft, hence

participating to the natural ventilation of the building.

In the final section of his thesis, Wachenfeldt documented a sensitivity analysis he

conducted after having set up an ESP-r model of the premises (Wachenfeldt 2003).
After discussing with Dr. Wachenfeldt and one of his colleagues from the Norwegian
Technology University in Trondheim, it seems that the building design has two main
shortcomings:

- From a general perspective, the geometry is tdo complicated. On top of
increasing the price of construction, the geometry favours heat loss as well as
pressure drop; thus reducing the potential for natural ventilation.

- Further to fhenna] bridges, both gentlemeh agreed on the fact that floor
insulation was not sufficient in most of the classrooms and that energy
performance was quite poor.

These two aspects notwithstanding, the school works relatively well since it provides
pupils with a very satisfactory work environment. According to Dr. Wachendfeldt,
~ the pre-cooling potential of the duct is unfortunately very little used, since the school
is left unoccupied throughout summer. In light of this, and bearing in mind th¢
introductory comments to this thesis on building rehabi]itation, studying the potential
of the building for summer usage and thus investigating the optimal design of the

school, should it be used in summer, is an interesting challenge.
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For the purpose of this work, major changes were made to the original ESP-r model
of the building. In order to operate under more constraining conditions, the exhaust
and intake fans were removed, thus leaving natural ventilation as the only driving
force in the building.

Figure 19 shows a cross section view of the school with the underground intake duct
to preheat or precool the air connected in turn to the underground distribution duct,
located under the corridor. Air is then distributed to the classrooms, collected by the

extract chamber and finally exhausted outside by the exhaust tower.

Exhaust tower

North Snuth

Extract Chamber

Main corridor

Intake tower

Disirihution culvert /

Heat recovery system

+ Traditiona! heafing system Underground intake duct

Figure 19 - Cross-sectional View of the Ventilation System

Finally, Figure 19 shows a bird view of the ESP-r model of the school with the three

main classrooms.
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Class North-west (cINW) North

WC

- Clazs North-gast (<INE)

Chiss South (clS)

Figure 20 - Bird View of the Model

5.2. Identifying the Metric Function -
It would be convenient to have a performance metric to rate buildings and which
would éncompass environmental irhpact, energy performance, occupants’ comfort (in
terms of thermal comfort, indoor air quality, visual comfort, acoustic comfort etc.) as
well as financial considerations altogether. Howe{/er, such a performance metric does
not exist and is very unlikely to see the day. It has already taken much time for the
international building community to reach consensus as to what metrics to use to

evaluate thermal comfort, for example, and some aspects such as daylighting are still
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under discussion (Reinhart et al. 2006). As already mentioned, the ESP-r energy tool
was used for the simulation part of this work; consequently, the metrics chosen to
assess the performance of the building are those easy to compute with the software.
Let us have a brief review of the indices used to assess building performance in this

study:

5.2.1. Energy Performance
Energy performance is already taken into account in the environmental performance
metric, but since the energy bill happens to be one of the most important driving
forces pushing clients to buy more energy-wise homes, it is of the essence. The
heating demand, cooling demand, and lighting energy are the most commonly used
metrics. However, more detailed metrics are also used at time, such as the energy
efficiency of a heat recovery system for example. Scores of energy tools have been
developed since the first oil crisis. TRNSYS, Energy Plus, and ESP-r are some of the

most widely used tools.

5.2.2. Thermal Comfort
Unlike visual comfort, thermal comfort has been thoroughly studied for a couple of
decades and there exist guidelines as to what metrics to use, how to measure them,
and provisions on acceptable values. }ASHRAE standards 1993 (55-2204) list a
couple of metrics usable for the purpose of assessing thermal comfort in a room.
PMV, the predicted mean vote, as well as PPD, the predicted percentage of

dissatisfied people are two very popular metrics. PMV is the predicted mean vote of
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a large population exposed to a given environment. The PMV value is derived from
the physics of heat transfer and empirical correlations; it ranges between -3, for which
the environment is considered to be “too cold” and +3, where the environment is “too
warm”. Obviously, any environment should ideally score around zero. PPD is
derived in turn from the PMV value. When the PMV value deviates away from the
neutral value (i.e. zero) then the value of PPD starts increasing. Software tools such

as ESP-r can now accurately predict these values too.

5.2.3. Indoor Air Quality
Indoor Air Quality is a domain that deals with the presence of contaminants in the
indoor air such as microbes, chemicals, allergens etc. Several indices are used to
assess the quality of indoor air, such as the mean age of air or the concentration of
gases, just to name a few (ASHRAE 2001). They usually require a substantial

amount of detail and thus, computational effort.

5.2.4. Visual Comfort
Some provisions exist as far as the minimum lighting level is concerned, but as of
today, there is no general consensus as to what metrics to use to evaluate the quality
of daylighting. As a matter of fact, daylighting, or the use of natural light instead éf
artificial light, is gaining in popularity due to the significant cost associated with
artificial lighting. Most countries have regulations with respect to the level of light
on work planes. For example, Human Resources and Social Development Canada

recommends 300 Ix to 500 Ix on the work space for typical clerical work (HRSD
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1989). Provisions are also given regarding how to take measurements. In spite of
this, it is quite hard to assess the performance of a building in terms of visual comfort,
especially when it comes to natural daylight. Reinhart conducts extensive research to
determine what metrics to use to assess daylight performance in sustainable buildings
(Reinhart et al. 2006). Daylight factor is by far the most used metric to estimate the
performance of a building in terms of visual comfort. It is defined as the “interior
horizontal daylight illuminance expressed as a percentage of the horizontal daylight
illuminance available to an unobstructed site”. Due to its definition, it is a static
metrics based on the geometry of the building and therefore does not account for
changes in outside daylight illuminance. According to a researcher at the NTNU
University, the next update of the Norwegian building code will advocate for a
daylight factor of at least 2% at a point located one meter from the side wall, halfway
through the room from the window. Several other metrics were proposed to assess
dynamic dayli ght performance. Daylight autonomy for example can be defined as the
percentage of occupied time per yeaf when target illuminance can be maintained by
daylight alone. This proves to be quite a useful and intuitive metrics since it can be
expressed as the percentage of lighting electricity saved by a lighting system ESP-r

developers are working on improving the interface to perform Radiance calculations

from within ESP-r. Reinhart’s team is also working on linking their tool for

calculation of dynamic daylight performance to Radiance and ESP-r.

72



5.3. Perfbrmance Metrics under the Scope of this Study
5.3.1. Energy Usage
For the first example, the heating energy consumption in the classrooms, bathrooms,
corridor, and heatihg battery was used to assess the energy performance of the
building. In the second example, a cooling capacity was added to each of the rooms
to investigate the need for air conditioning in summer and the optimal cooling
capacity to install. Determining the GHG emissions due to the operation of the
building would be straightforward. Software to calculate GHG emissions does exist,
such as the Athena program in Canada for instance, but the lack of data for Norway
would impede the calculations and it was thus decided not to take GHG emissions

into account.

5.3.2. Thermal Comfort
As in the previous chapter, thermal comfort is here represented by the cumulative
frequency of time for which the PPD is the classroom is below 20%. Clothing levels
of 1.0 clo in winter, 0.75 clo in autumn and spring, and 0.5 in summer were used, as
‘previously. The metabolic rates used were 100 W/m? to account for children’s

activity.

5.3.3. Visual Comfort
Finally, visual comfort is represented by the average of daylight factors estimated at a

series of points located halfway through the room from the windows, and one meter
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away from the side walls, to compare it to the provisions given by the Norwegian

Building Code.

5.3.4. Objective Function
The optimization seeks to minimize the heating energy consumption while

maximizing the thermal and visual comfort factors.

5.4. First Case — Testing the Method on a Large-scale Example
5.4.1. Design of Experiments and Choice of Parameters
In this first example, only a limited number of parameters are studied to test the
applicability of the method with a complex case. Thus, the influence of the size of
thie‘ extract chémber windows and the height of the exhaust tower on the energy,
thermal, and visual performance of the building is investigated in this first example.
Changing the glazing area of the extract chamber has an impact on both the building
energy consumption and the occupants’ thermal and visual comfort. These aspects
are conflicting since increasing the glazing area results in more daylight in the rooms,
but a worse thermal comfort, as some preliminary studies showed. The height of the

roof tower was allowed to change in order to help natural ventilation.

Three design parameters were perturbed to study their impact on the energy
consumption, and thermal and visual comfort. This defines three inputs that

correspond to the fifteen outputs for the first case. The upper-bound values were
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arbitrarily chosen following the Norwegian building code which recommends a
minimum daylight factof of 2% halfway through the room from the window, and one
meter from the side walls. There is no restriction as to the size of the exhaust tower;
however, the architect who designed the school would need to give his consent prior

to any modification in the building envelope.

Design parameter Lower bound Upper bound

Extract chamber window facing | 0.4 1.7
south — height [m]
| - (25% of original value) | (original value)

Extract chamber window facing | 0.4 1.7
southwest — height [m]
‘ (25% of original value) | (original value)

Exhaust tower — height [m] 2 6

(original value) (arbitrarily chosen)

Table 4 - Parameters Maximum and Minimum Values

As for the previous case, LHS was used to sample the search space as efficiently as
possible. As already mentioned, though several studies have concluded that for a
study based on N parameters, a number M greater than twice the number of
parameters is sufficient to correctly sample the search space for uncertainty ana]ysis,
by experience, more samples are required when dealing with energy simulations.

Due to the number and different natures of outputs, 250 cases were simulated, that is
approximately five times the product between the number of inputs and the number of
outputs. LHS allows for an optimal coverage of the search space. The cases are

reported in Appendix B.
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5.4.2. Simulations
As mentioned in the introduction to the current chapter, and based on the conclusions
drawn from the preliminary case study, it is necessary that the simulations be
automated, if only to avoid human errors. A lot of attention was thus placed on the
writing of a program to prepare the ESP-r model, run the simulation, extract and save
the simulation results, and erase all temporary files. One of the main concerns of this
work is to devise a method usable by building designers. It thus needs being fairly
simple to understand énd to implement, regardless of the computational background
of the user. The Perl programming language is a simple language whose syntax is

similar to that of the most commonly used programming languages such as C, C++,

Java and the like. Furthermore, it is free of charge and rather well documented.

Hence, it appeared to be well suited to the purpose of this work. Any designer
acquainted with the basics of programming should be able to didactically write a
program with Perl to automate energy simulations.

The performances of the differént building cases previously defined were computed
with ESP-r. Each case—which involves changing and updating the model files,
running the simulations, and saving the results—required approximately 5 minutes

CPU time for a total of 1,250 minutes—i.e. 20 hours.
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5.4.3. Training the ANN
The -ANN was trained with the MATLAB Neural Network Toolbox using 200 cases.
The 50 remaining cases were used to validate it. MATLAB’s Neural Network
Toolbox is easy to use and fairly well documented. A feedforward network with one

hidden layer was trained with the Baysian regularization backpropagation training

function available within MATLAB. There are 25 neurons in the hidden layer.

The two following figures illustrate how well the ANN performed in general. Figure
21 shows the relative error between the ANN model and ESP-r for the energy
consumption. Figure 22 shows the relative error between the ANN model and ESP-r

for visual comfort (referred to as VC) and the thermal comfort (referred to as TC).

77



BMaximum

Heating battery ® Average

@ Minimum

WC west

WC central

WC east

Class S

Class NE

Corridor

Class NW

| ’

0.00% 0.50% 1.00% 1.50% 2.00% - 2.50% 3.00% 3.50% 4.00% 4.50%
(ESPr - ANN) / ESP-r [%]

Figure 21 - Absolute Relative Error - Heating Energy Consumption
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Figure 22 - Absolute Relative Error - Thermal Comfort (TC) and Visual Comfort (VC)
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As far as the heating energy consumption is concerned, the average difference
between the ANN predictions and ESP-r simulations remained below 0.5% in all
cases but one. Likewise, the maximum relative error between the ANN model and
ESP-r is slightly above 1%. For the Corridor thermal zone, however, the average
relative error is slightly greater than 1%, and the ﬁnimum error is above 4%. This
might be due to the fact that the corridor is connected to the three main rooms of the
building and to the outside as well, and thus it is more complex to model. More
training cases might have yielded a better approximation for this output, but a
maximum error of 4% is still very good. Another ANN with 30 neurons instead of 25
in the hidden layer of the ANN was trained; the maximum error was decreased tob3%

but the computation time to train the ANN increased significantly.

The ANN model and ESP-r are, as well, in very good agreement as far as visual
comfort (referred to on thlS figure as VC) and thermal comfort (referred to on the
ﬁgure as TC) are concerned. Consequently, there is more discordance between the
ANN model and ESP-r as far as visual comfort is concerned, since visual comfort is
harder to model, but the maximum error is still below 2.50%. The ANN was thus

validated and used as the evaluation function of the Genetic Algorithm.

5.4.4. Optimization Search
In order to evaluate which aspect of the objective function had the most potential for
optimization, three optimization studies were carried out. In the first case, the

objective function was the global heating demand of the building only. For the
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second case, only the thermal comfort factors were taken into account. Finally, only
visual comfort wés studied in the last case. Optimizing each aspect of the building
separately yields different optimal designs. Indeed, optimizing for the energy
consumption only results in maximizing the extract chamber glazing area and
increasing the height of the exhaust tower. Maximizing for occupants’ visual comfort
yields similar changes. On the other hand, maximizing for the thermal comfort in the
rooms results in decreasing both the size of the glazing area and the height of the
tower. The parameters’ original and optimal values as well as the building
performance improved values are listed in Table 5. Optimization results given by the
GA were counter checked with the Generalized Pattern Search (GPS) algorithm also

available with Matlab and for all cases the GPS corroborated the GA’s results.

Performance Original input | Optimized input vector | Improvement
[mmm]

Factor [m m m} [%]

Heating Energy o

Consumption [1.7 1.7 2.0] (1.7 1.7 4.9] 0.58%

Thermal Comfort | 1\ 7 47 201 |04 04 2.0] 50.44%

Visual Comfort | 4. 47501 |17 17 29 0.14%

Table 5 - Results of the Three Single-Objective Optimizations

These preliminary results show that thermal comfort has the greatest improvement
potential. It also evidences the obvious: simultaneously optimizing different aspects

of a building is conflicting.
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Reducing the extract chamber glazing area improves, according to the preliminary
single-objective optimization results, the thermal comfort in the classrooms a great
deal, but this also results in a poorer visual comfort and an increase in the energy
consumption for this period of the year. The first requirement of a building is to
protect its occupants from the outdoor and to provide them with optimal indoor
conditions, conductive to theif daily activities. In light of this, it was decided to give
in a first step equal weights to energy consumption, thermal comfort, and visual
comfort in the objective function to optimize. In general, no single optimal solution
can simultaneously yield an optimal value for all the single-objective functions. Our
purpose here is to use a single objective function combining all the aspects to
improve—energy demand, thermal comfort, and visual comfort. Scaling each
component of the aggregated objective function between zero and one is a way to
ensure that all aspects will equally drive the optimization search. This can be
achieved by using the Lp norm, as in Malard et al (2004):

i/p

i ) = min| S oor| L =min ) I
minLp(x) = ) o | o —min £,

Equation 2 - Objective Function: Minimizing the Lp Norm

Where:
- x is an input vector belonging to the search.space Q, delimite;l by the lower
and upper bounds as defined in the Design of Experiments;
- f, to fiare, for each of the classrooms, the ratio of time out of the whole

occupancy time for which PPD is less than 20%. This value is multiplied by

-1 to actually maximize thermal comfort;
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- f, to f,, are the heating energy consumption of class NW, corridor, class NE,
class S, the three bathrooms, and the heating battery respectively, in kWhr of
electricity;

- fi, to fis are the average daylight factors, in %, for the side walls of the
classrooms facing northwest and northeast;

-, are the weights associated to these functions. They are dimensionless

since all the aggregates of the objective function are dimensionless;

- 1< p <. The greater p, the more importance is given to the deviation in the

metric function.

Table 6 summarizes the results of the first optimization, for which equal weights were
given to the three main performance indices of the building. As for the previous
results, the near-optimal solutions were validated using a GPS algorithm as shown in

Table 7. The GPS and GA both lead to the same conclusion.

Performance Improvement Original input | Optimized input vector
[m m m]

Metric Function o

L z(x) f45.53 %o

Heating Energy

. -8.26% : .

?::,f,‘,’:,‘ %t:::::fort [1.7 1.7 2.0} [0.4200 1.1468 4.5278]
+30.31%

Visual Comfort _33.05%

Table 6 - Optimization Results with Equal Weights
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Performance Improvement | Original input | Optimized input vector
[mmm]

Factor [%] [m m m]

Metric Function o

L,(x) +45.53%

Comsampior | 25%

Thermal Comfort [1.7 1.7 2.0] [0.4200 1.1568 4.5278]
+30.31%

Visual Comfort

| -33.05%

Table 7 - Verification of the Optimization Results with GPS

These results are not very surprising. Indeed, the individual optimizations showed

" that in the case of this building, and for the conditions defined, only thermal comfort

had a strong potential for improvement. As a consequence, it is not surprising that

the best solution should be one that favours thermal comfort over visual comfort, and

to a lesser extent, over the energy performance of the building. It was then decided to

change the weig’hts a; for each function according to their improvement potential.

Visual comfort will thus be favoured over ehefgy performance which will in turn be

favoured over thermal comfort. The results of this second optimization are listed in

the following table.
Performance Improvement | Original input | Optimized input vector
[mmm]

Factor [%] [mmm]

Metric Function o

Lo(x) +23.77%

Heating Energy o
e -3.05%

?::f;;";t":"fo = [1.7 1.7 2.0] | [0.6558 1.7400 2.000]
° +12.90%

Visual Comfort -23.299,

Table 8 - Optimization Results with Different Weights
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For this optimization, weight values of 1, 1/3, and 3 were defined for the energy
performance, thermal comfort, and visual comfort respectively. Thermal comfort and
visual comfort are clearly the most conflicting aspects in this optimization problem.
Just by changing the geometry of the envelope of the building, one could not improve
one of these two aspects without seriously worsening the other one. After running a
few simulations with ESP-r, it appeared that the rooms were indeed too hot for most
of the time, from June onward. This accounts for why the optimization tends to
recommend a smaller glazing area on the’ south fac,:adé; the maximization of the
southwest glazing area might stem from the need to make up for the reduction in the
global glazing area of the extract chamber to guarantee satisfactory ventilation flow
rates. However, the optimization does not seek to increase the height of the tower,
thus reducing the draft, and limiting the airflow rates in the rooms, which causes
occupants’ discomfort. This is contradictive with the positive action a bigger tower
would have, allowing more fresh air to flow into the rooms, and improving thermal
comfort. After analysing the climate data, it appeared that the ambient air was
unusually warm for Norway—i.e. over 25°C—for most of the summer. Since the air
is only cooled through the underground duct, and since the ambient temperature is so
high, low flow rates are favoured for they allow the air to cool more before being
injected into the rooms. Changing the geometry of these three parameters only will

not improve thermal comfort sufficiently and other options should be investigated,

such as those proposed in the second example.
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Using other weight values, such as 10, 1, and 1/10, yielded a global improvement of
0.03% and 0.10% in the energy and visual performance of the building, and to a drop
of 0.33% in the thermal performance for an input vector of [1.6932 1.7400 3.2479].
HQwever, the main conclusion to draw here is that such variations are to take with
preéaution, mainly because they are of the same order than the ANN’s relative errors.
Care should thus be given to avoid choosing too disparate weights. Besides, there is
no interest in an optimization that advocates so little changes. When designers face
problems, decisions have to be ’made. Reducing the size of the south window and, to
a lesser extent, that of the southwest, is a solution to improve thermal comfort.
However, other measures should be taken in order to make up for the loss in visual
- comfort.

The choice of the weighting factors can be based either on a trial and error approach
or left to the user’s discretion. Some optimizers put forward the argument that
building energy performance should be as important as occupant comfort, and

therefore would tend to allocate similar weights to both scalars.

5.5. Second Case — Testing the Limits of the Method
5.5.1. Design of Experiments and Choice of Parameters
This case study set out to investigate moré parameters such asA night setback
temperatures, adding cooling capacity to the system, adding shading devices on
windows, changing the sizes of other windows, adding an insulation layer to the

floors in the classrooms. Adding these parameters will give more insights on the
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influence of each of those on the global performance of the building. It will as well
permit to test the limits of the method by having a more complex objective functions
and more design parameters. Table 9 lists the parameters studied as well as their

lower and upper bounds.

Zone Variables Upper Lower Bound |Conditions
Bound

‘gy
Exhaust Tower |Height ___________Jém ___[2m |

Window — Length 50% (8.5 m) Continuous
1
Class Northwest | Gow — Heig 50% (0.85 m)

{5,10,15}
' Cooling Capacity 3,000 kW 10,0 kW
l pd
Class Northwest Temperature Setpoint 30°C 25°C
Continuous
. Cooling Capacity 1,000 kW 0,0 kW
C 3 3
orridor Temperature Setpoint 30°C 25°C

Table 9 - Study Parameters and Their Lower and Upper Bounds

As previously mentioned, the size of the main windows for each classroom was
investigated on top of the dimensions of the extract chamber and tower. Likewise,
the floor insulation for the main classrooms was allowed to take on three values,

namely 5cm, 10 cm, or 15 cm. Small cooling capacities were allowed in the

36



classrooms, corridor, and distribution duct in an attempt to make up for the times
when the duct could not meet the cooling requirements.

Using the same sampling method as for the previous cases, 1,500 simulation cases
were defined; a quite significant number of simulations. This number is justiﬁed by
the number of input parameters, namely 24, and the number of outputs, 8. The
outputs for this case are, as previously, the cumulative frequency of time for which a
maximum of 15% of the people in the rooxh are dissatisfied for each of the three
classrooms; the average déyli ght factors for each of the three classrooms, estimated at

the same measuring points; and the heating and cooling demand for the system.

5.5.2. Simulations
The same Perl program was used to automate the simulations and the 1,500
simulations took about 5 full days to run. The reason is twofold: firstly, of course, the
great many number of simulations implied mofe computations. Secondly, Radiance
calculations were assessed for three classrooms instead of two, which significantly
increased the global computation time. (Note that in the first case, the extract
chamber had but a limited impact on the level of daylight in the classroom facing

south; hence, it was not taken into account in the optimization.)

5.5.3. Training the ANN
The MATLAB toolbox was used for the ANN training and its validation. Training
the ANN proved more tedious this time. A network with 15 neurons in the hidden

layer was trained overnight. As shown in Table 8, the ANN performed rather well as
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far as the heating demand, thermal comfort, and daylight factors are concerned with
an average relative error below 2%. However, the ANN performed less well at

predicting the cooling demand and the south daylight factor for a few cases.

Heating | Cooling | TC TC TC vC vC vC
demand { demand | NWest | NEast | South | NWest | NEast | South

0.60% 81.98% 1.33% | 1.24% 8.02% | 21.10%
o, o, o ) i 0 o,

Table 10 - Relative Error between BS and ANN

For the south daylight factor, the relative error was well below 10% for 90% of the
cases, as shown on Figure 23. On the other hand, figure 24 shows that for 90% of the

© cases, thc relative error on cooling demand was below 15% only.

South Daylight Factor Relative Error - Cumulative Frequency
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Figure 21 - Cumulative Frequency of the Relative Error between BS and ANN for the
South Visual Comfort Metric
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Cooling Load Relative Error - Cumulative Frequency
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Figure 22 - Cumulative Frequency of the Relative Error between BS and ANN for the
Cooling Demand
Despite this mediocre performance for both these aspects, the quality of the ANN
could ﬂot be improved by adding more neurons in the hidden layer: the number of
neurons in the hidden layer could not be increased least heavy computations would
make the method totally unpractica]. Adding a second hidden layer would result in as
heavy computations. The solution would be to increase the number of simulations to
train the ANN, and thus to run again a whole new set of simulations. This option was
not chosen because in a real situation, more time-consuming simulations would mean
the project would be given up. Besides, this second example set out to test the limits
of this methodology, and this is clearly one of them. This issue will be further

addressed in the concluding remarks of this thesis. In the meanwhile, the author
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decided to use the ANN in spite of its mild performance regarding the south daylight

factor and the cooling demand.

5.5.4. Optimization Search
As for the previous cases, GA was used to determine the optimal design for the
building given the chosen study parameters. The global performance metric used for
the optimization is the same as in the previous case, namely:
1/p

o[ fi)-minf,(x) |
" |max f, (x) ~ min £, (x)|

min Lp(x) = min ; @

Where:
- xis an input yector belohging to the search space Q, delimited by the lower
and upper bounds as defined in the Design of Experiments;
- f, to f, are the thermal comfort factors for the classrooms facing northwest,
northeast, and south respectively;
- f, and f; are the total heating energy demand and total cooling energy
demand;
- . f, to f, are the average daylight factors for the classrooms facing northwest,
northeast, and south respectively; |
By applying sin;ilar weights, i.e. 1.0, the optimization yielded thé results presented in

Table 11 while the original and the near-optimal vector are listed in Table 12.
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Performance Improvement

Factor %]

Metric Function o
Lo . 25.73%
Energy 1.78%
Consumption

Thermal Comfort 7.64%
Visual Comfort -1.46%

Table 11 - Result of the Optimization Search - Rate of improvement

Original | Near-optimal | Global
vector solution change

Zone Variables

Exhaust Tower _|Height | 200} ___600] + |

Window — Length

Class Northwest Wind Heioht

Cooling Capacity 0.00 2,999.86 +
Temperature Setpoint 25.00

Class Northwest

Cooling Capacity
Temperature Setpoint

Corridor

Table 12 - Result of the Optimization Search - Original Vector vs Near-optimal
Solution



5.5.5. Discussion

The most salient fact of this optimization is the increase in the exhaust tower height
from 2.0 m to the maximum value allowed, 6.0 m. The bigger the tower, the more
draft there is and it thus helps natural ventilation, bringing more fresh air to the
classrooms. This can explain in part the improvemeﬁt in the thermal comfort metric.
Adding small capacity air-conditioning units of 3,000 W would also make up for the
hot days when natural ventilation alone cannot provide occupants with fully
satisfactory thermal comfort conditions. This results in greater energy consumption,
but adding extra insulation layers of 15 cm in the floor of the classrooms
counterbalances the négative impact of air-conditioning by decreasing the heating
demand for the cool summer days when heating is required. It is interesting to note
that the glazing area of the extract chamber remains the same, most likely to help
natural ventilation and visual comfort. However, the glazing area in the north east
classroom is decreased by 50%. This is the classroom that gets least sun and this
window surely is a path to heat loss by radiation heat transfer with the sky. A smaller
glézing area, however, results in a worse visual comfort and one could replace it for a
more energy-wise window instead of decreasing the area of the window. Last but not
the least, the south west glazing area in the south classroom is decreased by 25%; this
makes sense inasmuch as this is the fagade of the building that gets most sun and
there is overheating in the south classroom during the bright summer days. Thermal
comfort is thus improved albeit for a loss in visual comfort.

From a more general perspective, the building performed already very well, which

accounts for the overall mild improvement in the building performance.
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5.6. Conclusion

This set of examples proved that ANNs can faithfully represent the performance of
complex buildings in terms of energy demand, thermal comfort, and visual comfort.
In the first case, the influence of three parameters only was studied, and the ANN
gave accurate predictions with less than 5% maximum errors when compared to the
ESP-r predictions. In the second example, however, more cases were required to
train the ANN and the ANN also required a greater number of neurons in the hidden
layer. The cooling demand and the visual comfort metrics were the two hardest
aspects to predict. On average, error between the ANN and ESP-r’s predictions
remained below 5% but for one case—6.5% for the cooling demand. The global
performance could be increased by adding more samples to the training pool and
another hidden layer to the ANN. On the other hand, this would substantially
increase the computational time. This is clearly one limit of this method: the more
design‘ parameters and objectives in the objective function, the heavier the
éomputations.

The GA found near-optimal results in a matter of a couple of minutes. These results
were corroborated by a GPS algorithm available within Matlab. The Matlab
Optimization Toolbox thus offers the possibility to verify the results of an
optimization search with seemingly performing algorithms. |

One of the most salient facts is that the 2*N (two times the number of design
parameters) law does not seem to hold when it comes to building simulations
involving thermal simulations, fluid mechanics, and visual simulations. It would be

interesting to study for example the relationship between the number of input over the
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number of output ratio and the minimum number of cases to sample the search space
efficiently in the case of building simulations.

In terms of results, this set of examples showed the complexity of optimizing for
conflicting aspects of a building such as thermal comfort and energy demand, or
thermal comfort and visual comfort. The first example gave the best trade-off
between improvement in thermal comfort and loss in visual comfort by playing on
three parameters only. This first example also showed that the three parameters were
not the most important ones since playing on them only did not yield any satisfying
results. The second example was more comprehensive and different solutions were
proposed. at the same time to test their viability. The optimization results are
interesting since adding a cooling capacities in the class rooms did not have a too
negative impact on the overall energy demand over the summer and it improved
occupants’ thermal comfort. The optimization also showed the importance of
improving floor insulation, which is in accordance with remarks made by NTNU
researchers who worked on the building. Likewise, it validated the general agreément
that the exhaust tower ought to be increased to help natural ventilation, and thus, the

energy performance of the building.
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CONCLUSION
6. REMARKS, TEACHINGS,

AND RECOMMENDATIONS FOR FURTHER WORK

6.1. Remarks on Building Optimization
The literature review preparatory to this study showed there has been confusion
between ‘improvement’ and the field of optimization for a long time within the
building community. Yet, much has been done over the past decades and various
optimization techniques were successfully applied to buildings. GAs have been
extensively studied and have proven to perform well at solving building optimization
problems. GAs’ only flaw is that they require a significant number of simulations to
find a near-optimal solution. As a result, building optimization studies with GAs
have used fairly simple objective functions only. To this day, very few studies dealt
with comprehensive objective functions encompassing aspects as diverse as energy
demand, t_hennal comfort, and visual comfort for example, mainly because of the
computational challenge this would pose. However, optimizing for a single objective
function only may result in poorly integrated buildings. As a matter of fact, different
aspects of a building are oﬁen competing such as energy ﬁsage and thermal comfort.
From this stemmed the idea of using an ANN tb feplace the building simulation
program, and thus, alleviate thé cdmputational burden. Resorting to an ANN enables
to optimize for more complex objective functions using evolutionary algorithms such

as GAs.
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6.2. Conclusions on the Present Work

The method proposed was tested with a set of examples to different extents. It was
first successfully tested on a small-case example: a four-room portion of an office
building in Ottawa. The ANN performed well with prediction errors below 5%
compared to ESP-r. The GA found a near‘optimal solution yielding a 1% to 4%
increase in thermal comfort, 12% reduction in the heating load, and 4% in the cooling
load. For the second set of examples, a full building was used: a school located in
Norway. More design parameters were added to test the limits of the method. As
well, visual comfort was added to the objective function on top of energy and thermal
comfort. More caseé were required to train the ANN but with sufficient training it
performed well with average prediction errors below 5% except for one aspect: the
cooling demand for which the average prediction error was 6.5%. The Mediaa
School case proved much harder to voptimi'ze; it was indeed designed to be a high-
performance building using natural ventilation and providing optimum indoor air
quality. It was e);tensively studied by NTNU researchers within the frame of the
International Energy Agency’s research programs. Therefore, it was hard to improve,
whence the mitigated optimization results.

The study showed that ANNs can faithfully represent very complex functions to

assess the performance of a building in terms of energy, thermal comfort, and visual

comfort. Besides, it was shown that using an ANN embedded within a GA was

feasible and the process is fairly straightforward with Matlab. It would thus be easy

to use for any designer with minimum knowledge in programming, which was one of
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the main concerns of this work: to propose a methodology easy to implement with
accessible tools.

On the other hand, the method also showed its limits, namely the number of inputs
(design paraméters) versus the number of outputs (aggregates of the objective
function). Likewise, the two times the number of inputs rule of thumb does not hold
for complex cases: the more complex the objective function, the more samples are
required for the ANN trdaining. The empirical relation between the number of inputs
and the number of simulation cases for the sarﬁpling method should perhaps take into

account the number of outputs.

6.3. Recommendations for the Future — Building Optimization

It seems essential to study the optimal number of sample cases to train the ANN as a
function of the complexity of the outputs, i.e. the functions to approximate. The
relation does seem to hold when only energy equations (thermal and mass flow) are
taken into account, as in our first example. There were ten inputs for six outputs. 35
cases were used to train the ANN and 15 to test it.

The introduction of lighting equations requires a much greater number of samples to
train and validate the ANN, as shown in the second example. With three inputs and
15 outputs, 200 cases were required to train the ANN and 50 to validate it. The last
example comprised 24 inputs and eight outputs. 1,200 cases were used to train the
ANN and 300 to validate it. The average prediction error for this last trained ANN
was below 5% for seven of the eight outputs but for one case with a 6.5% average

error. Such great numbers require a significant amount of computational time, even
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with an automated process. It is therefore essential to have a precise idea of the
number of cases necessary to the ANN training and validation in order to avoid losing
time and having to start simulations again with another training pool.

In the case of building simulations, the minimum number of cases to train and
validate an ANN seems to depend not only on the number of inputs, but also on the
number of outputs and possibly on the complexity of the output to calculate.

Other sampling methods might be more appropriate in the case of lighting

simulations.

6.4. Potential of ESP-r

From an ESP-r perspective, it would be interesting to use the sensiﬁvity analysis
module to estimate parameters of interest. This module could also be developed so
that it could generate the ANN training pool in an automated fashion.

There is a need to investigate the lighting simulation capacity within ESP-r once the
tool is made available, and to test the ability of ANNs to approximate these
simulations.

ESP-r works with GenOpt, one of the most promising building optimization tools.
When using population-based optimization algorithms, GenOpt calls the building
simulation programv for fitness evaluation. The use of these potent algorithms with
ESP-r is thus reduced for the moment due to the extreme computation time required,
whence the need to approximate the building simulation program and to exploit its

strengths with an ANN. In that sense, this aspect could possibly be included to
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GenOpt to be able to build a response surface approximation model of a complex

building evaluation function in a first step, and then use it for the optimization search.
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Annex A
Design of Experiment

Small-Case Example — Office Building in Ottawa

Lower Upper
Window | Window | Window | Window | Window | Window | Louver | Louver | Outside | Outside
Case South | South North North East East Angle | Angle Temp Temp
Number | \yidth | Height | Width | Height | Width | Height | South | East | Setpoint | Setpoin
[m] [m] [m] [m] [m] [m] [deg.] | [deg.] [°C] [°C]
1 24682 | 1.79455 26951 1.73185 2.5606 | 1.68055 30 40 10 2
2 24346 | 1.71475 2.5018 | 1.75465 2611 ]| 161785 120 50 11 2
3 25858 | 1.83445 2.4598 | 1.64065 2.527 | 1.85725 40 40 12 2
4 26362 | 1.82875 27118 | 1.78885 2.7874 | 1.82305 30 120 11 2
5 25774 1 1.70905 2.6866 | 1.70335 24346 | 1.80595 80 70 15 2
6 25018 | 1.84015 25522 | 1.85725 2.6194 | 1.72045 120 140 14 2
7 2.653 | 1.76035 2401 | 1.82875 2.3842 | 1.73755 50 120 11 2
8 2.3926 | 1.70335 2.527 | 1.65205 24094 | 1.73185 90 100 14 2.
9 26446 | 1.74895 27874 | 1.86865 27791 1.89715 110 20 13 2
10 2779 | 1.82305 25774 | 1.63495 2737 } 1.77745 140 160 13 2
11 26698 | 1.84585 25102 ] 1.81165 2.7454 | 1.64065. 100 120 12 2
12 25942 | 1.81735 2.3926 | 1.65775 24178 | 1.78315 90 160 13 2i
13 2.7874 | 1.65205 2485 ] 1.79455 2.5774 | 1.86865 120 100 10 21
14 25438 { 1.72045 2.6782 |1 1.80025 25018 } 1.72615 50 150 11 2
15 24766 § 1.77175 24346 | 169195] 2695 1.71475 100 60 14 2
16 25522 | 1.69195 2.6698 | 1.74895 2.7202 | 1.62355 40 150 15 2
17 26866 | 1.74325 24766 | 1.85155 2.6866 | 1.81165 20 90 15 2
18 2.7538 | 1.63495 2.7202 | 1.62925 2.5438 | 1.66345 140 120 12 21
19 26614 | 1.85725 25186 | 1.77175 2.7118 | 1.66915 80 30 13 2.
20 26194 | 1.78315 2.4094 | 1.88005 2.4682 | 1.84015 150 50 13 2
21 24514 | 1.73185 2.7286 | 1.67485 2.7622 | 1.81735 70 70 13 2
22 2569 | 1.73755 2.7706 | 1.68625 26278 | 1.89145 60 150 11 2
23 27118 | 1.66915 24682 | 1.66915 2.653 | 1.67485 70 110 12 2
24 2611} 1.65775 2.6026 } 1.84585] 2.4766 | 1.63495 701 40 14 2
251 . 253541 1.64635 2.7958 | 1.78315 26782 | 1.76605 130 130 12 2
26 24178 | 1.64065 26446 | 1.83445 2.5102 { 1.78885 130 30 12 2
27 2.3842 | 1.80025 2.7538 | 1.88575 2.7958 | 1.74895 70 80 13 2
28 2.6026 | 1.88005 2779 } 1.80595 2569 } 1.79455 140 130 14 2
29 24262 | 1.62925 24178 | 1.89145 25942 | 1.86295 30 90 12} 2
30 2527 | 1.81165 2.7622 | 1.68055 25186 | 1.74325 160 50 15 2:
31 2.7958 | 1.86865 26278 | 1.62355 2.7706 | 1.69195 40 90 13 2
32 2.7622 | 1.62355 2.4514 | 1.70905 2.6446 | 1.76035 110 40 14 2
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331 27202] 1.77745| 25858 | 1.61785] 2.7286 | 1.84585 120 30 11 2
34 26951 1.69765| 26614 | 1.66345| 24934} 1.80025 90 70 10 2
351 24004 | 1.89715| 24262 | 1.71475| 2.7538 ] 1.75465 20 130 12 2:
36 ] 25102] 1.76605 | 25606 | 1.72045| 2.3926 ] 1.82875 140 110 10 2
371 25606 | 1674851 2.3842 | 1.86295| 2.4262} 1.69765 110 140 14 2
38 24011 1.86295 2.653 } 1.76035 | 2.4598 | 1.88005 50 110 13 2
391 249341 1.66345 25691 1.73755| 2.6614 1 1.87435 150 110 14 2
40 24851 1.80595| 25438 | 1.84015] 2.4514| 1.68625 60 70 13 2
41 27286 | 1.88575| 2.7034 | 1.74325 2485 | 1.64635 80 140 14 2
42| 25186 ] 1.68625 2443 | 1.64635 | 2.5858 | 1.77175 60 60 11 2
43| 26278 | 1.85155 2737 1 1.89715| 2.5522 | 1.65205 150 90 11 2
44§ 26782 1.72615| 26194 | 1.77745| 2.6362 | 1.65775 160 60 14 2
451 27454 | 187435 2.6362 | 1.81735 2443 | 1.83445 50 80 11 2
46| 270341 1680551 2.5942} 1.82305| 2.7034 | 1.70905 40 50 10 2
47) 27706 | 1.61785 2611 ] 1.76605 | 25354 | 1.85155 90 140 15 2
48] 24598 ) 1.89145| 2.5354 | 1.87435] 2.6698 | 1.88575 100 80 1 2
49 2443 )| 1.78885 | 2.7454 | 169765 | 2.6026 | 1.70335 130 100 12 2
50 2737 | 1.75465 | 24934 | 1.72615 2.401 | 1.62925 110 20 12 2
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Inputs for the First Large-Scale Example — Mediaa School

Annex B

Design of Experiments

Extract | Extract 35| 0465796 | 0.585588 | 3.961591
Chamber | Chamber | Exhaust 36 | 1.634539 | 1.680809 | 5.028189
Case South Southwest | Tower 37 | 0.754622 0.743796 | 2.012778
Number | Window | Window Height 38 | 1.596294 | 0.559472 | 3.155609
Height | Height 39 | 0525112 | 0680377 | 56775
[m] [m] [m] 40 | 1433154 | 1.076944 | 5.256777

1] 0.694903 | 0.714651 | 4.256061 41| 0.681313 0.49606 | 3.39018
2| 0.499039 | 1.046237 | 4.443211 42| 0837982 | 1.114815 | 5.970975
3| 1.44154 | 0.601498 | 4.695622 43| 0.606378 | 0.648972 | 3533172
4] 145405 1.65967 | 5.750887 44 ] 0632435 | 1.202189 | 2.454673
5] 0.543088 | 1.089361 | 4.11244 45| 1.272578 | 1.699172 | 3.052086
6 | 1.234819 0.68644 | 3.740518 46| 120324 | 0.993803 | 4.36062
710739251 | 1.326071 | 4.781923 47 | 1.211911 | 1.056643 | 3.003751
8 | 1503149 | 1.362879 | 5.208132 48 | 0.980232 | 0.731366 | 3.637085
9| 1.138462 1.33735 | 2.251663 49 | 0557075 1.30359 | 2.073264
10 | 0.840565 | 1.054636 | 4.498902 50 | 0.927924 | 1.391064 | 2.54668
11 ] 0.746959 | 1.451033 | 5.423155 51| 1543322 | 1.168361 | 4.611025
12 | 0.438895 | 1.614707 | 4.949741 52 | 1.474595 | 0.445791 | 2.189655
13 | 1.632976 | 0.694345 | 3.556667 53| 0.715416 | 0.926902 | 3.321251
14 | 1.286096 1.37483 | 5.49781 54 | 1646715 | 0.746582 | 4547525
15| 1.091188 | 1.106923 | 4.563552 55 | 0959372 | 0.655756 | 2.470198
16 | 1.618735| 1.132104 | 4527649 56 | 1.248309 | 1.228013 | 5.560064
17 | 0.593998 | 0.874281 | 2.677329 57 | 0492737 | 1.625006 | 2.951429
18 | 1.136257 | 0.624598 | 5.450187 58 | 0.573877 | 1.325058 | 5.325722
19 | 0.512483 | 1.686402 | 5.40591 59 | 1672068 | 0.630998 | 4.318938
20 | 0.673377 | 0.553342 | 5.637789 60 | 0517447 1.55573 | 5.994725
21 ] 0.624679 ] 1.155232 | 5.766668 61 | 1.300186 0.52009 | 3.491555
22| 0924171 0.697486 | 4.391136 62 | 0.659844 | 0.526003 | 3.189241
23| 0520701 | 1.562806 | 3.223432 63 | 0.883797 | 1.636688 | 4.109352
24| 1.05317 | 1.101813 | 4.541628 64 | 0.863034 0.5443 | 2.622537
25| 1.552719| 1.308123 | 4.767736 65 | 0.818367 | 1.143147 | 3.138275
26 | 0.886622 | 1.312711 | 5.009182 66 | 1.331449| 1.319835 | 5462195
27 | 044533 | 1.224187 | 3.780033 67 | 1.043171 | 0.981398 | 5.379231
28 | 1.44856 | 0.755047 | 2.365938 68| 1.49779 0.43415 | 3.948534
29 | 1601729 | 1.210257 | 3.304078 69 | 1.207919 | 0.621183 | 2.631383
30 | 1.120914 | 1.543302 | 4.834973 70 | 1.125895 | 1.242953 | 3.094645
31| 0828764 | 1.725607 | 2.877043 71 | 0620736 | 0.966046 | 5.928559
32| 0.769273 | 1.488189 | 3.914138 72 | 1625408 | 1.159846 | 2.924072
33| 153961 | 0.474407 | 2.484699 73| 0873913 | 1.608234 | 2.502813
34 | 1.459726 | 1.195079 | 4.426533 74 | 1403452 | 1677829 | 4.404768
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75 | 1.536974 1.275595 | 2.780402 123 | 0.667815| 0.900994 | 2.58512
76 | 1.056779 1.500554 | 3.107442 124 | 1177077 1.445529 | 4.788407
77 | 0.795488 1.601256 | 4.064892 125 | 1.590528 | 0.711571 | 2.371303
78 | 0.458463 1.348479 4.7211 126 | 1.426765 1.6699 | 2.115766
79| 0.731284 0.94238 | 5.722404 127 | 1.253068 | 0.565594 | 3.084101
80 | 0.786149 | 0.598093 | 5.425764 128 | 0.992981 1.574926 | 2.539976
811 0.456634 1.712061 | 2.931013 129 1 0.69728 | 0.811139 | 3.977089
82 1 1.445194 0.911223 | 3.477522 130 [ 0.536633 1.266782 | 2.277211
83 | 1.187576 1.434963 | 5.118048 131 | 0.773267 1.254759 | 4.99713
84 | 1.563595 1.083493 | 3.828767 132 | 0.564174 1.54222 | 5.356998
851 0.707296 | 0.991065 | 2.884195 133 | 1.515616 1.111355 | 4.683009
86 | 1.040984 1.070641 | 3.855534 134 | 0.853671 0.890477 | 4.645687
87 | 1.239912 1.044813 | 4.198461 135 | 0.916923 1.039368 | 2.789625
88 | 0.635543 0.639278 | 5.591984 136 | 1.034089 1.030476 | 4.744415
89 | 1.268386 | 0.898326 | 3.433657 137 | 1.342325 | 0.937461 | 5.48473
90 | 0.595619 1.009818 | 3.760116 138 | 1.188355 0.763681 | 2.963195
91 | 1.471964 1.412095 | 5.899461 139 | 1.487253 0.920159 | 3.986965
92 0.99819 1.68906 | 4.591113 140 | 1.387855 1.61619 | 3.469393
93 | 0.804474 0.836234 | 5.549568 141 | 1.000743 | 0.930957 | 3.509619
94 | 0.42425 0.489905 | 5.800516 142 | 0.548348 1.281284 | 5.846532
95 | 1.507497 | 0.958249 | 3.540141 143 | 1.525081 0.501555 | 2.990447
96| 0.81314 1.418566 | 2.565613 144 | 1.130036 1.239182 | 4.248606
97 | 1.324027 | 0.787939 | 5.044371 145 | 1.295695 1.595216 | 4.30273
98 | 0.798701 0.921694 | 4.343741 146 | 0.654853 | 1.248905 | 3.014585
99 | 1.385759 1.58272 | 2.131713 147 | 1.076857 1.549175 | 2.6562122
100 | 1.015164 1.462706 | 4.448693 148 | 0436125 | 1.259518 | 3.212959
101 | 1.074463 | 0.873156 | 5.915449 149 | 1.554278 | 0.440354 | 2.048059
102 | 1.365627 | 0.799313 | 5.961418 150 | 1.650546 1.468542 | 3.339495
103 | 0.482461 1.06453 | 5.284478 151 | 1.062964 | 0.534634 | 4.899639
104 | 0.902941 1.199887 | 2.669092 152 | 1.029368 1.394966 | 4.161849
105 | 0.50441 0.523808 | 5.512624 153 | 1.167303 | 0.672325 | 2.434779
106 | 1.143235 1.342881 | 5.188811 154 | 0.976843 1.144337 | 5.274586
107 | 1.496491 1.420702 | 4.991125 155 | 0.486671 1.644307 | 5.621518
108 | 1.663753 1.430282 i 5.601394 156 | 1.325391 1.218753 | 4.82959
109 | 1.107025 | 0.884355 | 5.14397 157 | 0.852329 1.485398 | 5.784326
110 | 1.020976 | 0.592038 | 2.228966 158 | 0.617564 1.007831 | 2.704661
111 | 1.170791 0.801361 | 4.974726 159 | 0.640548 0.8619 | 2.175925
112 | 1.688731 1.479122 | 5.304879 160 | 1.346011 1.406613 | 5.233057
113 | 0.577974 0.831771 | 5.818196 161 | 0.661395 | 0.579165 | 2.100816
114 | 1.28035 0.455917 | 3.621278 162 | 1.262473 |* 1.126726 | 3.696279
115 | 0.450762 | 0.774511 | 2.046636 163 | 0.943828 1.212516 | 4.219779
116 | 1.665115 0971978 | 3.58842 164 1.48406 1.491853 | 2.346336
117 | 1.158231 1.183598 | 3.895228 165 | 1.255086 | 0.606116 | 3.031547
118 | 1.655632 1.705418 | 2.602407 166 | 1.465997 1.28471 | 2.803267
119 | 1.376288 0.95354 | 5.839785 167 | 1.418843 1.715322 | 3.25705
120 | 1.114555 0.79264 i 4.912364 168 | 0.678084 1.368167 | 4.016989
121 | 1.572963 1.444131 | 3.130743 169 | 1.083805 | 0.725248 | 4.130728
122 | 1.151799 | 0.664032 | 2.391673 170 | 1.276299 | 0.750432 | 3.234273
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171 | 0.583059 1.456692 | 3.649336 219 | 1.683165 0.488938 | 3.823573
172 ] 1.009259 | 0.458594 | 4.93405 220 | 1.01828 0.998524 | 3.351833
173 | 1.363956 1.569483 | 5.688597 221} 0.825406 0.655583 | 2.419799
174 | 0.93108 1.024307 | 2.818997 222 | 1.217032 0.617955 | 4.871768
175 | 1.51858 | 0.571841 | 5.086206 223 | 0.600628 0.949546 | 2.844302
176 | 0.98691 0.689499 | 3.714698 224 | 1.180138 1.17407 | 2.742627
177 | 1.574229 1.634988 | 3.803461 225 | 1.229174 1.117724 | 2.028088
178 | 1.60483 0.46625 | 3.392918 226 | 1.676561 | 0.546937 | 2.088176
179 | 1.218686 1.381815 | 4.176042 227 | 0.844969 0.816149 | 3.062049
180 | 0.473284 1.095934 | 4.374342 228 | 0.75071 1.176151 | 4.284124
181 | 0.792605 1.3354065 | 2.215763 229 | 0.701599 1.233444 | 2.198911
182 | 0.42993 1.398567 | 4.32635 230 | 1.352205 0.613982 | 2.307832
183 | 1.372475| 0.868212 | 4.409671 231 | 1.098316 1.534206 | 5.227522
184 | 1.643809 | 0.766187 | 5.868654 232 0.7347 1.187585 | 5.069542
185 | 0.778913 0.849816 | 2.850892 233 | 0.724946 1.38742 [ 3.93346
186 1.3122 1.588417 | 4.035002 234 | 1.400958 1.470541 | 3.862902
187 | 0.914247 | 0.974349 | 4.473798 235 | 0.587509 0.572794 | 2.523277
188 | 1.480895 | 0.854943 | 2.901047 236 | 1.52951 0.703152 | 5.879787
189 | 16128591 1.511834 | 2.256915 237 | 1.338488 0.883938 | 5.657085
190 | 0.904699 | 0.449758 | 5.364694 238 | 0.812074 0.905028 | 5.941933
191 | 0.891622 1.298538 | 2.328134 239 | 1.291567 0.735389 | 3.615155
192 | 1.623847 | 0.511105 | 5.569335 240 | 1.358556 1.357739 | 3.671801
193 | 0.718674 1.516447 | 3.360735 241 | 0.948642 0.469451 | 5.178796
194 | 0.871962 1.666851 | 3.691783 242 | 0.471064 1.138074 | 2.303874
195 | 0.898851 0.509891 | 4.662051 243 1 1.19453 0.537613 | 5.163961
196 | 1.070836 1.591372 | 3.448281 244 | 1.153381 1.149869 | 4.095673
197 | 0.951597 1.023614 | 4.158422 245 | 0.567756 1.567911 | 4.895322
198 | 1.227519 | 0.844903 | 4.238085 246 | 0.96739 1.073805 | 5.521917
199 | 1.393285 1.529197 | 4.806708 247 § 0.614653 1.520094 | 2.699852
200 | 0.688532 1.015029 | 5.735467 248 | 0.863914 0.782602 | 5.335228
201 | 0.530018 | 0.778106 | 2.754447 249 1 1.093118 1.696131. [ 2.150542
202 | 1.585199 1.502273 | 3.175303 250 | 0.937042 1.354999 | 3.414585
203 | 1.561524 0.641974 | 2.724652
204 | 0.55275 1.427083 | 2.406666
205 | 0.767187 1.291268 | 3.271601
206 | 0.648689 | 0.821654 | 3.872648
207 | 1.104489 1.65237 | 5.711867
208 | 1.309431' | 0.480524 | 4.598074
209 | 0.963582 1.723975 | 4.060064
210 | 1.317558 1.626895 | 3.745106
211 | 0.758324 1.650999 | 4.848721
212 | 0.495889 | 0.826027 | 3.280346
213 | 1.410805 1.526977 | 4.713042
214 | 1.047124 0.839589 | 3.581029
215 | 1.424039 0.71854 | 4.001635
216 | 1.582833 | 0.985726 | 5.103242
217 |  1.41489 1.27287 | 5.133344
218 | 0.974807 0.666662 | 4.63822
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Design of Experiments

Annex C

Outputs for the First Large-scale Example — Mediaa School

Case TCnwest | TCneast | Tcsouth | Hhwest Hcor Hneast | Hsouth
number [%] [%] [%] [kWhr] | [kWhr] | [kWhr] | [kWhr]
1 24.09 28.12 29.74 | 150.05 415 | 24241 110.79
2 23.27 27.3 28.79 1 142.71 3.86| 233.65| 107.51
3 22.26 25.91 28.01 132.59 3.35 224.8 104.6
4 17.62 20.9 23921 111.67 2.37 ] 195.56 94.22
S 22.87 26.8 28.46 1 139.41 3.63] 23146} 107.79
6 22.39 26.49 28.12 135.7 359| 227.06] 106.04
7 21.31 24.56 26.9| 126.94 3.06 218.21 102.77
8 18.67 2212 2481 116.28 2551 200.76 96.22
9 20.02 232 25.88 1 121.27 2.81 | 208.93 98.27
Case Hwc_east | Hwc_c | Hwc_west | Hdist
number [kWhr] [kWhr] [kWhr] [kWhr]
1 11046 | 106.99 117.01 | 216942
2 108.97 | 10541 115.21 | 2145.07
3 107.26 | 103.55 113.07 | 2123.26
41 100.15] 9659 105.07 | 2052.76
5 108.43 | 104.77 114.48 | 2134.61
6 107.81 | 104.16 113.76 | 2123.04
7 105.6 101.8 111.02 | 2113.46
8 101.86 98.15 106.75 | 2079.69
9 103.9} 100.11 108.99 | 2077.07
Case DFnw_01 | DFnw_02 | DFne_01 | DFne_02
number [%] [%]) [%] [%])
1115520416 1.27144 | 0.4085028 | 1.9581672
211.3152719 | 1.1044296 | 0.4872119 2.06534
3124211827 | 1.7426478 | 0.3831163 | 1.9245827
4 124223054 | 1.7344268 | 0.5997282 | 2.1986784
51 1.3889991 | 1.1470623 | 0.5024035 | 2.0736576
6122178812 | 1.6375527 | 0.410565 | 1.9478381
71 1.6105816 | 1.3012833 | 0.5496077 | 2.1177446
8124793056 | 1.787405 | 0.5506164 | 2.1368186
9121087194 | 1.5689652 | 0.5498311 | 2.124089
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Inputs for the Second Large-scale Example — Mediaa School

Annex D

Design of Experiments

Extract Chamber E.I).(:;z‘:’t Class Northeast Class Northwest
Window Window Window | Window | Window | Window
Southwest | South Height - - - -
Height Height Length Height | Length | Height
[m] [m] [m] fm] m] [m] [m]
1.70 1.15 4.00 4.18 1.50 8.59 1.21
0.92 1.46 2.98 499 1.49 10.06 0.99
1.05 1.54 2.67 3.06 1.37 10.62 1.01
1.07 1.58 5.53 3.70 1.24 15.99 1.18
1.24 1.59 4.19 3.37 1.58 11.70 1.28
1.29 1.01 4.74 3.06 1.04 13.32 1.1
1.00 1.05 4.88 4.44 1.29 15.85 1.03
1.13 1.34 542 474 1.25 14.15 1.18
157 0.94 5.43 3.48 0.93 13.48 1.54
140 | 1.52 452 3.46 1.52 16.13 1.61
1.19 1.08 5.50 276 0.94 1543 1.43
Class Class Class
Class South Northeast | Northwest |  South
Wé’;’f‘” WS"SSW V\g{}g clw WS"‘}SSW Insplation Insylation Insylation
Length Height Length Height Thickness | Thickness | Thickness
im} [m] [m] [m] fcm] fcm] fcm]
10.03 0.94 13.39 1.19 15.00 5.00 15.00
6.89 1.22 12.26 1.35 10.00 15.00 10.00
7.24 1.23 15.05 1.53 15.00 5.00 10.00
7.55 1.22 13.59 0.89 5.00 5.00 10.00
8.38 1.52 12.22 1.08 15.00 15.00 5.00
11.95 1.37 11.50 1.11 10.00 5.00 5.00
8.04 1.57 14.80 1.01 10.00 15.00 5.00
11.15 1.48 14.94 1.49 10.00 5.00 15.00
9.38 1.33 12.90 1.55 10.00 5.00 15.00
9.51 1.36 14.17 1.53 15.00 5.00 15.00
7.63 1.68 12.59 0.92 10.00 5001 15.00
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Class Northeast Class Northwest Class South
Cooling Temp. Cooling | Temp. | Cooling | Temp.
Capacity | Setpoint | Capacity | Setpoint | Capacity | Setpoint

[kw] [°C] [kw] [’Cl [kw] [°C
2,859.83 2786 722.59 28.60 | 2,140.85 29.93
2,654.89 26.67 | 346.93 28.32 | 2,286.99 25.74

185.68 2918 | 759.38 2826 | 836.93 26.67
2,289.09 25.17 | 1,315.26 26.07 | 3,696.31 27.92
2,269.00 26.12 | 944.42 27.03 | 4,683.07 26.07

427.73 26.98 | 686.79 27.98 | 2,148.74 28.37
1,604.67 29.23 | 728.77 25.12 | 1,238.33 28.62
2,5689.28 29.26 | 2,104.78 28.35 | 1,330.53 27.63
2,640.54 27.15 ] 1,912.52 25.27 { 1,908.37 29.87
1,504.24 26.30 | 1,752.62 29.80 | -307.90 26.66

401.87 29.18 | 1,460.15 28.50 | 2,906.82 26.24

Corridor Distribution Duct
Cooling Temp. Cooling | Temp.
Capacity | Setpoint | Capacity | Setpoint

[kw] [°Cl [kw] Y]

820.30 2846 | 748.19 29.95

368.73 25.39 | 4,728.74 27.04

804.51 28.88 | 584.35 28.97

719.22 29.79 | 4,721.54 25.57

95.36 29.46 | 2,895.31 25.89

529.60 29.36 | 3,388.48 26.38

711.67 28.27 | 3,435.32 27.69

235.31 27.44 | 1,676.98 26.48

4.93 28.61 | 4,958.94 28.99

944.62 26.31 ] 3,713.40 25.63

846.65 26.88 | 2,232.07 25.32
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Annex E

Design of Experiments

QOutputs for the Second Large-scale Example — Mediaa School

TCnwest | TCneast | TCsouth Htot Ctot DFnw Dfne DFs

(%] [%] [%] [kWh] | [kWh] [%] [7%]) [%]
59.35 61.04 59.32 7,516 -364 1.75 0.26 0.57
60.54 65.45 65.79 7,875 -1,448 1.20 0.29 0.36
60.81 | 62.80 60.94 7,679 -385 1.34 0.29 0.62
63.92 68.46 64.63 8,080 -1,502 1.56 0.30 0.42
58.77 64.46 66.46 7,778 -1,775 1.56 0.30 0.52
60.33 63.65 61.96 7,852 -351 1.64 0.24 0.89
60.33 63.96 62.67 7,776 -649 1.43 0.25 0.46
59.04 62.64 57.66 7,589 -488 1.56 0.28 0.95
63.96 63.55 59.18 7,623 -1,273 1.96 0.23 0.62
56.54 61.72 57.89 7,462 -800 1.99 0.29 0.68
59.59 64.23 62.84 7,811 -1,020 1.73 0.24 0.44
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Annex F
Verification of the GA Optimization Results with a GPS Algorithm

Second Large-Scale Example

Performance Improvement
Factor {%]

Energy -1.83%
Consumption

Thermal Comfort 7.74%
Visual Comfort -1.61%

Original | Near-optimal | Global

Zone Variables .
vector solution change

| Exhaust Tower _|Height | __200] ___600] +

Window — Leh

Class Northwest Wind .

Class Northeast | Insulation Thickness L 005] o010] + ]
Class South Insulation Thickness - 005]  o10f + |

Cooling Capacity 3,000
Temperature Setpoint 25.00 25.00

Class Northwest

Cooling Capacity
Temperature Setpoint

Corridor
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Annex G
Original Performance vs Optimization Search Solution

First Large-scale Example

' Result of the
Optimization
Search

Thermal Comfort Index_S

Original
Performance

Daylight Factor NW #2

Daylight Factor NE #2 2.2%

8 Thermal Comfort AIndex is here the cumulative frequency of time with a PPD less than 20%
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Annex H
Convergence of the GA

First Large-scale Example

*

*

Best fitness
Mean fitness
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Original Performance vs Optimization Search Solution

Annex I

Second Large-scale Example

Original
Performance

Result of the
Optimization
Search

? Thermal Comfort Index is here the cumulative frequency of time with a PPD less than 20%
19 Daylight Factor Index is here defined as the average of daylight factors taken at two different

locations in the room.
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