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Abstract
Hair Modeling and Rendering Using Ray-Tracing on GPU
Nasim Sedaghat

Realistic human hair simulation, especially in real-time, is one the most
challenging problems in Computer Graphics due to the unique nature of hair
strands. The major obstacle is the large number of hairs and rather small
diameter of individual hair strands. Specifically, we are dealing with four
problems in hair simulation: modeling, rendering, collision detection, and
animation. In this thesis, we focus our studies on hair modeling and hair
rendering.

For modeling hair, we based our algorithm on key strand hair modeling where
hairs are considered as wisps of similar hairs with one key strand per wisp. We
added various parameters to this method to achieve more realistically-looking
hair. Also, we introduced a new technique to produce short human hairstyles
easily.

We proposed a new 3D geometric object called Continual Cylinders to represent
hairs in 3D space based on the fact that the cross section of hairs can be
approximated by ovals. Simulating hair strands with this rather simple geometric
object helps us generate realistic hairstyles without affecting running time.

Rendering a sufficient number of individual hairs to convey realism in real-time is
a very hard task in Computer Graphics. To be able to do this we rendered hair
using GPU in this thesis and we successfully rendered about 10,000 hairs in real-
time. Moreover, we used the ray tracing method, along with GPU, which is a
time-consuming rendering technique that is mostly used to produce very high
quality images. Here as well, we introduced and used various methods to
achieve realism such as hairs self-shadowing, hairs fineness, slightly different
hairs color between strands and within a strand itself.
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Chapter 1- Introduction 1

Chapteri. INTRODUCTION

1.1 Human Hair

Hair is one of the most important factors of a human’s first impression and ones
overall appearance. The same person can appear unexpectedly different with
different hairstyles. Strictly speaking, each person has a unique hairstyle and not
only one, but a lot of them during the life. People treat their hair in various ways
such as: washing, combing, cutting, using hair products, styling, etc. Hair plays
an important role in almost everybody’s life.

Research [Rob00] estimates that, on average, a human’s scalp contains about
100,000 hair strands. On the other hand, the width of each hair strand is less
than 200 micrometers. Therefore, we are dealing with a large number of hair
strands and a rather small diameter for each individual strand. The nature of hair
is complex and unique as you can see in Figure 1-1; the surface of strands of
hair is not smooth. The exact physical properties of hair or the true nature of
hairs are hard to model. Also, everybody has different hair types.

There are generally four major types of human head hair: fine, medium, coarse
and wiry. Hair can also be thin, medium or thick and it can be from very straight
to extremely curly. The natural color of hair can be blonde, black, brown or red.
The diameter of hairs can vary from 17 micrometers to 181 micrometers. The
cross section of an individual hair strand can also vary from oval for very curly
hairs to circular for straight hairs [Rob00].
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Figure 1-1: Microscopic view of a single hair strand

There is a micrograph of a nanowire curled into a loop in front of a strand of human
hair. The nanowire is about 50 nanometers wide [To03].

1.2 Purposes of hair simulation

Hair needs to be represented for many simulation purposes such as, for
example, a stunt-double in movies, in virtual reality environments, computer
games, or animations. Each simulation has specific requirements in terms of how
realistic the hair looks and how quickly it is rendered.

Sometimes in these simulations, we need realistic hair simulation that need not
necessarily be done in real-time. Instead, we are able to render hairs offline
using an essentially unlimited amount of computer power. For example, in a
movie, a stunt-doubles hair has to be as similar as possible to the real actor’s
hair, yet, we have practically no limit on rendering time.
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In some other simulations, it may be necessary to render hairs in real-time but
the result need not necessarily be realistic. For example in computer games,
every scene need to be rendered in less than 1/15 of a second, yet, the hair
models only need to be good-looking not necessarily realistic.

In computer animations on the other hand, we may need realistic hair or semi-
realistic hair or even non-realistic hair. Also, we have no limit on rendering time
and animations are usually rendered offline. Today high quality and heavily
detailed animations take a large amount of rendering time. For example, each
frame! of the movie Ratatouille took an average of six hours on a 2.66 GHz
processor to render. Overall, it took 1532 CPU-years to render the whole movie.
Of course rendering it with only one CPU was impossible (it would take 1532
years!); therefore, about 3200 processors has been used. In Appendix A you can
find rendering time of some famous animations with more details.

Finally, there are situations where we need realistic hair that can be rendered in
real-time. For example, in a virtual barber shop simulation?, we need virtual
hair that can react realistically to the barber’s actions (although we may not
actually need realistic-looking hair). Such situations require a combination of the
most difficult aspects of hair simulation: realism and fast rendering time. Having
both at the same time with today’s technology is quite challenging because we
need to simulate enough amount of fine hair considering all environmental
influences on hair which consequently require more rendering time. In the
future, we may find it interesting to have a program that shows our barber’s
customers how exactly they will look like with particular hairstyles while
reproducing hairs with exactly the same properties as that of the customers. This
of course needs realism and real-time hair simulation at the same time.

' A frame is a single image of a film or any motion picture. More than 15 frames per second are required to
consider a set of frames as a continuous film.
? Virtual barber shop is an environment that barbers can be trained before start on working in real world.
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Representing hair virtually plays an important role in the field of human
simulation as it is one of the most important factors of a human’s look. Before
recently, even in animations hair strands were not simulated individually and
characters’ heads were either covered by hats or consisted of a number of
patches of the same color or texture; for instance, 7oy Story 2 (1999) treated
hair the same as all the other objects of the scene. Then by 2001 producers of
animations focused on hair more; for example, Monster Inc. was the first
animation that succeeded to render millions of individual hair strands (Sullivan,
the main character of the movie, had 4 million hairs in some of the scenes). Also
other movies like Shrek (2001) or The Incredibles (2004) decided not to overlook
the role of hairs in designing an animation’s characters. And recently, animations
like Beowulf (2007) and Ratatouille (2007) made it hard for future animation
producers to ignore the importance of hair in human simulation (see Figure 1-2-
left).

Video games are yet another type of situation because of the fact that we need
real-time simulation for games. Recently, games quality become remarkably high
as you can see in Figure 1-2-right, still, hairs are difficult to simulate in real-time

and this is one of the recent challenge in the gaming industry.

Figure 1-2 : Hair simulation; Games vs. Animations
Left) a snapshot of the movie Beowulf with realistic-looking hair [IMO08]
Right) a snapshot of the game Assassin’s Creed (2008) where hairs are not represented
individually [Ubi08].
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1.3 Difficulties of hair simulation

The unique nature of hair makes it difficult to model and time-consuming to
render. The main reasons are:

1. We are dealing with large number of hairs. To claim we can simulate
realistic hair, we need to render about 100,000 hair strands one by one. To see
the real difficulty of the problem, let us suppose that each individual hair strand
consists of 200 points. This means that we should render 20 million points
(regardless of all the equations for realism and motion). Using OpenGL and C++,
rendering 20 million points with a 2.99 GHz CPU would take about one minute
per frame.

2. Thickness of each hair strand is relatively very small. In a normal viewing
condition, the thickness of an individual hair strand is less than the size of a
pixel, the basic unit of the composition of an image on a television screen,
computer monitor, or similar display, in a frame. When graphically representing a
scene, we usually deal with rendering polygons which contain a number of pixels
of the same color whereas for hair strands not only is it hard to represent them
by polygons but also most of the times their thickness is less than the size of the
pixel. Therefore, it is not a straightforward procedure to simulate hairs.

3. Hairstyles are uncountable. Hairstyles can vary from person to person and
from time to time. Also, people change the overall shape of their hair in many
ways such as combing, using hair products, or coloring (partially or completely).
A single hairstyle can vary too; it can be wet or dry, clean or dirty, electrolyzed,
orderly or disheveled, or a mixture of any of these. All of these parameters affect

the hair model.

4, Another problem is hair texture. As we mentioned in previous section hair
types varies from person to person. Also, the surface of an individual hair strand
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is not smooth which make light and shadow computations tough. It is also hard
to mimic the texture that a hair really has (see Figure 1-1).

1.4 Issues i ir simulation

Basically we are dealing with four issues for representing hair as a 3D object:
Hair Modeling, Hair Rendering, Collision Detection and Animation.

1.4.1 Hair Modeling

3D modeling is the procedure of representing any 3D object as a wireframe
object or defining a 3D object mathematically. Here, hair modeling means to
define a 3D model for hairs and this involves geometry, distribution, density,
orientation of each hair strand, and hairstyle.

Geometry: We need to represent strands as geometric objects. The
cross section of hair strands can be represented as an oval. The strand
itself can be represented as a curve. Yet, since hair strands are so thin
that usually it is hard for viewer to distinguish them individually, simple
geometric objects such as poly-lines, splines, polygons, or even
points are widely used to represent hairs.

Distribution: There are thousands of hair stands that should be attached
to the scalp of the head, and the distribution of hairs along scalp is not
uniform. Therefore, the hair model should include position of each
individual hair on the scalp of the head. Although it may at first seem
unimportant due to large number of hair strands, positioning hairs is
important for at least one reason -- it is not even straightforward to have
a uniform distribution because the surface of the scalp is not a simple
geometric object but usually is represented by a mesh of triangles.
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Density: Not only the number of hairs can vary from head to head, but
also the density of hairs in one head can vary from place to place of the
scalp.

Orientation of each hair strands: Hair strands are free to move,
therefore, every one of them can have a particular orientation at any time.
No matter what geometric object we choose to represent hair, it should
be able to handle the orientation problem.

Hairstyle: Finally and most importantly, we should be able to produce
different hairstyles (ideally all potential hairstyles).

1.4.2 Hair Rendering

Rendering is the procedure of assigning a color to each pixel of the screen. Due
to the large number of hair strands, there is a huge trade-off between time and
quality in the hair rendering area. Unlike most of the Computer Graphics
problems, triangulation and other mesh-based techniques do not work here (as
we mentioned before, the thickness of hair strand is typically less than the size
of a pixel); therefore, rendering likewise is not a straightforward procedure. Hair
rendering involves color, light, shadow, blending, etc:

Color: Not only does everybody have different hair colors and every
individual hair strand has a color of its own, but also the color may vary
along a single hair strand itself.

Light: Lighting affects each and every single hair strand. Although
without any special illumination calculations i.e. only considering solid
color of hair strands, we may still produce recognizable (Figure 1-3) hair,
light plays a crucial role in rendering realistic hair.
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Figure 1-3: Rendering hair strands
without using illumination models
Hairs are rendered as 3D vertices with a

solid color

Figure 1-4: Self shadowing comparison
up) without down) with [BMCO5]

Shadows: Like other Computer Graphics problems, here also
environmental shadowing is important. But what is more important than
that in hair simulation is self-shadowing. As you can see in Figure 1-4,
self-shadowing affects realism greatly and therefore cannot be ignored.

Blending: As mentioned before, the thickness of a human hair under
normal viewing conditions is less than the size of a pixel. The best solution
proposed so far is to use pixel blending methods. Pixel blending is a
simple method that combines the color of the current pixel with the color
of the very next object behind current object using which we can produce
very thin and fine-looking hair strands.

Different rendering techniques can be employed to assign a color to each pixel of
the frame. Although this can be done with a pixel by pixel approach, other
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common techniques are usually used, like rasterisation, ray tracing, and
radiosity:

Rasterisation: Normally, the graphical scene consists of some number of
polygons defined by vertices. The simple task of transforming® these
vertices in 3D world into the corresponding 2D pixels of the screen is
called rasterisation. The color of each pixel is then decided with respect to
the corresponding polygon.

Radiosity: Here, every part of the surface of every polygon is considered
as a light source. Therefore, all the surfaces can emit energy and affect
the color of other surfaces. It is easy to see that with radiosity rendering
technique, we will need more than one pass to render all the objects
(refer to Background and Literature Review for more information).

Ray Tracing: Here, the light path is treated as a straight line partially
passing through objects such that one part of the light ray reflects off the
surface of the object and part of it transmits through the object. Light will
be tracked from the collision point over and over again as it intersects
new objects until desired quality of illumination is reached.

The hair rendering phase very much depends on the hair modeling phase. For
example Physics-based rendering depends on the physical object used to
represent hair; all properties such as light scattering, reflection, color, etc are
defined relatively. In image-based rendering the recovered hair strand are
points that can be considered as simple as connected lines or as complex as
Generalized Cylinder®. Subsequently, using images from different viewing
conditions would let us capture overall lighting and highlights. Unlike image-

3 Mapping functions such as rotations, reflections, and translations.
4 This is of course just in theory. We can not treat recovered strands from images as a 3D geometric object
yet; they are so thin if distinguishable.
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based and physics-based approaches, geometry-based rendering totally depends
on the underlying method of geometric-modeling.

1.4.3 Hair Animation

Hair animation is the dynamic motion of hair. Hair animation is the most
important reason that we model hair. Therefore, the underlying hair model
should be able to be employed for different hair movements. A Physics-based
approach is not so common in hair animation area because of the complexity of
hair strands. The trade-off between time and quality is provoked here as well
due to the complexity of the hair dynamics.

1.4.4 Collision Detection

Collision detection entails hair-hair interactions and collisions between hairs and
other objects of the scene. Hair-hair interactions problem is very important in
hair dynamics. This is undoubtedly the hardest problem in the area of hair
modeling and yet to be an area of significant research progress.

1.5 Real-time rendering with GPU

Graphics Processing Unit or GPU is a special purpose microprocessor that has
been designed to do the complex graphical computations. GPUs have a
parallel structure that makes them so efficient for graphical purposes
especially 3D graphics which is so demandable these days. A GPU can take
the load off the CPU; today’s most time-consuming operation in Computer
Graphics is rendering (Appendix A), thus a GPU is faster than a CPU and can
let CPU do other calculations while it is busy with rendering.

10
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The parallel structure of GPUs makes them a robust tool for real-time
rendering purposes. The only serious disadvantage of GPUs is its limitation
such as size of loops, size of arrays, number of instructions, etc. (for more
information, refer to Appendix B).

Many programs have been made to render fully on GPU instead of the CPU or
GPU-CPU Hybrid.

1.6 Our Contribution

Among the problems discussed in section 1.4, hair modeling and rendering are
the main concerns of this thesis. Potentially, the method that will be introduced
has the ability to implement hair dynamics but the focus is on hair modeling and
rendering areas.

Our method of hair simulation is suited best for video games and other virtual
environments in which real-time hair simulation is @ must whereas quality is as
high as possible.

1.6.1 Hair Modeling

Although in an ideal world a completely correct physical model for hair would
make modeling very easy, most of the methods used today are trying to create
outputs that resemble desired hair shapes using not necessarily a correct
physical model of hairs but a good estimation of reality. Again, ideally we should
be able to represent any kind of hairstyle with our simulation tool. Therefore,
two of the most important areas of research in hair modeling are representing
hairs as geometric objects and ability to model any kind of hairstyles

11
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with out too much effort (practically, it is almost impossible to model every
strand one by one).

Today, the best geometric object for representing hair is the Generalized
Cylinder® whose sweeping-area’s attributes can vary (cross sections can be
estimated by ovals but they are not necessarily the same and should be able to
vary along the hair strand curve). As we will discuss in the forth chapter, an
estimation of the Generalized Cylinder, the Continual Cylinder, is introduced for
the first time in our thesis to represent hairs. We discuss fully why Continual
Cylinders were defined and chosen over other choices such as Generalized
Cylinders, lines, polygons, or points.

The second important factor of a hair model is that a variety of hairstyles should
be possible to model. Our hair model has the ability to model most of the normal
hairstyles and also some of the abnormal ones (like new fashions or wired
innovations!). Users have a very high control over the hairstyle with our hair
model while needing to set only a relatively small number of parameters.

1.6.2 Hair Rendering

Recently, many different approaches have been developed in offline hair
simulation [NT04, CJ*04, CKO05, MI05, WOQO5, BA*06, WBC07]. They are
capable of producing near-realistic and also fancy-looking hair for animations.
There are some real-time methods that can render a reasonable number of hairs
as well [KH00, KHS04, 0Os07]. Real-time hair rendering is a difficult task because
of the huge deal of data; about 10,000 hair strands or reasonable number of
hairs, should be rendered. Note that although we normally have 100,000 hairs,
10,000 hairs look fine as well as you can see in Figure 1-3-left. In both offline
and real-time approaches, realism is a challenging issue and an open problem.

5 Volume made by moving a 2D shape, here can be an oval, along an arbitrary curve.

12
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The goal of this thesis is to model and render hairs in real-time as completely as,
and as realistically as, possible. For achieving these goals we used ray tracing
methods and GPU programming. We use Ray tracing for the sake of realism
and GPU for the sake of efficiency.

Using GPU for rendering makes graphics calculations faster due to the highly
parallel structure of it. Ray tracing method has been used for its good estimation
of reality. The focus is on rendering an adequate number of hair strands as
realistic as possible and for achieving this, ray tracing has been used along with
GPU programming which, to our knowledge, has never been used in the area of
hair simulation.

In this thesis, a simplified version of the key strand method introduced in
chapter3 is used as underlying model for the rendering part. This simplified
version contains most of the important aspects of the introduced model i.e. hair
strands geometry, having wisps ruling by a key strand, and some of the realism
issues. With this version, we succeeded to render about 10,000 hair strands in
real-time i.e. about 15 to 25 frames per second.

1.7 Overview of the thesis

In chapter 2, we provided some background in Computer Graphics and we
reviewed some of the most significant works that have been done in the area of
hair simulation.

Chapter 3 focuses on hair modeling. We introduced our version of key strands-
based hair modeling along with various realism issues and provided the results of
this hair model.

13
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We defined and introduced our geometric object to represent hairs, Continual
Cylinders, in chapter 4. We also provided the reason for this selection especially
over Generalized Cylinders.

Hair rendering procedure is described in the chapter 5; starting with real-time
rendering with GPU. Then we demonstrate the CPU role in our algorithm and
introducing ray tracing on GPU algorithm, and then we applied some realism
issues in our algorithm. We completed this chapter by a discussion about running
time of our algorithm.

Finally, conclusion and future work are discussed in chapter 6.

14
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Chapter2. BACKGROUND AND
LiTERATURE REVIEW

2.1 Computer Gr ics: Modelin Renderin

Recent advances in computer technology have made it possible to bring
Computer Graphics into play and use it as a powerful tool for many purposes in
Art, Science, Engineering, industry, business, advertising, etc. Initially, Computer
Graphics was used as a tool for displaying data graphs and charts to
summarize data such as financial, statistical, scientific, economic, or engineering
data. Another important use of Computer Graphics was, and is, computer-
aided design (CAD). CAD methods are used in the design of various products
such as buildings, automobiles, aircraft, computers, etc. Software packages for
CAD applications provide a multi-window 3D environment for users to be able to
design products as easily and as fast as possible (see Figure 2-1).

Animations and video games have grabbed much attention recently. 3D
Computer Graphics is now widely used in the production of animations and video
games. Also, in film making, unusual or sometimes impossible tasks can be done
using Computer Graphics rather than employing a stunt double especially in
Science Fiction and Action movies [HBO04].

15
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Figure 2-1: CAD
[HBO4]

Apart from the previously mentioned major subfields in Computer Graphics
(modeling, rendering, collision detection, and animation), many other related
subfields interest us such as, 3D representation, viewing, illumination,
shadowing, texture mapping, and alpha mapping. We will take a quick look at
these issues in the next few sections.

2.1.1 3D Modeling

Modeling is the process of representing a 3D object mathematically so that it can
be used later for rendering or CAD. There are various issues that should be
addressed in this process; the representation should well fit the object, it should
be easy to render, it should be easy to create, etc.

16
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The most commonly used 3D object representation is a polygon mesh. Each
object can be defined as accurate as desired by using a set of polygons
estimating its surface. With polygon meshes, not only can any object such as the
human body, furniture, buildings, etc., be estimated, but also any level of detail
is possible (see Figure 2-2). They are also easy to use; a set of polygons with
their normal vector can define any object. Normal vectors are used for
illumination calculations. And finally, polygon meshes are easy to render.

Figure 2-2: 3D modeling with Polygon meshes
[HBO04]

Parametric curves and surfaces are another popular way to represent 3D
objects. Some objects like spheres are hard to represent precisely by polygons
and also we might already have some mathematical formula to represent them.
Parametric curves are defined as p(t) = [x(t), y(t), z(t)] and parametric surfaces
are defined as p(u,v) = [x(u,v), y(u,v), z(u,v)]. They work well with smooth
surfaces and are much more compact than polygon meshes.

17
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An implicit surface representation is when we define an object by a mathematic
formula: F(x,y,z) = 0. Implicit surfaces are the best for ray tracing methods
because of the very easy intersection test between a ray and an implicit surface.
They defined objects clearly and precisely. The only problem which as well
makes this approach the least commonly used one, is that finding F for a given
surface is not always easy. To overcome this we can divide object to other
objects with known F functions but a whole new problems would come into view.

2.1.2 Illumination

A lighting model in Computer Graphics is used to calculate the color of an
illuminated point of an object. Projecting all 3D objects of the scene to the 2D
screen, lighting model defines the color of each pixel of the screen. Any object in
the scene that emits radiant energy is a light source and can affect the final pixel
color. The final color depends on interactions between incident radiant energy
and material of the object which means light source properties and object
properties. An accurate light model is too complicated for today’s technology so
estimations are used. The most popular light model divides light to ambient,
diffuse, and specular light.

Ambient light, that is the same for all the objects, sets a general brightness
level for a scene (like light effect of the sun). We can add an intensity parameter,
ka * I to light calculation of every objects where k, is ambient coefficient
depending on object material properties.

Diffuse reflection for a surface can be estimated by assuming that light is
scattered with equal intensity in all directions independent of the viewing
position. Therefore,

Lair = Kali(N.L)

18
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Where kq is the diffuse reflection coefficient depending on object material
properties, I, is the light intensity of the light source and N.L is cosine between
the normal vector of the point (N) and the vector to the light source (L).

Specular reflection (Figure 2-3) or a highlight can be seen on the shiny surfaces
which is the result of total reflection of light in a concentrated region on the
surface of an object. There is a famous specular light model called the Phong
specular-reflection model which is used widely both because of its good
estimation of reality and simplicity. In the Phong model specular reflection
depends on viewing condition, intensity of light source, and reflection vector:

Ispec = ksI|(V- R)nS

Figure 2-3: Specular light
Left-top has the strongest specularities and bottom-right has the least [So08]

where V is the viewing vector, R is the Reflection vector and ns is a specular
reflection exponent.

19
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Therefore, all together, illumination at a point is determined by:

I=ky * I + kg * II(N.L) + ks *T|(V.R)"s

2.1.3 High-Quality Rendering; Ray Tracing vs. Radiosity

One of the popular method of rendering is Rasterisation in which each pixel of
the 2D screen is normally belongs to let us say a polygon of a 3D object which
the color of this pixel can be correspondingly assigned based on the color of the
polygon and lighting effects. The process of determining this color is called
rasterisation.

But, today’s high-quality rendering is done mainly by using two popular
algorithms: Ray tracing and Radiosity.

Radiosity is an algorithm that simulates diffuse inter-reflection between patches
or small surfaces. It is @ method that traces the energy emitted from light
sources which reflects between objects. Therefore, light emitting is not limited to
light sources and light sources are not estimated by point light sources. Here,
there is no need for ambient light because of the fact that every surface emits
energy (as in reality) -- so we can produce high quality results after enough
number of iterations. The first iteration differentiates all those patches that
receive light directly from light sources. In second pass, these patches are
considered as new light sources. Therefore, after enough steps a high quality
result can be produced.

In comparison, Ray Tracing treats light path as a straight line passing through
object such that one part of it reflects and one part transmits through the object
(again a good estimation of reality). In 1968 Arthur Appel et a/ [Ap68]
introduced the ray casting idea. Ray casting is to shoot rays from the eye, one

20
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per pixel, and find the closest object blocking the path of that ray. Followed by
ray casting idea, Turner Whitted [Wh79] made a very big step in producing high
quality images in 1979, by introducing an illumination method using ray tracing.

In Turner’s algorithm rays are followed even after they hit an object in the
scene. Depending on the material of the object, the ray will divide into refraction,
reflection, or and shadow rays. Reflection and refraction rays are treated the
same but with different origins, directions and intensities. Shadow rays are those
who between their intersection point and their origin there exists another
obstacle. Many high quality images have been produced since the idea of ray
tracing; effects like reflections and shadows are easy to implement and results
are adequately realistic. The only serious disadvantage of ray tracing is that even
if we follow rays for only 3 or 4 hits it will be terribly time-consuming.

The quality of the result depends on number of times a ray is followed after
changing its direction. Ray tracing works very well with specular lights because
of the handling of reflected rays (note that they are calculated in the first pass).

Both Radiosity and Ray Tracing algorithms are time consuming and can only be
used limitedly. A Few passes for Radiosity is acceptable and rays can be followed
few number of times. Both of these models handle shadows easily, whereas
Radiosity is good for diffuse lights and Ray Tracing is good for specular lights.
Also, Radiosity works well for the scenes consisting of a set of polygons while ray
tracing works better with the scenes consisting of other geometric objects.

21



Chapter 2- Background and Literature Review 22

2.2 Hair simulation

The research that have been done in hair simulating can be divided into two
groups: before 1993 and after 1997° Although the importance of early
researches cannot be ignored, most of the progress was made after 1997 due to
the fast growth of computer hardware. Before 1997 hair rendering could not be
done anything near real-time because of the great deal of data and rather poor
technology; even offline hair rendering was so primitive that all of the animations
lacked good hair models. As mentioned before, perhaps the first time that
individual hair strands actually rendered in an animation was 2001 in the
Monsters Inc. animation. Heroes and heroines in early animations had static
hairs and individual hairs were hardly distinguishable. Along with hardware
progression and new methods of hair modeling and rendering, hair has become
a quality factor of today’s animations and increasingly in future video games.

There are 3 different approaches to modeling hair: Physics-based, Image-based,
and Geometry-based [WaB*07].

Physics-based hair modeling is trying to represent hair by an object with
already known physical characteristics such as spring which we have certain
formula for its behavior. In 1992, Anjio et g/ [AUK92] introduced a physics-
based model, using cantilever beams’ to represent strands.

In physics-based methods some parameters are defined for local and global
shape of hair and then the model would determine all the hair strands; Loca/
Parameters such as curliness, waviness, wetness, cleanness and Global

S It might be important to notice this gap in hair simulation area where no research has been done, possibly
because of the fact that not until recently technology could let us worry about objects as fine as hairs.

TA straight beam with a one-sided and fixed support.
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Parameters such as gravity, wind pressure, and other forces that affect hair
shape. Physics-based methods are good for dynamic motion of hair, because
they are able to generate hair model based on a set of parameters that
modifying them with respect to environmental changes would generate a
different model; therefore, dynamic motion of hair can be simulated based on
physical equations rather than manually. They do not need much user effort;
the only user task is to define some sets of parameters. The problem of these
methods is that the output model may not be the exact expected one. This is
mostly because of the fact that the true behavior of hair is hard to be defined by
physical equations and approximations cannot explain this behavior well enough
and as a result user control over the shape of the hair is not high.

Image-based hair modeling is trying to reconstruct hair from different
photographs of different viewports. In image-based hair modeling the problem is
that identifying a single hair strand is very hard and usually impossible, even
with high resolution photographs. In practice, a group of strands rather an
individual strands can be identified. There are few researches in this area, again
both because of the unique nature of hairs and because of the necessity of non-
realistic/cartoon hair models in animations and games. User control and effort
are both low.

Geometry-based hair modeling is widely used in today’s technology.
Geometry-based models provide some tools for the users to design hairs
interactively. Compared with physics-based and geometry-based models, they
give users more control and consequently they need more user effort. So
far, these methods are best in producing high quality and natural/nice looking
hair.

Geometric-based Hair Modeling and Rendering provides some tools for the users
to design hair interactively in which hairs are represented using geometric
objects. Comparing with physics-based and image-based models, they gave
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users more control and therefore more effort. It would be a tedious work if each
and every strand had to be designed one by one. Therefore, various methods
are used to make this easier which will be discussed later in this chapter while
focusing on geometry-based hair modeling because of the variety of hairstyles
that can be rendered with geometry-based methods.

As mentioned before, it is very time-consuming to model 100,000 hair stands
one by one and place 100,000 hair strands on the scalp of a head; therefore,
there should be methods for generalization. There are three major approaches in
geometry-based hair modeling and rendering area; considering hairs as cluster
of hairs, implicit hair modeling, and sketchy hair modeling.

2.3 Cluster Hair Modeling and Rendering

Hairs do not act independent of each other, Adjacent hairs usually form wisps or
clusters [WS89], due to this fact many algorithms consider hairs as cluster of
hairs [BA*06, Bek*03, BMC05, CK05, CS*99, KiN02, WS89, XY01, YX*00, ZWO06].
Obviously, the more clusters we have the more accurate our design will be, yet
this does not mean that modeling each and every hair gives us the best
approach; as in [YCJ02] they modeled each and every hair strands individually
but then strands were pulled together to form wisps. There are three major
approaches in this area: Key Strand methods, Generalized Cylinder methods
and multi-resolution methods.

2.3.1 Key Strand Methods

The idea of these methods is to define some number of strands as key strands
(typically 10) and all the other strands would follow their master strand. By
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following the master strands we mean all properties of an ordinary strand such
as length, orientation, texture, color, curliness, etc., are the same as the master
strand except for its position. Therefore, we will have some number (typically 10)
of wisps containing one master strand and some ordinary strands, such that all
of the strands in a wisp are the same. This method has first introduced by
Watanabe and Suenaga in 1989 [WS89]. Number of wisps, number of hairs in a
wisp, hair length, hair thickness, and hair color were the inputs of their system.
Various hairstyles could be created by changing these parameters, but
parameters for defining wisps and hair strands have to be entered manually.

For hair modeling using key-strand methods four important questions should be
addressed:

—
1

How do we design our key strands?

N
1

How do we select our wisps on the scalp of the head?

(O8]
1

What are the positions (or distributions) of normal strands?

D
1

How should we avoid having unnatural hairs caused by wisps of exactly
same strands?

In 1999, Chen et al/. implemented a system for producing various hairstyles
[CS*99]. They used trigonal prism wisps where trigonal prisms in one wisp
are linked by three 3D B-splines (Figure 2-4-a). They used 2D arrays to define
the distribution of hair strands in a wisp (Figure 2-4-b). Each wisp can have at
most 256 hair strands. Therefore for having 100,000 hairs users should define at
least 390 wisps (which is 3*390 lines).

This would take hours to do; so to overcome this problem, they divide the skull
into eight layers each consists of four “quarter rings” and assume that the shape
of the wisps within the same “quarter rings” is the same, then their system can
generate hairstyles by putting few curves on the skull.
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Figure 2-4: A system of 3D hairstyle synthesis based on the wisp model
a) Trigonal prism wisp model b) The relationship between a wisp and its 2D hair
distribution map [CS*99]

Perhaps hair with the best quality has been produced by Choe and Ko in 2005
[CKO5]. They used a statistical wisp model in which each wisp consists of one
master strand and some number of “member strands” and the shape of a wisp is
a Generalized Cylinder (refer to section 2.3.2).

The geometry of a single strand in their model is based on the fact that hair
strands of a single person resemble each other. For each hairstyle their program
produces a prototype consisting of some number of splines, from which all
different master strands will be produced (see Figure 2-5).

Users need to define the number of wisps (n) and the number of hair strands
(m). The root positions of master strands are distributed evenly over the scalp.
Wisps are formed by Voronoi diagrams and within each wisps m/n number of
root positions for member strands will be defined randomly. A Voronoi diagram is
a partitioning of the space with respect to a set of points such that each cell
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contains one and only one point and all other positions in the cell are closer to
the cell’s main point than any other points [BK*00].
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Figure 2-5: Different master strands produced by one single prototype
The prototype variations (b, ¢, d, €) of the prototype (a) [CKO5]
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Figure 2-6: Parameters of a wisp
Wisps generated by two different (a) length (b) radius (c) fuzziness parameter [CK05]
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The degree of similarity among member strands in a wisp is based on 3
parameters: length distribution, radius, and fuzziness value (see Figure 2-6).

Therefore, member strands are formed from master strands and by applying
these three functions.

Figure 2-7: Hairstyles produced by statistical wisp model
Final row is hairstyles inspired by real one [CK05].

This method is able to produce fairly realistic hair (Figure 2-7), however, not in
real-time. Also, another drawback is that their model lacks the ability to handle
all sorts of hairstyles especially those not having a uniform mode! for overall
shape of the hair partly because of the fact that their wisp size cannot vary and
partly because of the trade-off between user-effort and user-control.
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Another similar method is the method introduced by Zhang et &/ in 2006
[ZWO06]. They also generate hairs based on key-strand method. They used same
triangles that form the scalp of the head, as locations of wisps, in the sense that
users can choose from 1 to as many triangles as they want from the scalp of the
head model to verify the boundaries of wisps. Length and distance Gaussian-
based distributions are two parameters that differentiate member strands of one
wisp so that hairs could appear more realistic. In contrast to Choe and Ko's
method, their method can handle a variety of hairstyles but it lacks realistic hair
rendering.

2.3.2 Generalized Cylinder Methods

Another way of modeling a large number of hairs is to define more than one
level of abstraction; we can define hairs first in cluster level and then add some
details to each cluster to model hair strands. Generalized Cylinder seems to be
reasonable for this matter because each individual hair can be presented by a
Generalized Cylinder.

Generalized Cylinder:

A Generalized Cylinder (GC) is defined by sweeping a 2D shape along a curve
with respect to a scaling function [CAT04]. Scaling function change the size of 2D
shape or the GC’s cross section along the curve or GC's axis (see Figure 2-8).

As you can see in Figure 2-8, GCs seem to be a very close approximation for hair
strands; cross section of hairs can be estimated by ovals (GC's cross section) and
strands themselves can be represented by curve (GC’s axis) and thickness of a
strand decreases along the curve (GC’s scaling function). Yet, it is not easy to
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define each and every hair strand by GCs which bring Yang et a/. [YX*00] to the
idea of “cluster hair modeling using Generalized Cylinder”.

.Tm\\
| — 2 ; (

(a) (b) ()

Cross Section

Figure 2-8: Generalized Cylinder
(a) GC whose cross section is an oval, axis is a curve, and scaling function is 1.
(b) GC whose cross section is an oval, axis is a line, and scaling function varies.
(c) ©GC whose cross section is arbitrary, axis is a curve, and scaling function varies.

Their main consideration was to have a “compact representation” for having
high-quality hairs without defining them explicitly. For this reason, they used
volume density model. Volume density model has first used by Perlin [PH89] to
produce a furry object defined as a soft object. Yang et a/. modified their model
and combined it with Generalized Cylinder [YX*00]. The density values on the
base cross section (Figure 2-9-c) are produced with a pseudo-random function.
The pseudo-random function generates a set of points as centers of hairs (Figure
2-9-a), then the density value of each point or center of hair will be defined by a
Gaussian distribution (Figure 2-9-c). Now, the density value at any point can be
calculated by projecting the point onto the base cross section plane. In other
words, we have a special GC whose sweeping area (cross section) is the base
cross section (with all the dots as centers of hairs). In summary Yang et al/.
represent a cluster of hair by these data sets:

> Axis curve
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» Cross-section-shape curve
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Figure 2-9: Hair modeling with GCs
a) Distribution points on a gird map [YX*00]
b) Base density map [YX*00]
c) Base Cross Section and hairs within a cluster (GC) of hair [YX00]
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They provided a modeling tool based on their cluster hair model which needs
reasonable amount of user effort to design a hairstyle. Their model has seven
modules: cluster drawing and editing, cross-section-shape editing, base-density
map editing, hair color and properties, hair arrangement, and shape preview
(see Figure 2-10).

Figure 2-10: Cluster hair model steps of designing

[YX*00]

2.3.3 Multi-resolution Methods

Multi-resolution hair modeling was introduced by Kim and Neumann in 2002
[KiNO2]. It is another way of cluster hair modeling but perhaps with more details.
A hair model is constructed hierarchically in this method. At the first level of
modeling, we have small number of clusters, some of which will be divided later
to some number of clusters themselves in level two, and we can continue like
this (see Figure 2-11-a).

Clusters are represented by Generalized Cylinders. To place clusters on top of
the scalp users need to select a contour (Figure 2-11-b right), then choose its
location in 2D scalp space (Figure 2-11-b middle), its 3D position will be defined
consequently (Figure 2-11-b left).
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Figure 2-11: Multi-Resolution method
(a) Graphical view of multi-resolution hair modeling[KiN02]
(b) Scalp space and contours[KiN02]

Each parent cluster can be subdivided as many times as users specify to child
clusters. One hair strand should be assigned to the clusters of the highest level
for each root contour. Then strands of hair would be explicitly rendered. Users
can control ajpha values of strands, the number of strands in each cluster and
the number of segments for each strand because they are represented by poly-
lines. There is a tradeoff between performance and quality. The more strands
and/or segments per strands we have, the more rendering time we need.

Alpha Blending, used by [LTT91] for the first time in hair simulation, is a
method to add transparency information to the representation of an object. After
alpha blending, color of points of a surface, points of a polygon, or simply a set
of points will be:
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New Color = o * Old_Color + (1 - a)*Background_Color

Where o, a normalized value between 0 and 1, is the transparency coefficient.
a=1 means the object is opaque and little amount of o correspond to near full
transparent objects.

By presenting a user-friendly tool and a based-on-reality method, Kim and
Neumann provided a model with reasonable amount of user control and effort
which can also generate nice-looking and semi-natural hairstyles. Also, their
model can be used to design almost every hairstyle but it is offline.

2.4 Hair Modeling and Renderin m a Sketch

Modeling hair based on a hand-drawn sketch, is for generating ron-
photorealistic® hairs for games and cartoons. This method is based on the fact
that we might not need realistic looking hair and we might just look for nice
cartoon shaded hairs.

2.4.1 Sketchy Hairstyles

Sketchy hair modeling is a top-bottom approach to hair modeling. It asks users
to draw the silhouette of the hairstyle and then they can modify the
automatically generated hairstyle to design the desired hairstyle. Unlike cluster
hair modeling, sketchy hairstyles are based on the artists’ hand-drown sketches
for a cartoon character; therefore, they are mostly suitable for non-photo
realistic hairstyle images.

Mao et al., has first introduced and implemented sketchy hairstyle model in 2002
[MK*02]. In their system which is completed in 2005[MI05], hairstyles can be
designed with very low user effort. First, users need to specify the area to grow

8 Non-photorealistic images are rendered with NPR (non-photorealistic rendering) techniques which
contains all sort of rendering techniques that generate images not realistically.
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hairs on the scalp of a 3D head model. Then, they have to specify the partition
line; partition line is the line that partition head to front and side/back. After that,
users must specify the silhouette of hairstyle for both front part of the head and
side part. When the system automatically generates cluster /ines’, user can
modify the total hair shape (see Figure 2-12).

Figure 2-12: Sketchy hairstyle modeling procedure
(a) user specified hair growth area, partition line, and front and side silhouette lines
(b) automatically generated cluster lines (¢) local modification (d) total result (e)
polygon patch assigned to a cluster line (red) [MK"04]

Cluster lines are actually representative curves based on which polygon patches
will then be created (see Figure 2-12-e). Cluster polygons are approximately
tangential to the scalp and a set of polygons will be assigned to each cluster line
of the hairstyle. Cluster lines can then be modified to have more complex
hairstyles (see Figure 2-12-c).

? Cluster lines (Figure 2-12-b) are defined for rendering purposes. The details of the algorithm can be found
in [MKO05].
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Non-photo realistic hair modeling has also been worked by Cote et a/. [C)*04].
Their model assigned some polygon patches to a hand-drown sketch of the
desired hairstyle. Polygon patches are defined based on silhouette of hairs.

2.4.2 Physically-based hair styling from a sketch

In 2005, Sugisaki et al. represented hair form hand-drawn sketches by an
animator [SY05]. They used springs as a physical model for hair strands. With
their method one can interactively generate cartoon hairs animation like those
that are obtained by hand.

Later, In June 2007, Wither et a/. implemented a very user friendly hair model.
They also used a combination of sketchy and physically-based modeling hair.
Users can design hairstyles in 3 steps [WBCO07]:

1-Define the scalp area: users need to draw a stroke to define the scalp of
the head; scalp is the location in which hairs grow.

2-Draw example strands and volume stroke: After specifying scalp area
users have twenty to thirty choices of roots or guide strand locations to draw
example strands within this area. Users can have only one example strand or as
many as they want. If more than one strand has been specified, Voronoi diagram
would divide head respectfully. Therefore, some number of guide strand (or
master strand) would cover the scalp area. Volume stroke determines the global
volume (silhouette) of hair (see Figure 2-13).
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Figure 2-13: Physically based hair odeling from a sketch
Left) example strands and volume stroke
Middle) Guide strands right) Result [WBCO07]

3-Generate full head of hair: They used the same method as [CS*99]
(described in section 2.3.1) for rendering full head.

Note that their method is actually an interface to physically-based hair styling
introduced by [BA*05].

2.5 Implicit Hair Modeling and Rendering

Instead of modeling each and every hair individually, we can consider bunch of
them as one geometric object, such as layers or Generalized Cylinder. As long as
individual hairs aren't represented as an object in the scene, we are dealing with
implicit hair modeling. Implicit hair modeling can be done in real-time for it
avoids both obstacles of hair simulating; large number of hair strands and rather
small diameter of each one of them.

Koh and Huang introduced the first real-time hair model and renderer in 2000
[KHOO]. They modeled hairs in strips using NURBS for its accuracy and compact
representation, supporting of local and global shape editing, and inherent
continuity. Hair strips can be manipulated by users by manipulating parameters
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such as location, orientation, and weights for knots. To generate a certain
hairstyle, some number of hair strips should be assigned to the scalp of the head
(see Figure 2-14).

Figure 2-14: Hair Modeling with Strips
Left) a hair strip

Right) all the hair strips [KHO00]
Figure 2-15: Hair Strips Rendering

(a) texture map (b) alpha map
(¢) combination of (a) and (b)
(d) result [KHOO0]

Rendering has been done using texture mapping with the Alpha channel; a
combination of a texture map (Figure 2-15-a) and an alpha map (Figure 2-15-b)
is the final texture for rendering NURBS.

Texture mapping is the mapping of a 1D, 2D, or 3D function onto a surface in
space or simply a method to attach images to objects. Now every points are
defined as (x,y,z,u,v) where u and v are texture coordinates corresponding to
(x,y,2). Texture mapping has many uses such as, surface color, specular
reflection, transparency, shadows, surface displacement, etc.
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They succeeded rendering hair in real-time. First of all, with just few number of
hair strips we can have a fair hairstyle and secondly, different levels of resolution
can be selected based on the distance to the viewpoint which is a fast process
too. The major drawback of their method is that it is only good for straight hairs.
Curly hair would have the problems of collision detection and complicated
hairstyles may need too much effort to design NURBS surfaces for.

2.6 GPU

Graphics Processing Unit or GPU is a micro processor used for rendering
purposes which has been introduced in 1999 by NVIDIA Corporation. The
technical definition of GPU provided by NVIDIA is “a single chip processor with
integrated transform, lighting, triangle setup/clipping, and rendering engines that
is capable of processing a minimum of 10 million polygons per second.”

A GPU can be placed on the video card or directly into the motherboard. It is
dedicated to graphics purposes and able to offload all time-consuming and
complex graphical calculations from CPU. Using GPU helps us render very
complex scenes without affecting performance (see Figure 2-16).

With out GPU h GPU

Figure 2-16: Rendering Comparison with/without GPU
[Nv08]
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Although GPU is designed for mathematics intensive tasks and can be used for
complex calculations about vectors, matrixes, and transformations, it is mostly
used for 3D rendering nowadays.

What interests us in GPUs is their ability to create real-time high quality images
without overworking the CPU. This is because of the highly parallel structure of
GPUs; a GPU is a stream processor which means that a set of data flows through
a sequence of steps (Fig 4-3) and a set of output will be produced. GPU
performance grows a lot faster than CPU' (see Figure 2-17); this is both
because of the specialized nature of GPU which makes it easy to use additional
transistors for computation (not cache) and also because of the multi-billion
dollar video game market [Ng07].

NVIDIA GPU GFLOPS

G80

* GPRU Peak GFLOPS
300 *OPU Penk GFLOPE

200
100 3.0 GHz
Intel Corg2 Duo
NV3 .
0LF—* o —— '/j
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006

Figure 2-17: GPU performance over time vs. CPU [Ng07]

1 performance growth is measured using GFLOPS which is Giga FLoating OPerations per second.
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2.6.1 Graphic Pipeline

Graphic pipeline is the model of stages where graphic data go through. As you
can see in Figure 2-18 the pipeline input is 3D models and the output is a frame
buffer or simply pixels that will be shown on the screen.

The pipeline can be divided into two general stages: one is geometry stage or
Lighting/Transformation. Light calculations provide lighting effect on the scene
and transformation calculations transfer 3D objects (commonly represented by
triangles; therefore, we are dealing with triangles and the corresponding
coordinates of their vertices) to 2D screen coordinates. The second stage is
rendering in which the area between previous-stage’s coordinates will be filled by
pixels; each having a specified color (typically RGBA).

3D Application

3D Graphics APT

CPU - GPU Boundary

GPU Command
& Data Stream Vertex Assembled Pixel Location Pixel
Index Primitives Swesm Updates
GPU  m— Prititive ma—t Rasterization, & " Raster ———r Frame
Front End Assembly Intespolation Operations Buffer
Programmable LJ\ Programmable
Vertex X Fragment
Pretransformed Transformed Pasrerized § Transformed
Vertces Processor Vertices  Prewansformed Processor Fragments
Fragments

Figure 2-18: Cg’s GPU Model [Kir*04]
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GPUs have two fully programmable processors; Vertex processor and Pixel
processor (also called vertex shader and pixel shader). Vertex processor involves
the operations that occur at each vertex which are vertex and normal
transformations; most notably, texture coordinate generation, and lighting
calculations. Pixel or Fragment processor is responsible for the final color of
every pixel (RGBA). A fragment contains all of the data necessary to update a
single location in the frame buffer. Object specifications and rendering attributes
are passed to the GPU from the CPU and get modified by the two processors to
determine the final color of every pixel of the scene [Ng07].

2.6.2 Hair modeling and rendering with GPU so far

To our knowledge, hair simulation using GPU has done once before [0s07]
(there are some methods like [CKO5] which used GPU along with CPU but [Os07]
rendered hair completely with GPU). Oshita used GPU to render 10,000 hair
strands in real-time with a particle-based!! hair simulation method (Figure 2-19).
Although they have modeled hair strand individually, their hair model lacks
realism because of the fact that strands are made of simple particles, but they
probably presented the best real-time model for dynamics of hair.

Base particle

Dummy particle

Head

Figure 2-19: Particle-based hair simulation using GPU

' Particle systems are the applications which describe one or more objects using a collection of disjoint
pieces. (Very useful for objects like fire, clouds, water sprays, etc.) [HB04]
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Chapter3. HAIR MODELING

We have seen in the literature review chapter that hairs can be simulated using
geometry-based, image-based, or physics-based methods. Image-based hair
simulation is hard and inaccurate due to the low quality of images with respect
to the thickness of hairs. A physics-based approach is also inaccurate because of
the complex nature of hairs. Among geometry-based approaches, we chose
cluster hair simulating for the quality of hairs simulated by this method and
among cluster hair simulating approaches key-strand-hair modeling was chosen.
Generalized Cylinder methods do not simulate hairs individually and multi-
resolution methods are quite similar to the key-strands methods with the ability
of having multi-resolution for the hair model. Yet, the hair modeling approach
that will be introduced here to generate the whole hairstyle (based on cluster
hair modeling using key strands) also have the ability of having multiple
resolutions. The key fact about key strands hair simulation is that hair strands
are defined based on only a little number of key strands which need to be
defined directly and all the other will be generated automatically.

Beside the quality of a hairstyle, another important factor of hair modeling is the
ability of the model to generate different sort of hairstyles. Key strand hair
modeling seems to be reasonable for this because of its high user-control.

In this chapter, first we will explain our version of the key strand hair modeling
method, then hair realism issues will be discussed, and finally some results of the
mode! will be demonstrated.
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3.1 Modeling hair using Key strand methods

Figure 3-1: Hair modeling steps
Left) Designed key strands on the scalp
Right) Generated hairstyle with all the ordinary strands

As we discussed in the literature review, the key strands hair modeling method is
to define a set of key strands and generate ordinary strands based on them;
ordinary strands does not have any property of their own and they inherit all the
properties from the key strands assigned to them. This way, we only have to
design key strands (typically 10) and the hair model will be generated
automatically*? (see Figure 3-1).

12 Although the hair model consists of both ordinary and key strands, number of key strands is negligible.
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Note that all of the images of this chapter are merely to demonstrate our version
of key strand hair modeling algorithm, i.e., the strands of hairs are all rendered
as 3D points in 3D space with a solid color and no special rendering methods or
illumination calculations have been used. Also, it is important to note that these
images are generated offline. For instant, Figure 3-1-right consists of 100,000
hairs and it took about 70 seconds to render it using OpenGL and a 2.99 GHz
CPU.

As it mentioned in chapter 2, for hair modeling using the key-strand method four
important questions should be addressed:

1- How de we design our key strands? (Section 3.1.2)

2- How do we select our wisps on the scalp of the head? (section 3.1.3)

3- What are the positions (or distributions) of ordinary strands? (section
3.1.4)

4- How should we avoid having unnatural hairs caused by wisps of
exactly same strands? (section 3.2)

3.1.1 Definitions

Before introducing our model, we should define some simple attributes of the
model shown in Figure 3-2 which is a top view of the head shown by a circle:

45



Chapter 3- Hair Modeling 46

centeral perpendicular
plane

a root perpendicular
plane ol
AN some roots
default strand
! 4
l nose
central line central parallel

plane

Figure 3-2: Top view of head model

Root: both key strands root and ordinary strands root are considered as root in
a 1D array; R;.

Default strand: an arbitrary strand in the right side of the scalp which is in
front of the right ear. This strand is actually used to define a local axis for the
head model to help us deal with key strands orientation later. Another property
of this strand is that user can think of it as the exact same copy (even the same
orientation) of the spline that s/he designed using a Bézier curve.

Central perpendicular plane: the plane that divides head into left side and
right side (again it is used to define a local axis and can be any approximate
plane).

Central parallel plane: the plane perpendicular to central perpendicular plane
contained default strand’s root.

Central line: the intersection between central parallel plane and central
perpendicular plane,

46



Chapter 3- Hair Modeling 47

Root normal vector: every hair root has a normal vector which is either equal
to the average of its adjacent triangles’ normals (in case of being a triangle
vertex) or equal to its container triangle normal vector; N(R;).

Root tangent plane: the plane which contains R; and perpendicular to N(R)) is
called root tangent plane; T(R;).

Root perpendicular plane: the plane contains the root and central line.

Root main tangent vector: intersection between root tangent and
perpendicular plane starting from the root.

Root second tangent vector: vector starting from the root which is
perpendicular to root normal vector and root main tangent vector.

Root local XYZ axis: root normal vector, root main tangent vector, and root
second tangent vector.

3.1.2 Designing Key Strands

Designing a key strand consists of the following actions:
1-Locate the key strand’s control points (Figure 3-3-left)
2-Set the key strand’s length and color.
3-Locate the key strand on the scalp (Figure 3-3-right)
4-Set the radius of the strand (will be discussed in chapter 4)

5-Define the key strand’s orientation (Figure 3-4)
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Figure 3-3: Defining key strand locations and splines
Left) key root locations with the first key strand assigned to the first root location
Right) Bézier spline defining the first key strand curve

A very common way to define objects with shape of a curve in Computer
Graphics is to use parametric curves™, one of which is Bézier curve that we used
in this project.

Bézier curve: a parametrical curve that can be controlled by a set of
control points based on location of which the infinitely continuous curve
can be manipulated (refer to appendix C for more information).

Resolution: the number of points that form a Bézier curve or the number
of cylinders that form a single strand.

Number and location of the control points of a typical key strand’s Bézier curve
determine the number of twists in the strand. Therefore, depend on how curly is
the strand, the Bézier curve should be designed (for example, spline of Figure 3-

13 When x,y, and z components of a curve are defined in terms of a fourth variable, t:
Curve = (X(t), Y(t), Z(1)).
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4-right is a curly hair formed by 12 control points). The first control point of the
Bézier curve is the root of the strand.

Initially, the 2D curve representing the key strand is put on the scalp in a way
that its plane matches the root perpendicular plane (Figure 3-4-Left-1) and
its first control point matches the root. This may not be the exact desired
orientation for the strand; therefore, we are able to rotate the key strand around

root local XYZ axis; root normal vector, root main tangent vector, and root
second tangent vector, until achieving the desired orientation for the key strand
(see Figure 3-4-Left).

Figure 3-4: Specifying orientation of key strands
Right) Key strand curve Left) 1-Initial location of the key strand 2-rotating along root local XYZ
axis 3-Final location of the key strand

Figure 3-5: Designing key strands
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Figure 3-6: Key strands of sample hairstyles

Doing exactly the same, any number of key strands can be defined all over the
scalp (see Figure 3-5 and 3-6). Typically users need to define 10 key strands
which are quite a few compared to the great number of human hairs on the
scalp.

With this way of defining and orienting key strands all sort of hairs can be
designed except for space-3D hairs (those that curves of which cannot be drawn
on a plane).

3.1.3 Positioning wisps on the scalp of the head

One possible solution is what Choe and Ko have used which is to position wisps
uniformly (every wisp has the same size) on the scalp [CKO5]. Drawbacks of this
approach have been demonstrated in chapter 2. In contrary to their method, if
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we let different wisp sizes as in [ZW06], user-effort will be sometimes more
but instead user-control over the hairstyle will be increased and as a result more
complicated hairstyles can be designed.

The human head is commonly represented by triangle meshes. Therefore, we
have some number of points which form the scalp after triangulation. In this
thesis, the same set of points has been used as potential locations for the root of
key strands. There are about 1000 points defining the scalp distributed almost
uniformly around the head which makes it possible to choose the root of key
strands almost everywhere on the scalp (see Figure 3-7).

The root location of the key strands which is initially located on the middle-top
part of the scalp, as denoted by a cross in Figure 3-7, can be relocated to choose
the root location of key strands. For each of these roots, a spline should then
be defined to represent key strands. After defining all key root positions,
boundaries of wisps can be calculated; ordinary hair strands are members of the
wisp of the nearest key strand to them. In other word:

Ordinary strand O; belongs to a wisp W; defined by a key strand K;
for i and j where distance between roots of O, and K; are minimum.

This can be called a Semi Voronoi decomposition because we do not
consider length of the path from root of O; to root of K; on the scalp instead we
define wisps based on actual distance between O, and K.
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Figure 3-7: Selecting root locations of the key hair strands
among about 1000 possible choices

With this method we can model most of the hairstyles, including those with
bizarre deformations, spending reasonable effort.

3.1.4 Ordinary hair roots distribution

The scalp of the head is defined by some number of triangles (about 1000 in our
model). Now that we defined key strand hair roots we can use the same set of
triangles defining the scalp and locate ordinary hair roots based on area of each
triangle. Suppose A; is the area of T; (i*" triangle) then, area of the scalp is A =
A;+Ay+...+As. Now suppose we want to have m ordinary strands (typically
100,000) therefore, T; has (A/A)*m number of ordinary hair roots. Ordinary
roots are positioned randomly inside each triangle based on the fact that
triangles are small in size; therefore gaps are not probable. We used bilinear
interpolation:

Rj = a (BTix + (1-B)Tiy) + (1-a)Ti, for j from 1 to (Ai/A)*m
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where o and § are random numbers from 0 to 1. And Ry is the j™ root of i"
triangle of the scalp.

This way we can position m roots on the scalp in a semi-uniform way; this
approach is better than uniform distribution because naturally, hair roots are not
following any particular distribution and seem to be random. Plus, it is better
than choosing completely random locations if we want to avoid gaps. Here, the
probability of having some areas with no hairs is so low and even so, these areas
will be so small (at most the size of a triangle in the mesh).

Here, any number of wisps can share a triangle’s ordinary roots. This distribution
is just a fair distribution of roots over the scalp without affecting by wisps
definition. Whereas most of the cluster hair modeling methods [CS™99, CKO5,
YX™00, KiN02] defined wisps and then defined some number of roots in those
wisps but in this thesis, hair root locations and wisp locations are independent.

3.1.5 Assigning general parameters of the hairstyle

Up to this point, we defined all the key strands and positions of ordinary roots.
To generate the whole hair model, some general parameters need to be
assigned as well. General parameters can affect hair shape widely and can be
modified after viewing the results to reach the desired hairstyle. General
parameters are:

1-Total number of hairs (Figure 3-8).

2-Hairs maximum and minimum length (will be discussed in the next
section).

3-Tidiness value (will be discussed in the next section).

4-N-Influence value (will be discussed in the next section).

5-Blending flag (will be discussed in chapter 5)

6-Parameters involve rendering (will be discussed in chapter 5)
7-Intelligence flag(will be discussed in the next section).
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Figure 3-8: Total number of hair comparison
Top-Left) 10,000 Top-Right) 100,000 Middle-Left) 1000
Middle-Right) 5000 Bottom-Left) 20,000 Bottom-Right) 100,000
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3.2 Realism

Up to this point we discussed how to define curves for key strands and root
locations for ordinary strands and also determined wisp boundaries. For
generating ordinary strands curves based on key strands, we need to be aware
of realism; if all ordinary strands are defined exactly the same as their master
strands, the hairstyle would look very unnatural. So, we modify some attributes
of ordinary strands to make them slightly different from each other and therefore
more realistic. Color, length, orientation, and shape are the parameters that can
be modified for each ordinary strand. We will discuss about color variation along
a strand and between all strands and also other rendering issues in chapter 5,
here, length, orientation, interactions between wisps, and shape of
hairs are addressed.

3.2.1 Length of hairs

Naturally hair strands have different lengths unless newly cut. Here, we
assigned a maximum and a minimum number for all hairs based on which, hair
length is randomly assigned between min and max (see Figure 3-9).
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Figure 3-9: hairstyles with different max and min length values
Left) Min=Max Middle) Min = 0.9 Max Right) Min = 0.6 Max

3.2.2 Tidiness of hairs

Although orientation of hair would seem unnecessary to play with, it can affect
realism a lot even with small changes. Therefore, we assigned slightly different
random numbers to strands orientation. Jidiness value (between 0 and 1)
determines the maximum difference between orientation of an ordinary strand
and its master strand. If we assign one to this value, all strands would have the
exact same orientation as their master strand; whereas if zero is assigned to
tidiness, hairstyle would become quite messy (see Figure 3-10).

Root of hair strands has three local axes; root first and second tangent vector
and root normal vector. As it was mentioned before, orientation of key strands
are adjustable and the orientation of ordinary strands is the same as the key
assigned to them. If we rotate ordinary strands slightly around these three local
axes, a feel of untidiness can be achieved as you can see in Figure 3-10.
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Figure 3-10: Hair model with different tidiness
Tidiness value is decreasing from left to right

3.2.3 Interaction between wisps

Although having slightly different orientation would help us prevent the main
drawback of key-strand hair modeling which is to have unnatural clusters of hair
rather than individual hair strands, it still cannot conceal the fact that we actually
design quite a few key strands and all the others are just copies of them.
Especially when key strands do not resemble each other and each one has
structure of its own. Therefore, in this work, we used an interpolation factor
between wisps, Neighbours influence or shortly N-influence, which helps
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interaction between wisps of hairs. N-influence relates a wisp to a number of
nearest neighbours. Neighbour wisps can affect strands of a wisp depending on
the amount of N-influence value (between 0 and 100).

For k™ point of the " ordinary strand of the i*" wisp, Py*, instead of only using
Pik = Kik (copying all the points of the key strand to the entire group of ordinary
strands following it) we can calculate location Of Pimainyk @s (here i = main is
actually i wisp which we call main for the sake of readability and neighbourl
and neighbour2 are nearest wisps to the main wisp):

R(main)j wain

d RnainyjRenain)

/

neighborl

Rneighboﬂ

Figure 3-11 : Relating neighboring wisps to each other

a = 1/d(R(main)j/ Rmain)

14 Note that in the actual program all the arrays are 1D for the sake of performance as you will see in some
of the following sections. Here, 3 indices are used for simplicity. In the reality, R; is the i" root either key
root or ordinary root and P; is an array of all cylinders top point in a certain order.
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B = 1/ d(R(main)jr Rneighbourl)
y=1/ d(R(main)j; Rneighbourz)
sum = a*(101-N-influence) + p + y

Pmainjk = (a*(101-N-influence)/sum)*Kimanx ~ +  (B/sum)*Kreighoortk ~ +
(v/sum)*K(neighbor2)k

Figure 3-12: Interpolation between wisps of hair
left) N-influence=100 right) N-influence = 1

Where Rmainy; is the root location of j™ ordinary strand of main wisp (the one
which Py belongs to), Ry is the root location of key strand x, d(a,b) shows the
distance between point a and b in space, Ky is the key strand x’s k™ point. As
you can see in Figure 3-12, if, for example, N-influence is 100, then neighbor
wisps would affect an ordinary strand with respect to their distance from root of
the examining ordinary strand. Obviously since main key strand is closer to the
current ordinary strand, its effect is always the most. If N-influence equals 1,
then ordinary strand curve would not noticeably be different from the main key
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strand (B/sum and y/sum will be about zero and a*(101-N-influence)/sum will be
about 1) (see Figure 3-12).

3.2.4 Intelligence Flag

We used interpolation between wisps and random orientations in order to avoid
unnatural looking hair wisps, yet we have two problems; if we use interpolation
method, user-control over hair would be less when N-influence value is high. If
we use random orientation method, we need to define too many key strands to
avoid undesired hairstyles (at least 10). Using both methods together would help
but may limit the variety of hairstyles. Therefore, another parameter has been
proposed in this thesis to cover these drawbacks. It is called the intelligence flag.

If we turn the intelligence flag off, hair would be created with respect to the
root’s key strand normal vector, if not, the orientation of each strand would
be defined with respect to the root normal vector.

Initially we suppose that strands root plane is equal to the default root plane. If
we turn intelligence flag off this plane should rotate with respect to the key
strand normal vector for each wisp. Otherwise, it should rotate with respect to
the root normal vector itself.

>\<

/8
2
N

z

Figure 3-13: Root Normal Vector
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Default root Normal vector, (1,0,0), can be mapped to the root normal vector,
(Nx, Ny, N2), using o and B angles. Where:

o= Cos-l( Nx / \/(Nx2+N22) )
B = tan’( Ny/ V(NC+N) )

Therefore, rotating plane of the default strand o degree around (0,1,0) and B
degree around (1,0,1) will give us the correct rotation. In other words, angle
between the strand curve and the scalp at initial position (default strand) will be
equal to the angle between the strand curve and the scalp at the new position
(R« Ry, Ry).

Using intelligence flag is of great importance for the mere reason that we can
design a full hairstyle with only one single key strand (see Figure 3-14).

Figure 3-14: Hair design with one key strand
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Although using this method is very suitable for short hairs, some long hair
models can be designed more easily with it as well. Depending on the hairstyle,
we can use the benefits of intelligence flag. For hairstyles that we exactly know
the wisps and what we are looking for, we can turn off intelligence flag and for
those that we just have an idea and we do not want to put too much effort, we
can turn on intelligence flag (see Figure 3-15).

Figure 3-15: Intelligence flag effects
Left) intelligence flag ison  Right) intelligence flag is off

3.3 Result Images

We generated hairstyles based on the key strand method introducing some
additional parameters for the sake of realism such as assigning slightly random
strand lengths and orientations. Our version of key strands method supports
different wisp sizes, distributes hair roots semi-uniformly, includes random hair
orientation, defines neighbor wisps interactions, and introduces an automatic
way of assigning hair orientation (intelligence flag). Using our method, various
hairstyles can be modeled (see Figure 3-16 and Figure 3-17).
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Figure 3-16: Key strand hair modeling

63



Chapter 3- Hair Modeling

64

Figure 3-17: Hairstyles
Top-Left) Modeled with 7 key strands Top-Right) A Tied hairstyle
Middle) Straight hairstyles
Bottom) Modeled with 50,000 hairs

64



Chapter 4- Strands As Continual Cylinders 65

Chapter4. STRANDS AS CONTINUAL
CYLINDERS

As was mentioned before, the goal of this thesis is to simulate hair realistically in
real-time with a hair model potentially suitable for animation and collision
detection. Also the hair model should be capable of providing high control over
the shape of the hairs with the ability to model a variety of hairstyles, yet not
requiring too much user-effort. We also mentioned that for the sake of quality
we will use ray tracing to render this model (ray tracing makes it easy to
implement self shadowing, reflection as in specular light, and alpha blending -- in
the fifth chapter the reason for this selection over other possible choices will be
discussed fully). For acquiring ray tracing’s benefits, the hair strands should be
represented as a 3D objects and cannot be represented as poly-lines or points;
therefore, a new geometric object called Continual Cylinder is introduced for
representing individual hairs in this thesis.

In the following sections, first we define Continual Cylinders, then we
demonstrate the reasons for this definition and finally we use them to model our
hair strands.
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4.1 Continu linder

In this thesis, unlike other hair models to our knowledge, we modeled hair
strands with a new 3D object that we called Continual Cylinders. Each hair strand
is modeled using a chain of cylinders where cross sections of each cylinder are
tangent to the previous and the next cylinder (of course, except for the first and
the last cylinder) as you can see in Figure 4-1. Therefore, a number of adjacent
cylinders (typically 25) are the objects that form all the hair strands.

Figure 4-1: Continual Cylinders
Left) 47 Cylinders Middle) 7 cylinders Right) 23 cylinders

A cylinder is the surface formed by all the points at a fixed distance, cylinder
radius, from a certain straight line, cylinder axis. Suppose that we cut this
cylinder by two arbitrary planes; cross sections will be two ovals. Let us call
centers of these two ovals, cylinder’s top point and cylinder’s tip point.
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Motivated by Generalized Cylinders and splines'®, we propose a new geometric
object called a Continual Cylinder. A Continual Cylinder is defined as a set of n
cylinders, {Ci, Cy, ..., Cn}, where C/'s tip point is equal to Ci+1's top point (Pi+1)
and Ciis cut by these two planes:

Planei; @ Nis*(X = P)+ Niiy*(y - Piy) + Ny *(z-Pi2) =0

Planeiz & Niz_*(X = Pgis1)_)+ Nia_y*(Y = Pi+1)y) + Niz_:*(Z = Pisyy ) = 0
Nit = ( (Pa+1)x= Pix) » (Pa+1)y- Piy) , (Pis1yz- Piz) )

Niz = ( (Pa+2)x= Pa+1)x) 4 (Pv2)y = Pastyy) 4 (Piw2)z= Piis1y2) )

where P, = (Pi“x, Pi__y, Pi_z) is Cs top point.

Every strand in this thesis is formed by a Continual Cylinder and therefore can be
defined with this vector:

S = {(ro, Po_xs Po_y, Po_z) , (r1, Pix, Py, Piz) s ooy (Prey, Pi-1)x Pin-1)_ys P(n-l)_z)}
where r; is the radius of i cylinder.

This definition does not necessarily generate smooth curves which we expect for
a strand, because we did not assign any value to the positions of the cylinders
top points (Pis) yet. We will discuss shortly how to arrange the top points in
order to satisfy this necessity.

4.2 R ns of ining Continu linder

There are various reasons for which Continual Cylinders have been defined to

model hair strands:

1. Hairs can be approximated by cylinders almost realistically.

15 A piecewise polynomial function.
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2. The model is 3D; therefore, it can be rendered using ray tracing and
Phong illumination model.

3. Different quality levels can be applied by using less or more number of
cylinders in the chain.

4. Properties of an individual hair can vary along the hair this way (as we
go from one cylinder to the next). Properties such as, color, thickness,
alpha value, etc. (Figure 4-2).

5. The scene can be easily divided into smaller partitions without
worrying about long hairs falling apart.

Generalized Cylinders seem to be a better representation at first. Firstly, because
of their neat formula which is a very good approximation to hair strands and
secondly, for the sake of rendering using ray tracing; the less objects we have in
the scene, the less rendering time we should spend (in ray tracing methods most
of the time is spent for ray-object intersection calculations). But Generalized
Cylinders are not appropriate in our context. Here, we are dealing with at
least 10,000 hair strands or let us assume for now Generalized Cylinders.
Checking each and every one of them to see if it hits each and every ray could
take too much time. Therefore, even if we represent hairs by Generalized
Cylinders, we need to divide them into pieces so that we can handle the great
number of objects in the scene.

Another important reason for using Continual Cylinders rather than Generalized
Cylinders is because of those properties that can vary along a single strand such
as color, thickness, etc. As you can see in Figure 4-2 this can largely affect
realism. Also, the significant role of alpha value in hair simulation cannot be
ignored. Hairs are very fine and cannot be approximated by volumes such as
Generalized Cylinder unless having an alpha value assigned to them to make
them look finer and therefore realistic (as you may recall that in a normal
viewing condition thickness of a strand is less than the size of a pixel which is
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why alpha blending is of great importance here). Since alpha value may vary
along the curve we again need to deconstruct the Generalized Cylinders into
some smaller parts with different alpha values.

a b C d e

Figure 4-2: Modifying properties of hairs along a strand
a) The primitive hair strand b) Color variation along the strand c) alpha value variation d) radius
variation e) Alpha, color, and radius are changed along the strand

4.3 Strands as a smooth curve

Up to this point, we defined a geometric object to represent strands of hair. Now
the problem is to determine the locations of the cylinders’ top point (having the
cylinder’s top point and its radius is enough to define a cylinder because this
cylinder’s tip point is the next cylinder’s top point) to be able to form a smooth
strand. Hair strands can be considered (actually estimated but a very good
estimation) as curves. As we mentioned, a very common way to define objects
with shape of a curve in Computer Graphics is to use parametric curves, one of
which is Bézier curve that we used in this project.

Control points are a fixed number of points who control the behavior of the
curve. A Bézier curve is actually a set of points close enough to be seen as a

69



Chapter 4- Strands As Continual Cylinders 70

curve. By changing location of control points we can have different shapes for
strands (see Figure 4-3). Each Bézier Curve consists of n points (larger n means
higher resolution) and consequently n-1 cylinders; for example the axis of the
Continual Cylinder in Figure 4-1-left is actually a Bézier Curve defined by 10
control points. Here, each point of a Bézier curve corresponds to a cylinder top
point (Figure 4-1-left is created based on a 48 points Bézier curve created by 10
control points).

f/f
/ ;‘
KR |

Figure 4-3: Some hair strands generated by Continual Cylinder

The reason that Bézier curves are chosen in this thesis is for their being smooth
and continuous which makes them a good representation for the shape of the
hair. This means that we can estimate strands of hair no matter how much curly
they are, and we can have as less as 3 control points for straight hairs which is
so easy to define.

A strand’s resolution is adjustable and refers to the number of cylinders that
form the hair strand. Although it might seem that higher resolutions generate
strands with higher quality, it is important to note that after certain amount for
resolution, it will be impossible to distinguish the difference between the strands
with higher resolution and lower one. This is because of the fact that cylinders
are tangent to each other and if they form a smooth curve with a large enough
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number of cylinders (typically 25), it will not matter if we increase the resolution;
again we will have the exact same smooth curve. This does not mean that the
quality of a single strand is limited, but it means we reach the highest possible
quality (which of course is limited to the size of a pixel in screen!) with relatively
small number of objects.

Normally, the roots of human hairs are stronger and therefore thicker than the
tips of hairs[Si67]; therefore, we let the cylinder thickness of strands decrease
whenever it is appropriate (see Figure 4-3):

Radius(C) = r*(1-i/resolution)

where r is the radius of the root cylinder, and C, refers to cylinder number i (Cp is
the root); therefore with a typical resolution, 25:

Radius(root) = r
Raduis(C;) = r*0.96

Raduis(Cy) = r*0.92

Raduis(Cz4) = r*0.04 ~ 0

Note that it is not necessary to decrease the radius of a hair strand. We can
either use the same radius for each cylinder or decrease it at a certain point to a
certain radius. Decreasing the radius to zero is appropriate for two situations:
when we have very long hairs and when we have unnatural or cartoon hairs.
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Chapter5. HAIR RENDERING

Geometry-based hair rendering largely depends on the underlying hair model. As
we have seen in previous chapters hairs are modeled using Continual Cylinders;
therefore, we are dealing with a number of cylinders (a very large number i.e.
about 250,000) which need to be rendered. Rendering is done using GPU in this
thesis. GPUs are dedicated to graphical purposes only and can be used to render
graphical scenes much faster. For the sake of realism ray tracing methods are
used to render cylinders.

As we have seen in literature review chapter, real-time rendering of high quality
hair is very hard. As we have seen, real-time hair rendering has been done in
some researches, for example, [XL"06] has used thick Generalized Cylinders to
achieve real-time performance, [KHO0] simulated hair strands as small number
of strips, and [Os07] introduced a particle-based method using GPU for hair
simulation. Yet, most of the even recent methods are capable of rendering only a
few strands in real-time and rendering time of the whole head is nothing near
real-time: [KiNO2] could render 10,000 hairs with their multi-resolution method
in about 6 seconds, [BA*05] method “is fast enough to handle several hair
strands in real-time, and a hundred strands within a few seconds”, and [CK05]
simulated very realistic hair models using both GPU and CPU to render 20,000
hair in about 10 seconds.

We succeeded to render enough number of 3D hair strands (10,000) using Ray
Tracing along with several realism issues.

Also, performance of most of the previous algorithms largely depends on the
length of hairs; the longer the hair, the more segments are required to model
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them and therefore, the more rendering time is needed. In this thesis, length of
hair does not effect performance (will be discussed in section 5.5) and we are
only limited by GPU functionality (section 5.1.2). This means that our algorithm
can be used to render more number of hair strands by using a better GPU in
future.

In this Chapter, first we discuss about real-time rendering with GPU and its
limitations, then we speak about CPU part in rendering, after that we describe
our ray tracing on GPU algorithm, then we color our pixels realistically, and
finally we talk about the running time of our algorithm.

5.1 Real-time Rendering with GPU

The term real-time rendering in Computer Graphics commonly refers to
computer-animation. In real-time computer animation, each stage of the
sequence is viewed as it is created [HBO4]. Here, by real-time rendering we
mean that our images are rendered in less than 1/15" of a second, or in other
words, with the frame rate of more than 15 per second. Therefore, we can move
the camera around the hair model and see different views of it in real-time.

As we mentioned in Background, since 2002, GPU has been used for real-time
rendering because it is a special purpose microprocessor that has been designed
to do complex graphical computations. Having millions of transistors to do 3D
graphics calculations, it can generate 3D scenes with better quality comparing
with the CPU [NVO8] (also see Figure 2-16), but it has rather fewer resources
(see section 5.1.2).

For programming a GPU, several high-level languages have been developed
recently which will be discussed shortly.
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5.1.1 Shading Language

A shader is an independent compilation unit consisting of a set of software
instructions used to program the GPU pipeline. GPU can be programmed by the
complete set of shaders (All pixel and vertex shaders) that are compiled and
linked together. Shading languages used to be low-level but since 2002 high-
level GPU programming has emerged. Three popular shading languages are as
follows:

1-Cg (developed by nVidia)
2-GLSL (part of the core OpenGL 2.1)

3-HLSL (developed by Microsoft for use with DirectX)

All three have been created to give more control over GPU pipeline and are
hardware-specific languages. Cg and HLSL are very similar and actually co-
developed. The major difference is that HLSL is only suitable for DirectX code
while Cg can compile to both DirectX and OpenGL. HLSL can only be used in
windows while Cg and GLSL are muiti-platform. Since GLSL is only good for
graphics cards supporting OpenGL and real-time hair modeling is mostly used for
game industry where DirectX is widely used (esp. XBox consoles), we chose Cg
for programming GPU in this work.
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5.1.2 GPU limitations

Unlike the CPU, the GPU has very limited resources; based on the work done by
[PST06] GPUs only provide a subset of the functionality commonly found on
CPUs and the following are the most important limitations of GPU which makes
the implementation of complex single-pass programs a difficult task:

— The instruction count is effectively limited to 4096 instructions.

- There is only a small number of registers available, e. g. current
graphics boards from NVIDIA have 32 registers and there is no further
writable random access memory.

— Because of the parallel nature of the fragment processing units, it is
not easy to use inter-pixels information.

A more complete list of GPU limitations is provided in Appendix B.

Whenever we pass a limit of a GPU, the results will deteriorate (see Figure 5-1).
Therefore, although we can make rendering faster using the GPU, still we are
limited. The good thing is that GPU grows very fast due to the rich industry of
gaming and therefore real-time high quality hair simulating may not be a very
hard-to-reach goal to achieve before long.

Figure 5-1: GPU limitations problem
GPU acts incorrectly when we exceed some of its limitations
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.2 CPU Part: ferring requir P

Before explaining our algorithm, let us clarify CPU and GPU roles. All the
rendering has been done using GPU. The CPU is responsible for modeling, pre-
calculations and transferring rendering parameters to GPU. Subsequently, CPU
transfers the following data to GPU:

1-Lighting information: eye location, light sources locations, and
shadow flag.

2-Cylinders information: Top, tip, and next point of each cylinder
(Ptops Ptp, Pxt), Cylinders color, and cylinders radius.

3-Scene information: scene’s partitioning information, number of
total points defining a strand (or resolution), and number of total
hairs.

While the CPU is responsible for dividing scene into a number of partitions and
calculating the location and length of the central axis of cylinders and lighting
information, the GPU is responsible for rendering all those cylinders based on
provided information.

Although data can be transferred directly to the GPU using limited size arrays,
the common way of passing data from CPU to GPU is using textures. The reason
is that textures can be treated as random access memories!® in GPU. Textures
here resemble arrays of CPU and they can contain large amount of data. We
used them to pass Pwp, Pip, Pnxt, Cylinders color, and scene’s partitioning
information (see Figure 5-2). Having all of the information, pixel processor is

1 Or RAM is a type of computer memory that can store data in any order and therefore return them in
constant time.
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ready to render all of the Continual Cylinders to simulate hair with the algorithm
that will be discussed in next section.

In this section, we first discuss how to divide the scene into some number of
components, called voxel'’, and then how to assign cylinders to each voxel.

5.2.1 Dividing the scene into Voxels

To achieve higher performance while using ray tracing methods, we need to
partition our scene into some smaller components each contains some number of
the objects we plan to render; otherwise, we have to verify intersection test
between all the rays and all the objects of the scene which could be quite time-
consuming. Here, the scene is divided into some number of same size voxels
(Figure 5-2-left) within each, some of our previously designed cylinders will be
placed. The size of voxels are the same because cylinders distribution is almost
uniform i.e. for most of the voxels either we have several cylinders in a voxel or
we have none. This is because of the fact that hair strands are adjacent to each
other,

Rays are emitted from a single point of view in every direction. Whenever a ray
hits the first non-empty voxel in its way from the light source towards the end of
the scene, cylinders within that voxel are checked to see whether they have any
intersection with the ray or not. In case of a collision, the intersection point
(between the ray and the hitting cylinder) will be rendered with the proper color.
If the ray is able to pass through the first non-empty voxel without hitting any
cylinder, the next non-empty voxel will be checked for a collision until finding a
hit or until the ray falls out of the end of the grid without hitting by any object.

' Pixel to screen is like voxel to 3D space.
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Figure 5-2: Keeping scene data
Left) scene is divided into some number of voxels within which some number of points
is placed. Right) cylinders are defined by four parameters and placed in order.

5.2.2 Assigning voxels to cylinders

As we mentioned in chapter 4, our hair model is a set of cylinders cut by two
planes and therefore each cylinder can be defined by three points: the cylinder
top point, the cylinder tip point (= next cylinder top point), and next cylinder tip
point (= the after-next-cylinder's top point); Pwp, Pup, and Pux. Also we
mentioned that Py can uniquely represent each cylinder.

To assign voxels to cylinders, the line formed by Pwp and Pyp or the axis of the
cylinder is considered. If the axis of the cylinder is completely inside one voxel,
the cylinder will add to the end of the list of that voxel. If not, the cylinder will
add to the end of the list of all those voxels which contain the axis. A 1D voxel
array (Figure 5-2-left) contains first point index of each voxel and number of
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points in each voxel. First point index shows the index of the first cylinder in
the cylinder’s list of a voxel and number of points shows the number of
cylinders in the list.

As an example let's consider V4 of Figure 5-2. First point index of this voxel is 17
and it contains 3 cylinders. Center of the top circle of the first cylinder (first
cylinder’s top point) is saved in the 17" slot of Pwp array, center of the top circle
of the second cylinder (second cylinder’s top point) is saved in the 18" slot of
Pwp @and consequently third one in the 19" slot. Tip point of the first cylinder of
the list is saved in Pyp_37 and so on.

The algorithm to find whether a point P is in a voxel or not, is a simple Ig(n)*®
recursive algorithm which n is the number of voxels in one dimension as follow:

v/ 77”“1’

X

Figure 5-3: assighment of voxels to points (representation of cylinders)

At first we consider the whole scene as one big voxel which contains P. We check
to see which half of the scene with respect to x, y, and z axis contains P,

8 1g(n) is used for logarithm in base 2.
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continuing like this and discarding 7/8 of voxels each time and after few steps
(typically 6) we can find the proper voxel (see Figure 5-3).

Our experiments show that partitioning the scene to more than 128*%128*128
voxels will make the specific GPU that we used i.e. nVidia Quadro 4500, to
deteriorate (see Figure 5-1). Therefore, in the worst case scenario the running
time of the algorithm to find the proper voxel for every Py, (Or every cylinder)
will be n*Ig(128) = 7*n. Where n is the number of cylinders which is:

n = resolution*NOS. (Normally 250,000)
where NOS is the number of total hair strands in a hair model.

Voxels are assigned to cylinders using the CPU and the final voxel array will send
to the GPU for applying ray tracing method. In addition to voxels, Pip, Pip, and
Paxt arrays, cylinders color, and radius are as well sent to the GPU which will be
discussed in section 5.4.

5.3 Ray tracing on GPU

Ray tracing on GPU is first introduced by [PB*02] in 2002. They succeeded to
render scenes consisting of triangles using ray tracing in real-time. We used
roughly the same algorithm for rendering hairs, but instead of triangles we are
dealing with cylinders represented by points.

In our algorithm for ray tracing on GPU, we first assign rays emitted from eye,
then, we find the intersection point of the ray and hair strands, and finally we
decide about the color of this intersection point (or pixel of the screen).
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5.3.1 Why Ray Tracing?

In Ray tracing methods most of the computation time is spending on ray-object
intersection calculations. Either we have to calculate intersection between every
ray and every object or we should divide the scene to reduce the number of
intersection tests.

In this thesis, ray tracing has been selected rather than Radiosity for the reason
that hairs are modeled by cylinders and not polygons and therefore, we cannot
treated them like surfaces that emit energy as easily as polygons, whereas
intersection calculations between rays and cylinders are very easy using ray
tracing because cylinders are implicitly represented. Also, specular light plays a
very important role in hair simulation which as we discussed in chapter 2, ray
tracing can successfully simulate specular lights (see Figure 5-4).

Although rasterisation is very fast, it denies the fact that the color of pixels is not
independent of each other. For example consider a complete mirror; using basic
rasterisation ignores the fundamental property of a mirror. Also, for shadows we
have somewhat the same problem. Comparing rasterisation and ray tracing is of
little interest here; let us just focus on the fact that ray tracing produce results
with better quality so it is reasonable to render our scene using ray tracing if it
doesn't affect performance.

Figure 5-4: Hairs with/without specular effect
Left) No specular light — Middle) Little specular light
Right) More specular light
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5.3.2 Assigning rays

As we mentioned in chapter 2, simple ray tracing is to follow all rays emitted
from the eye position through the screen and render the corresponding pixel
with respect to the intersection point (see Figure 5-5). Therefore, we have a one
to one correspondence between pixels and rays.

Figure 5-5: Ray Tracing
Red lines are rays and the plane is the screen. Here we have a scene consisting of some objects;
the color of each pixel is equal to the color of the intersection point of the ray emitting from eyes
through that pixel and an object.

The GPU pixel shader is responsible for the color of every pixel of the screen.

Inputs of the pixel shader are:
1-the pixel location,
2-attributes passed from the CPU, and
3-attributes passed from the vertex shader.
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Having the pixel location (p) and passing eye location (eye) from the CPU side,
the corresponding ray can be calculated as:

r = eye + t*(p-eye)

Here, the ray origin equals the eye location (rO = eye) and the ray direction
equals <p - eye> (rD = <p-eye>). Having r, we are ready to run the
intersection algorithm. Note that, rays as well as pixels are considered
independently in the GPU.

5.3.3 Finding the first non-empty voxel for a single Ray

The algorithm that is used to find the first non-empty voxel that a ray hits, is the
same as the one introduced by Amanatides and Woo in 1987 [AW87]. Details of
this algorithm are provided in appendix D.

A voxel is defined by x,y, and z coordinates considering Vo = (0,0,0) in Figure 5-
2 (for example Vi, = (2,3,-1) in Figure 5-2-left). A ray, r is defined by two
parameters; its origin, rO, and its direction, rD:

r=r0 + t*rD,

Using rO and rD, in O(1) we can find the very first voxel that r hits. This voxel is
the one that contains the collision point of r and the plane z=0. Therefore:

Vi = (floor(NOP*(rOy+ (-rO,/rD,)*rDy)) , floor(NOP*(rO,+ (-rO,/rD;)*rDy)), 0)
Where NOP is the number of partitions in one dimension (typically 64).

Having Vi, Vi -- or the next voxel that r goes through, can be found depending
on the ray direction (rD):
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Vii=(Vix+1, Vi, Vi) or
Vit = (Vixy Viy + 1, Vi;) or
Vii=(Vix Viy, Viz+ 1)or

Continuing like this (for more information refer to appendix D), we can easily find
all those voxels that a ray meets during its way towards the end of the scene.
The first one whose number-of-points (see Figure 5-2-left) is not 0, is the one
that we are looking for.

Running time of this algorithm is O(n) which n is the number of voxels in one
direction (typically 64). Because a ray can meet at most n voxels and to check
whether a voxel is empty or not is O(1) as we just need to check the second
index of it in the corresponding index of the voxel array (Figure 5-2).

5.3.4 Finding the first collision

There are a number of cylinders in the first non-empty voxel that we have found
in the previous step. All of the cylinders must be checked to see whether they
have collision with the ray or not. Note that the first cylinder with a positive
answer is the actual first cylinder that the ray hits because cylinders are already
put in the array with respect to their z value.

If the ray does not hit any of the cylinders in the list of the first non-empty voxel,
it should be examined again to find the next non-empty voxel in its way until
either a cylinder is found or the ray reaches the end of the scene.

In case of a collision, the corresponding pixel will be colored. The color of the
pixel depends on several factors that will be described in the next section.
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5.4 Coloring the pixel realistically

A simple math (cylinder-line intersection point) gives us the location of the
intersection pixel. To render this pixel we need these values:

1-Normal of the pixel for illumination concerns
2-Color of the cylinder (including alpha value)
3-Whether the pixel is in shadow or not

Within few following few sections we will see how these information help us
render pixels more realistically.

5.4.1 Illumination

We used Phong model (as it was discussed in background) to illuminate our
pixels in this thesis. For rendering using the Phong model, in addition to lighting
and viewing information we need to define a normal vector for each and every
pixel. Here, normal of the intersection pixel p is:

N = [(Ptop~Ptip)X(P-Ptip) 1X(Ptop-Ptip)

where, Py, and Py, are of the cylinder that the ray hits, and x shows the cross
product.

Therefore, N will be the vector perpendicular to the cylinder (which was found in
the previous phase) at point p. We used N to render this point using Phong
illumination model.
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5.4.2 Pixels color including alpha

Color of the cylinders which passed by the CPU to the GPU is used for rendering
and it is important to note that in this thesis, we are able to define a different
color for all the cylinders. We can use this for two purposes: 1-slight changes in
color along a hair strand (see Figure 5-6-left) and 2-different colors for different
hair strands to achieve more realistic hairs (see Figure 5-7 and 5-6-right). Note
that hair images of this chapter are generated using a 2.66 GHz CPU and a
nVidia Quadro FX 4500 GPU.

The simple algorithm that is used here for slight random color variation is:

P r = R + randR*a
Pic= G + randG*b
Pi_B =B+ randB;*c

Where, R, G, and B are the specified color of the hair between 0 and 1, randR,
randG, and randB are random real numbers between -1 and 1, and a, b, and ¢,

are the percentage of color variation®®.

Figure 5-6: Color Variation
Left) Color of hairs vary along the hair
Right) An example of importance of color variation

YA very common color model is the RGB color model where R,G, and B are the percentage of red, green,
and blue color in a pixel.
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Figure 5-7: Color Variation
Top Row) All cylinders of all Hair strands have the same color
Middle Row) 7% color deference
Bottom Row) 20% color deference
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Alpha value can be assigned to pixels as well. Suppose that e is the eye
location. We can assign p to rO and (p-e) to rD, and then run the intersection
algorithm once more with the new origin and direction for the examining ray.
Using the same algorithm discussed in 5.3.4, the new intersection point (NewP)
will be the pixel right behind P with respect to the viewing location (e). Then, We
can assign Peoior to the pixel color:

Peolor = a*color + (1-o)*NewPoior.

Figure 5-8 : Alpha value variation
Left) Alpha is decreasing fast along hair strands
Right) Alpha start decreasing from 6™ (out of 25) cylinder
Right) Alpha=1 in all the cylinders

As you can see in Figure 5-8 and 5-9 assigning alpha value helps hair look more
realistic. Although, we also decrease the radius of the hair as we discussed in
section 4.3 for the sake of realism, effect of using alpha value cannot be ignored.
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Figure 5-9: Having alpha value vs. Not having alpha value
Left) Alpha is assigned to hair strands
Right) Alpha = 1

The problem is that the rendering time will become about twice as much,
because the intersection algorithm should run another time to find the back pixel
color and this is because of the fact that the running time of the whole algorithm
(or we can also say rendering time) is almost equal to the running time of the
intersection tests.

5.4.3 Shadow

To check whether p is in shadow or not, we can assign p to rO and (L-p) to rD,
where L is the light source location. If the new ray hits any cylinder in its way to
the light source then we can conclude that p is in shadow. Like alpha value,
shadows can also affect realism (see Figure 5-10).

Having N (p’s normal), light sources locations and types, eye location, and the
pixel color (considering both alpha and shadow values), Phong illumination
model can be used to color p.
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Figure 5-10: Hair Shadow
Left) Rendering hairs with shadow Right) Rendering hair without shadow

5.5 Running time

The expected Running time of the algorithm to find the first collision described
in section 5.3 is n*m where n is the number of voxels in one dimension and m is
expected number of cylinders in a voxel. This is because each ray is verified
independently to realize whether it hits a cylinder along its way towards the end
of the scene or not (GPU treats ray independently as we explained before).
Checking whether the ray hits a cylinder is O(1) as it is to find if a line and a
cylinder has an intersection or not.
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The value of n is at most 128 but normally 64 (as we mentioned, because of the
GPU limitations, we cannot divide our scene to more than 128*128%*128 pixels)
and the value of m depends on the resolution of the hair strands (normally 25).
Based on our experiments, as long as m is about 10 i.e. we have at most 10
cylinders in each voxel, GPU works properly and having more than about 10
cylinders in any voxel causes a crash (see Figure 5-11).

Figure 5-11: GPU fails when some voxels contains too many cylinders
Left) Resolution = 64 which means each hair strands formed using 64 cylinders
Right) Resolution = 23. The difference is not noticeable (refer to section 4.3)

Considering hairs occupy 1/8 of voxels in @ head model:
k*Res = m*(n*n*n/8)

where k is total number of hairs, Res is resolution and therefore k*Res is total
number of cylinders, m is expected number of cylinders in each voxel, and n is

the number of voxels in one dimension.
Having n = 64, k=10,000, and m=10:

Res = 32
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Having 32 cylinders for each strand is more than enough for most of hair
models. Our experiments show normally having 23 cylinders to form a strand is
enough?, but since 10 is an expected number it is better to have less resolution
or the GPU may still fail in some cases.

5.6 Result images

We rendered about 250,000 cylinders, which could represent about 10,000 hairs
depending on resolution (number of segments (or cylinders) a strands have).
The curlier a strand is the more cylinders are needed to model it, whereas
straight hair can be modeled with even 3 or 4 cylinders.

Figure 5-12: Short Black and White Hairs

20 As most of the images of this chapter rendered with 23 for resolution.
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As we mentioned, we used a simplified version of the complete model introduced
in previous chapters; yet, most of the key properties of the model has been
implemented (see Figure 5-12 and 5-13 and 5-14)

Figure 5-13: Neighbor wisps influence on each other
Top-Left) N-influence = 0 Top-Right) N-influence = 90
Bottom-Left) N-influence = 95 Bottom-right) N-influence = 100%

2! Note that we usually do not want too much influence (+90) and only care about strands which are near
wisp boundary.

93



Chapter 5- Hair Rendering 94

Figure 5-14: Tidiness Comparison
Left-Top) Ordinary strands are exactly the same as key strands except for their position
Right-Top) 10% untidiness
Bottom-Left) 20% untidiness Bottom-Right) 40% untidiness
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Chapter6. ConcLusION AND FuTure WoRK

Recently, considerable progress has been made both in high-quality hair
simulation and in the fast rendering and animation of hair. The quality of hair
depends on the hair model and rendering techniques. As we have seen in this
thesis, various modeling and rendering parameters have been considered to
have more realistically-looking hairs.

In modeling phase, we simulated hairs introducing a simple 3D object, Continual
Cylinders, to be able to represent hair strands as close as possible to reality. We
considered hairs as wisps (or clusters) of hairs based on natural characteristics of
hair and we added some sort of neighbor interactions to avoid unnatural looking
hairs. We assigned slightly random length and orientation to strands for
demonstrating various hair properties such as tidiness. And, overall we provided
a model with the capability of generating different hairstyles.

In the rendering phase, we used alpha blending to be able to simulate such a
thin object more realistically?®. We used ray tracing method which is able to
generate high-quality images based on reality. We rendered hair considering
self-shadowing which can affect realism greatly. Also, as each hair has the color
of its own and possibly some variation between the root to the tip, we assigned
different color to each different segment (or cylinder) of all the hairs.

The performance of 3D object simulation depends mostly on the underlying
rendering technique and the hardware resources. We used ray tracing which,
although is one the best methods for producing high quality images, is very time-

?2 The thickness of a single hair is less than the size of a pixel in normal viewing conditions.
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consuming. But not long ago, GPUs have been introduced with parallel structure
suitable for fast rendering. Therefore, it is not beyond expectation to have
individually simulated hairs for games in which rendering and hair dynamics need
to be done in real-time.

As we rendered three dimensional hairs using ray tracing on GPU, our algorithm
has many benefits over other similar ones. Fast growth of GPU technology will
make it possible to render more and more hair strands without changing the
algorithm itself. As we mentioned, GPUs have many limitations and therefore
may fail to render properly (see Figure 5-1). As a result, every year, the
introduced algorithm is able to simulate the hair model with more hair strands
using newer and therefore less limited GPUs (see Figure 2-16). Also as we
mentioned, in contrast to many algorithms, length of hair strands does not affect
rendering time largely?. This is again because of the parallel structure of GPUs.

The model that has been introduced in Chapter 3 is a complete model for
generating different hairstyles, whereas the rendering procedure that has been
introduced in chapter 5 is based on a simplified version of this model. The head
has not been rendered along with hair strands. Rendering head along with hairs
requires rendering both cylinders (for hairs) and triangles (for head) at the same
time and may need further research to keep it real-time.

Also, the location of the roots of hair is of great importance both for quality and
for performance. We introduced a semi-uniform way in our model to distribute
roots over the head to avoid unnatural hair distribution. Also, it affects
performance because we should avoid having too closely placed root locations
and render unnecessary hairs. Implementing this algorithm using the head model

also needs future research and works.

2 As we have seen in chapter 5, rendering time mostly depends on number of cylinders in each voxel and
having long hairs would not change this number.
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In hair modeling, being able to generate all possible hairstyles without too
much effort is the goal yet to be achieved. Although our model is able to produce
many different hairstyles, there still are some certain styles that our algorithm
could fail to generate. A hair strand does not necessarily fit in a plane and can
occupy 3D space (see Figure 6-1). Providing an easy way to design and then
increase this kind of strands can be quite challenging. Also, it is impossible to
define wisps following a certain key strand for some hairstyles, for example
hairstyles using hair ties can be very tedious to generate with our model. Some
tricks like using fake key strands (see Figure 3-17-Top-Left) can be used, but the
procedure is both tedious and inaccurate.

Figure 6-1: Sample hair model with strands occupying 3D space

In hair rendering, being able to generate a full head model (with 100,000
hairs) realistically and in real-time is the goal yet to be achieved. Future GPUs
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will definitely increase the number of hairs that can be rendered in real-time, yet
realism issues need further research. Self-shadowing, alpha blending, and
assigning segments colors based on reality is very important, but being able to
render hairs with different properties such as wetness, softness, etc. is equally
important. For example, wet hairs can be rendered darker but shinier and some
certain formula can be assigned to alpha value for various softness (the more
alpha value is, the softer hair looks).

Yet, a very normal hairstyle generated by computer even off-line can be easily
identified from a natural one. So, rendering hair realistically need further
research whereas hair modeling may not be able to generate all sort of hairstyles
but those that it can generate can be considered natural.

Hair animation is perhaps the most important reason that we model and
render hairs. Like many other hair models, our hairs are modeled using
segments. Therefore, considering these segments as springs which we have
certain formula for their behavior in Physics, dynamics of hair can be simulated®.
Also, methods used in Robotics like forward kinematics can be used considering
strands as chain of rigid segments. Furthermore, since our model is based on key
strand methods, we can simulate dynamics of the key strand of each wisp
(typically just 10 key strands) and then, generate the hair model based on new
positions and shapes of key strands to produce the whole head animation.

Collision detection and handling between strands and other objects and
among strands themselves is very hard and time-consuming. Again hair physical
properties could be considered (or estimated by for example springs) to detect
and then handle collisions. Using cylinders makes detecting collision easier, yet,
we have too many segments even in a single wisp (typically 25000). Certain data

24 Mass-Spring Systems is the oldest attempt to simulate dynamics of hairs introduced by Rosenblum et al.
[RCTI1].
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structures could simplify the process for the reason that some segments cannot
collide with each other and need not to be checked.

In summary, we focused our studies on hair modeling and rendering with
potential abilities to simulate hair dynamics and run collision tests. Hair
simulating is still a very challenging research topic and has progressed a lot
recently. An accurate physical model taking into account all properties of hair
could solve most of the problems in this area however the difficulties in such an
approach necessitate the development of approximation-based simulations.
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AprpPenDIX A: ReENDERING COMPARISON

Here, the rendering hours, hair rendering techniques and some additional

information of some famous animations are compared.

Hair Rendering Budget Gross Company Year
Rendering Hours Revenue

Animations | Technique

Toy Story* | Volume 0.8M $30M $354M Pixar 1995
shaders?

Toy Story 2 | RenderMan | 2M $90M $485M Disney/ pixar | 1999
for Maya’

Monsters, Mass-Spring | 25M $115M $525M Pixar 2001

Inc. Model

Final Splines + | 22.5M $137M $85M Square 2001

Fantasy lighting

Ice Age Ray Tracing | 19.5M $60M $383M Blue Sky 2002

Incredibles | Volumetric 13M $92M $631M Disney 2004
Method

Shrek 3 Ray Tracing | 20M $160M $797M Dreamwork | 2007

Ratatouille | RenderMan | 13.4M $150M $620M Pixar 2007
for Maya

Kong Fu Ray Tracing | 24M $130M $363M* | Dreamwork | 2008

Panda

1-The first completely computer-generated animated movie

2-Volume shader introduce by [Up92].

3-Full information can be found in [Pi08].

* Till now
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Arpenpix B: GPU LimitaTION

GPU resources in both vertex shader and pixel shader are limited as you can see
in the following tables.

Vertex Shader
. Value for given Shader Model
Value Description
1.1 2.0 2.x 3.0
Total maxinnun number of instruction slots, 128 256 256 =512
Maximum static flow control instructions per
_ ; - 16 16 w
shader*.
Masximum static flow control nesting depth, _ viz. static  |viz. static 24
flow count* | flow countt |~
Maximum dynamic flow control nesting depth. - - <24 24
Maximum loop/rep flow control nesting depth. - 1 z1li£4 4
Maximum subroutine call nesting depth. - 1 z2h =4 4
Pixel Shader
. Value for given Shader Model
Value Description
1.x/1.4 2.0 2x 3.0
Total maximum number of instruction slots, For
lower versions, the instruction count is divided 4-8/6+8 |32+ 64 506 512
between texture (first number) and aritlunetic
(second number) instructions.
Maximun static flow control nesting depth, - - 24010 24
Maximum dynamic flow control nesting depth. - - 24 24
Maximum loop/rep flow control nesting depth. - - <4 4
Maximum subroutine call nesting depth. - - =4 4
[Ha05]
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APPENDIX C: Bezier Curves

Figure C-1: Bézier Curves

Bézier curve is all the points created by the following formula [HB04]:

P@)=>_ p,B,,w. 0<u<l
k=0
1
B. (i)=C.lou 1-u)"" =" FA-)F
1 0 = O (=)™ = ot ()
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Where, px = (X, Yk, Z) and po through p, are the n+1 control-point positions
that control the shape of the final curve, P(u). One of the properties of any
Bézier curve is that P(0) = po and P(1) = pn. Thus, the curve P(u) always
connects the first and last control points.
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APPENDIX D: A Fast voxeL TRAVERSAL
ALGoRITHM FOR RAY TRACING

Grid

Figure D-1: 2D Traversal for Ray Tracing
[AW87]

In 1987, Amanatides and woo introduced a fast traversal algorithm for tracing
the rays. Let us first consider the 2D version of this problem. The correct
traverse of the grid in Figure 7-1 is to visit voxels in the order: a, b, ¢, d, e, f, g,
and h, considering the fact that the ray originates from a.

Their traversal algorithm consists of two phases: initialization and incremental
traversal. The initialization phase is to first find the voxel in which the ray origin
is found. If the ray origin is outside of the grid, the point in which the ray enters
the grid will be found and the corresponding voxel will be considered as the first
voxel. The starting voxel coordinates are specified by the integer variables X and
Y. Moreover, the variables stepX and stepY are initialized to either 1 or -1
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indicating whether X and Y are incremented or decremented as the ray crosses
voxel boundaries. If we consider the ray as:

r=t*D + rO,

where rO is the ray origin and rD is the ray direction value of t at which the ray
crosses the first vertical voxel boundary is tMaxX and the value of t at which the
ray crosses the first horizontal voxel boundary is tMaxY. Minimum of tMaxX and
tMaxY will indicate how much we can travel along the ray and still remain in the
current voxel. Here is the 2D traversal algorithm:

loop {
if(tMaxX < tMaxY) {
tMaxX= tMaxX + tDeltaX;
X=X + stepX;
}else {
tMaxY= tMaxY + tDeltayY;
Y=Y + stepy;

by
NextVoxel(X,Y);

Where tDeltaX (or tDeltaY) indicates how far along the ray we must move for the
horizontal (or vertical) component of such a movement to equal the width (or
height) of a voxel.

We loop until either we find a voxel with a non-empty object list or we fall out of
the end of the grid.
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Extending the algorithm to three dimensions simply requires that we add the

appropriate z variables and find the minimum of tMaxX, tMaxY and tMaxZ during
each iteration. This results in:

list= NIL;
do {
if(tMaxX < tMaxY) {
if(tMaxX < tMaxZ) {
X=X + stepX;
if(X == justOutX)
return(NIL); /* outside grid */
tMaxX= tMaxX + tDeltaX;

} else {
Z=Z + stepZ;
if(Z == justOutZ)
return(NIL);
tMaxZ= tMaxZ + tDeltaz;
¥
} else {
if(tMaxyY < tMaxz) {
Y=Y + stepy,
if(Y == justOutY)
return(NIL);
tMaxY= tMaxyY + tDeltaY;
} else {
Z= 7 + stepZ;
if(Z == justOutZ)
return(NIL);
tMaxZ= tMaxZ + tDeltaz;
b
by

list= ObjectList[X][Y][Z];
} while(list == NIL),
return(list);
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